Sample records for furnaces boilers heat

  1. Oil-Fired Boilers and Furnaces | Department of Energy

    Energy Savers [EERE]

    Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container...

  2. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21T23:59:59.000Z

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  3. Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The...

  4. Furnaces and Boilers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3Fungible andFurnaces and Boilers

  5. 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers...

    Office of Environmental Management (EM)

    3 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking This...

  6. Specifying Waste Heat Boilers

    E-Print Network [OSTI]

    Ganapathy, V.

    or hydrochloric acid vapor should be mentioned upfront so the HRSG designer can take proper precauations while designing the unit.Material selection is also impacted by the presence of corrosive gases.If partial pressure of hydrogen is high in the gas stream...SPECIFYING WASTE HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants...

  7. Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

  8. Low Temperature Heat Recovery for Boiler Systems 

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    1986-01-01T23:59:59.000Z

    Low temperature corrosion proof heat exchangers designed to reduce boiler flue gas temperatures to 150°F or lower are now being commercially operated on gas, oil and coal fired boilers. These heat exchangers, when applied to boiler flue gas...

  9. Plasma-supported coal combustion in boiler furnace

    SciTech Connect (OSTI)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B. [Kazakh National University, Alma Ata (Kazakhstan). Dept. of Physics

    2007-12-15T23:59:59.000Z

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  10. Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams

    E-Print Network [OSTI]

    Kreeger, A. H.

    FLUID BED WASTE HEAT BOILER OPERATING EXPERIENCE IN DIRTY GAS STREAMS Alan H. Kreeger. Aerojet Energy Conversion Company. Sacramento. California ABSTRACT The first industrial fluid bed waste heat boiler in the U. S. is operating... on an aluminium melting furnace at the ALCOA Massena Integrated Aluminum Works in upstate New York. Waste heat from an aluminum melting furnace is captured for general plant use for the first time in this plant. It is accomplished with advanced fluid bed heat...

  11. Furnaces and Boilers | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome| Department ofForms FormsProjectsFurnaces and

  12. Waste Heat Recovery – Submerged Arc Furnaces (SAF)

    E-Print Network [OSTI]

    O'Brien, T.

    2008-01-01T23:59:59.000Z

    Waste Heat Recovery- Submerged Arc Furnaces (SAF) Thomas O?Brien Recycled Energy Development, LLC tobrien@recycled-energy.com Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000oF using...

  13. Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams 

    E-Print Network [OSTI]

    Kreeger, A. H.

    1986-01-01T23:59:59.000Z

    The first industrial fluid bed waste heat boiler in the U. S. is operating on an aluminium melting furnace at the ALCOA Massena Integrated Aluminum Works in upstate New York. Waste heat from an aluminum melting furnace is captured for general plant...

  14. Condensing economizers for small coal-fired boilers and furnaces

    SciTech Connect (OSTI)

    Butcher, T.A.; Litzke, W.

    1994-01-01T23:59:59.000Z

    Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impactors are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

  15. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28T23:59:59.000Z

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  16. Clean Boiler Waterside Heat Transfer Surfaces

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. Low Temperature Heat Recovery for Boiler Systems

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    be economically heated to within 50 0 F of the entering flue gas temperature. Other less common, but practical, uses for energy include driving a low-temperature electric turbine cycle or an absorption chilling cycle. An improvement in boiler efficiency of 3...% to 8% can normally be realized by cooling boiler flue gasses down to llO o F_200 0 F. This recovers a large quantity of the available sensible heat in most boiler flue gas streams. Efficiency can be improv ed by up to 10% if flue gas is cooled down...

  18. Numerical investigation of the heating process inside an industrial furnace

    E-Print Network [OSTI]

    Wolper, Pierre

    Numerical investigation of the heating process inside an industrial furnace Proposition: Combined furnace taking into account convective, conductive and radiative heat transfer. The model: Catalysis, Energy Materials, Performance Materials and Recycling. Each business area is divided into market

  19. Waste Heat Recovery – Submerged Arc Furnaces (SAF) 

    E-Print Network [OSTI]

    O'Brien, T.

    2008-01-01T23:59:59.000Z

    designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified...

  20. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.

    SciTech Connect (OSTI)

    Walsh, Peter M. (University of Alabama at Birmingham and Southern Research Institute, Birmingham, AL); Shaddix, Christopher R.; Sickafoose, Shane M.; Blevins, Linda Gail

    2003-02-01T23:59:59.000Z

    Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coat, or both, (2) at the exit of a glass-melting furnace burning natural gas and oxygen, and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

  1. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and...

  2. Value of electrical heat boilers and heat pumps for wind power integration

    E-Print Network [OSTI]

    Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link\\ZRUGV wind power, integration, heat pumps, electric heat boilers ,QWURGXFWLRQ 3UREOHP RYHUYLHZ The Danish

  3. RCRA, superfund and EPCRA hotline training module. Introduction to: Boilers and industrial furnaces (40 cfr part 266, subpart h) updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module summarizes the regulations affecting hazardous waste processes in boilers and industrial furnaces (BIFs). If defines boilers and industrial furnaces and describes the criteria associated with the definitions. It describes the requirements for processing hazardous waste in BIFs, including the distinctions between permitted and interim status units. It explains the requirements for the specially regulated BIFs and gives examples of each.

  4. Three dimension temperature field reconstruction with image processing technique on pulverized coal boiler furnace

    SciTech Connect (OSTI)

    Shen Peihua; Qi Guoshui; Ma Zengyi [and others

    1999-07-01T23:59:59.000Z

    Temperature field distribution measurement is important for combustion diagnostics. With CCD camera, the authors can obtain abundance digital data of flame image instantaneous. Every data represent radiation heat transfer along projection beam. Based on Optic geometric and heat transfer theory, they develop a 3-d flame temperature field reconstruction technique, which can calculate a 3-d zone temperature using two perspectives CCD camera. The optical geometric relation of CCD's image formation and flame radiation heat transfer model is deduced, they establish the reconstruction equation group from radiation heat transfer, and optimization is introduced to solve these equation. The result of a PC boiler is presented.

  5. Heat Recovery Consideration for Process Heaters and Boilers

    E-Print Network [OSTI]

    Kumar, A.

    1984-01-01T23:59:59.000Z

    The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

  6. Heat Recovery Considerations for Process Heaters and Boilers

    E-Print Network [OSTI]

    Kumar, A.

    1982-01-01T23:59:59.000Z

    The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

  7. CONDENSING ECONOMIZERS FOR SMALL COAL-FIRED BOILERS AND FURNACES PROJECT REPORT - JANUARY 1994

    SciTech Connect (OSTI)

    BUTCHER,T.A.

    1994-01-04T23:59:59.000Z

    Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impacts are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

  8. Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)

    E-Print Network [OSTI]

    Demirel, Melik C.

    Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

  9. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    E-Print Network [OSTI]

    Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

    2004-01-01T23:59:59.000Z

    9 Hot-Water Oil Boiler LCC Analysis-Efficiency Levels and10 Hot-Water Gas Boiler LCC Analysis-Efficiency Levels andfurnace and boiler energy-efficiency standards. Determining

  10. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect (OSTI)

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20T23:59:59.000Z

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the ability to improve control of an olefins furnace (via CO-trim) that resulted in significant energy savings and lower emissions such as NOx and other greenhouse gases. The cost to retrofit measurements on an existing olefins furnace was found to be very attractive, with an estimated payback achieved in 4 months or less.

  11. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-11-01T23:59:59.000Z

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  12. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners and...

  13. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    SciTech Connect (OSTI)

    Hamid Sarv

    2009-02-28T23:59:59.000Z

    A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level OFA was not cost effective for wall-firing. For cyclone units, NO{sub x} removal by two-level OFA plus O{sub 2} enrichment but without coal reburning was economically attractive.

  14. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Boilers and indutrial furnaces (40 CFR part 266, subpart H) updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module summarizes the regulations affecting hazardous waste processes in boilers and industrial furnaces (BIFs). It defines boilers and industrial furnaces and describes the criteria associated with the definitions. It explains the difference in applicability between regulations found in Part 266, Subpart H, and those found in Part 266, Subpart E. It describes the requirements for processing hazardous waste in BIFs, including the distinctions between permitted and interim status units and explains the requirements for the specially regulated BIF units and gives examples of each.

  15. Heat Recovery Boilers for Process Applications

    E-Print Network [OSTI]

    Ganapathy, V.; Rentz, J.; Flanagan, D.

    of the use of heat recovery due primarily to process considerations. On the other hand, cost and payback are main considerations in the case of gas turbine and incineration plants, where large quantities of gases are exhausted at temperatures varying from 800...

  16. Condensing Heat Exchangers Optimize Steam Boilers

    E-Print Network [OSTI]

    Sullivan, B.; Sullivan, P. A.

    1983-01-01T23:59:59.000Z

    the flue gas from the p~oducts of combustion faom natural gas from 300 to the dew point of 129 results in an efficiency increase of 3%. Further cooling, resulting in condensa tion of water vapor, increases the rate of heat recovery dramatically and a...

  17. Field measurements of interactions between furnaces and forced air distribution systems

    E-Print Network [OSTI]

    of equipment that provides the heating energy (the furnace, boiler or heat pump) and the method usedLBNL 40587 Field measurements of interactions between furnaces and forced air distribution systems Vol. 104 Part 1 Field measurements of interactions between furnaces and forced air distribution

  18. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    SciTech Connect (OSTI)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31T23:59:59.000Z

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel tubes. Also, these fluctuating air flow patterns can result in deposition of black liquor on the wall tubes, and during periods when deposition is high, there is a noticeable increase in the concentrations of sulfur-bearing gases like hydrogen sulfide and methyl mercaptan. Laboratory studies have shown that chromized and aluminized surface treatments on carbon steel improve the resistance to sulfidation attack. Studies of superheater corrosion and cracking have included laboratory analyses of cracked tubes, laboratory corrosion studies designed to simulate the superheater environment and field tests to study the movement of superheater tubes and to expose a corrosion probe to assess the corrosion behavior of alternate superheater alloys, particularly alloys that would be used for superheaters operating at higher temperatures and higher pressures than most current boilers. In the laboratory corrosion studies, samples of six alternate materials were immersed in an aggressive, low melting point salt mixture and exposed for times up to 336 h, at temperatures of 510, 530 or 560°C in an inert or reactive cover gas. Using weight change and results of metallographic examination, the samples were graded on their resistance to the various environments. For the superheater corrosion probe studies, samples of the same six materials were exposed on an air-cooled corrosion probe exposed in the superheater section of a recovery boiler for 1000 h. Post exposure examination showed cracking and/or subsurface attack in the samples exposed at the higher temperatures with the attack being more severe for samples 13 exposed above the first melting temperature of the deposits that collected on the superheater tubes. From these superheater studies, a ranking was developed for the six materials tested. The task addressing cracking and corrosion of primary air port tubes that was part of this project produced results that have been extensively implemented in recovery boilers in North America, the Nordic countries and many other parts of the world. By utilizing these results, boilers ar

  19. Guide to Combined Heat and Power Systems for Boiler Owners and...

    Broader source: Energy.gov (indexed) [DOE]

    the Department of Energy to improve steam system performance. Guide to Combined Heat and Power Systems for Boiler Owners and Operators (July 2004) More Documents & Publications...

  20. Evaluation of heat flux through blast furnace shell with attached sensors

    SciTech Connect (OSTI)

    Han, J.W. [Kyonggi Univ., Suwon, Kyonggi (Korea, Republic of). Dept. of Materials Engineering; Lee, J.H.; Suh, Y.K. [POSCO, Kwangyang, Cheonnam (Korea, Republic of). Technical Research Labs.

    1996-12-31T23:59:59.000Z

    Plant trials to evaluate heat fluxes through a lining/cooling system of a blast furnace were conducted in order to realize the cooling efficiency of the blast furnace under operation. For this purpose, several experiments to measure the in-furnace gas temperatures were cautiously made, and numerical simulations for the temperature distributions over the blast furnace shell and cooling/lining systems were also carried out.

  1. Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones

    E-Print Network [OSTI]

    Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01T23:59:59.000Z

    In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones...

  2. Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones 

    E-Print Network [OSTI]

    Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01T23:59:59.000Z

    In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones...

  3. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  4. Stack Gas Heat Recovery from 100 to 1200 HP Boilers

    E-Print Network [OSTI]

    Judson, T. H.

    1980-01-01T23:59:59.000Z

    in reduced production and caused personnel layoffs. U.S. Government reports indicate that roughly 20% of all fuel is consumed in boilers. A savings in boiler fuel consumption can have a positive impact on energy conservation, and become an important component...

  5. Innovative Energy Conservation Through Scrao Pre-heating in an Electric Arc Furnace

    E-Print Network [OSTI]

    Dicion, A.

    2013-01-01T23:59:59.000Z

    This paper will present an innovative energy conservation technology for scrap pre-heating in an Electric Arc Furnace that is being implemented in an industrial facility in Ontario. The objective of the paper is to examine the electrical...

  6. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    SciTech Connect (OSTI)

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01T23:59:59.000Z

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an aeroderivative turbine. The overall system design can be very similar to that of a typical pulverized coal-fired boiler system, except that ceramics and alloys are used to carry the very high-temperature air rather than steam. This design makes the combined-cycle system especially suitable as a boiler-repowering technology. With the use of a gas-fired duct heater, efficiencies of 55% can be achieved, leading to reductions in CO{sub 2} emissions of 40% as compared to today's coal-fired systems. On the basis of work completed to date, the high-temperature advanced furnace (HITAF) concept appears to offer a higher-efficiency technology option for coal-fired power generation systems than conventional pulverized coal firing. Concept analyses have demonstrated the ability to achieve program objectives for emissions (10% of New Source Performance Standards, i.e., 0.003 lb/MMBtu of particulate), efficiency (47%-55%), and cost of electricity (10%-25% below today's cost). Higher-efficiency technology options for new plants as well as repowering are important to the power generation industry in order to conserve valuable fossil fuel resources, reduce the quantity of pollutants (air and water) and solid wastes generated per MW, and reduce the cost of power production in a deregulated industry. Possibly more important than their potential application in a new high-temperature power system, the RAH panel and convective air heater tube bank are potential retrofit technology options for existing coal-fired boilers to improve plant efficiencies. Therefore, further development of these process air-based high-temperature heat exchangers and their potential for commercial application is directly applicable to the development of enabling technologies in support of the Vision 21 program objectives. The objective of the work documented in this report was to improve the performance of the UTRC high-temperature heat exchanger, demonstrate the fuel flexibility of the slagging combustor, and test methods for reducing corrosion of brick and castable refractory in such combustion environments. Specif

  7. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  8. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  9. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  10. Investigation of spectral radiation heat transfer and NO{sub x} emission in a glass furnace

    SciTech Connect (OSTI)

    Golchert, B.; Zhou, C. Q.; Chang, S. L.; Petrick, M.

    2000-08-02T23:59:59.000Z

    A comprehensive radiation heat transfer model and a reduced NOx kinetics model were coupled with a computational fluid dynamics (CFD) code and then used to investigate the radiation heat transfer, pollutant formation and flow characteristics in a glass furnace. The radiation model solves the spectral radiative transport equation in the combustion space of emitting and absorbing media, i.e., CO{sub 2}, H{sub 2}O, and soot and emission/reflection from the furnace crown. The advanced numerical scheme for calculating the radiation heat transfer is extremely effective in conserving energy between radiation emission and absorption. A parametric study was conducted to investigate the impact of operating conditions on the furnace performance with emphasis on the investigation into the formation of NOx.

  11. Method of prevention of deposits in the pipes of waste heat boilers

    SciTech Connect (OSTI)

    Gettert, H.; Kaempfer, K.

    1983-12-13T23:59:59.000Z

    A process is disclosed for preventing deposits in the pipes of waste heat boilers employed for cooling gases in the partial autothermal oxidation of fossil fuels to prepare hydrogen or synthesis gases, wherein the pipes are flushed, at the operating temperature, with hydrogen-containing gases which contain little or no H/sub 2/S.

  12. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

  13. Heat Recovery From Arc Furnaces Using Water Cooled Panels

    E-Print Network [OSTI]

    Darby, D. F.

    for three 7-ton rod holding furnaces, and a 3500 ACFM air compressor. 104 1--~---------+--;I:---1'--.TOROD 'URNACES AND AIR L:......:~--f-----T"--'1'4'---I--COMPRISSOR flGURI NO ? The cold well pump P2 is started and stopped manually. The hot well... or rust inhibitors were to be added. There were several instances of foaming until anti-foaming agents were introduced to the system. Glycol should be purchased with anti-foaming agents and rust inhibitors already mixed in. 3. The system strainers...

  14. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect (OSTI)

    Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni

    2012-06-01T23:59:59.000Z

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  15. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect (OSTI)

    Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao [Jefferson Lab, Newport News, Virginia 23606 (United States); Rigby, Wayne [Specialty Vacuum, Placitas, New Mexico 87043 (United States); Wallace, John [Casting Analysis Corporation, Weyers Cave, Virginia 24468 (United States)

    2012-06-15T23:59:59.000Z

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  16. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    SciTech Connect (OSTI)

    Liss, William E; Cygan, David F

    2013-04-17T23:59:59.000Z

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system���¢��������the Super Boiler���¢��������for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently up to 50% smaller in footprint, has a smaller diameter, and is up to 50% lower in weight, resulting in very compact design with reduced material cost and labor costs, while requiring less boiler room floor space. For enhanced energy efficiency, the heat recovery system uses a transport membrane condenser (TMC), a humidifying air heater (HAH), and a split-stage economizer to extract maximum energy from the flue gas. The TMC is a new innovation that pulls a major portion of water vapor produced by the combustion process from the flue gases along with its sensible and latent heat. This results in nearly 100% transfer of heat to the boiler feed water. The HAH improves the effectiveness of the TMC, particularly in steam systems that do not have a large amount of cold makeup water. In addition, the HAH humidifies the combustion air to reduce NOx formation. The split-stage economizer preheats boiler feed water in the same way as a conventional economizer, but extracts more heat by working in tandem with the TMC and HAH to reduce flue gas temperature. These components are designed to work synergistically to achieve energy efficiencies of 92-94% which is 10-15% higher than today���¢��������s typical firetube boilers.

  17. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2014-01-01T23:59:59.000Z

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  18. Influence of Transfer Efficiency of the Outdoor Pipe Network and Boiler Operating Efficiency on the Building Heat Consumption Index

    E-Print Network [OSTI]

    Fang, X.; Wang, Z.; Liu, H.

    2006-01-01T23:59:59.000Z

    This paper analyzes the influence of transfer efficiency of the outdoor pipe network and operating efficiency of the boiler on the building heat consumption index, on the premise of saving up to 65 percent energy in different climates. The results...

  19. Protecting the Investment in Heat Recovery with Boiler Economizers 

    E-Print Network [OSTI]

    Roethe, L. A.

    1985-01-01T23:59:59.000Z

    Many people consider energy to be a crisis in remission -- even with continuing high fuel costs. Some voice concern over the long term security of an investment in flue gas heat recovery equipment. The concern generally involves the ability...

  20. Expert Meeting: Optimized Heating Systems Using Condensing Boilers and Baseboard Convectors

    SciTech Connect (OSTI)

    Arena, L.

    2013-01-01T23:59:59.000Z

    On August 11, 2011, in Denver, CO, a Building America Expert Meeting was held in conjunction with the Building America Residential Energy Efficiency Technical Update Meeting, to review and discuss results and future plans for research to improve the performance of hydronic heating systems using condensing boilers and baseboard convectors. A meeting objective was to provide an opportunity for other Building America teams and industry experts to provide feedback and specific suggestions for the planned research.

  1. Heat Recovery Considerations for Process Heaters and Boilers

    E-Print Network [OSTI]

    Kumar, A.

    I/ton of product; and the estimated average potential energy HVings falla in 20-30% range. ;0, .666 ESL-IE-86-06-108 Proceedings from the Eighth Annual Industrial Energy Technology Conference, Houston, TX, June 17-19, 1986 'i. Improving mainrenallce. tll... fuels . The unit consists 0i metallic oi:!lt:ments that are alternately heated ..lI1d ..:oolt:'d, Elements are contained in a subdivided cylinder that rotates illside a casing. Hot flue gas flows through one side of this cylinder and heats...

  2. Protecting the Investment in Heat Recovery with Boiler Economizers

    E-Print Network [OSTI]

    Roethe, L. A.

    bearing fuels. How ever, the exact reactions have been under study in continuing research. Cause of Cold-end Corrosion - the sulphur com pounds in the fuel are oxidized to sulphur dioxide (S02) during combustion. A small portion of the S02 is further... voice concern over the long term security of an investment in flue gas heat recovery equipment. The concern generally involves the ability of an economizer or air heater to continue to perform efficiently without corrosion. The recognized economic...

  3. Recover Heat from Boiler Blowdown | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8, 2015June 4,POCRecover Heat from

  4. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect (OSTI)

    Smith, A

    2008-12-31T23:59:59.000Z

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  5. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    SciTech Connect (OSTI)

    Oland, CB

    2004-08-19T23:59:59.000Z

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

  6. Oxidation/corrosion of metallic and ceramic materials in an aluminum remelt furnace. [For fluidized bed waste heat recovery systems

    SciTech Connect (OSTI)

    Federer, J.I.; Jones, P.J.

    1985-12-01T23:59:59.000Z

    Both metallic alloys and ceramic materials are candidates for the distributor plate and other components of fluidized bed waste heat recovery (FBWHR) systems. Eleven Fe-, Ni-, and Co-base alloys were exposed to air at elevated temperatures in laboratory furnaces and to flue gases in an aluminum remelt furnace to assess their resistance to oxidation and corrosion. Four SiC ceramics and two oxide ceramics were also tested in the aluminum remelt furnace. Some alloys were coated with aluminum or SiO2 by commercial processes in an effort to enhance their oxidation and corrosion resistance.

  7. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect (OSTI)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01T23:59:59.000Z

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  8. Effect of bed pressure drop on performance of a CFB boiler

    SciTech Connect (OSTI)

    Hairui Yang; Hai Zhang; Shi Yang; Guangxi Yue; Jun Su; Zhiping Fu [Tsinghua University, Beijing (China). Department of Thermal Engineering

    2009-05-15T23:59:59.000Z

    The effect of bed pressure drop and bed inventory on the performances of a circulating fluidized bed (CFB) boiler was studied. By using the state specification design theory, the fluidization state of the gas-solids flow in the furnace of conventional CFB boilers was reconstructed to operate at a much lower bed pressure drop by reducing bed inventory and control bed quality. Through theoretical analysis, it was suggested that there would exist a theoretical optimal value of bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan energy consumption. The analysis was validated by field tests carried out in a 75 t/h CFB boiler. At full boiler load, when bed pressure drop was reduced from 7.3 to 3.2 kPa, the height of the dense zone in the lower furnace decreased, but the solid suspension density profile in the upper furnace and solid flow rate were barely influenced. Consequently, the average heat transfer coefficient in the furnace was kept nearly the same and the furnace temperature increment was less than 17{sup o}C. It was also found that the carbon content in the fly ash decreased first with decreasing bed pressure drop and then increased with further increasing bed pressure drop. The turning point with minimal carbon content was referred to as the point with optimal bed pressure drop. For this boiler, at the optimum point the bed pressure was around 5.7 kPa with the overall excess air ratio of 1.06. When the boiler was operated around this optimal point, not only the combustion efficiency was improved, but also fan energy consumption and wear of heating surface were reduced. 23 refs., 6 figs., 4 tabs.

  9. Tube furnace

    DOE Patents [OSTI]

    Foster, Kenneth G. (Livermore, CA); Frohwein, Eugene J. (San Ramon, CA); Taylor, Robert W. (Livermore, CA); Bowen, David W. (Livermore, CA)

    1991-01-01T23:59:59.000Z

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  10. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect (OSTI)

    Seaman, John

    2013-01-14T23:59:59.000Z

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  11. Furnace assembly

    DOE Patents [OSTI]

    Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

    1985-01-01T23:59:59.000Z

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  12. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 1 (Main text and Appendix I, sections 1--4)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 1 contains the main body of the report and the first 4 sections of Appendix 1: Modeling of black liquor recovery boilers -- summary report; Flow and heat transfer modeling in the upper furnace of a kraft recovery boiler; Numerical simulation of black liquor combustion; and Investigation of turbulence models and prediction of swirling flows for kraft recovery furnaces.

  13. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

  14. Applied heat transfer

    SciTech Connect (OSTI)

    Ganapathy, V.

