Powered by Deep Web Technologies
Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A new direct steel making process based upon the blast furnace (Including scrap processing with recovery of tramp elements)  

SciTech Connect (OSTI)

Steel is produced from raw materials containing iron and alloying elements with direct elimination of oxygen and impurities in the blast furnace process. The blast furnace shaft is modified to take off load from the liquid bath and carbon is prevented from going into the liquid steel. In the gas purification system sulphur and CO{sub 2} removal facilities are included and purified reducing gases so obtained are combusted in the hearth with oxygen to produce heat for smelting. Scrap can be charged as raw material with the recovery of tramp elements with continuous production of liquid steel.

Nabi, G.

1996-12-31T23:59:59.000Z

2

Fireside carburization of stainless steel furnace tubes  

SciTech Connect (OSTI)

Most heavy Venezuelan crudes are recognized for having a high total acid number (TAN) that is usually associated with a high tendency to produce naphthenic acid corrosion. To resist this type of corrosion in vacuum heaters, 9Cr-1Mo steel and stainless steels containing molybdenum are usually recommended. In 1993 the original 5Cr-1/2Mo roof tubes of the furnace in a vacuum unit were replaced by stainless steel 316Ti to minimize tube replacement and increase heater reliability. Unexpectedly, some of the new tubes failed after only three years of service, and just one year after undergoing the last turnaround inspection. The damage occurred in the form of deep holes and perforations, starting from the outside tube surface on the fireside. Coke build-up occurred due to severe operating conditions, overheating the tubes on the fireside, above 675 C (1250 F). Metallographic and Scanning Electron Microscopic (SEM) examination revealed internal and external carburization of the material due to the presence of coke and combustion ashes, respectively. The increase in the skin metal temperature facilitated the diffusion of carbon from these carbon-rich deposits into the low carbon content material (0.023 O/O).Depletion of chromium at the grain boundaries due to the massive formation of chromium carbides, resulted in a severe intergranular corrosion attack by molten salts rich in vanadium and sulfur due to asphalt burning. Normal operating practice demands the use of steam for the heater tubes to control coke build-up. This practice had been first reduced and then eliminated, during the past two years prior to the failure, because of economic incentives. This paper describes the root cause analysis conducted to account for these premature tube failures.

Mirabal, E.; Molina, C. [PDVSA-Refineria Isla, Curayao (Netherlands); Mayorga, A.; Hau, J.L. [PDVSA-Intevep, Caracas (Venezuela)

1999-11-01T23:59:59.000Z

3

Recycling of electric arc furnace dust: Jorgensen steel facility  

SciTech Connect (OSTI)

This document is an evaluation of the Ek Glassification(TM) Process to recycle and convert K061-listed waste (Electric Arc Furnace or EAF dust) and other byproducts of the steel-making industry into usable products. The Process holds potential for replacing the need for expensive disposal costs associated with the listed waste with the generation of marketable products. The products include colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sandblasting grit; and materials for Portland cement production. Field testing of the technology was conducted by the U.S. Environmental Protection Agency (U.S. EPA) in early July of 1991 at the Earle M. Jorgensen Steel Co. (EMJ) plant in Seattle, Washington, and both technical and economic aspects of the technology were examined. TCLP testing of the product determined that leachability characteristics of metals in the product meet treatment standards for K061-listed waste. The Process was also shown to be economically viable, based on capital and operating cost estimates, and profit and revenue forecasts for a 21,000 ton-per-year operation. Although this effort showed that the technology holds promise, regulatory compliance should be evaluated on the basis of the actual hardware configuration and operating procedures along with the leachability of the specific product formulations to be used.

Jackson, T.W.; Chapman, J.S.

1995-01-01T23:59:59.000Z

4

Recent developments in blast furnace process control within British Steel  

SciTech Connect (OSTI)

British Steel generally operates seven blast furnaces on four integrated works. All furnaces have been equipped with comprehensive instrumentation and data logging computers over the past eight years. The four Scunthorpe furnaces practice coal injection up to 170 kg/tHM (340 lb/THM), the remainder injecting oil at up to 100 kg/tHM (200 lb/THM). Distribution control is effected by Paul Wurth Bell-Less Tops on six of the seven furnaces, and Movable Throat Armour with bells on the remaining one. All have at least one sub burden probe. The blast furnace operator has a vast quantity of data and signals to consider and evaluate when attempting to achieve the objective of providing a consistent supply of hot metal. Techniques have been, and are being, developed to assist the operator to interpret large numbers of signals. A simple operator guidance system has been developed to provide advice, based on current operating procedures and interpreted data. Further development will involve the use of a sophisticated Expert System software shell.

Warren, P.W. [British Steel Technical, Middlesbrough (United Kingdom). Teesside Labs.

1995-12-01T23:59:59.000Z

5

Onsite recycling of electric arc furnace dust: The Jorgensen Steel Facility  

SciTech Connect (OSTI)

The steel-making industry produces a large amount of Electric Arc Furnace (EAF) dust as part of normal production. This waste is listed as KO61, defined as {open_quotes}emission control dust/sludge from the primary production of steel in electric arc furnaces{close_quotes} under 40 CFR 261.32. A glass making technology called Ek Glassification{trademark} (hereafter called {open_quotes}the Process{close_quotes}) has been developed by Roger B. Ek and Associates, Inc. (hereafter called {open_quotes}the Developer{close_quotes}) to recycle EAF dust and convert it, along with other byproducts of the steel-making industry, into marketable commodities. This Process was evaluated under the Waste Reduction Innovative Technology Evaluation (WRITE) Program. The project was designed and conducted in cooperation with the Washington State Department of Environmental Quality, the Process Developer and the host test site, the Earle M. Jorgensen (EMJ) Steel Company of Seattle, Washington. Test personnel for EPA were supplied by SAIC Inc., on contract to EPA. The overall objectives of the project were to conduct a pilot scale evaluation of the Process, investigate if toxic metals are leached from the products (such as colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sand-blasting grit; and materials for Portland cement production). Three glass recipes (Glass I, II, and III) were designed by the developer for potential use at EMJ. The EPA portion was focused on determining the toxic metals concentrations of the Glass II recipe, evaluating the P2 impact of using this Process in comparison to traditional methods of waste treatment and disposal, and assessing the economics of both.

Licis, I.J. [Environmental Protection Agency, Cincinnati, OH (United States); Bermark, R.C. [Washington State Dept. of Ecology, Olympia, WA (United States)

1995-10-01T23:59:59.000Z

6

Optimization of ferrous burden high temperature properties to meet blast furnace requirements in British Steel  

SciTech Connect (OSTI)

The high temperature properties of ferrous burden materials have long been an important consideration in the operation of British Steel blast furnaces. Previous research presented at this conference has shown that the behavior of materials in the lower stack and bosh can have a significant effect on furnace permeability and stability of operation. However, with increasing levels of hydrocarbon injection via the tuyeres, the reduction conditions inside British Steel blast furnaces have significantly altered over recent years. This paper focuses on the further work that has been undertaken to study the effect on ferrous burden high temperatures properties of the widely differing reduction regimes which can be experienced in today`s blast furnaces. The implications of the findings, and how they have been used in optimizing blast furnace operation and burden quality, are discussed.

Bergstrand, R.

1996-12-31T23:59:59.000Z

7

Energy Efficiency Improvement by Measurement and Control: A Case Study of Reheating Furnaces in the Steel Industry  

E-Print Network [OSTI]

ENERGY EFFICIENCY IMPROVEMENT BY MEASUREMENT AND CONTROL A case study of reheating furnaces in the steel industry Anders Mlirtensson Department of Environmental and Energy Systems Studies Lund University S-22362 Lund Sweden ABSTRACT... of process studied, as a result of approach using steel reheating furnaces as a case study. investments in information technology; it is also concluded that The steel industry is a large user of energy: in Sweden it used such investments are cost...

Martensson, A.

8

The push for increased coal injection rates -- Blast furnace experience at AK Steel Corporation  

SciTech Connect (OSTI)

An effort has been undertaken to increase the coal injection rate on Amanda blast furnace at AK Steel Corporation`s Ashland Works in Ashland, Kentucky to decrease fuel costs and reduce coke demand. Operating practices have been implemented to achieve a sustained coal injection rate of 140 kg/MT, increased from 100--110 kg/MT. In order to operate successfully at the 140 kg/MT injection rate; changes were implemented to the furnace charging practice, coal rate control methodology, orientation of the injection point, and the manner of distribution of coal to the multiple injection points. Additionally, changes were implemented in the coal processing facility to accommodate the higher demand of pulverized coal; grinding 29 tonnes per hour, increased from 25 tonnes per hour. Further increases in injection rate will require a supplemental supply of fuel.

Dibert, W.A.; Duncan, J.H.; Keaton, D.E.; Smith, M.D. [AK Steel Corp., Middletown, OH (United States)

1994-12-31T23:59:59.000Z

9

Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating  

DOE Patents [OSTI]

A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

Howard, Stanley R. (Windsor, SC); Korinko, Paul S. (Aiken, SC)

2008-05-27T23:59:59.000Z

10

Continuous austempering fluidized bed furnace. Final report  

SciTech Connect (OSTI)

The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

1997-09-23T23:59:59.000Z

11

E-Print Network 3.0 - arc furnace steel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TID electric arc furnaces for MSW ash are ... Source: Columbia University - Waste-to-Energy Research and Technology Council (WTERT) Collection: Renewable Energy Page: << < 1 2...

12

Advances in Materials Genomics: Making CyberSteels Fly | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Upcoming Events Upcoming Events Advances in Materials Genomics: Making CyberSteels Fly January 7, 2015 3:00PM to 4:00PM Presenter Greg Olson, Northwestern University and...

13

Cupola Furnace Computer Process Model  

SciTech Connect (OSTI)

The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

Seymour Katz

2004-12-31T23:59:59.000Z

14

Process for making a martensitic steel alloy fuel cladding product  

DOE Patents [OSTI]

This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).

Johnson, Gerald D. (Kennewick, WA); Lobsinger, Ralph J. (Kennewick, WA); Hamilton, Margaret L. (Richland, WA); Gelles, David S. (West Richland, WA)

1990-01-01T23:59:59.000Z

15

Trends in furnace control  

SciTech Connect (OSTI)

This paper relates Italimpianti's experiences over the past few years in the area of control of reheat furnaces for the steel industry. The focus is on the level 1 area; specifically on the use of PLC-based systems to perform both combustion control and mechanical/hydraulic control. Some topics to be discussed are: overview of reheat furnace control system requirements; PLC only control vs separate PLC and DCS systems; PLC hardware requirements; man machine interface (MMI) requirements; purge, light-on and safety logic; implementation of more sophisticated level 1 control algorithms; furnace temperature optimization: look up tables vs full thermal modeling; and recent trends including integrated PLC/DCS system.

McDonald, T.J.; Keefe, M.D. (Italimpianti of America, Inc., Coraopolis, PA (United States). Instrumentation and Controls Dept.)

1993-07-01T23:59:59.000Z

16

Making Steel Framing as Thermally Efficient as Wood  

E-Print Network [OSTI]

the steel web with a less conductive material, and 4) placing foam insulation in locations where the thermal shorts are most critical. Researchers at Oak Ridge National Laboratory (ORNL) have utilized both hot box testing and computer simulations in aim...

Kosny, J.; Childs, P.

2002-01-01T23:59:59.000Z

17

int. j. prod. res., 2002, vol. 40, no. 1, 5570 Steel-making process scheduling using Lagrangian relaxation  

E-Print Network [OSTI]

industries (Balakrishnan and Brown 1996). Iron and steel production includes sev- eral process phases (iron-making

Luh, Peter

18

Application of AI techniques to blast furnace operations  

SciTech Connect (OSTI)

It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination of fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.

Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro [Kawasaki Steel Corp., Kurashiki (Japan)

1995-10-01T23:59:59.000Z

19

Energy Savings in Electric Arc Furnace Melting  

E-Print Network [OSTI]

Arc furnace melting which at one time was almost exclusively used to produce alloy steel and steel castings is now widely accepted in the industry as an efficient process to produce all types of steel and iron. Presently, about 28% of steel...

Lubbeck, W.

1982-01-01T23:59:59.000Z

20

High strength, low carbon, dual phase steel rods and wires and process for making same  

DOE Patents [OSTI]

A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.

Thomas, Gareth (Berkeley, CA); Nakagawa, Alvin H. (Campbell, CA)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

BLAST FURNACE GRANULAR COAL INJECTION SYSTEM. Final Report Volume 2: Project Performance and Economics  

SciTech Connect (OSTI)

Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem in November 1990. The design of the project was completed in December 1993 and construction was completed in January 1995. The equipment startup period continued to November 1995 at which time the operating and testing program began. The blast furnace test program with different injected coals was completed in December 1998.

Unknown

1999-10-01T23:59:59.000Z

22

Rebuilding of Rautaruukki blast furnaces  

SciTech Connect (OSTI)

Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

Kallo, S.; Pisilae, E.; Ojala, K. [Rautaruukki Oy Raahe Steel (Finland)

1997-12-31T23:59:59.000Z

23

Furnace assembly  

DOE Patents [OSTI]

A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

1985-01-01T23:59:59.000Z

24

Direct current, closed furnace silicon technology  

SciTech Connect (OSTI)

The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

1994-05-01T23:59:59.000Z

25

High productivity in Australian blast furnaces  

SciTech Connect (OSTI)

Since the emergence of the Australian domestic economy from recession in 1992, the productivity of BHP`s blast furnace has increased significantly to meet the demands of both domestic and export markets. BHP Steel operates six blast furnaces at its three Australian integrated plants. These furnaces vary widely in their size, feed, technology and current campaign status. This paper reviews the principal issues associated with productivity improvements over recent years. These gains have been achieved through activities associated with a wide range of process, equipment and human resource based issues.

Nightingale, R.J.; Mellor, D.G. [BHP Slab and Plate Products Div., Port Kembla, New South Wales (Australia); Jelenich, L. [BHP Rod and Bar Products Div., Newcastle, New South Wales (Australia); Ward, R.F. [BHP Long Products Div., Whyalla, South Australia (Australia)

1995-12-01T23:59:59.000Z

26

Stainless steel anodes for alkaline water electrolysis and methods of making  

DOE Patents [OSTI]

The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

Soloveichik, Grigorii Lev

2014-01-21T23:59:59.000Z

27

TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates  

SciTech Connect (OSTI)

Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

Veena Sahajwalla; Sushil Gupta

2005-04-15T23:59:59.000Z

28

Coke oven gas injection to blast furnaces  

SciTech Connect (OSTI)

U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

1995-12-01T23:59:59.000Z

29

EAF steel producers and the K061 dilemma  

SciTech Connect (OSTI)

The scrap based steel producers in the United States generate an estimated 650,000 tons of electric arc furnace (EAF) dust annually which is classified as hazardous waste, K061. These scrap based producers commonly referred to as mini-mills represented 39% of the steel produced in 1994. Based upon the EAF plants being installed or planned today, it is a reasonable projection to anticipate 50% of the steel produced in the United States will be by EAF`S. Using a straight line projection of percent of steel produced to tonnage of EAF dust generated, this will result in 833,000 tons of dust being generated upon the completion of these new EAF producing plants, presumably by the year 2000. Because the United States is a capitalistic economy, a steel producer is in business to make a profit therefore dust management becomes a very important variable in the cost of making steel.

Prichard, L.C.

1995-12-31T23:59:59.000Z

30

Blast furnace supervision and control system  

SciTech Connect (OSTI)

On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

Remorino, M.; Lingiardi, O.; Zecchi, M. [Siderar S.A.I.C./Ingdesi, San Nicolas (Argentina)

1997-12-31T23:59:59.000Z

31

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network [OSTI]

No. Technology/Measure Steelmaking – basic oxygen furnace (oxygen furnace-gas in integrated steel mills Typical lifetime of the technology (

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

32

Heat treatment furnace  

DOE Patents [OSTI]

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

33

NREL's Optical Cavity Furnace Brings Together a Myriad of Advances for Processing Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet on 2011 R&D 100 Award winner, the Optical Cavity Furnace. The innovative furnace uses light and unique light-induced effects to make higher-efficiency solar cells at lower cost.

Not Available

2011-08-01T23:59:59.000Z

34

Operational results of shaft repair by installing stave type cooler at Kimitsu Nos. 3 and 4 blast furnaces  

SciTech Connect (OSTI)

Nos. 3 and 4 blast furnaces in Nippon Steel Corporation Kimitsu Works were both initially fitted with cooling plate systems. With the aging of each furnace, the damage to their respective inner-shaft profiles had become serious. Thus, in order to prevent operational change and prolong the furnace life, the inner-shaft profile of each furnace was repaired by replacing the former cooling plate system with the stave type cooler during the two-week-shutdowns. With this repair, stability of burden descent and gas flow near the wall part of the furnace have been achieved. Thus the prolongation of the furnace life is naturally expected.

Oda, Hiroshi; Amano, Shigeru; Sakamoto, Aiichiro; Anzai, Osamu [Nippon Steel Corp., Kimitsu, Chiba (Japan). Kimitsu Works; Nakagome, Michiru; Kuze, Toshisuke [Nippon Steel Corp., Futtsu, Chiba (Japan); Imuta, Akira [Nippon Steel Corp., Tokyo (Japan). Plant and Machinery Div.

1997-12-31T23:59:59.000Z

35

Wootz Damascus steel blades  

SciTech Connect (OSTI)

Wootz Damascus steel blades contain surface patterns produced by bands of cementite particles which are generated in situ as the blades are forged from small ingots. A process for making these blades has recently been developed which involves making ingots in a gas-fired furnace followed by forging to blade shapes. This study presents a series of additional experiments which provide strong evidence that the mechanism responsible for the formation of the aligned cementite bands is similar to the mechanism that produces banded hypoeutectoid steels. That mechanism attributes the selective formation of ferrite bands to microsegregated alloying elements. The results of this study show that the cementite bands will form in ultraclean hypereutectoid steels (P and S levels <0.003 wt. %) by the addition of small amounts of carbide-forming elements V, Cr, and Ti at a combined level of <0.02 wt. %. The results present strong evidence that the cementite bands are formed by a selective coarsening of cementite particles during the thermal cycling of the forging process. The particle coarsening is induced to occur preferentially in the interdendritic regions of the alloys by the very small additions of the carbide-forming elements.

Verhoeven, J.D.; Gibson, E.D. [Ames Lab., IA (United States)] [Ames Lab., IA (United States); Pendray, A.H. [ABS Master Bladesmith, Williston, FL (United States)] [ABS Master Bladesmith, Williston, FL (United States)

1996-07-01T23:59:59.000Z

36

Recovery Act: Waste Energy Project at AK Steel Corporation Middletown  

SciTech Connect (OSTI)

In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

Joyce, Jeffrey

2012-06-30T23:59:59.000Z

37

Blast furnace control after the year 2000  

SciTech Connect (OSTI)

Rapid technical development together with developments in work organization makes it important to investigate possible ways to achieve a cost efficient process control of different metallurgical processes. This paper describes a research project, and proposes a human oriented Information Technology Strategy, ITS, for control of the Blast Furnace process. The method used is that of deductive reasoning from a description of the prevailing technological level and experiences from various development activities. The paper is based on experiences from the No. 2 Blast Furnace at Luleaa Works but the conclusions do not at this stage necessarily reflect the opinion of the management and personnel or reflect their intentions for system development at SSAB.

Gyllenram, R.; Wikstroem, J.O. [MEFOS, Luleaa (Sweden); Hallin, M. [SSAB Tunnplaat AB, Luleaa (Sweden)

1996-12-31T23:59:59.000Z

38

Operating experience with 100% pellet burden on Amanda blast furnace  

SciTech Connect (OSTI)

A number of significant changes in operations at the Ashland Works of the Armco Steel Company occurred in 1992 which directly impacted the Amanda Blast Furnace operation. These changes included the shutdown of the hot strip mill which resulted in coke oven gas enrichment of the Amanda stoves and an increase of 75 C in hot blast temperature, transition to 100% continuous cast operation which resulted in increased variation of the hot metal demand, and the July idling of the sinter plant. Historically, the Amanda Blast Furnace burden was 30% fluxed sinter and 70% acid pellet. It was anticipated that the change to 100% pellet burden would require changes in charging practice and alter furnace performance. The paper gives a general furnace description and then describes the burden characteristics, operating practice with 30% sinter/70% acid pellet burden, preparations for the 100% acid pellet burden operation, the 100% acid pellet operation, and the 100% fluxed pellet burden operation.

Keaton, D.E.; Minakawa, T. (Armco Steel Co., Middletown, OH (United States). Ironmaking Dept.)

1993-01-01T23:59:59.000Z

39

Voltage flicker prediction for two simultaneously operated ac arc furnaces  

SciTech Connect (OSTI)

An EMTP-based arc furnace model was developed for evaluation of flicker concerns associated with supplying a large integrated steel mill as they go from one to two furnace operation and as system changes are implemented that will affect the short circuit capacity at the 230 kV power supply substation. The model includes a dynamic arc representation which is designed to be characteristic of the initial portions of the melt cycle when the arc characteristics are the most variable (worst flicker conditions). The flicker calculations are verified using previous measurements with one furnace operation. Flicker simulations were then performed to evaluate a variety of different possible system strengths with both one and two furnaces in operation. The primary flicker measure used for this study is the unweighted rms value of the fluctuation envelope, expressed as a percentage of the rms line-to-ground voltage magnitude.

Tang, L. [ABB Power T and D Co., Inc., Raleigh, NC (United States)] [ABB Power T and D Co., Inc., Raleigh, NC (United States); Kolluri, S. [Entergy Services, New Orleans, LA (United States)] [Entergy Services, New Orleans, LA (United States); McGranaghan, M.F. [Electrotek Concepts, Inc., Knoxville, TN (United States)] [Electrotek Concepts, Inc., Knoxville, TN (United States)

1997-04-01T23:59:59.000Z

40

No. 5 blast furnace 1995 reline and upgrade  

SciTech Connect (OSTI)

The 1995 reline of No. 5 Blast Furnace is an undertaking which has never been approached in previous relines of any blast furnace in the history of Wheeling Pittsburgh Steel Corporation. The scope of the project is such that it represents a radical departure from W.P.S.C.`s traditional methods of ironmaking. The reline of No. 5 Blast Furnace is one of the largest capital improvements performed at W.P.S.C. Blast Furnaces. The improvements made at one single time are taking a furnace from 1960`s technology into the 21st century. With this in mind, employee training was one of the largest parts of the project. Training for the automated stockhouse, castfloor, new skip drive, new instrumentation, new castfloor equipment, hydraulics and overall furnace operation were an absolute necessity. The reline has laid the ground work to give the Corporation an efficient, higher productive, modern Blast Furnace which will place W.P.S.C. in the world class category in ironmaking well into the 21st century.

Kakascik, T.F. Jr.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Improved graphite furnace atomizer  

DOE Patents [OSTI]

A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

Siemer, D.D.

1983-05-18T23:59:59.000Z

42

Residential Furnace Blower Performance  

E-Print Network [OSTI]

conditioner performance1 , standby power, as well as igniter and combustion air blower power. Energy savings for a typical three-and-a-half ton air conditioner with typical California ducts are 45 kWh. Peak demand combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test

43

Burden distribution tests of Siderar`s No. 2 blast furnace  

SciTech Connect (OSTI)

Siderar is a company which was created through the merger of Propulsora Siderurgica and the privatized Aceros Parana (the former Somisa, a state-owned steel company). This plant manufacturers flat steel products: hot and cold rolled coils, as well as tin plate coils. After the privatization of the former Somisa in 1992, the new owners decided to modernize the Blast Furnace 2. The relining involved the following: complete furnace with bell less top; cast house with dust collection; INBA granulation system; gas cleaning system; cooling system; modern control system; and revamping of the stock house and the stoves. Burden distribution tests allowed the staff to familiarize themselves with the operation of the top under the three operation modes (manual, semiautomatic and automatic), and also to make adjustments to the top control system. In addition, the tests allowed them to see how materials behave during discharge and building up of ore and coke layers. All this information, together with the available instrumentation, such as fixed probes and heat flux monitoring system, proved to be of use for the gas flow control.

Lingiardi, O.; Partemio, C.; Burrai, O.; Etchevarne, P.

1997-12-31T23:59:59.000Z

44

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

SciTech Connect (OSTI)

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15T23:59:59.000Z

45

The 1994 intermediate reline of H-3 furnace  

SciTech Connect (OSTI)

LTV Steel`s Indiana Harbor Works H-3 Blast Furnace was rebuilt in 1988 to provide reliable operations at high production rates without damage to the shell for an overall campaign. This Rebuild included: (1) complete bosh and partial stack shell replacement; (2) a spray cooled carbon bosh; (3) a row of staves at the mantle and six rows of stack staves, all stack staves had noses (ledges at the top of the stave) with the exception of row 5; (4) silicon carbide filled semi graphite brick for the bosh, silicon carbide brick from the mantle area and to the top of stave row No. 1, super duty brick in front of the remaining staves and phosphate bonded high alumina brick in the upper stack; (5) movable throat armor; (6) upgraded instrumentation to follow furnace operation and lining wear occurring in the furnace. No work was done to the hearth walls and bottom, since these had been replaced in 1982 with a first generation graphite cooled design and has experienced 7.7 million NTHM. The furnace was blown in November 18, 1988 and operated through September 3, 1994, at which time it was blown down for its first intermediate repair after 7.85 million NTHM. This paper summarizes the operation of the furnace and then discusses the major aspects of the 1994 intermediate repair.

James, J.D.; Nanavati, K.S.; Spirko, E.J.; Wakelin, D.H.

1995-12-01T23:59:59.000Z

46

Use of sinter in Taranto blast furnaces  

SciTech Connect (OSTI)

Lowering the production cost of the crude steel is the ultimate aim when planning operations in an integrated steelworks. Designing the Blast Furnace burden is a crucial point in this context, for which account must be taken not only of the raw materials cost but also of other important aims such as maximum plants productivity, minimum possible energy consumption, a proper product quality at the various production stages. This paper describes the criteria used in Ilva Laminati Piani (ILP) Taranto Works to design the BF burden, based on sinter, using the results of extensive research activity carried out by Centro Sviluppo Materiali (CSM), the Research Center with major involvement with the R and D of the Italian Steel Industry. Great attention is paid at ILP to the sinter quality in order to obtain the optimum performance of the BFs, which are operating at high productivity, high pulverized coal rate and low fuel consumption.

Palchetti, M.; Palomba, R.; Tolino, E. [CSM Taranto (Italy); Salvatore, E.; Calcagni, M. [ILP Taranto Works (Italy)

1995-12-01T23:59:59.000Z

47

Energy Consumption and Potential for Energy Conservation in the Steel Industry  

E-Print Network [OSTI]

, April 22-25, 1979 IRON ORE REDUCTION STEELMAKING PRIMARY CONVERSION HOT ROLLING FINISHING SIMPLIFIED FLOW SHEET STEEL PRODUCTION PROCESSES Iron Ore & Wastes , Agg lomerating Pellets Ore & Flux Coal ~ " Sinter - Blast ~ Coke Furnaces... - Ovens '( BF Iron Outside ,~., Scrap Open Hearth Furnaces , Ingot Casting Basic Oxygen Furnaces Raw Steel Electric Arc Furnaces Scrap , Primary Rolling Mills Continuous Casting Slabs, Blooms, Billets r Secondary Hot Rolling Bars...

Hughes, M. L.

1979-01-01T23:59:59.000Z

48

Non-carbon induction furnace  

DOE Patents [OSTI]

The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

1984-01-06T23:59:59.000Z

49

Blast furnace taphole drill  

SciTech Connect (OSTI)

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

50

Furnaces | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,using RenewableFurnaces Jump to:

51

Two chamber reaction furnace  

DOE Patents [OSTI]

A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

Blaugher, Richard D. (Evergreen, CO)

1998-05-05T23:59:59.000Z

52

A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.  

SciTech Connect (OSTI)

Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

2011-06-15T23:59:59.000Z

53

High pressure furnace  

DOE Patents [OSTI]

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

Morris, D.E.

1993-09-14T23:59:59.000Z

54

High pressure oxygen furnace  

DOE Patents [OSTI]

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

55

High pressure oxygen furnace  

DOE Patents [OSTI]

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

56

High pressure furnace  

DOE Patents [OSTI]

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1993-01-01T23:59:59.000Z

57

Processing electric arc furnace dust into saleable chemical products  

SciTech Connect (OSTI)

The modern steel industry uses electric arc furnace (EAF) technology to manufacture steel. A major drawback of this technology is the production of EAF dust, which is listed by the U.S. Environmental Protection Agency as a hazardous waste under the Resource Conservation and Recovery Act. The annual disposal of approximately 0.65 million tons of EAF dust in the United States and Canada is an expensive, unresolved problem for the steel industry. EAF dust byproducts are generated during the manufacturing process by a variety of mechanisms. The dust consists of various metals (e.g., zinc, lead, cadmium) that occur as vapors at 1,600{degrees}C (EAF hearth temperature); these vapors are condensed and collected in a baghouse. The production of one ton of steel will generate approximately 25 pounds of EAF dust as a byproduct, which is currently disposed of in landfills.

