Powered by Deep Web Technologies
Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heat Transfer Coefficient Distribution in the Furnace of a 300MWe CFB Boiler  

Science Journals Connector (OSTI)

Properly understanding and calculating the distributions of heat flux and heat transfer coefficient (?) in the furnace is important in designing a circulating fluidized bed (CFB) boiler, especially with supercrit...

P. Zhang; J. F. Lu; H. R. Yang; J. S. Zhang

2010-01-01T23:59:59.000Z

2

Furnaces and Boilers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

3

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

4

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler  

SciTech Connect

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

Andrew Seltzer

2005-01-01T23:59:59.000Z

5

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions...

6

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

7

Furnace and Boiler Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including...

8

Condensing heat exchanger systems for residential/commercial furnaces and boilers. Phase IV  

SciTech Connect

The development of condensing heat exchanger systems is studied. In the work reported here, the focus is on the corrosion resistance of materials to condensate produced by gas-fired heating equipment, and the characterization of the spatial variation of condensation corrosivity in condensing heat exchangers.

Razgaitis, R.; Payer, J.H.; Talbert, S.G.; Hindin, B.; White, E.L.; Locklin, D.W.; Cudnik, R.A.; Stickford, G.H.

1985-10-01T23:59:59.000Z

9

Heat treatment furnace  

DOE Patents (OSTI)

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

10

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

11

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

12

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

13

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

14

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

15

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

16

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

17

Specifying Waste Heat Boilers  

E-Print Network (OSTI)

, refineries,kilns, incineration systems and cogeneration and combined cycle plants,to mention a few applications.Depending on several factors such as quantity of gas or steam floW,cleanl1ness of gas,gas and steam pressure and space availabilitY,they may... of incinerator.whether fixed bed.rotary kiln or fluid bed.Sla9ging constituents present in the gas can result in bridging of tubes by molten salts if tube spacing is not wide,particularly at the boiler inlet.Ash hoppers ,soot blowers and cleaning lanes...

Ganapathy, V.

18

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

19

Condensing economizers for small coal-fired boilers and furnaces  

SciTech Connect

Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impactors are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

Butcher, T.A.; Litzke, W.

1994-01-01T23:59:59.000Z

20

Towards a reliable and efficient furnace simulation tool for coal fired utility boilers  

Science Journals Connector (OSTI)

A validation exercise is presented with the objective of demonstrating that using a mature furnace simulation tool on high end supercomputers enables the reliable prediction of coal-fired utility boiler perfor...

Benedetto Risio; Uwe Schnell

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fluid Bed Waste Heat Boiler Operating Experience in Dirty Gas Streams  

E-Print Network (OSTI)

from 13 to 15 million BTU per hour for fired boiler efficiencies of 80% to 70% respectively. The savings represents 85 to 90% of the energy entering the waste heat boiler. Equiva lent furnace efficiency increases from 25% to over 60% on high fire... Fired Boiler Efficiency 0.70 0.75 0.80 Energy Savings Furnace Efficiency Corresponding Peak Fuel Equivalent at High (1) . Savi ngs Fire on Melt 4453 kw (15.1x10 6 BTU/hr) 69% 4156 kw (14.1x10 6 BTU/hr) 66% 3896 kw (13.3x10 6 BTU/hr) 63% (1...

Kreeger, A. H.

22

Experimental Study on Co-Firing of Syngas as a Reburn/Alternative Fuel in a Commercial Water-Tube Boiler and a Pilot-Scale Vertical Furnace  

Science Journals Connector (OSTI)

The second was a vertical furnace with 4 heavy oil burners, for various heat replacements by syngas cofiring at various heating values. ... The cleaned syngas is then introduced to the host boiler through a gas burner or nozzles. ... The combustible species in the mixed gas are completely burnt-out by overfire air in the burn-out zone. ...

Won Yang; Dong Jin Yang; Sin Young Choi; Jong Soo Kim

2011-05-17T23:59:59.000Z

23

Clean Boiler Waterside Heat Transfer Surfaces  

SciTech Connect

This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

24

Clean Boiler Waterside Heat Transfer Surfaces  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

25

Resource recovery waste heat boiler upgrade  

SciTech Connect

The waste heat boilers installed in a 360 TPD waste to energy plant were identified as the bottle neck for an effort to increase plant capacity. These boilers were successfully modified to accommodate the increase of plant capacity to 408 TPD, improve steam cycle performance and reduce boiler tube failures. The project demonstrated how engineering and operation can work together to identify problems and develop solutions that satisfy engineering, operation, and financial objectives. Plant checking and testing, design review and specification development, installation and operation results are presented.

Kuten, P.; McClanahan, D.E. [Fluor Daniel, Inc., Houston, TX (United States); Gehring, P.R.; Toto, M.L. [SRRI, Springfield, MA (United States); Davis, J.J. [Deltak, Minon, MN (United States)

1996-09-01T23:59:59.000Z

26

The heat transfer coefficients of the heating surface of 300 MWe CFB boiler  

Science Journals Connector (OSTI)

A study of the heat transfer about the heating surface of three commercial 300 MWe CFB boilers was conducted in this work. The ... heat balance of the hot circuit of the CFB boiler. With the boiler capacity incre...

Haibo Wu; Man Zhang; Qinggang Lu; Yunkai Sun

2012-08-01T23:59:59.000Z

27

On numerical simulation of flow, heat transfer and combustion processes in tangentially-fired furnace  

SciTech Connect

In this work, an Eulerian/Lagrangian approach has been employed to investigate numerically flow characteristics, heat transfer and combustion processes inside corner-fired power plant boiler furnace. To avoid pseudo-diffusion that is significant in modeling tangentially-fired furnaces, some attempts have been made at improving the finite-difference scheme. Comparisons have been made between standard {kappa}-{epsilon} model and RNG {kappa}-{epsilon} model. Some new developments on turbulent diffusion of particles are taken into account in an attempt to improve computational accuracy. Finally, temperature deviation is studied numerically so as to gain deeper insight into tangentially fired furnace.

Sun, P.; Fan, J.; Cen, K.

1999-07-01T23:59:59.000Z

28

Waste Heat Recovery Submerged Arc Furnaces (SAF)  

E-Print Network (OSTI)

designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btus required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified...

O'Brien, T.

2008-01-01T23:59:59.000Z

29

Experimental investigation and model validation of the heat flux profile in a 300MW CFB boiler  

Science Journals Connector (OSTI)

Abstract In this paper, systematic experimental investigation on the heat flux distribution inside the furnace of a 300MW CFB boiler was presented. Detailed experimental setup and measurement techniques were presented and a finite element method approach was applied to determine the heat flux. The heat flux profile on the rear wall along the horizontal direction shows a significant imbalance at different boiler loads. As a result of the non-uniform layout of the heating surfaces, which is the essential reason, as well as the imbalance and deviation of the temperature field, solid suspension density and solid flow rate, the central section of the furnace possesses higher heat flux distribution compared to the side sections. The heat flux is also found to increase with the increasing boiler load and decrease as the height increases. Heat flux near the roof, where the solid suspension density is rather small, is found to decrease remarkably revealing less heat absorption in this area. In addition, an empirical model of heat transfer coefficient is revised using the average data at different boiler loads. A mechanism heat transfer model based on the membrane water-wall configuration is proposed and validated with the heat flux profile obtained from the measurement. The model provides good accuracy for correlating 85% of the data within 10%.

Ruiqing Zhang; Hairui Yang; Nan Hu; Junfu Lu; Yuxin Wu

2013-01-01T23:59:59.000Z

30

EECBG Success Story: Biomass Boiler to Heat Oregon School | Department...  

Energy Savers (EERE)

EECBG Success Story: Biomass Boiler to Heat Oregon School EECBG Success Story: Biomass Boiler to Heat Oregon School April 26, 2011 - 3:56pm Addthis Oregon Governor Kulongoski...

31

Cogeneration from glass furnace waste heat recovery  

SciTech Connect

In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

Hnat, J.G.; Cutting, J.C.; Patten, J.S.

1982-06-01T23:59:59.000Z

32

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

33

Chapter 5, Residential Furnaces and Boilers Evaluation Protocol...  

Office of Environmental Management (EM)

primarily in single-family homes and multifamily buildings with individual heating systems for each dwelling unit. This protocol does not cover integrated heating and water...

34

Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

24 24 Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. Homes James Lutz, Camilla Dunham-Whitehead, Alex Lekov, and James McMahon Energy Analysis Department Environmental Energy Technologies Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 February 2004 This work was supported by the Office of Building Technologies and Community Systems of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. ABSTRACT In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an

35

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach...  

Energy Savers (EERE)

source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit, but supplemental heat is provided by a combined DHW and...

36

Evaluation of Heat Losses in Fire Tube Boiler  

E-Print Network (OSTI)

Abstract The efficiency of oil fired fire tube boiler was calculated by evaluating the heat losses. Investigation on the performance of the boiler was conducted by examining the heat losses, identifying the reasons for losses, measuring the individual loss and developing a strategy for loss reduction. This study was carried out in Texmaco package horizontal fire tube boiler at Travancore Titanium Products Ltd (TTPL), Trivandrum, Kerala. The boiler efficiency was measured by indirect method. Heat losses in dry flue gas and due to unburned fuel were found to be the major problems. Since they were interrelated, installation of Zirconium oxygen sensor was recommended as a common remedy.

S. Krishnanunni; Josephkunju Paul C; Mathu Potti; Ernest Markose Mathew

37

2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for furnaces and boilers, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 13, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

38

Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant  

SciTech Connect

Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

2007-01-15T23:59:59.000Z

39

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power Systems for Boiler Owners and Operators Guide to Combined Heat and Power Systems for Boiler Owners and Operators This guide presents useful information for...

40

Value of electrical heat boilers and heat pumps for wind power integration  

E-Print Network (OSTI)

Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link between the heat and power production in combined heat and power plants. Each of these measures has

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A New Type Heat Exchanger for Coal Burning Boilers  

Science Journals Connector (OSTI)

To make the best of heat energy in the flue gas exhausted from a coal burning boiler, the design proposal for a new type of heat exchanger was put forward in the paper. Via the new type of heat exchanger, temperature of the flue gas can be decreased ... Keywords: waste heat utilization, energy conservation, special heat exchanger, economizer

Bingwen Zhang; Yingjin Zhang

2010-06-01T23:59:59.000Z

42

Experimental Investigation of Hydrogen Chloride Bonding with Calcium Hydroxide in the Furnace of a Stoker-Fired Boiler  

Science Journals Connector (OSTI)

The paper presents the results of experimental technical investigations to limit the mobility of chlorine released in the form of hydrogen chloride from the fuel in a stoker-fired boiler furnace. In the combustion process, hydrated lime was used as the ...

S?awomir Poskrobko; Jan ?ach; Danuta Krl

2010-03-04T23:59:59.000Z

43

Heat Recovery Consideration for Process Heaters and Boilers  

E-Print Network (OSTI)

The largest single area for industrial energy conservation is in the improvement of combustion efficiencies for heaters and boilers. A number of methods can be employed to recover heat. The most common are by use of recuperative air preheaters...

Kumar, A.

1984-01-01T23:59:59.000Z

44

CONDENSING ECONOMIZERS FOR SMALL COAL-FIRED BOILERS AND FURNACES PROJECT REPORT - JANUARY 1994  

SciTech Connect

Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impacts are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

BUTCHER,T.A.

1994-01-04T23:59:59.000Z

45

Biomass Boiler to Heat Oregon School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

46

Biomass Boiler to Heat Oregon School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School Biomass Boiler to Heat Oregon School April 26, 2011 - 5:29pm Addthis Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Oregon Governor Kulongoski maneuvers a backhoe to break ground at the Vernonia school site. | Department of Energy Image | Photo by Joel Danforth, Contractor | Public Domain | Joel Danforth Project Officer, Golden Field Office What will the project do? The boiler system will have a capacity of up to 3 Million Metric British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town

47

Exergy Analysis and Energy-Saving Evaluation of the Fuming Furnace Device in SKS Lead Smelting System  

Science Journals Connector (OSTI)

To highlight the energy-saving feature of the integral device of fuming furnace and waste heat boiler(referred to as the fuming furnace device for short) in the Shuikoushan lead smelting system (hereinafter referred to as SKS system) and to ... Keywords: SKS lead smelting, fuming furnace, waste heat boiler, exergy analysis, energy-saving

Jiang Aihua; Mei Chi; Shi Zhangming; Wang Hongcai; Yu Huang; Zhu Xiaojun

2011-02-01T23:59:59.000Z

48

New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement  

SciTech Connect

Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

2014-01-01T23:59:59.000Z

49

Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating  

E-Print Network (OSTI)

Here the authors report the use of either furnace heating or Joule heating to pacify the exposed graphene edges by loop formation in a novel graphitic nanoribbonmaterial, grown by chemical vapor deposition. The edge energy ...

Jia, Xiaoting

50

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners...

51

Heat transfer characteristics of fluidized bed heat exchanger in a 300MW CFB boiler  

Science Journals Connector (OSTI)

In order to investigate the heat transfer characteristics of fluidized bed heat exchanger (FBHE), a series of experiments was carried out in a commercial 300MW circulating fluidized bed (CFB) boiler with FBHE. The parameters of steam, solids and air in FBHE were measured at different boiler loads, based on which the absorbed heat and heat transfer coefficient were calculated. Further study indicates that when the calculated results are applied to the design of large-scale CFB boilers, the bed side heat transfer coefficient in FBHE can be simplified as the function of solids temperature and flow. Therefore, the empirical model of heat transfer coefficient at bed side is put forward. The deviation between calculated results and measured values is acceptable in engineering application. This model provides strong support for the FBHE design in 600MW supercritical CFB boilers.

Man Zhang; Haibo Wu; Qinggang Lu; Yunkai Sun; Guoliang Song

2012-01-01T23:59:59.000Z

52

Investigation on the Integrated External Heat Exchanger for a New Type CFB Boiler Arrangement  

Science Journals Connector (OSTI)

Various external heat exchangers (EHE) are widely used with large-scale CFB boiler. The solid mass flow rate diverted ... EHE has been used in a new designed CFB boiler successfully.

Bin Xiong; Xiaofeng Lu; Hanzhou Liu

2007-01-01T23:59:59.000Z

53

Condensing Heat Exchangers Optimize Steam Boilers  

E-Print Network (OSTI)

The development of fluorocarbon resin covered tubes has advanced to the point where full scale marketing in connection with condensing heat exchangers has begun. Field installations show simple paybacks of one to one and a half years with resulting...

Sullivan, B.; Sullivan, P. A.

1983-01-01T23:59:59.000Z

54

Waste heat boiler optimization by entropy minimization principle  

SciTech Connect

A second law analysis has been undertaken for a waste heat boiler having an economizer, evaporator and superheater. Following the principle of minimization of entropy generation, a general equation for entropy generation number is derived, which incorporates all the operating variables. By differentiating the entropy generation number equation with respect to the operating parameters, various optimization parameters can be obtained. Few illustrations have been made to see the effect of various parameters on entropy generation number.

Reddy, B.V.; Murali, J.; Satheesh, V.S. [Vellore Engineering Coll. (India). Mechanical Engineering Dept.; Nag, P.K. [Indian Inst. of Tech., Kharagpur (India). Mechanical Engineering Dept.

1996-12-31T23:59:59.000Z

55

Oregon Hospital Heats Up with a Biomass Boiler | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler Oregon Hospital Heats Up with a Biomass Boiler December 27, 2012 - 4:30pm Addthis Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Julie McAlpin Communications Liaison, State Energy Program Why biomass? Wood was the first energy source used and man's main fuel source until the Industrial Revolution.

56

Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers  

SciTech Connect

The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or cut line to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel tubes. Also, these fluctuating air flow patterns can result in deposition of black liquor on the wall tubes, and during periods when deposition is high, there is a noticeable increase in the concentrations of sulfur-bearing gases like hydrogen sulfide and methyl mercaptan. Laboratory studies have shown that chromized and aluminized surface treatments on carbon steel improve the resistance to sulfidation attack. Studies of superheater corrosion and cracking have included laboratory analyses of cracked tubes, laboratory corrosion studies designed to simulate the superheater environment and field tests to study the movement of superheater tubes and to expose a corrosion probe to assess the corrosion behavior of alternate superheater alloys, particularly alloys that would be used for superheaters operating at higher temperatures and higher pressures than most current boilers. In the laboratory corrosion studies, samples of six alternate materials were immersed in an aggressive, low melting point salt mixture and exposed for times up to 336 h, at temperatures of 510, 530 or 560C in an inert or reactive cover gas. Using weight change and results of metallographic examination, the samples were graded on their resistance to the various environments. For the superheater corrosion probe studies, samples of the same six materials were exposed on an air-cooled corrosion probe exposed in the superheater section of a recovery boiler for 1000 h. Post exposure examination showed cracking and/or subsurface attack in the samples exposed at the higher temperatures with the attack being more severe for samples 13 exposed above the first melting temperature of the deposits that collected on the superheater tubes. From these superheater studies, a ranking was developed for the six materials tested. The task addressing cracking and corrosion of primary air port tubes that was part of this project produced results that have been extensively implemented in recovery boilers in North America, the Nordic countries and many other parts of the world. By utilizing these results, boilers ar

Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

2007-12-31T23:59:59.000Z

57

Heat Recovery From Arc Furnaces Using Water Cooled Panels  

E-Print Network (OSTI)

to maintain a constant cooling water supply temperature in the cold well. The cooling tower fans can be manually reversed on slow speed for de-icing the cooling tower in winter to remove ice buildup on the slats. Level controller LL-2 shuts down pumps PI...HEAT RECOVERY FROM ARC FURNACES USING WATER COOLED PANELS D. F. Darby Deere & Company Moline, Illinois ABSTRACT In 1980-81, the John Deere Foundry at East Moline underwent an expansion program that in creased its capacity by over 60...

Darby, D. F.

58

Heating boilers in Krakow, Poland: Options for improving efficiency and reducing emissions  

SciTech Connect

In Krakow, Poland, coal-fired boilers are used to heat single apartment buildings and local heating districts. Tile population includes 2,930 small, hand-fired boilers and 227 larger traveling grate stoker-fired boilers. These boilers are important contributors to air quality problems in Krakow, and an assessment of their efficiency and emissions characteristics was recently undertaken. For the larger, stoker-fired boilers, efficiency was measured using a stack-loss method In addition to the normal baseline fuel, the effects of coal cleaning and grading were evaluated Testing was done at two selected sites. Boiler efficiencies were found to be low-50% to 67%. These boilers operate without combustion controls or instrumentation for flue gas analysis. As a result, excess air levels are very high (up to 400%) leading to poor performance. Emissions were found to be typical for boilers of this type. Using the improved fuels yields reductions in emissions and improvement in efficiency when combined with proper adjustments. In the case of the hand-fired boilers, one set of cast-iron boilers and one set of steel boilers were tested. Efficiency in this case was measured using an input-output method for sets of three boilers taken together as a system. Emissions from these boilers are lowest when low volatile fuels, such as coke or smokeless briquettes, are used.

Cyklis, P.; Wlodkowski, A.; Butcher, T.; Kowalski, J.; Zaczkowski, A.; Kroll, J.; Boron, J.

1995-08-01T23:59:59.000Z

59

Heating Equipment Checklist for Winter Comfort and Efficiency...  

Office of Environmental Management (EM)

equipment checklist.png Read more about maintaining furnaces and boilers, radiators, heat pumps, and thermostats. Show your cooling system some love as well. If you have...

60

San Francisco Turns Up The Heat In Push To Eliminate Old Boilers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Francisco Turns Up The Heat In Push To Eliminate Old Boilers Francisco Turns Up The Heat In Push To Eliminate Old Boilers San Francisco Turns Up The Heat In Push To Eliminate Old Boilers February 8, 2011 - 5:37pm Addthis Before and after shots of a new boiler system | courtesy of the Office of Weatherization and Intergovernmental Programs Before and after shots of a new boiler system | courtesy of the Office of Weatherization and Intergovernmental Programs Johanna Sevier Project Officer, Golden Field Office San Francisco's extensive stock of multifamily properties is getting some critical assistance in replacing old and inefficient boilers with new, high-efficiency heating systems using Energy Efficiency and Conservation Block Grant (EECBG) funds. By providing financial incentives to property owners, new heating systems result in energy savings, job creation for

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mathematical description of a boiler house operating jointly with a wind power plant and heat storage  

Science Journals Connector (OSTI)

A heat supply system is considered that contains, along with a boiler house, a wind power plant and heat storage. Methodical approaches for determining ... modes of the heat storage jointly with the wind power plant

A. V. Bezhan; V. A. Minin

2011-11-01T23:59:59.000Z

62

Modeling reaction quench times in the waste heat boiler of a Claus plant  

SciTech Connect

At the high temperatures found in the modified Claus reaction furnace, the thermal decomposition and oxidation of H[sub 2]S yields large quantities of desirable products, gaseous hydrogen (H[sub 2]) and sulfur (S[sub 2]). However, as the temperature of the gas stream is lowered in the waste heat boiler (WHB) located downstream of the furnace, the reverse reaction occurs leading to reassociation of H[sub 2] and S[sub 2] molecules. To examine the reaction quenching capabilities of the WHB, a rigorous computer model was developed incorporating recently published intrinsic kinetic data. A sensitivity study performed with the model demonstrated that WHBs have a wide range of operation with gas mass flux in the tubes from 4 to 24 kg/(m[sup 2] [center dot] s). Most important, the model showed that is was possible to operate WHBs such that quench times could be decreased to 40 ms, which is a reduction by 60% compared to a base case scenario. Furthermore, hydrogen production could be increased by over 20% simply by reconfiguring the WHB tubes.

Nasato, L.V.; Karan, K.; Mehrotra, A.K.; Behie, L.A. (Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering)

1994-01-01T23:59:59.000Z

63

Slovak Centre of Biomass Use for Energy Wood Fired Heating Plant in Slovakia  

E-Print Network (OSTI)

brown-coal fired boilers with low efficiency. The special furnace design ensures that woody biofuel authorities CHP Planning issues Transport companies District Heating Sustainable communities Utilities Solar

64

Chapter 5, Residential Furnaces and Boilers Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Residential 5: Residential Furnaces and Boilers Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 5 - 1 Chapter 5 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol ....................................................................................... 3 3 Savings Calculations .............................................................................................................. 5 4 Measurement and Verification Plan ....................................................................................... 8

65

List of Furnaces Incentives | Open Energy Information  

Open Energy Info (EERE)

Furnaces Incentives Furnaces Incentives Jump to: navigation, search The following contains the list of 688 Furnaces Incentives. CSV (rows 1-500) CSV (rows 501-688) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit

66

List of Boilers Incentives | Open Energy Information  

Open Energy Info (EERE)

Boilers Incentives Boilers Incentives Jump to: navigation, search The following contains the list of 550 Boilers Incentives. CSV (rows 1-500) CSV (rows 501-550) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools

67

RESEARCH ARTICLE OPEN ACCESS Optimization of Boiler Blowdown and Blowdown Heat Recovery in Textile Sector  

E-Print Network (OSTI)

Boilers are widely used in most of the processing industries like textile, for the heating applications. Surat is the one of the largest textile processing area in India. In textile industries coal is mainly used for the steam generation. In a textile industry normally a 4 % of heat energy is wasted through blowdown. In the study conducted in steam boilers in textile industries in surat location, 1.5 % of coal of total coal consumption is wasted in an industry by improper blowdwon. This thesis work aims to prevent the wastage in the coal use by optimizing the blowdown in the boiler and maximizing the recovery of heat wasting through blowdown.

Sunudas T; M G Prince

68

Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)  

SciTech Connect

A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

Not Available

2012-04-01T23:59:59.000Z

69

Simulation of processes in natural-circulation circuits of heat-recovery boilers of combined cycle power plants  

Science Journals Connector (OSTI)

Mathematical fundamentals of development of models of natural-circulation circuits of heat-recovery boilers are considered. Processes in the high-pressure circuit of a P-96 boiler are described.

E. K. Arakelyan; A. S. Rubashkin; A. S. Obuvaev; V. A. Rubashkin

2009-02-01T23:59:59.000Z

70

Experimental Study on Heat Transfer in a Rolling Ash Cooler used in the CFB Boiler  

Science Journals Connector (OSTI)

From the view of the reliability and the techno-economy, the rolling ash cooler is feasible for the large-scale CFB boilers. However, existing studies on heat...

W. Wang; J. J. Li; S. Yang; X. D. Si

2010-01-01T23:59:59.000Z

71

Heat Balance Analysis of Baimas 300 MWe CFB Boiler in China  

Science Journals Connector (OSTI)

By analyzing the 336-hour performance testing period operation parameters and the actual measurement data at the scene, this paper took a study of the heat balance on Baimas 300MWe CFB boiler. Through calculatin...

J. Y. Lu; X. F. Lu; G. Yin; H. Z. Liu

2010-01-01T23:59:59.000Z

72

EECBG Success Story: San Francisco Turns Up The Heat In Push To Eliminate Old Boilers  

Energy.gov (U.S. Department of Energy (DOE))

San Franciscos extensive stock of multifamily properties is getting some critical assistance in replacing old and inefficient boilers with new, high-efficiency heating systems using Energy Efficiency and Conservation Block Grant (EECBG) funds. Learn more.