    1982-01-01T23:59:59.000Z

    Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

  15. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  16. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  17. Tips For Residential Heating Oil Tank Owners

    E-Print Network [OSTI]

    Maroncelli, Mark

    · · · · · · · · · · · · · · · · · · · · · · Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat

  18. Slag monitoring system for combustion chambers of steam boilers

    SciTech Connect (OSTI)

    Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

    2009-07-01T23:59:59.000Z

    The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

  19. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 4 (Appendix IV)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 4 contains the following appendix sections: Radiative heat transfer properties for black liquor combustion -- Facilities and techniques and Spectral absorbance and emittance data; and Radiate heat transfer determination of the optical constants of ash samples from kraft recovery boilers -- Calculation procedure; Computation program; Density determination; Particle diameter determination; Optical constant data; and Uncertainty analysis.

  20. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01T23:59:59.000Z

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  1. EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

  2. RENEWABLES RESEARCH Boiler Burner Energy System Technology

    E-Print Network [OSTI]

    RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER Renewables Research September 2010 The Issue Researchers at Altex Technologies Corporation in Sunnyvale, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research

  3. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01T23:59:59.000Z

    infiltration rate, boiler efficiency, infiltration schedule,window area, boiler efficiency, infiltration schedule, andwindow type, boiler/furnace efficiency, envelope insulation

  4. Energy Cost Savings Calculator for Commercial Boilers: Closed...

    Office of Environmental Management (EM)

    Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only This cost...

  5. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 3 (Appendices II, sections 2--3 and III)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 3 contains the following appendix sections: Formation and destruction of nitrogen oxides in recovery boilers; Sintering and densification of recovery boiler deposits laboratory data and a rate model; and Experimental data on rates of particulate formation during char bed burning.

  6. Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications

    E-Print Network [OSTI]

    Williams, F. D. M.; Kondratas, H. M.

    1983-01-01T23:59:59.000Z

    and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design...

  7. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 2 (Appendices I, section 5 and II, section 1)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 2 contains the last section of Appendix I, Radiative heat transfer in kraft recovery boilers, and the first section of Appendix II, The effect of temperature and residence time on the distribution of carbon, sulfur, and nitrogen between gaseous and condensed phase products from low temperature pyrolysis of kraft black liquor.

  8. Effect of Combustion Air Preheat on a Forged Furnace Productivity

    E-Print Network [OSTI]

    Ward, M. E.; Bohn, J.; Davis, S. R.; Knowles, D.

    1984-01-01T23:59:59.000Z

    to determine are the effects of combustion air preheat on four additional furnace operating characteristics. These characteristics are: (1) fuel utilization of a furnace operating cycle; (2) time to heat the furnace load; (3) scale production; and (4) furnace...

  9. Energy Conservation for Boiler Water Systems 

    E-Print Network [OSTI]

    Beardsley, M. L.

    1981-01-01T23:59:59.000Z

    chamber itself must be large enough to insure complete combustion. Otherwise, the gases will contact cooler furnace areas and the flame will be quenched. Many types of boiler control instruments are now available to help control fuel preheat...

  10. Development of the household sample for furnace and boilerlife-cycle cost analysis

    SciTech Connect (OSTI)

    Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

    2005-05-31T23:59:59.000Z

    Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

  11. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 5 (Appendix V)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 5 contains model validation simulations and comparison with data.

  12. Boiler System Efficiency Improves with Effective Water Treatment

    E-Print Network [OSTI]

    Bloom, D.

    Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler...

  13. Kraft recovery boiler physical and chemical processes

    SciTech Connect (OSTI)

    Adams, T.N.; Frederick, W.J. (Adams (Terry N.), Tacoma, WA (USA); Oregon State Univ., Corvallis, OR (USA). Dept. of Chemical Engineering)

    1988-01-01T23:59:59.000Z

    The focus of this book is on the recent research into the physical and chemical processes occurring in and around a black liquor recovery boiler. Almost all of the detailed technical information in this book has previously appeared in the open literature. The purpose here is not to present research for the first time, but to present it in a context of the other processes occurring in recovery boilers. Topics covered include: general characteristics of recovery boilers; black liquor thermal and transport properties; black liquor droplet formation and combustion; recovery boiler char bed processes; flow and mixing in Kraft recovery boilers; entrainment and carryover in recovery furnaces; fume formation and dust chemistry; deposits and boiler plugging; and recovery boiler thermal performance. 257 refs., 102 figs., 38 tabs.

  14. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings - Phase 1: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.

    2012-04-01T23:59:59.000Z

    The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profit's housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15 to 25 percent.

  15. Boiler Corrosion and Monitoring

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    G. R. Holcomb; B. F. McGhee; A. T. Fry; N. J. Simms; K. Davis; Shim, H S; S. J. Bullard

    2013-11-19T23:59:59.000Z

    Results of a collaborative effort to investigate and develop solutions for key material issues affecting the performance of large-scale coal-fired boilers operating at advanced conditions is presented. Advanced conditions include advanced steam temperatures, oxyfuel firing, and co-firing biomass materials. A series of laboratory experimental results are presented on fireside corrosion in environments representing air-, and oxy-fired conditions, and with coal and/or biomass as the fuel. The effects of fluctuating reducing atmospheres and heat flux effects were examined. A variety of boiler corrosion probes and sensors were developed and tested. The probes measured corrosion by section loss and the sensors by electrochemical techniques including electrochemical noise. The probes were tested in coal and waste-to-energy boilers. Correlations between section loss probes and electrochemical noise sensors allow for real-time corrosion rate measurements to be made that allow for changes in boiler operations to be tracked in terms of corrosion effects.

  16. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner's combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

  17. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.; Varshney, K.

    2013-10-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

  18. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 5: Appendix V

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler; and (4) Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  19. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 4: Appendix IV

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler; and (4) Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  20. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect (OSTI)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31T23:59:59.000Z

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  1. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect (OSTI)

    Kung, Steven; Rapp, Robert

    2014-08-31T23:59:59.000Z

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., “Active Sulfidation Corrosion Mechanism,” has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., “Active Sulfide-to-Oxide Corrosion Mechanism,” has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 “acidic” fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by “basic” fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.

  2. Reducing NOx in Fired Heaters and Boilers 

    E-Print Network [OSTI]

    Garg, A.

    2000-01-01T23:59:59.000Z

    -6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... million BTU ? These levels can be achieved by Ultra Low NOx burners or FGR in boilers. ? Primary products of combustion ? Carbon dioxide ? Water vapors ? Oxygen ? Nitrogen ? Trace compounds NOx emissions ? NOx or Oxides of Nitrogen have...

  3. Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of electricity or

    E-Print Network [OSTI]

    About CHP Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of energy. CHP is a type of distributed generation, which, unlike central station generation, is located fuel in a furnace or boiler to produce thermal energy, consumers use CHP to provide these energy

  4. Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEANSprings Gets anColoring andCombined Heat|

  5. Furnace and Boiler Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion Study CommentsStolar,NEACEnergyDepartment

  6. Furnace and Boiler Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAM DOE OGeeking Out on Energy910186

  7. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator, the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.

  8. Utilization of coal-water fuels in fire-tube boilers. Final report, October 1990--August 1994

    SciTech Connect (OSTI)

    Sommer, T.; Melick, T.; Morrison, D.

    1994-12-31T23:59:59.000Z

    The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to the boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.

  9. Stress-Assisted Corrosion in Boiler Tubes

    SciTech Connect (OSTI)

    Preet M Singh; Steven J Pawel

    2006-05-27T23:59:59.000Z

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  10. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 3: Appendix II, Sections 2 & 3 and Appendix III

    SciTech Connect (OSTI)

    T.M. Grace, W.J. Frederick, M. Salcudean, R.A. Wessel

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler; and (4) Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  11. Improved graphite furnace atomizer

    DOE Patents [OSTI]

    Siemer, D.D.

    1983-05-18T23:59:59.000Z

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  12. Super low NO.sub.x, high efficiency, compact firetube boiler

    DOE Patents [OSTI]

    Chojnacki, Dennis A.; Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Korenberg, Jacob

    2005-12-06T23:59:59.000Z

    A firetube boiler furnace having two combustion sections and an in-line intermediate tubular heat transfer section between the two combustion sections and integral to the pressure vessel. This design provides a staged oxidant combustion apparatus with separate in-line combustion chambers for fuel-rich primary combustion and fuel-lean secondary combustion and sufficient cooling of the combustion products from the primary combustion such that when the secondary combustion oxidant is added in the secondary combustion stage, the NO.sub.x formation is less than 5 ppmv at 3% O.sub.2.

  13. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOE Patents [OSTI]

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16T23:59:59.000Z

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  14. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01T23:59:59.000Z

    as furnaces or boilers lose efficiency through heat thatwww.eccj.or.jp Efficiency for both boiler and instantaneousto have same efficiency as Gas Boiler/ Furnace Assumption

  15. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner`s combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

  16. Blast furnace stove control

    SciTech Connect (OSTI)

    Muske, K.R. [Villanova Univ., PA (United States). Dept. of Chemical Engineering; Hansen, G.A.; Howse, J.W.; Cagliostro, D.J. [Los Alamos National Lab., NM (United States); Chaubal, P.C. [Inland Steel Industries Inc., East Chicago, IN (United States). Research Labs.

    1998-12-31T23:59:59.000Z

    This paper outlines the process model and model-based control techniques implemented on the hot blast stoves for the No. 7 Blast Furnace at the Inland Steel facility in East Chicago, Indiana. A detailed heat transfer model of the stoves is developed. It is then used as part of a predictive control scheme to determine the minimum amount of fuel necessary to achieve the blast air requirements. The controller also considers maximum and minimum temperature constraints within the stove.

  17. Validation/Uncertainty Quantification for Large Eddy Simulations of the heat flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility

    SciTech Connect (OSTI)

    Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.

    2014-08-01T23:59:59.000Z

    The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstom’s DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: • Simulations of Alstom’s 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) • A simulation study of the University of Utah’s oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. • Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. • Collection of heat flux and temperature measurements in the University of Utah’s OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the generation of high-fidelity data from a turbulent oxy-coal flame for the validation of oxy-coal simulation models. Experiments were also conducted on the OFC to determine heat flux profiles using advanced strategies for O2 injection. This is important when considering retrofit of advanced O2 injection in retrofit configurations.

  18. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 2: Appendix I, Section 5, and Appendix II, Section 1

    SciTech Connect (OSTI)

    T.M. Grace, W.J. Frederick, M. Salcudean, R.A. Wessel

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler; and (4) Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  19. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 1: Main Text and Appendix I, Sections 1-4

    SciTech Connect (OSTI)

    T.M. Grace, W.J. Frederick, M. Salcudean, R.A. Wessel

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  20. Comparing Residential Furnace Blowers for

    E-Print Network [OSTI]

    of air conditioner performance, standby power, as well as igniter and combustion air blower power results in 10% lower air conditioner efficiency. For heating, the advantage of the BPM blower was to assess the performance of residential furnace blowers for both heating, cooling and air distribution

  1. Density-Enthalpy Phase Diagram 0D Boiler Simulation

    E-Print Network [OSTI]

    Vuik, Kees

    Diagram 0D Boiler Simulation Finite Element Method Further Research Mass and Heat balances V d dt = i - eDensity-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Finite Transitions #12;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research

  2. Design and fabrication of a tin-sulfide annealing furnace

    E-Print Network [OSTI]

    Lewis, Raymond (Raymond A.)

    2011-01-01T23:59:59.000Z

    A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

  3. Make boiler feedwater with lower risks

    SciTech Connect (OSTI)

    Colbert, G.L. [Rexene Products Co., Odessa, TX (United States); Reeves, G.; Combs, G. [Stone and Webster Engineering Corp., Houston, TX (United States); Edmonds, C. [Glegg Water Conditioning, Inc., Guelph, Ontario (Canada)

    1997-08-01T23:59:59.000Z

    The traditional approach to produce water suitable for high-pressure boilers requires using, handling and storing hazardous materials, i.e., acid and caustic. In this case history, an ethylene manufacturer chooses a new technology--electrodeionization (EDI)--to make feedwater for its ethylene furnace`s 1,200-psig steam system. The method was chosen in place of the traditional mixed-bed demineralizer (MBD) process. The new process is competitive in both operating and capital costs. The other bonus for the operating company was eliminating the handling of hazardous materials, thus reducing environmental and safety risks.

  4. Ferrosilicon smelting in a direct current furnace

    DOE Patents [OSTI]

    Dosaj, Vishu D. (Midland, MI); May, James B. (Midland, MI)

    1992-12-29T23:59:59.000Z

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.

  5. Ferrosilicon smelting in a direct current furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; May, J.B.

    1992-12-29T23:59:59.000Z

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

  6. BPACK -- A computer model package for boiler reburning/co-firing performance evaluations. User`s manual, Volume 1

    SciTech Connect (OSTI)

    Wu, K.T.; Li, B.; Payne, R.

    1992-06-01T23:59:59.000Z

    This manual presents and describes a package of computer models uniquely developed for boiler thermal performance and emissions evaluations by the Energy and Environmental Research Corporation. The model package permits boiler heat transfer, fuels combustion, and pollutant emissions predictions related to a number of practical boiler operations such as fuel-switching, fuels co-firing, and reburning NO{sub x} reductions. The models are adaptable to most boiler/combustor designs and can handle burner fuels in solid, liquid, gaseous, and slurried forms. The models are also capable of performing predictions for combustion applications involving gaseous-fuel reburning, and co-firing of solid/gas, liquid/gas, gas/gas, slurry/gas fuels. The model package is conveniently named as BPACK (Boiler Package) and consists of six computer codes, of which three of them are main computational codes and the other three are input codes. The three main codes are: (a) a two-dimensional furnace heat-transfer and combustion code: (b) a detailed chemical-kinetics code; and (c) a boiler convective passage code. This user`s manual presents the computer model package in two volumes. Volume 1 describes in detail a number of topics which are of general users` interest, including the physical and chemical basis of the models, a complete description of the model applicability, options, input/output, and the default inputs. Volume 2 contains a detailed record of the worked examples to assist users in applying the models, and to illustrate the versatility of the codes.

  7. Using National Survey Data to Estimate Lifetimes of Residential Appliances

    E-Print Network [OSTI]

    Lutz, James D.

    2013-01-01T23:59:59.000Z

    conditioners, heat pumps, furnaces, boilers, water heaters,conditioners, heat pumps, furnaces, boilers, water heaters,Water Heater, Gas Room Air- Conditioning Central Air- Conditioning Boiler, Gas Furnace, Gas Heat Pump *

  8. National Grid (Gas)- Residential Gas Heating Rebate Programs

    Broader source: Energy.gov [DOE]

     National Grid offers financial incentives for various energy efficiency measures in Rhode Island homes. Incentives are available for deep energy retrofit, heaters, furnaces, boilers, and others....

  9. Laclede Gas Company- Residential High Efficiency Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

  10. Combined Heat and Power (CHP) Integrated with Burners for Packaged...

    Broader source: Energy.gov (indexed) [DOE]

    Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost,...

  11. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

  12. A high temperature furnace The Sample Environment Group

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ). It is designed to accommodate large samples, and use low quality cooling water. The furnace uses a tantalum heat also minimizing mass at the furnace centre. Tantalum and alumina were specified for these items723 A high temperature furnace The Sample Environment Group Neutron Division, Rutherford Appleton

  13. Optimized Design of a Furnace Cooling System

    E-Print Network [OSTI]

    Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

    2013-01-01T23:59:59.000Z

    at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat...

  14. Combustion Air Preheat on Steam Cracker Furnaces

    E-Print Network [OSTI]

    Kenney, W. F.

    1983-01-01T23:59:59.000Z

    Beginning in 1978, Exxon has started up nine large new steam cracking furnaces with various levels of air preheat, and has seven more under construction. Sources of heat have included process streams, flue gas and gas turbine exhaust. Several...

  15. Optimized Design of a Furnace Cooling System 

    E-Print Network [OSTI]

    Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

    2013-01-01T23:59:59.000Z

    at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat...

  16. Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01T23:59:59.000Z

    A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

  17. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  18. Proceedings: International Conference on Boiler Tube Failures and Heat Recovery Steam Generator (HRSG) Tube Failures and Inspections

    SciTech Connect (OSTI)

    None

    2002-10-01T23:59:59.000Z

    Tube failures remain the leading cause of availability loss in conventional fossil plants and combined cycle/heat recovery steam generator (HRSG) plants. These conference proceedings address state-of-the-art practices and techniques worldwide for understanding and reducing tube failures.

  19. METHANE de-NOX for Utility PC Boilers

    SciTech Connect (OSTI)

    Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

    2005-09-30T23:59:59.000Z

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable to minimize the need for overfire air by maximizing NO{sub x} reduction in the burner. The proposed combustion concept aims to greatly reduce NO{sub x} emissions by incorporating a novel modification to conventional or low-NO{sub x} PC burners using gas-fired coal preheating to destroy NO{sub x} precursors and prevent NO{sub x} formation. A concentrated PC stream enters the burner, where flue gas from natural gas combustion is used to heat the PC up to about 1500 F prior to coal combustion. Secondary fuel consumption for preheating is estimated to be 3 to 5% of the boiler heat input. This thermal pretreatment releases coal volatiles, including fuel-bound nitrogen compounds into oxygen-deficient atmosphere, which converts the coal-derived nitrogen compounds to molecular N{sub 2} rather than NO. Design, installation, shakedown, and testing on Powder River Basin (PRB) coal at a 3-million Btu/h pilot system at RPI's (Riley Power, Inc.) pilot-scale combustion facility (PSCF) in Worcester, MA demonstrated that the PC PREHEAT process has a significant effect on final O{sub x} formation in the coal burner. Modifications to both the pilot system gas-fired combustor and the PC burner led to NO{sub x} reduction with PRB coal to levels below 0.15 lb/million Btu with CO in the range of 35-112 ppmv without any furnace air staging.

  20. High pressure furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1993-09-14T23:59:59.000Z

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  1. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1992-01-01T23:59:59.000Z

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  2. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14T23:59:59.000Z

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  3. High pressure furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1993-01-01T23:59:59.000Z

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  4. Boiler MACT Technical Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    govmanufacturingdistributedenergy chptaps.html * Read more about improving boiler and steam system efficiency on the Advanced Manufacturing Office website: http:...

  5. Recovery Boiler Corrosion Chemistry

    E-Print Network [OSTI]

    Das, Suman

    11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

  6. Sulphidation resistance of composite boiler tube materials

    SciTech Connect (OSTI)

    Kish, Joseph [McMaster University; Eng, Philip [FPInnovations; Singbeil, Douglas [FPInnovations; Keiser, James R [ORNL

    2008-01-01T23:59:59.000Z

    A lab-based testing program was undertaken to generate data to better define the sulphidation resistance of composite tubes installed in the lower-furnace section of black liquor recovery boilers. All composite tube cladding alloys tested were observed to have an acceptable corrosion rate at normal operating temperatures (up to 400 C) in the synthetic lower-furnace gaseous environment tested (1% H{sub 2}S-99% N{sub 2}). This acceptable corrosion resistance is due to the expected formation of a relatively protective chromium-rich inner sulphide scale. An increase in temperature up to 560 C was found to significantly increase the corrosion rate. Of the various alloys tested, Alloy HR11N exhibited the lowest corrosion rate at each of the three temperatures tested. Moreover, the corrosion rate was found not to be strongly dependent on the fabrication route (weld overlay versus co-extruded). To minimize corrosion, operating conditions that promote prolonged exposure to elevated temperatures in the lower-furnace section of black liquor recovery boilers should be avoided, regardless of the type of composite tube installed.

  7. Modern Boiler Control and Why Digital Systems are Better 

    E-Print Network [OSTI]

    Hughart, C. L.

    1983-01-01T23:59:59.000Z

    MODERN BOILER CONTROL AND WHY DIGITAL SYSTEMS ARE BETTER C. L. Hughart Engineering and Hydrocarbons Division Union Carbide Corporation South Charleston, West Virginia ABSTRACT o Fuel o Combustion Air Steam generation in petrochemical... of the advantages of digital boiler controls. This system was in stalled to control two 350,000-pound per hour, 600 psig auxiliary fired boilers which, augmented by other waste heat recovery equipment, will supply the steam for a large petrochemical plant...

  8. Remaining-life estimation of boiler pressure parts: Volume 4, Metallographic models for weld-heat-affected zone

    SciTech Connect (OSTI)

    Ellis, F.V.; Henry, J.F.; Shammas, M.S. (Combustion Engineering, Inc., Chattanooga, TN (USA); Central Electricity Research Labs., Leatherhead (UK))

    1989-11-01T23:59:59.000Z

    A comprehensive program of interrupted and creep rupture tests were performed on two heats of 1Cr-1/2Mo steel in a simulated coarse-grained HAZ condition at temperatures in the range 535-635{degree}C using both uniaxial and biaxial (torsion) stress states in order to produce specimens with varying degrees of creep damage. Based on studies of creep cavitation in these 1Cr-1/2Mo steel HAZ specimens, a quantitative metallographic parameter, A', was developed which describes the state of cavitation damage. The A' parameter is defined as the number fraction of grain boundaries having visible cavitation (OLM in the range of 400X to 500X) measured in traverses parallel to the maximum principal stress axis. The accumulation of creep damage as measured by the A' parameter was shown to be independent of stress state and, within the normal ranges of etching, insensitive to etch contrast since cavities need simply to be resolved. Thus, it is ideally suited to field measurements of service induced damage in plant components. Recommended metallographic preparation, replication and A' parameter measurement procedures are described. 56 refs., 70 figs., 17 tabs.

  9. CenterPoint Energy- Residential Gas Heating Rebates

    Broader source: Energy.gov [DOE]

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  10. Application of Boiler Op for combustion optimization at PEPCO

    SciTech Connect (OSTI)

    Maines, P.; Williams, S. [Potomac Electric Power Co., Upper Marlsboro, MD (United States); Levy, E. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-09-01T23:59:59.000Z

    Title IV requires the reduction of NOx at all stations within the PEPCO system. To assist PEPCO plant personnel in achieving low heat rates while meeting NOx targets, Lehigh University`s Energy Research Center and PEPCO developed a new combustion optimization software package called Boiler Op. The Boiler Op code contains an expert system, neural networks and an optimization algorithm. The expert system guides the plant engineer through a series of parametric boiler tests, required for the development of a comprehensive boiler database. The data are then analyzed by the neural networks and optimization algorithm to provide results on the boiler control settings which result in the best possible heat rate at a target NOx level or produce minimum NOx. Boiler Op has been used at both Potomac River and Morgantown Stations to help PEPCO engineers optimize combustion. With the use of Boiler Op, Morgantown Station operates under low NOx restrictions and continues to achieve record heat rate values, similar to pre-retrofit conditions. Potomac River Station achieves the regulatory NOx limit through the use of Boiler Op recommended control settings and without NOx burners. Importantly, any software like Boiler Op cannot be used alone. Its application must be in concert with human intelligence to ensure unit safety, reliability and accurate data collection.

  11. Process control techniques for the Sidmar blast furnaces

    SciTech Connect (OSTI)

    Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van [Sidmar N.V., Ghent (Belgium)

    1995-12-01T23:59:59.000Z

    The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

  12. Minimize Boiler Blowdown

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on minimizing boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  13. Field Test of Boiler Primary Loop Temperature Controller

    SciTech Connect (OSTI)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01T23:59:59.000Z

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  14. Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief. Industrial Technologies Program (ITP) (Brochure).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |toVEHICLEof EnergyPerformance |Waste Heat

  15. Oxy-Combustion Boiler Material Development

    SciTech Connect (OSTI)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31T23:59:59.000Z

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

  16. Oxy-Combustion Boiler Material Development

    SciTech Connect (OSTI)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31T23:59:59.000Z

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

  17. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, Pascal M. (Richmond, CA)

    1982-01-01T23:59:59.000Z

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  18. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    None

    1998-07-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

  19. Multiple hearth furnace for reducing iron oxide

    DOE Patents [OSTI]

    Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

    2012-03-13T23:59:59.000Z

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  20. Best Management Practice #8: Steam Boiler Systems

    Broader source: Energy.gov [DOE]

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  1. Climate Wise Boiler and Steam Efficiency Wise Rules

    E-Print Network [OSTI]

    Milmoe, P. H.; Winkelman, S. R.

    (and excess oxygen, 02), boiler tube cleaning, and re-calibration of boiler controls. ? A good tune-up with preclSlon testing equipment can detect and correct excess air losses, smoking, unbumed fuel losses, sooting, and high stack temperatures... control 7. Utilize characterizable fuel valve 8. Convert to atomizing burners Stack Losses and Waste Heat Recovery 9. Reduce net stack temperature by 40 of 10. Utilize stack dampers II. Direct contact condensation heat recovery 12. Pre...