NONE

1998-04-01T23:59:59.000Z

58

Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making  

DOE Patents [OSTI]

A high strength, high toughness Cr-W-V ferritic steel composition suitable for fast induced-radioactivity (FIRD) decay after irradiation in a fusion reactor comprises 2.5-3.5 wt % Cr, 2. This invention was made with Government support under contract DE-AC05-840R21400 awarded by the U.S. Department of Energy to Martin Marietta Energy Systems, Inc. and the Government has certain rights in this invention.

Klueh, Ronald L. (Knoxville, TN); Maziasz, Philip J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

59

On electrical load tracking scheduling for a steel Alain Hait1  

E-Print Network [OSTI]

transforms scrap metal into cast steel: first melting in Electrical Arc Furnaces (EAF), then Argon Oxygen industrial networks to single plants [5, 4, 1, 6, 3]. Energy consumption is an important subject in steel

Paris-Sud XI, Université de

60

Fossil fuel furnace reactor  

DOE Patents [OSTI]

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Steam Cracker Furnace Energy Improvements  

E-Print Network [OSTI]

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

62

Variable frequency microwave furnace system  

DOE Patents [OSTI]

A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

63

Variable frequency microwave furnace system  

DOE Patents [OSTI]

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

64

Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making  

DOE Patents [OSTI]

This work describes a high strength, high toughness bainitic/ferritic steel alloy comprising about 2.75% to 4.0% chromium, about 2.0% to 3.5% tungsten, about 0.10% to 0.30% vanadium, and about 0.1% to 0.15% carbon with the balance iron, wherein the percentages are by total weight of the composition, wherein the alloy having been heated to an austenitizing temperature and then cooled at a rate sufficient to produce carbide-free acicular bainite. 15 figures.

Klueh, R.L.; Maziasz, P.J.

1994-03-08T23:59:59.000Z

65

Single taphole blast furnace casthouse performance optimizing cost and availability  

SciTech Connect (OSTI)

The No. 2 blast furnace is a single taphole furnace with a convection air-cooled iron trough. The iron runner system is designed to fill four 90 ton open-top ladles per cast, which are transported by locomotive to the steel shop. The slag runner system is capable of filling three 800 ft{sup 3} slag pots per cast. The No. 2 blast furnace was blown in from mini-reline with this new casthouse configuration in early December 1991. It was operated for nearly three years until it was banked for planned stove repairs and a trough rebuild in late September 1994. During this period, the furnace produced just over 2.5 million tons of hot metal across the original trough refractory lining system, with 13 intermediate hot patch castable repairs. The entire casthouse refractory usage (main trough, runner systems, and covers) during this campaign was 1.06 pounds per net ton of hot metal. Investigation of the lining during demolition indicated that the trough lining campaign could have been extended to at least 3.0 million tons. This paper will discuss how operating practices, mechanical design, refractory design, maintenance philosophy, and attention to detail synergistically contributed to the long campaign life and low refractory consumption rate.

Fowles, R.D.; Searls, J.B.; Peay, W.R. [Geneva Steel, Provo, UT (United States); Brenneman, R.G.

1995-12-01T23:59:59.000Z

66

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network [OSTI]

of the total electricity consumption by BPM furnaces. Thisbecause furnace electricity consumption is significant.of furnace electricity consumption. Therefore, accurate

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

67

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

68

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network [OSTI]

standby power consumption in BPM furnaces is significantlytotal electricity consumption by BPM furnaces. This is notOverall, it appears the BPM motors used in furnaces offer

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

69

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

70

Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)  

SciTech Connect (OSTI)

Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

2003-12-31T23:59:59.000Z

71

Titanium addition practice, and maintenance for the hearths in AHMSA`s blast furnaces  

SciTech Connect (OSTI)

Altos Hornos de Mexico (AHMSA) is a steel company located in Northern Mexico, in the state of Coahuila. Currently there are three blast furnaces in operation and one more about to finish its general repair. This last one is to remain as a back-up unit. Because of blast furnace hearth wear outs AHMSA has developed some maintenance procedures. These procedures are based on titanium ore additions and hearth thermic control monitoring. There are also some other maintenance practices adopted to the working operations to assure that such operations detect and avoid in time hearth wear outs that place personnel and/or the unit in danger (due to hearth leaks). This paper describes titanium ore addition to No. 2 blast furnace during the final campaign and it also illustrates maintenance practices and continuous monitoring of temperature trends both of which were implemented at AHMSA`s No. 5 blast furnace.

Boone, A.G.; Jimenez, G.; Castillo, J. [Altos Hornos de Mexico, Monclova (Mexico)

1997-12-31T23:59:59.000Z

72

Operational results for high pulverized coal injection rate at Kimitsu No. 3 blast furnace  

SciTech Connect (OSTI)

In order to further develop the technology for high-rate pulverized coal injection (PCI), namely over 200 kg/t-pig, Nippon Steel performed a high injection rate test at the Kimitsu No. 3 blast furnace in November, 1993. The paper describes PCI equipment; the operational design of the test, including blast conditions, reducibility of sinter, coke strength and burden distribution; and test results. These results include a discussion of the transition of operation, burden distribution control, replacement ratio of coke, permeability at upper and lower parts of the furnace, reducibility at lower part of the furnace, accumulation of fines in the deadman, and generation and accumulation of unburnt char. Stable operation was achieved at a PCI rate of 190 kg/t-pig. With injection rates between 200--300 kg/t-pig, the problem becomes how to improve the reduction-meltdown behavior in the lower part of the furnace.

Ueno, Hiromitsu; Matsunaga, Shin`ichi; Kakuichi, Kazumoto; Amano, Shigeru; Yamaguchi, Kazuyoshi

1995-12-01T23:59:59.000Z

73

Cement advanced furnace and process  

SciTech Connect (OSTI)

This patent describes a suspension shaft furnace for producing discrete cement clinkers from discrete pellets of cement-forming batch materials which are gravity-migrated therethrough. It comprises a vertical furnace housing enclosing a top pellet-feeding and preheating zone comprising an elongate vertical shaft section opening into an intermediate fluidized bed section comprising fuel inlet conduits, an air-permeable clinker-impermeable support; a lower clinker-cooling section beneath the fluidized bed section; clinker-discharge means communicating between the fluidized bed section and the cooling section and air inlet means.

Litka, A.F.; Cohen, S.M.

1992-06-02T23:59:59.000Z

74

Effect of Electric Arc Furnace Bag House Dust on Concrete Durability Researcher: Fahad Al-Mutlaq  

E-Print Network [OSTI]

Effect of Electric Arc Furnace Bag House Dust on Concrete Durability Researcher: Fahad Al billions of dollars annually. While steel is normally protected from corrosion in concrete by a passive of the effects of addition of Bag House Dust (BHD) on aspects of concrete durability. BHD is a fine powder

Birmingham, University of

75

Waste Heat Recovery – Submerged Arc Furnaces (SAF)  

E-Print Network [OSTI]

Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000°F using high voltage electricity along with metallurgical carbon to reduce metal oxides to pure elemental form. The process as currently...

O'Brien, T.

2008-01-01T23:59:59.000Z

76

Effect of Combustion Air Preheat on a Forged Furnace Productivity  

E-Print Network [OSTI]

to determine are the effects of combustion air preheat on four additional furnace operating characteristics. These characteristics are: (1) fuel utilization of a furnace operating cycle; (2) time to heat the furnace load; (3) scale production; and (4) furnace...

Ward, M. E.; Bohn, J.; Davis, S. R.; Knowles, D.

1984-01-01T23:59:59.000Z

77

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network [OSTI]

Improved Product Quality,” Ironmaking and Steel making 18(pound Investment,” Ironmaking and Steel making,” Anonymous,Oil Through Sintering," Ironmaking and Steel making Dawson,

Xu, T.T.

2011-01-01T23:59:59.000Z

78

Comparing Residential Furnace Blowers for  

E-Print Network [OSTI]

of air conditioner performance, standby power, as well as igniter and combustion air blower power results in 10% lower air conditioner efficiency. For heating, the advantage of the BPM blower was to assess the performance of residential furnace blowers for both heating, cooling and air distribution

79

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Process control techniques at the blast furnaces of Thyssen Stahl AG  

SciTech Connect (OSTI)

Process improvements, capacity increases and the use of modern measuring and process control techniques have helped to ensure that the blast furnace will remain an indispensable means of supplying steelworks with hot metal until well into the next century. The survival of a future-oriented company such as Thyssen Stahl AG depends on long-term improvements in economic viability. Today, Thyssen Stahl AG operates two blast furnace plants comprising a total of five blast furnaces with hearth diameters ranging from 9.3 to 14.9m. This choice of furnaces permits flexible adjustment to changing workload situations and enables about ten million tons of hot metal to be produced each year. The wide range of measuring devices specially fitted on Schwelgern blast furnace No. 1 made a vital contribution to the development of blast furnace models. The purpose of these models was to make a general assessment of the state of the furnace and so create an objective basis for furnace operation. The paper describes the development of these measuring techniques and process model and the application of the model.

Kowalski, W.; Bachhofen, H.J.; Beppler, E.; Kreibich, K.; Muelheims, K.; Peters, M.; Wieters, C.U. [Thyssen Stahl AG, Duisburg (Germany)

1995-12-01T23:59:59.000Z

82

Evaluation of PFP Furnace Systems for Thermal Stabilization of Washed High Chloride Plutonium Oxide Items  

SciTech Connect (OSTI)

High chloride content plutonium (HCP) oxides are impure plutonium oxide scrap which contains NaCl, KCl, MgCl2 and/or CaCl2 salts at potentially high concentrations and must be stabilized at 950 C per the DOE Standard, DOE-STD-3013-2000. The chlorides pose challenges to stabilization because volatile chloride salts and decomposition products can corrode furnace heating elements and downstream ventilation components. A high-temperature furnace (same make and model as used at the RMC at Plutonium Finishing Plant) and the associated offgas system were set up at PNNL to identify system vulnerabilities and to investigate alternative materials and operating conditions that would mitigate any corrosion and plugging of furnace and offgas components. The key areas of interest for this testing were the furnace heating elements, the offgas line located inside the furnace, the offgas line between the furnace and the filter/knockout pot, the filter/knockout pot, the sample boat, and corrosion coupons to evaluate alternative materials of construction. The evaluation was conducted by charging the furnace with CeO2 that had been impregnated with a mixture of chloride salts (selected to represent the expected residual chloride salt level in washed high chloride items) and heated in the furnace in accordance with the temperature ramp rates and hold times used at PFP.

Fischer, Christopher M.; Elmore, Monte R.; Schmidt, Andrew J.; Gerber, Mark A.; Muzatko, Danielle S.; Gano, Susan R.; Thornton, Brenda M.

2002-12-17T23:59:59.000Z

83

Steel project fact sheet: Steel reheating for further processing  

SciTech Connect (OSTI)

Steel reheating is an energy-intensive process requiring uniform temperature distribution within reheating furnaces. Historically, recuperators have ben used to preheat combustion air, thereby conserving energy. More recent innovations include oxygen enrichment and the use of regenerative burners, which provide higher preheat air temperatures than recuperators. These processes have limitations such as equipment deterioration, decreasing energy efficiency over time, high maintenance costs, and increased NO{sub x} emissions with increased air preheat temperature, unless special equipment is used. Praxair, Inc., supplier of oxygen and other industrial gases to the steel industry, proposes to introduce an innovative oxy-fuel burner technology (using 100% oxygen) to the steel reheating industry. Oxy-fuel combustion reduces or eliminates nitrogen in combustion air and substantially reduces waste heat carried out with flue gas. Based on technology currently used in the glass, hazardous waste, and aluminum industries, Praxair has developed and patented low temperature, oxy-fuel burners that can be used in high temperature industrial furnaces where temperature uniformity is critical and extremely low NO{sub x} emissions are desired. The technical goal of the project is to demonstrate the use of oxy-fuel burners in a slab reheat furnace while reducing energy consumption by 45% and NO{sub x} emissions by 90% within the converted furnace zones. Successful implementation of this technology also will eliminate the need to periodically replace recuperators and install NO{sub x} removal equipment.

NONE

1998-04-01T23:59:59.000Z

84

A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace  

SciTech Connect (OSTI)

This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

2002-01-21T23:59:59.000Z

85

Recycling of electric-arc-furnace dust  

SciTech Connect (OSTI)

Electric arc furnace (EAF) dust is one of the largest solid waste streams produced by steel mills, and is classified as a waste under the Resource Conservation and Recovery Act (RCRA) by the U.S. Environmental Protection Agency (EPA). Successful recycle of the valuable metals (iron, zinc, and lead) present in the dust will result in resource conservation while simultaneously reducing the disposal problems. Technical feasibility of a novel recycling method based on using hydrogen as the reductant was established under this project through laboratory experiments. Sponge iron produced was low in zinc, cadmium, and lead to permit its recycle, and nontoxic to permit its safe disposal as an alternative to recycling. Zinc oxide was analyzed to contain 50% to 58% zinc by weight, and can be marketed for recovering zinc and lead. A prototype system was designed to process 2.5 tons per day (600 tons/year) of EAF dust, and a preliminary economic analysis was conducted. The cost of processing dust by this recycling method was estimated to be comparable to or lower than existing methods, even at such low capacities.

Sresty, G.C.

1990-05-01T23:59:59.000Z

86

Continuous measurement of blast furnace burden profile at SSAB Tunnplat AB  

SciTech Connect (OSTI)

A unique profile meter system is installed on Blast Furnace No. 2 in SSAB - Swedish Steel AB, Lulea, Sweden. This system measures the charge material burden profile across the furnace top diameter before and after each charge. The system generates real-time data, which is graphically presented by the system on a monitor and includes burden descent speed, layer thickness of the coke and ore (corrected for descent), ore to coke ratio, and burden skewing. The system is described along with operational results.

Virtala, J.; Edberg, N.; Hallin, M. (SSAB Tunnplat AB, Lulea (Sweden). Ironmaking Division)

1993-01-01T23:59:59.000Z

87

Bosh repairs No. 3 blast furnace, Edgar Thomson Plant Mon Valley Works  

SciTech Connect (OSTI)

The paper describes in detail the steps taken from quenching to dry out of the furnace to repair the bosh area of the No.3 blast furnace. Inspection of the area revealed that there was no brick anywhere in the bosh. Brick in the tuyere breast area had been peeled back to reveal the steel plate, and descaling revealed 14 pipes fully exposed. None were leaking, but one seemed badly deteriorated. Conventional repairs could not take place before the scheduled blow-in. Installation of coolers were instead tried.

Stoupis, M.G.

1993-01-01T23:59:59.000Z

88

Blast furnace coke quality in relation to petroleum coke addition  

SciTech Connect (OSTI)

The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Sirgado, M. [ENSIDESA, Aviles (Spain)

1995-12-01T23:59:59.000Z

89

High productivity injection practices at Rouge Steel  

SciTech Connect (OSTI)

Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

Barker, D.H.; Hegler, G.L.; Falls, C.E. [Rouge Steel Co., Dearborn, MI (United States)

1995-12-01T23:59:59.000Z

90

Ferrosilicon smelting in a direct current furnace  

DOE Patents [OSTI]

The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

Dosaj, V.D.; May, J.B.

1992-12-29T23:59:59.000Z

91

Crystal growth furnace with trap doors  

DOE Patents [OSTI]

An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

Sachs, Emanual M. (Watertown, MA); Mackintosh, Brian H. (Lexington, MA)

1982-06-15T23:59:59.000Z

92

Measurement of airflow in residential furnaces  

SciTech Connect (OSTI)

In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-24T23:59:59.000Z

93

Furnaces Data | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNGEnergy Research | Department ofFurnaces

94

Hoogovens blast furnace No. 6 -- The first eleven years of a continuing campaign  

SciTech Connect (OSTI)

Blast furnace No. 6 of Hoogovens Steel has just completed its eleventh year of the fourth (running) campaign, with a total production of approx. 23 million metric tonnes of hot metal. During the last reline in 1985 the furnace was equipped with a third taphole and a bell-less top. The lining consists of graphite and semi-graphite and the cooling consists of a dense pattern of copper plate coolers. The current campaign is marked by several important operational events, in particular the high productivity and PCI rates, but also by the remarkable performance of the lining which has shown limited wear in the first four years of the campaign, and hardly any reduction of the lining thickness in the last seven years. This paper discusses the design of the furnace, and the history of the current campaign with respect to its productivity, PCI rates and lining wear.

Tijhuis, G.; Toxopeus, H.; Berg, H. van den; Vliet, C. van der [Hoogovens Steel, IJmuiden (Netherlands)

1997-12-31T23:59:59.000Z

95

Vertical two chamber reaction furnace  

DOE Patents [OSTI]

A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

Blaugher, Richard D. (Evergreen, CO)

1999-03-16T23:59:59.000Z

96

Durability of traditional plasters with respect to blast furnace slag-based plaster  

SciTech Connect (OSTI)

Blast furnace slag is a residue of steel production. It is a latent hydraulic binder and is normally used to improve the durability of concrete and mortars. Slag could be also used as rendering mortar for masonry and old buildings. Today, cement and hydraulic lime are the most popular hydraulic binders used to make plasters. They are characterised by a low durability when exposed to the action of chemical and physical agents. The aim of this study was to provide a comparison between the physical-mechanical properties of some renders made with ordinary Portland cement, hydraulic lime, or slag. Furthermore, an investigation was carried out to analyse mortar resistance to several aggressive conditions like acid attack, freezing and thawing cycles, abrasion, sulphate aggression, cycles in ultraviolet screening device, and salt diffusion. The specimens, after chemical attack, have been characterised from the chemical-physical [specific surface according to the BET (Brunauer-Emmet-Teller) method], crystal-chemical (X-ray diffraction, XRD), and morphological (scanning electron microscopy, SEM) points of view.

Cerulli, T.; Pistolesi, C.; Maltese, C.; Salvioni, D

2003-09-01T23:59:59.000Z

97

Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces  

E-Print Network [OSTI]

Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside...

Haseltine, D. M.; Laffitte, R. D.

98

Published in Powder Technology, 2005, 157, 1-3, 2-11. DUST FORMATION IN ELECTRIC ARC FURNACE  

E-Print Network [OSTI]

of electric arc furnace (EAF) dust shows that bubble burst at the liquid steel surface is the principal source the bubble size would therefore represent an effective solution for reducing drastically the EAF dust such as zinc, lead or cadmium which require EAF dust to be stored in specific landfills. In order to propose

Paris-Sud XI, Université de

99

Existing and prospective blast-furnace conditions  

SciTech Connect (OSTI)

Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk [Ukrainian Academy of Sciences, Dnepropetrovsk (Ukraine). Institute of Ferrous Metallurgy

2009-07-15T23:59:59.000Z

100

Thermal Imaging Control of Furnaces and Combustors  

SciTech Connect (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Optical cavity furnace for semiconductor wafer processing  

DOE Patents [OSTI]

An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

Sopori, Bhushan L.

2014-08-05T23:59:59.000Z

102

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

103

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions...

104

DOE Publishes Notice of Proposed Rulemaking for Residential Furnace...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Furnace Fans Energy Conservation Standards DOE Publishes Notice of Proposed Rulemaking for Residential Furnace Fans Energy Conservation Standards October 25, 2013 - 12:00am Addthis...

105

Optimizing Blast Furnace Operation to Increase Efficiency and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs cfdblastfurnace.pdf More...

106

Great Lakes Steel -- PCI facility  

SciTech Connect (OSTI)

This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

Eichinger, F.T. [BMH Claudius Peters AG, Buxtehude (Germany); Dake, S.H.; Wagner, E.D.; Brown, G.S. [Raytheon Engineers and Constructors, Pittsburgh, PA (United States)

1997-12-31T23:59:59.000Z

107

Development of Next Generation Heating System for Scale Free Steel Reheating  

SciTech Connect (OSTI)

The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

Dr. Arvind C. Thekdi

2011-01-27T23:59:59.000Z

108

Processing factors contributing to growth and decline in the steel industry  

E-Print Network [OSTI]

During the second half of the twentieth century, a technological shift occurred in the steel industry. A different mix of refining and melting furnaces were used, with increasing use being made of basic oxygen and electric ...

Dufalla, Michele (Michele Helene)

2007-01-01T23:59:59.000Z

109

A consortium approach to glass furnace modeling.  

SciTech Connect (OSTI)

Using computational fluid dynamics to model a glass furnace is a difficult task for any one glass company, laboratory, or university to accomplish. The task of building a computational model of the furnace requires knowledge and experience in modeling two dissimilar regimes (the combustion space and the liquid glass bath), along with the skill necessary to couple these two regimes. Also, a detailed set of experimental data is needed in order to evaluate the output of the code to ensure that the code is providing proper results. Since all these diverse skills are not present in any one research institution, a consortium was formed between Argonne National Laboratory, Purdue University, Mississippi State University, and five glass companies in order to marshal these skills into one three-year program. The objective of this program is to develop a fully coupled, validated simulation of a glass melting furnace that may be used by industry to optimize the performance of existing furnaces.

Chang, S.-L.; Golchert, B.; Petrick, M.

1999-04-20T23:59:59.000Z

110

Energy Assessment Protocol for Glass Furnaces  

E-Print Network [OSTI]

The Department of Energy funded development of a methodology that could be used by glass producers to increase furnace efficiency, and that could serve as a model for other energy-intensive industries. Accordingly, a team comprising PPG Industries...

Plodinec, M. J.; Kauffman, B. M.; Norton, O. P.; Richards, C.; Connors, J.; Wishnick, D.

2005-01-01T23:59:59.000Z

111

Optimized Design of a Furnace Cooling System  

E-Print Network [OSTI]

-evaluate the dynamics of heat transfer for a key piece of industrial equipment, a sintering furnace. The goal is to optimize furnace operations to relieve an operations bottleneck for a tungsten carbide drill nozzle production facility. In light of plans to mitigate... convection are the radiation shield and the inner chamber door. 2) Analysis Preliminary analysis and calculations have been made to determine the impact of increased convection. This was done by creating a theoretical spherical mass of tungsten carbide...

Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

112

Gary Works No. 13 blast furnace: A new removable trough design  

SciTech Connect (OSTI)

No. 13 Blast Furnace at US Steel`s Gary Works is a 35 tuyere furnace with a 36.5 ft. hearth capable of producing over 9,000 tons of hot metal per day. The current casthouse design was placed in service following the second reline in the fall of 1979. This design anticipated daily production rates averaging 7,500 tons of hot metal per day and provided for removable troughs at two of the three tapholes. At the time, the troughs were rammed with a high alumina/silicon carbide granular ramming material that provided the operators with trough campaign lives between 60,000--70,000 tons of hot metal produced. As refractory technology progressed, low cement/low moisture castables were introduced to the trough systems on No. 13 Blast Furnace. The immediate success of the castables was tempered by emergence of a new unexpected problem. That problem was the thermal expansion of the castable. The paper describes the problems that resulted in the need to modify the trough design, the new design of the trough, and its improvement in iron trough campaign life and reliability.

Schuett, K.J.; Pawlak, J.P. [U.S. Steel Group, Gary, IN (United States). Gary Works; Traina, L.; Brenneman, R.G.

1995-12-01T23:59:59.000Z

113

The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation   

E-Print Network [OSTI]

Background In the year 2000 Corus closed its steel plant operations in Redcar, NE of England temporarily for refurbishment of its blast furnace. This study investigates the impact of the closure on the chemical composition ...

Hutchison, Gary; Brown, David; Hibbs, Leon; Heal, Mathew R; Donaldson, Ken; Maynard, Robert; Monaghan, Michelle; Nicholl, Andy; Stone, Vicki

2005-01-01T23:59:59.000Z

114

Behavior of Scaled Steel-Concrete Composite Girders and Steel Monopole Towers Strengthened with CFRP  

E-Print Network [OSTI]

Behavior of Scaled Steel-Concrete Composite Girders and Steel Monopole Towers Strengthened with CFRP DAVID SCHNERCH AND SAMI RIZKALLA Cost-effective rehabilitation and/or strengthening of steel. The current research program makes use of new high modulus types of carbon fiber for strengthening steel

115

Coal-fired furnace for testing of thermionic converters. Topical report  

SciTech Connect (OSTI)

The development of thermionic converter technology has progressed to make near-term applications interesting. One of these applications is the thermionic topping of a pulverized coal-fired central station powerplant. Up to now, thermionic converters have been flame tested using natural gas as fuel. A new test furnace is required for evaluation of thermionic converters in a coal-fired environment. The design and costs of a facility which adapts a coal-fired furnace built by Foster Wheeler Development Corporation (FWDC) for thermionic converter testing are discussed. Such a facility would be exempt from air pollution regulations because of its low firing rate.

Not Available

1980-10-01T23:59:59.000Z

116

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network [OSTI]

Assessment of Electric Steel making Through the Year 2000,by Injection Technology” Steel Times, October 1994 pp.391-Hanes, C. , 1999. USS/Kobe Steel, Personal communication,

Xu, T.T.

2011-01-01T23:59:59.000Z

117

Segmented ceramic liner for induction furnaces  

DOE Patents [OSTI]

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

118

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect (OSTI)

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

119

Manufacturing capabilities of high power electron beam furnaces for melting ignots to 40 tons in weight  

SciTech Connect (OSTI)

A tendency to using special technologies of melting steels and alloys to get large ingots free of macrodefects and shrinking shells used to provide defectless products, ensuring an increase of ingot-to-product yield is well known. The electron beam furnace process improves the economical efficiency of production of large ingots, slabs for rolling mills, where high quality of special purpose steels and alloys is required. Metals, made by means of electron beam melting can be used for power, nuclear and chemical machine-buildings, aircraft and automotive, instrument and bearing productions, injection moulds and moulds for cold rollings, magnetic and titanium alloys, ship shafts, propellers and high speed power turbine parts. Melting technologies, which is one of the most important stages in production of steels and alloys, predetermines a required quality of metals and alloys to get the following characteristics of remelted metals: impact strength; isotropy of properties in central and surface zones of ingots; fatigue strength and resistance under mechanical and heat loads; corrosion resistance to attack by aggressive media; and polishing properties. The furnace is equipped with five electron beam guns, type EH-1200/50 and pumps for pumping out cavities of technological equipments: melting and ingot chambers, charging devices.

Boiko, Ju.P.; Braim, V.P.; Kormitch, A.T.; Zorin, G.V.; Kostenuk, Ju.V.; Nikitin, V.S.; Pokrovsky, S.V.

1994-12-31T23:59:59.000Z

120

Design and fabrication of a tin-sulfide annealing furnace  

E-Print Network [OSTI]

A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

Lewis, Raymond (Raymond A.)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE Publishes Final Rule for Residential Furnace Fan Test Procedure...  

Broader source: Energy.gov (indexed) [DOE]

Residential Furnace Fan Test Procedure DOE Publishes Final Rule for Residential Furnace Fan Test Procedure January 3, 2014 - 12:00am Addthis The Department of Energy (DOE) has...

122

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Solar Energy Center ABSTRACT Currently, total electricity consumption of furnacesFurnace Blower Electricity: National and Regional Savings Potential Victor Franco, James Lutz, Alex Lekov, and Lixing Gu (Florida Solar

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

123

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

of two-stage furnaces with BPM motors provides electricityof two-stage furnaces with BPM motors provides electricityPSC) and brushless permanent magnet (BPM) 1 . PSC motors are

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

124

Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 March 1993--31 May 1993  

SciTech Connect (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. The basic program is designed to determine the reactivity of both coal and its derived char under blast furnace conditions and to compare the results to similar properties of blast furnace coke. The results of the first two experiments in which coal char pyrolyzed in nitrogen at 1000{degrees}C in an EPR were reacted isothermally in air at 1000{degrees}C and 1200{degrees}C. The reactivity values of the same char in these two experiments were different by an order of magnitude. The char reactivity at 1000{degrees}C was 9.7 {times} 10{sup {minus}4} grams per minute while the reactivity. of the char at 1200{degrees}C was 1.6 {times} 10{sup {minus}3} grams per minute. These results suggest that the temperature of the blast air in the tuyere may be critical in achieving complete carbon burnout.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-09-01T23:59:59.000Z

125

Heat Recovery From Arc Furnaces Using Water Cooled Panels  

E-Print Network [OSTI]

HEAT RECOVERY FROM ARC FURNACES USING WATER COOLED PANELS D. F. Darby Deere & Company Moline, Illinois ABSTRACT In 1980-81, the John Deere Foundry at East Moline underwent an expansion program that in creased its capacity by over 60...%. This expansion was centered around the melt department where the four existing 13MVA electric arc furnaces were augmented with two additional 13MVA arc furnaces. A waste heat recovery system was installed on all six of the arc furnaces which, with modifica...