73

Effects of installing economizers in boilers used in space heating applications  

SciTech Connect

This paper discusses how the performance of a boiler can be improved by adding an economizer to preheat the boiler's feedwater. An energy analysis was applied to a boiler and then to both a boiler and an economizer (water pre-heater) to evaluate the benefits of heat recovery. Exergy rates calculated for both the boiler and the economizer determined that the temperature of the stack gases had primary effects on the performance of a boiler. The results from this study showed that 57% of the heat rejected at the boiler's stack could be recovered by installing an economizer to preheat the feedwater. As a result, the average cost savings that would be realized for a 36,400 kg/h (80,000 lbm/h) boiler averages US$8 per hour. The cost savings to steam production averaged US$0.20 per 455 kg (1,000 lbm) of steam and the ration between the cost savings to stack temperature averaged $0.02 per C (1.8 F). For this case, the fuel and the cost savings realized from using an economizer were averaged at 3.8% and 3.7%, respectively. These results translated to total cost savings, for an eight-day period considered, of US$940.

Gonzalez, M.A.; Medina, M.A.; Schruben, D.L.

1999-07-01T23:59:59.000Z

74

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

75

Including radiative heat transfer and reaction quenching in modeling a Claus plant waste heat boiler  

SciTech Connect

Due to increasingly stringent sulfur emission regulations, improvements are necessary in the modified Claus process. A recently proposed model by Nasato et al. for the Claus plant waste heat boiler (WHB) is improved by including radiative heat transfer, which yields significant changes in the predicted heat flux and the temperature profile along the WHB tube, leading to a faster quenching of chemical reactions. For the WHB considered, radiation accounts for approximately 20% of the heat transferred by convection alone. More importantly, operating the WHB at a higher gas mass flux is shown to enhance reaction quenching, resulting in a doubling of the predicted hydrogen flow rate. This increase in hydrogen flow rate is sufficient to completely meet the hydrogen requirement of the H[sub 2]S recovery process considered, which would eliminate the need for a hydrogen plant.

Karan, K.; Mehrotra, A.K.; Behie, L.A. (Univ. of Calgary, Alberta (Canada). Dept. of Chemical and Petroleum Engineering)

1994-11-01T23:59:59.000Z

76

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

77

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring  

SciTech Connect

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

Dentz, J.; Henderson, H.; Varshney, K.

2014-09-01T23:59:59.000Z

78

Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)  

SciTech Connect

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

Not Available

2014-11-01T23:59:59.000Z

79

THE CFB SUMMERSIDE PROJECT INITIAL OPERATING EXPERIENCE WITH 18 TPH AFBC HEATING BOILERS  

Science Journals Connector (OSTI)

ABSTRACT Initial operating experience with Canada's first commercial FBC boiler plant, located at CFB Summerside, PEI, is described. The plant, consisting of two boilers rated at 18,000 kg/h of steam at MCR, operating at 965 kPa saturated steam, is designed for high-sulphur coal with supplementary firing of wood chips. The boilers were operated intermittently from December 1982 until May 1983, and in May one boiler was subjected to an acceptance test campaign of about two weeks, during which it performed satisfactorily, at loads ranging from 110% MCR to the maximum design turndown ratio of 4.5:1. Assessment of its performance in terms of efficiency and emissions awaits completion of laboratory analyses and data reduction. Careful control of limestone sizing is required to avoid the problems with cold fluidization which were encountered during commissioning. Also, high moisture and fines in the coal caused significant problems in the materials handling system. Some erosion of boiler tubes in the bed zone was observed. The affected areas were covered with a thin layer of hard refractory to prevent further deterioration. This does not appear to have a detrimental effect on steam output. Further work remains to be done, but it appears likely that during the next heating season both boilers will be fully commissioned and all requirements for acceptance will be met. KEYWORDS Fluidized-bed combustion, coal combustion, boiler operation.

V.V. Razbin; F.D. Friedrich

1984-01-01T23:59:59.000Z

80

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Compliance testing of Grissom AFB, Central Heating Plant coal-fired boilers 3, 4 and 5, Grissom AFB, Indiana. Final report, 3-13 Dec 90  

SciTech Connect

Source compliance testing (particulates and visible emissions) of boiler 3, 4 and 5 in the Grissom AFB Central Heating Plant was accomplished 3-13 Dec 90. The boilers were all tested through the bypass stack. Visible emissions from the three boilers met applicable opacity regulations. However, particulate emissions from the three boilers were above their applicable emission standards.

Vaughn, R.W.

1991-03-01T23:59:59.000Z

82

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

83

Fate of Fuel Nitrogen in the Furnace of an Industrial Bubbling Fluidized Bed Boiler during Combustion of Biomass Fuel Mixtures  

Science Journals Connector (OSTI)

Co-firing biomass with challenging fuels, such as sludge, demolition wood, and solid recovered fuel (SRF), has become an attractive possibility to improve the economy of power production and to reduce the amount of landfill. ... Therefore, the fuel was extremely wet, with a dry solids content below 50 wt %. ... Thus, CS could reduce NOx effectively in devices where other techniques fails, e.g., in kraft recovery boilers, fluidized bed combustors, low-grade fuel combustors, small and domestic boilers, and fast engines. ...

Emil Vainio; Anders Brink; Mikko Hupa; Hannu Vesala; Tuula Kajolinna

2011-11-28T23:59:59.000Z

84

Evaluation of the 3D-furnace simulation code AIOLOS by comparing CFD predictions of gas compositions with in-furnace measurements in a 210MW coal-fired utility boiler  

Science Journals Connector (OSTI)

The furnace of a pulverised coal-fired utility boiler with a thermal output of 210MW, with dimensions of 8m x 8m x 29m and 12 burners located on three levels, is considered. Coal combustion is described by a five-step-reaction scheme. The model covers two heterogeneous reactions for pyrolysis and char combustion and three gas phase reactions for the oxidation of volatile matter. A standard k, ?-model is used for the description of turbulence. The interaction of turbulence and chemistry is modelled using the Eddy Dissipation Concept (EDC). The transport equations for mass, momentum, enthalpy and species are formulated in general curvilinear co-ordinates enabling an accurate treatment of boundaries and a very good control over the distribution of the grid lines. The discretisation is based on a non-staggered finite-volume approach and the coupling of velocities and pressure is achieved by the SIMPLEC method. Numerical diffusion is minimised by the use of the higher-order discretisation scheme MLU. The accuracy of the predictions is demonstrated by comparing the computational results with in-furnace measurements of carbon monoxide, carbon dioxide and oxygen concentrations and of temperatures.

Hermann Knaus; Uwe Schnell; Klaus R.G. Hein

2001-01-01T23:59:59.000Z

85

Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace  

SciTech Connect

This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

2014-01-01T23:59:59.000Z

86

Parametric study of a firetube boiler performance  

SciTech Connect

Critical areas in the design of commercial and industrial firetube boilers are burner and furnace configuration, as is the resultant heat transfer from the furnace wall to the water under the various conditions. Furthermore, performance of industrial and commercial boilers is mainly dependent upon their material and geometrical dimensions. In order to investigate boiler performance globally, a relatively simple model which can be processed in a personal computer (PC) is proposed. In this paper, the effects of thermo-physical parameters on the energy and exergy performance of a firetube boiler are studied by using a simple model for the combustion product gas behavior through the boiler passes. For each steady-state condition, the boiler performance is investigated by parametrically changing the degree of inception of nucleate boiling, the tube wall emissivity, the saturation steam pressure, and the fraction of flue gas recirculation (FGR, utilized for NO{sub x} emissions reduction). Results for a set of parameters such as those considered in this work may be used in future firetube boiler design to improve performance and reduce manufacturing costs.

Park, H. [Marquette Univ., Milwaukee, WI (United States). Dept. of Mechanical and Industrial Engineering; Valentino, M.W. [Cleaver-Brooks, Milwaukee, WI (United States)

1995-12-31T23:59:59.000Z

87

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

88

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

89

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

90

FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces  

SciTech Connect

A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

Ahluwalia, R.K.; Im, K.H.

1992-08-01T23:59:59.000Z

91

FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces  

SciTech Connect

A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

Ahluwalia, R.K.; Im, K.H.

1992-08-01T23:59:59.000Z

92

Protecting the Investment in Heat Recovery with Boiler Economizers  

E-Print Network (OSTI)

voice concern over the long term security of an investment in flue gas heat recovery equipment. The concern generally involves the ability of an economizer or air heater to continue to perform efficiently without corrosion. The recognized economic..., temperatures of the flue gas and water, and the potential for corrosion. This paper will discuss the economic and practical considerations of an economizer installation. WHY INSTALL AN ECONOMIZER? An economizer is reckoned to be a financial ad vantage...

Roethe, L. A.

93

Optimization of waste heat recovery boiler of a combined cycle power plant  

SciTech Connect

This paper describes the details of a procedure developed for optimization of a waste heat recovery boiler (WHRB) of a combined cycle power plant (CCPP) using the program for performance prediction of a typical CCPP, details of which have been presented elsewhere (Seyedan et al., 1994). In order to illustrate the procedure, the optimum design of a WHRB for a typical CCPP (employing dual-pressure bottoming cycle) built by a prominent Indian company, has been carried out. The present design of a WHRB is taken as the base design and the newer designs generated by this procedure are compared with it to assess the extent of cost reduction possible.

Seyedan, B.; Dhar, P.L.; Gaur, R.R. [Indian Inst. of Tech., New Delhi (India). Dept. of Mechanical Engineering; Bindra, G.S. [Bharat Heavy Electrical Ltd., New Delhi (India)

1996-07-01T23:59:59.000Z

94

Postcombustion and its influences in 135 MWe CFB boilers  

SciTech Connect

In the cyclone of a circulating fluidized bed (CFB) boiler, a noticeable increment of flue gas temperature, caused by combustion of combustible gas and unburnt carbon content, is often found. Such phenomenon is defined as post combustion, and it could introduce overheating of reheated and superheated steam and extra heat loss of exhaust flue gas. In this paper, mathematical modeling and field measurements on post combustion in 135MWe commercial CFB boilers were conducted. A novel one-dimensional combustion model taking post combustion into account was developed. With this model, the overall combustion performance, including size distribution of various ashes, temperature profile, and carbon content profiles along the furnace height, heat release fraction in the cyclone and furnace were predicted. Field measurements were conducted by sampling gas and solid at different positions in the boiler under different loads. The measured data and corresponding model-calculated results were compared. Both prediction and field measurements showed post combustion introduced a temperature increment of flue gas in the cyclone of the 135MWe CFB boiler in the range of 20-50{sup o}C when a low-volatile bituminous coal was fired. Although it had little influence on ash size distribution, post combustion had a remarkable influence on the carbon content profile and temperature profile in the furnace. Moreover, it introduced about 4-7% heat release in the cyclone over the total heat release in the boiler. This fraction slightly increased with total air flow rate and boiler load. Model calculations were also conducted on other two 135MWe CFB boilers burning lignite and anthracite coal, respectively. The results confirmed that post combustion was sensitive to coal type and became more severe as the volatile content of the coal decreased. 15 refs., 11 figs., 4 tabs.

Shaohua Li; Hairui Yang; Hai Zhang; Qing Liu; Junfu Lu; Guangxi Yue [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

2009-09-15T23:59:59.000Z

95

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

SciTech Connect

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

96

E-Print Network 3.0 - automatic wood furnaces Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

bagasse. 3. The total cost of the boiler island including stoker, furnace, boiler, economizer... , feeders and bins for handling bark and wood, while experience in dealing with...

97

Tube furnace  

DOE Patents (OSTI)

A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

Foster, Kenneth G. (Livermore, CA); Frohwein, Eugene J. (San Ramon, CA); Taylor, Robert W. (Livermore, CA); Bowen, David W. (Livermore, CA)

1991-01-01T23:59:59.000Z

98

Compliance testing of Grissom AFB Central Heating Plant coal-fired boilers 3, 4, and 5, Grissom AFB, Indiana. Final report, 29 January-15 February 1989  

SciTech Connect

At the request of HQ, SAC/SGPB source compliance testing (particulate and visible emissions) of boilers 3, 4, and 5 in the Grissom AFB Central Heating Plant was accomplished 29 Jan-15 Feb 89. The survey was conducted to determine compliance with regards to Indiana Administrative Code, Title 325 - Air Pollution Control Board, Article 5, Opacity Regulations, and Article 6, Particulate Regulations. Boiler 3 was tested through scrubber B, Boiler 4 through scrubber A, and Boiler 5 through scrubber B and the bypass stack. Results indicate that each boiler met applicable visible and particulate emission standards.

Garrison, J.A.

1989-06-01T23:59:59.000Z

99

Furnace assembly  

DOE Patents (OSTI)

A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

1985-01-01T23:59:59.000Z

100

Connecting the second exhaust-heat boiler to the operating first one under the conditions of flow circuits of combined-cycle plants with two gas-turbine units and one steam turbine  

Science Journals Connector (OSTI)

Problems arising with connecting the second exhaust-heat boiler to the first exhaust-heat boiler under load in the case of flow circuits of combined-cycle plants of type PGU-450 are considered. Similar problem...

Yu. A. Radin; I. A. Grishin; T. S. Kontorovich

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Old boilers to profitable use with local biofuels  

SciTech Connect

To convert an old plant is often an economically advantageous alternative for a new boiler. The most important sources of biomass in industrial countries are residues from forestry, industry and agriculture. Sludges and wastes from industry, communities and households also contain useful energy. Still in many places there are existing power plants which can be converted to burn biofuels with low investment costs. An efficient and proven way is to convert an existing boiler to fluidized bed combustion (FBC) or use atmospheric circulating fluidized bed biofuel gasification connected to an existing boiler. Modern Fluidized Bed Combustion and Gasification gives us a possibility to burn biomass, sludges and many kinds of wastes in an efficient way with low emissions. Fluidized bed technologies are divided into bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) solutions. When making a boiler conversion to fluidized bed combustion, lower furnace of an existing boiler is converted and fuel receiving, handling and transportation system is installed. In many cases most of the existing boiler heating surfaces and a majority of the existing auxiliary equipment can be utilized. The circulating fluidized bed gasifier consists of the inside refractory-lined steel vessel, where fuel is gasified in a hot fluidized gas solid particle suspension. In the gasifier, the biofuels will be converted to combustible gas at atmospheric pressure at the temperature 800--900 C. The hot gas from the gasifier will be cooled down to 650--750 C in the air preheater. The hot gas is led directly to separate burners, which are located in the existing boiler furnace. The gas is burned in the boiler and replaces a part of the coal used in the boiler. Typical fuels for the FBC-boilers are wet fuels such as bark, wood waste, peat and sludges. These fuels normally contain 40--70% water.

Hankala, J.

1998-07-01T23:59:59.000Z

102

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittals Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

103

Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant  

Science Journals Connector (OSTI)

Abstract The dominant role of electricity generation and environment consideration have placed strong requirements on coal fired power plants, requiring them to improve boiler combustion efficiency and decrease carbon emission. Although neural network based optimization strategies are often applied to improve the coal fired power plant boiler efficiency, they are limited by some combustion related problems such as slagging. Slagging can seriously influence heat transfer rate and decrease the boiler efficiency. In addition, it is difficult to measure slag build-up. The lack of measurement for slagging can restrict conventional neural network based coal fired boiler optimization, because no data can be used to train the neural network. This paper proposes a novel method of integrating non-dominated sorting genetic algorithm (NSGA II) based multi-objective optimization with computational fluid dynamics (CFD) to decrease or even avoid slagging inside a coal fired boiler furnace and improve boiler combustion efficiency. Compared with conventional neural network based boiler optimization methods, the method developed in the work can control and optimize the fields of flue gas properties such as temperature field inside a boiler by adjusting the temperature and velocity of primary and secondary air in coal fired power plant boiler control systems. The temperature in the vicinity of water wall tubes of a boiler can be maintained within the ash melting temperature limit. The incoming ash particles cannot melt and bond to surface of heat transfer equipment of a boiler. So the trend of slagging inside furnace is controlled. Furthermore, the optimized boiler combustion can keep higher heat transfer efficiency than that of the non-optimized boiler combustion. The software is developed to realize the proposed method and obtain the encouraging results through combining ANSYS 14.5, ANSYS Fluent 14.5 and CORBA C++.

Xingrang Liu; R.C. Bansal

2014-01-01T23:59:59.000Z

104

Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004  

Energy.gov (U.S. Department of Energy (DOE))

This guide presents useful information for evaluating the viability of cogeneration for new or existing ICI boiler installations.

105

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers  

Energy.gov (U.S. Department of Energy (DOE))

Factsheet describing the project goal to reduce corrosion and improve the life span of boiler superheater tubes

106

A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery  

Science Journals Connector (OSTI)

Abstract After conducting an in-depth analysis of the conventional boiler cold-end design for waste heat recovery, this work proposed a new conceptual boiler cold-end design integrated with the steam cycle in a 1000MW CFPP, in which the preheating of air was divided into high-temperature air preheater (HTAP), main air preheater (MAP) and low-temperature air preheater (LTAP). The HTAP and an economizer were installed in separate flue ducts, and the low temperature economizer (LTE) was situated between the MAP and the LTAP in the main flue duct to heat the condensed water. In the proposed boiler cold-end design, the flue gas waste heat was not only used to heat condensed water, but also to further preheat the combustion air. The air temperature at the air-preheater outlet increases and part of the steam bleeds with high exergy can be saved, resulting in greater energy-savings and better economics. Results showed that, for a typical 1000MW CFPP in China, using the proposed boiler cold-end design for waste heat recovery could produce 13.3MWe additional net power output with a heat rate reduction of approximately 112.0kJ/kWh and could yield a net benefit of up to $85.8M per year, which is much greater than those of the conventional cases. Exergy destruction is also reduced from 49.9MWth in the conventional boiler cold-end design to 39.6MWth in the proposed design.

Yongping Yang; Cheng Xu; Gang Xu; Yu Han; Yaxiong Fang; Dongke Zhang

2015-01-01T23:59:59.000Z

107

Tips For Residential Heating Oil Tank Owners  

E-Print Network (OSTI)

· · · · · · · · · · · · · · · · · · · · · · Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat homes. The tanks can either be aboveground tanks, normally located in basements or utility rooms

Maroncelli, Mark

108

Black liquor combustion validated recovery boiler modeling: Final year report. Volume 1 (Main text and Appendix I, sections 1--4)  

SciTech Connect

This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 1 contains the main body of the report and the first 4 sections of Appendix 1: Modeling of black liquor recovery boilers -- summary report; Flow and heat transfer modeling in the upper furnace of a kraft recovery boiler; Numerical simulation of black liquor combustion; and Investigation of turbulence models and prediction of swirling flows for kraft recovery furnaces.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1998-08-01T23:59:59.000Z

109

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

110

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. Condensed flue gas water treatment needs and costs. Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

111

Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler  

Science Journals Connector (OSTI)

Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30MPa, mass flux from 230 to 1200kg/(m2s), and inner wall heat flux from 130 to 720kW/m2. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of Departure from Nucleate Boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler.

Dong Yang; Jie Pan; Chenn Q. Zhou; Xiaojing Zhu; Qincheng Bi; Tingkuan Chen

2011-01-01T23:59:59.000Z

112

Utilization of computational fluid dynamics technique in low NOx burner/furnace retrofits  

SciTech Connect

A computational fluid dynamics (CFD) technique has been utilized to provide design guidance for retrofitting low NOx combustion systems and incorporating associated furnace modifications into existing utility boilers. The CFD program utilized is FW-FIRES (Fossil fuel, Water-walled Furnace Integrated Reaction and Emission Simulation) which simulates furnace combustion, heat transfer and pollutant formation based on fundamental principals of mass, momentum and energy conservations. The program models the gas flow field as a three-dimensional turbulent reacting continuum and the particle flow as a series of discrete particle trajectories through the gas continuum. Chemical reaction, heat transfer, and pollutant formation mechanisms are incorporated in the program. FW-FIRES furnace simulation of low NOx combustion system retrofits has been performed for various furnace configurations including front wall-fired, front and real wall-fired, and tangentially-fired furnaces, to determine the effects of burner/furnace modifications on the NOx emission, furnace exit gas temperature, furnace heat absorption, unburned carbon, and furnace wall corrosion. For front wall-fired, and front and real wall-fired furnaces, the NOx emission requirement is met by the use of Foster Wheeler lox NOx burners and overfire air (OFA) staging. Studies of burner and OFA quantify and spacing are conducted to limit NOx emission and unburned carbon to acceptable levels. A major concern in once-through supercritical units with OFA is furnace wall corrosion which is caused by high furnace wall metal temperature and corrosive hydrogen sulfide (H{sub 2}S) created in a reducing atmosphere from part of coal sulfur. The FW-FIRES code is used to minimize this corrosion potential by selecting the proper location and quantity of boundary air. A simulation of tangentially-fired unit, which has been retrofitted with low NOx burners, is used to study the effect of the burner tilt on the furnace exit gas temperature. This paper details the basis and results of several CFD analyses conducted for potential retrofit programs.

Cho, S.M.; Seltzer, A.H.; Ma, J.; Steitz, T.H.; Grusha, J.; Cole, R.W.

1999-07-01T23:59:59.000Z

113

Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications  

E-Print Network (OSTI)

of the above premise. The application of vortex stabilized high intensity burners for reformer furnaces in the petrochemical industry is then reviewed and emphasized....

Williams, F. D. M.; Kondratas, H. M.

1983-01-01T23:59:59.000Z

114

Slag monitoring system for combustion chambers of steam boilers  

SciTech Connect

The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

2009-07-01T23:59:59.000Z

115

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

116

Extending the erosion-corrosion service life of the tube system of heat-recovery boilers used as part of combined-cycle plants  

Science Journals Connector (OSTI)

We present the results from an analysis of damageability and determination of dominating mechanisms through which thinning occurs to the metal of elements used in the tube system of heat recovery boilers used as ...

G. V. Tomarov; A. V. Mikhailov; E. V. Velichko; V. A. Budanov

2010-01-01T23:59:59.000Z

117

Waste-heat utilization. (Latest citations from the U. S. Patent data base). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning processes employed for the recovery of useful heat from the environment, or from equipment which generates waste heat. Heat pump systems, furnaces, industrial boilers, and systems employed in the recovery of heat from internal combustion engines are discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-10-01T23:59:59.000Z

118

A Ceramic Waste Heat Recovery System on a Rotary Forge Furnace: An Installation and Operating History  

E-Print Network (OSTI)

heavy duty high temperature ceramic tube recuperator and five high temperature recirculating burners. The energy conservation system was retrofitted onto a rotary hearth furnace with an inside diameter of 11' 5'' (3.5m) and an available hearth area...

Young, S. B.; Campbell, T. E.; Worstell, T. M.

1981-01-01T23:59:59.000Z

119

Boiler tube failures in municipal waste-to-energy plants  

SciTech Connect

Waste-to-energy plants experienced increased boiler tube failures when the design changed from waste-heat boilers to radiant furnace waterwalls using superheat. Fireside attack by chlorine and sulfur compounds in refuse combustion products caused many forced outages in early European plants operating at high steam temperatures and pressures. Despite conservative steam conditions in the first US plants, failures occurred. As steam temperatures increased, corrosion problems multiplied. The problems have been alleviated by covering the waterwalls with either refractory or weld overlays of nickel-based alloys and using high nickel-chromium alloys for superheater tubes. Changes in furnace design to provide uniform combustion and avoid reducing conditions in the waterwall zone and to lower the gas temperature in the superheater also have helped minimize corrosion.

Krause, H.H.; Wright, I.G. [Battelle, Columbus, OH (United States)

1996-01-01T23:59:59.000Z

120

Effect of Combustion Air Preheat on a Forged Furnace Productivity  

E-Print Network (OSTI)

to determine are the effects of combustion air preheat on four additional furnace operating characteristics. These characteristics are: (1) fuel utilization of a furnace operating cycle; (2) time to heat the furnace load; (3) scale production; and (4) furnace...

Ward, M. E.; Bohn, J.; Davis, S. R.; Knowles, D.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

BOILERS, BOILER FUEL AND BOILER EFFICIENCY  

E-Print Network (OSTI)

This paper describes the modern boilers in the South African sugar industry. A new equation for the calculation of the net calorific value (NCV) of bagasse is suggested and a distinction is made between boiler design efficiency and boiler operation efficiency. Methods to calculate fuel calorific values and boiler efficiencies from first principles are presented.

A Wienese

122

Development of the household sample for furnace and boilerlife-cycle cost analysis  

SciTech Connect

Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

2005-05-31T23:59:59.000Z

123

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

Energy.gov (U.S. Department of Energy (DOE))

This guide presents useful information for evaluating the viability of cogeneration for new or existing industrial, commercial, or institutional (ICI) boiler installations. It is part of a suite of publications offered by the Department of Energy to improve steam system performance.

124

Enhancing the heat transfer in a heat treatment furnace through improving the combustion process in the radiation tubes  

Science Journals Connector (OSTI)

......energy efficiency in the heating processes. The heat...chamber and lead to shorter heating time to achieve the objective...chamber as a part of oil quenching heat treatment...energy efficiency in the heating processes. The heat...The rising of fuel prices and the increasing requirements......

E. M. Elmabrouk; Y. Wu

2012-02-01T23:59:59.000Z

125

Heat Insulation in Electric Power Stations  

Science Journals Connector (OSTI)

... HEAT insulation of pipes, boilers and generating sets, which used to be indicated by the general ... in steam generating plants, it is common experience to find that cracks develop in the insulation on water-cooled furnace walls as the result of: (a) expansion and contraction ...