  2. Biomass Boiler and Furnace Emissions and Safety Regulations in...

    Open Energy Info (EERE)

    Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development...

  3. Gas-Fired Boilers and Furnaces | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNGGary M. Mignogna -GasA

  4. Oil-Fired Boilers and Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014 National,2008aimsDepartment of0Oil's

  5. Gas-Fired Boilers and Furnaces | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FY 2011Talley,GENII Code GENII CodeDepartment

  6. Biomass Boiler and Furnace Emissions and Safety Regulations in the

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons BiomassBiofuels) Jump

  7. Advanced Diagnostics and Control for Furnaces, Fired Heaters, and Boilers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment of EnergyeffortTIFDepartment of

  8. STRIP TEMPERATURE IN A METAL COATING LINE ANNEALING FURNACE

    E-Print Network [OSTI]

    McGuinness, Mark

    continuously through the furnace, to certain temperatures and then cooling it, resulting in a change, and subsequent coating. The temperature along the furnace is controlled by varying the power supplied to the heating elements and by use of cooling tubes. The cooling tubes are located in the last half

  9. C AND M BOTTOM LOADING FURNACE TEST DATA

    SciTech Connect (OSTI)

    Lemonds, D

    2005-08-01T23:59:59.000Z

    The test was performed to determine the response of the HBL Phase III Glovebox during C&M Bottom Loading Furnace operations. In addition the data maybe used to benchmark a heat transfer model of the HBL Phase III Glovebox and Furnace.

  10. Fluidized bed boiler convective zone tube replacement

    SciTech Connect (OSTI)

    Not Available

    1991-03-21T23:59:59.000Z

    A major problem with the Georgetown University Atomspheric-Pressure, Fluidized-Bed Combustor-Boiler (GU AFBC) experienced during the first six years of operation was tube erosion. Previous corrective measures for in-bed tube erosion appeared to be effective, but excessive wear of the convective zone tubes was still occurring, and the entire heat transfer tube bundle in the boiler required replacement. In the planned project,the eroded tubes would be replaced, and the convective zone modified to eliminate the problem. Progress is discussed.

  11. CenterPoint Energy (Gas)- Residential Heating and Hot Water Rebates

    Broader source: Energy.gov [DOE]

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  12. Retrofit Integrated Space & Water Heating: Field Assessment,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    directly replace the existing forced air furnace and water heater, and consist of a high efficiency water heater or boiler and an optimized hydronic air handler. The air handlers...

  13. Black liquor combustion validated recovery boiler modeling, five-year report

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1996-08-01T23:59:59.000Z

    The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

  14. Molten metal holder furnace and casting system incorporating the molten metal holder furnace

    DOE Patents [OSTI]

    Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

    2003-02-11T23:59:59.000Z

    A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

  15. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  16. Boiler MACT Technical Assistance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012. This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.

  17. Recovery Boiler Modeling 

    E-Print Network [OSTI]

    Abdullah, Z.; Salcudean, M.; Nowak, P.

    1994-01-01T23:59:59.000Z

    Preliminary computations of the cold flow in a simplified geometry of a recovery boiler are presented. The computations have been carried out using a new code containing multigrid methods and segmentation techniques. This approach is shown...

  18. Recovery Boiler Modeling

    E-Print Network [OSTI]

    Abdullah, Z.; Salcudean, M.; Nowak, P.

    Preliminary computations of the cold flow in a simplified geometry of a recovery boiler are presented. The computations have been carried out using a new code containing multigrid methods and segmentation techniques. This approach is shown...

  19. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31T23:59:59.000Z

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  20. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

  1. Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

    2006-01-01T23:59:59.000Z

    as furnaces having a heat input rate of less than 225,000that cycles a burner between reduced heat input rate and offor between the maximum heat input rate and off. Two-stage

  2. National Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying Savings From Improved Boiler Operation

    E-Print Network [OSTI]

    Kissock, Kelly

    /off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify for improving boiler efficiency include switching from on/off to modulation control and reducing excess air EFFICIENCY We define boiler efficiency as the ratio of heat transferred to the water/steam to the total fuel

  3. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    None

    1998-09-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

  4. Advanced steel reheat furnaces: Research and development. Final report

    SciTech Connect (OSTI)

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D. [Energy and Environmental Research Corp., Irvine, CA (United States); Li, X. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1999-01-14T23:59:59.000Z

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  5. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  6. Computer Control of Boiler Operation

    E-Print Network [OSTI]

    Pareja, G. E.

    1981-01-01T23:59:59.000Z

    Rapidly rising energy costs present the opportunity for substantial cost savings through improved boiler combustion control. A process computer control system was installed at an Air Products & Chemicals facility in 1978. As a result the boiler...

  7. Implementation of Boiler Best Practices

    E-Print Network [OSTI]

    Blake, N. R.

    Boilers are an essential part of any industrial plant, and their efficient, economical operation can significantly affect the reliability and profitability of the entire plant. Best Practices for Boilers include tools to determine where a plant...

  8. Computer Control of Boiler Operation 

    E-Print Network [OSTI]

    Pareja, G. E.

    1981-01-01T23:59:59.000Z

    , capability to burn multiple fuels, faster response to demand changes, and fewer shutdowns. INTRODUCTION With the cost of energy r1s1ng so rapidly, more intense scrutiny is given to the purchase of new boiler control systems, as well as to the re... placement of old and outdated boiler controls. More advanced boiler controls are capable of maximizing the efficiency of a boiler steam production process, and thereby minimize the use of the purchased fuels. The elaborate systems which were previously...

  9. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    the indirect increase in home heating (and the decrease inincrease the home’s heating load in the heating season (Heaters, Direct Heating Equipment, Mobile Home Furnaces,

  10. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30T23:59:59.000Z

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

  11. The Enbridge "Steam Saver" Program: Steam Boiler Plant Efficiency-Update to Year End 2005

    E-Print Network [OSTI]

    Griffin, B.; Johnson, D.

    2006-01-01T23:59:59.000Z

    and incentive grants. Stand-alone projects encompass a wide range of projects. Examples include: -conversion of steam heated Air Handling Units from steam to natural gas. -Heat Recovery Projects. -Installation of RO water treatment systems.... These facilities have large Central Heating Plants. Some institutions have installed co- generation, replacing boilers with Heat Recovery Steam Generators. TABLE 2 BOILER POPULATION FOR STEAM PLANTS WITH ANNUAL FUEL CONSUMPTION GREATER THAN 70 MILLION CUBIC...

  12. Corporate Reporting of Boiler MACT Energy Assessments

    E-Print Network [OSTI]

    McClain, C.

    2013-01-01T23:59:59.000Z

    efficiency. 2. Improve operating mix of boilers, heaters, and fuels. 3. Maximize the use of waste fuels or process waste heat to minimize cost and emissions. 4. De-bottleneck the powerhouse & utility system. 5. Reduce improper atmospheric venting. 6... of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 What is the calculation protocol in the Super Solver to find value? As Found Historian Process Data Solver Mass/Energy Balance Optimized Plant Operation Rule...

  13. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOE Patents [OSTI]

    Pollock, George G. (San Ramon, CA)

    1997-01-01T23:59:59.000Z

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  14. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOE Patents [OSTI]

    Pollock, G.G.

    1997-01-28T23:59:59.000Z

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  15. Increase Your Boiler Pressure to Decrease Your Electric Bill: The True Cost of CHP 

    E-Print Network [OSTI]

    Downing, A.

    2011-01-01T23:59:59.000Z

    benefit of clean, low cost and reliable onsite power production. Introduction What if plant designers could create a payback on a replacement or new boiler? Operators still get the heat for the process, but now instead of a large capital investment... is not complicated and produces real savings. For our analysis, a company is examining the economic and operating variables inherit with replacing their current 65 psig low pressure boiler with a high pressure 400 psig boiler. They still only require 65 psig...

  16. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  17. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30T23:59:59.000Z

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  18. Design and operation of a coal-washery sludge fired 75 t/h steam fluidized bed combustion boiler

    SciTech Connect (OSTI)

    Jiang, X.; Chi, Y.; Yan, J. [and others

    1999-07-01T23:59:59.000Z

    Based upon the coal-washery sludge fluidized bed agglomerating combustion technology developed by Zhejiang University and the design and operation experience accumulated from the 35 t/h stream fluidized bed boilers, a coal-washery sludge fired 75 t/h steam circulating fluidized bed boiler (12 MWe) for cogeneration application was designed. The design features of the boiler can be summarized as follows: (1) Combination of solid particle impact separator (in furnace circulation) and moderate temperature ({approximately}500 C) uniflow cyclone; (2) Low solid circulation rate; (3) Loop-seal for solid particle recirculation; (4) Air duct oil burner for boiler start-up; and (5) Coal-Washery sludge firing or co-firing of coal-washery sludge and coal. The boiler is installed at Dongtan Coal Mine Cogeneration Plant in Shandong Province of China. The daily disposal capacity of coal-washery sludge is over 300 tons. The first trial operation of the boiler was on Dec. 18, 1997. The cogeneration plant has been in commercial operation since May 1998. This boiler is the largest capacity boiler to dispose of coal-washery sludge in China. The successful operation of this boiler has sped up the commercialization process of the coal-washery sludge fluidized bed combustion technology.

  19. Residential Furnace Blower Performance

    E-Print Network [OSTI]

    conditioner performance1 , standby power, as well as igniter and combustion air blower power. Energy savings for a typical three-and-a-half ton air conditioner with typical California ducts are 45 kWh. Peak demand combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test

  20. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  1. Improve Your Boiler's Combustion Efficiency

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  2. Building America Case Study: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    PARR

    2014-09-01T23:59:59.000Z

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  3. Application of AI techniques to blast furnace operations

    SciTech Connect (OSTI)

    Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro [Kawasaki Steel Corp., Kurashiki (Japan)

    1995-10-01T23:59:59.000Z

    It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination of fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.

  4. Notice of construction for proposed backup package boiler

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    The Hanford Site steam plant consists of coal-fired boilers located at the 200 East and the 200 West Areas. These boilers have provided steam to heat and cool facilities in the 200 Areas since the early 1940`s. As part of Project L-017, ``Steam System Rehabilitation, Phase II``, the 200 West Area coal-fired boilers will be permanently shut down. The shut down will only occur after a proposed package backup boiler (50,000 pounds per hour (lb/hr) steam, firing No. 2 oil) is installed at the 200 West Area. The proposed backup boiler will provide back-up services when the 200 East Area steam line, which provides steam to the 200 West Area, is down for maintenance or, when the demand for steam exceeds the supply available from the 200 East Plant. This application is a request for approval to construct and operate the package backup boiler. This request is being made pursuant to Washington Administration Code (WAC) Chapter 173-400, ``General Regulations for Air Pollution Sources``, and Chapter 173-460, ``Controls for New Sources of Toxic Air Pollutants``.

  5. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    slabs. Moreover, the total heat input during furnace heatingperformed for the same heat input. The optical propertiesheating for the same total heat input. Similarly, Figure 7

  6. Waste Heat Recovery From Stacks Using Direct-Contact Condensing Heat Exchange 

    E-Print Network [OSTI]

    Thorn, W. F.

    1986-01-01T23:59:59.000Z

    Similarly, the recuperator can be interfaced with the auxiliary tank, heat exchanger and boiler controls in a In considering multiple boiler installations, the CON variety of ways. Several recuperators, individually installed X recuperator may...

  7. Boiler Maximum Achievable Control Technology (MACT) Technical...

    Energy Savers [EERE]

    Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, April 2015 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact...

  8. Reduce Radiation Losses from Heating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

  9. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    SciTech Connect (OSTI)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30T23:59:59.000Z

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  10. Boiler MACT Technical Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10|BlueFireBoiler MACT Technical

  11. Fluidized bed boiler having a segmented grate

    DOE Patents [OSTI]

    Waryasz, Richard E. (Longmeadow, MA)

    1984-01-01T23:59:59.000Z

    A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

  12. Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect (OSTI)

    Andrew Seltzer; Zhen Fan

    2005-09-01T23:59:59.000Z

    Coal is presently the world's primary fuel for generating electrical power and, being more abundant and less expensive than oil or natural gas, is expected to continue its dominance into the future. Coal, however, is more carbon intensive than natural gas and oil and consequently coal-fired power plants are large point source emitters of carbon dioxide (CO{sub 2}). Since CO{sub 2} is a greenhouse gas, which may have an adverse impact on the world's climate/weather patterns, studies have been conducted to determine the feasibility and economic impact of capturing power plant CO{sub 2} emissions for pipeline transport to a sequestration/storage site. The stack gas that exhausts from a modern coal-fired power plant typically contains about 15% CO{sub 2} on a dry volume basis. Although there are numerous processes available for removing CO{sub 2} from gas streams, gas scrubbing with amine solvent is best suited for this application because of the large gas volumes and low CO{sub 2} concentrations involved. Unfortunately the energy required to regenerate the solvent for continued use as a capturing agent is large and imposes a severe energy penalty on the plant. In addition this ''back end'' or post combustion cleanup requires the addition of large vessels, which, in retrofit applications, are difficult to accommodate. As an alternative to post combustion scrubbing, Foster Wheeler (FW) has proposed that the combustion process be accomplished with oxygen rather than air. With all air nitrogen eliminated, a CO{sub 2}-water vapor rich flue gas will be generated. After condensation of the water vapor, a portion of the flue gas will be recirculated back to the boiler to control the combustion temperature and the balance of the CO{sub 2} will be processed for pipeline transport. This proposed oxygen-carbon dioxide (O{sub 2}/CO{sub 2}) combustion process eliminates the need for CO{sub 2} removal/separation and reduces the cost of supplying a CO{sub 2} rich stream for sequestration. FW has developed a conceptual design of an O{sub 2} fired boiler to determine overall plant performance and economics. Five subtasks were conducted: (1) a literature review, (2) a system design and analysis, (3) a low NOx burner design and analysis, (4) a furnace and heat recovery area design analysis, and (5) an economic analysis. The objective of the literature search is to locate any data/information relevant to the Oxygen-Based PC Boiler conceptual design. The objective of the system design and analysis task is to optimize the PC boiler plant by maximizing system efficiency within practical considerations. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 MW plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.6% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 65% of the air-fired reference case. The objective of the low NOx burner design and analysis task is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent CFD computer program. Four burner designs were developed: (1) with no OFG and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas sw

  13. The Enbridge "Steam Saver" Program: Steam Boiler Plant Efficiency-Update to Year End 2005 

    E-Print Network [OSTI]

    Griffin, B.; Johnson, D.

    2006-01-01T23:59:59.000Z

    or refractory. Improve condensate return. Add an Oxygen trim system Repair heat exchangers to permit condensate return.. Replace or re-build the boiler control system. Fix steam leaks. Repair a defective economizer. Implement a pressurized condensate...

  14. From Basic Control to Optimized Systems-Applying Digital Control Systems to Steam Boilers 

    E-Print Network [OSTI]

    Hockenbury, W. D.

    1982-01-01T23:59:59.000Z

    on heat transferred to a process. If that process suffers an upset, unstable conditions can propagate from one process to another via the steam supply system. The closer the tolerance in the boiler control system, the smaller the steam header...

  15. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2010

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01T23:59:59.000Z

    Commercial furnaces and boilers, air conditioners and heat pumps, and water heatersCOMMERCIAL & INDUSTRIAL EPACT 1992 Electric Motors EPACT 1992 Warm Air Furnaces EPACT 1992 Packaged Boilers EPACT 1992 Air Conditioners and Heat Pumps EPACT 1992 Water Heaters,

  16. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 through 2012

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01T23:59:59.000Z

    Commercial furnaces and boilers, air conditioners and heat pumps, and water heatersCOMMERCIAL & INDUSTRIAL EPACT 1992 Electric Motors EPACT 1992 Warm Air Furnaces EPACT 1992 Packaged Boilers EPACT 1992 Air Conditioners and Heat Pumps EPACT 1992 Water Heaters,

  17. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2011

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01T23:59:59.000Z

    Commercial furnaces and boilers, air conditioners and heat pumps, and water heatersCOMMERCIAL & INDUSTRIAL EPACT 1992 Electric Motors EPACT 1992 Warm Air Furnaces EPACT 1992 Packaged Boilers EPACT 1992 Air Conditioners and Heat Pumps EPACT 1992 Water Heaters,

  18. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2013

    E-Print Network [OSTI]

    , Stephen Meyers

    2014-01-01T23:59:59.000Z

    Commercial furnaces and boilers, air conditioners and heat pumps, and water heatersCOMMERCIAL & INDUSTRIAL EPACT 1992 Electric Motors EPACT 1992 Warm Air Furnaces EPACT 1992 Packaged Boilers EPACT 1992 Air Conditioners and Heat Pumps EPACT 1992 Water Heaters,

  19. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOE Patents [OSTI]

    Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

    2010-01-12T23:59:59.000Z

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  20. A Boiler Plant Energy Efficiency and Load Balancing Survey

    E-Print Network [OSTI]

    Nutter, D. W.; Murphy, D. R.

    is used for heating buildings and to operate a 4000-ton steam-driven chiller. There are five natural gas-fired steam boilers that have rated capacities ranging from 40,000 lb/hr to 100,000 lb/hr at an operating pressure of 125 psig. This paper discusses...

  1. Best Management Practice #8: Boiler and Steam Systems

    Broader source: Energy.gov [DOE]

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  2. Furnaces | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreightFulong Wind TechnologyFuningFurnaces

  3. Combined Heat & Power Technology Overview and Federal Sector...

    Broader source: Energy.gov (indexed) [DOE]

    electricity) from a single fuelenergy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP...

  4. Cupola Furnace Computer Process Model

    SciTech Connect (OSTI)

    Seymour Katz

    2004-12-31T23:59:59.000Z

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  5. Characteristics and sources of intermediate size particles in recovery boilers : final project report.

    SciTech Connect (OSTI)

    Baxter, Larry L. (Brigham Young University, Provo, UT); Shaddix, Christopher R.; Verrill, Christopher L. (Georgia Institute of Technology, Institute of Paper Science and Technology, Atlanta, GA); Wessel, Richard A. (Babcock & Wilcox Company, Barberton, OH)

    2005-02-01T23:59:59.000Z

    As part of the U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) Industries of the Future (IOF) Forest Products research program, a collaborative investigation was conducted on the sources, characteristics, and deposition of particles intermediate in size between submicron fume and carryover in recovery boilers. Laboratory experiments on suspended-drop combustion of black liquor and on black liquor char bed combustion demonstrated that both processes generate intermediate size particles (ISP), amounting to 0.5-2% of the black liquor dry solids mass (BLS). Measurements in two U.S. recovery boilers show variable loadings of ISP in the upper furnace, typically between 0.6-3 g/Nm{sup 3}, or 0.3-1.5% of BLS. The measurements show that the ISP mass size distribution increases with size from 5-100 {micro}m, implying that a substantial amount of ISP inertially deposits on steam tubes. ISP particles are depleted in potassium, chlorine, and sulfur relative to the fuel composition. Comprehensive boiler modeling demonstrates that ISP concentrations are substantially overpredicted when using a previously developed algorithm for ISP generation. Equilibrium calculations suggest that alkali carbonate decomposition occurs at intermediate heights in the furnace and may lead to partial destruction of ISP particles formed lower in the furnace. ISP deposition is predicted to occur in the superheater sections, at temperatures greater than 750 C, when the particles are at least partially molten.

  6. Long life hearth in blast furnace -- Kokura No. 2 B.F. of Sumitomo Metals

    SciTech Connect (OSTI)

    Yamamoto, Takaiku; Sunahara, Kouhei; Inada, Takanobu; Takatani, Kouji; Miyahara, Mitsuo; Sato, Yasusi; Hatano, Yasuhiko; Takata, Kouzo

    1997-12-31T23:59:59.000Z

    The factors elongating hearth life of Sumitomo Kokura No. 2 B.F. were investigated by use of an estimation system of the furnace hearth condition, which consisted of four mathematical simulation models. Lowered heat load operation together with integrated design of both refractories and cooling enabled the furnace life to be extended for over 16 years without severe damage in the hearth.

  7. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    E-Print Network [OSTI]

    McNeil, MIchael

    2011-01-01T23:59:59.000Z

    development, like for heat pump water heaters. The objectiveheat pumps Warm-air furnaces Package boilers Storage & instantaneous water heaters

  8. Industrial Boiler Optimization Utilizing CO Control 

    E-Print Network [OSTI]

    Ruoff, C. W.; Reiter, R. E.

    1980-01-01T23:59:59.000Z

    of four No. 6 oil fired boilers with an in stalled capacity of 500,000 lbs/hr. Each boiler was previously designed to operate with excess oxygen as the control parameter. By and large the existing boiler control systems functioned as designed. However... strategies such as load allocation. Increased operating experience with this system promises to open new areas and provide better ways to accompliish boiler control. i REFERENCES 1. Spanbauer, J. P., "Energy Savings Through Advanced Boiler Control...

  9. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-29T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the previous semi-annual technical progress report (April 1, 2001 through September 30, 2001). During the current reporting period, additional balance of plant impact information was determined for one of the two tests. These additional balance-of-plant results are presented and discussed in this report. There was no other technical progress to report, because all planned testing as part of this project has been completed.

  10. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2001-11-06T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

  11. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2000-12-01T23:59:59.000Z

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  12. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    SciTech Connect (OSTI)

    Chau, J. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Preto, F. [Natural Resources Canada; Melin, Staffan [University of British Columbia, Vancouver

    2009-01-01T23:59:59.000Z

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

  13. Evaluation of PFP Furnace Systems for Thermal Stabilization of Washed High Chloride Plutonium Oxide Items

    SciTech Connect (OSTI)

    Fischer, Christopher M.; Elmore, Monte R.; Schmidt, Andrew J.; Gerber, Mark A.; Muzatko, Danielle S.; Gano, Susan R.; Thornton, Brenda M.

    2002-12-17T23:59:59.000Z

    High chloride content plutonium (HCP) oxides are impure plutonium oxide scrap which contains NaCl, KCl, MgCl2 and/or CaCl2 salts at potentially high concentrations and must be stabilized at 950 C per the DOE Standard, DOE-STD-3013-2000. The chlorides pose challenges to stabilization because volatile chloride salts and decomposition products can corrode furnace heating elements and downstream ventilation components. A high-temperature furnace (same make and model as used at the RMC at Plutonium Finishing Plant) and the associated offgas system were set up at PNNL to identify system vulnerabilities and to investigate alternative materials and operating conditions that would mitigate any corrosion and plugging of furnace and offgas components. The key areas of interest for this testing were the furnace heating elements, the offgas line located inside the furnace, the offgas line between the furnace and the filter/knockout pot, the filter/knockout pot, the sample boat, and corrosion coupons to evaluate alternative materials of construction. The evaluation was conducted by charging the furnace with CeO2 that had been impregnated with a mixture of chloride salts (selected to represent the expected residual chloride salt level in washed high chloride items) and heated in the furnace in accordance with the temperature ramp rates and hold times used at PFP.

  14. Standby cooling system for a fluidized bed boiler

    DOE Patents [OSTI]

    Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

    1990-01-01T23:59:59.000Z

    A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

  15. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    SciTech Connect (OSTI)

    Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

    2009-06-30T23:59:59.000Z

    This report summarizes Year 1 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Through the course of Year 1 activities, great progress was made toward understanding the issues associated with oxy-combustion retrofit of coal-fired boilers. All four Year 1 milestones and objectives have been, or will be, completed on schedule and within budget. Progress in the four milestone areas may be summarized as follows: • University of Utah has performed size segregated ash composition measurements in the Oxy-Fuel Combustor (OFC). These experiments indicate that oxy-combustion retrofit may impact ash aerosol mineral matter composition. Both flame temperature and flue gas composition have been observed to influence the concentration of calcium, magnesium and iron in the fine particulate. This could in turn impact boiler fouling and slagging. • Sandia National Labs has shown that char oxidation rate is dependent on particle size (for sizes between 60 and 100 microns) by performing fundamental simulations of reacting char particles. These predictions will be verified by making time-resolved optical measurements of char particle temperature, velocity and size in bench-scale experiments before the end of Year 1. • REI and Siemens have completed the design of an oxy-research burner that will be mounted on University of Utah’s pilot-scale furnace, the L1500. This burner will accommodate a wide range of O2, FGR and mixing strategies under conditions relevant for utility boiler operation. Through CFD modeling of the different burner designs, it was determined that the key factor influencing flame stabilization location is particle heat-up rate. The new oxy-research burner and associated equipment is scheduled for delivery before the end of Year 1. • REI has completed a literature survey of slagging and fouling mechanisms in coal-fired power plants to understand key issues influencing these deposition regimes and infer their behavior under oxy-fired conditions. Based on the results of this survey, an algorithm for integrating slagging predictions into CFD models was outlined. This method accounts for ash formation, particle impaction and sticking, deposit growth and physical properties and impact of the deposit on system flow and heat transfer. A model for fouling in the back pass has also been identified which includes vaporization of sodium, deposition of sodium sulfate on fly ash particles and tube surfaces, and deposit growth rate on tubes. In Year 1, REI has also performed a review of the literature describing corrosion in order to understand the behavior of oxidation, sulfidation, chloridation, and carburization mechanisms in air-fired and oxy-combustion systems. REI and Vattenfall have met and exchanged information concerning oxy-coal combustion mechanisms for CFD simulations currently used by Vattenfall. In preparation for Year 2 of this program, two coals (North Antelope PRB, Western bituminous) have been ordered, pulverized and delivered to the University of Utah and Sandia National Labs. Materials for the corrosion experiments have been identified, suppliers located, and a schedule for equipment fabrication and shakedown has been established. Finally, a flue gas recycle system has been designed and is being constructed for the OFC.