Darby, D. F.

126

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

total fuel and electricity consumption under laboratoryto decrease the electricity consumption of furnaces, mainlytotal fuel and electricity consumption under laboratory

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

127

Covered Product Category: Residential Gas Furnaces  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

128

Proceedings of the 45th electric furnace conference  

SciTech Connect (OSTI)

This book contains the proceedings of the 46th Electric Furnace Conference. Topics included are: EAF Dust Decomposition and Metals Recovery at ScanDust, Optimization of Electric Arc Furnace Process by Pneumatic Stirring, and Melt Down Control for Electric Arc Furnaces.

Not Available

1988-01-01T23:59:59.000Z

129

Partial SOP for Tube Anneal Furnace, EML: 9/04 Instructions for temp controller for Anneal furnace  

E-Print Network [OSTI]

Partial SOP for Tube Anneal Furnace, EML: 9/04 Instructions for temp controller for Anneal furnace the "C" clamp. Take the ceramic and quartz end caps off. 2. Load your samples into a quartz boat. Load

Reif, Rafael

130

Thermally efficient melting and fuel reforming for glass making  

DOE Patents [OSTI]

An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

1991-10-15T23:59:59.000Z

131

Thermally efficient melting and fuel reforming for glass making  

DOE Patents [OSTI]

An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

Chen, Michael S. (Zionsville, PA); Painter, Corning F. (Allentown, PA); Pastore, Steven P. (Allentown, PA); Roth, Gary S. (Trexlertown, PA); Winchester, David C. (Allentown, PA)

1991-01-01T23:59:59.000Z

132

Process control techniques for the Sidmar blast furnaces  

SciTech Connect (OSTI)

The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van [Sidmar N.V., Ghent (Belgium)

1995-12-01T23:59:59.000Z

133

A recycling process for dezincing steel scrap  

SciTech Connect (OSTI)

In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

Dudek, F.J.; Daniels, E.J. (Argonne National Lab., IL (United States)); Morgan, W.A.; Kellner, A.W.; Harrison, J. (Metal Recovery Industries, Inc., Hamilton, ON (Canada))

1992-01-01T23:59:59.000Z

134

A recycling process for dezincing steel scrap  

SciTech Connect (OSTI)

In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States); Morgan, W.A.; Kellner, A.W.; Harrison, J. [Metal Recovery Industries, Inc., Hamilton, ON (Canada)

1992-08-01T23:59:59.000Z

135

Understanding environmental leachability of electric arc furnace dust  

SciTech Connect (OSTI)

Dust from production of steel in an electric arc furnace (EAF) contains a mixture of elements that pose a challenge for both recovery and disposal. This paper relates the leachability of six Canadian EAF dusts in four leaching tests [distilled water, Ontario Regulation 347 Leachate Extraction Procedure, Amount Available for Leaching (AALT), and pH 5 Stat] to their mineralogy. Chromium and nickel contaminants in EAF dust are largely unleachable (<5% available in AALT and pH 5 Stat), as they are found with the predominant spinel ferrite phase in EAF dust. However, even a small proportion of oxidized chromium can result in significant leachate concentrations of highly toxic chromate. The leachability of zinc (7--50% available), lead (2--17% available), and cadmium (9--55% available) can be significant, as large fractions of these contaminants are found as chlorides and oxides. The leaching of these metals is largely controlled by pH. The acid neutralization capacity of the EAF dusts appeared to be controlled by dissolution of lime and zincite, and results from regulatory leaching tests can be misleading because the variable acid neutralization capacity of EAF dusts can lead to very different final leachate pHs (5--12.4). A more informative approach would be to evaluate the total amounts of contaminants available in the long term, and the acid neutralization capacity.

Stegemann, J.A.; Roy, A.; Caldwell, R.J.; Schilling, P.J.; Tittsworth, R.

2000-02-01T23:59:59.000Z

136

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

SciTech Connect (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

137

Production and blast-furnace smelting of boron-alloyed iron-ore pellets  

SciTech Connect (OSTI)

Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

A.A. Akberdin; A.S. Kim [Abishev Chemicometallurgical Institute, Abishev (Kazakhstan)

2008-08-15T23:59:59.000Z

138

Temperatures in the blast furnace refractory lining  

SciTech Connect (OSTI)

The campaign life duration of a blast furnace is mainly determined by the condition of the refractory lining in heavy-duty zones such as the hearth, bosh, belly and lower stack. To achieve a desired lifetime, the temperature of the lining in these areas thereby proved to be the decisive controllable parameter. Low operating temperatures result in prolonged service life and are attained through high cooling efficiency. Besides the refractory grade chosen, the wear profile is mainly determined by the type of cooling system applied and the cooling intensity. Therefore, an appropriate compromise between long service life and energy losses has to be found in each case. In order to predict the service life of a lining it is important to know the wear condition at all times during the campaign. The paper describes the approaches the authors have made so far on European blast furnaces, on a theoretical and practical basis, on how to analyze the lining wear.

Hebel, R.; Streuber, C. [Didier-M and P Energietechnik GmbH, Wiesbaden (Germany); Steiger, R. [Didier-M and P Engineering Services, Highland, IN (United States); Jeschar, R. [TU Clausthal (Germany). Inst. fuer Energieverfahrenstechnik und Brennstofftechnik

1995-12-01T23:59:59.000Z

139

Optimized Utility Systems and Furnace Integration  

E-Print Network [OSTI]

OPTIMIZED UTILITY SYSTEMS AND FURNACE INTEGRATION A. S. McMullan and H. D. Spriggs, Linnhoff March, Inc., Leesburg, Va. ABSTRACT Conventional process design philosophy usually results in utility systems being designed after process design... defines the Process/Utility interface. Clearly, changing the process design can result in different utility demands and possibly in different utility system designs. This paper presents a procedure, using Pinch Technology, for the simultaneous design...

McMullan, A. S.; Spriggs, H. D.

140

AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace  

SciTech Connect (OSTI)

Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and tuyere by 30, in line with pilot scale tests conducted previously.

Michael F. Riley

2002-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge  

SciTech Connect (OSTI)

Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P. [Huazhong University of Science and Technology, Wuhan (China)

2009-03-15T23:59:59.000Z

142

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

143

Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)  

SciTech Connect (OSTI)

Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

Dr. Gordon A. Irons

2004-03-31T23:59:59.000Z

144

AISI/DOE Technology Roadmap Program: Behavior of Phosphorus in DRI/HBI During Electric Furnace Steelmaking  

SciTech Connect (OSTI)

Many common scrap substitutes such as direct reduced iron pellets (DRI), hot briquetted iron (HBI), iron carbide, etc., contain significantly higher levels of phosphorus steelmaking for the production of higher quality steels, control of phosphorus levels in the metal will become a concern. This study has developed a more complete understanding of the behavior of phosphorus in DRI during EAF steelmaking, through a thorough investigation of the kinetics and thermodynamics of phosphorus transfer in the EAF based upon laboratory and plant experiments and trials. Laboratory experiments have shown that phosphorus mass transfer between oxide and metallic phases within commercial direct reduced iron pellets occurs rapidly upon melting according to the local equilibrium for these phases. Laboratory kinetic experiments indicate that under certain conditions, phosphorus mass transfer between slag and metal is influenced by dynamic phenomena, which affect the mass transfer coefficient for the reaction and/or the slag metal interfacial area. Plant trials were conducted to directly evaluate the conditions of mass transfer in the electric furnace and to determine the effects of different scrap substitute materials upon the slag chemistry, the behavior of phosphorus in the steel, and upon furnace yield. The data from these trials were also used to develop empirical models for the slag chemistry and furnace temperature as functions of time during a single heat. The laboratory and plant data were used to develop a numerical process model to describe phosphorus transfer in the EAF

Richard J. Frueham; Christopher P. Manning cmanning@bu.edu

2001-10-05T23:59:59.000Z

145

Benefits of ceramic fiber for saving energy in reheat furnaces  

SciTech Connect (OSTI)

Refractory ceramic fiber products offer thermal insulation investment in reheat furnaces by helping to keep operating cost low and product quality high. These products are used in a range of applications that include: furnace linings; charge and discharge door insulation; skidpipe insulation; and furnace repair and maintenance. The many product forms (blankets, modules, boards, textiles, and coatings) provide several key benefits: faster cycling, energy savings and personnel protection.

Norris, A. (Carborundum Co., Niagara Falls, NY (United States))

1993-07-01T23:59:59.000Z

146

Simple Maintenance Saves Costly Furnace Repair/Replacement |...  

Broader source: Energy.gov (indexed) [DOE]

furnace maintenance, which includes: Checking the condition of the vent connection pipe and chimney Checking the physical integrity of the heat exchanger Adjusting the...

147

Control of carbon balance in a silicon smelting furnace  

DOE Patents [OSTI]

The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

1992-12-29T23:59:59.000Z

148

Waste Heat Reduction and Recovery for Improving Furnace Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and...

149

Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity  

SciTech Connect (OSTI)

The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

Stuart E. Strand

2001-12-06T23:59:59.000Z

150

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect (OSTI)

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

151

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

ASHRAE test procedure for several furnace efficiency levels (80%, 81%, 90%,ASHRAE Test Procedure 80% AFUE (Two-stage, BPM) 81% AFUE (Two-stage, BPM) 90%

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

152

Furnace and Boiler Basics | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel CellStandardsMotors |EnergyFurnace and

153

Furnace Litigation Settled | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuel CycleDepartment ofFurnace

154

List of Furnaces Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas)BiofuelsInsulationFurnaces Incentives

155

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents [OSTI]

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

156

Detailed model for practical pulverized coal furnaces and gasifiers  

SciTech Connect (OSTI)

The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

Philips, S.D.; Smoot, L.D.

1989-08-01T23:59:59.000Z

157

System and method for making metallic iron with reduced CO.sub.2 emissions  

DOE Patents [OSTI]

A method and system for making metallic iron nodules with reduced CO.sub.2 emissions is disclosed. The method includes: assembling a linear hearth furnace having entry and exit portions, at least a conversion zone and a fusion zone, and a moving hearth adapted to move reducible iron bearing material through the furnace on contiguous hearth sections; assembling a shrouded return substantially free of air ingress extending adjacent at least the conversion and fusion zones of the furnace through which hearth sections can move from adjacent the exit portion to adjacent the entry portion of the furnace; transferring the hearth sections from the furnace to the shrouded return adjacent the exit portion; reducing reducible material in the linear hearth furnace to metallic iron nodules; and transporting gases from at least the fusion zone to the shrouded return to heat the hearth sections while in the shrouded return.

Kiesel, Richard F; Englund, David J; Schlichting, Mark; Meehan, John; Crouch, Jeremiah; Wilson, Logan

2014-10-14T23:59:59.000Z

158

STRIP TEMPERATURE IN A METAL COATING LINE ANNEALING FURNACE  

E-Print Network [OSTI]

continuously through the furnace, to certain temperatures and then cooling it, resulting in a change, and subsequent coating. The temperature along the furnace is controlled by varying the power supplied to the heating elements and by use of cooling tubes. The cooling tubes are located in the last half

McGuinness, Mark

159

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents [OSTI]

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

160

Recent improvements in casthouse practices at the Kwangyang blast furnaces  

SciTech Connect (OSTI)

POSCO`s Kwangyang blast furnaces have continuously carried out high production and low fuel operation under a high pulverized coal injection rate without complications since the Kwangyang No. 1 blast furnace was blown-in in 1987. The Kwangyang blast furnaces have focused on improving the work environment for the increase of competitive power in terms of increased production, cost savings, and management of optimum manpower through use of low cost fuel and raw material. At this time, the casthouse work lags behind most work in the blast furnace. Therefore, the Kwangyang blast furnaces have adopted a remote control system for the casthouse equipment to solve complications in the casthouse work due to high temperature and fumes. As the result, the casthouse workers can work in clean air and the number of workers has been reduced to 9.5 personnel per shift by reduction of the workload.

Jang, Y.S.; Han, K.W.; Kim, K.Y.; Cho, B.R.; Hur, N.S.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Method of operating a centrifugal plasma arc furnace  

DOE Patents [OSTI]

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

Kujawa, Stephan T. (Butte, MT); Battleson, Daniel M. (Butte, MT); Rademacher, Jr., Edward L. (Butte, MT); Cashell, Patrick V. (Butte, MT); Filius, Krag D. (Butte, MT); Flannery, Philip A. (Ramsey, MT); Whitworth, Clarence G. (Butte, MT)

1998-01-01T23:59:59.000Z

162

Method of operating a centrifugal plasma arc furnace  

DOE Patents [OSTI]

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

1998-03-24T23:59:59.000Z

163

Effect of furnace atmosphere on E-glass foaming  

SciTech Connect (OSTI)

The effect of furnace atmosphere on E-glass foaming generated in crucible has been studied with a specific goal to understand the impact of increased water content on foaming in oxy-fired furnaces. E-glass foams were generated in a fused-quartz crucible located in a quartz window furnace equipped with video recording. The present study showed that humidity in the furnace atmosphere destabilizes foam, while other gases have little effect on foam stability. This study suggests that the higher foaming in oxy-fired furnace compared to air-fired is caused by the effect of water on early sulfate decomposition, promoting more efficient refining gas generation from sulfate (known as “dilution effect”).

Kim, Dong-Sang; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

2006-12-01T23:59:59.000Z

164

E-Print Network 3.0 - arc furnace dust Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Renewable Energy 2 The Effec' of Furnace Design and Operation on Air Pollution Summary: chemical constituents in furnace gases arc very malodorous, or toxic, when...

165

E-Print Network 3.0 - air-conditioners furnaces air Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Space Summary: and electricity. These include boilers and furnaces for heating, air-conditioning systems and heat-pump systems... ) Space Heating Only Furnaces:...

166

Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace  

SciTech Connect (OSTI)

This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

2014-01-01T23:59:59.000Z

167

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

SciTech Connect (OSTI)

Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

Lekov, Alex; Franco, Victor; Meyers, Steve

2010-05-14T23:59:59.000Z

168

Incorporation of PCI flow measurement/control at AK Steel Corporation  

SciTech Connect (OSTI)

A measurement and control system has been developed and implemented to improve the distribution of coal among the tuyere lines on AK Steel Corporation`s Amanda blast furnace at Ashland, Kentucky. This paper discusses the development and design of the system, and briefly reviews operating results achieved.

Dibert, W.A.; Keaton, D. [AK Steel Corp., Ashland, KY (United States)

1994-12-31T23:59:59.000Z

169

Valorization of Automotive Shredder Residues in metallurgical furnaces Project REFORBA  

E-Print Network [OSTI]

) and the electric arc furnace (EAF) routes, P1 could be used as substitute for coal or coke, and P2 could replace with raw materials cheaper than coke. As additional potential benefits the amount of CO2 generated

Paris-Sud XI, Université de

170

Legendary West Virginia Senior Citizen Stays Warm With New Furnace...  

Broader source: Energy.gov (indexed) [DOE]

concerned for Beulah's safety, told her about the weatherization assistance program. "A tree fell on my house and damaged a lot of things, including my furnace," Beulah says. "I...

171

Automatic Control System of Car-Bottom Reheating Furnace  

E-Print Network [OSTI]

At present China has large quantities of two-regenerator gas reheating furnaces which are old in fashion and low in calorific efficiency. Therefore, the question how to increase the calorific efficiency is very much concerned on condition...

Xueqiao, M.; Weilian, X.; Hongchen, Z.

172

New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...  

Office of Environmental Management (EM)

by at least 3 billion metric tons in total by 2030, equal to more than a year's carbon pollution from the entire U.S. electricity system. Furnace fans are used to circulate air...

173

Effect of furnace atmosphere on E-glass foaming  

E-Print Network [OSTI]

oxy-fired furnaces. E-glass foams were generated in a fused-81.05.K 1. Introduction Glass foams generated in glass-that the stability of E-glass foam decreased with increasing

Kim, D. S.; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

2006-01-01T23:59:59.000Z

174

A method for burden distribution estimation from probe data in the blast furnace  

SciTech Connect (OSTI)

A novel approach for estimation of burden distribution in the blast furnace is presented. The proposed model makes use of only temperature measurements from an above-burden probe, and interprets the changes in temperature at charging in terms of burden distribution. In this study it is demonstrated that the temperature changes can be predicted quite accurately for all dumps in a charging sequence using neural networks., The basic structures of both an on-line and an off-line model are presented.

Nikus, M.; Saxen, H.; Bulsari, A. [Aabo Akademi Univ. (Finland). Dept. of Chemical Engineering

1996-12-31T23:59:59.000Z

175

Modelling of multiphase flow in ironmaking blast furnace  

SciTech Connect (OSTI)

A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia). School for Material Science and Engineering

2009-01-15T23:59:59.000Z

176

Automatic thermocouple positioner for use in vacuum furnaces  

DOE Patents [OSTI]

The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

Mee, D.K.; Stephens, A.E.

1980-06-06T23:59:59.000Z

177

Laboratory Evaluation of Residential Furnace BlowerPerformance  

SciTech Connect (OSTI)

A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

Walker, Iain S.; Lutz, Jim D.

2005-09-01T23:59:59.000Z

178

Enhanced Incluison Removal from Steel in the Tundish  

SciTech Connect (OSTI)

The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

R.C. Bradt; M.A.R. Sharif

2009-09-25T23:59:59.000Z

179

Enhanced Inclusion Removal from Steel in the Tundish  

SciTech Connect (OSTI)

The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

R. C. Bradt; M.A.R. Sharif

2009-09-25T23:59:59.000Z

180

Semicoke production and quality at Chinese vertical SJ furnaces  

SciTech Connect (OSTI)

In Russia there has been little interest on the thermal processing of non-sintering coal. However it may be used to obtain many special types of coke and semicoke that are necessary for processes other than blast furnace smelting and employing small metallurgical coke fractions that do not meet the relevant quality requirements. China has recently made great progress in developing the thermal processing of coal (mainly energy coal) to obtain a highly effective product, semicoke, primarily used in metallurgy and adsorption process. The article considers the operation of a Chinese semicoking plant equipped with vertical SJ furnaces. The plant is in the Shenmu district of Shanxi province (Inner Mongolia). The enterprise includes two furnaces of total output of about 100,000 t/yr of semicoke.

V.M. Strakhov; I.V. Surovtseva; A.V. D'yachenko; V.M. Men'shenin [Kuznetsk Center, Eastern Coal-Chemistry Institute (Russian Federation)

2007-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hot metal Si control at Kwangyang blast furnaces  

SciTech Connect (OSTI)

Studies of Si transfer in blast furnaces have shown that the Si level in pig iron is influenced more by the reaction of silicon oxide gas generation in the raceway than the chemical reaction between hot metal and slag at the drop zone. Specifications require a Si content of pig iron below 0.15% at the Kwangyang Works, but the use of soft coking coal in the blend for coke ovens, high pulverized coal injection rate into the blast furnace, and the application of lower grade iron ore has resulted in the need to develop methods to control Si in hot metal. In this paper, the results of in furnace Si control and the desiliconization skills at the casthouse floor are described.

Hur, N.S.; Cho, B.R.; Kim, G.Y.; Choi, J.S.; Kim, B.H. [POSCO, Cheollanamdo (Korea, Republic of). Kwangyang Works

1995-12-01T23:59:59.000Z

182

Furnace Blower Electricity: National and Regional Savings Potential  

SciTech Connect (OSTI)

Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

2008-05-16T23:59:59.000Z

183

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry  

E-Print Network [OSTI]

clean CO 2 for storage and a hydrogen stream to be recycledand storage ? Flexibility to make CO 2 -free hydrogen forand storage computational fluid dynamics carbon monoxide carbon dioxide direct reduced iron electric arc furnace gram gigajoules hour diatomic hydrogen

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

184

Improvement of tap holes at Wakayama No. 5 blast furnace  

SciTech Connect (OSTI)

The service life of blast furnaces, as the result of various improvement measures, has been extended from the conventional 5 to 7 years to 15 to 20 years. Wakayama No. 5 blast furnace adopted SiC bricks. Though SiC brick excelled in strength and durability, it has raised problems such as tap hole inside temperature lowering attributable to its high thermal conductivity, insufficient mud burning and gas blow-out. Nevertheless, various countermeasures described within have been taken against such problems, and as the result it has now become possible to maintain tap holes in stable conditions.

Yamashita, M.; Kashiwada, M.; Shibuta, H. [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

1995-12-01T23:59:59.000Z

185

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

Sopori, Bhushan L. (Denver, CO)

1995-01-01T23:59:59.000Z

186

2015-02-13 Issuance: Test Procedure for Furnaces and Boilers...  

Energy Savers [EERE]

2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed...

187

Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents  

Broader source: Energy.gov [DOE]

This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

188

Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air  

E-Print Network [OSTI]

The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel...

Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

189

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

furnaces and storage water heaters, finds that installing aAs shown in Table 2, storage water heaters in single-familya gas furnace and a gas storage water heater. This market is

Lekov, Alex B.

2010-01-01T23:59:59.000Z

190

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

furnaces and storage water heaters, finds that installing aAs shown in Table 2, storage water heaters in single-familya gas furnace and a gas storage water heater. This market is

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

191

Inventory management of steel plates at an oil rig construction company  

E-Print Network [OSTI]

Keppel Fels produces make-to-order oil exploration rigs for the global market. Each rig requires close to 6000 metric tons of steel in the course of its production. Optimal management of this steel is very critical in this ...

Tan, Chien Yung

2006-01-01T23:59:59.000Z

192

A New Approach to Argument by Analogy: Extrapolation and Chain Graphs Daniel Steel  

E-Print Network [OSTI]

A New Approach to Argument by Analogy: Extrapolation and Chain Graphs Daniel Steel Department of Philosophy 503 S Kedzie Hall East Lansing, MI 48824-1032 steel@msu.edu #12;1. Introduction. In order to make

Steel, Daniel

193

Superior Steel  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami -NewPlantSteel Co -Sites »

194

Evaluation of heat flux through blast furnace shell with attached sensors  

SciTech Connect (OSTI)

Plant trials to evaluate heat fluxes through a lining/cooling system of a blast furnace were conducted in order to realize the cooling efficiency of the blast furnace under operation. For this purpose, several experiments to measure the in-furnace gas temperatures were cautiously made, and numerical simulations for the temperature distributions over the blast furnace shell and cooling/lining systems were also carried out.

Han, J.W. [Kyonggi Univ., Suwon, Kyonggi (Korea, Republic of). Dept. of Materials Engineering; Lee, J.H.; Suh, Y.K. [POSCO, Kwangyang, Cheonnam (Korea, Republic of). Technical Research Labs.

1996-12-31T23:59:59.000Z

195

Independent Validation and Verification of Process Design and Optimization Technology Diagnostic and Control of Natural Gas Fired Furnaces via Flame Image Analysis Technology  

SciTech Connect (OSTI)

The United States Department of Energy, Industrial Technologies Program has invested in emerging Process Design and Optimizations Technologies (PDOT) to encourage the development of new initiatives that might result in energy savings in industrial processes. Gas fired furnaces present a harsh environment, often making accurate determination of correct air/fuel ratios a challenge. Operation with the correct air/fuel ratio and especially with balanced burners in multi-burner combustion equipment can result in improved system efficiency, yielding lower operating costs and reduced emissions. Flame Image Analysis offers a way to improve individual burner performance by identifying and correcting fuel-rich burners. The anticipated benefit of this technology is improved furnace thermal efficiency, and lower NOx emissions. Independent validation and verification (V&V) testing of the FIA technology was performed at Missouri Forge, Inc., in Doniphan, Missouri by Environ International Corporation (V&V contractor) and Enterprise Energy and Research (EE&R), the developer of the technology. The test site was selected by the technology developer and accepted by Environ after a meeting held at Missouri Forge. As stated in the solicitation for the V&V contractor, 'The objective of this activity is to provide independent verification and validation of the performance of this new technology when demonstrated in industrial applications. A primary goal for the V&V process will be to independently evaluate if this technology, when demonstrated in an industrial application, can be utilized to save a significant amount of the operating energy cost. The Seller will also independently evaluate the other benefits of the demonstrated technology that were previously identified by the developer, including those related to product quality, productivity, environmental impact, etc'. A test plan was provided by the technology developer and is included as an appendix to the summary report submitted by Environ (Appendix A). That plan required the V&V contractor to: (1) Establish the as-found furnace operating conditions; (2) Tune the furnace using currently available technology to establish baseline conditions; (3) Tune the furnace using the FIA technology; and (4) Document the improved performance that resulted from application of the FIA technology. It is important to note that the testing was not designed to be a competition or comparison between two different methodologies that could be used for furnace tuning. Rather, the intent was to quantify improvements in furnace performance that could not be achieved with existing technology. Therefore, the measure of success is improvement beyond the furnace efficiency obtainable using existing furnace optimization methods rather than improvement from the as found condition.

Cox, Daryl [ORNL

2009-05-01T23:59:59.000Z

196

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

Sopori, Bhushan L. (Denver, CO)

1996-01-01T23:59:59.000Z

197

Processing automotive shredder fluff for a blast furnace injection  

E-Print Network [OSTI]

led to an optimized iron recovery of 78.5 % corresponding to an elemental iron content of 51 %, close to the ore grade required in a blast furnace. At the global scale of ELV recycling, these results entail an increase by 4 % of the fluff recycling rate, thus helping to meet the European requirements for 2015

Boyer, Edmond

198

Field measurements of interactions between furnaces and forced air distribution systems  

E-Print Network [OSTI]

of equipment that provides the heating energy (the furnace, boiler or heat pump) and the method usedLBNL 40587 Field measurements of interactions between furnaces and forced air distribution systems Vol. 104 Part 1 Field measurements of interactions between furnaces and forced air distribution

199

High temperature furnaces for small and large angle neutron scattering of disordered materials  

E-Print Network [OSTI]

725 High temperature furnaces for small and large angle neutron scattering of disordered materials and small angle neutron scattering (SANS) experiments respectively. They are vacuum furnaces with a thin maintained in a tantalum box. In a neutron beam, the furnaces produce a very low scattering level (without

Boyer, Edmond

200

Electrode Arrangement As Substitute Bottom For An Electrothermic Slag Smelting Furnace.  

DOE Patents [OSTI]

The electrode arrangement uses vertically oriented electrodes with side wall contacts for an electrothermic smelting furnace for aluminum production. The side wall contacts are radially moveable into the furnace to compensate for wear on the contacts. The side wall contacts can be hollow to allow a slag forming charge to be fed to the furnace.

Aune, Jan Arthur (Enebakk, NO); Brinch, Jon Christian (Oslo, NO); Johansen, Kai (Kristiansand, NO)

2005-12-27T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Coal combustion under conditions of blast furnace injection  

SciTech Connect (OSTI)

Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

1995-12-01T23:59:59.000Z

202

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a new technology with the potential to reduce operating costs and increase productivity in bar and flat-rolled products for the steel industry. Nitrogen Control in...

203

ITP Steel: Steel Industry Marginal Opportunity Study September...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bandwidth Study October 2004 ITP Steel: Energy Use in the U.S. Steel Industry: An Historical Perspective and Future Opportunities, September 2000 Steel Industry Technology Roadmap...

204

ITP Steel: Theoretical Minimum Energies to Produce Steel for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000...

205

America Makes  

Broader source: Energy.gov [DOE]

America Makes advances additive manufacturing technology and products, and serves as a nationally recognized additive manufacturing center of innovation excellence, working to transform the U.S. manufacturing sector and yield significant advancements throughout industry. America Makes was formerly called the National Additive Manufacturing Innovation Institute (NAMII).

206

Low NOx nozzle tip for a pulverized solid fuel furnace  

DOE Patents [OSTI]

A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

2014-04-22T23:59:59.000Z

207

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

Sopori, B.L.

1996-11-19T23:59:59.000Z

208

Ultrahigh carbon steels, Damascus steels, and superplasticity  

SciTech Connect (OSTI)

The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

Sherby, O.D. [Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Wadsworth, J. [Lawrence Livermore National Lab., CA (United States)

1997-04-01T23:59:59.000Z

209

Raceway behaviors in blast furnace with pulverized coal injection  

SciTech Connect (OSTI)

The blast furnace raceway shows different characteristics with PCR (pulverized coal injection rate). It was found in this study that with the increase of PCR the raceway depth decreases, and the size of birds nest and sometimes with liquid holdup, increases. Oxygen enrichment with co-axial lances was known to be very effective on the extension of raceway depth and size reduction of birds nest. It was also found that there are various factors which affect the coke properties at tuyere level of the blast furnace. Coke traveling time was calculated to be extended with PCR and it had a close relationship with the coke size in bosh. Coke mean size decreased with the increase of coke traveling time, that is, with the increase of PCR. Both DI (the strength of coke in cold) and CSR (the strength of coke after reaction) were also decreased with PCR. RAFT (Raceway Adiabatic Flame Temperature) had a tendency to be decreased with the increase of PCR, which is obtained by the estimation of coke temperature via XRD analysis. From the analysis of alkali contents in coke sampled along the radius of the blast furnace, it was understood that no difference in alkali contents between fine and lump coke represents that coke fines generated from upper burden might appear at tuyere level.