1940-12-28T23:59:59.000Z

126

Influence of combustion parameters on NOx production in an industrial boiler  

E-Print Network (OSTI)

Influence of combustion parameters on NOx production in an industrial boiler M.A. Habib a,*, M pollution using a model furnace of an industrial boiler utilizing fuel gas. The importance of this problem is mainly due to its relation to the pollutants produced by large boiler furnaces used widely in thermal

Aldajani, Mansour A.

127

Advanced steel reheat furnace  

SciTech Connect

Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

1997-10-01T23:59:59.000Z

128

Reduce Air Infiltration in Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet describes how to save process heating energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

129

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI  

Open Energy Info (EERE)

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI Jump to: navigation, search Name WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) Place Indiana Zip 46809 Sector Geothermal energy Product WaterFurnace develops and manufactures geothermal heating and cooling systems. References WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) is a company located in Indiana . References ↑ "WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))"

130

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers ProMIS/Project No.: DE-NT0005648  

NLE Websites -- All DOE Office Websites (Extended Search)

Edward Levy Edward Levy Principal Investigator Director, Lehigh University Energy Research Center RecoveRy of WateR fRom BoileR flue Gas usinG condensinG Heat excHanGeRs PRomis/PRoject no.: de-nt0005648 Background As the United States' population grows and demand for electricity and water increases, power plants located in some parts of the country will find it increasingly difficult to obtain the large quantities of water needed to maintain operations. Most of the water used in a thermoelectric power plant is used for cooling, and the U.S. Department of Energy (DOE) has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. Many coal-fired power plants operate with stack temperatures in the 300 °F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to

131

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Residential Boiler Efficiencies (1) Gas-Fired Boilers Oil-Fired Boilers Average shipped in 1985 (2): 74% AFUE Average shipped in 1985 (2): 79% AFUE Best Available in 1981: 81% AFUE Best Available in 1981: 86% AFUE Best Available in 2007: 96% AFUE Best Available in 2007: 89% AFUE Note(s): Source(s): 1) Federal appliance standards effective Jan. 1, 1992, require a minimum of 80% AFUE (except gas-fired steam boiler, which must have a 75% AFUE or higher). 2) Includes furnaces. GAMA, Consumer's Directory of Certified Efficiency Ratings for Residential Heating and Water Heating Equipment, Aug. 2005, p. 88 and 106 for best- available AFUE; and GAMA for 1985 average AFUEs; GAMA Tax Credit Eligible Equipment: Gas- and Oil-Fired Boilers 95% AFUE or Greater, May 2007; and GAMA Consumer's Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, May 2007

132

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network (OSTI)

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler...

Bloom, D.

133

Oxy-combustion Boiler Material Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-combustion Boiler Material Oxy-combustion Boiler Material Development Background In an oxy-combustion system, combustion air (79 percent nitrogen, 21 percent oxygen) is replaced by oxygen and recycled flue gas (carbon dioxide [CO 2 ] and water), eliminating nitrogen in the flue gas stream. When applied to an existing boiler, the flue gas recirculation rate is adjusted to enable the boiler to maintain its original air-fired heat absorption performance, eliminating the need to derate the boiler

134

Quantifying Energy Savings by Improving Boiler Operation  

E-Print Network (OSTI)

firing cycle, resulting in heat losses. Second, heat is lost from the natural convective draft through a boiler when not firing. Third, boilers run less efficiently in high fire than in low fire, since the ratio of heat transfer area to heat input... firing cycle, resulting in heat losses. Second, heat is lost from the natural convective draft through a boiler when not firing. Third, boilers run less efficiently in high fire than in low fire, since the ratio of heat transfer area to heat input...

Carpenter, K.; Kissock, J. K.

2005-01-01T23:59:59.000Z

135

Distribution of bed material in a Horizontal Circulating Fluidised Bed boiler.  

E-Print Network (OSTI)

??A conventional circulating fluidised bed (CFB) boiler has a limitation due to the height of the furnace, when implemented in smaller industrial facilities. The design (more)

Ekvall, Thomas

2011-01-01T23:59:59.000Z

136

Boiler tube failures in municipal waste-to-energy plants: Case histories  

SciTech Connect

Waste-to-energy plants experienced boiler tube failures when the design changed from waste-heat boilers to radiant furnace waterwalls with superheat, adopted from coal-firing technology. The fireside attack by chlorine and sulfur compounds in the refuse combustion products caused many forced outages in early European plants with high steam temperatures and pressures. In spite of conservative steam conditions in the first US plants, some failures occurred. As steam temperatures increased in later US plants, corrosion problems multiplied. Over the years these problems have been alleviated by covering the waterwalls with either refractories or weld overlays of nickel-base alloys and using high nickel-chromium alloys for superheater tubes. Various changes in furnace design to provide uniform combustion and avoid reducing conditions in the waterwall zone and to lower the gas temperature in the superheater also have helped to minimize corrosion.

Krause, H.H.; Wright, I.G. [Battelle, Columbus, OH (United States)

1995-12-01T23:59:59.000Z

137

Calculation of the emission of nitrogen oxides in electric resistance heating furnaces  

Science Journals Connector (OSTI)

The present paper is devoted to the least studied topic in the field of use of modern electric heating equipment, namely, pollution of the atmosphere by nitrogen oxides and reduction of the intensity of this e...

A. V. Aksenov; V. A. Belyakov; Z. G. Sadykova

1998-02-01T23:59:59.000Z

138

Enhancing the heat transfer in a heat treatment furnace through improving the combustion process in the radiation tubes  

Science Journals Connector (OSTI)

......predicted and measured data. The CFD simulations...methods to improve the heat transfer rate and provide quantitative data which can be used...important in the combustion and the heat transfer processes...models on hydrogen-hydrocarbon combustion modelling......

E. M. Elmabrouk; Y. Wu

2012-02-01T23:59:59.000Z

139

Compliance testing of Grissom Air Force Base Central Heating Plant coal-fired boilers 3, 4, and 5, Grissom Air Force Base, Indiana. Final technical report, 3-21 Feb 92  

SciTech Connect

A source emission testing for particulate matter and visible emissions was conducted on coal-fired boilers at the Grissom AFB Central Heating Plant during 3-21 February 1992 by the Air Quality Function of Armstrong Laboratory. The survey was conducted to determine compliance with regard to Indiana Administration Code, Title 325 Pollution Control Board, Article 5, Opacity Regulations, and Article 6, Particulate Regulations. All boilers were tested through the bypass stack. Results indicated that boilers 3 and 4 met applicable, visible, and particulate matter emissions standards. Boiler 5 exceeded the particulate standard.

Cintron-Ocasio, R.A.

1992-06-01T23:59:59.000Z

140

Dynamic simulation of a circulating fluidized bed boiler of low circulating ratio with wide particle size distributions  

SciTech Connect

A steady state model of a coal fired CFB boiler considering the hydrodynamics, heat transfer and combustion is presented. This model predicts the flue gas temperature, the chemical gas species (O{sub 2}, H{sub 2}O, CO, CO{sub 2} and SO{sub 2}) and char concentration distributions in both the axial and radial location along the furnace including the bottom and upper portion. The model was validated against experimental data generated in a 35 t/h commercial CFB boiler with low circulating ratio.

Lu Huilin; Yang Lidan; Bie Rushan; Zhao Guangbo

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electric Power Generation Using Low Bandgap TPV Cells in a Gas?fired Heating Furnace  

Science Journals Connector (OSTI)

Low bandgap TPV cells are preferred for electric power generation in TPV cogeneration systems. Recently significant progress has been made in fabrication of low bandgap semiconductor TPV devices such as InGaAsSb and InGaAs cells. However it appears that only limited data are available in the literature with respect to the performance of these TPV cells in combustion?driven TPV systems. In the research presented in this paper power generation using recently?developed InGaAsSb TPV cells has been investigated in a gas?fired space heating appliance. The combustion performance of the gas burner associated with a broadband radiator was evaluated experimentally. The radiant power density and radiant efficiency of the gas?heated radiator were determined at different degrees of exhaust heat recuperation. Heat recuperation is shown to have a certain effect on the combustion operation and radiant power output. The electric output characteristics of the InGaAsSb TPV devices were investigated under various combustion conditions. It was found that the cell short circuit density was greater than 1 A/cm2 at a radiator temperature of 930C when an optical filter was used. An electric power density of 0.54 W/cm2 was produced at a radiator temperature of 1190C. Furthermore modeling calculations were carried out to reveal the influence of TPV cell bandgap and radiator temperature on power output and conversion efficiency. Finally the design aspects of combustion?driven TPV systems were analyzed showing that development of a special combustion device with high conversion level of fuel chemical energy to useful radiant energy is required to improve further the system efficiency.

K. Qiu; A. C. S. Hayden

2003-01-01T23:59:59.000Z

142

Non-carbon induction furnace  

DOE Patents (OSTI)

The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

1984-01-06T23:59:59.000Z

143

Comparison of heat pump system and boiler plant for one-family house : Heat sources in one-family house.  

E-Print Network (OSTI)

??The aim of this work is to look through, compare and choose the cheapest heat source for typical new Finnish one-family house. We will speak (more)

Kaydalova, Natalia

2010-01-01T23:59:59.000Z

144

Furnace Black Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Black Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher 005F 2 Definitions Particle Aggregate = 20nm to 100nm "Diameter" = 200nm to 1,000nm "Length" = Set of Percolated Aggregates Particle (?) Aggregate Agglomerate Constituents Size = Tech/Scientific Challenge 005F 3 Furnace Process High Temperature Refractory Feedstock Oil Air Natural Gas Reaction Zone Quench 005F 4 Specific Surface Area 005F 5 Structure 3-D Morphology Key Characteristic Summary of Crystallographic Studies 005F 7 Methodologies 005F 8 Summary * For all furnace carbon black 12Å < L C < 17Å * Crystallite L a ≈ 25Å * Amorphous Carbon * No micropores * Very few surface groups (hetero atoms) { 005F 9 Effect of Heat Treatment on Amorphous Carbon

145

A Furnace Temperature Regulator  

Science Journals Connector (OSTI)

Synopsis.By making the heating coil of an electric furnace one arm of a wheatstone bridge, and combining this with a galvanometer regulator, thus keeping constant the resistance of the coil, we can, regardless of variations in the current supply, and with no attention, maintain constant the temperature of furnaces not too directly influenced by the temperature of the room, or where the surrounding air is kept constant. The power available in this regulator is relatively very great indeed; nothing has to be inserted within the furnace cavity, and the lag is practically nothing; the regulator is often almost at its best under conditions most unfavorable to other regulators. It has held a small furnace constant to 0.1 for hours at temperatures from 500 to 1400.

Walter P. White and Leason H. Adams.

1919-07-01T23:59:59.000Z

146

Innovative Energy Conservation Through Scrao Pre-heating in an Electric Arc Furnace  

E-Print Network (OSTI)

and tons of steel throughput of the base case. It was found that 260,000 tls was produced during 2011. Analysis of the heat data for 2011 determined an overall energy intensity of 343 kWh/tls. The Consteel system allows the batch processing time... not quantified. Table 1 - Proposed vs. Case Studies (1,6) Ivaco (Proposed), ON Ameristeel NC Co-Steel Sayreville, NJ Year Consteel Installed TBD 1990 1994 Year Data Reported 2012 1995 1998 Capacity, MW 35.7 24 35 Capacity, Mt/hour 82.6 54 82...

Dicion, A.

2013-01-01T23:59:59.000Z

147

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring  

SciTech Connect

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

Dentz, J.; Henderson, H.; Varshney, K.

2013-10-01T23:59:59.000Z

148

OPERATING EXPERIENCE ON SINGLE AND THREE PASS BOILERS IN THE CANE SUGAR INDUSTRY WITH PARTICULAR REFERENCE TO EROSION AND DRUM WATER LEVEL STABILITY  

E-Print Network (OSTI)

Two boiler designs have recently emerged to suit the present requirements of the cane sugar industry, viz the single pass panel wall unit and the three pass, bottom supported boiler with an open pitch furnace tube construction. The former is less susceptible to erosion compared with the original concept of the three pass boiler. It is believed that the three pass unit in its present form as installed at Tongaat will be effective in reducing erosion in the tube bank. The effect of fuel properties on the performance of boiler plant is considered and it is shown that efficient operation, in addition to improving the utilisation of bagasse, can result in a significant reduction in tube erosion. A relationship is presented for determining dust loadings as a function of the grate heat release rate and the fuel ash content at the furnace and main bank exits. Circulation studies undertaken on both boiler types are presented indicating very similar circulation rates. Shrink and swell characteristics and hence the drum level stability can be related to the volume of water contained in the system and the water plan area in the drum at the steam- water interface. Finally the mechanical design features of the two boiler designs are compared to provide an insight into the design philosophies relating to the two units.

N. Magasiner; D. P. Naude; P. J. Mcintyre

149

Application of microwave heating to ceramic processing: Design and initial operation of a 2.45-GHz single-mode furnace  

SciTech Connect

High-power microwave and millimeter-wave sources are currently being applied to ceramic processing studies at the Naval Research Laboratory (NRL). A single-mode cavity microwave furnace, operating in the TE{sub 103} mode at 2.45 GHz, is operational and is being used to investigate sintering of nanocrystalline ceramics. This paper reports the design of the 2.45-GHz furnace and its use in initial microwave sintering experiments on nanocrystalline alumina and titania compacts. The high purity Al{sub 2}O{sub 3} and TiO{sub 2} nanocrystalline powders used in the sintering experiments were prepared by the sol-gel method. These powders were first uniaxially pressed to 14 MPa, cold isostatically pressed (CIP`ed) to various pressures {ge}420 MPa, and finally sectioned into wafers. The density of the green compacts was 30 to 38% theoretical density (TD). The compacts were placed in insulating fiberboard caskets which were sufficiently lossy to provide hybrid heating at room temperature. The compacts were heated in the microwave furnace for up to three hours at temperatures {ge}1720 C. The temperature of the workpiece was monitored using an optical pyrometer. Final densities up to 80% TD have been obtained to date for Al{sub 2}O{sub 3} and up to 52% TD for TiO{sub 2}. The sintered compacts were characterized by X-ray diffraction and by scanning electron microscopy (SEM) to determine the phase and grain size.

Fliflet, A.W. [Naval Research Lab., Washington, DC (United States)] [Naval Research Lab., Washington, DC (United States); Bruce, R.W.; Kinkead, A.K. [Sachs/Freeman Associates Inc., Landover, MD (United States)] [and others] [Sachs/Freeman Associates Inc., Landover, MD (United States); and others

1996-06-01T23:59:59.000Z

150

Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems  

SciTech Connect

A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in coal-fired boilers resulting from the coexistence of sulfur and chlorine in the fuel. A new corrosion mechanism, i.e., Active Sulfidation Corrosion Mechanism, has been proposed to account for the accelerated corrosion wastage observed on the furnace walls of utility boilers burning coals containing sulfur and chlorine. In addition, a second corrosion mechanism, i.e., Active Sulfide-to-Oxide Corrosion Mechanism, has been identified to account for the rapid corrosion attack on superheaters and reheaters. Both of the newly discovered corrosion mechanisms involve the formation of iron chloride (FeCl2) vapor from iron sulfide (FeS) and HCl, followed by the decomposition of FeCl2 via self-sustaining cycling reactions. For higher alloys containing sufficient chromium, the attack on superheaters and reheaters is dominated by Hot Corrosion in the presence of a fused salt. Furthermore, two stages of the hot corrosion mechanism have been identified and characterized in detail. The initiation of hot corrosion attack induced by molten sulfate leads to Stage 1 acidic fluxing and re-precipitation of the protective scale formed initially on the deposit-covered alloy surfaces. Once the protective scale is penetrated, Stage 2 Hot Corrosion is initiated, which is dominated by basic fluxing and re-precipitation of the scale in the fused salt. Based on the extensive corrosion information generated from this project, corrosion modeling was performed using non-linear regression analysis. As a result of the modeling efforts, two predictive equations have been formulated, one for furnace walls and the other for superheaters and reheaters. These first-of-the-kind equations can be used to estimate the corrosion rates of boiler tubes based on coal chemistry, alloy compositions, and boiler operating conditions for advanced boiler systems.

Kung, Steven; Rapp, Robert

2014-08-31T23:59:59.000Z

151

Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation  

Science Journals Connector (OSTI)

Combined heat and power (CHP) plants dominate the heating market in China. With the ongoing energy structure reformation and increasing environmental concerns, we propose gas-fired boilers to be deployed in underperforming heating substations of heating networks for peak load compensation, in order to improve both energy efficiency and environmental sustainability. However, due to the relatively high price of gas, techno-economic analysis is required for evaluating different combined heating scenarios, characterized by basic heat load ratio (?). Therefore, we employ the dynamic economics and annual cost method to develop a techno-economic model for computing the net heating cost of the system, considering the current state of the art of cogeneration systems in China. The net heating cost is defined as the investment costs and operations costs of the system subtracted by revenues from power generation. We demonstrate the model in a real-life combined heating system of Daqing, China. The results show that the minimum net heating cost can be realized at ?=0.75 with a cost reduction of 16.8% compared to coal heating alone. Since fuel cost is the dominating factor, sensitivity analyses on coal and gas prices are discussed subsequently.

Hai-Chao Wang; Wen-Ling Jiao; Risto Lahdelma; Ping-Hua Zou

2011-01-01T23:59:59.000Z

152

Minimize Boiler Blowdown | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blowdown (January 2012) More Documents & Publications Install an Automatic Blowdown-Control System Recover Heat from Boiler Blowdown Consider Installing a Condensing Economizer...

153

Improved graphite furnace atomizer  

DOE Patents (OSTI)

A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

Siemer, D.D.

1983-05-18T23:59:59.000Z

154

Furnace Litigation Settled | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy conservation standards for residential furnaces, central air conditioners, and heat pumps, including regional standards for different product types in indicated States....

155

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

156

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

157

Stress-Assisted Corrosion in Boiler Tubes  

SciTech Connect

A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

Preet M Singh; Steven J Pawel

2006-05-27T23:59:59.000Z

158

In-Field Performance of Condensing Boilers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IN-FIELD PERFORMANCE OF CONDENSING IN-FIELD PERFORMANCE OF CONDENSING BOILERS Lois B. Arena Steven Winter Associates, Inc. March 2012 Why Research Hydronic Heating? © 2012 Steven Winter Associates, Inc. All rights reserved Reasons to Research Boilers  Approx. 14 million homes (11%) in the US are heated with a steam or hot water system  Almost 70 percent of existing homes were built prior to 1980  Boilers built prior to 1980 generally have AFUE's of 0.65 or lower  Energy savings of 20+% are possible by simply replacing older boilers with standard boilers & up to 30% with condensing boilers.  Optimizing condensing boilers in new and existing homes could mean the difference of 8-10% savings with little to no

159

Experience on coal reburn in a utility boiler  

Science Journals Connector (OSTI)

Reburning is an in-furnace combustion modification technology for the reduction of NOx. By staging the introduction of the fuel, an environment is created where NOx generated by the combustion of the main fuel supply is subsequently consumed by the hydrocarbon radicals arising from the reburn fuel under reducing conditions. ENEL has retrofitted unit No. 4 of Vado Ligure power station with coalover-coal reburn technology, with the target of 65% reduction of NOx emissions (425 mg/Nm³ of NOx @ 6% O2, with American Ashland coal). This retrofit represents the first application of the technology to a utility boiler in Europe, and it has been undertaken by a consortium of European companies, research centres and universities, as listed in the following ENEL (Italy), Mitsui Babcock Energy (United Kingdom), Ansaldo (Italy), Electricity Supply Board (Ireland), PowerGen (United Kingdom), Instituto Superior Tecnico Lisbon (Portugal), Electricidade de Portugal, Howden & Sons (United Kingdom), Electricité de France and University of Stuttgart (Germany), with the support of the European Community through the Thermie Programme. Results from the experimental campaign show that it has been possible to achieve NOx emissions in the order of 350 mg/Nm³ (@6% O2), burning a variety of coals, with carbon in ash ranging from 5 to 8%. Calculations performed on the experimental data show that the impact on boiler operation is also minimised, with a negligible change on the boiler heat transfer pattern.

Luca Ghiribelli

2002-01-01T23:59:59.000Z

160

Laclede Gas Company - Residential High Efficiency Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential High Efficiency Heating Rebate Residential High Efficiency Heating Rebate Program Laclede Gas Company - Residential High Efficiency Heating Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Heating System: 2 maximum Programmable Thermostats: 2 maximum Multi-Family Property Owners: 50 thermostat rebates, 50 furnace rebates over the life of the program Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Gas Furnace: $150 - $200 Gas Boiler: $150 Programmable Setback Thermostat: $25 Gas Water Heater: $50 - $200 Provider Laclede Gas Company Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Stress Assisted Corrosion in Boiler Tubes - Failure Analysis  

SciTech Connect

Stress assisted corrosion (SAC) of carbon steel boiler tubes is one of the major causes of waterside failure in industrial boilers. SAC is a major concern for kraft recovery boilers in the pulp and paper industry as any water leak into the furnace can cause a smelt-water explosion in the boiler. Failed carbon steel boiler tubes from different kraft recovery boilers were examined to understand the role of carbon steel microstructure on crack initiation and SAC crack morphology. A number of carbon steel tubes showed a deep decarburized layer on the inner surface (water-touched) and also an unusually large grain size at the inner tube surface. SAC cracks were found to initiate in these areas with large-graineddecarburized microstructure. Tubes without such microstructure were also found to have SAC cracks. It was found that the decarburization and large grained microstructure may facilitate initiation and growth but is not necessary for SAC of carbon steel boiler tubes.

Singh, Preet M [Georgia Institute of Technology; Pawel, Steven J [ORNL; Yang, Dong [Georgia Institute of Technology; Mahmood, Jamshad [Georgia Institute of Technology

2007-01-01T23:59:59.000Z

162

Energy Star Building Upgrade Manual Heating and Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

9. Heating and 9. Heating and Cooling Revised January 2008 9.1 Overview 2 9.2 Central Cooling Systems 3 Chiller Plant Operations and Maintenance 4 Chiller Plant Retrofits 6 9.3 Central Heating Systems 10 Boiler System Operations and Maintenance 11 Boiler System Retrofits 11 Improving Furnace Efficiency 13 9.4 Unitary Systems 14 Packaged Rooftop Units 16 Split-System Packaged Units 18 Air-Source Heat Pumps 18 Ground-Source, Closed-Loop Heat Pumps 19 9.5 Additional Strategies 20 Air-Side Economizer 20 Energy Recovery 20 Desiccant Dehumidification 20 Night Precooling 21 Cool Storage 22 Evaporative Cooling 22 9.6 Summary 22 Bibliography 23 Glossary G-1 1 ENERGY STAR ® Building Manual ENERGY STAR ® Building Manual 9. Heating and Cooling 9.1 Overview Although heating and cooling systems provide a useful service by keeping occupants comfort-

163

Model-free adaptive control of supercritical circulating fluidized-bed boilers  

DOE Patents (OSTI)

A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

Cheng, George Shu-Xing; Mulkey, Steven L

2014-12-16T23:59:59.000Z

164

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

SciTech Connect

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

166

Modelling and simulating fire tube boiler performance  

E-Print Network (OSTI)

A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently MatLab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results an experiments has been carried out on a full scale boiler plant.

Kim Srensen; Claus M. S. Karstensen; Thomas Condra; Niels Houbak

167

Design and fabrication of a tin-sulfide annealing furnace  

E-Print Network (OSTI)

A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

Lewis, Raymond (Raymond A.)

2011-01-01T23:59:59.000Z

168

Analysis of results obtained using the automatic chemical control of the quality of the water heat carrier in the drum boiler of the Ivanovo CHP-3 power plant  

Science Journals Connector (OSTI)

Results of industrial tests of the new method used for the automatic chemical control of the quality of boiler water of the drum-type power boiler (P d = 13.8 MPa) are described. The possibility o...

A. B. Larin; A. V. Kolegov

2012-10-01T23:59:59.000Z

169

Validation/Uncertainty Quantification for Large Eddy Simulations of the heat flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility  

SciTech Connect

The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstoms DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: Simulations of Alstoms 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) A simulation study of the University of Utahs oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. Collection of heat flux and temperature measurements in the University of Utahs OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the generation of high-fidelity data from a turbulent oxy-coal flame for the validation of oxy-coal simulation models. Experiments were also conducted on the OFC to determine heat flux profiles using advanced strategies for O2 injection. This is important when considering retrofit of advanced O2 injection in retrofit configurations.

Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.

2014-08-01T23:59:59.000Z

170

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

2001 Residential Energy Consumption Survey (RECS 2001; USenergy consumption of residential furnaces and boilers in U.S.US Department of Energy (2001). Residential energy consump- tion survey: household energy consumption

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

171

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

172

E-Print Network 3.0 - asm heat treating Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Example ASME code symbol stamps include S Power Boilers E Electric Boilers H Heating Boilers HLW Water... . Certification (American Society of Mechanical Engineers ASME...

173

Reburning Characteristics of Residual Carbon in Fly Ash from CFB Boilers  

Science Journals Connector (OSTI)

The content of residual carbon in fly ash of CFB boilers is a litter high especially when ... of fly ash through collection, recirculation in CFB furnace or external combustor is a possibly ... ash and correspond...