  16. Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions 

    E-Print Network [OSTI]

    Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

    1985-01-01T23:59:59.000Z

    Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented....

  17. Steam Cracker Furnace Energy Improvements

    E-Print Network [OSTI]

    Gandler, T.

    & challenges in steam cracking ? Energy efficiency improvements Overview Baytown Olefins Plant Page 3 Baytown Complex ?One of world?s largest integrated, most technologically advanced petroleum/petrochemical complexes ?~3,400 acres along Houston Ship... wall temperatures Furnace tube hydrocarbon + steam 0 0.2 0.4 0.6 0.8 1 1.2 1 2 time C o k e l a y e r Page 8 Steam Cracker Furnace Energy Efficiency ? Overall energy efficiency of furnace depends on ? Run length or % of time...

  18. High-solids black liquor firing in pulp and paper industry Kraft recovery boilers. Final report, Phase 1, Volume 1: Executive summary

    SciTech Connect (OSTI)

    Southards, W.T.; Clement, J.L.; McIlroy, R.A.; Tharp, M.R.; Verrill, C.L.; Wessell, R.A.

    1995-11-01T23:59:59.000Z

    This project is a multiple-phase effort to develop technologies to improve high-solids black liquor firing in pulp mill recovery boilers. The objectives are to develop a preliminary design of a recovery furnace simulator; evaluate the economics of high-solids; and delineate a project concept for evaluating candidate technologies to improve chemical recovery.

  19. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01T23:59:59.000Z

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

  20. NOx EMISSIONS PRODUCED WITH COMBUSTION OF POWDER RIVER BASIN COAL IN A UTILITY BOILER

    SciTech Connect (OSTI)

    John S. Nordin; Norman W. Merriam

    1997-04-01T23:59:59.000Z

    The objective of this report is to estimate the NOx emissions produced when Powder River Basin (PRB) coal is combusted in a utility boiler. The Clean Air Act regulations specify NOx limits of 0.45 lb/mm Btu (Phase I) and 0.40 lb/mm Btu (Phase II) for tangentially fired boilers, and 0.50 lb/mm 13tu (Phase II) and 0.46 lb/mm Btu (Phase II) for dry-bottom wall-fired boilers. The Clean Air Act regulations also specify other limits for other boiler types. Compliance for Phase I has been in effect since January 1, 1996. Compliance for Phase II goes into effect on January 1, 2000. Emission limits are expressed as equivalent NO{sub 2} even though NO (and sometimes N{sub 2}O) is the NOx species emitted during combustion. Regulatory agencies usually set even lower NOx emission limits in ozone nonattainment areas. In preparing this report, Western Research Institute (WRI) used published test results from utilities burning various coals, including PRB coal, using state-of-the art control technology for minimizing NOx emissions. Many utilities can meet Clean Air Act NOx emission limits using a combination of tight combustion control and low-NOx burners and by keeping furnaces clean (i.e., no slag buildup). In meeting these limits, some utilities also report problems such as increased carbon in their fly ash and excessive furnace tube corrosion. This report discusses utility experience. The theory of NOx emission formation during coal combustion as related to coal structure and how the coal is combusted is also discussed. From this understanding, projections are made for NOx emissions when processed PRB coal is combusted in a test similar to that done with other coals. As will be shown, there are a lot of conditions for achieving low NOx emissions, such as tight combustion control and frequent waterlancing of the furnace to avoid buildup of deposits.

  1. Rebuilding of Rautaruukki blast furnaces

    SciTech Connect (OSTI)

    Kallo, S.; Pisilae, E.; Ojala, K. [Rautaruukki Oy Raahe Steel (Finland)

    1997-12-31T23:59:59.000Z

    Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

  2. Waste Heat Boilers for Incineration Applications

    E-Print Network [OSTI]

    Ganapathy, V.

    Incineration is a widely used process for disposing of solid, liquid and gaseous wastes generated in various types of industries. In addition to destroying pollutants, energy may also be recovered from the waste gas streams in the form of steam...

  3. Fiberfrax insulation in heat treating furnaces

    SciTech Connect (OSTI)

    Baker, N.H. Jr.

    1981-01-01T23:59:59.000Z

    Fiberfrax is composed of 42% alumina AL/sub 2/O/sub 3/ and 52% silica S/sub 1/O/sub 2/. Four examples are given to demonstrate decreased fuel consumption and increased productivity.

  4. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  5. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, D.W.; Lauf, R.J.

    1994-06-14T23:59:59.000Z

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  6. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    by a heating lamp emitting in the visible and near infraredwith heating in a furnace at 400 o C. The infrared lamp was

  7. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  8. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    SciTech Connect (OSTI)

    Sharp, William (Sandy) [SharpConsultant

    2011-12-01T23:59:59.000Z

    This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superh

  9. Steam Conservation and Boiler Plant Efficiency Advancements

    E-Print Network [OSTI]

    Fiorino, D. P.

    This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing...

  10. Operation of the NRCh constriction of boilers in 300 MW energy units during combustion of anthracite dust

    SciTech Connect (OSTI)

    Kaminskii, V.P.; Mironov, S.N.

    1982-03-01T23:59:59.000Z

    Operation of the furnace constriction of boilers in 300 MW units during combustion of anthracite dust with liquid slag removal now requires special attention on the part of both operating personnel at thermal power plants and designers. The reason behind this is charring of the studs and carborundum mass on the roof portion of the constriction with subsequent exposure of the tubes; external high-temperature corrosion of the tubes on the roof portion and on the upper incline of the constriction with subsequent tapering of the tube walls to 1.5 mm and their breaking; the presence of corrosion-fatigue destruction of the tube walls in the upper incline of the constriction with formation of scale, transverse deep grooves and fissures on the front side of the tubes. Overall, at the present time the constriction is a point of failure that requires intensified control and greater repair costs to replace damaged sections of the heating surfaces. In conjunction with this, complex analysis of operation of the constriction has been carried out.

  11. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    Castaldini, Carlo; Darby, Eric

    2013-09-30T23:59:59.000Z

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

  12. BPM Motors in Residential Gas Furnaces: What are the Savings?

    E-Print Network [OSTI]

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01T23:59:59.000Z

    of the total electricity consumption by BPM furnaces. Thisbecause furnace electricity consumption is significant.of furnace electricity consumption. Therefore, accurate

  13. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01T23:59:59.000Z

    Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

  14. BPM Motors in Residential Gas Furnaces: What are the Savings?

    E-Print Network [OSTI]

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01T23:59:59.000Z

    standby power consumption in BPM furnaces is significantlytotal electricity consumption by BPM furnaces. This is notOverall, it appears the BPM motors used in furnaces offer

  15. Sootblowing optimization for improved boiler performance

    DOE Patents [OSTI]

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25T23:59:59.000Z

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  16. Sootblowing optimization for improved boiler performance

    DOE Patents [OSTI]

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30T23:59:59.000Z

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Lighting, Lighting ControlsSensors, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Heat recovery, Programmable Thermostats, Energy Mgmt. SystemsBuilding...

  18. INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING

    E-Print Network [OSTI]

    Vilmer, Christian

    2013-01-01T23:59:59.000Z

    solar con- trols test facility at Lawrence Berkeley Laboratory The interaction of baseboard, radiant panel, and furnace heating

  19. Covered Product Category: Commercial Boilers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for commercial boilers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  20. Underdeposit corrosion in boiler applications

    SciTech Connect (OSTI)

    Seels, F.H.

    1987-05-01T23:59:59.000Z

    Corrosion in industrial boilers is often associated with localized deposits. The most severe corrosion damage is often beneath the deposit. Waterside deposits can result in tube metal temperatures above the safe working limit for low-carbon steel. The variable of elevated metal temperature influences interactions between the deposit and corrosion processes under the deposit. Four case histories are discussed.

  1. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21T23:59:59.000Z

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  2. Alternate Materials for Recovery Boiler Superheater Tubes

    SciTech Connect (OSTI)

    Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

    2009-01-01T23:59:59.000Z

    The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

  3. Predictive modelling of boiler fouling

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    In this reporting period, efforts were initiated to supplement the comprehensive flow field description obtained from the RNG-Spectral Element Simulations by incorporating, in a general framework, appropriate modules to model particle and condensable species transport to the surface. Specifically, a brief survey of the literature revealed the following possible mechanisms for transporting different ash constituents from the host gas to boiler tubes as deserving prominence in building the overall comprehensive model: (1) Flame-volatilized species, chiefly sulfates, are deposited on cooled boiler tubes via the mechanism of classical vapor diffusion. This mechanism is more efficient than the particulate ash deposition, and as a result there is usually an enrichment of condensable salts, chiefly sulfates, in boiler deposits; (2) Particle diffusion (Brownian motion) may account for deposition of some fine particles below 0. 1 mm in diameter in comparison with the mechanism of vapor diffusion and particle depositions, however, the amount of material transported to the tubes via this route is probably small. (3) Eddy diffusion, thermophoretic and electrophoretic deposition mechanisms are likely to have a marked influence in transporting 0.1 to 5[mu]m particles from the host gas to cooled boiler tubes; (4) Inertial impaction is the dominant mechanism in transporting particles above 5[mu]m in diameter to water and steam tubes in pulverized coal fired boiler, where the typical flue gas velocity is between 10 to 25 m/s. Particles above 10[mu]m usually have kinetic energies in excess of what can be dissipated at impact (in the absence of molten sulfate or viscous slag deposit), resulting in their entrainment in the host gas.

  4. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

  5. Furnace Blower Electricity: National and Regional Savings Potential

    SciTech Connect (OSTI)

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16T23:59:59.000Z

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

  6. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01T23:59:59.000Z

    Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

  7. Correlating benzene, total hydrocarbon and carbon monoxide emissions from wood-fired boilers

    SciTech Connect (OSTI)

    Hubbard, A.J.; Grande, D.E.; Berens, J.R. [Wisconsin Dept. of Natural Resources, Madison, WI (United States); Piotrowski, J. [Tenneco Packaging, Inc., Tomahawk, WI (United States)

    1997-12-31T23:59:59.000Z

    Hazardous air pollutants, including benzene, are generated by the incomplete combustion of fuels. Organic compound emissions, which are generally products of incomplete combustion, are reduced by promoting high quality combustion, for example by controlling furnace exit temperatures and establishing minimum residence times. Monitoring carbon monoxide (CO) emissions is important since the amount of carbon monoxide emitted represents the quality of combustion which in turn represents the amount of hazardous air pollutants being generated. Total hydrocarbon (THC) emissions are also related to the quality of combustion. Recently the Wisconsin Department of Natural Resources (DNR) measured the benzene and total hydrocarbon emissions from two large industrial wood fired boilers. These boilers are located at Tenneco Packaging, a container board manufacturing facility in northern Wisconsin. Temperature, oxygen and carbon monoxide concentrations were sampled continuously by Tenneco Packaging`s emission monitoring system. The Department`s team used an organic vapor analyzer to continuously measure concentrations of total hydrocarbons (THC). The Department`s team also used a modified USEPA Method 18 sampling train to capture organic vapors for subsequent analysis by gas chromatography. The data show correlations between benzene and carbon monoxide, and between benzene and THC concentrations. The emissions sampling occurred both upstream of the particulate emissions control system as well as at the stack. The CO variations during actual boiler operation appeared to be well correlated with changes in boiler steam load. That is, increases in CO generally accompanied a change, either up or down, in boiler load. Lower concentrations of CO were associated with stable combustion, as indicated by periods of constant or nearly constant boiler load.

  8. Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station

    SciTech Connect (OSTI)

    Not Available

    1982-03-01T23:59:59.000Z

    A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

  9. Measure Guideline: Condensing Boilers - Control Strategies for Optimizing Performance and Comfort in Residential Applications

    SciTech Connect (OSTI)

    Arena, L.

    2013-05-01T23:59:59.000Z

    The combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater has become a common option for high-efficiency residential space heating in cold climates. While there are many condensing boilers available on the market with rated efficiencies in the low to mid 90% efficient range, it is imperative to understand that if the control systems are not properly configured, these heaters will perform no better than their non-condensing counterparts. Based on previous research efforts, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency (Arena 2010). It was found that there is a significant lack of information for contractors on how to configure the control systems to optimize overall efficiency. For example, there is little advice on selecting the best settings for the boiler reset curve or how to measure and set flow rates in the system to ensure that the return temperatures are low enough to promote condensing. It has also been observed that recovery from setback can be extremely slow and, at times, not achieved. Recovery can be affected by the outdoor reset control, the differential setting on the boiler and over-sizing of the boiler itself. This guide is intended for designers and installers of hydronic heating systems interested in maximizing the overall system efficiency of condensing boilers when coupled with baseboard convectors. It is applicable to new and retrofit applications.

  10. Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas

    SciTech Connect (OSTI)

    V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

  11. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments Energy RatingsDepartmentRevs BatteriesWashingtonOFFICEHomes:AirBoiler

  12. Optimization of Trona/Limestone Injection for SO2 Control in Coal-Fired Boilers

    SciTech Connect (OSTI)

    None

    2005-09-01T23:59:59.000Z

    Mobotec USA develops and markets air pollution control systems for utility boilers and other combustion systems. They have a particular interest in technologies that can reduce NOx, SOx, and mercury emissions from coal-fired boilers, and have been investigating the injection of sorbents such as limestone and trona into a boiler to reduce SOx and Hg emissions. WRI proposed to use the Combustion Test Facility (CTF) to enable Mobotec to conduct a thorough evaluation of limestone and trona injection for SO{sub 2} control. The overall goal of the project was to characterize the SO{sub 2} reductions resulting from the injection of limestone and trona into the CTF when fired with a high-sulfur eastern bituminous coal used in one of Mobotec's Midwest installations. Results revealed that when limestone was injected at Ca:S molar ratios of 1.5 to 3.0, the resulting SO{sub 2} reductions were 35-55%. It is believed that further reductions can be attained with improved mixing of the sorbent with the combustion gases. When limestone was added to the coal, at Ca:S molar ratios of 0.5 to 1.5, the SO{sub 2} reductions were 13-21%. The lower reductions were attributed to dead-burning of the sorbent in the high temperature flame zone. In cases where limestone was both injected into the furnace and added to the coal, the total SO{sub 2} reductions for a given Ca:S molar ratio were similar to the reductions for furnace injection only. The injection of trona into the mid-furnace zone, for Na:S molar ratios of 1.4 to 2.4, resulted in SO{sub 2} reductions of 29-43%. Limestone injection did not produce any slag deposits on an ash deposition probe while trona injection resulted in noticeable slag deposition.

  13. Air-cooled CWS warm air furnace. Final report

    SciTech Connect (OSTI)

    Litka, A.F.; Becker, F.E.

    1995-08-01T23:59:59.000Z

    Thermo Power Corporation, Tecogen Division, has developed coal water slurry (CWS) combustion technologies specifically tailored to meet the space heating needs of the residential, commercial, and industrial market sectors. This furnace was extensively tested and met all the design and operating criteria of the development program, which included combustion efficiencies in excess of 99%, response to full load from a cold start in less than 5 minutes, and steady-state thermal efficiencies as high as 85%. While this furnace design is extremely versatile, versatility came at the expense of system complexity and cost. To provide a more cost effective CWS-based option for the residential market sector, Tecogen, developed a totally air-cooled CWS-fired residential warm air heating system. To minimize system cost and to take advantage of industry manufacturing practices and experience, a commercially available oil/gas solid fuel-fired central furnace, manufactured by Yukon Energy Corporation, was used as the platform for the CWS combustor and related equipment. A prototype furnace was designed, built, and tested in the laboratory to verify system integrity and operation. This unit was then shipped to the PETC to undergo demonstration operation and serve as a showcase of the CWS technology. An in-depth Owners Manual was prepared and delivered with the furnace. This Owners Manual, which is included as Appendix A of this report, includes installation instructions, operating procedures, wiring diagrams, and equipment bulletins on the major components. It also contains coal water slurry fuel specifications and typical system operating variables, including key temperatures, pressures, and flowrates.

  14. www.heatpumpcentre.org IEA HEAT PUMP PROGRAMME

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    for buildings in cold climates Annex 40 - Heat pump concepts for near zero- energy buildings (Operating Agent boilers and gas boilers Annex 38 - Systems using solar thermal energy in combination with heat pumps (Operating Agent: CH) The aim is to analyse solar and heat pump configurations with respect to energy savings

  15. Characterization of ash deposition and heat transfer behavior of coals during combustion in a pilot-scale facility and full-scale utility

    SciTech Connect (OSTI)

    Sushil Gupta; Rajender Gupta; Gary Bryant; Terry Wall; Shinji Watanabe; Takashi Kiga; Kimihito Narukawa [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research & Technology

    2009-05-15T23:59:59.000Z

    Experimental measurements as well as theoretical models were used to investigate the impact of mineral matter of three coals on ash deposition and heat transfer for pulverized coal fired boilers. The ash deposition experiments were conducted in a pulverized fuel combustion pilot-scale facility and a full-scale unit. A mathematical model with input from computer-controlled scanning electron microscopy analysis of coal minerals was used to predict the effect of ash deposition on heat transfer. The predicted deposit thickness and heat flux from the model are shown to be consistent with the measurements in the test facility. The model differentiates the coals according to the deposits they form and their effect on heat transfer. The heat transfer predictions in the full-scale unit were found to be most suitable for the water wall under the furnace nose. The study demonstrates that the measurements in a full-scale unit can differ significantly from those in pilot-scale furnaces due to soot-blowing operations. 9 refs., 12 figs., 3 tabs.

  16. Fluidized bed boiler feed system

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1981-01-01T23:59:59.000Z

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  17. Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement

    E-Print Network [OSTI]

    Taylor, Margaret

    2014-01-01T23:59:59.000Z

    Conditioners Commercial Air?Source Heat Pumps Air?Cooled Heaters Gas Furnaces Air-Source Heat Pumps Boilers CentralChillers Commercial Air-Source Heat Pumps Commercial Boilers

  18. Determining boiler-water makeup

    SciTech Connect (OSTI)

    Beecher, J.; Herman, K. [Ashland Chemical Co., Boonton, NJ (United States). Drew Industrial Div.

    1995-10-01T23:59:59.000Z

    In boiler operations, it is desirable to determine blowdown--and, thus, the feedwater`s concentration cycles--because it enables operators to calculate the theoretical concentrations of iron, copper or dispersant in the system. These calculations are important for maintaining boiler cleanliness. In practice, however, it isn`t always feasible to determine blowdown. For example, if the steam, feedwater and blowdown flows are not measured in a system, or if the measurements are not accurate, the blowdown and feedwater concentration cycles cannot be accurately determined. Also, if demineralized makeup water with very-low silica concentrations is mixed with essentially silica-free condensate, the ratio of silica in the boiler water to the silica in the feedwater may not yield accurate values for the concentration cycle. This method for calculating concentration cycles is accurate to within 5%, when the accuracy of the parameters measured are within the following limits: steam flow (2%); phosphate, residual (5%); micro calcium (50%); micro iron (25%); and phosphate, feed (10%).

  19. Direct current, closed furnace silicon technology

    SciTech Connect (OSTI)

    Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

    1994-05-01T23:59:59.000Z

    The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

  20. Quantifying Energy Savings by Improving Boiler Operation

    E-Print Network [OSTI]

    Carpenter, K.; Kissock, J. K.

    2005-01-01T23:59:59.000Z

    Dayton, OH ABSTRACT On/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify energy savings from switching to modulation control mode and reducing excess air in natural gas fired boilers... the accuracy of the methods. INTRODUCTION In our experience, common opportunities for improving boiler efficiency include switching from on/off to modulation control and reducing excess air. The decision about whether to pursue these opportunities...

  1. Industrial Heat Recovery - 1982

    E-Print Network [OSTI]

    Csathy, D.

    1982-01-01T23:59:59.000Z

    like: "Vertical, natural circulation boilers are intrinsically mbre reliable than horizontal, forced circula tion boilers.",4 and " it will be seen that horizontal tubes have much lower heat fluxes at burnout than do vertical ones, though...-steam density difference dia gram (Figure 1) has been presented repeat edly in order to indicate a significant density difference between the two phases (even close to the critical pressure) which induces natural circulation. However, this diagra...

  2. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-06-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the previous report (April 1, 2002 through September 30, 2002). During the current period, there was no technical progress to report, because all planned testing as part of this project has been completed. The project period of performance was extended to allow the conduct of testing of another SO{sub 3} control technology, the sodium bisulfite injection process. However, these additional tests have not yet been conducted.

  3. Upgrade Boilers with Energy-Efficient Burners

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  4. EPA may force scrubbers on industry boilers

    SciTech Connect (OSTI)

    Hume, M.

    1985-05-13T23:59:59.000Z

    An Environmental Protection Agency (EPA) proposal requiring scrubber standards for industrial energy users will force industry to invest in the costly pollution control equipment used mostly by utilities today. The New Source Performance Standards (NSPS) for sulfur dioxide emissions will require either scrubbing or fluidized-bed combustion regardless of the fuel's sulfur content. Protests from the Council of Industrial Boiler Owners that this is an unfair burden on non-utility boilers note that scrubbing is more costly for smaller boilers, and that it could impede air quality improvement by discouraging the replacement of old boilers. EPA contests these claims.

  5. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  6. Best Practices: The Engineering Approach For Industrial Boilers

    E-Print Network [OSTI]

    Blake, N. R.

    , as well as plant profitability. Boiler Best Practices represent The Engineering Approach for Boilers-a way to examine mechanical, operational and chemical aspects of the systems (pretreatment through condensate) to ensure reliable boiler operations...

  7. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect (OSTI)

    None

    1998-07-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

  8. Direct-Contact Process Water Heating

    E-Print Network [OSTI]

    Hamann, M. R.

    2006-01-01T23:59:59.000Z

    to the manufacturing processes utilizing direct steam injection from process boilers to a hot water storage tank. Although the boiler plant was in fair operating condition, the boilers were over 30 years old and had measured seasonal heating efficiencies of 60... water heater. Since the new system was better matched to the plant load, energy savings occurred as a result of the new systems reduced input capacity and higher efficiency. This project, which can be duplicated in other industries with facility...

  9. Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting

    E-Print Network [OSTI]

    McMahon, James E.; Wiel, Stephen

    2001-01-01T23:59:59.000Z

    commercial-package air-conditioning and heating equipment, packaged terminal air condi- tioners and heat pumps, warm-air furnaces, packaged boilers, storage water heaters,

  10. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    E-Print Network [OSTI]

    Homan, GregoryK

    2010-01-01T23:59:59.000Z

    air cleaners Room air conditioners Scanners Servers Set-topBoilers • Central Air Conditioners and Air-Source HeatHeat Pump -Central Air Conditioner -Gas Furnace -Oil

  11. An Analysis of the Use of Fluidized-Bed Heat Exchangers for Heat Recovery

    E-Print Network [OSTI]

    Vogel, G. J.; Grogan, P. J.

    1980-01-01T23:59:59.000Z

    The principles of fluidized-bed operation and the factors affecting the performance of a fluidized-bed waste heat boiler (FBWHB) are discussed in detail. Factors included in the discussion are bed temperature and pressure, heat transfer coefficient...

  12. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    Ă?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

  13. Consider Installing High-Pressure Boilers with BackpressureTurbine...

    Broader source: Energy.gov (indexed) [DOE]

    High-Pressure Boilers with Backpressure Turbine-Generators Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators This tip sheet outlines the benefits of...

  14. Economics of residential gas furnaces and water heaters in United States new construction market

    SciTech Connect (OSTI)

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2009-05-06T23:59:59.000Z

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

  15. Some features of the melting of borosilicate glasses in continuous furnaces

    SciTech Connect (OSTI)

    Sivko, A.P.