Chung, J.K.; Han, J.W.; Cho, B.R. [POSCO, Cheollanamdo (Korea, Republic of)

1995-12-01T23:59:59.000Z

210

Plasma-supported coal combustion in boiler furnace  

SciTech Connect (OSTI)

Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B. [Kazakh National University, Alma Ata (Kazakhstan). Dept. of Physics

2007-12-15T23:59:59.000Z

211

Crack stability analysis of low alloy steel primary coolant pipe  

SciTech Connect (OSTI)

At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

1997-04-01T23:59:59.000Z

212

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the previous semi-annual technical progress report (April 1, 2001 through September 30, 2001). During the current reporting period, additional balance of plant impact information was determined for one of the two tests. These additional balance-of-plant results are presented and discussed in this report. There was no other technical progress to report, because all planned testing as part of this project has been completed.

Gary M. Blythe

2002-04-29T23:59:59.000Z

213

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

Gary M. Blythe

2001-11-06T23:59:59.000Z

214

Time and Temperature Test Results for PFP Thermal Stabilization Furnaces  

SciTech Connect (OSTI)

The national standard for plutonium storage acceptability (standard DOE-STD-3013-99, generally known as ''the 3013 standard'') has been revised to clarify the requirement for processes that will produce acceptable storage materials. The 3013 standard (Reference 1) now states that ''Oxides shall be stabilized by heating the material in an oxidizing atmosphere to a Material Temperature of at least 950 C (1742 F) for not less than 2 hours.'' The process currently in use for producing stable oxides for storage at the Plutonium Finishing Plant (PFP) heats a furnace atmosphere to 1000 C and holds it there for 2 hours. The temperature of the material being stabilized is not measured directly during this process. The Plutonium Process Support Laboratories (PPSL) were requested to demonstrate that the process currently in use at PFP is an acceptable method of producing stable plutonium dioxide consistently. A spare furnace identical to the production furnaces was set up and tested under varying conditions with non-radioactive surrogate materials. Reference 2 was issued to guide the testing program. The process currently in use at the PFP for stabilizing plutonium-bearing powders was shown to heat all the material in the furnace to at least 950 C for at least 2 hours. The current process will work for (1) relatively pure plutonium dioxide, (2) dioxide powders mixed with up to 20 weight percent magnesium oxide, and (3) dioxide powders with up to 11 weight percent magnesium oxide and 20 weight percent magnesium nitrate hexahydrate. Time and temperature data were also consistent with a successful demonstration for a mixture containing 10 weight percent each of sodium and potassium chloride; however, the molten chloride salts destroyed the thermocouples in the powder and temperature data were unavailable for part of that run. These results assume that the current operating limits of no more than 2500 grams per furnace charge and a powder height of no more than 1.5 inches remain in effect, although deeper powder beds (up to 2 inches) also yielded temperatures of greater than 950 C for longer than 2 hours.

COMPTON, J.A.

2000-08-09T23:59:59.000Z

215

AISI/DOE Advanced Process Control Program Vol. 1 of 6: Optical Sensors and Controls for Improved Basic Oxygen Furnace Operations  

SciTech Connect (OSTI)

The development of an optical sensor for basic oxygen furnace (BOF) off-gas composition and temperature in this Advanced Process Control project has been a laboratory spectroscopic method evolve into a pre-commercialization prototype sensor system. The sensor simultaneously detects an infrared tunable diode laser ITDL beam transmitted through the process off-gas directly above the furnace mouth, and the infrared greybody emission from the particulate-laden off-gas stream. Following developmental laboratory and field-testing, the sensor prototype was successfully tested in four long-term field trials at Bethlehem Steel's Sparrows Point plant in Baltimore, MD> The resulting optical data were analyzed and reveal correlations with four important process variables: (1) bath turndown temperature; (2) carbon monoxide post-combustion control; (2) bath carbon concentration; and (4) furnace slopping behavior. The optical sensor measurement of the off-gas temperature is modestly correlated with bath turndown temperature. A detailed regression analysis of over 200 heats suggests that a dynamic control level of +25 Degree F can be attained with a stand-alone laser-based optical sensor. The ability to track off-gas temperatures to control post-combustion lance practice is also demonstrated, and may be of great use in optimizing post-combustion efficiency in electric furnace steelmaking operations. In addition to the laser-based absorption spectroscopy data collected by this sensor, a concurrent signal generated by greybody emission from the particle-laden off-gas was collected and analyzed. A detailed regression analysis shows an excellent correlation of a single variable with final bath turndown carbon concentration. Extended field trials in 1998 and early 1999 show a response range from below 0.03% to a least 0.15% carbon concentration with a precision of +0.0007%. Finally, a strong correlation between prolonged drops in the off-gas emission signal and furnace slopping events was observed. A simple computer algorithm was written that successfully predicts furnace slopping for 90% of the heats observed; over 80% are predicted with at least a 30-second warning prior to the initial slopping events,

Sarah Allendorf; David Ottesen; Donald Hardesty

2002-01-31T23:59:59.000Z

216

III.C. 3. A Delphi on the Future of the Steel and Ferroalloy Industries*  

E-Print Network [OSTI]

204 III.C. 3. A Delphi on the Future of the Steel and Ferroalloy Industries* NANCY H. GOLDSTEIN for policy issues affecting the use of ferroalloys in steel making and certain other alloy production of the Delphi. The Steel and Ferroalloy Delphi included three rounds. The questions and exercises presented

Bieber, Michael

217

Supporting steel  

SciTech Connect (OSTI)

The US Department of Energy (DOE) and the American Iron and Steel Institute (AISI) have just completed a pilot program on the technical and economic viability of direct ironmaking by a process based on bath smelting. In this process, oxygen, prereduced iron ore pellets, coal, and flux are charged into a molten slag bath containing a high percentage of carbon. The carbon removes oxygen from the iron ore and generates carbon monoxide and liquid iron. Oxygen is then injected to burn some of the carbon monoxide gas before it leaves the smelting vessel. The partially combusted gas is sued to preheat and prereduced the ore before it is injected into the bath. There are several competing cokeless ironmaking processes in various stages of development around the world. A brief comparison of these processes provides a useful perspective with which to gauge the progress and objectives of the AISI-DOE research initiative. The principal competing foreign technologies include the Corex process, DIOS, HIsmelt, and Jupiter. The advantages of the direct ironmaking process examined by AISI-DOE were not sufficiently demonstrated to justify commercialization without further research. However, enough knowledge was gained from laboratory and pilot testing to teach researchers how to optimize the direct ironmaking process and to provide the foundation for future research. Researchers now better understand issues such as the dissolution of materials, reduction mechanisms and rates, slag foaming and control, the behavior of sulfur, dust generation, and the entire question of energy efficiency--including post combustion and the role of coal/volatile matter.

Badra, C. [International Trade Commission, Washington, DC (United States)

1995-10-01T23:59:59.000Z

218

Friction Properties of Molybdenum Alloyed Steel at Elevated Temperatures  

SciTech Connect (OSTI)

The high-temperature properties of steel surface can be improved by molybdenum surface alloying. Molybdenzing was carried out on carbon steel in the multi-function double glow plasma surface alloying furnace. The friction and wear tests were conducted on a high temperature ball-on-disk tribometer under the temperature of 25 deg. C{approx}600 deg. C. The contents of alloy element varied with alloyed layer were detected by SEM attached with EDS. The molybdenized layer is composed of the deposited layer and diffused layer. The micro-hardness of alloyed layer decreases from HV650 on the top layer to HV240. The friction coefficient of molybdenized layer decreases from 0.5{approx}0.6 to 0.2{approx}0.3 and wear rate decreases by 20% at elevated temperature after molybdenizing.

Li Jianliang; Xiong Dangsheng [Department of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 (China); Wu Hongyan [College of Math and Physics, Nanjing University of Information and Technology, Nanjing, 210044 (China)

2011-01-17T23:59:59.000Z

219

Comminuting irradiated ferritic steel  

DOE Patents [OSTI]

Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

Bauer, Roger E. (Kennewick, WA); Straalsund, Jerry L. (Kennewick, WA); Chin, Bryan A. (Auburn, AL)

1985-01-01T23:59:59.000Z

220

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents [OSTI]

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents [OSTI]

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

222

Automated Steel Cleanliness Analysis Tool (ASCAT)  

SciTech Connect (OSTI)

The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet or bloom disposition; and alloy development. Additional benefits of ASCAT include the identification of inclusions that tend to clog nozzles or interact with refractory materials. Several papers outlining the benefits of the ASCAT have been presented and published in the literature. The paper entitled ''Inclusion Analysis to Predict Casting Behavior'' was awarded the American Iron and Steel Institute (AISI) Medal in 2004 for special merit and importance to the steel industry. The ASCAT represents a quantum leap in inclusion analysis and will allow steel producers to evaluate the quality of steel and implement appropriate process improvements. In terms of performance, the ASCAT (1) allows for accurate classification of inclusions by chemistry and morphological parameters, (2) can characterize hundreds of inclusions within minutes, (3) is easy to use (does not require experts), (4) is robust, and (5) has excellent image quality for conventional SEM investigations (e.g., the ASCAT can be utilized as a dual use instrument). In summary, the ASCAT will significantly advance the tools of the industry and addresses an urgent and broadly recognized need of the steel industry. Commercialization of the ASCAT will focus on (1) a sales strategy that leverages our Industry Partners; (2) use of ''technical selling'' through papers and seminars; (3) leveraging RJ Lee Group's consulting services, and packaging of the product with a extensive consulting and training program; (4) partnering with established SEM distributors; (5) establishing relationships with professional organizations associated with the steel industry; and (6) an individualized plant by plant direct sales program.

Gary Casuccio (RJ Lee Group); Michael Potter (RJ Lee Group); Fred Schwerer (RJ Lee Group); Dr. Richard J. Fruehan (Carnegie Mellon University); Dr. Scott Story (US Steel)

2005-12-30T23:59:59.000Z

223

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL  

SciTech Connect (OSTI)

The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

Gary M. Blythe

2004-01-01T23:59:59.000Z

224

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

Gary M. Blythe

2003-10-01T23:59:59.000Z

225

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

226

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

227

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

by natural gas. Electricity consumption by a furnace blowerto the annual electricity consumption of a major appliance.not account for the electricity consumption of the appliance

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

228

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect (OSTI)

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

229

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

230

E-Print Network 3.0 - arc furnaces Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Solar Energy for the Production of Fullerenes and Summary: with the Odeillo (finance) solar furnace facilities, can be used to vaporize graphite in inert gas atmosphere......

231

E-Print Network 3.0 - arc plasma furnace Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PLASMA PHYSICS AND ENGINEERING Summary: replace costly traditional technologies as incineration and conventional plasma arc furnaces, and provide... ASSOCIATED LABORATORY ON...

232

E-Print Network 3.0 - arc furnace steelmaking Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the furnace cavity. This special ... Source: Oak Ridge National Laboratory Fossil Energy Program; Pint, Bruce A. - Materials Science & Technology Division, Oak Ridge...

233

E-Print Network 3.0 - air furnace design Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IN MUNICIPAL INCINERATOR Summary: cal to good furnace performance and to mainten ance of air pollution control. Early in 1967 the writer... of the grate roughly equivalent to...

234

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

develop condensing gas storage water heaters to qualify forgas furnace and gas storage water heater. This study focusesis predominantly storage water heaters. Regionally, gas-

Lekov, Alex

2011-01-01T23:59:59.000Z

235

Active radiometer for self-calibrated furnace temperature measurements  

DOE Patents [OSTI]

Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnut Hill, MA); Titus, Charles H. (Newtown Square, PA); Wittle, J. Kenneth (Chester Springs, PA); Surma, Jeffrey E. (Kennewick, WA)

1996-01-01T23:59:59.000Z

236

The limitation of hearth sidewall wear at Redcar blast furnace  

SciTech Connect (OSTI)

The Redcar blast furnace with 14m hearth diameter was blown-in for its second campaign in August 1996. It is currently in its 10th year of operation and to date has produced just over 30 million tonnes. Current plans are to continue the second campaign to the year 2000 and beyond, producing over 40 million tonnes. In order to achieve this objective, any further wear on the lining, and in particular the hearth sidewall, needs to be minimized. This paper describes the present hearth design, the monitoring of hearth wear, the predicted wear profile, and the protection measures that have been taken or are being considered.

Parratt, J.E.

1996-12-31T23:59:59.000Z

237

A system for interpretation of blast furnace stockrod measurements  

SciTech Connect (OSTI)

A system for intelligent monitoring and interpretation of signals from blast furnace stockrods is presented. The system visualizes the measurements and estimates the local burden layer thickness (under the rods) after every dump. Furthermore, it analyzes the burden descent rate to distinguish between slips, hangings, normal descent and peaks, etc., and also combines the stockrod information with findings of temperature measurements from an above-burden probe. The preprocessing of the signals and some features of the system, which is under development, are treated in this paper.

Hinnelae, J.; Saxen, H. [Aabo Akademi Univ. (Finland). Dept. of Chemical Engineering

1997-12-31T23:59:59.000Z

238

Graphite electrode DC arc furnace. Innovative technology summary report  

SciTech Connect (OSTI)

The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of feed composition variations on process operating conditions and slag product performance; and collecting mass balance and operating data to support equipment and instrument design.

NONE

1999-05-01T23:59:59.000Z

239

Covered Product Category: Residential Gas Furnaces | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor EngineeringDepartment ofBoilersDataHotofFurnaces Covered

240

Heat Treatment Procedure Qualification for Steel Castings  

SciTech Connect (OSTI)

The science of heat treatment has been well studied and is the basis from which existing specifications and practices for the heat treatment of steel castings have been developed. Although these existing specifications address the general needs of steel castings to be heat-treated, they do not take into account the variability in the parameters that govern the processes. The need for a heat treatment qualification procedure that accounts for this variability during heat treatment is an important step toward heat treatment quality assurance. The variability in temperatures within a heat treatment furnace is one such variable that a foundry has to contend with in its day-to-day activity. Though specifications indicate the temperatures at which a particular heat treatment has to be conducted, heat treatment specifications do not adequately account for all aspects of heat treatment quality assurance. The heat treatment qualification procedure will comprise of a robust set of rules and guidelines that ensure that foundries will still be able to operate within the set of constraints imposed on them by non-deterministic elements within the processes.

Professor Robert C. Voigt

2003-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Methods of forming steel  

DOE Patents [OSTI]

In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

Branagan, Daniel J. (Iona, ID); Burch, Joseph V. (Shelley, ID)

2001-01-01T23:59:59.000Z

242

Energy use in the U.S. steel industry: a historical perspective and future opportunities  

SciTech Connect (OSTI)

The U.S. steel industry has taken enormous strides over the past decades to reduce its energy consumption; since the end of World War II, the industry has reduced its energy intensity (energy use per shipped ton) by 60 percent. Between 1990 and 1998 alone, intensity has dropped from 20 to 18 million Btu (MBtu) per ton. This figure is projected to decrease to 15 MBtu/ton by 2010 with an asymptotic trend towards 14 MBtu/ton. Domestic shipments are projected to flatten out over the next decade to around 105 million tons which means that total energy consumption will also decrease. Historically, the steel industry has accounted for about 6 percent of U.S. energy consumption. Today, that figure is less than 2 percent and will decrease further to 1.5 percent by 2010. The primary causes for the decrease in energy consumption since WWII are: The use of pellets in the blast furnace and the application of new technology in the ironmaking process to further reduce fuel rates per net ton of hot metal (NTHM); The total replacement of the open hearth process by basic oxygen and electric furnaces; The almost total replacement of ingot casting by continuous casting (which improved yield dramatically and thus reduced the tons of raw steel required per ton of shipments); and The growth of the electric furnace sector of the industry at the expense of hot metal-based processes (which has also stimulated scrap recycling so that about 55 percent of ''new'' steel is now melted from scrap steel). This report focuses on the concept of good practices (i.e., those that are sustainable and can use today's technology). If all the industry could operate on this basis, the additional savings per ton could total 2 MBtu, As further restructuring occurs and the swing from hot metal-based to electric furnace-based production continues, the average consumption will approach the good practice energy per ton. Further savings will accrue through new technology, particularly in the areas of reduced blast furnace fuel rates and reheating efficiency, both of which relate to large tonnages of material.

Stubbles, John

2000-09-01T23:59:59.000Z

243

Modernization of the iron making plant at SOLLAC FOS  

SciTech Connect (OSTI)

When the blast furnaces at SOLLAC/FOS were relined, the objective being to ensure a worklife of 15 years, it was decided that the iron making plant would be modernized at the same time: the coking plant has been overhauled and renovated and its coking time increased to ensure a worklife of at least 34 years. The surface area of the sinter strand was increased from 400 to 520 m{sup 2}, the burden preparation circuit were simplified, and pig iron production capacity increased from 4.2 to 4.5 million metric tons per year. Coal injection was developed so as to obtain 170 kg/t of pig iron, an expert system was added to ensure more efficient blast furnace operation, and new measures have been carried out for environmental protection. Since these heavy investments have been completed, SOLLAC/FOS is a high-performance iron making plant, allowing it to face new challenges in the future.

Crayelynghe, M. van; Dufour, A.; Soland, J.; Feret, J.; Lebonvallet, J.

1995-12-01T23:59:59.000Z

244

Self-calibrated active pyrometer for furnace temperature measurements  

DOE Patents [OSTI]

Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

245

Long life hearth in blast furnace -- Kokura No. 2 B.F. of Sumitomo Metals  

SciTech Connect (OSTI)

The factors elongating hearth life of Sumitomo Kokura No. 2 B.F. were investigated by use of an estimation system of the furnace hearth condition, which consisted of four mathematical simulation models. Lowered heat load operation together with integrated design of both refractories and cooling enabled the furnace life to be extended for over 16 years without severe damage in the hearth.

Yamamoto, Takaiku; Sunahara, Kouhei; Inada, Takanobu; Takatani, Kouji; Miyahara, Mitsuo; Sato, Yasusi; Hatano, Yasuhiko; Takata, Kouzo

1997-12-31T23:59:59.000Z

246

Air Leakage of Furnaces and Air Handlers Iain S. Walker, Mike Lubliner, Darryl Dickerhoff,  

E-Print Network [OSTI]

Air Leakage of Furnaces and Air Handlers of California. #12;1 Air Leakage of Furnaces and Air Handlers Iain S. Walker, LBNL Mike Lubliner, Washington been made in reducing air leakage in residential and to a lesser extent small commercial forced air

247

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

SciTech Connect (OSTI)

The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

Rothgeb, S.; Brand, L.

2013-11-01T23:59:59.000Z

248

Our scenario is akin to the magnetic furnace model proposed by Axford and  

E-Print Network [OSTI]

Our scenario is akin to the magnetic furnace model proposed by Axford and McKenzie (14­16) and to ideas invoking reconnection of mesoscale loops (38, 39). We adopt from the furnace model the idea. However, our model of the nascent solar wind is intrinsically 3-D, and the magnetic field geometry

Pe'er, Dana

249

BPM Motors in Residential Gas Furnaces: What are theSavings?  

SciTech Connect (OSTI)

Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-05-12T23:59:59.000Z

250

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

251

Quantification of Liquid Holdup in the Dropping Zone of a Blast Furnace--A Cold Model Study  

E-Print Network [OSTI]

.S. GUPTA and K. NAVEEN A two-dimensional cold model study, replicating an ironmaking blast furnace dropping

252

Operational considerations for high level blast furnace fuel injection  

SciTech Connect (OSTI)

Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

Poveromo, J.J. [Quebec Cartier Mining Co., Bethlehem, PA (United States)

1996-12-31T23:59:59.000Z

253

Effect of furnace atmosphere on E-glass foaming Dong-Sang Kim a,*, Bryan C. Dutton b  

E-Print Network [OSTI]

Effect of furnace atmosphere on E-glass foaming Dong-Sang Kim a,*, Bryan C. Dutton b , Pavel R in revised form 21 August 2006 Abstract The effect of furnace atmosphere on E-glass foaming has been studied with the specific goal of understanding the impact of increased water content on foaming in oxy-fired furnaces. E-glass

Pilon, Laurent

254

Final Scientific Report - "Novel Steels for High Temperature Carburizing"  

SciTech Connect (OSTI)

This program was undertaken to develop a microalloy-modified grade of standard carburizing steel that can successfully exploit the high temperature carburizing capabilities of current commercial low pressure (i.e. 'vacuum') carburizing systems. Such steels can lower the amount of energy required for commercial carburizing operations by reducing the time required for deep-case carburizing operations. The specific technical objective of the work was to demonstrate a carburizing steel composition capable of maintaining a prior austenite grain size no larger than ASTM grain size number 5 after exposure to simulated carburizing conditions of 1050 C for 8 hr. Such thermal exposure should be adequate for producing carburized case depths up to about 2 mm. Such carburizing steels are expected to be attractive for use across a wide range of industries, including the petroleum, chemical, forest products, automotive, mining and industrial equipment industries. They have potential for reducing energy usage during low pressure carburizing by more than 25%, as well as reducing cycle times and process costs substantially. They also have potential for reducing greenhouse gas emissions from existing low pressure carburizing furnaces by more than 25%. High temperature carburizing can be done in most modern low pressure carburizing systems with no additional capital investment. Accordingly, implementing this technology on carburizing furnaces will provide a return on investment significantly greater than 10%. If disseminated throughout the domestic carburizing community, the technology has potential for saving on the order of 23 to 34 trillion BTU/year in industrial energy usage. Under the program, two compositions of microalloyed, coarsening-resistant low alloy carburizing steels were developed, produced and evaluated. After vacuum annealing at 1050oC for 8 hrs and high pressure gas quenching, both steels exhibited a prior austenite ASTM grain size number of 5.0 or finer. For comparison, a control alloy of similar composition but without the microalloy additions exhibited a duplex prior austenite grain size with grains ranging from ASTM grain size 3 down to ASTM grain size 1 after similar processing and thermal exposure. These results confirm the potential for using microalloy additions of Ti, B, Nb, Al, rare earths and/or N for austenite grain size control in Cr-Mo (i.e. 4000-series) low alloy carburizing steels. They also demonstrate that these microalloy additions will not compromise the processability of the steel; all three materials produced under the program could be hot worked readily using normal steel processing protocols. To fully realize the technical and commercial potential of these steels, there is a need to continue development work using larger-scale heats. These larger-scale heats are needed to provide adequate material for fatigue testing of quenched and tempered alloys, to conduct more complete investigations of potential alloy chemistries and to provide additional material for processing studies. It will also be beneficial to carefully review intellectual property issues associated with this family of steels, since existing Japanese patent literature suggests that significant microstructural and/or process characterization work may be needed on new materials to confirm that these materials fall outside existing patent claims.

McKimpson, Marvin G.; Liu, Tianjun; Maniruzzaman, Md

2012-07-27T23:59:59.000Z

255

Integrated emissions control system for residential CWS furnace. Annual status report number 1, 20 September 1989--30 September 1990  

SciTech Connect (OSTI)

One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. A reactor provides high sorbent particle residence time within the reactor to control SO{sub 2} emissions, while providing a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any flyash exiting the reactor is completed with the use of high-efficiency bag filters. Tecogen Inc. developed a residential-scale Coal Water Slurry (CWS) combustor which makes use of centrifugal forces to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled to minimize NO{sub x} emissions. During the first year of the program, work encompassed a literature search, developing an analytical model of the SO{sub 2} reactor, fabricating and assembling the initial prototype components, testing the prototype component, and estimating the operating and manufacturing costs.

Balsavich, J.C.; Breault, R.W.

1990-10-01T23:59:59.000Z

256

THE COVERING LEMMA UP TO A WOODIN CARDINAL W.J. MITCHELL, E. SCHIMMERLING, AND J.R. STEEL  

E-Print Network [OSTI]

THE COVERING LEMMA UP TO A WOODIN CARDINAL W.J. MITCHELL, E. SCHIMMERLING, AND J.R. STEEL (Version in Steel [St1]. In order to trace the history behind the theorem, it will be convenient to make by National Science Foundation grant DMS 92­06946. 1 #12; 2 W.J. MITCHELL, E. SCHIMMERLING, AND J.R. STEEL CP

Steel, John R.

257

Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption  

SciTech Connect (OSTI)

The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

1995-12-01T23:59:59.000Z

258

STEEL: RECENT PUBLICATIONS HAMPSON, G. J., STEEL, R. J., BURGESS,  

E-Print Network [OSTI]

STEEL: RECENT PUBLICATIONS HAMPSON, G. J., STEEL, R. J., BURGESS, P. M. and R. W. DALRYMPLE, (in of Siliciclastic Shallow-Marine Stratigraphy. SEPM Spec. Publication 90. STEEL, R.J., CARVAJAL, C., PETTER, A. THOMAS P. GERBER, LINCOLN F. PRATSON, MATTHEW A.WOLINSKY, RON STEEL, JERĂ? MOHR, JOHN B. SWENSON CHRIS

Yang, Zong-Liang

259

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect (OSTI)

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

260

Monitoring lining and hearth conditions at Inland`s No. 7 blast furnace  

SciTech Connect (OSTI)

The paper describes: furnace statistics; mini-reline undertaken in November, 1993; the stack condition; throat gunning; stabilizing the graphite bricks; the hearth condition; reactions to temperature excursions; future instrumentation; and hot blast system areas of concern. The present data from monitoring systems and inspections indicate that the furnace should be able to operate well beyond the expectation for the 1993 mini-reline (3--5 years) with: (1) consistent, high quality raw materials; (2) instrumentation, diagnostic, remedial, and preventative techniques developed; and (3) stopping quickly any water leaks into the furnace. The longevity of this campaign has undoubtedly been a result of this monitoring program.

Quisenberry, P.; Grant, M.; Carter, W.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Model of the radial distribution of gas in the blast furnace  

SciTech Connect (OSTI)

This paper describes an on-line model for estimating the radial gas distribution in blast furnaces. The model is based on molar and energy flow balances for the blast furnace throat region, and utilizes the top gas temperature and gas temperature measurements from a fixed above-burden probe. The distribution of the gas flux is estimated by a Kalman filter. The method is illustrated to capture short-term dynamics and to detect sudden major changes in the gas distribution in Finnish blast furnace.

Nikus, M.; Saxen, H. [Aabo Akademi Univ. (Finland). Dept. of Chemical Engineering

1996-12-31T23:59:59.000Z

262

On numerical simulation of flow, heat transfer and combustion processes in tangentially-fired furnace  

SciTech Connect (OSTI)

In this work, an Eulerian/Lagrangian approach has been employed to investigate numerically flow characteristics, heat transfer and combustion processes inside corner-fired power plant boiler furnace. To avoid pseudo-diffusion that is significant in modeling tangentially-fired furnaces, some attempts have been made at improving the finite-difference scheme. Comparisons have been made between standard {kappa}-{epsilon} model and RNG {kappa}-{epsilon} model. Some new developments on turbulent diffusion of particles are taken into account in an attempt to improve computational accuracy. Finally, temperature deviation is studied numerically so as to gain deeper insight into tangentially fired furnace.

Sun, P.; Fan, J.; Cen, K.

1999-07-01T23:59:59.000Z

263

Weldment for austenitic stainless steel and method  

DOE Patents [OSTI]

For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

Bagnall, Christopher (Hempfield, PA); McBride, Marvin A. (Hempfield, PA)

1985-01-01T23:59:59.000Z

264

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Broader source: Energy.gov [DOE]

The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The...

265

Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications  

E-Print Network [OSTI]

and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design...

Williams, F. D. M.; Kondratas, H. M.

1983-01-01T23:59:59.000Z

266

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

2001 Residential Energy Consumption Survey (RECS 2001; USenergy consumption of residential furnaces and boilers in U.S.US Department of Energy (2001). Residential energy consump- tion survey: household energy consumption

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

267

Vertical feed stick wood fuel burning furnace system  

DOE Patents [OSTI]

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

268

Vertical feed stick wood fuel burning furnace system  

DOE Patents [OSTI]

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

269

Hearth monitoring experiences at Dofasco`s No. 4 blast furnace  

SciTech Connect (OSTI)

As a result of a 1994 taphole breakout at Dofasco`s No. 4 Blast Furnace, extensive effort has gone into monitoring, understanding and controlling hearth wear. This paper reviews the hearth monitoring system developed and the various hearth operating and maintenance techniques used to ensure No. 4 Blast Furnace safely reaches its 1998 reline date. The impact of changes in coke quality, productivity, casting practice and leaking cooling members on hearth refractory temperature fluctuations will also be examined.

Stothart, D.W.; Chaykowski, R.D.; Donaldson, R.J.; Pomeroy, D.H.