S. H. Zhang; H. H. Luo; H. P. Chen

2010-01-01T23:59:59.000Z

174

Building America Technology Solutions for New and Existing Homes: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts  

Energy.gov (U.S. Department of Energy (DOE))

The ARIES Collaborative partnered with Homeowners' Rehab Inc., a nonprofit affordable housing owner, to upgrade the central hydronic heating system in a 42-unit housing development, reducing heating energy use by an average of 19%.

175

Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler  

SciTech Connect

This clean coal technology project will demonstrate a combination of two developed technologies to reduce both NO{sub x} and (to some extent) SO{sub x} emissions: Gas reburning and low NO{sub x} burners. The demonstrations will be conducted on a pre-NSPS utility boiler representative of US boilers that contribute significantly to the inventory of acid rain precursor emissions: a wall fired unit. Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is burned. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} and SO{sub x} emission reductions of 75 percent or more as a result of combining LNB and GR to a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1991-04-26T23:59:59.000Z

176

Furnaces | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Furnaces Incentives Retrieved from "http:en.openei.orgwindex.php?titleFurnaces&oldid267167" Category: Articles with outstanding TODO tasks...

177

Development of Computation Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Computation Capabilities Computation Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems Background Staged combustion is a method of reducing nitrogen oxide (NO x ) emissions in boilers by controlling the combustion mixture of air and fuel. Its process conditions are particularly corrosive to lower furnace walls. Superheaters and/or reheaters are often employed in the upper furnace to reuse hot combustion gasses to further raise the

178

Boilers | Open Energy Information  

Open Energy Info (EERE)

search TODO: Add description List of Boilers Incentives Retrieved from "http:en.openei.orgwindex.php?titleBoilers&oldid267147" Category: Articles with outstanding TODO tasks...

179

Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler; a DOE Assessment  

SciTech Connect

The results from the GR-LNB technology demonstrated by EER at Cherokee Station approached, but did not meet, the CCT project's performance objectives. Acceptable unit operability was achieved with both the GR and the LNB components. The gas reburning component of the process appears to be broadly applicable for retrofit NO{sub x} control to most utility boilers and, in particular, to wet-bottom cyclone boilers, which are high NO{sub x} emitters and are difficult to control (LNB technology is not applicable to cyclone boilers). GR-LNB can reduce NO{sub x} to mandated emissions levels under Title IV of the CAAA without significant, adverse boiler impacts. The GR-LNB process may be applicable to boilers significantly larger than the demonstration unit, provided there is adequate dispersion and mixing of injected natural gas. Major results of the demonstration project are summarized as follows: NO{sub x}-emissions reductions averaging 64% were achieved with 12.5% gas heat input in long-term tests on a 158-MWe (net) wall-fired unit. The target reduction level of 70% was achieved only on a short-term basis with higher gas consumption. The thermal performance of coal-fired boilers is not significantly affected by GR-LNB. Convective section steam temperatures can be controlled within acceptable limits. Thermal efficiency is decreased by a small amount (about 0.8%), because of increased dry gas loss and higher moisture in the flue gas as a result of the GR process. Furnace slagging and convective section fouling can be adequately controlled. Because of the higher hydrogen/carbon (H/C) ratio of natural gas compared with coal, use of the GR process results in a modest reduction in CO{sub 2} emissions. SO{sub 2} and particulate emissions are reduced in direct proportion to the fraction of heat supplied by natural gas.

National Energy Technology Laboratory

2001-02-28T23:59:59.000Z

180

Reducing NOx in Fired Heaters and Boilers  

E-Print Network (OSTI)

-6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... it is essential to estimate accurately baseline NOx emissions. ? This will establish each units current compliance status. ? Emissions ? Current excess air level ? Carbon monoxide ? Combustibles ? NOx corrected to 3% 02 314 ESL-IE-00-04-46 Proceedings...

Garg, A.

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Spectroscopy of infrared emission characteristics of thermal power plant boiler coal ash deposits  

Science Journals Connector (OSTI)

Thermal radiation characteristics of ash deposits on a coal combustion boiler of an electric power plant are investigated. Normal emittance spectra in 2.5-25 m wavelength region and total normal emittance are measured on four kinds of ash at 600-1100K ... Keywords: ash deposit, emittance, pulverized coal combustion boiler furnace, spectroscopic measurement, thermal radiation

Aleksandar Saljnikov; Darko Goricanec; Danijela Dobersek; Dorde Kozic

2007-05-01T23:59:59.000Z

182

List of Heat recovery Incentives | Open Energy Information  

Open Energy Info (EERE)

recovery Incentives recovery Incentives Jump to: navigation, search The following contains the list of 174 Heat recovery Incentives. CSV (rows 1 - 174) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Custom Project Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Boilers Central Air conditioners Chillers Custom/Others pending approval Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Processing and Manufacturing Equipment Refrigerators Yes AEP Ohio - Commercial Self Direct Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government

183

202 IEEE TRANS.4CTIONS Oh'AUTOMATIC CONTROL, VOL. AC-18,NO. 3, J U K E 1973 Design and Analysis of Boiler-Turbine-Generator  

E-Print Network (OSTI)

of Boiler-Turbine-Generator Controls Using Optimal Linear Regulator Theory JOHN P. McDOKALD AND HARRY G of a nonlinear mathematical model of a drum-type, twin furnace, reheat boiler-turbine-generator (RBTG) system- tiveoperatingandcontrolstrategies for boiler-t.urbine- generator systems to meet different, system operating ob- jectives. Among

Kwatny, Harry G.

184

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

185

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

186

Combined Heat and Power (CHP) Integrated with Burners for Packaged...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost,...

187

Evaluation of gas-reburning and low NO sub x burners on a wall fired boiler  

SciTech Connect

Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is formed. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at the lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} emission reductions of 75 percent or more as a result of combing Low NO{sub x} Burners and Gas Reburning on a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1992-01-15T23:59:59.000Z

188

Buildings","All Heated  

U.S. Energy Information Administration (EIA) Indexed Site

2. Heating Equipment, Number of Buildings, 1999" 2. Heating Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",4657,4016,492,1460,894,96,581,1347,185 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,240,783,397,"Q",146,589,98 "5,001 to 10,000 ..............",1110,946,100,387,183,"Q",144,302,"Q" "10,001 to 25,000 .............",708,629,81,206,191,19,128,253,22

189

Buildings","All Heated  

U.S. Energy Information Administration (EIA) Indexed Site

3. Heating Equipment, Floorspace, 1999" 3. Heating Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",67338,61602,8923,14449,17349,5534,19522,25743,4073 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,679,2271,1183,"Q",463,1779,250 "5,001 to 10,000 ..............",8238,7090,745,2848,1350,"Q",1040,2301,"Q" "10,001 to 25,000 .............",11153,9865,1288,3047,3021,307,2047,3994,401

190

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

191

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

192

Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)  

SciTech Connect

This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

Not Available

2014-05-01T23:59:59.000Z

193

Energy Savings Calculator for Commercial Boilers: Closed Loop, Space  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Calculator for Commercial Boilers: Closed Loop, Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only October 8, 2013 - 2:23pm Addthis This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable fluid type? Water Steam What fuel is used? Gas Oil How many boilers will you purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtu/hr* What is the thermal efficiency of the existing boiler? % Et New What is the capacity of the new boiler?

194

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network (OSTI)

LPG Furnace Oil Furnace Electric Heat Pump Gas BoilerOil Boiler Electric Room Heater Gas Room Heater Wood Stove (Electric Heat Pump Gas Boiler Oil Boiler Electric Room Gas

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

195

Paired Straight Hearth Furnace  

Energy.gov (U.S. Department of Energy (DOE))

A coal based dri and molten metal process for long range replacement of blast furnaces and coke ovens

196

METHANE de-NOX for Utility PC Boilers  

SciTech Connect

The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable to minimize the need for overfire air by maximizing NO{sub x} reduction in the burner. The proposed combustion concept aims to greatly reduce NO{sub x} emissions by incorporating a novel modification to conventional or low-NO{sub x} PC burners using gas-fired coal preheating to destroy NO{sub x} precursors and prevent NO{sub x} formation. A concentrated PC stream enters the burner, where flue gas from natural gas combustion is used to heat the PC up to about 1500 F prior to coal combustion. Secondary fuel consumption for preheating is estimated to be 3 to 5% of the boiler heat input. This thermal pretreatment releases coal volatiles, including fuel-bound nitrogen compounds into oxygen-deficient atmosphere, which converts the coal-derived nitrogen compounds to molecular N{sub 2} rather than NO. Design, installation, shakedown, and testing on Powder River Basin (PRB) coal at a 3-million Btu/h pilot system at RPI's (Riley Power, Inc.) pilot-scale combustion facility (PSCF) in Worcester, MA demonstrated that the PC PREHEAT process has a significant effect on final O{sub x} formation in the coal burner. Modifications to both the pilot system gas-fired combustor and the PC burner led to NO{sub x} reduction with PRB coal to levels below 0.15 lb/million Btu with CO in the range of 35-112 ppmv without any furnace air staging.

Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

2005-09-30T23:59:59.000Z

197

Modelling of NO{sub x} reduction strategies applied to 350 MW(e) utility boilers  

SciTech Connect

A computational fluid dynamics model has been combined with a NO{sub x} chemistry post-processor to predict the formation and destruction of nitric oxide in three-dimensional furnaces burning pulverized fuel. The model considers the complex interaction of turbulent flow, heat transfer, combustion, and NO{sub x} reaction chemistry. Lagrangian particle dynamics are used to track burning pulverized coal particles through the computational cells. Fuel nitrogen is released in proportion to the burnout of the particle. A range of combustion NO{sub x} reduction strategies has been applied to two 350 MW(e) utility boilers burning different coals. A medium volatile bituminous coal is fired using low NO{sub x} burners in one furnace and a sub-bituminous coal is burnt using conventional swirl burners in a different furnace. The strategies include: burner out of service, overfire air, reduction in excess air, change in particle size, and fuel reburn. In general NO{sub x} predictions are better for the sub-bituminous coal than for the medium volatile bituminous coal. Typical NO{sub x} prediction errors are {+-} 10 percent.

Visona, S.P.; Singh, B. [AUSTA Electric, Brisbane (Australia); Stanmore, B.R. [Dept. of Chemical Engineering, Brisbane (Australia)

1997-07-01T23:59:59.000Z

198

Combustion Model for a CFB Boiler with Consideration of Post-Combustion in the Cyclone  

Science Journals Connector (OSTI)

Severe post combustion in the cyclone of CFB boilers could destroy heat absorbing balance among ... rarely considered in the design phase of a CFB boiler. Based on our previous experiment results ... added into a...

S. H. Li; H. R. Yang; H. Zhang; Y. X. Wu

2010-01-01T23:59:59.000Z

199

Research on the Hydraulic Characteristics of a 600MW Supercritical Pressure CFB Boiler  

Science Journals Connector (OSTI)

Water wall design is a key technology of supercritical pressure CFB boiler. On account of the low heat ... be applied in the water wall of supercritical CFB boilers. An experimental research on the flow ... Harbi...

D. Yang; J. Pan; Q. C. Bi; Y. J. Zhang

2010-01-01T23:59:59.000Z

200

Residual Strain Distribution in Bent Composite Boiler Tubes  

SciTech Connect

Kraft recovery boilers are typically constructed of carbon steel boiler tubes clad with a corrosion resistant layer, and these composite tubes are bent and welded together to form air port panels which enable the combustion air to enter the boiler. In this paper, the through-thickness residual strain in the carbon steel layer of non-heat-treated and heat-treated composite bent tubes were measured by neutron diffraction techniques and modeled by finite element modeling. The results can be used to optimize material selection and manufacturing processes to prevent stress corrosion and corrosion fatigue cracking in the boiler tubes.

Hubbard, Camden R [ORNL; Gorti, Sarma B [ORNL; Tang, Fei [ORNL

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Variable firing rate power burner for high efficiency gas furnaces. Final report  

SciTech Connect

One method for increasing the efficiency of residential furnaces and boilers is to retrofit a burner capable of firing rate (FR) modulation. While maximum FR is still attainable, the average FR is significantly lower, resulting in more effective heat exchanger performance. Equally important is the capability for continuous firing at a very low rate (simmering) which eliminates off-cycle loss, a heavy contributor to inefficiency. Additional performance can be gained by reducing the excess air required by a burner. Based on its previous experience, Foster-Miller Associates, Inc. has designed and tested a low excess air (about 15%) variable firing rate (VFR) burner. The theory of operation and the construction of the test burner are described. Test results are given along with a conclusion/recommendation. A Phase II plan is outlined which suggests methods and steps for fabrication and field testing of a number of prototype units.

Fuller, H.H.; Demler, R.L.; Poulin, E.

1980-02-01T23:59:59.000Z

202

Recovery Boiler Corrosion Chemistry  

E-Print Network (OSTI)

11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

Das, Suman

203

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s): Source(s): 1) PTHP = Packaged Terminal Heat Pump, WLHP = Water Loop Heat Pump. 2) PTAC = Packaged Terminal Air Conditioner BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume 1: Chillers, Refrigerant Compressors, and Heating Systems, Apr. 2001, Figure 5-5, p. 5-14 for cooling and Figure 5-10, p. 5-18 for heating

204

Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives Ameren Illinois (Gas) - Cooking and Heating Business Efficiency Incentives < Back Eligibility Commercial Industrial Multi-Family Residential Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Water Heating Maximum Rebate General: $600,000 Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Custom: $1.20/therm saved/yr Steamers: $300-$1200 Fryer: $400 Griddle: $50/ln. ft. Ovens: custom Storage Water Heaters: $150/unit Tankless Water Heater: $300/unit Gas Boiler/Furnace Replacement: $400 - $6,000

205

Application of Boiler Op for combustion optimization at PEPCO  

SciTech Connect

Title IV requires the reduction of NOx at all stations within the PEPCO system. To assist PEPCO plant personnel in achieving low heat rates while meeting NOx targets, Lehigh University`s Energy Research Center and PEPCO developed a new combustion optimization software package called Boiler Op. The Boiler Op code contains an expert system, neural networks and an optimization algorithm. The expert system guides the plant engineer through a series of parametric boiler tests, required for the development of a comprehensive boiler database. The data are then analyzed by the neural networks and optimization algorithm to provide results on the boiler control settings which result in the best possible heat rate at a target NOx level or produce minimum NOx. Boiler Op has been used at both Potomac River and Morgantown Stations to help PEPCO engineers optimize combustion. With the use of Boiler Op, Morgantown Station operates under low NOx restrictions and continues to achieve record heat rate values, similar to pre-retrofit conditions. Potomac River Station achieves the regulatory NOx limit through the use of Boiler Op recommended control settings and without NOx burners. Importantly, any software like Boiler Op cannot be used alone. Its application must be in concert with human intelligence to ensure unit safety, reliability and accurate data collection.

Maines, P.; Williams, S. [Potomac Electric Power Co., Upper Marlsboro, MD (United States); Levy, E. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

1997-09-01T23:59:59.000Z

206

DOE Webcast: GTI Super Boiler Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webcast Webcast GTI Super Boiler Technology by Dennis Chojnacki, Senior Engineer by Curt Bermel, Business Development Mgr. R&D > November 20, 2008 November 20, 2008 2 November 20, 2008 2 WHO WE ARE Gas Technology Institute >Leading U.S. research, development, and training organization serving the natural gas industry and energy markets ─ An independent, 501c (3) not-for-profit Serving the Energy Industry Since 1941 > Over 1,000 patents > Nearly 500 products commercialized November 20, 2008 3 November 20, 2008 3 Super Boiler Background > U.S. industrial and commercial steam boilers ─ Consume over 6 quads of natural gas per year ─ Wide range of steam uses from process steam to space heating > Installed base of steam boilers ─ Largely over 30 years old

207

SIMPLE, FULLY FEATURED BOILER LOOP MODELLING  

E-Print Network (OSTI)

The performance of hot water space heating systems for mild to warm temperate climates is dominated by the efficiency of boiler operation at low load (i.e. below 25 % of nameplate capacity). This efficiency is influenced by a number of effects that are poorly represented in common modelling approaches, including static thermal losses from the boiler and distribution system, changes in burner efficiency at different firing rates, thermal inertia in the boiler loop and the effects of cyclic operation. In this paper, a simple model that includes these loss mechanisms is developed. An example from an actual project is used to demonstrate that addressing the full range of low-load efficiency effects can increase predicted boiler gas consumption substantially relative to standard simulation approaches.

Erica Kenna; Paul Bannister

208

Development of high temperature air combustion technology in pulverized fossil fuel fired boilers  

SciTech Connect

High temperature air combustion (HTAC) is a promising technology for energy saving, flame stability enhancement and NOx emission reduction. In a conventional HTAC system, the combustion air is highly preheated by using the recuperative or regenerative heat exchangers. However, such a preheating process is difficult to implement for pulverized fossil fuel fired boilers. In this paper, an alternative approach is proposed. In the proposed HTAC system, a special burner, named PRP burner is introduced to fulfill the preheating process. The PRP burner has a preheating chamber with one end connected with the primary air and the other end opened to the furnace. Inside the chamber, gas recirculation is effectively established such that hot flue gases in the furnace can be introduced. Combustible mixture instead of combustion air is highly preheated by the PRP burner. A series of experiments have been conducted in an industrial scale test facility, burning low volatile petroleum coke and an anthracite coal. Stable combustion was established for burning pure petroleum coke and anthracite coal, respectively. Inside the preheating chamber, the combustible mixture was rapidly heated up to a high temperature level close to that of the hot secondary air used in the conventional HTAC system. The rapid heating of the combustible mixture in the chamber facilitates pyrolysis, volatile matter release processes for the fuel particles, suppressing ignition delay and enhancing combustion stability. Moreover, compared with the results measured in the same facility but with a conventional low NOx burner, NOx concentration at the furnace exit was at the same level when petroleum coke was burnt and 50% less when anthracite was burnt. Practicability of the HTAC technology using the proposed approach was confirmed for efficiently and cleanly burning fossil fuels. 16 refs., 10 figs., 1 tab.

Hai Zhang; Guangxi Yue; Junfu Lu; Zhen Jia; Jiangxiong Mao; Toshiro Fujimori; Toshiyuki Suko; Takashi Kiga [Tsinghua University, Beijing (China). Department of Thermal Engineering

2007-07-01T23:59:59.000Z

209

Laboratory Induction Furnaces  

Science Journals Connector (OSTI)

... supplied at 10,000 volts by a suitable transformer. It is controlled either by a contactor or by push buttons on the furnace table.

1930-07-19T23:59:59.000Z

210

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

211

A cold model experimental study on the flow characteristics of bed material in a fluidized bed bottom ash cooler in a CFB boiler  

Science Journals Connector (OSTI)

A cold model experimental study on the flowing characteristics of bed material between a fluidized bed ash cooler and a furnace of CFB boiler were discussed in this paper. The research results showed that flowing...

Xiaofeng Lu; Yourong Li

2000-12-01T23:59:59.000Z

212

Recovery Boiler Modeling  

E-Print Network (OSTI)

, east, e, west, w, bot tom, b, and top, t, neighbors. The neighboring cou pling coefficients (an, a., .. , etc) express the magnitudes of the convection and diffusion which occur across the control volume boundaries. The variable b p represents... represents a model of one half of the recovery boiler. The boiler has three air levels. The North, South and East boundaries of the computational domain represent the water walls of the boiler. The West boundary represents a symmetry plane. It should...

Abdullah, Z.; Salcudean, M.; Nowak, P.

213

Optimal control of a multi-energy district boiler: a case study  

E-Print Network (OSTI)

Optimal control of a multi-energy district boiler: a case study J. Eynard S. Grieu M. Polit of a multi-energy district boiler (La Rochelle, France) which supplies domestic hot water and heats optimizing the use of both the tank and the wood boiler. As a result, fossil energy consumption and CO2

Paris-Sud XI, Université de

214

Field Test of Boiler Primary Loop Temperature Controller  

SciTech Connect

Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

2014-09-01T23:59:59.000Z

215

Oxy-Combustion Boiler Material Development  

SciTech Connect

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

2012-01-31T23:59:59.000Z

216

Oxy-Combustion Boiler Material Development  

SciTech Connect

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

2012-01-31T23:59:59.000Z

217

Boilers and Fired Systems  

SciTech Connect

This chapter examines how energy is consumed, how energy is wasted, and opportunities for reducing energy consumption and costs in the operation of boilers.

Parker, Steven A.; Scollon, R. B.

2009-07-14T23:59:59.000Z

218

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

None

1998-07-01T23:59:59.000Z

219

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

220

Direct contact, binary fluid geothermal boiler  

DOE Patents (OSTI)

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, Pascal M. (Richmond, CA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents (OSTI)

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

222

NETL: IEP – Oxy-Combustion CO2 Emissions Control - Oxygen-Based PC Boiler  

NLE Websites -- All DOE Office Websites (Extended Search)

– Oxy-Combustion CO2 Emissions Control – Oxy-Combustion CO2 Emissions Control Oxygen-Based PC Boiler Project No.: FC26-04NT42207 & FC26-03NT41736 Spatial Comparison of an Air-Fired Furnace versus an Oxygen-Fired Furnace. Spatial Comparison of an Air-Fired Furnace versus an Oxygen-Fired Furnace. Foster Wheeler North America Corporation will conduct to two projects to improve carbon dioxide (CO2) capture technology by developing a conceptual pulverized coal-fired boiler system design using oxygen as the combustion medium. Using oxygen instead of air produces a flue gas with a high CO2 concentration, which will facilitate CO2 capture for subsequent sequestration. The first project will develop modeling simulations that will lead to a conceptual design that addresses costs, performance, and emissions, and

223

Combustion control in boilers. (Latest citations from the EI Compendex*plus database). Published Search  

SciTech Connect

The bibliography contains citations concerning utility and industrial boiler combustion control systems and methods. Topics include methods to meet emission standards, energy savings, and safety. The use of microcomputers, mathematical models, algorithms, artificial intelligence, and fuzzy logic is considered. Citations on boilers and furnaces fueled by coal, oil, gas, refuse, and multiple fuels are included. (Contains a minimum of 128 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

224

Bromine as an ash forming element in a fluidised bed boiler combusting solid recovered fuel  

Science Journals Connector (OSTI)

Plastic materials are the main sources of chlorine in solid recovered fuels (SRF). Chlorine is attributed to be the main initiator of slagging, fouling and corrosion in biomass and waste combustion as it lowers the melting point of ash forming matter and reacts chemically with the heat transfer surface steels. SRF may also contain sources of bromine in the form of brominated flame retardants (BFRs) applied in many plastics and textiles. Results presented in this paper from an experimental campaign at an 80MWth bubbling fluidised bed (BFB) boiler show that bromine is behaving in a similar manner as chlorine: bromine was found at the corrosion front in boiler membrane wall tubes, and as water soluble salts in aerosol samples collected from the furnace and electrostatic precipitator (ESP) ash. It is evident from these results and the data in the literature that most of the salts of bromine are, by both their fate and physical and chemical properties, similar to those of chlorine. It can be concluded that it if there is a source of bromine in the fuel corrosive high vapour pressure bromides can be formed analogously to chlorides.

Pasi Vainikka; Sonja Enestam; Jaani Silvennoinen; Raili Taipale; Patrik Yrjas; Ari Frantsi; Janne Hannula; Mikko Hupa

2011-01-01T23:59:59.000Z

225

Trends in furnace control  

SciTech Connect

This paper relates Italimpianti's experiences over the past few years in the area of control of reheat furnaces for the steel industry. The focus is on the level 1 area; specifically on the use of PLC-based systems to perform both combustion control and mechanical/hydraulic control. Some topics to be discussed are: overview of reheat furnace control system requirements; PLC only control vs separate PLC and DCS systems; PLC hardware requirements; man machine interface (MMI) requirements; purge, light-on and safety logic; implementation of more sophisticated level 1 control algorithms; furnace temperature optimization: look up tables vs full thermal modeling; and recent trends including integrated PLC/DCS system.

McDonald, T.J.; Keefe, M.D. (Italimpianti of America, Inc., Coraopolis, PA (United States). Instrumentation and Controls Dept.)

1993-07-01T23:59:59.000Z

226

Boiler Upgrades and Decentralizing Steam Systems Save Water and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

replacing its central plant with a combination of distributed boilers and ground source heat pumps. The results saved more than 1 million MBtu in energy and 19,574 Kgal of water...

227

Conversion of Furnace oil fired boiler to biomass(Gliricidia) fired (External/Internal) furnace boiler; NA.  

E-Print Network (OSTI)

?? In the present era, with the prevailing competition, the cost of production plays a vital role. As the price of petroleum oils, especially diesel (more)

Channa Gaya Siriwardhana, Kahandawa Arachchilage

2010-01-01T23:59:59.000Z

228

Use of refractory coatings on linings of electric resistance furnaces  

Science Journals Connector (OSTI)

Results of experimental and theoretical studies of the reduction of power consumption in furnaces with a lining covered by IVAKS-2 and IVA-2 intensifying refractory coatings are presented. The heating curves o...

A. V. Aksenov; V. A. Belyakov

1997-09-01T23:59:59.000Z

229

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

2 2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14% 14% District Heat 10% 8% 8% District Chilled Water 4% 4% 4% Other 11% 6% 5% Swamp Coolers 4% 3% 2% Other 2% 2% 2% Note(s): Source(s): 1) Heating and cooling equipment percentages of floorspace total more than 100% since equipment shares floorspace. 2) Malls are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs.