    1988-07-01T23:59:59.000Z

    The quality of G40-1 glass obtained in continuous gas furnaces was studied. The solubility of the gases in the G40-1 glass was determined for acceptable articles obtained in the two furnaces. The effect of repeat heating of the G40-1 glass in the forming zone was studied to find reasons for the formation of seeds and bubbles. It was shown that they form when scale from hot angle-bar supporting the plate-blocks of the crown fell into the glass of the working end of the furnace if the lining of the curtain wall has not been adequately sealed. When borosilicate glass with a large concentration of the boron oxide phase was melted in continuous furnaces it was not permissible to have a positive pressure of the gas medium in the sub-crown space.

  16. A Methodology for Optimizing Boiler Operating Strategy

    E-Print Network [OSTI]

    Jones, K. C.

    1983-01-01T23:59:59.000Z

    Among the many ways by which an energy manager can conserve energy is the establishment of a strategy for operation of fired boilers. In particular, he can effect total fuel consumption by his decision on how much on-line boiler surplus is required...

  17. Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers

    DOE Patents [OSTI]

    Reifman, Jaques (Western Springs, IL); Feldman, Earl E. (Willowbrook, IL); Wei, Thomas Y. C. (Downers Grove, IL); Glickert, Roger W. (Pittsburgh, PA)

    2003-01-01T23:59:59.000Z

    The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

  18. Effect of Aging Heat Treatments on Ni52Ti48 Shape Memory Alloy

    E-Print Network [OSTI]

    Akin, Erhan

    2011-10-21T23:59:59.000Z

    to increase transformation temperatures. Furnace-cooling and additional aging heat treatment results in the multi-stage martensitic transformation due to chemical and stress inhomogeneities in the microstructure. Aging of the controlled furnace-cooled material...

  19. Effects of copper deposition on boiler waterside surfaces

    SciTech Connect (OSTI)

    Wangerin, M.C.; Rondum, K.D. [Ashland Chemical Co., Boonton, NJ (United States)

    1995-12-01T23:59:59.000Z

    The relative importance of metal oxide corrosion products in waterside deposits, as opposed to traditional scale-forming constituents, is discussed, and the sources of copper and copper oxide boiler deposits are reviewed. Also reviewed are explanations of some of the problems associated with the presence of deposits and especially, copper-containing deposits. These include those due to a reduction in heat transfer and tube metal overheating, as well as various corrosion mechanisms. Case histories, which illustrate certain deleterious mechanisms due to the presence of such deposition, are also presented.

  20. METHANE de-NOX FOR UTILITY PC BOILERS

    SciTech Connect (OSTI)

    Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

    2002-01-31T23:59:59.000Z

    The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NOx emissions to 0.15 lb per million Btu or less without post-combustion flue gas cleaning. Work during previous reporting periods completed the design, installation, shakedown and initial PRB coal testing of a 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Based on these results, modifications to the gas-fired preheat combustor and PC burner were defined, along with a modified testing plan and schedule. A revised subcontract was executed with BBP to reflect changes in the pilot testing program. Modeling activities were continued to develop and verify revised design approaches for both the Preheat gas combustor and PC burner. Reactivation of the pilot test system was then begun with BBP personnel. During the previous reporting period, reactivation of the pilot test system was completed with the modified Preheat gas combustor. Following shakedown of the modified gas combustor alone, a series of successful tests of the new combustor with PRB coal using the original PC burner were completed. NOx at the furnace exit was reduced significantly with the modified gas combustor, to as low as 150 ppm with only 36 ppm CO (both corrected to 3% O2). Concurrent with testing, GTI and BBP collaborated on development of two modified designs for the PC burner optimized to fire preheated char and pyrolysis products from the Preheat gas combustor. During the current reporting period, one of the two modified PC burner designs was fabricated and installed in the pilot test facility. Testing of the modified pilot system (modified gas combustor and modified PC burner) during the quarter included 38 tests with PRB coal. NOx reduction was significantly improved to levels as low as 60-100 ppmv with CO in the range of 35-112 ppmv without any furnace air staging.

  1. HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL...

    Broader source: Energy.gov (indexed) [DOE]

    OE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps. DOE EX Parte...

  2. Furnaces Data | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM RevisedFunding Opportunities FundingFurnaces Data

  3. The Homopolar Pulse Billet Heating Process

    E-Print Network [OSTI]

    Keith, R. E.; Weldon, W. F.

    1982-01-01T23:59:59.000Z

    - or gas-fired furnace machine. (7) Also during 1981, under the heating. Although most billet heating sponsorship of the Electric Power Research today is done using fuel-fired furnaces, Institute (EPRI), CEM-UT carried out a electric heating... obtained frDm Electromechanics at The University of Texas the EPRI study. at Austin (CEM-UT) has been engaged in research on large pulsed power supplies for use in experiments leading to controlled TEMPERATURE GRADIENTS IN BILLET HEATING...

  4. Retrofitted coal-fired firetube boiler and method employed therewith

    DOE Patents [OSTI]

    Wagoner, Charles L. (Tullahoma, TN); Foote, John P. (Tullahoma, TN)

    1995-01-01T23:59:59.000Z

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

  5. A new blowdown compensation scheme for boiler leak detection

    E-Print Network [OSTI]

    Marquez, Horacio J.

    considers the blowdown effect in industrial boiler operation. This adds to the efficiency of recent advancesA new blowdown compensation scheme for boiler leak detection A. M. Pertew ,1 X. Sun ,1 R. Kent in identification-based leak detection techniques of boiler steam- water systems. Keywords: Industrial Boilers, Tube

  6. Retrofitted coal-fired firetube boiler and method employed therewith

    DOE Patents [OSTI]

    Wagoner, C.L.; Foote, J.P.

    1995-07-04T23:59:59.000Z

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

  7. 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery5 AnnualDillingham,7,58of

  8. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  9. Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines...

  10. Optimizing Blast Furnace Operation to Increase Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs cfdblastfurnace.pdf More...

  11. Optical cavity furnace for semiconductor wafer processing

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    2014-08-05T23:59:59.000Z

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  12. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect (OSTI)

    Wayne Penrod

    2006-12-31T23:59:59.000Z

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  13. The Analysis and Assessment on Heating Energy Consumption of SAT 

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  14. The Analysis and Assessment on Heating Energy Consumption of SAT

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  15. Design considerations for sludge fired fluidized bed incinerator-cum-boiler

    SciTech Connect (OSTI)

    Bapat, D.W.; Vishwanathan, K. [Thermax Ltd., Pune (India). Research and Development Centre

    1997-12-31T23:59:59.000Z

    Thermal Limited, a major player in the field of Fluidized Bed Boilers in India, has supplied on a turnkey basis, three boilers each of 22.5 tons per hour capacity as a part of Cogeneration system for PT. South Pacific Viscose, Indonesia. The plant generates huge volumes of sludge from its effluent Treatment Plant (ETP). The sludge produced from the ETP has a moisture content of about 98%, which is subsequently reduced to about 78% using a decanter before feeding the sludge into the boiler. The waste sludge has a negative heating value ({minus}150 kcal/kg on NCV basis) and required coal as support fuel for burning. The plant`s requirement was to incinerate the entire sludge generated in the plant, which meant that nearly 50% of the fuel fed to the boiler consisted of the waste sludge. Additional requirements were to burn coal and oil as back-up fuels. This paper deals with the challenges encountered and various design features provided in the configuration of the incinerator-cum-boiler including conveying, feeding and spreading arrangement of the waste sludge for effective incineration in addition to burning coal and oil. Also included in the paper is a brief description of the automatic control logics for combustion control and bed temperature control.

  16. Flame Spectral Analysis for Boiler Control

    E-Print Network [OSTI]

    Metcalfe, C. I.; Cole, W. E.; Batra, S. K.

    range from the flames and using these measurements to determine the burner operating conditions. Two prototype instruments have been installed on package boilers at a Con Edison powerplant and Polaroid facility, and their performance has been evaluated...

  17. Flame Spectral Analysis for Boiler Control 

    E-Print Network [OSTI]

    Metcalfe, C. I.; Cole, W. E.; Batra, S. K.

    1987-01-01T23:59:59.000Z

    FLAME SPECTRAL ANALYSIS FOR BOILER CONTROL CHRISTOPHER I. METCALFE WILLIAM E. COLE SUSHIL K. BATRA Tecogen, Inc. ( A Subsidiary of Thermo Electron Corporation) Waltham, Massachusetts ABSTRACT SPECTRAL FLAME ANALYSIS FOR BURNER CONTROL During...

  18. Circulating Fluidized Bed Combustion Boiler Project

    E-Print Network [OSTI]

    Farbstein, S. B.; Moreland, T.

    1984-01-01T23:59:59.000Z

    The project to build a PYROFLOW circulating fluidized bed combustion (FBC) boiler at the BFGoodrich Chemical Plant at Henry, Illinois, is described. This project is being partially funded by Illinois to demonstrate the feasibility of utilizing high...

  19. Commonwealth Small Pellet Boiler Grant Program

    Broader source: Energy.gov [DOE]

    The Massachusetts Clean Energy Center (MassCEC) and the Department of Energy Resources (DOER) are offering the Commonwealth Small Pellet Boiler Pilot Grant Program to provide grants to residents...

  20. Practical Procedures for Auditing Industrial Boiler Plants

    E-Print Network [OSTI]

    O'Neil, J. P.

    1980-01-01T23:59:59.000Z

    Industrial boiler plants are an area of opportunity in virtually every industry to save energy and reduce costs by using relatively simple, inexpensive auditing procedures. An energy audit consists of inspection, measurement, analysis...

  1. The development of a coal-fired combustion system for industrial process heating applications

    SciTech Connect (OSTI)

    Not Available

    1992-07-16T23:59:59.000Z

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  2. Boiler Efficiency--Consider All the Angles 

    E-Print Network [OSTI]

    Blakeley, C. P.

    1981-01-01T23:59:59.000Z

    of one component of any of the control loops that, together, constitute the boiler control system requires that the operator exercises manual control until the failed component is returned to service. However skilled and conscienti ous an operator... of the story. If one element of one control loop in the boiler control system drifts, the entire interactive control scheme is impaired. Operating efficiencies are sacrificed. Frequent calibration checks and recalibration is a great maintenance expense...

  3. Measurements of POM emissions from coal-fired utility boilers. Final report

    SciTech Connect (OSTI)

    Sonnichsen, T.W.

    1983-02-01T23:59:59.000Z

    Emissions of polycyclic organic matter (POM) from fossil-fuel combustion systems are of concern due to the potential carcinogenic activity of specific POM species. The initial objectives of this research program were to (1) conduct a limited laboratory verification of state-of-the-art POM sampling and analysis techniques for pulverized coal-fired combustion exhausts and (2) measure the POM emissions of up to four coal-fired utility boilers. Initial laboratory tests, involving the injection of synthetic POM tracers into the sampling and analytical procedures were capable of accurate POM measurements. However, subsequent tracer recovery results and measurements of combustion generated POM from a coal-fired laboratory test furnace and a utility boiler were highly erratic. The program was consequently redirected to include a comprehensive evaluation of the analytical techniques and interfering factors in the flue gas or sampling train that may have impacted the POM measurements. State-of-the-art GC/MS analytical technical techniques were shown to be generally adequate, but some questions remain concerning sample preparation and adaptability for routine measurements. Review of the literature identified the potential for interaction of POM with the fly ash in either the flue-gas stream or the sampling system. The results of these evaluations were incorporated into a final field-test program on a coal-fired utility boiler. While some improvement in tracer recoveries and combustion-generated POM were obtained, several inconsistencies in the data were still apparent. Recommendations for future POM-measurement programs on utility boilers are presented.

  4. Pyrometric temperature measurement method and apparatus for measuring particle temperatures in hot furnaces: Application to reacting black liquor

    SciTech Connect (OSTI)

    Stenberg, J. [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland)] [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland); Frederick, W.J. [Oregon State University, Gleeson 103, Corvallis, Oregon 97331 (United States)] [Oregon State University, Gleeson 103, Corvallis, Oregon 97331 (United States); Bostroem, S. [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)] [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland); Hernberg, R. [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland)] [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland); Hupa, M. [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)] [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)

    1996-05-01T23:59:59.000Z

    A specialized two-color pyrometric method has been developed for the measurement of particle surface temperatures in hot, radiating environments. In this work, the method has been applied to the measurement of surface temperatures of single reacting black liquor char particles in an electrically heated muffle furnace. Black liquor was introduced into the hot furnace as wet droplets. After drying, the resulted particles were processed in different atmospheres corresponding to combustion, pyrolysis, and gasification at furnace temperatures of 700{endash}900{degree}C. The pyrometric measurement is performed using two silicon photodiode detectors and 10 nm bandpass filters centered at 650 and 1050 nm. Thermal radiation is transferred using an uncooled fiberoptic probe brought into the vicinity of the char particle. The key features of the pyrometric apparatus and analysis method are: (1) Single particle temperature is resolved temporally at high speed. (2) The thermal radiation originating from the furnace and reflected by the particle is accounted for in the measurement of the surface temperature. (3) Particle temperatures above or below the furnace temperature can be measured without the need of a cooled background assisting the measurement in the hot furnace. To accomplish this, a minimum particle size is needed that is a function of the temperature difference between the particle and furnace. Particles cooler than the furnace can be measured if their diameter is more than 0.7 mm. Surface temperatures of 300{endash}400{degree}C above the furnace temperature were measured during combustion of black liquor char particles in air. In atmospheres corresponding to gasification, endothermic reactions occurred, and char temperature remained typically 40{degree} below the furnace temperature. {copyright} {ital 1996 American Institute of Physics.}

  5. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    SciTech Connect (OSTI)

    Lekov, Alex; Franco, Victor; Meyers, Steve

    2010-05-14T23:59:59.000Z

    Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

  6. High productivity in Australian blast furnaces

    SciTech Connect (OSTI)

    Nightingale, R.J.; Mellor, D.G. [BHP Slab and Plate Products Div., Port Kembla, New South Wales (Australia); Jelenich, L. [BHP Rod and Bar Products Div., Newcastle, New South Wales (Australia); Ward, R.F. [BHP Long Products Div., Whyalla, South Australia (Australia)

    1995-12-01T23:59:59.000Z

    Since the emergence of the Australian domestic economy from recession in 1992, the productivity of BHP`s blast furnace has increased significantly to meet the demands of both domestic and export markets. BHP Steel operates six blast furnaces at its three Australian integrated plants. These furnaces vary widely in their size, feed, technology and current campaign status. This paper reviews the principal issues associated with productivity improvements over recent years. These gains have been achieved through activities associated with a wide range of process, equipment and human resource based issues.

  7. A consortium approach to glass furnace modeling.

    SciTech Connect (OSTI)

    Chang, S.-L.; Golchert, B.; Petrick, M.

    1999-04-20T23:59:59.000Z

    Using computational fluid dynamics to model a glass furnace is a difficult task for any one glass company, laboratory, or university to accomplish. The task of building a computational model of the furnace requires knowledge and experience in modeling two dissimilar regimes (the combustion space and the liquid glass bath), along with the skill necessary to couple these two regimes. Also, a detailed set of experimental data is needed in order to evaluate the output of the code to ensure that the code is providing proper results. Since all these diverse skills are not present in any one research institution, a consortium was formed between Argonne National Laboratory, Purdue University, Mississippi State University, and five glass companies in order to marshal these skills into one three-year program. The objective of this program is to develop a fully coupled, validated simulation of a glass melting furnace that may be used by industry to optimize the performance of existing furnaces.

  8. Energy Assessment Protocol for Glass Furnaces

    E-Print Network [OSTI]

    Plodinec, M. J.; Kauffman, B. M.; Norton, O. P.; Richards, C.; Connors, J.; Wishnick, D.

    2005-01-01T23:59:59.000Z

    The Department of Energy funded development of a methodology that could be used by glass producers to increase furnace efficiency, and that could serve as a model for other energy-intensive industries. Accordingly, a team comprising PPG Industries...

  9. Blast furnace supervision and control system

    SciTech Connect (OSTI)

    Remorino, M.; Lingiardi, O.; Zecchi, M. [Siderar S.A.I.C./Ingdesi, San Nicolas (Argentina)

    1997-12-31T23:59:59.000Z

    On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

  10. Integrated use of burden profile probe and in-burden probe for gas flow control in the blast furnace

    SciTech Connect (OSTI)

    Bordemann, F.; Hartig, W.H. [AG der Dillinger Huettenweke, Dillingen (Germany); Grisse, H.J. [Dango and Dienenthal Siegen (Germany); Speranza, B.E. [Dango and Dienenthal, Inc., Highland, IN (United States)

    1995-12-01T23:59:59.000Z

    Gas flow in the blast furnace is one of the most important factors in controlling a furnace. It not only determines the production but also the fuel consumption and the campaign life. At Nos. 4 and 5 blast furnaces of ROGESA, probes are installed for detection of the burden profiles and of the gas flow distribution. For an optimum use of these probes a program system has been developed by ROGESA and Dango and Dienenthal. With this program system it is possible to analyze the operating condition of a blast furnace by means of a fuzzy logic analysis. In case of deviations from the defined desired condition, recommendations for corrective measures for the material distribution are made. Both furnaces are equipped with a bell-less top, a coal injection system, high-temperature hot blast stoves with heat recovery and a top gas pressure recovery turbine. Most of the time it is impossible to control all the required parameters. For this reason it is meaningful to measure the actual material distribution at the furnace top by means of a burden profile probe which permits quick and repeated measurements without any retroactive effects. The paper describes the instrumentation of the furnace, correlation of measuring methods, and a program system for analysis of measuring data.

  11. Author's personal copy Radiative heat transfer in enhanced hydrogen

    E-Print Network [OSTI]

    Pilon, Laurent

    the physical mechanisms responsible for experimental observations that led to the definition of ``photo tube and heated in a furnace or by an incandescent lamp. It was observed that hydrogen release from the glass sample was faster and stronger when heated by an incandescent lamp than within a furnace. Here

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Furnaces, Boilers, Air conditioners, Heat recovery, Steam-system upgrades, Compressed air, Building Insulation, Motor VFDs, Processing and Manufacturing Equipment, Custom...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Institutional Savings Category: Biomass, Chillers, Furnaces, Boilers, Heat Pumps, Air conditioners, Energy Mgmt. SystemsBuilding Controls, Motor VFDs, Other EE Small...

  14. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and...

  15. HYDRONIC BASEBOARD THERMAL DISTRIBUTION SYSTEM WITH OUTDOOR RESET CONTROL TO ENABLE THE USE OF A CONDENSING BOILER.

    SciTech Connect (OSTI)

    BUTCHER,T.A.

    2004-10-01T23:59:59.000Z

    Use of condensing boilers in residential heating systems offers the potential for significant improvements in efficiency. For these to operate in a condensing mode the return water temperature needs to be about 10 degrees below the saturation temperature for the flue gas water vapor. This saturation temperature depends on fuel type and excess air and ranges from about 110 F to 135 F. Conventional baseboard hydronic distribution systems are most common and these are designed for water temperatures in the 180 F range, well above the saturation temperature. Operating strategies which may allow these systems to operate in a condensing mode have been considered in the past. In this study an approach to achieving this for a significant part of the heating season has been tested in an instrumented home. The approach involves use of an outdoor reset control which reduces the temperature of the water circulating in the hydronic loop when the outdoor temperature is higher than the design point for the region. Results showed that this strategy allows the boiler to operate in the condensing region for 80% of the winter heating season with oil, 90% with propane, and 95% with gas, based on cumulative degree days. The heating system as tested combines space heating and domestic hot water loads using an indirect, 40 gallon tank with an internal heat exchanger. Tests conducted during the summer months showed that the return water temperature from the domestic hot water tank heat exchanger is always below a temperature which will provide condensing operation of the boiler. In the field tests both the condensing boiler and the conventional, non-condensing boiler were in the test home and each was operated periodically to provide a direct performance comparison.

  16. Steam boiler control specification problem: A TLA solution

    E-Print Network [OSTI]

    Merz, Stephan

    Steam boiler control specification problem: A TLA solution Frank LeĂ?ke and Stephan Merz Institut f Introduction We propose a solution to the steam boiler control specification problem [AS] by means of a formal

  17. An Object-Oriented Algebraic Steam-Boiler Control Specification

    E-Print Network [OSTI]

    Ă?lveczky, Peter Csaba

    An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky Introduction The steam-boiler control specification problem has been proposed as a challenge for different

  18. Steam boiler control speci cation problem: A TLA solution

    E-Print Network [OSTI]

    Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur We propose a solution to the steam boiler control speci cation problem AS] by means of a formal speci

  19. An ObjectOriented Algebraic SteamBoiler Control Specification

    E-Print Network [OSTI]

    Ă?lveczky, Peter Csaba

    An Object­Oriented Algebraic Steam­Boiler Control Specification Peter Csaba Ë? Olveczky 1# , Piotr Introduction The steam­boiler control specification problem has been proposed as a challenge for di

  20. Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??

    E-Print Network [OSTI]

    Henzinger, Thomas A.

    model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models and Programming the Steam Boiler Control (J.-R. Abrial, E. Borger, and H. Langmaack, eds.), Lecture Notes

  1. automated boiler combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and 0.5 % oxygen in the flue gas. The reduction of nitrogen oxides (NO,) emissions from steam boilers has been under study for several years. The NO, from boilers consist almost...

  2. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    SciTech Connect (OSTI)

    Fabienne Chatel-Pelage

    2004-01-01T23:59:59.000Z

    This document reviews the work performed during the quarter October-December 2003. Task 1 (Site Preparation) had been completed in the previous reporting period. In this reporting period, one week of combustion parameters optimization has been performed in Task 2 (experimental test performance) of the project. Under full-oxy conditions (100% air replacement with O{sub 2}-enriched flue gas) in 1.5MW{sub th} coal-fired boiler, the following parameters have been varied and their impact on combustion characteristics measured: the recirculated flue gas flow rate has been varied from 80% to 95% of total flue gas flow, and the total oxygen flow rate into the primary air zone of the boiler has been set to levels ranging from 15% to 25% of the total oxygen consumption in the overall combustion. In current reporting period, significant progress has also been made in Task 3 (Techno-Economic Study) of the project: mass and energy balance calculations and cost assessment have been completed on plant capacity of 533MW{sub e} gross output while applying the methodology described in previous reporting periods. Air-fired PC Boiler and proposed Oxygen-fired PC Boiler have been assessed, both for retrofit application and new unit. The current work schedule is to review in more details the experimental data collected so far as well as the economics results obtained on the 533MWe cases, and to develop a work scope for the remainder of the project. Approximately one week of pilot testing is expected during the first quarter of 2004, including mercury emission measurement and heat transfer characterization. The project was on hold from mid-November through December 2003 due to non-availability of funds. Out of the {approx}$785k allocated DOE funds in this project, $497k have been spent to date ($480 reported so far), mainly in site preparation, test performance and economics assessment. In addition to DOE allocated funds, to date approximately $330k has been cost-shared by the participants, bringing the total project cost up to $827k ($810k reported so far) as on December 31st, 2003.

  3. An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization 

    E-Print Network [OSTI]

    Leibowitz, H. M.; Colosimo, D. D.

    1980-01-01T23:59:59.000Z

    The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

  4. An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization

    E-Print Network [OSTI]

    Leibowitz, H. M.; Colosimo, D. D.

    1980-01-01T23:59:59.000Z

    The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

  5. Climate Wise Boiler and Steam Efficiency Wise Rules 

    E-Print Network [OSTI]

    Milmoe, P. H.; Winkelman, S. R.

    1998-01-01T23:59:59.000Z

    (and excess oxygen, 02), boiler tube cleaning, and re-calibration of boiler controls. ? A good tune-up with preclSlon testing equipment can detect and correct excess air losses, smoking, unbumed fuel losses, sooting, and high stack temperatures... (and excess oxygen, 02), boiler tube cleaning, and re-calibration of boiler controls. ? A good tune-up with preclSlon testing equipment can detect and correct excess air losses, smoking, unbumed fuel losses, sooting, and high stack temperatures...

  6. Intermountain Gas Company (IGC)- Gas Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

  7. Rivesville multicell fluidized bed boiler. Annual technical progress report. July 1978-June 1979

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    Design, construction and test program of a 300,000 lb/hr steam generating capacity multicell fluidized bed boiler (MFB), as a pollution free method of burning high-sulfur or highly corrosive coals, is being carried out. The concept involves burning fuels such as coal, in a fluidized bed of limestone particles that react with the sulfur compounds formed during combustion to reduce air pollution. Nitrogen oxide emissions are also reduced at the lower combustion temperatures. The CaSO/sub 4/ produced in the furnace is discharged with the ash or regenerated to CaO for reuse in the fluidized bed. Information is presented on continued operation of the Rivesville MFB steam generating plant in a commercial mode and for determining performance and emission characteristics; studies and tests on flyash characterization and reinjection, fuel feed eductors and needles, air distributor, corrosion-erosion and sulfur capture; engineering studies to improve MFB performance and reliability.

  8. Economics of residential gas furnaces and water heaters in United States new construction market

    E-Print Network [OSTI]

    Lekov, Alex B.

    2010-01-01T23:59:59.000Z

    condensing furnaces and water heaters and power vent waterheater, electric water heaters and furnaces, which includeResidential Gas Furnaces and Water Heaters in United States

  9. Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator

    E-Print Network [OSTI]

    Demirel, Melik C.

    Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

  10. Streams of Steam The Steam Boiler Specification Case Study

    E-Print Network [OSTI]

    Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

  11. TA-2 Water Boiler Reactor Decommissioning Project

    SciTech Connect (OSTI)

    Durbin, M.E. (ed.); Montoya, G.M.

    1991-06-01T23:59:59.000Z

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m{sup 3} of low-level solid radioactive waste and 35 m{sup 3} of mixed waste. 15 refs., 25 figs., 3 tabs.

  12. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C. (Orono, ME)

    1982-01-01T23:59:59.000Z

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  13. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Project objectives: Construct a ground sourced heat pump, heating, ventilation, and air conditioning system for the new Oakland University Human Health Sciences Building utilizing variable refrigerant flow (VRF) heat pumps. A pair of dedicated outdoor air supply units will utilize a thermally regenerated desiccant dehumidification section. A large solar thermal system along with a natural gas backup boiler will provide the thermal regeneration energy.

  14. Gas mixing in the wall layer of a CFB boiler

    SciTech Connect (OSTI)

    Sterneus, J.; Johnsson, F. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-12-31T23:59:59.000Z

    Tracer-gas measurements were carried out in the transport zone of a 12 MW CFB boiler with special emphasis on the wall-layer flow. Helium (He) was used as tracer gas and a mass spectrometer was used to determine the He-concentrations. The primary gas velocity, U{sub 0}, was 1.2, 2.6 and 4.3 m/s (no secondary air) and the bed material was silica sand with an average particle diameter of 0.32 mm. Tracer gas was injected at different distances from one of the furnace walls and sampled above and below the injection level. In the wall layer, tracer-gas concentrations were detected above (C{sub above}) as well as below (C{sub below}) the injection height for all operating conditions, i.e., the gas flows both up and down from the injection point. The data show that the net flow of tracer gas in the wall layer depends on the operating conditions, and the concentration ratio of the down- and up-flowing gas, {psi} = C{sub below}/C{sub above}, decreases with increased gas velocity ({psi} > 1 for U{sub 0} = 1.2 m/s, {psi} {approx} 1 for U{sub 0} = 2.6 m/s and {psi} < 1 for U{sub 0} = 4.3 m/s). There exists a gas exchange between the core region and the wall-layer. A plug flow model applied to the core region gives a radial dispersion coefficient, D{sub r}, in the range of 0.015--0.025 m{sup 2}/s which is higher than the D{sub r} values reported in literature which are below 0.01 m{sup 2}/x. However, the latter values were obtained in tall and narrow risers.

  15. Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site

    SciTech Connect (OSTI)

    Daling, P.M.; Graham, T.M.

    1997-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

  16. Coal Reburning for Cyclone Boiler NO[sub x] Control Demonstration

    SciTech Connect (OSTI)

    Not Available

    1992-12-18T23:59:59.000Z

    The Coal Reburning for Cyclone Boiler NO[sub x], Control Demonstration project progress for July, August, and September 1992 is identified in this tenth quarterly report and pertains to the on-going activities of Phase III Operation and Disposition. The project involves retrofitting/testing the reburning technology at Wisconsin Power Light's 100 MWe Nelson Dewey Unit [number sign]2 in Cassville, Wisconsin to determine the commercial applicability of this technology to reduce NO[sub x] emission levels. Phase III activities emphasized continuation of long-term testing. WP L is operating the reburn system in full automatic in a load following mode, using Lamar coal, which is an Indiana bituminous medium sulfur content fuel. Reductions in NO[sub x] emissions continue at the 50%+ level with no apparent significant adverse impacts to boiler operation. As of the end of September, a second set of performance tests were initiated to determine if any performance impacts as a result of long-term operation have occurred. Data evaluation continued in an effort to design a testing sequence to more precisely evaluate reburn impact on unburned carbon. These tests will be carried out during the second set of performance tests in early October. Performance and mathematical modeling are being carried out to understand the cause of the reduction in furnace exit gas temperature observed during reburn testing on Lamar coal and to predict whether the same phenomenon will occur on future units where reburn technology is being considered.

  17. Digital radiographic systems detect boiler tube cracks

    SciTech Connect (OSTI)

    Walker, S. [EPRI, Charlotte, NC (United States)

    2008-06-15T23:59:59.000Z

    Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

  18. Continuous austempering fluidized bed furnace. Final report

    SciTech Connect (OSTI)

    Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

    1997-09-23T23:59:59.000Z

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  19. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21T23:59:59.000Z

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  20. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, February 15, 1992--August 15, 1992

    SciTech Connect (OSTI)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13T23:59:59.000Z

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  1. Alkali salt ash formation during black liquor combustion at kraft recovery boilers

    SciTech Connect (OSTI)

    Mikkanen, P. Kauppinen, E.I.; Pyykoenen, J.; Jokiniemi, J.K. [VTT (Finland); Maekinen, M. [Finnish Meterological Inst., Helsinki (Finland)

    1996-12-31T23:59:59.000Z

    Recovery boiler is an essential part of paper pulping process, where waste sludge called black liquor is burned for chemical recovery and energy production. This study was carried out at an operating industrial recovery boiler in Finland. Measurement of aerosol particles was carried out at bullnose level of furnace, at boiler exit, and at outlet of electrostatic precipitator (ESP). Aerosol mass size distributions in size range 0.02--50 {micro}m were measured with Berner type low pressure impactor (BLPI) operated with precyclone. BLPI samples were further analyzed with ion chromatography for water soluble Na, K, SO{sub 4}, and Cl. Particle morphology was studied with scanning electron microscopy (SEM). Phase composition of crystalline salts was measured with X-ray diffraction (XRD). Particles larger than 1 {micro}m were analyzed with computer controlled scanning electron microscopy (CCSEM) to derive particle composition classes. At ESP inlet mass size distribution was bimodal with a major mode at about 1.2 {micro}m and a minor mode at about 5 {micro}m (aerodynamic diameter). At ESP outlet the mass size distribution showed only one peak at about 1.2 {micro}m. Both submicron and supermicron particles were agglomerates formed from 0.3 to 0.5 {micro}m spherical primary particles. XRD analyses indicated that particles were crystalline with two phases of Na{sub 2}SO{sub 4} (thenardite and sodium sulphate) and K{sub 3}Na(SO{sub 4}){sub 2}. CCSEM results of individual particles larger than 1 {micro}m showed that 79 to 88 volume percent of particles contained mainly Na and S, 7 to 10 volume percent Na, K, and S with minor amount of particles containing Na, S, and Ca.

  2. Graphite electrode DC arc furnace. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of feed composition variations on process operating conditions and slag product performance; and collecting mass balance and operating data to support equipment and instrument design.

  3. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01T23:59:59.000Z

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  4. Blast furnace control after the year 2000

    SciTech Connect (OSTI)

    Gyllenram, R.; Wikstroem, J.O. [MEFOS, Luleaa (Sweden); Hallin, M. [SSAB Tunnplaat AB, Luleaa (Sweden)

    1996-12-31T23:59:59.000Z

    Rapid technical development together with developments in work organization makes it important to investigate possible ways to achieve a cost efficient process control of different metallurgical processes. This paper describes a research project, and proposes a human oriented Information Technology Strategy, ITS, for control of the Blast Furnace process. The method used is that of deductive reasoning from a description of the prevailing technological level and experiences from various development activities. The paper is based on experiences from the No. 2 Blast Furnace at Luleaa Works but the conclusions do not at this stage necessarily reflect the opinion of the management and personnel or reflect their intentions for system development at SSAB.

  5. Segmented ceramic liner for induction furnaces

    DOE Patents [OSTI]

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26T23:59:59.000Z

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  6. Residential Two-Stage Gas Furnaces - Do They Save Energy?

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Lutz, James

    2006-01-01T23:59:59.000Z

    of two-stage furnaces with BPM motors provides electricityof two-stage furnaces with BPM motors provides electricityPSC) and brushless permanent magnet (BPM) 1 . PSC motors are

  7. OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON

    SciTech Connect (OSTI)

    A.F. SAROFIM; BROWN UNIVERSITY. R.A. LISAUSKAS; D.B. RILEY, INC.; E.G. EDDINGS; J. BROUWER; J.P. KLEWICKI; K.A. DAVIS; M.J. BOCKELIE; M.P. HEAP; REACTION ENGINEERING INTERNATIONAL. D.W. PERSHING; UNIVERSITY OF UTAH. R.H. HURT

    1998-01-01T23:59:59.000Z

    Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers, ?in-furnace NO x control,? which includes: staged low-NO x burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of ?in-furnace? NO x control processes. 2) To devise new, or improve existing, approaches for maximum ?in-furnace? NO x control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NO x burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NO x burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NO x burners. 3 Determine the limits on NO control by in-furnace NO x control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NO x burners and coal reburning systems. 6 Modify the char burnout model in REI?s coal combustion code to take account of recently obtained fundamental data on char reactivity during the late stages of burnout. This will improve our ability to predict carbon burnout with low-NO x firing systems.

  8. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01T23:59:59.000Z

    vol. ) in Methanol Furnace , 2 , . . . . . . . . , . , .Velocity Profiles in Methanol Furnace Temperature Profiles:to Pure Methanol . . . . . . . . . . . . , . . . . C02

  9. Residential Two-Stage Gas Furnaces - Do They Save Energy?

    E-Print Network [OSTI]

    Lekov, Alex; Franco, Victor; Lutz, James

    2006-01-01T23:59:59.000Z

    total fuel and electricity consumption under laboratoryto decrease the electricity consumption of furnaces, mainlytotal fuel and electricity consumption under laboratory

  10. The development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January 1992--March 1992

    SciTech Connect (OSTI)

    Not Available

    1992-07-16T23:59:59.000Z

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  11. Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces

    E-Print Network [OSTI]

    Haseltine, D. M.; Laffitte, R. D.

    of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace...

  12. Proceedings of the 45th electric furnace conference

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    This book contains the proceedings of the 46th Electric Furnace Conference. Topics included are: EAF Dust Decomposition and Metals Recovery at ScanDust, Optimization of Electric Arc Furnace Process by Pneumatic Stirring, and Melt Down Control for Electric Arc Furnaces.

  13. Partial SOP for Tube Anneal Furnace, EML: 9/04 Instructions for temp controller for Anneal furnace

    E-Print Network [OSTI]

    Reif, Rafael

    Partial SOP for Tube Anneal Furnace, EML: 9/04 Instructions for temp controller for Anneal furnace the "C" clamp. Take the ceramic and quartz end caps off. 2. Load your samples into a quartz boat. Load

  14. High-bandwidth continuous-flow arc furnace

    DOE Patents [OSTI]

    Hardt, D.E.; Lee, S.G.

    1996-08-06T23:59:59.000Z

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  15. High-bandwidth continuous-flow arc furnace

    DOE Patents [OSTI]

    Hardt, David E. (Concord, MA); Lee, Steven G. (Ann Arbor, MI)

    1996-01-01T23:59:59.000Z

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  16. Induction furnace testing of the durability of prototype crucibles in a molten metal environment

    SciTech Connect (OSTI)

    Jablonski, Paul D.

    2005-09-01T23:59:59.000Z

    Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off the heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.

  17. Lance for fuel and oxygen injection into smelting or refining furnace

    DOE Patents [OSTI]

    Schlichting, M.R.

    1994-12-20T23:59:59.000Z

    A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figures.

  18. Energy Savings in Electric Arc Furnace Melting

    E-Print Network [OSTI]

    Lubbeck, W.

    1982-01-01T23:59:59.000Z

    Arc furnace melting which at one time was almost exclusively used to produce alloy steel and steel castings is now widely accepted in the industry as an efficient process to produce all types of steel and iron. Presently, about 28% of steel...

  19. Covered Product Category: Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  20. AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace

    SciTech Connect (OSTI)

    Michael F. Riley

    2002-10-21T23:59:59.000Z

    Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and tuyere by 30, in line with pilot scale tests conducted previously.

  1. Process Simulation and Control Optimization of a Blast Furnace Using Classical Thermodynamics Combined to a Direct Search

    E-Print Network [OSTI]

    Martin, Alain

    consisting mainly of N2, CO, CO2, H2, and H2O. This is a consequence of the reduction of the iron ore volume methods, data-mining models, heat and mass balance models, and classical thermodynamic simulations-tune the simulation of the blast furnace. Optimal operating conditions and predicted output stream properties

  2. Recovery Boiler Superheater Ash Corrosion Field Study

    SciTech Connect (OSTI)

    Keiser, James R [ORNL] [ORNL; Kish, Joseph [McMaster University] [McMaster University; Singbeil, Douglas [FPInnovations] [FPInnovations

    2010-01-01T23:59:59.000Z

    With the trend towards increasing the energy efficiency of black liquor recovery boilers operated in North America, there is a need to utilize superheater tubes with increased corrosion resistance that will permit operation at higher temperatures and pressures. In an effort to identify alloys with improved corrosion resistance under more harsh operating conditions, a field exposure was conducted that involved the insertion of an air-cooled probe, containing six candidate alloys, into the superheater section of an operating recovery boiler. A metallographic examination, complete with corrosion scale characterization using EMPA, was conducted after a 1,000 hour exposure period. Based on the results, a ranking of alloys based on corrosion performance was obtained.

  3. Material challenges in ethylene pyrolysis furnace heater service

    SciTech Connect (OSTI)

    Ibarra, S.

    1980-02-01T23:59:59.000Z

    Operating temperatures of pyrolysis furnaces are sometimes in excess of 2000/sup 0/F (1100/sup 0/C). These temperatures are very detrimental to the life of the typical HK-40 furnace tubes which normally have a three to five year life in the hot section of these furnaces. Short life is attributed to rapid carburization of ID surfaces which subjects tubes to higher than normal stresses and results in creep cracking of furnace tubes. As an aid to understanding the materials problems the ethylene process will be presented, along with data on the carburization of furnace tubes.

  4. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    SciTech Connect (OSTI)

    Fabienne Chatel-Pelage

    2003-10-01T23:59:59.000Z

    This document reviews the work performed during the quarter July--September 2003. Significant progress has been made in Task 1 (Site Preparation), Task 2 (Test performance) and Task 3 (Techno-Economic Study) of the project: the site preparation has been completed, two weeks of tests have been performed and the power generating units to be compared from an economical standpoint have been selected and accurately described. In the experimental part of this effort (task1), the partners in this project demonstrated the feasibility of 100% air replacement with O{sub 2}-enriched flue gas on 1.5MW coal-fired boiler. The air infiltration have been reduced to approximately 5% of the stoichiometry, enabling to reach around 70% of CO{sub 2} in the flue gases. Higher air in-leakage reduction is expected using alternative boiler operating procedure in order to achieve higher CO{sub 2} concentration in flue gas for further sequestration or reuse. The NO{sub x} emissions have been shown considerably lower in O{sub 2}-fired conditions than in air-baseline, the reduction rate averaging 70%. An additional week of tests is scheduled mid October 2003 for combustion parameter optimization, and some more days of operation will be dedicated to mercury emission measurement and heat transfer characterization. Out of the $485k already allocated in this project, $300k has been spent and reported to date, mainly in site preparation ({approx}$215k) and test performance ({approx}$85k). In addition to DOE allocated funds, to date approximately $240k has been cost-shared by the participants, bringing the total project cost up to $540k as on September 30, 2003.

  5. Cracking and Corrosion of Composite Tubes in Black Liquor Recovery Boiler Primary Air Ports

    SciTech Connect (OSTI)

    Keiser, James R.; Singbeil, Douglas L.; Sarma, Gorti B.; Kish, Joseph R.; Yuan, Jerry; Frederick, Laurie A.; Choudhury, Kimberly A.; Gorog, J. Peter; Jetté, Francois R.; Hubbard, Camden R.; Swindeman, Robert W.; Singh, Prett M.; Maziasz, Phillip J.

    2006-10-01T23:59:59.000Z

    Black liquor recovery boilers are an essential part of kraft mills. Their design and operating procedures have changed over time with the goal of providing improved boiler performance. These performance improvements are frequently associated with an increase in heat flux and/or operating temperature with a subsequent increase in the demand on structural materials associated with operation at higher temperatures and/or in more corrosive environments. Improvements in structural materials have therefore been required. In most cases the alternate materials have provided acceptable solutions. However, in some cases the alternate materials have solved the original problem but introduced new issues. This report addresses the performance of materials in the tubes forming primary air port openings and, particularly, the problems associated with use of stainless steel clad carbon steel tubes and the solutions that have been identified.

  6. Dofasco`s No. 4 blast furnace hearth breakout, repair and rescue

    SciTech Connect (OSTI)

    Donaldson, R.J.; Fischer, A.J.; Sharp, R.M.; Stothart, D.W. [Dofasco Inc., Hamilton, Ontario (Canada)

    1995-12-01T23:59:59.000Z

    On May 5, 1994, after producing 9.5 million metric tons of iron, Dofasco`s No. 4 Blast Furnace experienced a hearth breakout 250 millimeters below the west taphole. The hot metal spill caused a fire resulting in severe damage and 33 days of lost production. During a 26-day period, electrical wiring, water drainage systems and both tapholes were repaired. Recovery from an unprepared furnace stop of this length, with the deadman depleted is difficult. To aid with the rescue Hoogovens-designed oxygen/fuel lances were commissioned. The furnace recovery began with a lance in each taphole and all tuyeres plugged. Six days after startup the furnace was casting into torpedo cars, and after nine days operation had returned to normal. This incident prompted Dofasco to expand the hearth monitoring system to detect and prevent similar occurrences. During the repair, 203 new thermocouples were installed in the hearth, concentrating on the tapholes and elephant foot areas. These thermocouples were installed at various depths and locations to allow heat flux calculations. This hearth monitoring system has already identified other problem areas and provided valuable information about hearth drainage patterns. This information has allowed them to develop control strategies to manage localized problem areas.

  7. Measure Guideline: Condensing Boilers - Optimizing Efficiency and Response Time During Setback Operation

    SciTech Connect (OSTI)

    Arena, L.

    2014-02-01T23:59:59.000Z

    Conventional wisdom surrounding space heating has told us a couple of things consistently for several years now: size the mechanical systems to the heating loads and setting the thermostat back at night will result in energy savings. The problem is these two recommendations oppose each other. A system that is properly sized to the heating load will not have the extra capacity necessary to recover from a thermostat setback, especially at design conditions. The implication of this is that, for setback to be successfully implemented, the heating system must be oversized. This issue is exacerbated further when an outdoor reset control is used with a condensing boiler, because not only is the system matched to the load at design, the outdoor reset control matches the output to the load under varying outdoor temperatures. Under these circumstances, the home may never recover from setback. Special controls to bypass the outdoor reset sensor are then needed. Properly designing a hydronic system for setback operation can be accomplished but depends on several factors. Determining the appropriateness of setback for a particular project is the first step. This is followed by proper sizing of the boiler and baseboard to ensure the needed capacity can be met. Finally, control settings must be chosen that result in the most efficient and responsive performance. This guide provides step by step instructions for heating contractors and hydronic designers for selecting the proper control settings to maximize system performance and improve response time when using a thermostat setback.

  8. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-08-04T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  9. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  10. Cogeneration Waste Heat Recovery at a Coke Calcining Facility

    E-Print Network [OSTI]

    Coles, R. L.

    and performance summary at the plant design point is shown in Figure 1. GENERAL DESCRIPTION OF THE PLANT The plant has three steam generation units. Each boiler is a natural circulation, single pressure level waste heat recovery boiler. Two of the boilers..." per ANSI/ASME PTC 4 4-1981, Gas Turbine Heat Recovery Steam Generator' All units tested above their design value. The turbine generator set was tested using station instrumentation to verify it was performin at its design point. The overall plant...

  11. Application of Multivariable Control to Oil and Coal Fired Boilers 

    E-Print Network [OSTI]

    Swanson, K.

    1981-01-01T23:59:59.000Z

    of the boiler, flue gas transport delay, existing boiler control system and analyzer dynamics. The algorithm com ponents are illustrated schematically in Figures 2 and 3. The strategy is designed to optimize com bustion efficiency under current combustion... appropriate action to avoid exceeding those limits. It then calculates the control output required to correct Ea/f without overshooting the Control target value. The entire control strategy is easily tuned in the field. Even though many boiler control...

  12. Heat Recovery Considerations for Process Heaters and Boilers

    E-Print Network [OSTI]

    Kumar, A.

    is essential to meet national goals. In the short term, conservation is essentially the only option, not only to buy time to develop new reserves and alternative supplies, but also to move toward more efficient use of energy and existing nonrenewable... with optimization. 3. Reducing wall losses to 1-2% % of % of Energy Savings Used 15-22 70% 4-8 20% 3-6 10% 20-32% 100% 242 ESL-IE-85-05-46 Proceedings from the Seventh National Industrial Energy Technology Conference, Houston, TX, May 12-15, 1985 4...

  13. Heat Recovery Consideration for Process Heaters and Boilers

    E-Print Network [OSTI]

    Kumar, A.

    1983-01-01T23:59:59.000Z

    trioxide concentration 510 ESL-IE-83-04-78 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 I I I I I I I .1 I === C> 1_> TABLE 3 - Operating Data for Tail Gas Incinerator STACK ----c... to meet national goals. In the short term, conservation is essentially the only option, not only to buy time to develop new reserves and alternative supplies, but also to move toward more efficient use of energy and existin nonrenewable resources. We...

  14. Stack Gas Heat Recovery from 100 to 1200 HP Boilers 

    E-Print Network [OSTI]

    Judson, T. H.

    1980-01-01T23:59:59.000Z

    With newspaper reports of March 1980 fuel price increases at as much as a 110% annualized rate, energy users are becoming more keenly aware of the urgency of conserving energy--and energy dollars. It is becoming increasingly more difficult...

  15. Heat Recovery Considerations for Process Heaters and Boilers 

    E-Print Network [OSTI]

    Kumar, A.

    1985-01-01T23:59:59.000Z

    :JITHOUT MAGNESIUM ADDITION. ,. 50 : 40 ~ g: 30 U z 8 20 'p.') o (f) 10 -t)- \\--- -Cr ~ ..., V / V ~. , ~ r ' LOAD 110 M\\'I ~ / o WITHOUT Mg o WITH Mg 12 LB/HR EL.l2Z'-0" ~? / ?w o 10 20 30 40 O 2 CONC. % FIGURE 6 - S02 CONC. AS A... Industrial Energy Technology Conference, Houston, TX, May 12-15, 1985 ----------------- .. STACK - ---._ - - --- - - - - - '\\ - - BURNE.R SH1'ION 3000? F. I=UEL OIL 4"'0 U.S. GAL? I I I I I I I I 1 I I I I , II I I I I I .I VI...

  16. Biomass Boiler to Heat Oregon School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inandWBS

  17. Clean Boiler Waterside Heat Transfer Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSSDepartmentDepartment ofCity and 25Clay SellClean

  18. Biomass Boiler to Heat Oregon School | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17,Agenda AgendaDepartmentOregon Governor Kulongoski

  19. Toughened Graphite Electrode for High Heat Electric Arc Furnaces - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6Innovation

  20. Waste Heat Reduction and Recovery for Improving Furnace Efficiency,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships Toolkit

  1. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01T23:59:59.000Z

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  2. A new direct steel making process based upon the blast furnace (Including scrap processing with recovery of tramp elements)

    SciTech Connect (OSTI)

    Nabi, G.

    1996-12-31T23:59:59.000Z

    Steel is produced from raw materials containing iron and alloying elements with direct elimination of oxygen and impurities in the blast furnace process. The blast furnace shaft is modified to take off load from the liquid bath and carbon is prevented from going into the liquid steel. In the gas purification system sulphur and CO{sub 2} removal facilities are included and purified reducing gases so obtained are combusted in the hearth with oxygen to produce heat for smelting. Scrap can be charged as raw material with the recovery of tramp elements with continuous production of liquid steel.