1997-12-31T23:59:59.000Z

270

Blast furnace injection of massive quantities of coal with enriched air or pure oxygen  

SciTech Connect (OSTI)

An extensive study of the phenomena associated with the blast furnace injection of massive quantities of coal is described. Trials with conventional lances or oxy-coal injectors and hot blast at different oxygen contents - up to 40% - or with cold pure oxygen were realized at coal to oxygen ratios corresponding to a range of 150 to 440 kg. Pilot scale rigs, empty or filled with coke, as well as industrial blast furnaces were utilized.

Ponghis, N.; Dufresne, P.; Vidal, R.; Poos, A. (Center de Recherches Metallurgiques, Liege (Belgium))

1993-01-01T23:59:59.000Z

271

Evaluation of Advanced PSA and Oxygen Combustion System for Industrial Furnace Applications  

E-Print Network [OSTI]

M. A. Delano Union Carbide Corp. Tarrytown, NY ABSTRACT EVALUATION OF ADVANCED PSA AND OXYGEN COMBUSTION SYSTEM FOR INDUSTRIAL FURNACE APPLICATIONS D. Lagree Union Carbide Corp. Tonawanda, NY The performance of a pilot scale advanced PSA... oxygen generation system and a low NO x oxygen burner was evaluated for industrial furnace applications. The PSA system employs a two-bed vacuum cycle design with a capacity of 1.3 TPD at 90% O 2 purity. The oxygen generated from the PSA system...

Delano, M. A.; Lagree, D.; Kwan, Y.

272

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network [OSTI]

REFINERY FURNACES RETROFIT WITH GAS TURBINES ACHIEVE BOTH ENERGY SAVINGS AND EMISSION REDUCTIONS F. Giacobbe*, G. Iaquaniello**, R. G. Minet*, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI Sp...A., Rome, Italy ABSTRACT Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented...

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

273

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

SciTech Connect (OSTI)

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

Brand, L.

2012-03-01T23:59:59.000Z

274

A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace  

SciTech Connect (OSTI)

A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

Murray, J.P.

1989-01-01T23:59:59.000Z

275

Pulverized coal injection (PCI) at Inland`s No. 7 blast furnace  

SciTech Connect (OSTI)

Fuel injection at the tuyeres has always been part of normal operating practice on this blast furnace. It has been used as much because of the beneficial effects on furnace operation as for the replacement of some of the coke that would otherwise be consumed. Fuel oil was used at first, but since the early 1980s it was more economical to inject natural gas. Studies in 1990 indicated that natural gas could be increased to 75 kg/tHM on No. 7 Furnace, and this would result in a coke rate of approximately 360 kg/tHM. It was apparent that coal injection offered significantly more opportunity for coke savings. Coke rate could be lowered to 300 kg/tHM with coal injected at 175 kg/tHM. Some combustion limitations were expected at that level. A coke rate of 270 kg/tHM with coal at 200 kg/tHM may be possible once these limitations are overcome. Furnace permeability was expected to limit the ability to reduce coke rate any further. In addition, the relative cost of coal would be significantly lower than the cost of coke it replaced. This lead to the decision late in 1991 to install pulverized coal injection (PCI) equipment for all of Inland`s blast furnaces. This paper will deal with PCI experience at No. 7 Blast Furnace.

Carter, W.L.; Greenawald, P.B.; Ranade, M.G.; Ricketts, J.A.; Zuke, D.A. [Inland Steel Co., East Chicago, IN (United States)

1995-12-01T23:59:59.000Z

276

Gas-powder flow in blast furnace with different shapes of cohesive zone  

SciTech Connect (OSTI)

With high PCI rate operations, a large quantity of unburned coal/char fines will flow together with the gas into the blast furnace. Under some operating conditions, the holdup of fines results in deterioration of furnace permeability and lower production efficiency. Therefore, it is important to understand the behaviour of powder (unburnt coal/char) inside the blast furnace when operating with different cohesive zone (CZ) shapes. This work is mainly concerned with the effect of cohesive zone shape on the powder flow and accumulation in a blast furnace. A model is presented which is capable of simulating a clear and stable accumulation region in the lower central region of the furnace. The results indicate that powder is likely to accumulate at the lower part of W-shaped CZs and the upper part of V- and inverse V-shaped CZs. For the same CZ shape, a thick cohesive layer can result in a large pressure drop while the resistance of narrow cohesive layers to gas-powder flow is found to be relatively small. Implications of the findings to blast furnace operation are also discussed.

Dong, X.F.; Pinson, D.; Zhang, S.J.; Yu, A.B.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia)

2006-11-15T23:59:59.000Z

277

Characteristics of steel slag under different cooling conditions  

SciTech Connect (OSTI)

Four types of steel slags, a ladle slag, a BOF (basic oxygen furnace) slag and two different EAF (electric arc furnace) slags, were characterized and modified by semi-rapid cooling in crucibles and rapid cooling by water granulation. The aim of this work was to investigate the effect of different cooling conditions on the properties of glassy slags with respect to their leaching and volume stability. Optical microscopy, X-ray diffraction, scanning electron microscope and a standard test leaching (prEN 12457-2/3) have been used for the investigation. The results show that the disintegrated ladle slag was made volume stable by water granulation, which consisted of 98% glass. However EAF slag 1, EAF slag 2 and the BOF slag formed 17%, 1% and 1% glass, respectively. The leaching test showed that the glass-containing matrix did not prevent leaching of minor elements from the modified slags. The solubility of chromium, molybdenum and vanadium varied in the different modifications, probably due to their presence in different minerals and their different distributions.

Tossavainen, M. [Division of Mineral Processing, Lulea University of Technology, SE-971 87 Lulea (Sweden); Engstrom, F. [Division of Process Metallurgy, Lulea University of Technology, SE-971 87 Lulea (Sweden)], E-mail: Fredrik.i.engstrom@ltu.se; Yang, Q.; Menad, N.; Lidstrom Larsson, M.; Bjorkman, B. [Division of Process Metallurgy, Lulea University of Technology, SE-971 87 Lulea (Sweden)

2007-07-01T23:59:59.000Z

278

Performance history over 10 years of super duplex stainless steel in flue gas desulfurization  

SciTech Connect (OSTI)

25 Cr duplex (austenitic/ferritic) stainless steel containing copper and nitrogen offers a cost effective solution to material selection for pollution control equipment. The properties of duplex stainless steel which make it suitable for this type of application are discussed and long term performance histories presented. It is concluded that high alloy duplex steel has an important role to play in the production of low maintenance reliable equipment for FGD and other pollution control systems.

Bendall, K.C. [Langley Alloys Ltd., Maidenhead (United Kingdom)

1996-08-01T23:59:59.000Z

279

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300°C-700°C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

2014-04-22T23:59:59.000Z

280

Uncertainty of calorimeter measurements at NREL's high flux solar furnace  

SciTech Connect (OSTI)

The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

Bingham, C.E.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Evaluation of Retrofit Variable-Speed Furnace Fan Motors  

SciTech Connect (OSTI)

In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

Aldrich, R.; Williamson, J.

2014-01-01T23:59:59.000Z

282

Auto/Steel Partnership: Advanced High-Strength Steel Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm23heimbuch.pdf More Documents & Publications Overview: STEEL AutoSteel Partnership...

283

Ris-R-1244(EN) Tool Steels  

E-Print Network [OSTI]

-resistant steels 18 5.5 Hot-work steels 18 5.6 Cold-work steels 19 5.7 High-speed steels (HSSs) 20 Appendix 1 and chromium) furthermore some steel types contains cobalt, which respectively raises the temperature at which.1 Water-hardening steels 17 5.2 Low-alloy special purpose steels 17 5.3 Mould steels 18 5.4 Shock

284

Clean steels for fusion  

SciTech Connect (OSTI)

Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

Gelles, D.S.

1995-03-01T23:59:59.000Z

285

Continuous steel production and apparatus  

SciTech Connect (OSTI)

A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

Peaslee, Kent D. (Rolla, MO); Peter, Jorg J. (McMinnville, OR); Robertson, David G. C. (Rolla, MO); Thomas, Brian G. (Champaign, IL); Zhang, Lifeng (Trondheim, NO)

2009-11-17T23:59:59.000Z

286

Effect of coal and coke qualities on blast furnace injection and productivity at Taranto  

SciTech Connect (OSTI)

Injection rates at Taranto blast furnaces Nos. 2 and 4, for more than 16 months, was maintained above 175 kg/thm. Monthly average injection rate for two months stabilized above 190 kg/thm. This performance was possible due to the very high combined availabilities of Taranto blast furnaces and the KST injection system. Based upon this experience the quantitative relationships between coke/coal and blast furnace operational parameters were studied and are shown graphically. During this period due to coke quality changes, injection rate had to be reduced. The effect of using coke breeze in coke/ferrous charge as well as coal blend was also evaluated. Permeability of the furnace was found to be directly affected by O{sub 2} enrichment level, while at a high PCI rate no correlation between actual change in coke quality and permeability could be established. The future of PCI technology lies in better understanding of relationships between material specifications and blast furnace parameters of which permeability is of prime importance.

Salvatore, E.; Calcagni, M. [ILVA, Taranto (Italy); Eichinger, F.; Rafi, M.

1995-12-01T23:59:59.000Z

287

Development and application of new techniques for blast furnace process control at SSAB Tunnplaat, Luleaa Works  

SciTech Connect (OSTI)

SSAB Tunnplaat AB operates two blast furnaces (M1 and M2) in Luleaa. In recent years research efforts have to a great extent been aimed at the development of new techniques for blast furnace process control. An example is the installation of a burden profile measurement system, which was useful in the development of a new burden distribution praxis on the big furnace (M2), equipped with a bell-less-top. Hearth level detection and continuous measurement of the hot metal temperature in the runner are under evaluation. The purpose of these techniques is to give earlier information concerning the state of the blast furnace process. Parallel to this work, models for prediction of silicon in hot metal, the position and shape of the cohesive zone and slip-warning are being developed and tested off-line. These new models and information from new measuring techniques will be integrated into a new Operating Guidance System, hopefully resulting in a powerful tool in the efforts to stabilize blast furnace operations.

Braemming, M.; Hallin, M. [SSAB Tunnplaat AB, Luleaa (Sweden); Zuo, G. [Luleaa Univ. (Sweden). Dept. of Process Metallurgy

1995-12-01T23:59:59.000Z

288

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect (OSTI)

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

289

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.

Johnson, F.; Stone, M.; Miller, D.

2014-09-03T23:59:59.000Z

290

Use of a new microporous insulation in a sub car at Acme Steel  

SciTech Connect (OSTI)

Acme Steel Co. is a small integrated steel company headquartered in Riverdale IL., with its blast furnace and coke plant operations located in the city of Chicago. Rail transportation between the two plants is by Conrail with two crews assigned exclusively to Acme. The torpedo cars used for this service are specially reinforced, with 36 in. wheels and additional braking capability for safety on public rail tracks. Over a seven month period, microporous insulating panels 0.28 in. thick in No. 49 sub ladle saved an average 24 degrees in the iron on arrival at the BOF compared to the average for the rest of the fleet. The microporous insulation replaced 0.25 in. of compressed fiber panel.

Harvey, H.; Gamble, F.C.; MacKenzie, I.B.

1996-12-31T23:59:59.000Z

291

Behavioral Perspectives on Home Energy Audits: The Role of Auditors, Labels, Reports, and Audit Tools on Homeowner Decision Making  

E-Print Network [OSTI]

to  the  furnace  room   Installed  solar  attic  fan  furnaces,  or  even  more   unusual  activity  such  as  installing  solar  for  solar.   We  have  a  crappy  furnace.   We  looked  

Ingle, Aaron

2013-01-01T23:59:59.000Z

292

Copyright 1999 E. Ashley Steel  

E-Print Network [OSTI]

Ă? Copyright 1999 E. Ashley Steel #12;IN-STREAM FACTORS AFFECTING JUVENILE SALMONID MIGRATION E. Ashley Steel A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor examined this copy of a doctoral dissertation by E. Ashley Steel and have found that it is complete

Washington at Seattle, University of

293

Inventory management of steel plates at an oil rig construction company .  

E-Print Network [OSTI]

??Keppel Fels produces make-to-order oil exploration rigs for the global market. Each rig requires close to 6000 metric tons of steel in the course of… (more)

Tan, Chien Yung

2006-01-01T23:59:59.000Z

294

The formation of an ore free blast furnace center by bell charging  

SciTech Connect (OSTI)

A research program has been started to clarify and support the central gas flow control philosophy of Hoogovens` bell-charged No. 7 blast furnace. Small scale burdening experiments and sampling of the stock surface during shut-downs suggest that a sufficiently high central gas flow is an important condition for maintenance of an ore free, highly permeable furnace center and that fluidization of coke plays a part in its formation. On the basis of these experiments a hypothesis was formulated regarding the formation of an ore free blast furnace center, but could not be confirmed satisfactorily. Forthcoming full-scale burdening experiments will provide a better insight in the burden distribution and its control.

Exter, P. den; Steeghs, A.G.S.; Godijn, R.; Chaigneau, R.; Timmer, R.M.C. [Hoogovens Research and Development, IJmuiden (Netherlands); Toxopeus, H.L.; Vliet, C. van der [Hoogovens Staal Primary Products, IJmuiden (Netherlands)

1997-12-31T23:59:59.000Z

295

Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace  

DOE Patents [OSTI]

The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

Mathur, Mahendra P. (Pittsburgh, PA); Ekmann, James M. (Bethel Park, PA)

1989-01-01T23:59:59.000Z

296

Reaustenitisation from Bainite in Steels  

E-Print Network [OSTI]

.7 APPLICATIONS . . . 1.7.1 Ferrite-Martensite dual phase steels 1.7.2 Steels containing some retained austenite 1.7.3 Welding of steels . . . . . . . . . . 1.7.4 Initial austenite grain size . . . . . . . 1.8 TRANSFORMATION FROM AUSTENITE 1.8.1 Widmanstiitten... is important in the production of dual phase steels which have a final microstructure of ferrite and about 20% martensite. These steels have a good combination of strength and uniform ductility, and find applications in the automobile industry. When a fully...

Takahashi, Manabu

1993-03-16T23:59:59.000Z

297

Steel Success Story - Ironmaking: Quality and Supply Critical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Steel Success Story - Ironmaking: Quality and Supply Critical to Steel Industry Steel Success Story - Ironmaking: Quality and Supply Critical to Steel Industry This factsheet...

298

Altos Hornos de Mexico blast furnace No. 5 certification in ISO-9002 standard  

SciTech Connect (OSTI)

Altos Hornos de Mexico`s Blast Furnace No. 5, as a means to improve its product quality, sought and obtained the certification of its quality system based on the international standard ISO-9002. The certification was obtained under this quality standard in Dec. 1995 and has successfully been maintained after two continuance audits. For blast furnace No. 5 (BF5) the benefits are reflected by a reduction in the hot metal silicon content variability, a decrease in fuel consumption and a higher productivity. Benefits were also obtained in the working environment where the personnel became more highly motivated, procedures were carried out to completion and the quality records were filled correctly.

Gamez, O.; Liceaga, F.; Arredondo, J. [Altos Hornos de Mexico, Monclova (Mexico)

1997-12-31T23:59:59.000Z

299

Theoretical Minimum Energies to Produce Steel for Selected Conditions  

SciTech Connect (OSTI)

The energy used to produce liquid steel in today's integrated and electric arc furnace (EAF) facilities is significantly higher than the theoretical minimum energy requirements. This study presents the absolute minimum energy required to produce steel from ore and mixtures of scrap and scrap alternatives. Additional cases in which the assumptions are changed to more closely approximate actual operating conditions are also analyzed. The results, summarized in Table E-1, should give insight into the theoretical and practical potentials for reducing steelmaking energy requirements. The energy values have also been converted to carbon dioxide (CO{sub 2}) emissions in order to indicate the potential for reduction in emissions of this greenhouse gas (Table E-2). The study showed that increasing scrap melting has the largest impact on energy consumption. However, scrap should be viewed as having ''invested'' energy since at one time it was produced by reducing ore. Increasing scrap melting in the BOF mayor may not decrease energy if the ''invested'' energy in scrap is considered.

Fruehan, R.J.; Fortini, O.; Paxton, H.W.; Brindle, R.

2000-05-01T23:59:59.000Z

300

Operational and environmental benefits of oxy-fuel combustion in the steel industry  

SciTech Connect (OSTI)

Due to the high flame temperature of conventional oxygen-fuel burners, these burners have typically not been used in reheat furnaces where temperature uniformity is critical. Praxair has developed a number of burners and associated control systems that have been successfully operated in a variety of reheat furnaces beginning in 1980. The burners have also recently been used for ladle preheating. All burners have been operated with 100% oxygen. The patented burners have designs that result in flame temperatures equivalent to conventional air-fuel burners. Flexible flame patterns are possible, resulting in uniform temperature distribution. In addition, the low flame temperature combined with minimal nitrogen in the furnace results in very low NO{sub x} emissions. The design of the control systems insure safe and reliable operation. In the following sections, oxygen-fuel combustion will be described, with a discussion of fuel savings and other benefits. Unique designs will be discussed along with the features which make them applicable to reheat applications and which result in lower emissions. Other equipment provided with the burners to complete the oxy-fuel combustion system will be described briefly. There will also be a short discussion of how both the fuel and oxygen price can affect the economics of fuel saving. Results from the commercial retrofit installations in continuous and batch reheat furnaces, soaking pits and ladle preheaters will be described. Finally, NO{sub x} emissions data will be discussed.

Farrell, L.M. [Praxair, Inc., Tarrytown, NY (United States); Pavlack, T.T. [Praxair, Inc., East Chicago, IN (United States); Rich, L. [North American Manufacturing Co., Coraopolis, PA (United States)

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Blast-furnace ironmaking -- Existing capital and continued improvements are a winning formula for a bright future  

SciTech Connect (OSTI)

Throughout the years the blast-furnace process has been improved upon significantly. Increases to the hot-blast temperature, improvements to the physical, chemical, and metallurgical properties of coke and burden materials, the use of more fuel injectants, and improvements to the design of the furnace facilities have led to significant decreases in furnace coke rate, increases in productivity, and increases in furnace campaign life. As a result, many of the alternative cokeless reduction processes have not replaced blast-furnace hot-metal production in North America. In the future, these continued blast-furnace improvements will potentially result in coke rates decreasing to 400 pounds per net ton of hot metal (lb/NTHM) as more pulverized coal is injected. These improvements, coupled with the fact that existing blast furnaces and coke plants can be refurbished for approximately $110 per annual ton of hot metal [$100 per annual net ton of hot metal (NTHM)], will result in extending the life of the North American blast furnaces well into the twenty-first century.

Oshnock, T.W.; Colinear, J.A. [U.S. Steel, Monroeville, PA (United States)

1995-12-01T23:59:59.000Z

302

Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.  

SciTech Connect (OSTI)

In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

2004-11-01T23:59:59.000Z

303

ITP Steel: Energy Use in the U.S. Steel Industry: An Historical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Steel: Energy Use in the U.S. Steel Industry: An Historical Perspective and Future Opportunities, September 2000 ITP Steel: Energy Use in the U.S. Steel Industry: An Historical...

304

Pyrometric temperature measurement method and apparatus for measuring particle temperatures in hot furnaces: Application to reacting black liquor  

SciTech Connect (OSTI)

A specialized two-color pyrometric method has been developed for the measurement of particle surface temperatures in hot, radiating environments. In this work, the method has been applied to the measurement of surface temperatures of single reacting black liquor char particles in an electrically heated muffle furnace. Black liquor was introduced into the hot furnace as wet droplets. After drying, the resulted particles were processed in different atmospheres corresponding to combustion, pyrolysis, and gasification at furnace temperatures of 700{endash}900{degree}C. The pyrometric measurement is performed using two silicon photodiode detectors and 10 nm bandpass filters centered at 650 and 1050 nm. Thermal radiation is transferred using an uncooled fiberoptic probe brought into the vicinity of the char particle. The key features of the pyrometric apparatus and analysis method are: (1) Single particle temperature is resolved temporally at high speed. (2) The thermal radiation originating from the furnace and reflected by the particle is accounted for in the measurement of the surface temperature. (3) Particle temperatures above or below the furnace temperature can be measured without the need of a cooled background assisting the measurement in the hot furnace. To accomplish this, a minimum particle size is needed that is a function of the temperature difference between the particle and furnace. Particles cooler than the furnace can be measured if their diameter is more than 0.7 mm. Surface temperatures of 300{endash}400{degree}C above the furnace temperature were measured during combustion of black liquor char particles in air. In atmospheres corresponding to gasification, endothermic reactions occurred, and char temperature remained typically 40{degree} below the furnace temperature. {copyright} {ital 1996 American Institute of Physics.}

Stenberg, J. [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland)] [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland); Frederick, W.J. [Oregon State University, Gleeson 103, Corvallis, Oregon 97331 (United States)] [Oregon State University, Gleeson 103, Corvallis, Oregon 97331 (United States); Bostroem, S. [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)] [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland); Hernberg, R. [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland)] [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland); Hupa, M. [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)] [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)

1996-05-01T23:59:59.000Z

305

Pellet property requirements for future blast-furnace operations and other new ironmaking processes  

SciTech Connect (OSTI)

The requirements for the physical, chemical and metallurgical properties of pellets have continued to become more stringent as blast-furnace productivity and coke rate have been rapidly improved during the last decade. In addition, the age and deterioration of the North American coke batteries, the lack of capital to sufficiently rebuild them, and the threat of increasingly more stringent environmental controls for the coke batteries has forced North American ironmakers to begin implementing pulverized coal injection to minimize the coke requirements for the blast furnace and to seriously investigate developing other ironmaking processes that use coal instead of coke. Therefore, the next major step in North American ironmaking has included injecting pulverized coal (PC) at 200 kilograms per ton of hot metal (kg/ton) [400 pounds per net ton of hot metal (lb/NTHM)] or greater which will result in the coke rate decreasing to less than 300 kg/ton (600 lb/NTHM) or less. As a result, the pellets will spend more time in the furnace and will be required to support more total weight. Pellets can also be a major iron unit source for other cokeless ironmaking processes such as the COREX process or the AISI direct ironmaking process. This paper will explore the pellet property requirements for future blast-furnace operations and cokeless ironmaking processes.

Agrawal, A.K.; Oshnock, T.W. [U.S. Steel, Monroeville, PA (United States)

1995-12-01T23:59:59.000Z

306

Studies of charging stream trajectories and burden distribution in the blast furnace  

SciTech Connect (OSTI)

This work discusses the sensitivity of key blast furnace performance parameters to different gas flow distributions achieved by altering the burden distribution. The changes in burden distribution are brought about by different charging stream trajectories, and methods developed and evaluated for measuring the trajectories both on and off line are described.

McCarthy, M.J.; Mayfield, P.L.; Zulli, P.; Rex, A.J.; Tanzil, W.B.U.

1993-01-01T23:59:59.000Z

307

Development of quick repairing technique for ceramic burner in hot stove of blast furnace  

SciTech Connect (OSTI)

Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

1997-12-31T23:59:59.000Z

308

Dofasco`s No. 4 blast furnace hearth breakout, repair and rescue  

SciTech Connect (OSTI)

On May 5, 1994, after producing 9.5 million metric tons of iron, Dofasco`s No. 4 Blast Furnace experienced a hearth breakout 250 millimeters below the west taphole. The hot metal spill caused a fire resulting in severe damage and 33 days of lost production. During a 26-day period, electrical wiring, water drainage systems and both tapholes were repaired. Recovery from an unprepared furnace stop of this length, with the deadman depleted is difficult. To aid with the rescue Hoogovens-designed oxygen/fuel lances were commissioned. The furnace recovery began with a lance in each taphole and all tuyeres plugged. Six days after startup the furnace was casting into torpedo cars, and after nine days operation had returned to normal. This incident prompted Dofasco to expand the hearth monitoring system to detect and prevent similar occurrences. During the repair, 203 new thermocouples were installed in the hearth, concentrating on the tapholes and elephant foot areas. These thermocouples were installed at various depths and locations to allow heat flux calculations. This hearth monitoring system has already identified other problem areas and provided valuable information about hearth drainage patterns. This information has allowed them to develop control strategies to manage localized problem areas.

Donaldson, R.J.; Fischer, A.J.; Sharp, R.M.; Stothart, D.W. [Dofasco Inc., Hamilton, Ontario (Canada)

1995-12-01T23:59:59.000Z

309

Pulverized coal firing of aluminum melting furnaces. Second annual technical progress report, July 1979-June 1980  

SciTech Connect (OSTI)

The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has proceeded through design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

West, C E; Stewart, D L

1980-08-01T23:59:59.000Z

310

Pulverized coal firing of aluminum melting furnaces. Quarterly technical progress report, July 1-September 30, 1979  

SciTech Connect (OSTI)

The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

West, C E

1980-09-01T23:59:59.000Z

311

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

312

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents [OSTI]

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

Gerdemann, Stephen J. (Albany, OR); White, Jack C. (Albany, OR)

1999-01-01T23:59:59.000Z

313

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents [OSTI]

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

Gerdemann, Stephen J. (Albany, OR); White, Jack C. (Albany, OR)

1998-01-01T23:59:59.000Z

314

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents [OSTI]

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

Gerdemann, S.J.; White, J.C.

1998-08-04T23:59:59.000Z

315

Directly induced swing for closed loop control of electroslag remelting furnace  

DOE Patents [OSTI]

An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.

Damkroger, B.

1998-04-07T23:59:59.000Z

316

Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces Fans; Correction  

Broader source: Energy.gov [DOE]

On January 3, 2014 the U.S. Department of Energy (DOE) published a final rule in the Federal Register that established the test procedure for residential furnace fans. Due to drafting errors, that document inadvertently removed necessary incorporation by reference material in the Code of Federal Regulations (CFR). This final rule rectifies this error by once again adding the removed material.

317

Savings from new oil furnaces: A study conducted as part of Washington State's Oil Help Program  

SciTech Connect (OSTI)

The Washington State Energy Office (WSEO) has been running the Oil Help program for three years. Originally operated as a loan program, Oil Help switched to rebates during the 1987 and 1988. Rebates for oil furnace replacements made up over 70 percent of rebate funds, which totaled about $1.3 million. WSEO Evaluation started research in summer of 1988, with the goal of including 100 new furnace households (with a control group of similar size) in the study. Our intention was to look at long-term oil consumption comparing each household with itself over the two periods. The final study group consists of 43 households and a control group of 87 households. The report begins with a review of related research. A discussion of research methodology, weather normalization procedure, data attrition, and important descriptive details follows. Changes in consumption for the new furnace and control groups are reported and are tested for significance. Finally, we discuss the implications of the results for the cost effectiveness of an oil furnace replacement.

Davis, R.

1989-12-01T23:59:59.000Z

318

Temperature Compensated Air/Fuel Ratio Control on a Recuperated Furnace  

E-Print Network [OSTI]

When recuperation is added to a furnace, air/ fuel ratio control seemingly becomes more complicated. Two methods normally used are mass flow control where the fuel pressure or flow is proportional to the mass flow of air or cross-connected control...

Ferri, J. L.

1983-01-01T23:59:59.000Z

319

Laser-excited atomic fluorescence spectrometry in a graphite furnace with an  

E-Print Network [OSTI]

Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium, for the ® rst time, that solid-state lasers required for analysis (ml or mg) and the technique has direct based

Michel, Robert G.

320

Method for treating waste containing stainless steel  

DOE Patents [OSTI]

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

Kujawa, Stephan T. (1819 Princeton, Butte, MT 59701); Battleson, Daniel M. (2606 Hancock, Butte, MT 59701); Rademacher, Jr., Edward L. (3321 Keokuk, Butte, MT 59701); Cashell, Patrick V. (730 West Park, Butte, MT 59701); Filius, Krag D. (1806 B St., Butte, MT 59701); Flannery, Philip A. (P.O. Box 128, Ramsey, MT 59478); Whitworth, Clarence G. (4646 Utah Ave., Butte, MT 59701)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Method for treating waste containing stainless steel  

DOE Patents [OSTI]

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

1999-03-02T23:59:59.000Z

322

ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton GIT 2011  

E-Print Network [OSTI]

solubility and porosity · Defects · Design rules · Economics #12;ME 6222: Manufacturing Processes and Systems with charge · steel making in blast furnace -mix coke with steel · Furnace material - refractory ­ high;Melting Time · Estimate by · Take into account oven efficiency ME 6222: Manufacturing Processes

Colton, Jonathan S.

323

Process for dezincing galvanized steel  

DOE Patents [OSTI]

A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

Morgan, William A. (Hamilton, CA); Dudek, Frederick J. (Arlington Heights, IL); Daniels, Edward J. (Oak Lawn, IL)

1998-01-01T23:59:59.000Z

324

Process for dezincing galvanized steel  

DOE Patents [OSTI]

A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

1998-07-14T23:59:59.000Z

325

Friction of wood on steel.  