230

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

231

Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

Not Available

2011-10-01T23:59:59.000Z

232

Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report  

SciTech Connect

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

Not Available

1985-09-01T23:59:59.000Z

233

Paired Straight Hearth Furnace  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PSH will use two linear tunnel hearth furnaces that share a common translating pallet train and which are aligned in parallel and run in opposite directions. Pellets are loaded...

234

First university owned district heating system using biomass heat  

E-Print Network (OSTI)

Components 4.3 m diameter gasifier 4.4 MW flue gas boiler 60 t hog fuel storage Electrostatic precipitator Residue Gasifier Oxidizer Flue Gas Boiler Electrostatic Precipitator Heat to campus district energy loop

Northern British Columbia, University of

235

Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass  

E-Print Network (OSTI)

samples are exposed to an incandescent lamp. Acknowledgmentin a furnace or by an incandescent lamp. It was observedwhen heated by an incandescent lamp than within furnace.

Kitamura, Rei; Pilon, Laurent

2009-01-01T23:59:59.000Z

236

Evaluation of gas-reburning and low NO{sub x} burners on a wall fired boiler. Technical progress report No. 5, October 1--December 31, 1991  

SciTech Connect

Low NO{sub x} burners operate on the principle of delayed mixing between the coal fuel and burner air, so that less NO{sub x} is formed. Gas reburning is a combustion modification technique that consists of firing 80--85 percent of the fuel corresponding to the total heat release in the lower furnace. Reduction of NO{sub x} to molecular nitrogen (N{sub 2}) is accomplished via the downstream injection of the remaining fuel requirement in the form of natural gas (which also reduces the total SO{sub x} emissions). In a third stage, burnout air is injected at the lower temperatures in the upper furnace to complete the combustion process without generating significant additional NO{sub x}. The specific goal of this project is to demonstrate NO{sub x} emission reductions of 75 percent or more as a result of combing Low NO{sub x} Burners and Gas Reburning on a utility boiler having the design characteristics mentioned above. A Host Site Agreement has been signed by EER and a utility company in the State of Colorado: Public Service Company of Colorado (Cherokee Unit No. 3, 172 MW{sub e}) front wall fired boiler near Denver.

Not Available

1992-01-15T23:59:59.000Z

237

BOILER BLOW-DOWN FLASH RECOVERY  

E-Print Network (OSTI)

Malelanes boiler blow-down flash, which was previously rejected to atmosphere, is now recovered into the turbo-alternator exhaust steam range and used for process heating duty. Various flash vapour recovery options have been evaluated for operability, maintainability and cost effectiveness. The design considerations for the blow-down vessel and the valve and piping configuration, which resulted from a Hazop Study, are explained. The recovery of 1.6 tons per hour of boiler blowdown flash equates to R260 000 per annum in coal savings.

I Singh; F Weyers

238

Black liquor combustion validated recovery boiler modeling, five-year report  

SciTech Connect

The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1996-08-01T23:59:59.000Z

239

Commonwealth Small Pellet Boiler Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Small Pellet Boiler Grant Program Commonwealth Small Pellet Boiler Grant Program Commonwealth Small Pellet Boiler Grant Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Maximum Rebate $15,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 03/2013 State Massachusetts Program Type State Rebate Program Rebate Amount Base Grant: $7,000 Automated Conveyance of Fuel Adder: $3,000 Thermal Storage Adder: $2,000 Solar Thermal Hybrid System Adder: $1,000 Moderate Income Adder or Moderate Home Value Adder: $2,000 Maximum Grant: $15,000 Provider Massachusetts Clean Energy Center The Massachusetts Clean Energy Center (MassCEC) and the Department of Energy Resources (DOER) are offering the Commonwealth Small Pellet Boiler

240

Reduce Radiation Losses from Heating Equipment  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet describes how to save process heating energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Best Management Practice: Boiler/Steam Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems October 7, 2013 - 3:17pm Addthis Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned. Operation and Maintenance Options To maintain water efficiency in operations and maintenance, Federal agencies should: Develop and implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop and implement a boiler tuning program to be completed a minimum of

242

Controlled combustion-zone firing of hogged fuel in new and retrofit boiler applications  

SciTech Connect

A new concept of furnace design embodying a well-defined primary combustion zone for wood waste has proven successful after two years of operation. The design was incorporated in a major rebuild of another boiler, and operation confirms its viability. (Refs. 7).

MacCallum, C.

1983-09-01T23:59:59.000Z

243

Furnace | OpenEI  

Open Energy Info (EERE)

Furnace Furnace Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

244

Simple Maintenance Saves Costly Furnace Repair/Replacement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement January 6, 2010 - 8:26am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory For the past few weeks, my forced-air gas furnace has been on the fritz. I blame this on the fact that I haven't been as diligent as I should have been with regular furnace maintenance, which includes: Checking the condition of the vent connection pipe and chimney Checking the physical integrity of the heat exchanger Adjusting the controls to provide optimum water and air temperature settings for both efficiency and comfort Having a technician perform a combustion-efficiency test Checking the combustion chamber for cracks. Testing for carbon monoxide

245

Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler  

SciTech Connect

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

None

1998-09-01T23:59:59.000Z

246

Modular approach for modelling a multi-energy district boiler Julien Eynard, Stphane Grieu1 and Monique Polit  

E-Print Network (OSTI)

Modular approach for modelling a multi-energy district boiler Julien Eynard, Stéphane Grieu1 with the modelling of a district boiler (city of La Rochelle, west coast of France), as part of the OptiEnR research project. This "multi- energy" boiler supplies domestic hot water and heats residential and public

Paris-Sud XI, Université de

247

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

248

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

249

Residential Condensing Gas Furnaces | Department of Energy  

Office of Environmental Management (EM)

Gas Furnaces Residential Condensing Gas Furnaces Standardized Templates for Reporting Test Results residentialcondensinggasfurnacev1.0.xlsx More Documents & Publications...

250

Dissimilar-metal weld failures in boiler tubing  

SciTech Connect

Both ferritic heat-resisting steels and austenitic stainless steels are used for fossil-fired boilers for central power stations. The use of these two different types of materials within the system leads to the need for a dissimilar-metal weld transition joint. Increased cyclic operation of boilers has led to a rash of failures in welds between dissimilar metals; studies have identified the causes, and improved nondestructive testing techniques permit early identification of problem areas.

Klueh, R.L.

1984-02-01T23:59:59.000Z

251

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect

This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

2006-06-30T23:59:59.000Z

252

List of Heat pumps Incentives | Open Energy Information  

Open Energy Info (EERE)

pumps Incentives pumps Incentives (Redirected from List of Heat Pumps Incentives) Jump to: navigation, search The following contains the list of 1213 Heat pumps Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1213) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) Utility Rebate Program Texas Commercial

253

E-Print Network 3.0 - air-conditioners furnaces air Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

by connecting it to a leaky duct system. By decreasing the leakage... condensing unit of a split system air conditioner or heat pump, cooling or heating coil, or the furnace...

254

Disposal of boiler ash  

SciTech Connect

As more boilers are converted from oil to solid fuels such as coal, the quantity of ash requiring disposal will increase dramatically. The factors associated with the development of land disposal systems for ash landfills are presented, including ash characterization, site selection procedures, design parameters, and costs.

Atwell, J.S.

1981-08-01T23:59:59.000Z

255

Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions  

SciTech Connect

Measurements have been performed in a 300 MWe, front-wall-fired, pulverized-coal, utility boiler. This boiler was retrofitted with boosted over fire air injectors that allowed the operation of the furnace under deeper staging conditions. New data are reported for local mean gas species concentration of O{sub 2}, CO, CO{sub 2}, NOx, gas temperatures and char burnout measured at several ports in the boiler including those in the main combustion and staged air regions. Comparisons of the present data with our previous measurements in this boiler, prior to the retrofitting with the new over fire system, show lower O{sub 2} and higher CO concentrations for the new situation as a consequence of the lower stoichiometry in the main combustion zone associated with the present boiler operating condition. Consistently, the measured mean NOx concentrations in the main combustion zone are now lower than those obtained previously, yielding emissions below 500 mg/Nm{sup 3}at 6% O{sub 2}. Finally, the measured values of particle burnout at the furnace exit are acceptable being those measured in the main combustion zone comparable with those obtained with the conventional over fire system.

Costa, M.; Azevedo, J.L.T. [Universidade Tecnica de Lisboa, Lisbon (Portugal)

2007-07-01T23:59:59.000Z

256

Recovery of Water from Boiler Flue Gas  

SciTech Connect

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

257

Formation of acidic sulfates in kraft recovery boilers  

SciTech Connect

Acidic sulfates (NaHSO[sub 4] and Na[sub 2]S[sub 2]O[sub 7]) have been suggested as the cause of corrosive sticky deposits in recovery boilers. Recovery-boiler precipitator dusts and pure Na[sub 2]SO[sub 4] were examined for their tendency to form acidic sulfates in simulated flue gases. Formation was strongly influenced by temperature and by gas-phase concentrations of SO[sub x] and H[sub 2]O. Liquid NaHSO[sub 4] formed readily at 250 C at SO[sub x] concentration above 150 ppm. Formation reactions were hindered by Na[sub 2]CO[sub 3]. Under appropriate conditions, acidic sulfates can exist at tube surfaces near the furnace roof, at the upper screen tubes, and in the generating bank and economizer.

Poon, W.; Barham, D.; Tran, H. (Univ. of Toronto, Ontario (Canada))

1993-07-01T23:59:59.000Z

258

Sandia National Laboratories: Solar Furnace  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility * NSTTF * Parabolic Dish * Renewable Energy * SAND 2011-4654W * solar * Solar Energy * Solar Furnace * solar power * Solar Research Comments are closed. Renewable...

259

Blast furnace taphole drill  

SciTech Connect

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

260

Fluidized bed steam reactor including two horizontal cyclone separators and an integral recycle heat exchanger  

SciTech Connect

A reactor is described comprising: a vessel; a first furnace section disposed in said vessel; a second furnace section disposed in said vessel; means in each of said furnace sections for receiving a combustible fuel for generating heat and combustion gases; a first heat recovery area located adjacent said furnace sections; a second heat recovery area located adjacent said furnace sections; means for passing said combustion gases from said first furnace section to said first heat recovery area; and means for passing said combustion gases from said second furnace section to said second heat recovery area.

Gorzegno, W.P.

1993-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Study of Improvement in Boiler Efficiency through Incorporation of Additional Bank of Tubes in the Economiser  

E-Print Network (OSTI)

Abstract: The major efficiency loss of a boiler is caused by the hot stack gases discharging to the atmosphere which is polluting the atmosphere and on other side Pollution Control Board is forcing the norms of Pollution levels in atmosphere. One of the most cost-effective ways of improving the efficiency of a high pressure steam boiler is to install an economizer on the boiler. An economizer is a heat exchanger, which transfers heat from the stack gases to the incoming feedwater. Typically, on a high pressure water tube boiler, the efficiency improvement with an economizer is 2 to 4%, depending on firing rate. On a high pressure fire tube boiler, the improvement is 2 to 3.5%, depending on boiler size and firing rate. The economizers are located in the boiler stack close to the stack gas outlet of the boiler. They may be supported from overhead or from the floor. A feedwater line, which serves the boiler, is piped to the unit. No additional feedwater control valves or stack gas dampers are required. Presently in NTPC stage II units there are banks of tubes in economizer. There was a proposal from management to add another bank of tubes in the economizer so that there will be control of pollutants coming out from boiler. We took that proposal as a task and made a detailed investigation of it. An investigation is conducted on the effect of performance of the boiler by incorporating the additional bank of tubes in the space below the lower bank of tubes. The main idea is to extract maximum amount of heat from the flue gases and increase the heat

P. Ravindra Kumar; B. Sridhar Reddy

262

List of Heat pumps Incentives | Open Energy Information  

Open Energy Info (EERE)

pumps Incentives pumps Incentives Jump to: navigation, search The following contains the list of 1213 Heat pumps Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1213) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) Utility Rebate Program Texas Commercial Installer/Contractor Residential Central Air conditioners

263

--No Title--  

U.S. Energy Information Administration (EIA) Indexed Site

square feet) All Buildings* Heated Buildings Heating Equipment (more than one may apply) Heat Pumps Furnaces Individual Space Heaters District Heat Boilers Packaged Heating Units...

264

Building America Case Study: Advanced Boiler Load Monitoring Controllers, Chicago, Illinois (Fact Sheet)  

SciTech Connect

Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

PARR

2014-09-01T23:59:59.000Z

265

Return Condensate to the Boiler  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

266

Improve Your Boiler's Combustion Efficiency  

SciTech Connect

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

267

Boiler Stack Economizer Tube Failure  

Science Journals Connector (OSTI)

A metallurgical evaluation was performed to investigate the failure of a type 304 stainless steel tube from a boiler stack economizer. The tube had three distinct degradation mechanisms...

Ryan J. Haase; Larry D. Hanke

2013-10-01T23:59:59.000Z

268

Minimize Boiler Short Cycling Losses  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

269

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

270

Electric Resistance Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

271

Boiler Maximum Achievable Control Technology (MACT) Technical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, May 2014 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact...

272

Covered Product Category: Commercial Boilers | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

be brought online quickly, therefore avoiding the need to keep a boiler on hot standby. Remote monitoring capability: Remote monitoring capability is useful to manage boiler...

273

Small boiler uses waste coal  

SciTech Connect

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

274

Fluidized bed boiler having a segmented grate  

DOE Patents (OSTI)

A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

Waryasz, Richard E. (Longmeadow, MA)

1984-01-01T23:59:59.000Z

275

Microsoft Word - T4_VEIC_TO2_ Sub3_Residential Retrofit Program...  

Office of Environmental Management (EM)

End-use Equipment What is the proportion of furnaces vs. boilers vs. heat pumps vs. electric resistance heating? What about the subset by fuel type for furnaces and boilers? How...

276

Conceptual Design of Oxygen-Based PC Boiler  

SciTech Connect

Coal is presently the world's primary fuel for generating electrical power and, being more abundant and less expensive than oil or natural gas, is expected to continue its dominance into the future. Coal, however, is more carbon intensive than natural gas and oil and consequently coal-fired power plants are large point source emitters of carbon dioxide (CO{sub 2}). Since CO{sub 2} is a greenhouse gas, which may have an adverse impact on the world's climate/weather patterns, studies have been conducted to determine the feasibility and economic impact of capturing power plant CO{sub 2} emissions for pipeline transport to a sequestration/storage site. The stack gas that exhausts from a modern coal-fired power plant typically contains about 15% CO{sub 2} on a dry volume basis. Although there are numerous processes available for removing CO{sub 2} from gas streams, gas scrubbing with amine solvent is best suited for this application because of the large gas volumes and low CO{sub 2} concentrations involved. Unfortunately the energy required to regenerate the solvent for continued use as a capturing agent is large and imposes a severe energy penalty on the plant. In addition this ''back end'' or post combustion cleanup requires the addition of large vessels, which, in retrofit applications, are difficult to accommodate. As an alternative to post combustion scrubbing, Foster Wheeler (FW) has proposed that the combustion process be accomplished with oxygen rather than air. With all air nitrogen eliminated, a CO{sub 2}-water vapor rich flue gas will be generated. After condensation of the water vapor, a portion of the flue gas will be recirculated back to the boiler to control the combustion temperature and the balance of the CO{sub 2} will be processed for pipeline transport. This proposed oxygen-carbon dioxide (O{sub 2}/CO{sub 2}) combustion process eliminates the need for CO{sub 2} removal/separation and reduces the cost of supplying a CO{sub 2} rich stream for sequestration. FW has developed a conceptual design of an O{sub 2} fired boiler to determine overall plant performance and economics. Five subtasks were conducted: (1) a literature review, (2) a system design and analysis, (3) a low NOx burner design and analysis, (4) a furnace and heat recovery area design analysis, and (5) an economic analysis. The objective of the literature search is to locate any data/information relevant to the Oxygen-Based PC Boiler conceptual design. The objective of the system design and analysis task is to optimize the PC boiler plant by maximizing system efficiency within practical considerations. Simulations of the oxygen-fired plant with CO{sub 2} sequestration were conducted using Aspen Plus and were compared to a reference air-fired 460 MW plant. Flue gas recycle is used in the O{sub 2}-fired PC to control the flame temperature. Parametric runs were made to determine the effect of flame temperature on system efficiency and required waterwall material and thickness. The degree of improvement on system efficiency of various modifications including hot gas recycle, purge gas recycle, flue gas feedwater recuperation, and recycle purge gas expansion were investigated. The selected O{sub 2}-fired design case has a system efficiency of 30.6% compared to the air-fired system efficiency of 36.7%. The design O{sub 2}-fired case requires T91 waterwall material and has a waterwall surface area of only 65% of the air-fired reference case. The objective of the low NOx burner design and analysis task is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent CFD computer program. Four burner designs were developed: (1) with no OFG and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas sw

Andrew Seltzer; Zhen Fan

2005-09-01T23:59:59.000Z

277

Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study  

SciTech Connect

Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

2006-06-30T23:59:59.000Z

278

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

Gary M. Blythe

2001-11-06T23:59:59.000Z

279

Energy Efficiency Opportunities in EPA's Boiler Rules  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities in EPA's Boiler Rules Opportunities in EPA's Boiler Rules On December 20, 2012, the US Environmental Protection Agency (EPA) finalized new regulations to control emissions of hazardous air pollutants (HAP) from commercial, industrial, and institutional boilers and process heaters. These new rules, known as the Boiler MACT (major sources) and Boiler Area Source Rule (smaller sources), will reduce the amount of HAPS such as mercury, heavy metals, and other toxics that enter the environment. Since emissions from boilers are linked to fuel consumption, energy efficiency is an important strategy for complying with the new Boiler rules. Who is affected? Most existing industrial, commercial and institutional (ICI) boilers will not be affected by the Boiler MACT. These unaffected boilers are mostly small natural gas-fired boilers. Only about 14% of all existing

280

Refractory products and ramming bodies for high pressure burners of steam boilers  

Science Journals Connector (OSTI)

Silicon carbide rammed bodies are suitable for lining the combustion zones of high-pressure cyclone burners of steam boilers. The life of the silicon carbide body depends on the heat resistance of the supporti...

N. I. Voronin; N. I. Krasotkina; A. I. kulik; T. S. Karmanova; G. E. Levin

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes  

E-Print Network (OSTI)

X Gas furnace X X Geothermal Combisystem Solar X X Air-to-Solar Combisystem Heating Equipment Type Gas boiler Gas furnace

Less, Brennan

2012-01-01T23:59:59.000Z

282

Integrated boiler, superheater, and decomposer for sulfuric acid decomposition  

DOE Patents (OSTI)

A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

2010-01-12T23:59:59.000Z

283

Best Management Practice #8: Boiler and Steam Systems  

Energy.gov (U.S. Department of Energy (DOE))

Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

284

What Steps Do You Take to Maintain Your Furnace? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps Do You Take to Maintain Your Furnace? Steps Do You Take to Maintain Your Furnace? What Steps Do You Take to Maintain Your Furnace? January 7, 2010 - 7:30am Addthis This week, Chris told you about his plans to maintain his furnace to keep it running efficiently. Proper maintenance is key to ensuring your heating and cooling systems are in working order. No one wants to wake up on the coldest day of the year to find that they have no heat! What steps do you take to maintain your furnace? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Brrrrr. It's Cold In There! Saving Energy and Money Starts at Home 31,000 Homes Weatherized in June

285

Condensing Heat Exchanger for Optimization of Energy Efficiency  

E-Print Network (OSTI)

out, rapid deterioration, due to acid corrosion, of the outlet duct and stack would result. With the development of the condensing heat exchanger, boiler efficiency can now exceed 90%. Approximately 1% gain in boiler efficiency can be expected...

Carrigan, J. F.; Johnson, D. W.; DiVitto, J. G.; Schulze, K. H.

286

Exergy transfer analysis of an aluminum holding furnace  

Science Journals Connector (OSTI)

Abstract This study presents the unsteady exergy transfer analysis of an aluminum holding furnace with new heating resistance scheme. This holding system consists of four multilayer refractory walls and one resistance heating system which is responsible of maintaining the appropriate aluminum temperature and composition for further casting. The purpose of this analysis is to understand and identify heat losses and irreversibilities of the holding process of an aluminum furnace by means of the First and Second Law of Thermodynamics. In this study, bi-dimensional temperature and exergy fields during heat and exergy transfer processes are presented. The exergy balance is completely computed for this system, obtaining: exergy transfer, exergy variation rate, and destroyed exergy rate.

Luis Acevedo; Sergio Usn; Javier Uche

2015-01-01T23:59:59.000Z

287

Steam Cracker Furnace Energy Improvements  

E-Print Network (OSTI)

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

288

Variable frequency microwave furnace system  

DOE Patents (OSTI)

A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

289

Variable frequency microwave furnace system  

DOE Patents (OSTI)

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

290

Modeling of a coal-fired natural circulation boiler  

SciTech Connect

Modeling of a natural circulation boiler for a coal-fired thermal power station is presented here. The boiler system is divided into seven subcomponents, and for each section, models based on conservation of mass, momentum, and energy are formulated. The pressure drop at various sections and the heat transfer coefficients are computed using empirical correlations. Solutions are obtained by using SIMULINK. The model is validated by comparing its steady state and dynamic responses with the actual plant data. Open loop responses of the model to the step changes in the operating parameters, such as pressure, temperature, steam flow, feed water flow, are also analyzed. The present model can be used for the development and design of effective boiler control systems.

Bhambare, K.S.; Mitra, S.K.; Gaitonde, U.N. [Indian Institute of Technology, Bombay (India). Dept. of Mechanical Engineering

2007-06-15T23:59:59.000Z

291

The Big Picture on Process Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications Install Waste Heat Recovery Systems for Fuel-Fired Furnaces Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems...

292

Techno-economic analysis of wood biomass boilers for the greenhouse industry  

SciTech Connect

The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO2) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas.

Chau, J. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Preto, F. [Natural Resources Canada; Melin, Staffan [University of British Columbia, Vancouver

2009-01-01T23:59:59.000Z

293

Design considerations for CFB boilers  

Science Journals Connector (OSTI)

Since the 1970s, circulating fluidized bed (CFB) technology has been applied to combustion and ... firing of solid fuels. The success of CFB boilers is mainly due to their fuel... x and...

Yam Y. Lee

1997-01-01T23:59:59.000Z

294

Minimize Boiler Short Cycling Losses  

SciTech Connect

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

295

Standby cooling system for a fluidized bed boiler  

DOE Patents (OSTI)

A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

1990-01-01T23:59:59.000Z

296

Waste Heat Recovery in the Metal Working Industry  

E-Print Network (OSTI)

recuperators supplying four 3" burners. The smaller (1,500 lb. capacity) forge furnace was not equipped with eductors. No furnace pres sure control was used. This furnace had one 10,000 scfh recuperator supplying two 2~" hot air burners. The heat treat... furnaces were both constant com bustion air, throttled fuel control. The motor ized valve in the fuel line was positioned by a position proportioning temperature controller according to a manually set set point and thermo couple input. Both furnaces...

McMann, F. C.; Thurman, J.

1983-01-01T23:59:59.000Z

297

Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers  

SciTech Connect

This report summarizes Year 1 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Through the course of Year 1 activities, great progress was made toward understanding the issues associated with oxy-combustion retrofit of coal-fired boilers. All four Year 1 milestones and objectives have been, or will be, completed on schedule and within budget. Progress in the four milestone areas may be summarized as follows: University of Utah has performed size segregated ash composition measurements in the Oxy-Fuel Combustor (OFC). These experiments indicate that oxy-combustion retrofit may impact ash aerosol mineral matter composition. Both flame temperature and flue gas composition have been observed to influence the concentration of calcium, magnesium and iron in the fine particulate. This could in turn impact boiler fouling and slagging. Sandia National Labs has shown that char oxidation rate is dependent on particle size (for sizes between 60 and 100 microns) by performing fundamental simulations of reacting char particles. These predictions will be verified by making time-resolved optical measurements of char particle temperature, velocity and size in bench-scale experiments before the end of Year 1. REI and Siemens have completed the design of an oxy-research burner that will be mounted on University of Utahs pilot-scale furnace, the L1500. This burner will accommodate a wide range of O2, FGR and mixing strategies under conditions relevant for utility boiler operation. Through CFD modeling of the different burner designs, it was determined that the key factor influencing flame stabilization location is particle heat-up rate. The new oxy-research burner and associated equipment is scheduled for delivery before the end of Year 1. REI has completed a literature survey of slagging and fouling mechanisms in coal-fired power plants to understand key issues influencing these deposition regimes and infer their behavior under oxy-fired conditions. Based on the results of this survey, an algorithm for integrating slagging predictions into CFD models was outlined. This method accounts for ash formation, particle impaction and sticking, deposit growth and physical properties and impact of the deposit on system flow and heat transfer. A model for fouling in the back pass has also been identified which includes vaporization of sodium, deposition of sodium sulfate on fly ash particles and tube surfaces, and deposit growth rate on tubes. In Year 1, REI has also performed a review of the literature describing corrosion in order to understand the behavior of oxidation, sulfidation, chloridation, and carburization mechanisms in air-fired and oxy-combustion systems. REI and Vattenfall have met and exchanged information concerning oxy-coal combustion mechanisms for CFD simulations currently used by Vattenfall. In preparation for Year 2 of this program, two coals (North Antelope PRB, Western bituminous) have been ordered, pulverized and delivered to the University of Utah and Sandia National Labs. Materials for the corrosion experiments have been identified, suppliers located, and a schedule for equipment fabrication and shakedown has been established. Finally, a flue gas recycle system has been designed and is being constructed for the OFC.

Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

2009-06-30T23:59:59.000Z

298

Heat Recovery Boilers for Process Applications  

E-Print Network (OSTI)

significant amountlof particulate and corrosive gases such as HCL The l factors to be considered in the design are wossib ilities of slagging, erosion and high tempefature corrosion. Salts of sodium can have a low melting point, on the order of 1600 F... from the Seventh National Industrial Energy Technology Conference, Houston, TX, May 12-15, 1985 It is felt by many in the industry that HCL corrosion may be significant beyond a metal temperature of 700 F-750 F. Hence, if superheat ers are used, care...

Ganapathy, V.; Rentz, J.; Flanagan, D.

299

Waste Heat Boilers for Incineration Applications  

E-Print Network (OSTI)

Incineration is a widely used process for disposing of solid, liquid and gaseous wastes generated in various types of industries. In addition to destroying pollutants, energy may also be recovered from the waste gas streams in the form of steam...

Ganapathy, V.

300

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

standby power consumption in BPM furnaces is significantlytotal electricity consumption by BPM furnaces. This is notOverall, it appears the BPM motors used in furnaces offer

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

of the total electricity consumption by BPM furnaces. Thisbecause furnace electricity consumption is significant.of furnace electricity consumption. Therefore, accurate

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

302

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

303

Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of...  

Energy Savers (EERE)

Philadelhia Gas Works (PGW) Doe Furnace Rule Philadelhia Gas Works (PGW) Doe Furnace Rule DOE Furnace Rule More Documents & Publications Focus Series: Philadelphia Energyworks: In...

304

Load Preheating Using Flue Gases from a Fuel-Fired Heating System  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet discusses how the thermal efficiency of a process heating system can be improved significantly by using heat contained in furnace flue gases to preheat the furnace load.

305

Development of an Efficient Maintenance Scheme for Peak Efficiency of Boilers  

E-Print Network (OSTI)

AbstractPresently the world has enormous advancement in science and technology the topic considered here is just a drop out of an ocean of knowledge. Higher product quality, better reliability, better availability of plants, optimization of cost and efficient working of boilers is the chief concern now a days. Generally the production can be increased by the efficient use of boilers and hence there is a lot of scope to minimize the boiler operation cost. A boiler maintenance improvement program must include two aspects: (1) action to bring the boiler to peak efficiency and (2) action to maintain the efficiency at the maximum level. Good maintenance and efficiency start with having a working knowledge of the components associated with the boiler, keeping records, etc., and end with cleaning heat transfer surfaces, adjusting the air-to-fuel ratio, etc. A well-planned maintenance program avoids unnecessary down time or costly repairs. It also promotes safety and aids boiler code and local inspectors. An inspection schedule listing the procedures should be established. Thus in this paper an attempt is made to develop an efficient maintenance scheme by which boilers can be used with peak efficiency.

Amit Kumar Jain; Anupam Singhal

306

Furnace Blower Electricity: National and Regional Savings Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Blower Electricity: National and Regional Savings Potential Furnace Blower Electricity: National and Regional Savings Potential Title Furnace Blower Electricity: National and Regional Savings Potential Publication Type Report LBNL Report Number LBNL-417E Year of Publication 2008 Authors Franco, Victor H., James D. Lutz, Alexander B. Lekov, and Lixing Gu Document Number LBNL-417E Pagination 14 Date Published August 1 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80% of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressureused in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, whilewarm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

307

Cement advanced furnace and process  

SciTech Connect

This patent describes a suspension shaft furnace for producing discrete cement clinkers from discrete pellets of cement-forming batch materials which are gravity-migrated therethrough. It comprises a vertical furnace housing enclosing a top pellet-feeding and preheating zone comprising an elongate vertical shaft section opening into an intermediate fluidized bed section comprising fuel inlet conduits, an air-permeable clinker-impermeable support; a lower clinker-cooling section beneath the fluidized bed section; clinker-discharge means communicating between the fluidized bed section and the cooling section and air inlet means.

Litka, A.F.; Cohen, S.M.

1992-06-02T23:59:59.000Z

308

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

8 8 Major Residential HVAC Equipment Lifetimes, Ages, and Replacement Picture Equipment Type Central Air Conditioners 8 - 14 11 8 5,354 Heat Pumps 9 - 15 12 8 1,260 Furnaces Electric 10 - 20 15 11 N.A. Gas-Fired 12 - 17 15 11 2,601 Oil-Fired 15 - 19 17 N.A. 149 Gas-Fired Boilers (1) 17 - 24 20 17 204 Note(s): Source(s): Lifetimes based on use by the first owner of the product, and do not necessarily indicate that the product stops working after this period. A replaced unit may be discarded or used elsewhere. 1) 2005 average stock age is for gas- and oil-fired steam and hot water boilers. Appliance Magazine, U.S. Appliance Industry: Market Share, Life Expectancy & Replacement Market, and Saturation Levels, January 2010, p. 10 for service and average lifetimes, and units to be replaced; ASHRAE, 1999 ASHRAE Handbook: HVAC Applications, Table 3, p. 35.3 for boilers service lifetimes; and

309

Breakthrough Furnace Can Cut Solar Industry Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace can Cut Solar Industry Costs A game-changing Optical Cavity Furnace (OCF)-developed by the National Renew- able Energy Laboratory (NREL) with funding from the U.S....

310

Furnace Blower Electricity: National and Regional Savings Potential  

SciTech Connect

Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

2008-05-16T23:59:59.000Z

311

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

312

b33.pdf  

Gasoline and Diesel Fuel Update (EIA)

1999 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables 104 Heat Pumps Furnaces Individual Space Heaters District Heat Boilers Packaged Heating Units...

313

Latest Development of CFB Boilers in China  

Science Journals Connector (OSTI)

The circulating fluidized bed (CFB) coal-fired boiler has being rapidly developed ... the development history and development status of the CFB boiler in China are introduced. The development history of the CFB b...

G. X. Yue; H. R. Yang; J. F. Lu; H. Zhang

2010-01-01T23:59:59.000Z

314

Numerical Simulation in a Supercirtical CFB Boiler  

Science Journals Connector (OSTI)

The dimension of the hot circulation loop of the supercritical CFB boiler is large, and there are many ... simulation of gas-solid flow in a supercritical CFB boiler was conducted by using FLUENT software. ... th...

Yanjun Zhang; Xiang Gaol; Zhongyang Luo

2010-01-01T23:59:59.000Z

315

New Concept of CFB Boiler with FGD  

Science Journals Connector (OSTI)

This paper introduces the technology characteristic of CFB Boiler with CFB-FGD on the basis of the summary of desulfurization principle in CFB boiler. The technology can overcome disadvantage of...

Pan Xueqin

2009-01-01T23:59:59.000Z

316

CenterPoint Energy - Business Gas Heating Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy - Business Gas Heating Rebates CenterPoint Energy - Business Gas Heating Rebates CenterPoint Energy - Business Gas Heating Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Boiler System, Modulating Boiler Burner, and Vent Dampeners: 25% of equipment cost Program Info Expiration Date 12/31/2013 State Arkansas Program Type Utility Rebate Program Rebate Amount Solutions Program: Varies Direct Install Measures: No cost to customers 85% to 91.9% Efficiency Boiler: $1,400/MMBtuh Input 92%+ Efficiency Boiler: $2000/MMBtuh Input Modulating Boiler Burners: $1,000/MMBtuh Input Vent Dampers: $250/boiler Boiler Controls: $150/system Storage Water Heater: $75 Tankless Water Heater: $500

317

EXHAUST GAS BOILER FIRE PERVENTION  

E-Print Network (OSTI)

Today's demands for better overall usability of fuel oil in large two-stroke low speed marine diesel engines greatly influenced their development, and the purity of their exhaust gases. With this paper we would like to indicate on to factors which directly influence on soot forming, deposition and cause of occurance of fire in exhaust gas boiler (EGB). Due the fact that a fire in the EGB can result in complete destruction of the boiler, and a longer interruption of the vessel commercial operations, crew must be familiar with the main reasons of soot deposition on the boiler tubes and elements and origination of fire, and to have taken proper and timely protection measures 1.

Branko Lali? Dipl. Ing; Mr. Ivan Komar; Dipl. Ing

318

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

319

Sootblowing optimization for improved boiler performance  

DOE Patents (OSTI)

A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

2013-07-30T23:59:59.000Z

320

Boiler Combustion Control and Monitoring System  

Energy.gov (U.S. Department of Energy (DOE))

Efficiency of existing boilers can be improved in three ways; replacement with new boilers, replacement of the burner, or installation of a combustion control system. While installation of a new boiler or replacement of the burner can lead to the greatest efficiency gains, the higher costs associated with these measures typically leads to longer payback periods than combustion control systems.

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Application of Multivariable Model Predictive Advanced Control for a 2310T/H CFB Boiler Unit  

Science Journals Connector (OSTI)

When a CFB boiler is in automatic control, there are ... non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB adv...

Zhao Weijie; Dai Zongllao; Gou Rong

2010-01-01T23:59:59.000Z

322

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

SciTech Connect

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

323

RESEARCH ARTICLE OPEN ACCESS CFD Studies on Multi Lead Rifled [MLR] Boiler Tubes  

E-Print Network (OSTI)

This paper reports the merits of multi lead rifled [MLR] tubes in vertical water tube boiler using CFD tool. Heat transfer enhancement of MLR tubes was mainly taken in to consideration. Performance of multi lead rifled tube was studied by varying its influencing geometrical parameter like number of rifling, height of rifling, length of pitch of rifling for a particular length. The heat transfer analysis was done at operating conditions of an actual coal fired water tube boiler situated at Apollo Tyres LTD, Chalakudy, India for saturated process steam production. The results showed that the heat transfer increased when compared with existing inner plane wall water tubes.

Dr T C Mohankumar; Nice Thomachan

324

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana  

Energy.gov (U.S. Department of Energy (DOE))

Case study details Naval Air Station Oceana findings that its heating needs could be met more efficiently by replacing its central plant with a combination of distributed boilers and ground source heat pumps. The results saved more than 1 million MBtu in energy and 19,574 Kgal of water annually.

325

Superclean coal-water slurry combustion testing in an oil-fired boiler  

SciTech Connect

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

1993-04-21T23:59:59.000Z

326

Superclean coal-water slurry combustion testing in an oil-fired boiler  

SciTech Connect

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) demonstration and evaluation. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress is reported. 7 refs., 7 figs., 1 tab.

Miller, B.G.; Schobert, H.H.

1990-09-28T23:59:59.000Z

327

Covered Product Category: Commercial Boilers  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for commercial boilers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

328

Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions.  

E-Print Network (OSTI)

??Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, (more)

Yang, Dong

2008-01-01T23:59:59.000Z

329

Pioneering Heat Pump Project  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

330

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop...

331

Alternate Materials for Recovery Boiler Superheater Tubes  

SciTech Connect

The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

2009-01-01T23:59:59.000Z

332

Miscellaneous comments on boiler control tuning  

SciTech Connect

This article is about boiler control tuning, a task both difficult and important. Why is tuning of the boiler control so difficult Because it is essentially one large, interactive, non-linear control loop, which does not lend itself to automatic tuning. Why is good tuning of the boiler control so important Because it impacts boiler and turbine efficiency, unit ramp rate and generation error, unit turn-down (low load operation), and unit availability (ability to survive process upsets and equipment failures). Can you improve boiler operation through tuning alone Yes, if the practitioner of this art is competent, boiler control tuning can cover-up a multitude of sins. However, it is best to combined tuning with a new control system, appropriate control strategies, good measurements and small deadband actuators. This paper describes the basics of boiler control tuning.

Keller, G.Y. (Burns and Roe Enterprises, Oradell, NJ (United States))

1994-01-01T23:59:59.000Z

333

Single-loop controllers bring boilers in line  

SciTech Connect

The boiler process seems simple. Some type of fuel is burned in the presence of air, forming heat and combustion gases. The heat is then absorbed by the boiler drum and transferred to the water inside. The heated water changes to steam and is exhausted, which spins an electrical turbine that produces electricity, and exhausts lower pressure steam for condensing in the process. Although this process seems simple, anything could go wrong at any time. The flame could go out, the fuel could run low, or the drum could get dirty. Let`s take a look at how to avoid these problems. The first step is to take accurate measurements. Typically, these measurements include flow, pressure, conductivity, temperature, stack analysis, and a level or two. Ambient conditions can affect performance of each measuring device, so be sure to consider the hot, drafty conditions of boiler houses when selecting/installing devices. The second step is to bring the measurement signals back to the control room. Use two-wire, loop-powered devices to transmit all signals except the stack analysis signals. Two-wire, loop-powered technology increases reliability, lowers installation costs, and eliminates ground loops. Signal conditioning takes place at the microcontroller input points. Signal conditioning is done to provide a linear, overall loop response to the controller. It also simplified measurement. Examining four types of input signal characterization will help explain the signal conditioning process. The first signal is a zero-based pressure signal with a linear characteristic. The second is a temperature measurement made by a thermocouple whose output is nonlinear. Next is a flow measurement made with a conventional d/p cell and orifice plate. It needs a square root characterization. Last is a combustion air flow measurement from the pressure drop across part of the boiler or preheater. This flow measurement is quite tricky because of a large deviation from the simple square root relationship.

Harrelson, D.; Piechota, B.

1995-08-01T23:59:59.000Z

334

Measure Guideline: Condensing Boilers - Control Strategies for Optimizing Performance and Comfort in Residential Applications  

SciTech Connect

The combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater has become a common option for high-efficiency residential space heating in cold climates. While there are many condensing boilers available on the market with rated efficiencies in the low to mid 90% efficient range, it is imperative to understand that if the control systems are not properly configured, these heaters will perform no better than their non-condensing counterparts. Based on previous research efforts, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency (Arena 2010). It was found that there is a significant lack of information for contractors on how to configure the control systems to optimize overall efficiency. For example, there is little advice on selecting the best settings for the boiler reset curve or how to measure and set flow rates in the system to ensure that the return temperatures are low enough to promote condensing. It has also been observed that recovery from setback can be extremely slow and, at times, not achieved. Recovery can be affected by the outdoor reset control, the differential setting on the boiler and over-sizing of the boiler itself. This guide is intended for designers and installers of hydronic heating systems interested in maximizing the overall system efficiency of condensing boilers when coupled with baseboard convectors. It is applicable to new and retrofit applications.

Arena, L.

2013-05-01T23:59:59.000Z

335

Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement  

E-Print Network (OSTI)

Conditioners CommercialAir?SourceHeatPumps Air?CooledHeaters Gas Furnaces Air-Source Heat Pumps Boilers CentralChillers Commercial Air-Source Heat Pumps Commercial Boilers

Taylor, Margaret

2014-01-01T23:59:59.000Z

336

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

337

Crystal growth furnace with trap doors  

DOE Patents (OSTI)

An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

Sachs, Emanual M. (Watertown, MA); Mackintosh, Brian H. (Lexington, MA)

1982-06-15T23:59:59.000Z

338

Erosion-corrosion of thermal sprayed coatings in FBC boilers  

Science Journals Connector (OSTI)

Varieties of bed ash and fly ash were retrieved from operating fluidized bed combustor (FBC) boilers firing different fuels in North America and Europe. Using these ashes, the relative erosion-corrosion resistances of HVOF Cr3C2?NiCr coating and several other thermal sprayed coatings were determined in an elevated temperature blast nozzle erosion tester. Test conditions attempted to simulate erosive conditions found at the refractorywaterwall interface and in the convection pass region in tubular heat exchangers of FBC boilers. Erosion-corrosion (E-C) wastage mechanisms of the structural metals (AISI 1018, ASTM SA213-T22) were discussed and compared with the E-C wastage of HVOF Cr3C2?NiCr cermet coatings. The relatively different erosivities of ashes retrieved from North America and from Europe were also discussed.

Buqian Wang

1996-01-01T23:59:59.000Z

339

Covered Product Category: Residential Gas Furnaces | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

select products that feature sealed combustion. Condensing furnaces should not use indoor air, which frequently contains contaminants from common household products, for...

340

Boiler - tuning basics, part 1  

SciTech Connect

Tuning power plant controls takes nerves of steel and an intimate knowledge of plant systems gained only by experience. Tuning controls also requires equal parts art and science, which probably is why there are so few tuning experts in the power industry. In part 1 of a two-part series, the author explores a mix of the theoretical and practical aspects of tuning boiler control. 5 figs.

Leopold, T. [ABB Inc. (United States)

2009-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fluidized bed boiler feed system  

DOE Patents (OSTI)

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

342

Regenerative Boiler Feedwater Heater Economics  

E-Print Network (OSTI)

REGENERATIVE BOILER FEEDWATER HEATER ECONOMICS William L. Viar, PE waterland, Viar & Associates, Inc. Wilmington, Delaware ABSTRACT The basic Rankine Vapor Cycle has been r,~peatedly modified to improve efficiency. Always, the objective....g., first and second laws of thermodynamics) have improved and contributed to the evolution. The demands for larger systems with higher performance have been persistent. Progress i ve changes in the app1icat ion of the fundamental Rankine cycle have...

Viar, W. L.

343

Operating experience with industrial packaged FBC boilers  

SciTech Connect

Jonston Boiler company has developed a packaged fluidized bed combustion firetube boiler which burns coal within a bed of inert material (limestone) efficiently and cleanly. The firetube boiler cross section is schematized and explained. After one year demonstration, a sale was made to Central Soya of Marion, Ohio. The control system, drum level control draft, baghouse control system and emissions tests are highlighted. A few incidents of defluidization are noted.

Hutchinson, B.

1982-06-01T23:59:59.000Z

344

ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA  

E-Print Network (OSTI)

Solar P2: PRIMARY HEATING EQUIPMENT DESCRIPTION: RS Resistance (electric) HP Heat Pump BO Boiler IR Infrared (used in warehouses) FR Furnace

Piette, M.A.

2010-01-01T23:59:59.000Z

345

Upgrade Boilers with Energy-Efficient Burners  

SciTech Connect

This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

346

Novel CFB Boiler Technology with Reconstruction of its Fluidization State  

Science Journals Connector (OSTI)

Compared with a conventional pulverized coal fired boiler, the combustion efficiency of a CFB boiler is lower while the self-consumed ... key research topic for researchers and manufacturers of CFB boilers. Based...

H. R. Yang; H. Zhang; J. F. Lu; Q. Lfu

2010-01-01T23:59:59.000Z

347

Time and Temperature Test Results for PFP Thermal Stabilization Furnaces  

SciTech Connect

The national standard for plutonium storage acceptability (standard DOE-STD-3013-99, generally known as ''the 3013 standard'') has been revised to clarify the requirement for processes that will produce acceptable storage materials. The 3013 standard (Reference 1) now states that ''Oxides shall be stabilized by heating the material in an oxidizing atmosphere to a Material Temperature of at least 950 C (1742 F) for not less than 2 hours.'' The process currently in use for producing stable oxides for storage at the Plutonium Finishing Plant (PFP) heats a furnace atmosphere to 1000 C and holds it there for 2 hours. The temperature of the material being stabilized is not measured directly during this process. The Plutonium Process Support Laboratories (PPSL) were requested to demonstrate that the process currently in use at PFP is an acceptable method of producing stable plutonium dioxide consistently. A spare furnace identical to the production furnaces was set up and tested under varying conditions with non-radioactive surrogate materials. Reference 2 was issued to guide the testing program. The process currently in use at the PFP for stabilizing plutonium-bearing powders was shown to heat all the material in the furnace to at least 950 C for at least 2 hours. The current process will work for (1) relatively pure plutonium dioxide, (2) dioxide powders mixed with up to 20 weight percent magnesium oxide, and (3) dioxide powders with up to 11 weight percent magnesium oxide and 20 weight percent magnesium nitrate hexahydrate. Time and temperature data were also consistent with a successful demonstration for a mixture containing 10 weight percent each of sodium and potassium chloride; however, the molten chloride salts destroyed the thermocouples in the powder and temperature data were unavailable for part of that run. These results assume that the current operating limits of no more than 2500 grams per furnace charge and a powder height of no more than 1.5 inches remain in effect, although deeper powder beds (up to 2 inches) also yielded temperatures of greater than 950 C for longer than 2 hours.

COMPTON, J.A.

2000-08-09T23:59:59.000Z

348

HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI)  

Energy.gov (U.S. Department of Energy (DOE))

OE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps.

349

Using Waste Heat for External Processes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Consider Installing a Condensing Economizer...

350

Advanced condensing heat exchangers: Phase A, Annual report  

SciTech Connect

This report presents the results of the first year of a research program Battelle is conducting for the Brookhaven National Laboratory. The primary objectives of this program are to resolve the major technical problems which may limit the performance and service life of high efficiency, condensing appliances, and to transfer this technology to the furnace and boiler manufacturing industry.

Stickford, G.H.; Talbert, S.G.; Agrawal, A.K.; Hindin, B.; Murphy, M.J.; Locklin, D.W.; Bigg, D.; Spinosa, E.D.

1987-01-01T23:59:59.000Z

351

Existing and prospective blast-furnace conditions  

SciTech Connect

Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk [Ukrainian Academy of Sciences, Dnepropetrovsk (Ukraine). Institute of Ferrous Metallurgy

2009-07-15T23:59:59.000Z

352

Thermal Imaging Control of Furnaces and Combustors  

SciTech Connect

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

353

Optical cavity furnace for semiconductor wafer processing  

DOE Patents (OSTI)

An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

Sopori, Bhushan L.

2014-08-05T23:59:59.000Z

354

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines...

355

The Impact of Forced Air System Blowers on Furnace Performance and Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Forced Air System Blowers on Furnace Performance and Utility The Impact of Forced Air System Blowers on Furnace Performance and Utility Loads Speaker(s): Bert Phillips Date: November 7, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: James Lutz Bert Phillips will talk about the impact of forced air system blower performance on furnace or heating performance and on utility loads, and what can be done to reduce blower power requirements. He will also briefly discuss a ground source heat pump monitoring study that he just finished. Mr. Phillips is a registered Professional Engineer in three Canadian provinces and part owner of UNIES Ltd., an engineering firm in Winnipeg, Manitoba (60 miles straight north of the North Dakota/Minnesota border). He does research and HVAC system design and investigates

356

Mercury control challenge for industrial boiler MACT affected facilities  

SciTech Connect

An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

NONE

2009-09-15T23:59:59.000Z

357

High temperature corrosion of boiler waterwalls induced by chlorides and bromides. Part 1: Occurrence of the corrosive ash forming elements in a fluidised bed boiler co-firing solid recovered fuel  

Science Journals Connector (OSTI)

In waste fired boilers high temperature corrosion has often been attributed to zinc and lead chlorides. In addition, bromine induced high temperature corrosion has been earlier observed in a bubbling fluidised bed (BFB) boiler co-firing solid recovered fuel (SRF) with bark and wastewater sludge. In Part 1 of this work a measurement campaign was undertaken to determine the occurrence of Cl, Br, Zn and Pb in the fuel, in the combustion gases as well as in the deposits on the boiler waterwalls. It was observed that Cl, Br, Zn and Pb originate to a large extent from the SRF, they are vaporised in the furnace, and may form waterwall deposits. This, complemented by fluctuations between oxidising and reducing atmosphere resulted in rapid corrosion of the waterwall tubes. Concentrations of Cl, Br, Zn and Pb in the fuel, in the furnace vapours and in the deposits are reported in this work. As there is lack of published data on the bromine induced high temperature corrosion, laboratory scale corrosion tests were carried out to determine the relative corrosiveness of chlorine and bromine and these results will be reported in Part 2 of this work. Furthermore, the forms of Cl, Br, Zn and Pb in the combustion gases as well as in the waterwall deposits were estimated by means of thermodynamic equilibrium modelling and these results will also be discussed in Part 2.

P. Vainikka; D. Bankiewicz; A. Frantsi; J. Silvennoinen; J. Hannula; P. Yrjas; M. Hupa

2011-01-01T23:59:59.000Z

358

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

energy conservation standard in terms of the Annual Fuel Utilization Efficiency (AFUE) descriptor at a minimum

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

359

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

energy conservation standard in terms of the Annual Fuel Utilization Efficiency (AFUE) descriptor at a minimum

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

360

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . .28 ENERGY CONSUMPTION

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Methodology for Optimizing Boiler Operating Strategy  

E-Print Network (OSTI)

Among the many ways by which an energy manager can conserve energy is the establishment of a strategy for operation of fired boilers. In particular, he can effect total fuel consumption by his decision on how much on-line boiler surplus is required...

Jones, K. C.