  3. BioCoComb -- Gasification of biomass and co-combustion of the gas in a pulverized-coal-boiler

    SciTech Connect (OSTI)

    Anderl, H.; Zotter, T.; Mory, A.

    1999-07-01T23:59:59.000Z

    In a demonstration project supported by an European Community Thermie Fund a biomass gasifier for bark, wood chips, saw dust, etc. has been installed by Austrian Energy and Environment at the 137 MW{sub el} pulverized-coal fired power station in Zeltweg, Austria. The project title BioCoComb is an abbreviation for Preparation of Biofuel for Co-Combustion, where co-combustion means combustion together with coal in existing power plants. According to the thermal capacity of 10 MW the produced gas substitutes approx. 3% of the coal fired in the boiler. Only the coarse fraction of the biomass has to pass a shredder and is then fed together with the fine fraction without any further pretreatment into the gasifier. In the gasification process the biomass will combust in a substoichiometric atmosphere, create the necessary temperature of 820 C and partly gasify due to the lack of oxygen in the combustion chamber (autothermal operation). The gasifier uses circulating fluidized bed technology, which guarantees even relatively low temperatures in all parts of the gasifier to prevent slagging. The intense motion of the bed material also favors attrition of the biomass particles. Via a hot gas duct the produced low calorific value (LCV) gas is directly led into the furnace of the existing pulverized coal fired boiler for combustion. The gas also contains fine wood char particles, that can pass the retention cyclone and burn out in the furnace of the coal boiler. The main advantages of the BioCoComb concept are: low gas quality sufficient for co-firing; no gas cleaning or cooling; no predrying of the biomass; relatively low temperatures in the gasifier to prevent slagging; favorable effects on power plant emissions (CO{sub 2}, NO{sub x}); no severe modifications of the existing coal fired boiler; and high flexibility in arranging and integrating the main components into existing plants. The plant started its trial run in November 1997 and has been in successful commercial operation since January 1998.

  4. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    SciTech Connect (OSTI)

    Adams, Bradley; Davis, Kevin; Senior, Constance; Shim, Hong Shim; Otten, Brydger; Fry, Andrew; Wendt, Jost; Eddings, Eric; Paschedag, Alan; Shaddix, Christopher; Cox, William; Tree, Dale

    2013-09-30T23:59:59.000Z

    Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

  5. Temperatures in the blast furnace refractory lining

    SciTech Connect (OSTI)

    Hebel, R.; Streuber, C. [Didier-M and P Energietechnik GmbH, Wiesbaden (Germany); Steiger, R. [Didier-M and P Engineering Services, Highland, IN (United States); Jeschar, R. [TU Clausthal (Germany). Inst. fuer Energieverfahrenstechnik und Brennstofftechnik

    1995-12-01T23:59:59.000Z

    The campaign life duration of a blast furnace is mainly determined by the condition of the refractory lining in heavy-duty zones such as the hearth, bosh, belly and lower stack. To achieve a desired lifetime, the temperature of the lining in these areas thereby proved to be the decisive controllable parameter. Low operating temperatures result in prolonged service life and are attained through high cooling efficiency. Besides the refractory grade chosen, the wear profile is mainly determined by the type of cooling system applied and the cooling intensity. Therefore, an appropriate compromise between long service life and energy losses has to be found in each case. In order to predict the service life of a lining it is important to know the wear condition at all times during the campaign. The paper describes the approaches the authors have made so far on European blast furnaces, on a theoretical and practical basis, on how to analyze the lining wear.

  6. Experimental Observations and Numerical Prediction of Induction Heating in a Graphite Test Article

    SciTech Connect (OSTI)

    Jankowski, Todd A [Los Alamos National Laboratory; Johnson, Debra P [Los Alamos National Laboratory; Jurney, James D [Los Alamos National Laboratory; Freer, Jerry E [Los Alamos National Laboratory; Dougherty, Lisa M [Los Alamos National Laboratory; Stout, Stephen A [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The induction heating coils used in the plutonium casting furnaces at the Los Alamos National Laboratory are studied here. A cylindrical graphite test article has been built, instrumented with thermocouples, and heated in the induction coil that is normally used to preheat the molds during casting operations. Preliminary results of experiments aimed at understanding the induction heating process in the mold portion of the furnaces are reported. The experiments have been modeled in COMSOL Multiphysics and the numerical and experimental results are compared to one another. These comparisons provide insight into the heating process and provide a benchmark for COMSOL calculations of induction heating in the mold portion of the plutonium casting furnaces.

  7. Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies

    E-Print Network [OSTI]

    Hahn, G.

    A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water...

  8. Evaluation of Retrofit Variable-Speed Furnace Fan Motors

    SciTech Connect (OSTI)

    Aldrich, R.; Williamson, J.

    2014-01-01T23:59:59.000Z

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

  9. Technical and economic feasibility of alternative fuel use in process heaters and small boilers

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    The technical and economic feasibility of using alternate fuels - fuels other than oil and natural gas - in combustors not regulated by the Powerplant and Industrial Fuel Use Act of 1978 (FUA) was evaluated. FUA requires coal or alternate fuel use in most large new boilers and in some existing boilers. Section 747 of FUA authorizes a study of the potential for reduced oil and gas use in combustors not subject to the act: small industrial boilers with capacities less than 100 MMBtu/hr, and process heat applications. Alternative fuel use in combustors not regulated by FUA was examined and the impact of several measures to encourage the substitution of alternative fuels in these combustors was analyzed. The primary processes in which significant fuel savings can be achieved are identified. Since feedstock uses of oil and natural gas are considered raw materials, not fuels, feedstock applications are not examined in this analysis. The combustors evaluated in this study comprise approximately 45% of the fuel demand projected in 1990. These uses would account for more than 3.5 million barrels per day equivalent fuel demand in 1990.

  10. Materials development for ultra-supercritical boilers

    SciTech Connect (OSTI)

    NONE

    2005-09-30T23:59:59.000Z

    Progress is reported on a US Department of Energy project to develop high temperature, corrosion resistant alloys for use in ultra-supercritical steam cycles. The aim is to achieve boiler operation at 1,400{sup o}F/5,000 psi steam conditions with 47% net cycle efficiency. Most ferritic steel tested such as T92 and Save 12 showed severe corrosion. Nickel-based alloys, especially IN 740 and CCA 617, showed greatest resistance to oxidation with no evidence of exfoliation. Laboratory and in-plant tests have begun. 2 figs.

  11. List of Boilers Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,LakefrontLighthouse SolarI JumpListBoilers Incentives

  12. Sealed rotary hearth furnace with central bearing support

    DOE Patents [OSTI]

    Docherty, James P. (Carnegie, PA); Johnson, Beverly E. (Pittsburgh, PA); Beri, Joseph (Morgan, PA)

    1989-01-01T23:59:59.000Z

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  13. Why the Accuracy of Analytical Instrumentation Affects Boiler Combustion Efficiency

    E-Print Network [OSTI]

    McFadden, R. W.

    1984-01-01T23:59:59.000Z

    Combustion trim control systems are utilized to maximize the combustion efficiency of a boiler. The type and cost of a fuel, as well as the size of a boiler, should be considered when selecting the type of combustion trim control system...

  14. A Boiler Plant Energy Efficiency and Load Balancing Survey 

    E-Print Network [OSTI]

    Nutter, D. W.; Murphy, D. R.

    1997-01-01T23:59:59.000Z

    continuous oxygen trim equipment was estimated at $9,000 each by a local boiler controls company and depending on the economic strategy, it could be argued that oxygen trim equipment for the two largest boilers should be installed. This is not a large...

  15. Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;??

    E-Print Network [OSTI]

    Henzinger, Thomas A.

    model a steam­boiler control system using hybrid au­ tomata. We provide two abstracted linear models and Programming the Steam Boiler Control (J.­R. Abrial, E. B¨orger, and H. Langmaack, eds.), Lecture Notes

  16. Introduction to the Boiler MACT Energy Assessment Process

    E-Print Network [OSTI]

    Theising, T. R.

    2014-01-01T23:59:59.000Z

    served from affected boiler(s) that are under BASF’s control. • Review of architectural/engineering plans, facility O&M procedures/logs, and fuel usage • Review of facility’s energy management practice and provide recommendations for improvement where...

  17. Benefits of ceramic fiber for saving energy in reheat furnaces

    SciTech Connect (OSTI)

    Norris, A. (Carborundum Co., Niagara Falls, NY (United States))

    1993-07-01T23:59:59.000Z

    Refractory ceramic fiber products offer thermal insulation investment in reheat furnaces by helping to keep operating cost low and product quality high. These products are used in a range of applications that include: furnace linings; charge and discharge door insulation; skidpipe insulation; and furnace repair and maintenance. The many product forms (blankets, modules, boards, textiles, and coatings) provide several key benefits: faster cycling, energy savings and personnel protection.

  18. Assessment of selected furnace technologies for RWMC waste

    SciTech Connect (OSTI)

    Batdorf, J.; Gillins, R. (Science Applications International Corp., Idaho Falls, ID (United States)); Anderson, G.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-03-01T23:59:59.000Z

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

  19. A Flexural Mode Tuning Technique for Membraned Boiler Tubing

    SciTech Connect (OSTI)

    Quarry, M J; Chinn, D J; Rose, J L

    2005-03-21T23:59:59.000Z

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the cold side or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications.

  20. A new coordinated control strategy for boiler-turbine system of coal-fired power plant

    SciTech Connect (OSTI)

    Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H. [Shanghai Jiao Tong University, Shanghai (China)

    2005-11-01T23:59:59.000Z

    This paper presents the new development of the boiler-turbine coordinated control strategy using fuzzy reasoning and autotuning techniques. The boiler-turbine system is a very complex process that is a multivariable, nonlinear, slowly time-varying plant with large settling time and a lot of uncertainties. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. Proportional-integral derivative (PID) type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. A special subclass of fuzzy inference systems, called the Gaussian partition with evenly (GPE) spaced midpoints systems, is used to self-tune the main steam pressure PID controller's parameters online based on the error signal and its first difference, aimed at overcoming the uncertainties due to changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors. For the large variation of operating condition, a supervisory control level has been developed by autotuning technique. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process. Indeed, better control performance and economic benefit have been achieved.

  1. Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity

    SciTech Connect (OSTI)

    Stuart E. Strand

    2001-12-06T23:59:59.000Z

    The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

  2. DOE Publishes Final Rule for Residential Furnace Fan Test Procedure...

    Broader source: Energy.gov (indexed) [DOE]

    (DOE) has published a final rule regarding test procedures for residential furnace fans. 79 FR 500 (January 3, 2014). Find more information on the rulemaking, including milestones,...

  3. Control of carbon balance in a silicon smelting furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

    1992-12-29T23:59:59.000Z

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  4. Combustion in a multiburner furnace with selective flow of oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a multiburner furnace with selective flow of oxygen Re-direct Destination: Improved operational characteristics such as improved fuel efficiency, reduction of NOx formation,...

  5. Sodium reflux pool-boiler solar receiver on-sun test results

    SciTech Connect (OSTI)

    Andraka, C E; Moreno, J B; Diver, R B; Moss, T A [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1992-06-01T23:59:59.000Z

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.

  6. Development of advanced NO[sub x] control concepts for coal-fired utility boiler

    SciTech Connect (OSTI)

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-02-11T23:59:59.000Z

    Hybrid technologies for the reduction of NO[sub x] emissions from coal-fired utility boilers have shown the potential to offer greater levels of NO[sub x] control than the sum of the individual technologies, leading to more cost effective emissions control strategies. Energy and Environmental Research Corporation (EER) has developed a hybrid NO[sub x] control strategy involving two proprietary concepts which has the potential to meet the US Department of Energy's NO[sub x] reduction goal at a significant reduction in cost compared to existing technology. The process has been named CombiNO[sub x]. CombiNO[sub x] is an integration of three technologies: modified reburning, promoted selective noncatalytic reduction (SNCR) and methanol injection. These technologies are combined to achieve high levels of NO[sub x] emission reduction from coal-fired power plants equipped with S0[sub x] scrubbers. The first two steps, modified reburning and promoted SNCR are linked. It has been shown that performance of the SNCR agent is dependent upon local oxidation of CO. Reburning is used to generate the optimum amount of CO to promote the SNCR agent. Approximately 10 percent reburning is required, this represents half of that required for conventional reburning. If the reburn fuel is natural gas, the combination of reburning and SNCR may result in a significant cost savings over conventional reburning. The third step, injection of methanol into the flue gas, is used to oxidize NO to N0[sub 2] which may subsequently be removed in a wet scrubber. Pilot-scale tests performed at EER's 1 MMBtu/hr Boiler Simulation Facility (BSF) have demonstrated NO[sub x] reductions up to 92%. The program's next phase entails process scale-up to a 10 MMBtu/hr furnace also located at EER's Santa Anna test site.

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-04-23T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  8. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  9. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

  10. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-04-20T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

  11. Boiler Materials For Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-09-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

  12. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-01-23T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  13. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-01-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  14. Boiler Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  15. Chlorine in coal and boiler corrosion

    SciTech Connect (OSTI)

    Chou, M.I.M.; Lytle, J.M. [Illinois State Geological Survey, Champaign, IL (United States); Pan, W.P.; Liu, L. [Western Kentucky Univ., Bowling Green, KY (United States); Huggins, F.E.; Huffman, G.P. [Univ. of Kentucky, Lexington, KY (United States); Ho, K.K. [Illinois Clean Coal Inst., Carbondale, IL (United States)

    1994-12-31T23:59:59.000Z

    Corrosion of superheaters in the United Kingdom has been attributed to the high level of chlorine (Cl) in British coals. On the other hand, similar high-Cl Illinois coals have not caused boiler corrosion. This suggests that the extent of boiler corrosion due to Cl may not be directly related to the amount of Cl in the coal but to how the Cl occurs in the coal or to other factors. In this study, both destructive temperature-programmed Thermogravimetry with Fourier transform infrared (TGA-FTIR) and non-destructive X-ray absorption near-edge structure (XANES) techniques were used to examine the thermal evolution characteristics and the forms of Cl in four Illinois and four British coals. The TGA-FTIR results indicate that under oxidizing conditions, both British and Illinois coals release hydrogen chloride (HCl) gas. Maximum evolution of HCl gas from Illinois coals occurs near 425 C, whereas, the temperature of maximum HCl release from British coals occurs between 210 and 280 C. The XANES results indicate that Cl in coal exists in ionic forms including a solid salt form. The HCl evolution profiles of the Illinois and British coals suggests that the way in which Cl ions are associated in Illinois coals is of different from the way they are associated in British coals.

  16. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-04-27T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  17. List of Furnaces Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,LakefrontLighthouseEvaporative CoolersFurnaces

  18. Furnace Pressure Controllers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3Fungible and CompatibleFurnace

  19. Breakthrough Furnace Can Cut Solar Industry Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials FindAdvanced Materials AdvancedFurnace can Cut Solar

  20. Scale-up of commercial PCFB boiler plant technology

    SciTech Connect (OSTI)

    Lamar, T.W.

    1993-10-01T23:59:59.000Z

    The DMEC-1 Demonstration Project will provide an 80 MWe commercial-scale demonstration of the Pressurized Circulating Fluidized Bed (PCFB) technology. Following confirmation of the PCFB design in the 80 MWe scale, the technology with be scaled to even larger commercial units. It is anticipated that the market for commercial scale PCFB plants will exist most predominantly in the utility and independent power producer (IPP) sectors. These customers will require the best possible plant efficiency and the lowest achievable emissions at competitive cost. This paper will describe the PCFB technology and the expected performance of a nominal 400 MWe PCFB power plant Illinois No. 6 coal was used as a representative fuel for the analysis. The description of the plant performance will be followed by a discussion of the scale-up of the major PCFB components such as the PCFB boiler, the pressure vessel, the ceramic filter, the coal/sorbent handling steam, the gas turbine, the heat recovery unit and the steam turbine, demonstrating the reasonableness of scale-up from demonstration plant to a nominal 400 MWe unit.

  1. Coal Reburning for Cyclone Boiler NO{sub x} Control Demonstration. Quarterly report No. 10, July--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-18T23:59:59.000Z

    The Coal Reburning for Cyclone Boiler NO{sub x}, Control Demonstration project progress for July, August, and September 1992 is identified in this tenth quarterly report and pertains to the on-going activities of Phase III Operation and Disposition. The project involves retrofitting/testing the reburning technology at Wisconsin Power & Light`s 100 MWe Nelson Dewey Unit {number_sign}2 in Cassville, Wisconsin to determine the commercial applicability of this technology to reduce NO{sub x} emission levels. Phase III activities emphasized continuation of long-term testing. WP&L is operating the reburn system in full automatic in a load following mode, using Lamar coal, which is an Indiana bituminous medium sulfur content fuel. Reductions in NO{sub x} emissions continue at the 50%+ level with no apparent significant adverse impacts to boiler operation. As of the end of September, a second set of performance tests were initiated to determine if any performance impacts as a result of long-term operation have occurred. Data evaluation continued in an effort to design a testing sequence to more precisely evaluate reburn impact on unburned carbon. These tests will be carried out during the second set of performance tests in early October. Performance and mathematical modeling are being carried out to understand the cause of the reduction in furnace exit gas temperature observed during reburn testing on Lamar coal and to predict whether the same phenomenon will occur on future units where reburn technology is being considered.

  2. Energy Conservation Program: Energy Conservation Standards for Residential Boilers, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Residential Boilers, Notice of Proposed Rulemaking

  3. Pool boiler reflux solar receiver for Stirling dish-electric systems

    SciTech Connect (OSTI)

    Andraka, C.E.; Moreno, J.B.

    1989-01-01T23:59:59.000Z

    The feasibility of competitive, modular bulk electric power from the sun may be greatly enhanced by the use of a reflux heat pipe receiver to combine a heat engine such as Stirling with a paraboloidal dish concentrator. This combination represents a potential improvement over previous successful demonstrations of dish-electric technology in terms of enhanced performance, lower cost, longer life, and greater flexibility in engine design. There are, however, important issues and unknowns which must be addressed to determine engineering feasibility of these devices. In the pool boiler reflux receiver, concentrated solar radiation causes liquid metal (sodium or potassium) to boil. The vapor flows to the engine heater heads, where it condenses and releases the latent heat. The condensate is returned to the receiver absorber pool by gravity (refluxing). This is essentially an adaptation of heat pipe technology to the peculiar requirements of concentrated solar flux, and provides many advantages over conventional heated tube receiver technology. Boiling theory indicates that long-term stable boiling of liquid metal may be difficult to achieve. Laboratory scale experiments have been performed. Initial tests confirmed that boiling is unstable in a baseline boiler. Boiling stability was established after the addition of ''artificial cavities'' to the heated surface, and successful boiling of sodium was demonstrated for 100 hours. Other stabilizing influences may have been present, and will be discussed. The flux and geometry closely simulated a real receiver. The results of these tests are presented, along with the design of a full scale receiver for on-sun testing and considerations for long term operation. 15 refs., 10 figs.

  4. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    SciTech Connect (OSTI)

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30T23:59:59.000Z

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of the boiler. When combined with SNCR, a NO{sub x} emission rate of 0.12-0.14 lb/MBtu can be expected when implementing a full ALTA system on this unit. Cost effectiveness of the full ALTA system was estimated at $2,152/ton NO{sub x} removed; this was less than 75% of the cost estimated for an SCR system on a unit of this size.

  5. Advanced, Low/Zero Emission Boiler Design and Operation

    SciTech Connect (OSTI)

    Fabienne Chatel-Pelage; Rajani Varagani

    2004-06-30T23:59:59.000Z

    This document reviews the work performed during the quarter April-June 2004. Task 1 (Site Preparation) had been completed 2003, along with three weeks of oxycombustion tests in Task 2 (experimental test performance) of the project. In current reporting period, the experimental testing has been completed: one additional week of tests has been performed to finalize the optimization of the combustion characteristics in O{sub 2}/CO{sub 2} environment ; two more days of testing were dedicated to mercury sampling in air-fired or O{sub 2}-fired conditions, and to characterization of heat transfer in O{sub 2} conditions vs. to air-blown conditions. Task 3 (Techno-Economic Study) has also been completed in current quarter: 250MWe, 500MWe and 1000MWe oxygen-fired PC unit have been simulated and quoted, and their performance and cost have been compared to same-capacity air-fired pulverized coal (PC) unit and IGCC. New and retrofit cases have been evaluated. The comparison has been completed in terms of capital cost, operating cost, cost of electricity and cost of CO{sub 2} avoided. The scope of task 4 (Conceptual Boiler Design) had been modified as per DOE request in previous quarter. Engineering calculations are currently in progress. Next steps include detail review of the experimental data collected during the entire testing campaign, finalization of detailed report on economic task, and reporting of the preliminary results in the boiler design task. Two papers summarizing the project main achievements have been presented at Clearwater coal conference in April 2004 (overall project results), and at the CO{sub 2} sequestration conference in May 2004 (emphasis on economics). Out of the {approx}$785k allocated DOE funds in this project, $545k have been spent to date, mainly in site preparation, test performance and economics assessment. In addition to DOE allocated funds, to date approximately $400k have been cost-shared by the participants, bringing the total project cost up to $945k as on June 30, 2004.

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman

    2002-10-15T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman

    2003-01-20T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  8. NOx Control for Utility Boiler OTR Compliance

    SciTech Connect (OSTI)

    Hamid Farzan

    2003-12-31T23:59:59.000Z

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.

  9. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15T23:59:59.000Z

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  10. Microwave furnace having microwave compatible dilatometer

    DOE Patents [OSTI]

    Kimrey, Jr., Harold D. (Knoxville, TN); Janney, Mark A. (Knoxville, TN); Ferber, Mattison K. (Oak Ridge, TN)

    1992-01-01T23:59:59.000Z

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  11. Microwave furnace having microwave compatible dilatometer

    DOE Patents [OSTI]

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24T23:59:59.000Z

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  12. Automatic Control System of Car-Bottom Reheating Furnace

    E-Print Network [OSTI]

    Xueqiao, M.; Weilian, X.; Hongchen, Z.

    that the furnaces are not modified in their construction. This paper, however, will give you a definite answer to this question. One of the most effective methods for increasing the calorific efficiency is to improve thermal control systems of reheating furnaces...

  13. Improved Boiler System Operation with Real-time Chemical Control 

    E-Print Network [OSTI]

    Bloom, D.; Jenkins, B.

    2010-01-01T23:59:59.000Z

    and increased energy costs. Next, the boiler scale inhibitor feed and control was switched to the new boiler controller. The controller uses an inert tracer which directly correlates to the amount of inhibitor in the sample monitored. This guarantees... to improve average levels of inhibitor by 30%. See Table 2. The new automation control achieved an average of 3.99 ppm with a target of 4.0 ppm. Even during variable steam loads the boiler controller maintained the consistency of the inhibitor...

  14. Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01T23:59:59.000Z

    Star Residential Water Heaters: Final criteria analysis.gas furnaces and water heaters in US new constructioncondensing furnace and water heater and the pay-back period

  15. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-03-24T23:59:59.000Z

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  16. Recent improvements in casthouse practices at the Kwangyang blast furnaces

    SciTech Connect (OSTI)

    Jang, Y.S.; Han, K.W.; Kim, K.Y.; Cho, B.R.; Hur, N.S.

    1997-12-31T23:59:59.000Z

    POSCO`s Kwangyang blast furnaces have continuously carried out high production and low fuel operation under a high pulverized coal injection rate without complications since the Kwangyang No. 1 blast furnace was blown-in in 1987. The Kwangyang blast furnaces have focused on improving the work environment for the increase of competitive power in terms of increased production, cost savings, and management of optimum manpower through use of low cost fuel and raw material. At this time, the casthouse work lags behind most work in the blast furnace. Therefore, the Kwangyang blast furnaces have adopted a remote control system for the casthouse equipment to solve complications in the casthouse work due to high temperature and fumes. As the result, the casthouse workers can work in clean air and the number of workers has been reduced to 9.5 personnel per shift by reduction of the workload.

  17. Effect of furnace atmosphere on E-glass foaming

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-12-01T23:59:59.000Z

    The effect of furnace atmosphere on E-glass foaming generated in crucible has been studied with a specific goal to understand the impact of increased water content on foaming in oxy-fired furnaces. E-glass foams were generated in a fused-quartz crucible located in a quartz window furnace equipped with video recording. The present study showed that humidity in the furnace atmosphere destabilizes foam, while other gases have little effect on foam stability. This study suggests that the higher foaming in oxy-fired furnace compared to air-fired is caused by the effect of water on early sulfate decomposition, promoting more efficient refining gas generation from sulfate (known as “dilution effect”).

  18. Method of operating a centrifugal plasma arc furnace

    DOE Patents [OSTI]

    Kujawa, Stephan T. (Butte, MT); Battleson, Daniel M. (Butte, MT); Rademacher, Jr., Edward L. (Butte, MT); Cashell, Patrick V. (Butte, MT); Filius, Krag D. (Butte, MT); Flannery, Philip A. (Ramsey, MT); Whitworth, Clarence G. (Butte, MT)

    1998-01-01T23:59:59.000Z

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  19. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01T23:59:59.000Z

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  20. A phase-field model coupled with lattice kinetics solver for modeling crystal growth in furnaces

    SciTech Connect (OSTI)

    Lin, Guang; Bao, Jie; Xu, Zhijie; Tartakovsky, Alexandre M.; Henager, Charles H.

    2014-02-02T23:59:59.000Z

    In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. Two novel phase-field models are developed to model the crystal growth interface in vertical gradient furnaces with two temperature profile setups: 1) fixed wall temperature profile setup and 2) time-dependent temperature profile setup. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. Crystal growth in vertical gradient furnaces with two temperature profile setups have been also investigated using the developed model. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.

  1. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect (OSTI)

    Andrew Seltzer

    2005-05-01T23:59:59.000Z

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  2. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The primary objective of the project is to investigate the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NOx emissions and boiler performance on Unit 2 at Gulf Power Company's Plant Lansing Smith located near Lynn Haven, Florida. The project will characterize emissions and performance of a tangentially-fired boiler operating in the following configurations: Baseline as-found'' configuration: Phase 1; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 2 and simulated low NO{sub x} bulk furnace staging (LNBFS): Phase 2; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 3, Phase 3a and simulated LNCFS Level 1, Phase 3b.

  3. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 1, Baseline tests

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The primary objective of the project is to investigate the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NOx emissions and boiler performance on Unit 2 at Gulf Power Company`s Plant Lansing Smith located near Lynn Haven, Florida. The project will characterize emissions and performance of a tangentially-fired boiler operating in the following configurations: Baseline ``as-found`` configuration: Phase 1; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 2 and simulated low NO{sub x} bulk furnace staging (LNBFS): Phase 2; retrofitted low NO{sub x} concentric firing system (LNCFS) Level 3, Phase 3a and simulated LNCFS Level 1, Phase 3b.

  4. Application of Multivariable Control to Oil and Coal Fired Boilers

    E-Print Network [OSTI]

    Swanson, K.

    1981-01-01T23:59:59.000Z

    Increased visibility provided by advanced measurement and control techniques has shown that control of oil and coal fired boilers is a complex problem involving simultaneous determination of flue gas carbon monoxide, hydrocarbon, opacity...

  5. Improved Combustion Efficiencies - Control Systems for Process Heaters and Boilers

    E-Print Network [OSTI]

    Varma, A. C.; Prengle, H. W.

    1979-01-01T23:59:59.000Z

    This paper presents the results of a study of the importance and applications of modern combustion control systems for retrofitting existing boilers and heaters to increase combustion efficiency. Conventional heater control and its deficiencies...

  6. Experience with boiler corrosion using an all polymer program

    SciTech Connect (OSTI)

    Jaffer, A.E.; AlMajnouni, A.D. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-10-01T23:59:59.000Z

    The reliability of the life expectancy of boilers and related equipment have been compromised due to severe chemical attack resulting in corroded tubes at different locations in the boilers. Although it seems that a chelant is responsible for the tinning, glassy, smooth, and featureless surfaces so characteristic of the chemical attack, ultimately, it is an all polymer program which has induced this corrosion. However, an all polymer program, if applied properly, would not create this corrosion. The severe corrosion experienced with the all polymer program resulted from misapplication, including high levels of residual polymer, low hydroxide alkalinity, and high cycles of concentration in conjunction with prior acid cleaning, which produced clean boiler tubes. This paper not only attempts to investigate this corrosion, but further, it recommends possible methods to mitigate polymer corrosion in the future and enhance the overall condition of the boilers.

  7. Cost-Effective Industrial Boiler Plant Efficiency Advancements

    E-Print Network [OSTI]

    Fiorino, D. P.

    Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were...

  8. Improving Boiler Efficiency Modeling Based on Ambient Air Temperature

    E-Print Network [OSTI]

    Zhou, J.; Deng, S.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.

    Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load...

  9. Improving Boiler Efficiency Modeling Based On Ambient Air Temperature

    E-Print Network [OSTI]

    Zhou, J.; Deng, S.; Turner, W. D.; Claridge, D. E.; Haberl, J. S.

    2002-01-01T23:59:59.000Z

    Optimum economic operation in a large power plant can cut operating costs substantially. Individual plant equipment should be operated under conditions that are most favorable for maximizing its efficiency. It is widely accepted that boiler load...

  10. Best Practices: The Engineering Approach For Industrial Boilers 

    E-Print Network [OSTI]

    Blake, N. R.

    2001-01-01T23:59:59.000Z

    A plant's boilers represent a large capital investment, as well as a crucial portion of overall plant operations, regardless of the industry our customers are in. It is important to have systems and procedures in place to protect this investment...

  11. Application of Oxygen Trim Control to Small Packaged Boilers

    E-Print Network [OSTI]

    Nelson, R. L.

    1984-01-01T23:59:59.000Z

    control. New mechanical interfaces capable of modifying the relationship between the air and fuel linkage on existing boilers without expensive jackshaft modification or installation difficulties has significantly reduce the installed cost. A field...

  12. Simulation of Combustion and Thermal Flow in an Industrial Boiler

    E-Print Network [OSTI]

    Saripalli, R.; Wang, T.; Day, B.

    2005-01-01T23:59:59.000Z

    insight into the detailed thermal-flow and combustion in the boiler and showing possible reasons for superheater tube rupture. The exhaust gas temperature is consistent with the actual results from the infrared thermograph inspection....

  13. Use of sinter in Taranto blast furnaces

    SciTech Connect (OSTI)

    Palchetti, M.; Palomba, R.; Tolino, E. [CSM Taranto (Italy); Salvatore, E.; Calcagni, M. [ILP Taranto Works (Italy)

    1995-12-01T23:59:59.000Z

    Lowering the production cost of the crude steel is the ultimate aim when planning operations in an integrated steelworks. Designing the Blast Furnace burden is a crucial point in this context, for which account must be taken not only of the raw materials cost but also of other important aims such as maximum plants productivity, minimum possible energy consumption, a proper product quality at the various production stages. This paper describes the criteria used in Ilva Laminati Piani (ILP) Taranto Works to design the BF burden, based on sinter, using the results of extensive research activity carried out by Centro Sviluppo Materiali (CSM), the Research Center with major involvement with the R and D of the Italian Steel Industry. Great attention is paid at ILP to the sinter quality in order to obtain the optimum performance of the BFs, which are operating at high productivity, high pulverized coal rate and low fuel consumption.

  14. Guided wave acoustic monitoring of corrosion in recovery boiler tubing

    SciTech Connect (OSTI)

    Quarry, M J; Chinn, D J

    2004-02-19T23:59:59.000Z

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the coldside or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

  15. No. 5 blast furnace 1995 reline and upgrade

    SciTech Connect (OSTI)

    Kakascik, T.F. Jr.

    1996-12-31T23:59:59.000Z

    The 1995 reline of No. 5 Blast Furnace is an undertaking which has never been approached in previous relines of any blast furnace in the history of Wheeling Pittsburgh Steel Corporation. The scope of the project is such that it represents a radical departure from W.P.S.C.`s traditional methods of ironmaking. The reline of No. 5 Blast Furnace is one of the largest capital improvements performed at W.P.S.C. Blast Furnaces. The improvements made at one single time are taking a furnace from 1960`s technology into the 21st century. With this in mind, employee training was one of the largest parts of the project. Training for the automated stockhouse, castfloor, new skip drive, new instrumentation, new castfloor equipment, hydraulics and overall furnace operation were an absolute necessity. The reline has laid the ground work to give the Corporation an efficient, higher productive, modern Blast Furnace which will place W.P.S.C. in the world class category in ironmaking well into the 21st century.

  16. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2011

    E-Print Network [OSTI]

    Meyers, Stephen

    2013-01-01T23:59:59.000Z

    and Heat Pumps NAECA 1987 Water Heaters NAECA 1987 FurnacesPumps EPACT 1992 Water Heaters, Hot Water Supply Boilers andand heat pumps, and water heaters We modified the analytical

  17. NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Fuel Cell Tri-Generation System Case

    E-Print Network [OSTI]

    the grid and heat from a furnace or boiler ­ More efficient; Heat from the facility is used for spaceNREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency

  18. air force systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a piece of equipment that provides the heating energy (the furnace, boiler or heat pump) and the method used 10 U.S. Air Force Fact Sheet Air Force Reserve Officer...

  19. Estimate of Technical Potential for Minimum Efficiency Performance Standards in 13 Major World Economies

    E-Print Network [OSTI]

    Letschert, Virginie

    2013-01-01T23:59:59.000Z

    Heat Pump Reference U.S. DOE, 2011b EC, 2009b IndustrialHeat Pumps .. 18 Furnaces .. 19 Boilers 19 Fans . 20 Standby Power . 20 Clothes Dryers . 21 Industrial

  20. Heat Exchanger Fouling- Prediction, Measurement and Mitigation

    E-Print Network [OSTI]

    Peterson, G. R.

    wall. The fouling probe has been successfully tested in the laboratory at flue gas temperatures up to 2200°F and a local heat flux up to 41,000 BTU/hr-ft2. The probe has been field tested at a coal-fired boiler plant. Future tests at a municipal waste...

  1. Predictive modelling of boiler fouling. Final report.

    SciTech Connect (OSTI)

    Chatwani, A

    1990-12-31T23:59:59.000Z

    A spectral element method embodying Large Eddy Simulation based on Re- Normalization Group theory for simulating Sub Grid Scale viscosity was chosen for this work. This method is embodied in a computer code called NEKTON. NEKTON solves the unsteady, 2D or 3D,incompressible Navier Stokes equations by a spectral element method. The code was later extended to include the variable density and multiple reactive species effects at low Mach numbers, and to compute transport of large particles governed by inertia. Transport of small particles is computed by treating them as trace species. Code computations were performed for a number of test conditions typical of flow past a deep tube bank in a boiler. Results indicate qualitatively correct behavior. Predictions of deposition rates and deposit shape evolution also show correct qualitative behavior. These simulations are the first attempts to compute flow field results at realistic flow Reynolds numbers of the order of 10{sup 4}. Code validation was not done; comparison with experiment also could not be made as many phenomenological model parameters, e.g., sticking or erosion probabilities and their dependence on experimental conditions were not known. The predictions however demonstrate the capability to predict fouling from first principles. Further work is needed: use of large or massively parallel machine; code validation; parametric studies, etc.

  2. Low emission U-fired boiler combustion system

    DOE Patents [OSTI]

    Ake, Terence (North Brookfield, MA); Beittel, Roderick (Worcester, MA); Lisauskas, Robert A. (Shrewsbury, MA); Reicker, Eric (Barre, MA)

    2000-01-01T23:59:59.000Z

    At least one main combustion chamber contains at least one pulverized coal burner. Each pulverized coal burner is operatively arranged for minimizing NO.sub.X production and for maintaining a predetermined operating temperature to liquefy ash within the combustion chamber. The combustion chamber includes a slag drain for removing slag from the combustion chamber. A slag screen is positioned in a generally U-shaped furnace flow pattern. The slag screen is positioned between the combustion chamber and a radiant furnace. The radiant furnace includes a reburning zone for in-furnace No.sub.X reduction. The reburning zone extends between a reburning fuel injection source and at least one overfire air injection port for injecting air.

  3. Long term performance of boilers using landfill gas

    SciTech Connect (OSTI)

    Gulledge, J.; Cosulich, J.; Ahmed, S.L.

    1996-11-01T23:59:59.000Z

    The US EPA estimates that approximately 600 to 700 landfills produce sufficient gas for profitable energy production in the United States. The gas from these landfills could provide enough electricity for about 3 million homes. Yet, there are only about 120 operating landfill gas to energy facilities. A lack of information on successful projects may cause part of this shortfall. This paper provides information on 4 successful projects using landfill gas fired boilers, some of which have operated over a decade. Natural gas fired boilers can be easily converted to bum landfill gas. Several modifications to Districts` boilers, described in this paper, have resulted in many years of safe and corrosion free operation. Most of the modifications are minor. Conversion can be accomplished for under $100,000 in many cases. Information on the reliability and longevity of landfill gas supplies is also provided. Gas from a given landfill is generally available over 99.5% of the time with about 5 brief flow interruptions annually. Actual data from 3 landfills document the high availability of landfill gas. To show the longevity of landfill gas flows, data from the Palos Verdes Landfill are provided. The Palos Verdes Landfill closed in 1980. The Palos Verdes. Landfill Gas to Energy Facility is currently producing over 8 megawatts. Landfill gas pretreatment is not required for boilers. In cases where the landfill gas is being piped offsite, it is usually cost effective to dehydrate the landfill gas. Landfill gas bums cleaner than natural gas. NO{sub x} emissions from landfill gas fired boilers are lower because of the carbon dioxide in the landfill gas. Trace organic destruction efficiency is usually over 99% in landfill gas fired boilers. In addition, flare emissions are eliminated when landfill gas is used to displace fossil fuels in boilers.

  4. TRACES Centre Thermo GFS35 Graphite Furnace Spectrometer

    E-Print Network [OSTI]

    Wells, Mathew G. - Department of Physical and Environmental Sciences, University of Toronto

    TRACES Centre Thermo GFS35 Graphite Furnace Spectrometer Standard Operating Procedure 1. Turn. Click on the lamp icon a. ID the lamp of choice and click the `Off' button to `On' b. Non-Thermo lamps

  5. Valorization of Automotive Shredder Residues in metallurgical furnaces Project REFORBA

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ) and the electric arc furnace (EAF) routes, P1 could be used as substitute for coal or coke, and P2 could replace with raw materials cheaper than coke. As additional potential benefits the amount of CO2 generated

  6. Operating experience with 100% pellet burden on Amanda blast furnace

    SciTech Connect (OSTI)

    Keaton, D.E.; Minakawa, T. (Armco Steel Co., Middletown, OH (United States). Ironmaking Dept.)

    1993-01-01T23:59:59.000Z

    A number of significant changes in operations at the Ashland Works of the Armco Steel Company occurred in 1992 which directly impacted the Amanda Blast Furnace operation. These changes included the shutdown of the hot strip mill which resulted in coke oven gas enrichment of the Amanda stoves and an increase of 75 C in hot blast temperature, transition to 100% continuous cast operation which resulted in increased variation of the hot metal demand, and the July idling of the sinter plant. Historically, the Amanda Blast Furnace burden was 30% fluxed sinter and 70% acid pellet. It was anticipated that the change to 100% pellet burden would require changes in charging practice and alter furnace performance. The paper gives a general furnace description and then describes the burden characteristics, operating practice with 30% sinter/70% acid pellet burden, preparations for the 100% acid pellet burden operation, the 100% acid pellet operation, and the 100% fluxed pellet burden operation.

  7. Effect of furnace atmosphere on E-glass foaming

    E-Print Network [OSTI]

    Kim, D. S.; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-01-01T23:59:59.000Z

    oxy-fired furnaces. E-glass foams were generated in a fused-81.05.K 1. Introduction Glass foams generated in glass-that the stability of E-glass foam decreased with increasing

  8. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, Kwan H. (Naperville, IL); Ahluwalia, Rajesh K. (Burr Ridge, IL)

    1994-01-01T23:59:59.000Z

    A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.

  9. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1994-10-18T23:59:59.000Z

    A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.

  10. Furnace Controls Using High Temperature Preheated Combustion Air

    E-Print Network [OSTI]

    Gonzales, J. M.; Rebello, W. J.

    1981-01-01T23:59:59.000Z

    FURNACE CONTROLS USING HIGH TEMPERATURE PREHEATED COMBUSTION AIR Jeffrey M. Gonzalez Wilfred J. Rebello GTE Products Corporation PAR Enterprises, Inc. Towanda, Pennsylvania Fairfax, Virginia ABSTRACT GTE Products Corporation (Towanda... available ratio control apparatus. Various control sys (I) was the development of a different way of looking at combustion. As preheated combustion air temperatures increase, excess air Industrial furnaces generally utilize air as the basic source...

  11. Experience on Commissioning of Heating/Cooling System and Thermal/Air Quality Environment 

    E-Print Network [OSTI]

    Hokoi, S.; Miura, H.; Huang, Y.; Nakahara, N.; Iwamae, A.

    2004-01-01T23:59:59.000Z

    the specified performance was realized at the heat-pump, e) whether the pipes for fan-coil units are suitably insulated. Output Heat loss from piping Upward and downward heat flow from hot-water mat Heat loss from piping (boiler - header) Heat loss from...Experience on Commissioning of Heating/Cooling System and Thermal/Air Quality Environment S. Hokoi*, H. Miura*, Y. Huang*, N. Nakahara** and A. Iwamae*** * Kyoto University, Kyoto 606-8501, Japan ** Nakahara Laboratory, Environmental Syst...

  12. Automatic thermocouple positioner for use in vacuum furnaces

    DOE Patents [OSTI]

    Mee, David K. (Knoxville, TN); Stephens, Albert E. (Knoxville, TN)

    1981-01-01T23:59:59.000Z

    The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

  13. Modelling of multiphase flow in ironmaking blast furnace

    SciTech Connect (OSTI)

    Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia). School for Material Science and Engineering

    2009-01-15T23:59:59.000Z

    A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

  14. Automatic thermocouple positioner for use in vacuum furnaces

    DOE Patents [OSTI]

    Mee, D.K.; Stephens, A.E.

    1980-06-06T23:59:59.000Z

    The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

  15. Recycling of electric-arc-furnace dust

    SciTech Connect (OSTI)

    Sresty, G.C.

    1990-05-01T23:59:59.000Z

    Electric arc furnace (EAF) dust is one of the largest solid waste streams produced by steel mills, and is classified as a waste under the Resource Conservation and Recovery Act (RCRA) by the U.S. Environmental Protection Agency (EPA). Successful recycle of the valuable metals (iron, zinc, and lead) present in the dust will result in resource conservation while simultaneously reducing the disposal problems. Technical feasibility of a novel recycling method based on using hydrogen as the reductant was established under this project through laboratory experiments. Sponge iron produced was low in zinc, cadmium, and lead to permit its recycle, and nontoxic to permit its safe disposal as an alternative to recycling. Zinc oxide was analyzed to contain 50% to 58% zinc by weight, and can be marketed for recovering zinc and lead. A prototype system was designed to process 2.5 tons per day (600 tons/year) of EAF dust, and a preliminary economic analysis was conducted. The cost of processing dust by this recycling method was estimated to be comparable to or lower than existing methods, even at such low capacities.

  16. Conserving Energy by Recovering Heat from Hot Waste Gases

    E-Print Network [OSTI]

    Magnuson, E. E.

    1979-01-01T23:59:59.000Z

    supply, and 1150?1500 Cement kiln (wet process) 8oo~1100 isn't a shortage of energy then at least somewhat of a Copper reverberatory furnace 2000?~.'500 crisis? Diesel engine exhaust 1000?1200 Forge and billet.heating furnaces 1700?~ZOO... Temp. F aren't they really agreeing that there is going to be Ammonia oxidation process 1350?1475 an energy crisis? Steep price increases occur when Annealing furnace 1100?2000 Cement kiln (dry process) there are shortages, when demand exceeds...

  17. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    SciTech Connect (OSTI)

    Bingham, C.E.

    1991-12-01T23:59:59.000Z

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

  18. NICKEL SPECIES EMISSION INVENTORY FOR OIL-FIRED BOILERS

    SciTech Connect (OSTI)

    Kevin C. Galbreath; Richard L. Schulz; Donald L. Toman; Carolyn M. Nyberg

    2004-01-01T23:59:59.000Z

    Representative duplicate fly ash samples were obtained from the stacks of 400-MW and 385-MW utility boilers (Unit A and Unit B, respectively) using a modified U.S. Environmental Protection Agency (EPA) Method 17 sampling train assembly as they burned .0.9 and 0.3 wt% S residual oils, respectively, during routine power plant operations. Residual oil fly ash (ROFA) samples were analyzed for nickel (Ni) concentrations and speciation using inductively coupled plasma-atomic emission spectroscopy, x-ray absorption fine structure (XAFS) spectroscopy, x-ray diffraction (XRD), and a water-soluble Ni extraction method. ROFA water extraction residues were also analyzed for Ni speciation using XAFS and XRD. Total Ni concentrations in the ROFAs were similar, ranging from 1.3 to 1.5 wt%; however, stack gas Ni concentrations in the Unit A were {approx}990 {micro}g/Nm{sup 3} compared to {approx}620 {micro}g/Nm{sup 3} for Unit B because of the greater residual oil feed rates employed at Unit A to attain higher load (i.e., MW) conditions with a lower heating value oil. Ni speciation analysis results indicate that ROFAs from Unit A contain about 3 wt% NiSO{sub 4} {center_dot} xH{sub 2}O (where x is assumed to be 6 for calculation purposes) and a Ni-containing spinel compound, similar in composition to (Mg,Ni)(Al,Fe){sub 2}O{sub 4}. ROFAs from Unit B contain on average 2.0 wt% NiSO{sub 4} {center_dot} 6H{sub 2}O and 1.1 wt% NiO. XAFS and XRD analyses did not detect any nickel sulfide compounds, including nickel subsulfide (Ni{sub 3}S{sub 2}) (XAFS detection limit is 5% of the total Ni concentration). In addition, XAFS measurements indicated that inorganic sulfate and organic thiophene species account for >97% of the total sulfur in the ROFAs. The presence of NiSO{sub 4} {center_dot} xH{sub 2}O and nickel oxide compound mixtures and lack of carcinogenic Ni{sub 3}S{sub 2} or nickel sulfide compounds (e.g., NiS, NiS{sub 2}) in ROFAs stack-sampled from 400- and 385-MW boilers are contrary to EPA's Ni inhalation cancer risk assessment (''Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units--Final Report to Congress'', February 1998), where it is assumed that the Ni compound mixture emitted from oil-fired utilities is 50% as carcinogenic as Ni{sub 3}S{sub 2}. Apparently, this assumption greatly overestimates the Ni inhalation cancer risk from oil-fired utilities.

  19. Clean heat, steam, and electricity from rice hull gasification

    SciTech Connect (OSTI)

    Bailey, R.W.; Bailey, R. Jr. [PRM Energy Systems, Inc., Hot Springs, AR (United States)

    1996-12-31T23:59:59.000Z

    PRM Energy Systems, Inc., (PRME) has completed the installation of a 330 ton/day biomass gasification system for Cargill Rice Milling of Greenville, Mississippi. The system was activated on November 1, 1995. Using the information and experience gained from the operation of previous installations, PRME scaled up its already proven technology by a factor of four and designed the model KC-218 to meet the needs of this particular facility. The PRME model KC-218 system converts unground rice hulls/straw and other biomass fuels to combustible gas which is burned in the boiler furnace delivering 115 million Btus/hr to an existing boiler/power island 5.0 MW of electricity and 15,000 pounds per hour of process steam for this rice parboiling facility.

  20. Split stream boilers for high-temperature/high-pressure topping steam turbine combined cycles

    SciTech Connect (OSTI)

    Rice, I.G. [Rice (I.G.), Spring, TX (United States)

    1997-04-01T23:59:59.000Z

    Research and development work on high-temperature and high-pressure (up to 1,500 F TIT and 4,500 psia) topping steam turbines and associated steam generators for steam power plants as well as combined cycle plants is being carried forward by DOE, EPRI, and independent companies. Aeroderivative gas turbines and heavy-duty gas turbines both will require exhaust gas supplementary firing to achieve high throttle temperatures. This paper presents an analysis and examples of a split stream boiler arrangement for high-temperature and high-pressure topping steam turbine combined cycles. A portion of the gas turbine exhaust flow is run in parallel with a conventional heat recovery steam generator (HRSG). This side stream is supplementary fired opposed to the current practice of full exhaust flow firing. Chemical fuel gas recuperation can be incorporated in the side stream as an option. A significant combined cycle efficiency gain of 2 to 4 percentage points can be realized using this split stream approach. Calculations and graphs show how the DOE goal of 60 percent combined cycle efficiency burning natural gas fuel can be exceeded. The boiler concept is equally applicable to the integrated coal gas fuel combined cycle (IGCC).