E-Print Network [OSTI]

?? This thesis deals with the experimental description of friction between steel and wood materials, specifically laminated veneer lumber (LVL) and pine wood with two… (more)

Koubek, Radek

2014-01-01T23:59:59.000Z

326

Imagining Chivalry: Charles V's Suits of Steel  

E-Print Network [OSTI]

Mail, German, 15 th century. Steel and brass. MetropolitanI. , Innsbruck, ca. 1512-14. Steel, gilded silver, velvet,Elector of Saxony, ca. 1555. Steel, copper alloy (brass),

Machado, Erin Jeannine

2012-01-01T23:59:59.000Z

327

Simulation of Dimensional Changes in Steel Casting  

E-Print Network [OSTI]

Simulation of Dimensional Changes in Steel Casting Shouzhu (Hans) Ou and Christoph Beckermann Pattern allowances in casting of steel are predicted using the casting simulation software MAGMASOFT to predict dimensional changes occurring during solidification and cooling of a steel casting

Beckermann, Christoph

328

Spider Silk: Sronger than Steel? Nature's Supermaterial  

E-Print Network [OSTI]

spider silk were as thick as a steel beam, it would be verysized and much heavier steel. In fact, it would take aboutstrength comparable to that of steel, about 1.5 gigapascals,

Powers, Alexander

2013-01-01T23:59:59.000Z

329

Thermally efficient melting for glass making  

DOE Patents [OSTI]

The present invention is an integrated process for the production of glass utilizing combustion heat to melt glassmaking materials in a glassmaking furnace. The fuel combusted to produce heat sufficient to melt the glassmaking materials is combusted with oxygen-enriched oxidant to reduce heat losses from the offgas of the glassmaking furnace. The process further reduces heat losses by quenching hot offgas from the glassmaking furnace with a process stream to retain the heat recovered from quench in the glassmaking process with subsequent additional heat recovery by heat exchange of the fuel to the glassmaking furnace, as well as the glassmaking materials, such as batch and cullet. The process includes recovery of a commercially pure carbon dioxide product by separatory means from the cooled, residual offgas from the glassmaking furnace.

Chen, Michael S. K. (Zionsville, PA); Painter, Corning F. (Allentown, PA); Pastore, Steven P. (Allentown, PA); Roth, Gary (Trexlertown, PA); Winchester, David C. (Allentown, PA)

1991-01-01T23:59:59.000Z

330

Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system  

SciTech Connect (OSTI)

This paper presented an experimental investigation on the estimation of radiative properties and temperature distributions in a 670 t/h coal-fired boiler furnace by a portable imaging processing system. The portable system has been calibrated by a blackbody furnace. Flame temperatures and emissivities were measured by the portable system and equivalent blackbody temperatures were deduced. Comparing the equivalent blackbody temperatures measured by the portable system and the infrared pyrometer, the relative difference is less than 4%. The reconstructed pseudo-instantaneous 2-D temperature distributions in two cross-sections can disclose the combustion status inside the furnace. The measured radiative properties of particles in the furnace proved there is significant scattering in coal-fired boiler furnaces and it can provide useful information for the calculation of radiative heat transfer and numerical simulation of combustion in coal-fired boiler furnaces. The preliminary experimental results show this technology will be helpful for the combustion diagnosis in coal-fired boiler furnaces. (author)

Li, Wenhao; Lou, Chun; Sun, Yipeng; Zhou, Huaichun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 Hubei (China)

2011-02-15T23:59:59.000Z

331

Integrated use of burden profile probe and in-burden probe for gas flow control in the blast furnace  

SciTech Connect (OSTI)

Gas flow in the blast furnace is one of the most important factors in controlling a furnace. It not only determines the production but also the fuel consumption and the campaign life. At Nos. 4 and 5 blast furnaces of ROGESA, probes are installed for detection of the burden profiles and of the gas flow distribution. For an optimum use of these probes a program system has been developed by ROGESA and Dango and Dienenthal. With this program system it is possible to analyze the operating condition of a blast furnace by means of a fuzzy logic analysis. In case of deviations from the defined desired condition, recommendations for corrective measures for the material distribution are made. Both furnaces are equipped with a bell-less top, a coal injection system, high-temperature hot blast stoves with heat recovery and a top gas pressure recovery turbine. Most of the time it is impossible to control all the required parameters. For this reason it is meaningful to measure the actual material distribution at the furnace top by means of a burden profile probe which permits quick and repeated measurements without any retroactive effects. The paper describes the instrumentation of the furnace, correlation of measuring methods, and a program system for analysis of measuring data.

Bordemann, F.; Hartig, W.H. [AG der Dillinger Huettenweke, Dillingen (Germany); Grisse, H.J. [Dango and Dienenthal Siegen (Germany); Speranza, B.E. [Dango and Dienenthal, Inc., Highland, IN (United States)

1995-12-01T23:59:59.000Z

332

Effects of corrosion on steel reinforcement.  

E-Print Network [OSTI]

??Corroded steel in concrete is a structural issue that plaques concrete structures in coastal regions. Traditionally corroded steel strength is calculated from a distributed area… (more)

Ostrofsky, David

2007-01-01T23:59:59.000Z

333

Record production on Gary No. 13 blast furnace with 450 lb./THM co-injection rates  

SciTech Connect (OSTI)

Coal injection was initiated on No. 13 Blast Furnace in 1993 with 400 lb/THM achieved in 9 months. In early 1994, cold weather and coal preparation upsets led to the use of a second injectant, oil atomized by natural gas, to supplement the coal. Various combinations of coal and oil were investigated as total injection was increased to 450 lb/THM. Beginning in the last half of 1994, a continuing effort has been made to increase furnace production while maintaining this high co-injection level. Typical furnace production is now in excess of 10,000 THM/day compared with about 8500 THM/day in late 1993.

Schuett, K.J.; White, D.G. [US Steel Group, Gary, IN (United States). Gary Works

1996-12-31T23:59:59.000Z

334

A steel trap | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharm thatA8 14theA newA3steel

335

Geothermal System Saves Dollars, Makes Sense for Maryland Family...  

Broader source: Energy.gov (indexed) [DOE]

three years. "At the end of the day, it cost us about the same as if we just replaced our furnace and AC with another furnace and AC, but the big difference is that we're not...

336

Switch to duplex stainless steels  

SciTech Connect (OSTI)

Duplex stainless steels contain approximately equal proportions of ferrite and austenite. These stainless steels have become an established material of construction in the chemical process industries (CPI). Duplexes offer benefits over austenitic stainless steels and carbon steels because of their higher strength, and good toughness and ductility, in combination with equivalent resistance to general corrosion, as well as better resistance to localized corrosion and stress corrosion cracking. Additionally, duplex materials have thermal-conductivity and thermal-expansion coefficients similar to those of ferritic materials, are tough at low (sub-zero) temperatures, and have a high resistance to erosion and abrasion. In some of the highly corrosive environments encountered in the CPI, the super duplex stainless steels offer cost-effective options not possible with the standard austenitic stainless steels. The initial applications were almost exclusively as heat exchanger tubing in water-cooled service. In recent times, duplex stainless steels have been used in the oil, gas, and chemical industries. Examples include service in sweet and mildly sour corrosive environments, on offshore platforms where weight savings can be realized, and as a replacement for standard austenitic stainless steel in chemical-processing plants.

Quik, J.M.A.; Geudeke, M.

1994-11-01T23:59:59.000Z

337

Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace  

SciTech Connect (OSTI)

Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

Dr. Chenn Zhou

2008-10-15T23:59:59.000Z

338

Lance for fuel and oxygen injection into smelting or refining furnace  

DOE Patents [OSTI]

A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.

Schlichting, Mark R. (Chesterton, IN)

1994-01-01T23:59:59.000Z

339

Method for processing aluminum spent potliner in a graphite electrode arc furnace  

DOE Patents [OSTI]

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

O'Connor, William K.; Turner, Paul C.; Addison, G.W. (AJT Enterprises, Inc.)

2002-12-24T23:59:59.000Z

340

Method for processing aluminum spent potliner in a graphite electrode ARC furnace  

DOE Patents [OSTI]

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

O'Connor, William K. (Lebanon, OR); Turner, Paul C. (Independence, OR); Addison, Gerald W. (St. Stephen, SC)

2002-12-24T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gary No. 13 blast furnace achieves 400 lbs/THM coal injection in 9 months  

SciTech Connect (OSTI)

Number 13 Blast Furnace at Gary began injecting Pulverized Coal in March 1993. The injection level was increased over the next nine months until a level off 409 lbs/THM was achieved for the month of December 1993. Several major areas were critical in achieving this high level of Pulverized coal injection (PCI) including furnace conditions, lance position, tuyere blockage, operating philosophy, and outages. The paper discusses the modifications made to achieve this level of injection. This injection level decreased charged dry coke rate from 750 lbs/THM to about 625 lbs/THM, while eliminating 150 lbs/THM of oil and 20 lbs/THM of natural gas. Assuming a 1.3 replacement ratio for an oil/natural gas mixture, overall coke replacement for the coal is about 0.87 lbs coke/lbs coal. Gary Works anticipates levels of 500 lbs/THM are conceivable.

Sherman, G.J.; Schuett, K.J.; White, D.G.; O`Donnell, E.M. [U.S. Steel Group, Gary, IN (United States)

1995-12-01T23:59:59.000Z

342

Determination of the fundamental softening and melting characteristics of blast furnace burden materials  

SciTech Connect (OSTI)

An experimental technique to investigate the fundamental mechanisms taking place on a microscale in the softening and melting zone in the blast furnace, is presented. In the present paper, attention is focused on determination of the softening viscosity of porous wustite. The technique may be potentially useful to investigate more complex samples of ironbearing material, as occurring in the blast furnace. In comparison with the results obtained by other researchers the viscosity of porous wustite found in the present work is substantially higher than reported elsewhere for sinter and pellets. This may be an indication that softening is not merely a reflection of the solid state deformation under load of wustite. An important factor may be local melting of some of the phases present within the sinter and pellet structures.

Bakker, T.; Heerema, R.H. [Delft Univ. of Technology (Netherlands). Faculty of Mining and Petroleum Engineering

1996-12-31T23:59:59.000Z

343

Lance for fuel and oxygen injection into smelting or refining furnace  

DOE Patents [OSTI]

A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figures.

Schlichting, M.R.

1994-12-20T23:59:59.000Z

344

Modulating furnace and zoned-heating system development. Final report, July 1987-December 1989  

SciTech Connect (OSTI)

The report describes an experimental modulating furnace and a zoned warm air heating system for use in residences. The system was installed and tested at the National Association of Home Builders' (NAHB) SMART HOUSE in Bowie, Maryland. The key features of this system include: (1) continuous modulation of firing rate and supply air over a wide range, (2) closed-loop control to maintain a desired supply air flow under varying system resistances, (3) continuous modulation of combustion air to maintain efficiency, (4) a proportional-integral control algorithm operating on measured temperatures and set points in each zone to set the furnace firing rate, (5) low-cost on/off dampers to direct air flow to those zones calling for heat, and (6) a single microprocessor-based controller that integrates all aspects of the system.

Feldman, S.J.

1991-01-01T23:59:59.000Z

345

The operation results with the modified charging equipment and ignition furnace at Kwangyang No. 2 sinter plant  

SciTech Connect (OSTI)

There will be another blast furnace, the production capacity of which is 3.0 million tonnes per year in 1999 and mini mill plant, the production capacity of which is 1.8 million tonnes per year in 1996 at Kwangyang Works. Therefore, the coke oven gas and burnt lime will be deficient and more sinter will be needed. To meet with these situations, the authors modified the charging equipment and ignition furnace at Kwangyang No. 2 sinter plant in April 1995. After the modification of the charging equipment and ignition furnace, the consumption of burnt lime and coke oven gas could be decreased and the sinter productivity increased in spite of the reduction of burnt lime consumption. This report describes the operation results with the modification of the charging equipment and ignition furnace in No. 2 sinter plant Kwangyang works.

Lee, K.J.; Pi, Y.J.; Kim, J.R.; Lee, J.N. [POSCO, Kwangyang, Cheonnam (Korea, Republic of)

1996-12-31T23:59:59.000Z

346

Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces   

E-Print Network [OSTI]

Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has been proven inadequate...

Cvoro, Valentina

347

The determination of some anions using ion chromatography and ion chromatography-graphite furnace atomic absorption spectrometry  

E-Print Network [OSTI]

THE DETERMINATION OF SOME ANIONS USING ION CHROMATOGRAPHY AND ION CHROMATOGRAPHY-GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY A Thesis by DANIEL C. J. HILLMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1981 Major Subject: Chemistry THE DETERMINATION OF SOME ANIONS USING ION CHROMATOGRAPHY AND ION CHROMATOGRAPHY-GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY A Thesis by DANIEL C. J. HILLMAN...

Hillman, Daniel C

1981-01-01T23:59:59.000Z

348

Development of the household sample for furnace and boilerlife-cycle cost analysis  

SciTech Connect (OSTI)

Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

2005-05-31T23:59:59.000Z

349

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect (OSTI)

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

350

Investigation of lignite and firewood co-combustion in a furnace for tobacco curing application  

SciTech Connect (OSTI)

Co-combustion of lignite and firewood was investigated for an application in tobacco curing industry in Northern Thailand. Extensive experiments have been carried out in a newly developed furnace suitable for small curing unit, in place of locally made furnace. The aim of this investigation is to evaluate the performance of the combustion chamber in the required thermal output range for tobacco curing and to examine the influence of fuel feed rate, fuel mixture ratio and air staging on the combustion and emission characteristics of the furnace during steady state operation. Their effects are characterized in terms of the observed variations of temperature distributions, emissions of CO, SO{sub 2}, CO{sub 2}, O{sub 2} and combustion efficiency. Co-firing of firewood and lignite has been found to exhibit acceptable temperature distribution, high combustion efficiency and low emissions over a wide thermal output span. Stable operation at low (50 kW) and high (150 kW) thermal output was achieved with average CO and SO{sub 2} content in flue gas typically below 1400 and 100 ppm, respectively. Under the conditions considered, it was showed that the fuel feed rate had greater influence on combustion and emissions than firewood and lignite mixture ratio and air staging.

Nakorn Tippayawong; Chutchawan Tantakitti; Satis Thavornun

2006-07-01T23:59:59.000Z

351

HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an aeroderivative turbine. The overall system design can be very similar to that of a typical pulverized coal-fired boiler system, except that ceramics and alloys are used to carry the very high-temperature air rather than steam. This design makes the combined-cycle system especially suitable as a boiler-repowering technology. With the use of a gas-fired duct heater, efficiencies of 55% can be achieved, leading to reductions in CO{sub 2} emissions of 40% as compared to today's coal-fired systems. On the basis of work completed to date, the high-temperature advanced furnace (HITAF) concept appears to offer a higher-efficiency technology option for coal-fired power generation systems than conventional pulverized coal firing. Concept analyses have demonstrated the ability to achieve program objectives for emissions (10% of New Source Performance Standards, i.e., 0.003 lb/MMBtu of particulate), efficiency (47%-55%), and cost of electricity (10%-25% below today's cost). Higher-efficiency technology options for new plants as well as repowering are important to the power generation industry in order to conserve valuable fossil fuel resources, reduce the quantity of pollutants (air and water) and solid wastes generated per MW, and reduce the cost of power production in a deregulated industry. Possibly more important than their potential application in a new high-temperature power system, the RAH panel and convective air heater tube bank are potential retrofit technology options for existing coal-fired boilers to improve plant efficiencies. Therefore, further development of these process air-based high-temperature heat exchangers and their potential for commercial application is directly applicable to the development of enabling technologies in support of the Vision 21 program objectives. The objective of the work documented in this report was to improve the performance of the UTRC high-temperature heat exchanger, demonstrate the fuel flexibility of the slagging combustor, and test methods for reducing corrosion of brick and castable refractory in such combustion environments. Specif

Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

1999-12-01T23:59:59.000Z

352

DIVISION 05 METALS 05120 STRUCTURAL STEEL  

E-Print Network [OSTI]

STEEL A. Design Considerations 1. Testing and inspection will be required for structural steel work testing and inspection of structural steel work will be contracted for and paid for by the University, regardless of building class. The A/E must specify all testing and inspection of structural steel

353

Steel Innovations Conference 2013 Christchurch, New Zealand  

E-Print Network [OSTI]

Steel Innovations Conference 2013 Christchurch, New Zealand 21-22 February 2013 SEISMIC BEHAVIOR OF CONCRETE-FILLED STEEL SANDWICH WALLS AND CONCRETE-FILLED STEEL TUBE COLUMNS M. Bruneau 1 , Y. Alzeni 2 , P. Fouché 2 ABSTRACT Concrete-Filled Steel Plate Sandwich Walls (CFSP Sandwich Walls) can provide a cost

Bruneau, Michel

354

Making Argumentation Serve Design  

E-Print Network [OSTI]

9 Making Argumentation Serve Design Gerhard Fischer University ofColorado Andreas C. Lemke ALCATEL scientist interesled in design and design suppon S\\"Stems, particularly in domain-oriented design environmenlS and how they make :irgumemation serve design by supporting reflection-in-action; he

Fischer, Gerhard

355

Simulation Supported Decision Making  

E-Print Network [OSTI]

.S. Navy Nuclear Program · Decades of dynamic operations of hundreds of nuclear power plants withoutSimulation Supported Decision Making Gene Allen Naval Surface Warfare Center Carderock Division SI: TO PASS ON WHAT I KNOW on SIMULATION · CAREER FOCUS: HOW TO USE COMPUTERS TO DO HELP MAKE BETTER DECISIONS

356

2169 steel waveform experiments.  

SciTech Connect (OSTI)

In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe - phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mm-thick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

2012-11-01T23:59:59.000Z

357

Feasibility analysis of recycling radioactive scrap steel  

SciTech Connect (OSTI)

The purpose of this study is to: (1) establish a conceptual design that integrates commercial steel mill technology with radioactive scrap metal (RSM) processing to produce carbon and stainless steel sheet and plate at a grade suitable for fabricating into radioactive waste containers; (2) determine the economic feasibility of building a micro-mill in the Western US to process 30,000 tons of RSM per year from both DOE and the nuclear utilities; and (3) provide recommendations for implementation. For purposes of defining the project, it is divided into phases: economic feasibility and conceptual design; preliminary design; detail design; construction; and operation. This study comprises the bulk of Phase 1. It is divided into four sections. Section 1 provides the reader with a complete overview extracting pertinent data, recommendations and conclusions from the remainder of the report. Section 2 defines the variables that impact the design requirements. These data form the baseline to create a preliminary conceptual design that is technically sound, economically viable, and capitalizes on economies of scale. Priorities governing the design activities are: (1) minimizing worker exposure to radionuclide hazards, (2) maximizing worker safety, (3) minimizing environmental contamination, (4) minimizing secondary wastes, and (5) establishing engineering controls to insure that the plant will be granted a license in the state selected for operation. Section 3 provides details of the preliminary conceptual design that was selected. The cost of project construction is estimated and the personnel needed to support the steel-making operation and radiological and environmental control are identified. Section 4 identifies the operational costs and supports the economic feasibility analysis. A detailed discussion of the resulting conclusions and recommendations is included in this section.

Nichols, F. [Manufacturing Sciences Corp., Woodland, WA (United States); Balhiser, B. [MSE, Inc., Butte, MT (United States); Cignetti, N. [Cignetti Associates, North Canton, OH (United States)] [and others

1995-09-01T23:59:59.000Z

358

Auto/Steel Partnership: AHSS Stamping, Strain Rate Characterization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS Joining AutoSteel Partnership: AHSS Stamping, Strain Rate Characterization, Sheet Steel Fatigue, AHSS...

359

THE DEVELOPMENT OF MICROSTRUCTURE IN DUPLEX STAINLESS STEEL WELDS  

E-Print Network [OSTI]

THE DEVELOPMENT OF MICROSTRUCTURE IN DUPLEX STAINLESS STEEL WELDS by Naseem Issa Abdallah Haddad;The Development of Microstructure in Duplex Stainless Steel Welds Abstract Duplex stainless steels

Cambridge, University of

360

Nonlinear seismic response analysis of steel-concrete composite frames  

E-Print Network [OSTI]

formulation of nonlinear steel- concrete composite beam ele-Behaviour of Composite Steel and Concrete Struc- turalE. (2001). “Analysis of steel-concrete composite frames with

Barbato, Michele

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Iron and Steel Energy Intensities  

U.S. Energy Information Administration (EIA) Indexed Site

If you are having trouble, call 202-586-8800 for help. Home > >Energy Users > Energy Efficiency Page > Iron and Steel Energy Intensities First Use of Energy Blue Bullet First Use...

362

Cast alumina forming austenitic stainless steels  

DOE Patents [OSTI]

An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

2013-04-30T23:59:59.000Z

363

Development of Enhanced Electric Arc Furnace Models for Transient Analysis Gilsoo Jang  

E-Print Network [OSTI]

, AZ USA S. S. Venkata Iowa State Uni- versity Ames, IA USA Byongjun Lee Korea University Korea energization of the unit. During the melting period, sets of steel nearly create a short circuit

364

Essays in decision making  

E-Print Network [OSTI]

This thesis explores the impact of individual decision making on the functioning of firms and markets. The first chapter examines how deviations from strict rationality by individuals impact the market for consumer goods. ...

Chang, Tom Y., 1976-

2009-01-01T23:59:59.000Z

365

DENSE PHASE REBURN COMBUSTION SYSTEM (DPRCS) DEMONSTRATION ON A 154 MWE TANGENTIAL FURNACE: ADDITIONAL AREA OF INTEREST-TO DEVELOP AND DEMONSTRATE AN IN-FURNACE MULTI-POLLUTANT REDUCTION TECHNOLOGY TO REDUCE NOx, SO2 & Hg  

SciTech Connect (OSTI)

Semi-dense phase pneumatic delivery and injection of calcium and sodium sorbents, and microfine powdered coal, at various sidewall elevations of an online operating coal-fired power plant, was investigated for the express purpose of developing an in-furnace, economic multi-pollutant reduction methodology for NO{sub x}, SO{sub 2} & Hg. The 154 MWe tangentially-fired furnace that was selected for a full-scale demonstration, was recently retrofitted for NO{sub x} reduction with a high velocity rotating-opposed over-fire air system. The ROFA system, a Mobotec USA technology, has a proven track record of breaking up laminar flow along furnace walls, thereby enhancing the mix of all constituents of combustion. The knowledge gained from injecting sorbents and micronized coal into well mixed combustion gases with significant improvement in particulate retention time, should serve well the goals of an in-furnace multi-pollutant reduction technology; that of reducing back-end cleanup costs on a wide variety of pollutants, on a cost per ton basis, by first accomplishing significant in-furnace reductions of all pollutants.

Allen C. Wiley; Steven Castagnero; Geoff Green; Kevin Davis; David White

2004-03-01T23:59:59.000Z

366

Usiing NovoCOS cleaning equipment in repairing the furnace-chamber lining in coke batteries 4 & 5 at OAO Koks  

SciTech Connect (OSTI)

Experience with a new surface-preparation technology for the ceramic resurfacing of the refractory furnace-chamber lining in coke batteries is described.

S.G. Protasov; R. Linden; A. Gross [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

367

Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers  

SciTech Connect (OSTI)

The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the ability to improve control of an olefins furnace (via CO-trim) that resulted in significant energy savings and lower emissions such as NOx and other greenhouse gases. The cost to retrofit measurements on an existing olefins furnace was found to be very attractive, with an estimated payback achieved in 4 months or less.

Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

2010-03-20T23:59:59.000Z

368

The rule of the stock distribution with large bell in blast furnace  

SciTech Connect (OSTI)

This paper describes in detail, starting from the basic equation of materials falling from a two bell furnace top system, how a number of mathematical expressions which govern the stock distribution of the throat were derived. An analysis was then made by applying these equations on topics, such as stockline levels, charging sequences, stock grain size, large bell angle and batch weight. This demonstrates that a reasonable two bells top charging system and practice could be established theoretically. Furthermore, character numbers for stock distribution, such as E{sub B} and D{sub K}, were developed for a possible computer application.

Liu Yuncai [Shoudu Iron and Steel Co., Beijing (China)

1996-12-31T23:59:59.000Z

369

Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.  

SciTech Connect (OSTI)

Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coat, or both, (2) at the exit of a glass-melting furnace burning natural gas and oxygen, and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

Walsh, Peter M. (University of Alabama at Birmingham and Southern Research Institute, Birmingham, AL); Shaddix, Christopher R.; Sickafoose, Shane M.; Blevins, Linda Gail

2003-02-01T23:59:59.000Z

370

AGA/APGA Questions re Furnace NOPR, EERE-2014-BT-STD-0031 | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials2014 ChiefEnergy Furnace NOPR, EERE-2014-BT-STD-0031

371

Saturation in ``nonmagnetic'' stainless steel C. Weber and J. Fajansa)  

E-Print Network [OSTI]

Saturation in ``nonmagnetic'' stainless steel C. Weber and J. Fajansa) Department of Physics July 1998 Scientific equipment often uses ``nonmagnetic'' stainless steel, relying on the steel's nonmagnetic behavior to leave external magnetic fields unaltered. However, stainless steel's permeability can

Fajans, Joel

372

Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)  

SciTech Connect (OSTI)

Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.

Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

2012-04-16T23:59:59.000Z

373

Energy and materials savings from gases and solid waste recovery in the iron and steel industry in Brazil: An industrial ecology approach  

SciTech Connect (OSTI)

This paper attempts to investigate, from an entropic point of view, the role of selected technologies in the production, transformation, consumption and release of energy and materials in the Iron and Steel Industry in Brazil. In a quantitative analysis, the potential for energy and materials savings with recovery of heat, gases and tar are evaluated for the Iron and Steel Industry in Brazil. The technologies for heat recovery of gases include Coke Dry Quenching (CDQ), applied only in one of the five Brazilian coke integrated steel plants, Top Gas Pressure Recovery Turbines (TPRT), recovery of Coke Oven Gas (COG), recovery of Blast Furnace Gas (BFG), recovery of BOF gas, recovery of tar, and thermal plant. Results indicate that, in a technical scenario, some 5.1 TWh of electricity can be generated if these technologies are applied to recover these remaining secondary fuels in the Iron and Steel Industry in Brazil, which is equivalent to some 45% of current total electricity consumption in the integrated plants in the country. Finally, solid waste control technologies, including options available for collection and treatment, are discussed. Estimates using the best practice methodology show that solid waste generation in the Iron and Steel Industry in Brazil reached approximately 18 million metric tons in 1994, of which 28% can be recirculated if the best practice available in the country is applied thoroughly.

Costa, M.M.; Schaeffer, R.

1997-07-01T23:59:59.000Z

374

STEEL STRUCTURES FOR BUILDING IN CHINA PROF. HE MINGXUAN  

E-Print Network [OSTI]

STEEL STRUCTURES FOR BUILDING IN CHINA PROF. HE MINGXUAN VICE-PRESIDENT OF CHINA STEEL CONSTRUCTION SOCIETY CHIEF ENGINEER OF BAOSTEEL CONSTRUCTION CO., LTD JULY 6, 2012 LONDON #12;1. STEEL AND STEEL STRUCTURES IN CHINA 2. SOME PROJECTS OF STEEL STRUCTURES FOR HIGH- RISE BUILDINGS IN CHINA #12;STEEL

Cambridge, University of

375

Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works  

SciTech Connect (OSTI)

The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M. [Pohang Iron and Steel Co. Ltd. (Korea, Republic of). Technical Research Labs.

1995-12-01T23:59:59.000Z

376

STUDENT STEEL BRIDGE COMPETITION The mission of the Student Steel Bridge Competition (SSBC) is to supplement  

E-Print Network [OSTI]

1 STUDENT STEEL BRIDGE COMPETITION 2012 RULES #12;2 MISSION The mission of the Student Steel Bridge in a steel structure that meets client specifications and optimizes performance and economy. The SSBC are stimulated to innovate, practice professionalism, and use structural steel efficiently. WELCOME ASCE and AISC

Duchowski, Andrew T.