1983-01-01T23:59:59.000Z

362

Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers  

DOE Patents (OSTI)

The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

Reifman, Jaques (Western Springs, IL); Feldman, Earl E. (Willowbrook, IL); Wei, Thomas Y. C. (Downers Grove, IL); Glickert, Roger W. (Pittsburgh, PA)

2003-01-01T23:59:59.000Z

363

Advanced furnace air staging and burner modifications for ultra-low NOx firing systems  

SciTech Connect

Overfire air is an effective means to reduce NOx emissions from coal fired furnaces. The current range of overfire air usage on wall-fired boilers in the US is in the range of 10 to 20%. In most cases this is enough to achieve current Title IV NOx reduction requirements. Future applications are likely to go beyond 20% Overfire Air to reduce NOx further for lower investment and operating costs of SCR retrofits. Summer ozone reduction requires NOx emissions of 0.15 lb/MBtu. Currently, industry is exploring the conditions under which this goal is attainable. The paper discussed the approach to achieve ultra-low NOx emissions by using advanced furnace air staging. It describes the unique approach of redesigning the burner to maintain low NOx burner performance when the overfire air system is added or increased in capacity. The impact on furnace corrosion and unburned carbon losses are presented. A case study is used to show the effects of overfire air both on emissions and unburned carbon.

McCarthy, K.; Laux, S.; Grusha, J.

1999-07-01T23:59:59.000Z

364

METHANE de-NOX FOR UTILITY PC BOILERS  

SciTech Connect

The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NOx emissions to 0.15 lb per million Btu or less without post-combustion flue gas cleaning. Work during previous reporting periods completed the design, installation, shakedown and initial PRB coal testing of a 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Based on these results, modifications to the gas-fired preheat combustor and PC burner were defined, along with a modified testing plan and schedule. A revised subcontract was executed with BBP to reflect changes in the pilot testing program. Modeling activities were continued to develop and verify revised design approaches for both the Preheat gas combustor and PC burner. Reactivation of the pilot test system was then begun with BBP personnel. During the previous reporting period, reactivation of the pilot test system was completed with the modified Preheat gas combustor. Following shakedown of the modified gas combustor alone, a series of successful tests of the new combustor with PRB coal using the original PC burner were completed. NOx at the furnace exit was reduced significantly with the modified gas combustor, to as low as 150 ppm with only 36 ppm CO (both corrected to 3% O2). Concurrent with testing, GTI and BBP collaborated on development of two modified designs for the PC burner optimized to fire preheated char and pyrolysis products from the Preheat gas combustor. During the current reporting period, one of the two modified PC burner designs was fabricated and installed in the pilot test facility. Testing of the modified pilot system (modified gas combustor and modified PC burner) during the quarter included 38 tests with PRB coal. NOx reduction was significantly improved to levels as low as 60-100 ppmv with CO in the range of 35-112 ppmv without any furnace air staging.

Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

2002-01-31T23:59:59.000Z

365

7 - Oxy-coal burner design for utility boilers  

Science Journals Connector (OSTI)

Abstract: This chapter discusses the design of oxy-coal burners intended for application in utility boilers, with the understanding that this is an emerging technology. Physical and operational constraints on the oxy-fired design are discussed, relative to traditional air-fired burners. These constraints result in an oxy-fired flame with delayed ignition and inhibited flame stability. Additional degrees of freedom are introduced into the burner design and operation with the use of pure oxygen. Leveraging these degrees of freedom allows the design of an air-like oxy-coal burner and firing system that will produce a stable flame with tailored shape and heat transfer profile.

J. Shan; A. Fry

2011-01-01T23:59:59.000Z

366

A coal-fired combustion system for industrial process heating applications  

SciTech Connect

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Phase III development contract DE-AC22-91PC91161 for a Coal-Fired Combustion System for Industrial Process Heating Applications'' is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec's Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

367

EECBG Success Story: San Francisco Turns Up The Heat In Push...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is getting some critical assistance in replacing old and inefficient boilers with new, high-efficiency heating systems using Energy Efficiency and Conservation Block Grant (EECBG)...

368

BEHAVIOUR OF BOILER STEEL SA-192 IN OXIDATION AND HOT CORROSION AT DIFFERENT TEMPERATURES  

E-Print Network (OSTI)

The major degradation mechanism occur due to oxidation and hot corrosion which is responsible for failure of boiler and gas turbine components. These failures occur because of the usage of wide range of fuels such as coal, oil at increased temperatures. In current investigation oxidation and hot corrosion performances of bare Boiler Steel SA-192 has been evaluated in air and with aggressive environment. For aggressive environment composition of sodium sulphate and vanadium pentaoxide have been mixed in proper ratio (Na2SO4+60%V2O5) to provide an experimental condition under cyclic conditions at an elevated temperatures of 850 0 C & 950 0 C. The kinetics of the corrosion is approximated by weight change measurements made after each cycle for total duration of 50 cycles. Each cycle consists of keeping the samples for 1 hour duration in Kanthol wire tube furnace at 850 0 C and 950 0 C followed by 20 minute cooling in ambient air. Weight change data has been taken after each cycle by digital electronic balance machine with an accuracy of 1 milligram. Graphs have been plotted between weight gains per surface area to number of cycles. Boiler Steel SA-192 has shown poor performance in oxidising and in hot corrosion environment as the temperature increased. It suffered from intensive spallation in the form of removal of scales.

Vinay Kumar Sahu; Jayant Singh; Mnnit Allahabad

369

Retrofitted coal-fired firetube boiler and method employed therewith  

DOE Patents (OSTI)

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

Wagoner, Charles L. (Tullahoma, TN); Foote, John P. (Tullahoma, TN)

1995-01-01T23:59:59.000Z

370

Retrofitted coal-fired firetube boiler and method employed therewith  

DOE Patents (OSTI)

A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

Wagoner, C.L.; Foote, J.P.

1995-07-04T23:59:59.000Z

371

Startup, Commissioning and Operation of Fenyi 100MW CFB Boiler  

Science Journals Connector (OSTI)

The first 100MW CFB boiler, designed by the Thermal Power Research ... burn out are used in the 100 MW CFB boiler. The results of the 100MW CFB boiler shows that the CFB boiler can run in 30% MCR and ... got afte...

Zhiwei Wang; Wugao Yu; Shi Bo

2010-01-01T23:59:59.000Z

372

Furnace Blower Performance Improvements- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Top Innovation profile describes Building America research into improving efficiency of furnace fan blowers.

373

Thermally sprayed coatings for boiler protection  

SciTech Connect

FBC boilers are large, expensive installations which suffer enormously from wear caused by corrosion, aggravated by high temperatures. The exact type of wear experienced varies from one part of a boiler to another and is influenced by the overall design of the boiler and the type of fuel burnt in it. Boiler manufacturers and users face a difficult choice in selecting materials to fight these problems. Inexpensive and easily worked metals, unfortunately, offer little resistance to the types of wear experienced in boilers, while alloys which are resistant to erosion and corrosion are very costly as well as being difficult to form and join. This paper presents a number of ways in which these material losses and related costs in boiler systems can be reduced by application of thermally sprayed coatings which lead to significant increases in service life. The selection of the coating material and of the correct deposition process can, today, be based on the results of laboratory tests (elevated temperature corrosion and erosion), small scale in-situ test coatings and on full scale FBC boiler protection coating utilization. Practical examples are given of thermal spray coatings which have been successfully applied to different kinds of FBC boilers including those burning coal, waste (chemical, industrial, household) and wood chips. The paper describes the procedures for applying coatings to boiler components, the properties of the resulting coatings and how best to select coating materials for use in some specific wear and corrosion environmentals. In addition, future trends in the utilization of thermally sprayed coatings are discussed.

Gustafsson, S.; Steine, H.T. [Eutectic and Castolin, Lausanne (Switzerland); Ridgway, W.F. [Eutectic and Castolin, New York, NY (United States)

1995-12-31T23:59:59.000Z

374

Sustainable Electric Arc Furnace Steel Production: GREENEAF  

Science Journals Connector (OSTI)

Generally speaking, in the electric furnace, coal (and consequently char) can be used as injected powder or charged into the basket. The syngas can be used for EAF burners.

Loris Bianco; Giulia Baracchini

2013-01-01T23:59:59.000Z

375

Furnace Blower Performance Improvements - Building America Top...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in preparation for cold weather, they may be unaware of how furnace blowers can impact HVAC efficiency. In fact, studies show that the most common blowers have efficiencies of...

376

Energy Assessment Protocol for Glass Furnaces  

E-Print Network (OSTI)

The Department of Energy funded development of a methodology that could be used by glass producers to increase furnace efficiency, and that could serve as a model for other energy-intensive industries. Accordingly, a team comprising PPG Industries...

Plodinec, M. J.; Kauffman, B. M.; Norton, O. P.; Richards, C.; Connors, J.; Wishnick, D.

2005-01-01T23:59:59.000Z

377

DOE Furnace Rule Ex Parte Communication  

Energy.gov (U.S. Department of Energy (DOE))

Philadelphia Gas Works (POW), the largest municipally-owned gas utility in the United States, is concerned about the impact that a new furnace efficiency rule could have on POW, its customers, the...

378

Boiler and steam generator corrosion. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating systems are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

379

Boiler and steam generator corrosion. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers and nuclear powered steam generators. Corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Water treatment, chemical cleaning, and descaling methods are considered. Although emphasis is placed on large-scale power generation systems, residential and commercial heating systems are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-01-01T23:59:59.000Z

380

Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion  

SciTech Connect

The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

Wayne Penrod

2006-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network (OSTI)

A., Rome, Italy ABSTRACT Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented..., described in Figure 1, 2. The combustion oxygen is carried by a more I I i I' has been used as a design basis. The heater is based on the actual design of a unit built by KTI SpA. The furnace does not include air preheater or steam generation...

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

382

Author's personal copy Radiative heat transfer in enhanced hydrogen  

E-Print Network (OSTI)

tube and heated in a furnace or by an incandescent lamp. It was observed that hydrogen release from the glass sample was faster and stronger when heated by an incandescent lamp than within a furnace. Here and the glass samples. In brief, the radiation emitted by the incandescent lamp is concentrated between 0

Pilon, Laurent

383

Emissions characteristics of modern oil heating equipment  

SciTech Connect

Over the last 10 years there have been some very interesting developments in oil heating. These include higher static pressure burners, air atomizing nozzles, low firing rate nozzles, low heat loss combustion chambers and condensing boilers and furnaces. The current data base on the emissions characteristics of oil-fired residential heating equipment is based primarily on data taken in the 1970's. The objective of the work described in this report is to evaluate the effects of recent developments in oil-fired equipment on emissions. Detailed emissions measurements have been made on a number of currently available residential oil burners and whole systems selected to represent recent development trends. Some additional data was taken with equipment which is in the prototype stage. These units are a prevaporizing burner and a retention head burner modified with an air atomizing nozzle. Measurements include No{sub x}, smoke numbers, CO, gas phase hydrocarbon emissions and particulate mass emission rates. Emissions of smoke, CO and hydrocarbons were found to be significantly greater under cyclic operation for all burners tested. Generally, particulate emission rates were found to be 3 to 4 times greater in cyclic operation than in steady state. Air atomized burners were found to be capable of operation at much lower excess air levels than pressure atomized burners without producing significant amounts of smoke. As burner performance is improved, either through air atomization or prevaporization of the fuel, there appears to be a general trend towards producing CO at lower smoke levels as excess air is decreased. The criteria of adjusting burners for trace smoke may need to be abandoned for advanced burners and replaced with an adjustment for specific excess air levels. 17 refs., 15 figs., 6 tabs.

Krajewski, R.; Celebi, Y.; Coughlan, R.; Butcher, T.; McDonald, R.J.

1990-07-01T23:59:59.000Z

384

Thermophotovoltaic furnacegenerator for the home using low bandgap GaSb cells  

Science Journals Connector (OSTI)

It is well known that distributed combined heat and power (CHP) systems for commercial and industrial buildings are economically desirable because they conserve energy. Here, a thermophotovoltaic (TPV) unit is described that brings CHP into the home providing both heat and electric power by replacing the typical home heating furnace with a combined TPV furnacegenerator. First, the design of a 1.5 kWelectric/12.2 kWthermal TPV furnacegenerator is described along with the key components that make it possible. Diffused junction GaSb cells are one of these key components. Secondly, an economic cost target is determined for this system where the cost of the photovoltaic array will be key to the economical implementation of this concept. Finally, it is argued that the GaSb cells and arrays can be manufactured at the required low cost. The cost target can be reached because the GaSb cells in the TPV furnacegenerator can produce an electrical power density of 1 W cm?2 which is 100 times higher than the typical solar cell. The cost target can also be reached because the GaSb cell fabrication process parallels the silicon solar cell process where no toxic gases are used, no wafer polish is required and cast polycrystalline cells can be used.

L M Fraas; J E Avery; H X Huang

2003-01-01T23:59:59.000Z

385

Evaluation of coal-derived liquids as boiler fuels. Volume 1. Comprehensive report. Final report  

SciTech Connect

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases which are distinguished by the level of the test effort. The first phase included the combustion tests of the two conventional fuels used at the station (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. In general, no adverse boiler performance effects were encountered with the combustion of the CDL fuels. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. With the exception of NO/sub x/ emissions, the CDL fuels will be expected to have lower levels of stack emissions compared to a conventional No. 6 fuel oil. NO/sub x/ emissions will be controllable to EPA standards with the application of conventional combustion modification techniques. Volume 1, of a five-volume report, contains a comprehensive report of the entire test program. 43 figs., 19 tabs.

Not Available

1985-09-01T23:59:59.000Z

386

Stress corrosion cracking of power boiler drums  

Science Journals Connector (OSTI)

This paper deals with the study, analysis and technical diagnosis fundamentals concerning damage induced by stress corrosion cracking. The main repair and safe operation methods for power boiler drums are described; this work being based on plant experience.

Alecsandru Pavel; Alexandru Pelle; Alexandru Epure; Cornel Radulescu; Petric? Baciu; Alexandru Bogdan; Mihai Stefanescu

1991-01-01T23:59:59.000Z

387

Boiler House and Power Station Chemistry  

Science Journals Connector (OSTI)

... and power stations". It provides a useful background of information on the properties and combustion of ... of coals, and on such subjects as the treatment of boiler feed water, types of oil ...

A. PARKER

1949-01-01T23:59:59.000Z

388

Method of regulating the amount of underfire air for combustion of wood fuels in spreader-stroke boilers  

DOE Patents (OSTI)

A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.

Tuttle, Kenneth L. (Federal Way, WA)

1980-01-01T23:59:59.000Z

389

Intermountain Gas Company (IGC) - Gas Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Furnace: $200/unit Provider Customer Service The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system using another energy source. New furnaces must meet a minimum AFUE efficiency rating of 90%, and the home must have been built at least three years prior to the furnace conversion to qualify for the rebate. Visit IGC's program web site for more

390

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

391

An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization  

E-Print Network (OSTI)

The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

Leibowitz, H. M.; Colosimo, D. D.

1980-01-01T23:59:59.000Z

392

A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1992--June 1992  

SciTech Connect

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec`s Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

393

Saving Money on Your Energy-Saving Upgrades | Department of Energy  

Energy Savers (EERE)

of the energy-saving household investments that qualify include high-efficiency central air conditioners, heat pumps, furnaces, and boilers that meet the standards listed on the...

394

Heat Integrate Heat Engines in Process Plants  

E-Print Network (OSTI)

and refrigeration systems. In many instances these real heat engines may appear as a complex process consisting of flash vessels, heat exchangers, compressors, furnaces, etc. See Figure 18a, which shows a simplified diagram of a "steam Rankine cycle." How... and rejection profiles of the real machine. For example, the heat acceptance and re jection profiles for the steam Rankine cycle shown in Figure 18a have been drawn on T,H coordinates in Figure 18b. Thus providing we know the heat acceptance and rejection...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

395

Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Technology FEMP Technology Brief: Boiler Combustion Control and Monitoring System to someone by E-mail Share Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Facebook Tweet about Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Twitter Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Google Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Delicious Rank Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Digg Find More places to share Federal Energy Management Program: FEMP

396

Coupled simulation of a tangentially hard coal fired 700C boiler  

Science Journals Connector (OSTI)

Abstract This paper presents the coupled simulation of steam cycle and firing of the 700C boiler. The focus is on the implementation of the coupling algorithm and the modification of the implemented ANSYS FLUENT models to adjust the simulation to the specific boundary conditions of a pulverized coal combustion in a tower-type boiler. Therefore the necessary simulation fundamentals are explained. This includes the used software packages and the combustion modeling in ANSYS FLUENT as well as the coupling algorithm developed. In addition, the required modifications of the ANSYS FLUENT models are described in more detail to provide a realistic boiler simulation. For the validation, the simulation results for the full load case are compared with the thermodynamic design data by the manufacturer ALSTOM Boiler Deutschland. The combustion simulation shows that the porous media model used for the convective heat exchangers has to be improved. The main problem is that the model cannot correctly participate in the radiation because the tube surfaces are not represented in the model. So the radiation interaction between combustion chamber and porous media is not correctly modeled. To correct this error, a source term is implemented. Furthermore, the emissivity of the walls is modified to consider the wall shadowing effects in the convective part as well as the radiation between the convective heat exchangers. The heat radiation in coal-fired boilers is highly complex, so the implemented models can be seen as an approximation. Given this background, the high agreement with the target values of the thermodynamic design can be seen as very positive.

Christian Schuhbauer; Michael Angerer; Hartmut Spliethoff; Frank Kluger; Helmut Tschaffon

2014-01-01T23:59:59.000Z

397

Air Leakage of Furnaces and Air Handlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

398

Segmented ceramic liner for induction furnaces  

DOE Patents (OSTI)

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

399

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

400

Graphite electrode DC arc furnace. Innovative technology summary report  

SciTech Connect

The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of feed composition variations on process operating conditions and slag product performance; and collecting mass balance and operating data to support equipment and instrument design.

NONE

1999-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Primary energy consumption of the dwelling with solar hot water system and biomass boiler  

Science Journals Connector (OSTI)

Abstract This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present Algorithm for determining the energy demands and efficiency of technical systems in buildings, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with better thermal insulation.

Mihaela Berkovi?-ubi?; Martina Rauch; Damir Dovi?; Mladen Andrassy

2014-01-01T23:59:59.000Z

402

Development and Validation of a 3-Dimensional CFB Furnace Model  

Science Journals Connector (OSTI)

At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, ... Analyses of field-test results in industrial-scal...

Arl Vepslinen; Karl Myhnen

2010-01-01T23:59:59.000Z

403

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

of two-stage furnaces with BPM motors provides electricityof two-stage furnaces with BPM motors provides electricityPSC) and brushless permanent magnet (BPM) 1 . PSC motors are

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

404

DOE Publishes Final Rule for Residential Furnace Fan Test Procedure...  

Office of Environmental Management (EM)

DOE Publishes Final Rule for Residential Furnace Fan Test Procedure DOE Publishes Final Rule for Residential Furnace Fan Test Procedure January 3, 2014 - 12:00am Addthis The...

405

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Solar Energy Center ABSTRACT Currently, total electricity consumption of furnacesFurnace Blower Electricity: National and Regional Savings Potential Victor Franco, James Lutz, Alex Lekov, and Lixing Gu (Florida Solar

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

406

Skyscrapers and District Heating, an inter-related History 1876-1933.  

E-Print Network (OSTI)

in the United States in the late 1850s.1 A district heating system produces energy in a boiler plant - steam and electricity. This system needs a heavy infrastructure - boiler plant, pumps, and mains laid out beneath of skyscrapers is well-known;3 but the history of district heating systems less well known, this article

Boyer, Edmond

407

Circulating fluidized-bed boiler makes inroads for waste recycling  

SciTech Connect

Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removed for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.

NONE

1995-09-01T23:59:59.000Z

408

ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION  

SciTech Connect

This document reviews the work performed during the quarter October-December 2003. Task 1 (Site Preparation) had been completed in the previous reporting period. In this reporting period, one week of combustion parameters optimization has been performed in Task 2 (experimental test performance) of the project. Under full-oxy conditions (100% air replacement with O{sub 2}-enriched flue gas) in 1.5MW{sub th} coal-fired boiler, the following parameters have been varied and their impact on combustion characteristics measured: the recirculated flue gas flow rate has been varied from 80% to 95% of total flue gas flow, and the total oxygen flow rate into the primary air zone of the boiler has been set to levels ranging from 15% to 25% of the total oxygen consumption in the overall combustion. In current reporting period, significant progress has also been made in Task 3 (Techno-Economic Study) of the project: mass and energy balance calculations and cost assessment have been completed on plant capacity of 533MW{sub e} gross output while applying the methodology described in previous reporting periods. Air-fired PC Boiler and proposed Oxygen-fired PC Boiler have been assessed, both for retrofit application and new unit. The current work schedule is to review in more details the experimental data collected so far as well as the economics results obtained on the 533MWe cases, and to develop a work scope for the remainder of the project. Approximately one week of pilot testing is expected during the first quarter of 2004, including mercury emission measurement and heat transfer characterization. The project was on hold from mid-November through December 2003 due to non-availability of funds. Out of the {approx}$785k allocated DOE funds in this project, $497k have been spent to date ($480 reported so far), mainly in site preparation, test performance and economics assessment. In addition to DOE allocated funds, to date approximately $330k has been cost-shared by the participants, bringing the total project cost up to $827k ($810k reported so far) as on December 31st, 2003.

Fabienne Chatel-Pelage

2004-01-01T23:59:59.000Z

409

Simulation of Combustion and Thermal Flow in an Industrial Boiler  

E-Print Network (OSTI)

Industrial boilers that produce steam or electric power represent a crucial facility for overall plant operations. To make the boiler more efficient, less emission (cleaner) and less prone to tube rupture problems, it is important to understand...

Saripalli, R.; Wang, T.; Day, B.

2005-01-01T23:59:59.000Z

410

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

total fuel and electricity consumption under laboratoryto decrease the electricity consumption of furnaces, mainlytotal fuel and electricity consumption under laboratory

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

411

DOE Publishes Final Rule for Residential Furnace Fan Test Procedure  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) has published a final rule regarding test procedures for residential furnace fans.

412

B&W IR-CFB: Operating Experience and New Developments  

Science Journals Connector (OSTI)

The paper provides an update on B&W Internal Recirculation (IR) CFB boiler operating experience, new commercial projects, ... of in-furnace heat absorption in higher capacity CFB boilers, a new B&W development is...

M. Maryamchik; D. L. Wietzke

2010-01-01T23:59:59.000Z

413

Covered Product Category: Residential Gas Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

414

Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

415

Density-Enthalpy Phase Diagram 0D Boiler Simulation  

E-Print Network (OSTI)

Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Finite Transitions #12;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Goal

Vuik, Kees

416

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;??  

E-Print Network (OSTI)

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;?? Thomas A. Henzinger 1 Howard model a steam­boiler control system using hybrid au­ tomata. We provide two abstracted linear models of the nonlinear be­ havior of the boiler. For each model, we define and verify a controller that maintains

Henzinger, Thomas A.

417

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network (OSTI)

An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky, Poland Abstract. In this paper an object-oriented algebraic solution of the steam-boiler specification Introduction The steam-boiler control specification problem has been proposed as a challenge for different

?lveczky, Peter Csaba

418

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network (OSTI)

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

419

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??  

E-Print Network (OSTI)

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ?? Thomas A. Henzinger1 Howard model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models of the nonlinear be- havior of the boiler. For each model, we de ne and verify a controller that maintains the safe

Henzinger, Thomas A.

420

Waterside Stress Assisted Corrosion (SAC) of Boiler Tubes  

E-Print Network (OSTI)

Waterside Stress Assisted Corrosion (SAC) of Boiler Tubes School of Materials Science Boiler Areas Susceptible to SAC · Generally SAC initiates near weld joints on cold side of tubes · SAC cracks are difficult to detect inaccessibility · Failures Detected at Various Locations in Boilers

Das, Suman

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nanotube Boiler 1 Abstract--Controlled copper evaporation at attogram  

E-Print Network (OSTI)

Nanotube Boiler 1 Abstract-- Controlled copper evaporation at attogram level from individual carbon nanotube (CNT) vessels, which we call nanotube boilers, is investigated experimentally, and ionization in these CNT boilers, which can serve as sources for mass transport and deposition in nanofluidic

Paris-Sud XI, Université de

422

FAQs Manhattanville Campus Central Energy Plant Boiler Stacks  

E-Print Network (OSTI)

FAQs Manhattanville Campus Central Energy Plant Boiler Stacks Installation Frequently Asked Questions What is happening? Columbia University is installing two (2) boiler stacks on top of the Jerome L, a below-grade facility which will consist four (4) 45,000 lbs/hr steam boilers and related equipment

Kim, Philip

423

Steam boiler control speci cation problem: A TLA solution  

E-Print Network (OSTI)

Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi- cal state of the steam boiler and the model maintained by the controller and discuss

424

Steam boiler control specification problem: A TLA solution  

E-Print Network (OSTI)

Steam boiler control specification problem: A TLA solution Frank Le?ke and Stephan Merz Institut f of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi­ cal state of the steam boiler and the model maintained by the controller and discuss

Merz, Stephan

425

1 | P a g e Boiler Gold Rush  

E-Print Network (OSTI)

1 | P a g e Boiler Gold Rush VISION STATEMENT The vision of BGR is twofold: first, help all new by participating in the premiere orientation program in the nation, Boiler Gold Rush. Second, enhance upper leaders for the betterment of the university. PROGRAM GOALS Boiler Gold Rush will provide the following

Ginzel, Matthew

426

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network (OSTI)

An Object-Oriented Algebraic Steam-Boiler Control Specification.In this paper an object-oriented algebraic solution of the steam-boiler specification problem is presented computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

?lveczky, Peter Csaba

427

Guide for the Extension of Boiler Internal Inspections  

E-Print Network (OSTI)

Under T.C.A. 68-122-110(a), each boiler used or proposed to be used within this state, except boilers exempt in 68-122-105, shall be thoroughly inspected as to their construction, installation, condition and operation as follows: (1) Power boilers shall be inspected annually both internally and externally while not under pressure, and

Tennessee Board; Boiler Rules

428

Pre-Inspection Checklist for High Pressure Boilers  

E-Print Network (OSTI)

Notice: This checklist reflects the most common violations our field inspectors encounter when performing an inspection on a high-pressure steam boiler installation. Its suggested that boiler industry personnel have access to a current set of applicable codebooks/jurisdictional laws. Such as: Section I of the ASME Boiler Code:

unknown authors

429

A new blowdown compensation scheme for boiler leak detection  

E-Print Network (OSTI)

considers the blowdown effect in industrial boiler operation. This adds to the efficiency of recent advances tubes. In utility boilers, early de- tection of leaks is primarily a financial issue. High velocityA new blowdown compensation scheme for boiler leak detection A. M. Pertew ,1 X. Sun ,1 R. Kent

Marquez, Horacio J.

430

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network (OSTI)

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

431

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network (OSTI)

or turndown so we delayed consideration of installation of a FBC boil r. CIRCULATING FBC In early 1980 we became aware of the work by the Ahlstrom Company of Helsinki, Finland in the development of the circulating FBC boiler design. The PYROFLOW... layer is a lightweight insulating refractory. In 1979, Ahlstrom started up a 45,000 pound per hour PYROFLOW unIt at Pihlava, Finland. In 1981, 200,000 pound per hour boiler was started up 1 Kauttua, Finland as le b se load steam supply for paper...

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

432

A summary of SNCR applications to two coal-fired wet bottom boilers  

SciTech Connect

In response to NO{sub x} reductions mandated under Title I of the 1990 Clean Air Act Amendments (CAAA), Public Service Electric & Gas and Atlantic Electric of New Jersey evaluated Selective Non-Catalytic Reduction (SNCR) for NO{sub x} control under separate programs at Mercer Station and B.L. England Station, respectively. Mercer Station is comprised of twin 321 MW Foster Wheeler coal-fired wet bottom boilers, with natural gas capability up to 100% load. B.L. England Station has three units, two of which are cyclone boilers of 136 MW and 163 MW. These furnace designs are of particular interest in that nominally 23,000 MW of cyclone boiler capacity and 6,900 MW of wall- or turbo-fired wet bottom boiler capacity will be faced with NO{sub x} reductions to be mandated under Title IV - Phase II for Group II boilers. Both stations evaluated Nalco Fuel Tech`s SNCR system using a portable test skid, with urea as the reducing chemical. The Mercer Unit 2 demonstration was performed with a low sulfur coal (nominally 0.8%), while the B.L. England Unit 1 demonstration utilized a medium sulfur coal (nominally 2.4%), and also re-injects fly ash back into the cyclones for ultimate collection and removal as slag. To address concerns over potential Ljungstrom air heater fouling, due to reactions between ammonia and SO{sub 3} in the air heater, and fly ash salability at Mercer Station, both sites targeted no greater than 5-10 ppmv ammonia emissions at the economizer exit. At Mercer Unit 2, air heater fouling was only experienced during system start-up when the ammonia emissions at the economizer exit were estimated at levels approaching 60 ppmv. B.L. England Unit 1, however, experienced frequent fouling of the air heater. NO{sub x} reductions achieved at both sites ranged between 30%-40% from nominal baseline NO{sub x} levels of 1.1-1.6 lb/MMBtu. Each site is currently undergoing installation of commercial SNCR systems.

Himes, R.; Hubbard, D.; West, Z. [Carnot, Tustin, CA (United States)] [and others

1996-01-01T23:59:59.000Z

433

Economical investigation of an integrated boilersolar energy saving system in Jordan  

Science Journals Connector (OSTI)

Jordan is relatively poor in conventional energy resources and is basically a non-oil producing country, i.e. its energy supply relies to a very large extent on imports. It is therefore unlikely that any future energy scenario for Jordan will not include a significant proportion of its energy to come from renewable sources such as solar energy. The lack of an integrated energy saving system which utilizes the solar energy for domestic hot water as well as for building space heating was the main motivation for the present study. In Jordan, there is no existing system can provide the integration mechanisms of solar energy and fuel combustion with electrical ones. Also adding new and related products increases sales of current boilers products and can be offered at competitive prices. During our investigations, it has been found that the market demand for boilersolar integration system in terms of the system acceptability, system feasibility, and system values is very high especially after the increased in oil prices during the last 3years, i.e. 20062008. The market trend shows that even though solar collector is not attractive as an energy source for domestic hot water, but the combined system for space heating and domestic hot water is fully accepted. However, the market demand for such a system is not completely identified yet but the awareness and the discussion of the idea shows a good potential. The economical study about the integration system of boiler and solar energy shows that using solar water heaters to heat space and for domestic water is cost-effective. Payback can be as low as 3years, and utility bills are much lower than they would be using a conventional heating system. The initial draft and design of a prototype for the boilersolarelectrical integration system has been carried out.

A. Al-Salaymeh; I. Al-Rawabdeh; S. Emran

2010-01-01T23:59:59.000Z

434

CenterPoint Energy - Residential Gas Heating Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy - Residential Gas Heating Rebates CenterPoint Energy - Residential Gas Heating Rebates CenterPoint Energy - Residential Gas Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Storage Tank Water Heater: $75 Tankless Water Heater: $500 Forced-Air Furnace: $400 - $600 Forced-Air Furnace (Back-Up System): $125 - $175 Hydronic Heating System: $400 Provider CenterPoint Energy CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage water heaters and tankless water heaters. All equipment must meet program requirements for efficiency and

435

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

436

METHANE de-NOX FOR UTILITY PC BOILERS  

SciTech Connect

The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NO{sub x} emissions to 0.15 lb per million Btu or less without post-combustion flue gas cleaning. Work during previous reporting periods completed the design, installation, shakedown and initial PRB coal testing of a 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Based on these results, modifications to the gas-fired preheat combustor and PC burner were defined, along with a modified testing plan and schedule. A revised subcontract was executed with BBP to reflect changes in the pilot testing program. Modeling activities were continued to develop and verify revised design approaches for both the Preheat gas combustor and PC burner. Reactivation of the pilot test system was then begun with BBP personnel. During the current reporting period, reactivation of the pilot test system was completed with the modified Preheat gas combustor. Following shakedown of the modified gas combustor alone, a series of successful tests of the new combustor with PRB coal using the original PC burner were completed. NO{sub x} at the furnace exit was reduced significantly with the modified gas combustor, to as low as 150 ppm with only 36 ppm CO (both corrected to 3% O{sub 2}). Concurrent with testing, GTI and BBP collaborated on development of two modified designs for the PC burner optimized to fire preheated char and pyrolysis products from the Preheat gas combustor.

Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

2002-10-29T23:59:59.000Z

437

AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace  

SciTech Connect

Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and tuyere by 30, in line with pilot scale tests conducted previously.

Michael F. Riley

2002-10-21T23:59:59.000Z

438

Unusual refinery boiler tube failures due to corrosion by sulfuric acid induced by steam leaks  

SciTech Connect

Corrosion by sulfuric acid in boilers is a low probability event because gas temperature and metal temperature of boiler tubes are high enough to avoid the condensation of sulfuric acid from flue gases. This degradation mechanism is frequently considered as an important cause of air preheaters materials degradation, where flue gases are cooled by heat transfer to the combustion air. Corrosion is associated to the presence of sulfuric acid, which condensates if metal temperature (or gas temperature) is below of the acid dew point. In economizer tubes, sulfuric acid corrosion is an unlikely event because flue gas and tube temperatures are normally over the acid dewpoint. In this paper, the failure analysis of generator tubes (similar to the economizer of bigger boilers) of two small oil-fired subcritical boilers is reported. It is concluded that sulfuric acid corrosion was the cause of the failure. The sulfuric acid condensation was due to the contact of flue gases containing SO{sub 3} with water-steam spray coming from leaks at the interface of rolled tube to the drum. Considering the information gathered from these two cases studied, an analysis of this failure mechanism is presented including a description of the thermodynamics condition of water leaking from the drum, and an analysis of the factors favoring it.

Lopez-Lopez, D.; Wong-Moreno, A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

1998-12-31T23:59:59.000Z

439

Gas Stirling engine ?CHP boiler experimental data driven model for building energy simulation  

Science Journals Connector (OSTI)

Abstract A dynamic model for the simulation of gas micro combined heat and power devices (?CHP boilers) has been developed in order to assess their energy performances. From a literature review and experimental investigations, the new model is designed with the aim of limiting the number of parameters which need to be easily accessible in order to be suitable with annual building energy simulations. At first, this paper focuses on the description of the ?CHP boiler which has been tested, on the development of the test bench and on the experimental results. Then, it focuses on the model description, on its parameterization and on its validation. The modelling approach is based on an energy balance on the device and on empirical expressions for the main inputs and outputs. The model characterizes the ?CHP boiler behaviour for different inlet water flow rates and temperatures. The dynamic phases with the start-up and cooling phases are taken into account. Finally, the models for the Stirling engine and the additional boiler are limited respectively to 28 and 24. Further experimental investigations led to simplify the ?CHP model from 28 to 17 parameters without reducing the accuracy.

J.-B. Bouvenot; B. Andlauer; P. Stabat; D. Marchio; B. Flament; B. Latour; M. Siroux

2014-01-01T23:59:59.000Z

440

Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site  

SciTech Connect

The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

Daling, P.M.; Graham, T.M.

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy harvester for a wireless sensor in a boiler environment  

Science Journals Connector (OSTI)

Abstract Wireless sensors have become a focus of study in the field of measurement technologies. The power supply of many wireless sensors is based on batteries or external power sources. However, there is increasing interest in finding solutions where the batteries can be leaved away and the power for the wireless sensors is produced from the environment in which the sensors operate. The technologies required are called energy harvesting or scavenging technologies. This paper introduces the principles, modeling and a practical implementation of a self-powering solution for a wireless sensor for energy boilers or other hot reactor vessels. With the aid of energy solution introduced, the wireless sensor can operate autonomously without any batteries. One of the design targets in this work was that the top part of harvesters mechanics must fit to the opening or assembly tube of diameter less than 15mm in the boiler wall reserved for standard instrument assemblies. So the top of harvester collects and conducts thermal energy to element generating electricity from it. The harvester and further the measuring and communication electronics are mounted outside the hot area. The harvester solution introduced in the paper can produce about 114mW power, when top of harvester mechanics was inserted to the test oven heated to temperature of +500C. The sensor function or type is not defined nor limited in this study. The electric energy generated by harvester can be used to power, for example, temperature, heat flux, flow, vibration or other little energy needing sensors.

Ilkka Korhonen; Raija Lankinen

2014-01-01T23:59:59.000Z

442

A microprocessor-based data acquisition and instrumentation system for the control of a rice-husk furnace  

Science Journals Connector (OSTI)

The development of efficient combustion systems burning solid agricultural wastes for heat and power generation requires well designed microprocessor-controlled systems. This paper describes the development of a cost-effective system to control the stable and clean combustion of rice husks in a vertical cyclone furnace. Such a system is shown to be economically feasible.

Mashkuri Yaacob; Baharuddin Ali

1990-01-01T23:59:59.000Z

443

System approach to reducing NO{sub x} emissions on a three cell high burner, heavy oil-fired boiler  

SciTech Connect

This paper documents the installation of plug-in low NO{sub x} burners on a utility boiler with cell burners. The original rapid mix burners and typical close burner centerline spacing produced a very hot furnace environment resulting in extremely high NO{sub x} emissions, in this case as high as 1.0 lbs/MMBtu. The unit was a {number_sign}6 oil-fired, 560 MW{sub e} supercritical pressure, three-cell burner boiler at Commonwealth Electric`s Canal Station, Unit {number_sign}1. This paper presents the results including emissions and boiler performance of the retrofit of DB Riley low NO{sub x} STS (Swirl Tertiary Stage) burners. Low NO{sub x} burners were used in conjunction with close-coupled overfire air using existing burner openings. The project reduced NO{sub x} emissions greater than 705 while firing {number_sign}6 oil, and this was accomplished with less than 10% flue gas recirculation.

Green, R.W.; Dorai, X.A. [DB Riley, Inc., Worcester, MA (United States); Hurley, B.A. [Commonwealth Electric Co., Wareham, MA (United States)

1996-11-01T23:59:59.000Z

444

Superclean coal-water slurry combustion testing in an oil-fired boiler. Quarterly technical progress report, November 15, 1989--February 15, 1990  

SciTech Connect

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the US Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) operations and disposition. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, slagging and fouling factors, erosion and corrosion limits, and fuel transport, storage, and handling can be accommodated in an oil-designed boiler. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress for this quarter is summarized.

Miller, B.G.; Walsh, P.M.; Elston, J.T.; Scaroni, A.W.

1990-04-06T23:59:59.000Z

445

Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993  

SciTech Connect

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

1993-04-21T23:59:59.000Z

446

Dofasco`s No. 4 blast furnace hearth breakout, repair and rescue  

SciTech Connect

On May 5, 1994, after producing 9.5 million metric tons of iron, Dofasco`s No. 4 Blast Furnace experienced a hearth breakout 250 millimeters below the west taphole. The hot metal spill caused a fire resulting in severe damage and 33 days of lost production. During a 26-day period, electrical wiring, water drainage systems and both tapholes were repaired. Recovery from an unprepared furnace stop of this length, with the deadman depleted is difficult. To aid with the rescue Hoogovens-designed oxygen/fuel lances were commissioned. The furnace recovery began with a lance in each taphole and all tuyeres plugged. Six days after startup the furnace was casting into torpedo cars, and after nine days operation had returned to normal. This incident prompted Dofasco to expand the hearth monitoring system to detect and prevent similar occurrences. During the repair, 203 new thermocouples were installed in the hearth, concentrating on the tapholes and elephant foot areas. These thermocouples were installed at various depths and locations to allow heat flux calculations. This hearth monitoring system has already identified other problem areas and provided valuable information about hearth drainage patterns. This information has allowed them to develop control strategies to manage localized problem areas.

Donaldson, R.J.; Fischer, A.J.; Sharp, R.M.; Stothart, D.W. [Dofasco Inc., Hamilton, Ontario (Canada)

1995-12-01T23:59:59.000Z

447

Digital radiographic systems detect boiler tube cracks  

SciTech Connect

Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

Walker, S. [EPRI, Charlotte, NC (United States)

2008-06-15T23:59:59.000Z

448

Mitsubishi FGD plants for lignite fired boilers  

SciTech Connect

In order to respond to the increasing electric energy demand for sustaining economic growth, construction of coal-fired thermal power plants worldwide is indispensable. As a countermeasure for environmental pollution which otherwise may reach a serious proportion from the operation of these plants, construction of flue gas desulfurization (FGD) plants is being promoted. Among these power stations where lignite fuel is burnt, the FGD plants concerned have to be designed to cope with high gas volume and SO{sub x} concentration as well as violent fluctuations in their values caused by such features of lignite as high sulfur content, low calorific volume, and unstable properties. Mitsubishi Heavy Industries (MHI) has received construction awards for a total of seven (7) FGD plants for lignite-fired boilers in succession starting from that for CEZ as, Czech Republic followed by those for EGAT, Thailand in 1993. All these plants are presently operating satisfactorily since successful completion of their performance tests in 1996. Further, a construction award of three (3) more FGD plants for lignite-fired boilers was received from ENDESA (Spain) in 1995 which are now being outfitted and scheduled to start commercial operation in 1998. In this paper, the authors discuss the outline design of FGD plants for lignite-fired boilers based on experience of FGD plants constructed since 1970 for heavy oil--as well as black coal-fired boilers, together with items confirmed from the operation and design guideline hereafter.

Kotake, Shinichiro; Okazoe, Kiyoshi; Iwashita, Koichiro; Yajima, Satoru

1998-07-01T23:59:59.000Z

449

The next generation of oxy-fuel boiler systems  

SciTech Connect

Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

Ochs, Thomas L.; Gross, Alex (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

2005-01-01T23:59:59.000Z

450

Optimized Utility Systems and Furnace Integration  

E-Print Network (OSTI)

OPTIMIZED UTILITY SYSTEMS AND FURNACE INTEGRATION A. S. McMullan and H. D. Spriggs, Linnhoff March, Inc., Leesburg, Va. ABSTRACT Conventional process design philosophy usually results in utility systems being designed after process design... defines the Process/Utility interface. Clearly, changing the process design can result in different utility demands and possibly in different utility system designs. This paper presents a procedure, using Pinch Technology, for the simultaneous design...

McMullan, A. S.; Spriggs, H. D.

451

A Miniature Maxthal Furnace for X-ray Spectroscopy and Scattering Experiments up to 1200 degrees C  

SciTech Connect

We have built a new small furnace to perform high temperature studies up to 1200 deg. C in vacuum or in oxygen atmosphere. This furnace was originally used as a catalytic reactor optimized for the in situ X-ray Absorption Spectroscopy experiments on beamline ID24. It has now been redesigned for use on the ESRF beamline ID01 for in situ Grazing Incidence Small Angle X-ray Scattering experiments. For these experiments high mechanical stability of the sample holder is necessary to keep the alignment of the sample during heating.

Gorges, Bernard; Vitoux, Hugo; Redondo, Pablo; Carbone, Gerardina [ESRF, BP220 38043 Grenoble CEDEX (France); Mocouta, Cristian [SOLEIL -BP48 91192 Gif-sur-Yvette CEDEX (France); Guilera, Gemma [ALBA CELLS 08290 Cerdanoyla Del Valles Barcelona (Spain)

2010-06-23T23:59:59.000Z

452

The Analysis and Assessment on Heating Energy Consumption of SAT  

E-Print Network (OSTI)

and equipment fully operating; Minding the change of the fume exhausting of the boiler for mastering the exchange case; if the fume exhausting temperature rising, it indicates that heat volume of the burn pit is defended during passing the water supply... and equipment fully operating; Minding the change of the fume exhausting of the boiler for mastering the exchange case; if the fume exhausting temperature rising, it indicates that heat volume of the burn pit is defended during passing the water supply...

Zhang, J.

2006-01-01T23:59:59.000Z

453

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

5 5 Commercial Equipment Efficiencies Equipment Type Chiller Screw COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.02 / 4.45 Scroll COP 2.80 / 3.06 2.96 / 4.40 N.A. Reciprocating COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.52 / 4.40 Centrifugal COP(full-load / IPLV) 5.0 / 5.2 6.1 / 6.4 7.3 / 9.0 Gas-Fired Absorption COP 1.0 1.1 N.A. Gas-Fired Engine Driven COP 1.5 1.8 N.A. Rooftop A/C EER 10.1 11.2 13.9 Rooftop Heat Pump EER (cooling) 9.8 11.0 12.0 COP (heating) 3.2 3.3 3.4 Boilers Gas-Fired Combustion Efficiency 77 80 98 Oil-Fired Thermal Efficiency 80 84 98 Electric Thermal Efficiency 98 98 98 Furnace AFUE 77 80 82 Water Heater Gas-Fired Thermal Efficiency 78 80 96 Oil-Fired Thermal Efficiency 79 80 85 Electric Resistance Thermal Efficiency 98 98 98 Gas-Fired Instantaneous Thermal Efficiency 77 84 89 Source(s): Parameter Efficiency

454

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

SciTech Connect

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

455

Waste minimization and pollution prevention initiatives within Argonne National Laboratory-East (ANL-E) boiler house operations  

SciTech Connect

The mission of ANL-E Plant Facility and Services-Utilities and Systems (PFS-US) is to operate and maintain utility services in a cost-effective manner, while utilizing new and innovative methods whenever possible. PFS-US operates an on-site coal burning boiler plant that generates steam for use throughout the Laboratory as a source to heat buildings, as well as for use in research experiments. In the recent past, PFS-US has embarked upon a series of initiatives to improve operating efficiency of boiler house operations. The results of these projects have had the following impacts on boiler house performance and operations: (1) boiler house efficiency and operations have improved, (2) boiler house operating costs have been reduced, (3) specific operating and maintenance costs have been avoided or eliminated, and (4) the amount of waste and pollution generated has been reduced. Through the implementation of these initiatives, over $250,000 of revenue and cost savings have been incurred by ANL-E. In addition, the Laboratory and DOE will benefit annually from revenues, cost savings, and the reduction of environmental liability resulting from these initiatives.

NONE

1996-08-01T23:59:59.000Z

456

Recover Heat from Boiler Blowdown | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Install an Automatic Blowdown-Control System Consider Installing a Condensing Economizer Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam...

457

Heat Recovery Considerations for Process Heaters and Boilers  

E-Print Network (OSTI)

; I I , I '--------~ P51G '-----::---., OP{f(.t..TI~~G .?lATA lOR IIOT OIL IUrd?R. S-C<.AM FO~ ,--. .... 500-C BL()W~~S 1_ Without With 1 ,------" .. Air Pre Air lid hl"ater. P.rehf'ilter:. 1. Duty 119.8 y. 10 6 8TU!h,. 2. [H('H Air JO: 20...; I I , I '--------~ P51G '-----::---., OP{f(.t..TI~~G .?lATA lOR IIOT OIL IUrd?R. S-C<.AM FO~ ,--. .... 500-C BL()W~~S 1_ Without With 1 ,------" .. Air Pre Air lid hl"ater. P.rehf'ilter:. 1. Duty 119.8 y. 10 6 8TU!h,. 2. [H('H Air JO: 20...

Kumar, A.

458

Apparatus for reducing the moisture content in combustible material by utilizing the heat from combustion of such material  

SciTech Connect

This patent describes apparatus for preparing moisture containing fuel material for combustion to produce heat energy and for applying the heat energy from the combustion for lowering the moisture content in the fuel material prior to combustion, the improvement comprising: boiler means for the combustion of the fuel material to produce heat energy, grinding apparatus for preparing the fuel material to produce heat energy; means for collecting prepared fuel material and for feeding the collected fuel material to the boiler means; a main gaseous fluid and fuel material conduit system; a second conduit system connecting the boiler means and the grinding apparatus to conduct heat energy to the grinding apparatus; connecting means between the returning side of the main conduit system and the boiler means for maintaining the main conduit system at a negative pressure to promote the flow of hot gaseous medium from the boiler means to the gringing apparatus.

Williams, R.M.

1992-03-17T23:59:59.000Z

459

New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Langfitt Langfitt U S Department of State Overseas Buildings Operations Mechanical Engineering Division *Engineers are working Harder AND Smarter *New Energy Economy *Heating Is Where The Opportunity Is  39% of total US energy goes into non-residential buildings.  Gas for heating is about 60% of energy used in a building  Gas for heating is at least 25% of total energy used in the US. Heat Generation System Heat Disposal System What's Wrong With This Picture? Keep the heat IN the system Don't run main plant equipment until necessary ! Less rejected heat Less gas consumption High Temp >160F with conventional boilers Hydronic heating... condensing style modular boilers. The entire heating system... designed for low temperature water, recommend maximum temperature of 135ºF.

460

Evaluation of Retrofit Variable-Speed Furnace Fan Motors  

SciTech Connect

In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

Aldrich, R.; Williamson, J.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnaces boilers heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

462

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

463

Recovery Boiler Superheater Ash Corrosion Field Study  

SciTech Connect

With the trend towards increasing the energy efficiency of black liquor recovery boilers operated in North America, there is a need to utilize superheater tubes with increased corrosion resistance that will permit operation at higher temperatures and pressures. In an effort to identify alloys with improved corrosion resistance under more harsh operating conditions, a field exposure was conducted that involved the insertion of an air-cooled probe, containing six candidate alloys, into the superheater section of an operating recovery boiler. A metallographic examination, complete with corrosion scale characterization using EMPA, was conducted after a 1,000 hour exposure period. Based on the results, a ranking of alloys based on corrosion performance was obtained.

Keiser, James R [ORNL] [ORNL; Kish, Joseph [McMaster University] [McMaster University; Singbeil, Douglas [FPInnovations] [FPInnovations

2010-01-01T23:59:59.000Z

464

Innovative boiler master design improves system response  

SciTech Connect

A quick and nimble boiler distributed control system can end up moving at the speed of molasses in winter after a low-NOx retrofit. In one utility fleet, several units, despite being equipped with a modern DCS, were experiencing firing system time lags and degraded dynamic loading capability. Swinging steam pressures and opacity excursions were forcing operators to constantly remove the unit from the load dispatch. Following a discussion of the new boiler control strategy, this article presents three studies detailing its installation at four coal-fired units owned and operated by the Kentucky Utilities (KU) subsidiary of E.ON US. The 495-MW Unit 3 of E.W. Brown Generating Station; the 75-MW Unit 3 of Tyrone Generating Station and the 75-MW Unit 3 and 100-MW Unit 4 of Green River Generating Station. Coal-fired plants produce about 95% of Kentucky's total generation. 4 figs.

Keller, G.; Baker, B.; Jones, R.J. [Burns and Roe, Oradell, NJ (United States)

2007-02-15T23:59:59.000Z

465

Recovery of Water from Boiler Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

RecoveRy of WateR fRom BoileR flue Gas RecoveRy of WateR fRom BoileR flue Gas Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.