377

DAMAGE MECHANISMS OF ULTRAHIGH STRENGTH STEELS IN BENDING APPLICATION TO A TRIP STEEL  

E-Print Network [OSTI]

1 DAMAGE MECHANISMS OF ULTRAHIGH STRENGTH STEELS IN BENDING APPLICATION TO A TRIP STEEL D. Rèche 1, the present study aims at understanding damage mechanisms involved in bending of Ultra High Strength Steels (UHSSs). It focuses on a TRansformation Induced Plasticity (TRIP)-aided steel. This work is based

Paris-Sud XI, Université de

378

Zinc recovery by ultrasound acid leaching of double kiln treated electric arc furnace dust  

SciTech Connect (OSTI)

The need to convert 70,000 tons a year of electric arc furnace (EAF) dust into an environmentally safe or recyclable product has encouraged studies to reclaim zinc from this waste material. Successful characterization of a double-kiln calcine, produced from EAF dust, has shown that the calcine pellets consisted mainly of zinc oxide plates with some iron oxide particles. Preliminary leaching tests using hydrochloric and sulfuric acids indicated that this calcine is suitable for selective ultrasound leaching of zinc. A factorially designed screening test using hydrochloric acid showed that ultrasound significantly lowered iron dissolution and increased zinc dissolution, thus enhancing the selective leaching of zinc. Ultrasound, temperature, air bubbling rate and acidity increased the sulfuric acid selectivity, while fluorosilicic acid was not selective. Reactor characterization through ultrasonic field measurements led to the selection of reactor and ultrasound bath, which were utilized to enhance the selectivity of a laboratory scale sulfuric acid leaching of a double-kiln treated electric arc furnace dust. Results indicated that ultrasonic leaching of this calcine is a satisfactory technique to selectively separate zinc from iron. After further iron removal by precipitation and cementation of nickel, it was possible to electrowin zinc from the leach liquor under common industrial conditions, with current efficiencies from 86% through 92% being observed. Calcine washing showed that a substantial chloride removal is possible, but fluoride ion in the electrolyte caused deposit sticking during electrowinning.

Barrera Godinez, J.A.

1989-01-01T23:59:59.000Z

379

Integrated municipal solid waste treatment using a grate furnace incinerator: The Indaver case  

SciTech Connect (OSTI)

An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.

Vandecasteele, C. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)], E-mail: carlo.vandecasteele@cit.kuleuven.be; Wauters, G. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Arickx, S. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium); Jaspers, M. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Van Gerven, T. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)

2007-07-01T23:59:59.000Z

380

Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions  

SciTech Connect (OSTI)

Measurements have been performed in a 300 MWe, front-wall-fired, pulverized-coal, utility boiler. This boiler was retrofitted with boosted over fire air injectors that allowed the operation of the furnace under deeper staging conditions. New data are reported for local mean gas species concentration of O{sub 2}, CO, CO{sub 2}, NOx, gas temperatures and char burnout measured at several ports in the boiler including those in the main combustion and staged air regions. Comparisons of the present data with our previous measurements in this boiler, prior to the retrofitting with the new over fire system, show lower O{sub 2} and higher CO concentrations for the new situation as a consequence of the lower stoichiometry in the main combustion zone associated with the present boiler operating condition. Consistently, the measured mean NOx concentrations in the main combustion zone are now lower than those obtained previously, yielding emissions below 500 mg/Nm{sup 3}at 6% O{sub 2}. Finally, the measured values of particle burnout at the furnace exit are acceptable being those measured in the main combustion zone comparable with those obtained with the conventional over fire system.

Costa, M.; Azevedo, J.L.T. [Universidade Tecnica de Lisboa, Lisbon (Portugal)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

RCRA, superfund and EPCRA hotline training module. Introduction to: Boilers and industrial furnaces (40 cfr part 266, subpart h) updated July 1996  

SciTech Connect (OSTI)

The module summarizes the regulations affecting hazardous waste processes in boilers and industrial furnaces (BIFs). If defines boilers and industrial furnaces and describes the criteria associated with the definitions. It describes the requirements for processing hazardous waste in BIFs, including the distinctions between permitted and interim status units. It explains the requirements for the specially regulated BIFs and gives examples of each.

NONE

1996-07-01T23:59:59.000Z

382

Innovative Energy Conservation Through Scrao Pre-heating in an Electric Arc Furnace  

E-Print Network [OSTI]

and tons of steel throughput of the base case. It was found that 260,000 tls was produced during 2011. Analysis of the heat data for 2011 determined an overall energy intensity of 343 kWh/tls. The Consteel system allows the batch processing time... not quantified. Table 1 - Proposed vs. Case Studies (1,6) Ivaco (Proposed), ON Ameristeel NC Co-Steel Sayreville, NJ Year Consteel Installed TBD 1990 1994 Year Data Reported 2012 1995 1998 Capacity, MW 35.7 24 35 Capacity, Mt/hour 82.6 54 82...

Dicion, A.

2013-01-01T23:59:59.000Z

383

Corrosion Testing of Stainless Steel Fuel Cell Hardware  

SciTech Connect (OSTI)

Metal hardware is gaining increasing interest in polymer electrolyte fuel cell (PEFC) development as a possible alternative to machined graphite hardware because of its potential for low-cost manufacturing combined with its intrinsic high conductivity, minimal permeability and advantageous mechanical properties. A major barrier to more widespread use of metal hardware has been the susceptibility of various metals to corrosion. Few pure metals can withstand the relatively aggressive environment of a fuel cell and thus the choices for hardware are quite limited. Precious metals such as platinum or gold are prohibitively expensive and so tend to be utilized as coatings on inexpensive substrates such as aluminum or stainless steel. The main challenge with coatings has been to achieve pin-hole free surfaces that will remain so after years of use. Titanium has been used to some extent and though it is very corrosion-resistant, it is also relatively expensive and often still requires some manner of surface coating to prevent the formation of a poorly conducting oxide layer. In contrast, metal alloys may hold promise as potentially low-cost, corrosion-resistant materials for bipolar plates. The dozens of commercially available stainless steel and nickel based alloys have been specifically formulated to offer a particular advantage depending upon their application. In the case of austenitic stainless steels, for example, 316 SS contains molybdenum and a higher chromium content than its more common counterpart, 304 SS, that makes it more noble and increases its corrosion resistance. Likewise, 316L SS contains less carbon than 316 SS to make it easier to weld. A number of promising corrosion-resistant, highly noble alloys such as Hastelloy{trademark} or Duplex{trademark} (a stainless steel developed for seawater service) are available commercially, but are expensive and difficult to obtain in various forms (i.e. wire screen, foil, etc.) or in small amounts for R and D purposes.

Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

1998-11-01T23:59:59.000Z

384

Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance  

SciTech Connect (OSTI)

The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher density of nanometer sized carbides on the boundaries. This project will focus on void swelling but advances in processing of austenitic steels are likely to also improve the radiation response of the mechanical properties.

Zhang, Xinghang; Hartwig, K. Ted; Allen, Todd; Yang, Yong

2012-10-27T23:59:59.000Z

385

Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project  

SciTech Connect (OSTI)

The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

Duncan, A.

2007-12-31T23:59:59.000Z

386

Method of making metal matrix composites reinforced with ceramic particulates  

DOE Patents [OSTI]

Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

Cornie, James A. (North Chelmsford, MA); Kattamis, Theodoulos (Watertown, MA); Chambers, Brent V. (Cambridge, MA); Bond, Bruce E. (Bedford, MA); Varela, Raul H. (Canton, MA)

1989-01-01T23:59:59.000Z

387

Method of making metal matrix composites reinforced with ceramic particulates  

DOE Patents [OSTI]

Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

1989-08-01T23:59:59.000Z

388

60 Years of duplex stainless steel applications  

SciTech Connect (OSTI)

In this paper the history of wrought duplex stainless steel development and applications is described. Ferritic-austenitic stainless steels were introduced only a few decades after stainless steels were developed. The paper gives details from the first duplex stainless steels in the 1930`s to the super duplex stainless steel development during the 1980`s. During the years much effort has been devoted to production and welding metallurgy as well as corrosion research of the duplex stainless steels. Therefore, duplex stainless steels are to-day established in a wide product range. Numerous important applications are exemplified. In most cases the selection of a duplex steel has been a result of the combination high strength excellent corrosion resistance. In the pulp and paper industry the most interesting use is as vessel material in digesters. For chemical process industry, the duplex steels are currently used in heat exchangers. The largest application of duplex steels exists in the oil and gas/offshore industry. Hundreds of kms of pipelines are installed and are still being installed. An increased use of duplex steels is foreseen in areas where the strength is of prime importance.

Olsson, J.; Liljas, M. [Avesta Sheffield AB, Avesta (Sweden)

1994-12-31T23:59:59.000Z

389

EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

390

Savings from new oil furnaces: A study conducted as part of Washington State`s Oil Help Program  

SciTech Connect (OSTI)

The Washington State Energy Office (WSEO) has been running the Oil Help program for three years. Originally operated as a loan program, Oil Help switched to rebates during the 1987 and 1988. Rebates for oil furnace replacements made up over 70 percent of rebate funds, which totaled about $1.3 million. WSEO Evaluation started research in summer of 1988, with the goal of including 100 new furnace households (with a control group of similar size) in the study. Our intention was to look at long-term oil consumption comparing each household with itself over the two periods. The final study group consists of 43 households and a control group of 87 households. The report begins with a review of related research. A discussion of research methodology, weather normalization procedure, data attrition, and important descriptive details follows. Changes in consumption for the new furnace and control groups are reported and are tested for significance. Finally, we discuss the implications of the results for the cost effectiveness of an oil furnace replacement.

Davis, R.

1989-12-01T23:59:59.000Z

391

Speciation of Zn in Blast Furnace Sludge from Former Sedimentation Ponds Using Synchrotron Xray Diffraction, Fluorescence, and  

E-Print Network [OSTI]

, University of Cologne, Albertus-Magnus-Platz, D-50923 Koln, Germany § Advanced Light Source, Lawrence *S Supporting Information ABSTRACT: Blast furnace sludge (BFS), an industrial waste generated in pig on a former BFS sedimentation pond site. Additionally, one fresh BFS was analyzed for comparison. We

392

Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces  

SciTech Connect (OSTI)

The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

2003-02-12T23:59:59.000Z

393

Device for use in a furnace exhaust stream for thermoelectric generation  

DOE Patents [OSTI]

A device for generating voltage or electrical current includes an inner elongated member mounted in an outer elongated member, and a plurality of thermoelectric modules mounted in the space between the inner and the outer members. The outer and/or inner elongated members each include a plurality of passages to move a temperature altering medium through the members so that the device can be used in high temperature environments, e.g. the exhaust system of an oxygen fired glass melting furnace. The modules are designed to include a biasing member and/or other arrangements to compensate for differences in thermal expansion between the first and the second members. In this manner, the modules remain in contact with the first and second members. The voltage generated by the modules can be used to power electrical loads.

Polcyn, Adam D.

2013-06-11T23:59:59.000Z

394

A study on the flow of molten iron in the hearth of blast furnace  

SciTech Connect (OSTI)

The flow of molten iron in the hearth of blast furnace was investigated by using a water model test and a numerical simulation. The water model apparatus was set up in order to evaluate the effects of coke size, coke bed structure, drain rate, and coke free space on the fluidity of molten iron through measurement of residence time and visualization of flow pattern. In addition, the flow was calculated by solving momentum equation in porous media using finite element method. The residence time increased with the coke size decrease, but decreased with the drain rate increase. If small coke was placed in the center of deadman, peripheral flow was enhanced. The flow path was changed due to the coke free space.

Suh, Y.K.; Lee, Y.J.; Baik, C.Y. [Pohang Iron and Steel Co., Ltd. (Korea, Republic of). Technical Research Labs.

1996-12-31T23:59:59.000Z

395

DEVELOPMENT AND DEPLOYMENT OF SHOTCRETE REFRACTORIES FOR ALUMINUM ROTARY FURNACE APPLICATION  

SciTech Connect (OSTI)

Work was performed by Oak Ridge National Laboratory (ORNL) in the United States, in collaboration with the industrial refractory manufacturer Minteq International, Inc. (MINTEQ), academic research partner Missouri University of Science and Technology (MS&T) and end users to employ novel refractory systems and techniques to reduce energy consumption of refractory lined vessels found in the aluminum industry. The project aim was to address factors that limit the applicability of currently available refractory materials such as chemical attack, mechanical degradation, use temperature, and installation or repair issues. To this end, as part of the overall project, shotcretable refractory compositions were developed based on alumino-silicate based structures utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques for use in rotary dross furnaces. Additionally a shotcretable high strength insulating back-up lining material was also developed for use in this and other applications. Development efforts, materials validation, and results from industrial validation trials are discussed.

Hemrick, James Gordon [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

2013-01-01T23:59:59.000Z

396

Development of mixed-waste analysis capability for graphite furnace atomic absorption spectrophotometry  

SciTech Connect (OSTI)

Graphite furnace atomic absorption spectrophotometer (GFAAS) are typically configured with ventilation to capture potentially toxic and corrosive gases emitted from the vaporization of sample aliquots. When radioactive elements are present, additional concerns (such as meeting safety guidelines and ALARA principles) must be addressed. This report describes a modification to a GFAAS that provides additional containment of vaporized sample aliquots. The modification was found to increase containment by a factor of 80, given expected operating conditions. The use of the modification allows more mixed-waste samples to be analyzed, permits higher levels of radioactive samples to be analyzed, or exposes the analyst to less airborne radioactivity. The containment apparatus was attached to a Perkin-Elmer Zeeman 5000 spectrophotometer for analysis of mixed-waste samples; however, it could also be used on other systems and in other applications where greater containment of vaporized material is desired.

Bass, D.A.; TenKate, L.B.; Wroblewski, A.

1995-03-01T23:59:59.000Z

397

Numerical simulation of material and energy flow in an e-beam melt furnace  

SciTech Connect (OSTI)

A numerical analysis is made of the material and energy flow in an electron-beam furnace. Energy from an electron beam vaporizes metal confined in a water-cooled crucible. At the beam impact site a. recirculating liquid metal pool is surrounded by a shell of its own solid. A Galerkin finite element method is modified to solve for the flow and temperature fields along with interface locations. The deforming mesh is parameterized using spines that pivot and stretch as the interfaces move. Results are given for an aluminum vaporizer in which parametric variations are made in the e-beam power and liquid viscosity. The calculations reveal the importance of the coupling between the free boundaries and the flow and energy fields.

Westerberg, K.W.; McClelland, M.A. [Lawrence Livermore National Lab., CA (United States); Finlayson, B.A. [Washington Univ., Seattle, WA (United States). Dept. of Chemical Engineering

1993-12-01T23:59:59.000Z

398

Design of CCD camera system for use inside electron beam furnace  

SciTech Connect (OSTI)

The design of a wide dynamic range camera system for use inside Electron Beam furnaces is presented. The camera system is designed for used in high vacuum and in a high radiant heat flux environment looking directly into a high metallic vapor flux. In addition, the camera is designed to have a dynamic range that can provide a good image in both low light level conditions as well as in high brightness situations as when the electron beam impinging on the melt surface. An analysis is given for estimating the dynamic range of the camera imaging system and the camera cooling requirements. Techniques for capturing and recording video images are also presented. The application of various optical filters and liquid crystal variable attenuators for the camera imaging system is discussed.

Sze, J.S.

1992-10-01T23:59:59.000Z

399

Energy use and carbon dioxide emissions from steel production in China  

SciTech Connect (OSTI)

In 1996, China manufactured just over 100 Mt of steel and became the world s largest steel producer. Official Chinese energy consumption statistics for the steel industry include activities not directly associated with the production of steel, double-count some coal-based energy consumption, and do not cover the entire Chinese steelmaking industry. In this paper, we make adjustments to the reported statistical data in order to provide energy use values for steel production in China that are comparable to statistics used internationally. We find that for 1996, official statistics need to be reduced by 1365 PJ to account for non-steel production activities and double-counting. Official statistics also need to be increased by 415 PJ in order to include steelmaking energy use of small plants not included in official statistics. This leads to an overall reduction of 950 PJ for steelmaking in China in 1996. Thus, the official final energy use value of 4018 PJ drops to 3067 PJ. In primary energy terms, the official primary energy use value of 4555 PJ is reduced to 3582 PJ when these adjustments are made.

Price, Lynn; Sinton, Jonathan; Worrell, Ernst; Phylipsen, Dian; Xiulian, Hu; Ji, Li

2004-01-01T23:59:59.000Z

400

Process for making ceramic insulation  

DOE Patents [OSTI]

A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

Akash, Akash (Salt Lake City, UT); Balakrishnan, G. Nair (Sandy, UT)

2009-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Making silicon stronger.  

SciTech Connect (OSTI)

Silicon microfabrication has seen many decades of development, yet the structural reliability of microelectromechanical systems (MEMS) is far from optimized. The fracture strength of Si MEMS is limited by a combination of poor toughness and nanoscale etch-induced defects. A MEMS-based microtensile technique has been used to characterize the fracture strength distributions of both standard and custom microfabrication processes. Recent improvements permit 1000's of test replicates, revealing subtle but important deviations from the commonly assumed 2-parameter Weibull statistical model. Subsequent failure analysis through a combination of microscopy and numerical simulation reveals salient aspects of nanoscale flaw control. Grain boundaries, for example, suffer from preferential attack during etch-release thereby forming failure-critical grain-boundary grooves. We will discuss ongoing efforts to quantify the various factors that affect the strength of polycrystalline silicon, and how weakest-link theory can be used to make worst-case estimates for design.

Boyce, Brad Lee

2010-11-01T23:59:59.000Z

402

Energy Flow Models for the Steel Industry  

E-Print Network [OSTI]

each step is calibrated against Commerce Dept. data. Third, a detailed energy flow model is presented for coke ovens and blast furnaces, two very energy-intensive steps in our seven step model of steelmaking. This process-step model is calibrated...

Hyman, B.; Andersen, J. P.

403

ThyssenKrupp Steel USA Timo Faath, Bruce Wilkinson  

E-Print Network [OSTI]

ThyssenKrupp Steel USA Timo Faath, Bruce Wilkinson May 15th, 2013 1 ThyssenKrupp Steel USA ThyssenKrupp Steel USA MSE Symposium ­ Atlanta GA Timo Faath and Bruce Wilkinson May 15th 2013 #12;ThyssenKrupp Steel USA Timo Faath, Bruce Wilkinson May 15th, 2013 2 o ThyssenKrupp Steel USA o Automotive Industry

Li, Mo

404

Arch 334 -Steel Fall 2012 Course Information Architecture 334  

E-Print Network [OSTI]

Arch 334 - Steel Fall 2012 Course Information Architecture 334 Fall 2012 Steel Design Instructor with an understanding of the behavior of steel members and the structures that comprise them. In order to accomplish, about material behavior issues specific to steel structures, about how to design structural steel

Heller, Barbara

405

Ammonia removal process upgrade to the Acme Steel Coke Plant  

SciTech Connect (OSTI)

The need to upgrade the ammonia removal process at the Acme Steel Coke Plant developed with the installation of the benzene NESHAP (National Emission Standard for Hazardous Air Pollutants) equipment, specifically the replacement of the final cooler. At Acme Steel it was decided to replace the existing open cooling tower type final cooler with a closed loop direct spray tar/water final cooler. This new cooler has greatly reduced the emissions of benzene, ammonia, hydrogen sulfide and hydrogen cyanide to the atmosphere, bringing them into environmental compliance. At the time of its installation it was not fully recognized as to the effect this would have on the coke oven gas composition. In the late seventies the decision had been made at Acme Steel to stop the production of ammonia sulfate salt crystals. The direction chosen was to make a liquid ammonia sulfate solution. This product was used as a pickle liquor at first and then as a liquid fertilizer as more markets were developed. In the fall of 1986 the ammonia still was brought on line. The vapors generated from the operation of the stripping still are directed to the inlet of the ammonia absorber. At that point in time it was decided that an improvement to the cyclical ammonia removal process was needed. The improvements made were minimal yet allowed the circulation of solution through the ammonia absorber on a continuous basis. The paper describes the original batch process and the modifications made which allowed continuous removal.

Harris, J.L. [Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant

1995-12-01T23:59:59.000Z

406

Duplex stainless steel: From specialty to commodity  

SciTech Connect (OSTI)

Important applications of duplex stainless steel in the oil and chemical industry date from the seventies. Duplex stainless steel is attractive because it combines high mechanical strength, about the same as for carbon steel, and good corrosion resistance particularly against chloride stress corrosion cracking up to about 100 C. This paper highlights a number of examples that are typical for the potential as well as the problems associated with this type of material.

Quick, J.M.A.; Geudeke, M. [Shell Internationale Petroleum Mij. B.V., The Hague (Netherlands)

1994-12-31T23:59:59.000Z

407

HYDROGEN EMBRITTLEMENT IN LOW CARBON STEEL  

E-Print Network [OSTI]

Many metals and alloys absorb hydrogen and diffusion of hydrogen under certain conditions can seriously weaken and produces embrittlement in steel. Hydrogen embrittlement is a type of metal deterioration that is related to stress corrosion cracking. Although steels are well known for their susceptibility to hydrogen embrittlement, the mechanism of transportation of hydrogen is not very clear in low carbon steels. Standard tensile steel specimens were hydrogenated from 1 to 5 hours and deformed by cold worked to 50%,60%,70 % 80 % and were investigated for mechanical properties.

Rafiq A. Siddiqui; Sabah A. Abdul-wahab; Tasneem Pervez; Sayyad Z. Qamar

408

AC corrosion on cathodically protected steel.  

E-Print Network [OSTI]

?? This report deals with the effect of alternating current on cathodically protected steel. AC corrosion has become relevant in the offshore industry due to… (more)

Torstensen, Andreas

2012-01-01T23:59:59.000Z

409

Biaxial restraint of axially loaded steel cores.  

E-Print Network [OSTI]

??The results from the testing of six short steel specimens are presented in this thesis to represent a portion of a full scale specimen of… (more)

Raddon, Brett Jay

2010-01-01T23:59:59.000Z

410

Laser Brazing of Magnesium to Steel Sheet.  

E-Print Network [OSTI]

??The ability to effectively join magnesium alloys to steel will facilitate increased application and use of Mg alloys in the automotive and aerospace industries where… (more)

Nasiri, Ali Mohamad

2013-01-01T23:59:59.000Z

411

PROTON INDUCED SWELLING IN TYPE 316 STAINLESS STEEL  

E-Print Network [OSTI]

an Austenitic Stainless Steel, USAEC Report ORNL-4580, Oakin Austenitic Stainless Steel, Ref. 5, p. 142. D. I. R.Irradiated 304 Stainless Steel, Ref. 5, p. 499. Table 1.

Srivastava, A.K.

2010-01-01T23:59:59.000Z

412

Mag-Foot: a steel bridge inspection robot  

E-Print Network [OSTI]

A legged robot that moves across a steel structure is developed for steel bridge inspection. Powerful permanent magnets imbedded in each foot allow the robot to hang from a steel ceiling powerlessly. Although the magnets ...

Asada, Harry

413

Doctoral Defense "CHARACTERIZATION OF THE CYCLIC BEHAVIOR OF CORRODED STEEL  

E-Print Network [OSTI]

Doctoral Defense "CHARACTERIZATION OF THE CYCLIC BEHAVIOR OF CORRODED STEEL BRIDGE BEARINGS Chair: Jason McCormick Professor, Civil & Environmental Engineering Steel bridge bearings are widely and accommodate movements between the superstructure and substructure. These bearings include steel rocker

Kamat, Vineet R.

414

Spheroidisation of Hypereutectoid State of Nanostructured Bainitic Steel  

E-Print Network [OSTI]

Spheroidisation of Hypereutectoid State of Nanostructured Bainitic Steel D. Luoa , M.J. Peeta , S can be achieved using this method. Keywords: nanostructured bainite, hypereutectoid steel, spheroidisation, cementite, softening heat treatments 1. Introduction Strong steels sometimes need to be formed

Cambridge, University of

415

Blast damage mitigation of steel structures from near- contact charges  

E-Print Network [OSTI]

Depth 6.5 in. 6.5 in. 3 in. .625 in. 1.5 in. Material SteelSteelAluminum Steel Polyurethane Weight 472 lb 472 lb 73 lb 45 lb

Wolfson, Janet Crumrine

2008-01-01T23:59:59.000Z

416

MICROSTRUCTURE AND PROPERTIES OF DUAL PHASE STEELS CONTAINING FINE PRECIPITATES  

E-Print Network [OSTI]

and Properties of Dual-Phase Steels, R. A. Kot and J. W.of Niobium Microalloyed Dual- Phase Steel, MetallurgicalAND PROPERTIES OF DUAL PHASE STEELS CONTAINING FINE

Gau, J.S.

2014-01-01T23:59:59.000Z

417

FERRITE STRUCTURE AND MECHANICAL PROPERTIES OF LOW ALLOY DUPLEX STEELS  

E-Print Network [OSTI]

and Properties of Dual-Phase Steels, R. A. Kot and J. W.Formable HSLA and Dual Phase Steels, A. T. Davenport, ed. ,Formable HSLA and Dual Phase Steels, A. T. Davenport, ed. ,

Hoel, R.H.

2013-01-01T23:59:59.000Z

418

B.G. Thomas, Brimacombe Lecture, 59th Electric Furnace Conf., Pheonix, AZ, 2001, Iron & Steel Soc., pp. 3-30  

E-Print Network [OSTI]

to yield new insights. As computer power increases and improvements via empirical plant trials become more simulation, mathematical modeling, fluid flow, shell solidification, stress analysis, distortion, cracks models used to control spray water flow in a modern slab caster. Computational thermal-stress models

Thomas, Brian G.

419

Thermodynamics of TiO{sub x} in blast furnace-type slags  

SciTech Connect (OSTI)

Equilibrium studies between CaO-SiO{sub 2}-10 pct MgO-Al{sub 2}O{sub 3}-TiO{sub 1.5}-TiO{sub 2} slags, carbon-saturated iron, and a carbon monoxide atmosphere were performed at 1773 K to determine the activities of TiO{sub 1.5} and TiO{sub 2} in the slag. These thermodynamic parameters are required to predict the formation of titanium carbonitride in the blast furnace. In order to calculate the activity of titanium oxide, the activity coefficient of titanium in carbon-saturated iron-carbon-titanium alloys was determined by measuring the solubility of titanium in carbon-saturated iron in equilibrium with titanium carbide. The solubility and the activity coefficient of titanium obtained were 1.3 pct and 0.023 relative to 1 wt pct titanium in liquid iron or 0.0013 relative to pure solid titanium at 1773 K, respectively. Over the concentration range studied, the effect of the TiO{sub x} content on its activity coefficient is small. In the slag system studied containing 35 to 50 pct CaO, 25 to 45 pct SiO{sub 2}, 7 to 22 pct Al{sub 2}O{sub 3}, and 10 pct MgO, the activity coefficients of TiO{sub 1.5} and TiO{sub 2} relative to pure solid standard states range from 2.3 to 8.8 and from 0.1 to 0.3, respectively. Using thermodynamic data obtained, the prediction of the formation of titanium carbonitride was made. Assuming hypothetical TiO{sub 2}, i.e., total titanium in the slag expressed as TiO{sub 2}, and using the values of the activity coefficients of TiO{sub 1.5} and TiO{sub 2} determined, the equilibrium distribution of titanium between blast furnace-type slags and carbon-saturated iron was computed. The value of [pct Ti]/(pct TiO{sub 2}) ranges from 0.1 to 0.2.

Morizane, Y.; Ozturk, B.; Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering

1999-02-01T23:59:59.000Z

420

An example of alkalization of SiO{sub 2} in a blast furnace coke  

SciTech Connect (OSTI)

Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2007-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hot repair of ceramic burner on hot blast stoves at USS/Kobe`s {number_sign}3 blast furnace  

SciTech Connect (OSTI)

During the 1992 reline of the No. 3 blast furnace, three new stoves were constructed. The design of the stoves, equipped with internal ceramic burners, was for providing a hot blast temperature of 2,000 F at a wind rate of 140,000 SCFM. After 3 years the performance had deteriorated so the burners were cleaned. When a second cleaning did not improve the performance of No. 3 blast furnace, it was decided to repair the refractory while still hot. The paper describes the hot repair procedures, taking a stove off for repairs, maintenance heat up during repairs, two stove operation, stove commissioning, repair of a ceramic burner, and wet gas prevention.

Bernarding, T.F.; Chemorov, M.; Shimono, S.; Phillips, G.R.

1997-12-31T23:59:59.000Z

422

ITP Steel: Steel Industry Energy Bandwidth Study October 2004  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999)Bandwidth forDepartmentSteel

423

Development of Steel Fastener Nano-Ceramic Coatings for Corrosion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Steel Fastener Nano-Ceramic Coatings for Corrosion Protection of Magnesium Parts (AMD-704) Development of Steel Fastener Nano-Ceramic Coatings for Corrosion Protection of Magnesium...

424

Nonlinear seismic response analysis of steel-concrete composite frames  

E-Print Network [OSTI]

of nonlinear steel- concrete composite beam ele- ment. ”Tests and analysis of composite beams with incom- pleteElementary Behaviour of Composite Steel and Concrete Struc-

Barbato, Michele

2008-01-01T23:59:59.000Z

425

Friction of Steel Sliding Under Boundary Lubrication Regime in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Friction of Steel Sliding Under Boundary Lubrication Regime in Commercial Gear Oils at Elevated Temperatures Friction of Steel Sliding Under Boundary Lubrication Regime in...

426

annealed stainless steels: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of stainless steel container materials is a potential problem for long-term radioactive waste storage-to-failure of relevant stainless steels in the annealed...

427

Development of 3rd Generation Advanced High Strength Steels ...  

Broader source: Energy.gov (indexed) [DOE]

3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach Development of 3rd Generation Advanced High Strength Steels (AHSS) with...

428

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

429

Simulation of blast-furnace tuyere and raceway conditions in a wire mesh reactor: extents of combustion and gasification  

SciTech Connect (OSTI)

A wire mesh reactor has been modified to investigate reactions of coal particles in the tuyeres and raceways of blast furnaces. At temperatures above 1000{sup o}C, pyrolysis reactions are completed within 1 s. The release of organic volatiles is probably completed by 1500{sup o}C, but the volatile yield shows a small increase up to 2000{sup o}C. The additional weight loss at the higher temperature may be due to weight loss from inorganic material. The residence time in the raceway is typically 20 ms, so it is likely that pyrolysis of the coal will continue throughout the passage along the raceway and into the base of the furnace shaft. Combustion reactions were investigated using a trapped air injection system, which admitted a short pulse of air into the wire mesh reactor sweep gas stream. In these experiments, the temperature and partial pressure of O{sub 2} were limited by the oxidation of the molybdenum mesh. However, the tests have provided valid insight into the extent of this reaction at conditions close to those experienced in the raceway. Extents of combustion of the char were low (mostly, less than 5%, daf basis). The work indicates that the extent of this reaction is limited in the raceway by the low residence time and by the effect of released volatiles, which scavenge the O{sub 2} and prevent access to the char. CO{sub 2} gasification has also been studied and high conversions achieved within a residence time of 5-10 s. The latter residence time is far longer than that in the raceway and more typical of small particles travelling upward in the furnace shaft. The results indicate that this reaction is capable of destroying most of the char. However, the extent of the gasification reaction appears limited by the decrease in temperature as the material moves up through the furnace. 44 refs., 12 figs., 6 tabs.

Long Wu; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-08-15T23:59:59.000Z

430

Trials with a 100% pellet burden in blast furnace No. 6 at Hoogovens IJmuiden  

SciTech Connect (OSTI)

The burden consists of 50% high basicity sinter and 50% home made olivine pellets. Two coke oven plants produce the required coke, about 340 kg/t (680 lb/NT). The average pulverized coal injection rate is 150 kg/t (300 lb/NT). To anticipate the aging coke oven plant No. 2 the coal injection capacity will e increased by 50% in 1996, by the installation of a third coal grinding line. In the Netherlands environmental issues have a high impact on further developments. In particular the environmental regulations require a significant decrease of dust, SO{sub 2} and dioxins emitted by the sinter plant. The appropriate measures must be concluded in the second part of this decade. To avoid costly conventional solutions Hoogovens has been testing since April, 1994 the Emission Optimized Sintering (EOS). In case of failure of EOS, the situation of a (partially) closed sinter plant was tested. Purchased pellets replaced sinter, leading to a 100% pellet and an 80% pellet/20% sinter trial. The trials were executed in the first half of 1994 at blast furnace No. 6, equipped with a PW-bell less top. Results are described.

Schoone, E.; Toxopeus, H.; Vos, D. [Hoogovens IJmuiden (Netherlands). Ironmaking and Raw Materials Div.

1995-12-01T23:59:59.000Z

431

Detection of carbon monoxide (CO) as a furnace byproduct using a rotating mask spectrometer.  

SciTech Connect (OSTI)

Sandia National Laboratories, in partnership with the Consumer Product Safety Commission (CPSC), has developed an optical-based sensor for the detection of CO in appliances such as residential furnaces. The device is correlation radiometer based on detection of the difference signal between the transmission spectrum of the sample multiplied by two alternating synthetic spectra (called Eigen spectra). These Eigen spectra are derived from a priori knowledge of the interferents present in the exhaust stream. They may be determined empirically for simple spectra, or using a singular value decomposition algorithm for more complex spectra. Data is presented on the details of the design of the instrument and Eigen spectra along with results from detection of CO in background N{sub 2}, and CO in N{sub 2} with large quantities of interferent CO{sub 2}. Results indicate that using the Eigen spectra technique, CO can be measured at levels well below acceptable limits in the presence of strongly interfering species. In addition, a conceptual design is presented for reducing the complexity and cost of the instrument to a level compatible with consumer products.

Sinclair, Michael B.; Flemming, Jeb Hunter; Blair, Raymond (Honeywell Federal Manufacturing & Technologies, Albuqueruque, NM); Pfeifer, Kent Bryant

2006-02-01T23:59:59.000Z

432

Video imaging system and thermal mapping of the molten hearth in an electron beam melting furnace  

SciTech Connect (OSTI)

This project was initiated to develop an enhanced video imaging system for the Liquid Metal Processing Laboratory Electron Beam Melting (EB) Furnace at Sandia and to use color video images to map the temperature distribution of the surface of the molten hearth. In a series of test melts, the color output of the video image was calibrated against temperatures measured by an optical pyrometer and CCD camera viewing port above the molten pool. To prevent potential metal vapor deposition onto line-of-sight optical surfaces above the pool, argon backfill was used along with a pinhole aperture to obtain the vide image. The geometry of the optical port to the hearth set the limits for the focus lens and CCD camera`s field of view. Initial melts were completed with the pyrometer and pinhole aperture port in a fixed position. Using commercially available vacuum components, a second flange assembly was constructed to provide flexibility in choosing pyrometer target sights on the hearth and to adjust the field of view for the focus lens/CCD combination. RGB video images processed from the melts verified that red wavelength light captured with the video camera could be calibrated with the optical pyrometer target temperatures and used to generate temperature maps of the hearth surface. Two color ratio thermal mapping using red and green video images, which has theoretical advantages, was less successful due to probable camera non-linearities in the red and green image intensities.

Miszkiel, M.E.; Davis, R.A.; Van Den Avyle, J.A. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

1995-12-31T23:59:59.000Z

433

Modeling coal combustion behavior in an ironmaking blast furnace raceway: model development and applications  

SciTech Connect (OSTI)

A numerical model has been developed and validated for the investigation of coal combustion phenomena under blast furnace operating conditions. The model is fully three-dimensional, with a broad capacity to analyze significant operational and equipment design changes. The model was used in a number of studies, including: Effect of cooling gas type in coaxial lance arrangements. It was found that oxygen cooling improves coal burnout by 7% compared with natural gas cooling under conditions that have the same amount of oxygen enrichment in the hot blast. Effect of coal particle size distribution. It was found that during two similar periods of operation at Port Kembla's BF6, a difference in PCI capability could be attributed to the difference in coal size distribution. Effect of longer tuyeres. Longer tuyeres were installed at Port Kembla's BF5, leading to its reline scheduled for March 2009. The model predicted an increase in blast velocity at the tuyere nose due to the combustion of volatiles within the tuyere, with implications for tuyere pressure drop and PCI capability. Effect of lance tip geometry. A number of alternate designs were studied, with the best-performing designs promoting the dispersion of the coal particles. It was also found that the base case design promoted size segregation of the coal particles, forcing smaller coal particles to one side of the plume, leaving larger coal particles on the other side. 11 refs., 15 figs., 4 tabs.

Maldonado, D.; Austin, P.R.; Zulli, P.; Guo B. [BlueScope Steel Research Laboratories, Port Kembla, NSW (Australia)

2009-03-15T23:59:59.000Z

434

Effect of blast furnace slag on self-healing of microcracks in cementitious materials  

SciTech Connect (OSTI)

The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH){sub 2} solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO{sub 4}{sup 2?} ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. - Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.

Huang, Haoliang, E-mail: haoliang.huang@tudelft.nl [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Ye, Guang [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University (Belgium); Damidot, Denis [Université Lille Nord de France (France); EM Douai, LGCgE-MPE-GCE, Douai (France)

2014-06-01T23:59:59.000Z

435

Materials support for the development of a high temperature advanced furnace  

SciTech Connect (OSTI)

The purpose of this project is to compare a limited number of candidate ceramics proposed for use in the air heater of a coal fired high temperature advanced furnace (HITAF) for power generation. This work will provide necessary initial structural ceramic parameters for design of a prototype system. Phase 1 of the work consisted of evaluation of the mechanical properties of three structural ceramics at high temperatures in air and a preliminary evaluation of mechanical properties of these structural ceramics after exposure to coal ash. This work was described in a final report, and the results will serve as baseline data for further work. An initial screening of candidate structural ceramics with respect to their creep properties in air at selected temperatures will be performed as Phase 2, and temperatures above which creep may become a design problem will be identified. Tubes and tube sections of the candidate ceramics will then be exposed to a combination of mechanical loads, coal ash exposure and high temperature, and corrosion behavior, mechanisms and post exposure mechanical properties will be evaluated.

Breder, K.; Lin, H.T.

1995-12-01T23:59:59.000Z

436

Steel Winds | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringviewNameGeothermal FacilitySteamboatSteel

437

Method for welding chromium molybdenum steels  

DOE Patents [OSTI]

Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

Sikka, Vinod K. (Clinton, TN)

1986-01-01T23:59:59.000Z

438

Irradiation performance of 9--12 Cr ferritic/martensitic stainless steels and their potential for in-core application in LWRs  

SciTech Connect (OSTI)

Ferritic-martensitic stainless steels exhibit radiation stability and stress corrosion resistance that make them attractive replacement materials for austenitic stainless steels for in-core applications. Recent radiation studies have demonstrated that 9% Cr ferritic/martensitic stainless steel had less than a 30C shift in ductile-to-brittle transition temperature (DBTT) following irradiation at 365C to a dose of 14 dpa. These steels also exhibit very low swelling rates, a result of the microstructural stability of these alloys during radiation. The 9 to 12% Cr alloys to also exhibit excellent corrosion and stress corrosion resistance in out-of-core applications. Demonstration of the applicability of ferritic/martensitic stainless steels for in-core LWR application will require verification of the irradiation assisted stress corrosion cracking behavior, measurement of DBTT following irradiation at 288C, and corrosion rates measurements for in-core water chemistry.

Jones, R.H.; Gelles, D.S.

1993-08-01T23:59:59.000Z

439

Interaction between stainless steel and plutonium metal  

SciTech Connect (OSTI)

Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

Dunwoody, John T [Los Alamos National Laboratory; Mason, Richard E [Los Alamos National Laboratory; Freibert, Franz J [Los Alamos National Laboratory; Willson, Stephen P [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Worl, Laura A [Los Alamos National Laboratory; Archuleta, Alonso [Los Alamos National Laboratory; Conger, Donald J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

440

E-Print Network 3.0 - arc furnace slag Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

not only prevents identification of slag, it also makes ... Source: Howard, John - Plasma Research Laboratory, Research School of Physical Sciences and Engineering, Australian...

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)  

SciTech Connect (OSTI)

Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

Not Available

2014-01-01T23:59:59.000Z

442

STEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH  

E-Print Network [OSTI]

STEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH Michel Bruneau, P.E. 1 Dr. Bruneau is conducting research on the seismic evaluation and retrofit of existing steel bridges, steel of this research, and has co- authored the book "Ductile Design of Steel Structures" published in 1997 by Mc

Bruneau, Michel

443

A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde  

E-Print Network [OSTI]

-scale biocide uses such as oil field applications, it is highly desirable to make more effective use of biocides steel surfaces using glutaraldehyde Jie Wen a , Kaili Zhao a , Tingyue Gu a,*, Issam I. Raad b higher concentration of biocide is needed to treat biofilms compared to the dosage used to for planktonic

Gu, Tingyue

444

Method of making monodisperse nanoparticles  

DOE Patents [OSTI]

A method of making particles of either spherical or cylindrical geometry with a characteristic diameter less than 50 nanometers by mixing at least one structure directing agent dissolved in a solvent with at least one amphiphilic block copolymer dissolved in a solvent to make a solution containing particles, where the particles can be subsequently separated and dispersed in a solvent of choice.

Fan, Hongyon; Sun, Zaicheng

2012-10-16T23:59:59.000Z

445

Tritiated Water Interaction with Stainless Steel  

SciTech Connect (OSTI)

Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

Glen R. Longhurst

2007-05-01T23:59:59.000Z

446

Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel  

SciTech Connect (OSTI)

In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

Jafarzadegan, M. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of) [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Feng, A.H. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China)] [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Saeid, T. [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of)] [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of); Shen, J. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China)] [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Assadi, H. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)] [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)

2012-12-15T23:59:59.000Z

447

Temperature dependence of fracture toughness in HT9 steel neutron-irradiated up to 145 dpa  

SciTech Connect (OSTI)

The temperature dependence of fracture toughness in HT9 steel irradiated to high doses was investigated using miniature three-point bend (TPB) fracture specimens. These specimens were from the ACO-3 fuel duct wall of the Fast Flux Test Facility (FFTF), in which irradiation doses were in the range of 3.2 144.8 dpa and irradiation temperatures in the range of 380.4 502.6 oC. A miniature specimen reuse technique has been established for this investigation: the specimens used were the tested halves of miniature Charpy impact specimens (~13 3 4 mm) with diamond-saw cut in the middle. The fatigue precracking for specimens and fracture resistance (J-R) tests were carried out in a MTS servo-hydraulic testing machine with a vacuum furnace following the standard procedure described in the ASTM Standard E 1820-09. For each of five irradiated and one archive conditions, 7 to 9 J-R tests were performed at selected temperatures ranging from 22 C to 600 C. The fracture toughness of the irradiated HT9 steel was strongly dependent on irradiation temperatures rather than irradiation dose. When the irradiation temperature was below about 430 C, the fracture toughness of irradiated HT9 increased with test temperature, reached an upper shelf of 180 200 MPa m at 350 450 C and then decreased with test temperature. When the irradiation temperature 430 C, the fracture toughness was nearly unchanged until about 450 C and decreased with test temperature in higher temperature range. Similar test temperature dependence was observed for the archive material although the highest toughness values are lower after irradiation. Ductile stable crack growth occurred except for a few cases where both the irradiation temperature and test temperature are relatively low.

Baek, Jong-Hyuk [KAERI] [KAERI; Byun, Thak Sang [ORNL] [ORNL; Maloy, S [Los Alamos National Laboratory (LANL)] [Los Alamos National Laboratory (LANL); Toloczko, M [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL)

2014-01-01T23:59:59.000Z

448

High-Efficiency Low-Dross Combustion System for Aluminum Remelting Reverberatory Furnaces, Project Final Report, July 2005  

SciTech Connect (OSTI)

GTI, and its commercial partners, have developed a high-efficiency low-dross combustion system that offers environmental and energy efficiency benefits at lower capital costs for the secondary aluminum industry users of reverberatory furnaces. The high-efficiency low-dross combustion system, also called Self-Optimizing Combustion System (SOCS), includes the flex-flame burner firing an air or oxygen-enriched natural gas flame, a non-contact optical flame sensor, and a combustion control system. The flex-flame burner, developed and tested by GTI, provides an innovative firing process in which the flame shape and velocity can be controlled. The burner produces a flame that keeps oxygen away from the bath surface by including an O2-enriched fuel-rich zone on the bottom and an air-fired fuel-lean zone on the top. Flame shape and velocity can be changed at constant firing rate or held constant over a range of firing conditions. A non-intrusive optical sensor is used to monitor the flame at all times. Information from the optical sensor(s) and thermocouples can be used to control the flow of natural gas, air, and oxygen to the burner as needed to maintain desired flame characteristics. This type of control is particularly important to keep oxygen away from the melt surface and thus reduce dross formation. This retrofit technology decreases fuel usage, increases furnace production rate, lowers gaseous emissions, and reduces dross formation. The highest priority research need listed under Recycled Materials is to turn aluminum process waste into usable materials which this technology accomplishes directly by decreasing dross formation and therefore increasing aluminum yield from a gas-fired reverberatory furnace. Emissions of NOx will be reduced to approximately 0.3 lb/ton of aluminum, in compliance with air emission regulations.

Soupos, V.; Zelepouga, S.; Rue, D.

2005-06-30T23:59:59.000Z

449

ITP Steel: Energy and Environmental Profile fo the U.S. Iron...  

Broader source: Energy.gov (indexed) [DOE]

Energies to Produce Steel for Selected Conditions, March 2000 ITP Steel: Steel Industry Marginal Opportunity Study September 2005 Ironmaking Process Alternatives Screening Study...

450

A Comparison of Iron and Steel Production Energy Intensity in China and the U.S  

E-Print Network [OSTI]

of Iron and Steel Production Energy Use and Energy Intensityof Iron and Steel Production Energy Intensity in China andof Iron and Steel Production Energy Intensity in China and

Price, Lynn

2014-01-01T23:59:59.000Z

451

E-Print Network 3.0 - alloy steels etudes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the matrix and at welds Minor alloying element additions to pipeline steels to improve hydrogen embrittlement... Steels AlloysSteels ... Source: DOE Office of Energy Efficiency...

452

E-Print Network 3.0 - alloy steel standard Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Ris-R-1244(EN) Tool Steels Summary: deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenum... steel strongly de-...

453

Beam Energy Scaling on Ion-Induced Electron Yield from K+ Impact on Stainless Steel  

E-Print Network [OSTI]

K + Impact on Stainless Steel Michel Kireeff Covo Lawrence+ ions hit the stainless steel target with energy up to 400energies hitting stainless steel target obtained from

2006-01-01T23:59:59.000Z

454

THE EROSION BEHAVIOR OF STEEL AS A FUNCTION OF MICROSTRUCTURE ON SOLID PARTICLE EROSION  

E-Print Network [OSTI]

of the spheroidized 1075 steel by rolling prior to erosionAbrasive Wear Resistance of Steels. A Review, ~Jear, FIGUREelectron micrographs of 1075 steel in the coarse pearlite,

Levy, Alan V.

2013-01-01T23:59:59.000Z

455

Testing and analysis of structural steel columns subjected to blast loads  

E-Print Network [OSTI]

Blast Simulator Testing of Steel Columns and Components. ”Testing of Structural Steel Columns. ” 8 th Internationaland Analysis of Structural Steel Columns Subjected to Blast

Stewart, Lauren K.

2010-01-01T23:59:59.000Z

456

A direct displacement-based design of low-rise seismic resistant steel moment frames  

E-Print Network [OSTI]

The Bending Resistance of Steel Beams. ” J. Struct. Div. ,in the Design of Steel Structures. ” Engineering715- American Institute of Steel Construction (AISC) (2001).

Harris, John L.

2006-01-01T23:59:59.000Z

457

Cyclic behavior and design of steel columns subjected to large drift  

E-Print Network [OSTI]

The Bending Resistance of Steel Beams,” Journal of the2007). “Bolted Flange Plate Steel Moment Connections forSeismic Upgrade of a 15-Story Steel Moment Frame Building –

Newell, James David

2008-01-01T23:59:59.000Z

458

Mechanical properties and microstructures of dual phase steels containing silicon, aluminum and molybdenum  

E-Print Network [OSTI]

AND MICROSTRUCTURES OF DUAL PHASE STEELS CONTAINING SILICON,and Microstructures of Dual Phase Steels Containing Silicon,microstructures of selected dual-phase steels in which the

Neill, Thomas John O'

2011-01-01T23:59:59.000Z

459

EFFECTS OF MORPHOLOGY ON THE MECHANICAL BEHAVIOR OF DUAL PHASE Fe/Si/C STEELS  

E-Print Network [OSTI]

and ductility in dual phase steels. However, it seems thatmechanical behavior of dual phase steels. ACKNOWLEDGEMENTSL INTRODUCTION Dual phase steels whose structures consist of

Kim, N.J.

2012-01-01T23:59:59.000Z

460

Development and installation of an advanced beam guidance system on Viking`s 2.4 megawatt EB furnace  

SciTech Connect (OSTI)

Viking Metallurgical is a manufacturer of titanium alloy and superalloy seamless ring forgings for the aerospace industry. For more than 20 years Viking has used electron beam cold hearth melting to recover titanium alloy scrap and to produce commercially pure titanium ingot for direct forging. In the 1970`s Viking pioneered electron beam cold hearth melting and in 1983 added a two-gun, 2.4 MW furnace. As part of Vikings efforts to improve process control we have commissioned and installed a new electron beam guidance system. The system is capable of generating virtually unlimited EB patterns resulting in improved melt control.

Motchenbacher, C.A.; Grosse, I.A. [Viking Metallurgical, Verdi, NV (United States)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "furnace steel making" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Technical support document: Energy conservation standards for consumer products: Refrigerators and furnaces including: environmental impacts regulatory impact analysis  

SciTech Connect (OSTI)

The National Appliance Energy Conversation Act (NAECA) of 1987 (P.L. 100-12) establishes energy efficiency standards for 13 types of consumer products. The legislation requires the Department of Energy (DOE) to consider new or amended standards on these and other types of products at specified times. DOE is currently selecting standards for two types of products: refrigerators, refrigerator-freezers, and freezers; and small gas furnaces. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of the proposed standards. 8 refs., 39 figs., 135 tabs.

Not Available

1989-11-01T23:59:59.000Z

462

Development of a carburizing stainless steel alloy  

SciTech Connect (OSTI)

A new carburizing stainless steel alloy that resists corrosion, heat, and fatigue has been developed for bearing and gear applications. Pyrowear 675 Stainless alloy is vacuum induction melted and vacuum arc remelted (VIM/VAR) for aircraft-quality cleanliness. Test results show that it has corrosion resistance similar to that of AISI Type 440-C stainless, and its rolling fatigue resistance is superior to that of AISI M50 (UNS K88165). In contrast to alloy gear steels and Type 440C, Pyrowear 675 maintains case hardness of HRC 60 at operating temperatures up to 200 C (400 F). Impact and fracture toughness are superior to that of other stainless bearing steels, which typically are relatively brittle and can break under severe service. Toughness is also comparable or superior to conventional noncorrosion-resistant carburizing bearing steels, such as SAE Types 8620 and 9310.

Wert, D.E. (Carpenter Technology Corp., Reading, PA (United States))

1994-06-01T23:59:59.000Z

463

Undergraduate Research: Cory Tamler By: Bruce Steele  

E-Print Network [OSTI]

Undergraduate Research: Cory Tamler By: Bruce Steele Physics Today's "10 Most Beautiful Experiments--a staged reading--of Not Eureka was held March 29 in the Pittsburgh Playwrights Theatre downtown at 542

Jiang, Huiqiang

464

Case hardenable nickel-cobalt steel  

DOE Patents [OSTI]

An advanced secondary hardening carburized Ni--Co steel achieves an improved case hardness of about 68-69 Rc together with nominal core hardness of about 50 Rc.

Qian, Yana (Sunnyvale, CA); Olson, Gregory B. (Evanston, IL)

2012-04-17T23:59:59.000Z

465

Light Steel Framing: Improving the Integral Design   

E-Print Network [OSTI]

Light Steel Framing has been extensively used in cold climate countries due to its good thermal and structural behaviour. Improved thermal behaviour results in positive environmental impact essential for sustainable ...

Amundarain, Aitor; Torero, Jose L; Usmani, Asif; Al-Remal, Ahmad M

2006-09-11T23:59:59.000Z

466

Lightweight Steel Solutions for Automotive Industry  

SciTech Connect (OSTI)

Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho [Technical Research Laboratories, POSCO, 699, Gumho-dong, Gwangyang-si, Jeonnam, 545-090 (Korea, Republic of)

2010-06-15T23:59:59.000Z

467

Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers  

SciTech Connect (OSTI)

A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level OFA was not cost effective for wall-firing. For cyclone units, NO{sub x} removal by two-level OFA plus O{sub 2} enrichment but without coal reburning was economically attractive.

Hamid Sarv

2009-02-28T23:59:59.000Z

468

CALS Student Making Strides In  

E-Print Network [OSTI]

CALS Student Making Strides In Jaguar Conservation Building Better Peppers Aquaponics Working Conservation 7 Celebrating AgFacts Day 8 Aquaponics Working to Sustain the World 9 Students Get Their Feet Wet

Florida, University of

469

Method of making alkyl esters  

DOE Patents [OSTI]

Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

Elliott, Brian (Wheat Ridge, CO)

2010-09-14T23:59:59.000Z

470

Three essays in decision making  

E-Print Network [OSTI]

This dissertation is composed of three essays about consumer judgment and decision making. In Essay 1, I develop a novel explanation for the well-known endowment effect - the tendency for owners to value goods more than ...

Weaver, Ray, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

471

Irradiation Assisted Grain Boundary Segregation in Steels  

SciTech Connect (OSTI)

The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

Lu, Zheng; Faulkner, Roy G. [IPTME, Loughborough University, Loughborough, Leics (United Kingdom)

2008-07-01T23:59:59.000Z

472

Nickel-free duplex stainless steels  

SciTech Connect (OSTI)

It is well known that nitrogen-alloying in steel produces a variety of exceptional properties such as high strength, high ductility and, eventually, resistance to stress corrosion cracking. High-nitrogen steels (HNS), therefore, have recently been developed to enhance the strength and corrosion resistance of stainless steels. However, due to a low solubility of nitrogen in a liquid steel under atmospheric pressure, the production of such high-nitrogen alloys needs high-pressure facilities that cause an extra cost. A possible route of developing high-nitrogen alloys under atmospheric pressure is to choose a duplex microstructure, where the amount of austenite and ferrite phase is nearly equal. A much lower nitrogen content is needed to maintain a 50% austenite phase compared with the necessary addition of nitrogen to reach a 100% austenitic microstructure. In addition, duplex stainless steels (DSS) with 40--60% ferrite can significantly improve the SCC-resistance. The objective of this work was to develop a new group of nickel-free, high strength and corrosion resistant DSS. Nickel was completely replaced by nitrogen in order to enhance SCC resistance and reduce the alloying element cost. The microstructure, mechanical properties, corrosion resistance and cost analysis of new alloys are investigated in comparison with some commercial stainless steels.

Wang, J.; Uggowitzer, P.J.; Magdowski, R.; Speidel, M.O. [ETH-Zentrum, Zurich (Switzerland). Inst. of Metallurgy] [ETH-Zentrum, Zurich (Switzerland). Inst. of Metallurgy

1998-12-04T23:59:59.000Z

473

Development of Steel Foam Materials and Structures  

SciTech Connect (OSTI)

In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

Kenneth Kremer; Anthony Liszkiewicz; James Adkins

2004-10-20T23:59:59.000Z

474

Aging of steel containments and liners in nuclear power plants  

SciTech Connect (OSTI)

Aging of the containment pressure boundary in light water reactor plants is being addressed to understand the significant factors relating occurrence of corrosion efficacy of inspection and structural capacity reduction of steel containments and liners of concrete containments. and to make recommendations on use of risk models in regulatory decisions. Current regulatory in-service inspection requirements are reviewed and a summary of containment related degradation experience is presented. Current and emerging nondestructive examination techniques and a degradation assessment methodology for characterizing and quantifying the amount of damage present are described. Quantitative tools for condition assessment of aging structures using time dependent structural reliability analysis methods are summarized. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process. Results of this research provide a means for establishing current and estimating future structural capacity margins of containments, and to address the significance of incidences of reported containment degradation.

Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.; Ellingwood, B. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering; Norris, W.E. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1998-01-01T23:59:59.000Z

475

Low Temperature Surface Carburization of Stainless Steels  

SciTech Connect (OSTI)

Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys • Thermodynamic modeling to explain the high degree of carbon solubility possible in austenitic grades under the LTCSS process and experimental validation of model results • Corrosion testing to determine the corrosion resistance improvement possible from the LTCSS process • Erosion testing to determine the erosion resistance improvement possible from the LTCSS process • Wear testing to quantify the wear resistance improvement possible from the LTCSS process • Fatigue testing for quantifying the extent of improvement from the LTCSS process • Component treating and testing under simulated and in-line commercial operations XRD verified expanded austenite lattice, with no evidence of carbide precipitation. Carbon concentration profiles via Auger and electron dispersion spectroscopy (EDS) showed carbon levels in excess of 12 at. % in treated, type 316 SS. Scanning electron microscopy (SEM) of pulled-to-failure treated tensile specimens showed slip bands and no de-cohesion of the treated layer, verifying that the layer remains ductile. Compressive stresses in excess of 2 GPa (300 ksi) have been calculated at the surface of the case. Phase diagram (CALPHAD) (ThermoCalc) and Wagner dilute solution thermodynamic models were developed that calculate the solubility of carbon in austenite as a function of alloying content for the process time and temperature. Several commercial alloys have been modeled, and the model has been used to design experimental alloys with enhanced affinity for carbon solubility at treatment temperatures. Four experimental alloys were melted, rolled, and manufactured into test specimens, and the LTCSS treatment indicated successfully enhanced results and validated the predictions based on thermodynamic modeling. Electrochemical polarization curves show a 600 to 800 mV increase in pitting potential in treated (900-1000 mV) versus non-treated (200-300 mV) type 316 in chloride solutions. Treated 316L showed crevice-corrosion behavior similar to that of Ti-6Al-4V and Hastelloy C22. Cavitation tests showed significant increases in cavitatio

Collins, Sunniva R.; Heuer, Arthur H.; Sikka, Vinod K.

2007-12-07T23:59:59.000Z

476

Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology  

SciTech Connect (OSTI)

The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifu