Powered by Deep Web Technologies
Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Cement advanced furnace and process  

SciTech Connect

This patent describes a suspension shaft furnace for producing discrete cement clinkers from discrete pellets of cement-forming batch materials which are gravity-migrated therethrough. It comprises a vertical furnace housing enclosing a top pellet-feeding and preheating zone comprising an elongate vertical shaft section opening into an intermediate fluidized bed section comprising fuel inlet conduits, an air-permeable clinker-impermeable support; a lower clinker-cooling section beneath the fluidized bed section; clinker-discharge means communicating between the fluidized bed section and the cooling section and air inlet means.

Litka, A.F.; Cohen, S.M.

1992-06-02T23:59:59.000Z

2

Processing automotive shredder fluff for a blast furnace injection  

E-Print Network (OSTI)

1 Processing automotive shredder fluff for a blast furnace injection S. GUIGNOT* , M. GAMET, N. *Corresponding author: s.guignot@brgm.fr, (+33)238643485 Abstract Automotive shredder fluff is a byproduct. Keywords: automotive shredder residues, fluff, iron recovery, process, blast furnace hal-01017129

Boyer, Edmond

3

Optical cavity furnace for semiconductor wafer processing  

DOE Patents (OSTI)

An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

Sopori, Bhushan L.

2014-08-05T23:59:59.000Z

4

Paired Straight Hearth Furnace-Transformational Ironmaking Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

based on the Paired Straight Hearth Furnace (PSH) for iron ore reduction y PSH is a coal and natural gas coke-free process most suitable for American fine concentrates y PSH...

5

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents (OSTI)

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

Sopori, Bhushan L. (Denver, CO)

1995-01-01T23:59:59.000Z

6

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents (OSTI)

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

Sopori, Bhushan L. (Denver, CO)

1996-01-01T23:59:59.000Z

7

On numerical simulation of flow, heat transfer and combustion processes in tangentially-fired furnace  

SciTech Connect

In this work, an Eulerian/Lagrangian approach has been employed to investigate numerically flow characteristics, heat transfer and combustion processes inside corner-fired power plant boiler furnace. To avoid pseudo-diffusion that is significant in modeling tangentially-fired furnaces, some attempts have been made at improving the finite-difference scheme. Comparisons have been made between standard {kappa}-{epsilon} model and RNG {kappa}-{epsilon} model. Some new developments on turbulent diffusion of particles are taken into account in an attempt to improve computational accuracy. Finally, temperature deviation is studied numerically so as to gain deeper insight into tangentially fired furnace.

Sun, P.; Fan, J.; Cen, K.

1999-07-01T23:59:59.000Z

8

Combustion process in a biomass grate fired industry furnace: a CFD study  

Science Journals Connector (OSTI)

This paper presents a CFD investigation of the combustion process in a 50 MW grate fired furnace. The CFD results were compared with available experimental data at the furnace outlet to validate the models for the volatile oxidation and NOx formation. The models were then used to predict the effect of an 'ECO' tube system on NOx emissions. It was shown that with an improved flow structure and air distribution, 30% NOx reduction can be obtained. CFD results revealed the impact of load and fuel moisture on the flow structure, the temperature distribution and the flow residence time.

T. Klason; X.S. Bai

2006-01-01T23:59:59.000Z

9

Paired Straight Hearth Furnace  

Energy.gov (U.S. Department of Energy (DOE))

A coal based dri and molten metal process for long range replacement of blast furnaces and coke ovens

10

Neutron field parameter measurements on the JET tokamak by means of super-heated fluid detectors  

E-Print Network (OSTI)

Neutron field parameter measurements on the JET tokamak by means of super-heated fluid detectors M OF SCIENTIFIC INSTRUMENTS 83, 10E124 (2012) Neutron field parameter measurements on the JET tokamak by means 2 August 2012) The neutron field parameters (fluence and energy distribution) at a specific location

11

Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces  

SciTech Connect

The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

2003-02-12T23:59:59.000Z

12

False diffusion in numerical simulation of combustion processes in tangential-fired furnace  

Science Journals Connector (OSTI)

Numerical simulation serves as one of the most important tools for analyzing coal combustion in Tangentially Fired Furnaces (TFF) with NUMERICAL FALSE DIFFUSION as one key problem that degrades the simulation acc...

Xuchang Xu; Zhigang Wang; Yuqun Zhuo…

2007-11-01T23:59:59.000Z

13

Reduce Air Infiltration in Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet describes how to save process heating energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

14

Furnace Black Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Black Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher 005F 2 Definitions Particle Aggregate = 20nm to 100nm "Diameter" = 200nm to 1,000nm "Length" = Set of Percolated Aggregates Particle (?) Aggregate Agglomerate Constituents Size = Tech/Scientific Challenge 005F 3 Furnace Process High Temperature Refractory Feedstock Oil Air Natural Gas Reaction Zone Quench 005F 4 Specific Surface Area 005F 5 Structure 3-D Morphology Key Characteristic Summary of Crystallographic Studies 005F 7 Methodologies 005F 8 Summary * For all furnace carbon black 12Å < L C < 17Å * Crystallite L a ≈ 25Å * Amorphous Carbon * No micropores * Very few surface groups (hetero atoms) { 005F 9 Effect of Heat Treatment on Amorphous Carbon

15

Tube furnace  

DOE Patents (OSTI)

A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

Foster, Kenneth G. (Livermore, CA); Frohwein, Eugene J. (San Ramon, CA); Taylor, Robert W. (Livermore, CA); Bowen, David W. (Livermore, CA)

1991-01-01T23:59:59.000Z

16

Independent Validation and Verification of Process Design and Optimization Technology Diagnostic and Control of Natural Gas Fired Furnaces via Flame Image Analysis Technology  

SciTech Connect

The United States Department of Energy, Industrial Technologies Program has invested in emerging Process Design and Optimizations Technologies (PDOT) to encourage the development of new initiatives that might result in energy savings in industrial processes. Gas fired furnaces present a harsh environment, often making accurate determination of correct air/fuel ratios a challenge. Operation with the correct air/fuel ratio and especially with balanced burners in multi-burner combustion equipment can result in improved system efficiency, yielding lower operating costs and reduced emissions. Flame Image Analysis offers a way to improve individual burner performance by identifying and correcting fuel-rich burners. The anticipated benefit of this technology is improved furnace thermal efficiency, and lower NOx emissions. Independent validation and verification (V&V) testing of the FIA technology was performed at Missouri Forge, Inc., in Doniphan, Missouri by Environ International Corporation (V&V contractor) and Enterprise Energy and Research (EE&R), the developer of the technology. The test site was selected by the technology developer and accepted by Environ after a meeting held at Missouri Forge. As stated in the solicitation for the V&V contractor, 'The objective of this activity is to provide independent verification and validation of the performance of this new technology when demonstrated in industrial applications. A primary goal for the V&V process will be to independently evaluate if this technology, when demonstrated in an industrial application, can be utilized to save a significant amount of the operating energy cost. The Seller will also independently evaluate the other benefits of the demonstrated technology that were previously identified by the developer, including those related to product quality, productivity, environmental impact, etc'. A test plan was provided by the technology developer and is included as an appendix to the summary report submitted by Environ (Appendix A). That plan required the V&V contractor to: (1) Establish the as-found furnace operating conditions; (2) Tune the furnace using currently available technology to establish baseline conditions; (3) Tune the furnace using the FIA technology; and (4) Document the improved performance that resulted from application of the FIA technology. It is important to note that the testing was not designed to be a competition or comparison between two different methodologies that could be used for furnace tuning. Rather, the intent was to quantify improvements in furnace performance that could not be achieved with existing technology. Therefore, the measure of success is improvement beyond the furnace efficiency obtainable using existing furnace optimization methods rather than improvement from the as found condition.

Cox, Daryl [ORNL

2009-05-01T23:59:59.000Z

17

Furnace assembly  

DOE Patents (OSTI)

A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

1985-01-01T23:59:59.000Z

18

An Experimental Investigation of the Thermodynamical Properties of Super-Heated Steam. On the Cooling of Saturated Steam by Free Expansion  

Science Journals Connector (OSTI)

...research-article An Experimental Investigation of the Thermodynamical Properties of Super-Heated Steam. On the Cooling of Saturated Steam by Free Expansion John H. Grindley The Royal Society is collaborating with JSTOR to digitize, preserve...

1900-01-01T23:59:59.000Z

19

Furnaces | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Furnaces Incentives Retrieved from "http:en.openei.orgwindex.php?titleFurnaces&oldid267167" Category: Articles with outstanding TODO tasks...

20

Steam Cracker Furnace Energy Improvements  

E-Print Network (OSTI)

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Origin of melt-texture crystal growth process in a simple tube furnace  

SciTech Connect

The melt-texture growth (MTG) method has been shown to be effective in fabricating high-T[sub c] superconducting bulk samples with highly oriented layers of single crystals. The critical current density J[sub c] of the typical samples are enhanced significantly. Furthermore, making use of the nonzero spatial temperature gradient at certain locations of a common tube furance, we fabricated Y-123 bulk samples with various dopants allowing J[sub c] up to [approx equal] 3.0 [times] 10[sup 4] A cm[sup [minus]2] in our recent investigations. We followed up our project by analyzing the relations among the crucial parameters involved in the modified version of the MTG process. These parameters include the temperature gradient, the time rate of change of temperature, the [open quotes]growth front[close quotes] of the crystal, etc. Our study indicates that some of the empty space regions that appear between layers are only shallow [open quotes]gap lines[close quotes]. True layers of single crystals do exist, and we present an explanation for the growth of crystal layers along special directions as observed. 26 refs., 6 figs.

Fung, P.C.W.; Chow, J.C.L.; Yu, T.F. (Univ. of Hong Kong (Hong Kong)); Du, Z.L. (Zhongshan Univ. (China))

1993-08-01T23:59:59.000Z

22

Application of microwave heating to ceramic processing: Design and initial operation of a 2.45-GHz single-mode furnace  

SciTech Connect

High-power microwave and millimeter-wave sources are currently being applied to ceramic processing studies at the Naval Research Laboratory (NRL). A single-mode cavity microwave furnace, operating in the TE{sub 103} mode at 2.45 GHz, is operational and is being used to investigate sintering of nanocrystalline ceramics. This paper reports the design of the 2.45-GHz furnace and its use in initial microwave sintering experiments on nanocrystalline alumina and titania compacts. The high purity Al{sub 2}O{sub 3} and TiO{sub 2} nanocrystalline powders used in the sintering experiments were prepared by the sol-gel method. These powders were first uniaxially pressed to 14 MPa, cold isostatically pressed (CIP`ed) to various pressures {ge}420 MPa, and finally sectioned into wafers. The density of the green compacts was 30 to 38% theoretical density (TD). The compacts were placed in insulating fiberboard caskets which were sufficiently lossy to provide hybrid heating at room temperature. The compacts were heated in the microwave furnace for up to three hours at temperatures {ge}1720 C. The temperature of the workpiece was monitored using an optical pyrometer. Final densities up to 80% TD have been obtained to date for Al{sub 2}O{sub 3} and up to 52% TD for TiO{sub 2}. The sintered compacts were characterized by X-ray diffraction and by scanning electron microscopy (SEM) to determine the phase and grain size.

Fliflet, A.W. [Naval Research Lab., Washington, DC (United States)] [Naval Research Lab., Washington, DC (United States); Bruce, R.W.; Kinkead, A.K. [Sachs/Freeman Associates Inc., Landover, MD (United States)] [and others] [Sachs/Freeman Associates Inc., Landover, MD (United States); and others

1996-06-01T23:59:59.000Z

23

Variable frequency microwave furnace system  

DOE Patents (OSTI)

A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

24

Variable frequency microwave furnace system  

DOE Patents (OSTI)

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

25

Development and Validation of a 3-Dimensional CFB Furnace Model  

Science Journals Connector (OSTI)

At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, ... Analyses of field-test results in industrial-scal...

Arl Vepsäläinen; Karl Myöhänen…

2010-01-01T23:59:59.000Z

26

Existing and prospective blast-furnace conditions  

SciTech Connect

Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk [Ukrainian Academy of Sciences, Dnepropetrovsk (Ukraine). Institute of Ferrous Metallurgy

2009-07-15T23:59:59.000Z

27

Thermal Imaging Control of Furnaces and Combustors  

SciTech Connect

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

28

Heat treatment furnace  

DOE Patents (OSTI)

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

29

Laboratory Induction Furnaces  

Science Journals Connector (OSTI)

... supplied at 10,000 volts by a suitable transformer. It is controlled either by a contactor or by push buttons on the furnace table.

1930-07-19T23:59:59.000Z

30

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

31

Advanced steel reheat furnace  

SciTech Connect

Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

1997-10-01T23:59:59.000Z

32

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

33

Trends in furnace control  

SciTech Connect

This paper relates Italimpianti's experiences over the past few years in the area of control of reheat furnaces for the steel industry. The focus is on the level 1 area; specifically on the use of PLC-based systems to perform both combustion control and mechanical/hydraulic control. Some topics to be discussed are: overview of reheat furnace control system requirements; PLC only control vs separate PLC and DCS systems; PLC hardware requirements; man machine interface (MMI) requirements; purge, light-on and safety logic; implementation of more sophisticated level 1 control algorithms; furnace temperature optimization: look up tables vs full thermal modeling; and recent trends including integrated PLC/DCS system.

McDonald, T.J.; Keefe, M.D. (Italimpianti of America, Inc., Coraopolis, PA (United States). Instrumentation and Controls Dept.)

1993-07-01T23:59:59.000Z

34

Enhancing the heat transfer in a heat treatment furnace through improving the combustion process in the radiation tubes  

Science Journals Connector (OSTI)

......energy efficiency in the heating processes. The heat...chamber and lead to shorter heating time to achieve the objective...chamber as a part of oil quenching heat treatment...energy efficiency in the heating processes. The heat...The rising of fuel prices and the increasing requirements......

E. M. Elmabrouk; Y. Wu

2012-02-01T23:59:59.000Z

35

Paired Straight Hearth Furnace  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PSH will use two linear tunnel hearth furnaces that share a common translating pallet train and which are aligned in parallel and run in opposite directions. Pellets are loaded...

36

A Furnace Temperature Regulator  

Science Journals Connector (OSTI)

Synopsis.—By making the heating coil of an electric furnace one arm of a wheatstone bridge, and combining this with a galvanometer regulator, thus keeping constant the resistance of the coil, we can, regardless of variations in the current supply, and with no attention, maintain constant the temperature of furnaces not too directly influenced by the temperature of the room, or where the surrounding air is kept constant. The power available in this regulator is relatively very great indeed; nothing has to be inserted within the furnace cavity, and the lag is practically nothing; the regulator is often almost at its best under conditions most unfavorable to other regulators. It has held a small furnace constant to 0.1° for hours at temperatures from 500° to 1400°.

Walter P. White and Leason H. Adams.

1919-07-01T23:59:59.000Z

37

Enhancing the heat transfer in a heat treatment furnace through improving the combustion process in the radiation tubes  

Science Journals Connector (OSTI)

......predicted and measured data. The CFD simulations...methods to improve the heat transfer rate and provide quantitative data which can be used...important in the combustion and the heat transfer processes...models on hydrogen-hydrocarbon combustion modelling......

E. M. Elmabrouk; Y. Wu

2012-02-01T23:59:59.000Z

38

Furnace | OpenEI  

Open Energy Info (EERE)

Furnace Furnace Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

39

Improved graphite furnace atomizer  

DOE Patents (OSTI)

A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

Siemer, D.D.

1983-05-18T23:59:59.000Z

40

Residential Condensing Gas Furnaces | Department of Energy  

Office of Environmental Management (EM)

Gas Furnaces Residential Condensing Gas Furnaces Standardized Templates for Reporting Test Results residentialcondensinggasfurnacev1.0.xlsx More Documents & Publications...

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimized Utility Systems and Furnace Integration  

E-Print Network (OSTI)

OPTIMIZED UTILITY SYSTEMS AND FURNACE INTEGRATION A. S. McMullan and H. D. Spriggs, Linnhoff March, Inc., Leesburg, Va. ABSTRACT Conventional process design philosophy usually results in utility systems being designed after process design... defines the Process/Utility interface. Clearly, changing the process design can result in different utility demands and possibly in different utility system designs. This paper presents a procedure, using Pinch Technology, for the simultaneous design...

McMullan, A. S.; Spriggs, H. D.

42

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

43

Cogeneration from glass furnace waste heat recovery  

SciTech Connect

In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

Hnat, J.G.; Cutting, J.C.; Patten, J.S.

1982-06-01T23:59:59.000Z

44

flame-fusion process  

Science Journals Connector (OSTI)

...a method of gem synthesis based on Verneuil process (furnace) used in growing synthetic single crystals to distinguish from a melt or flux fusion. Verneuil furnace .

2009-01-01T23:59:59.000Z

45

Non-carbon induction furnace  

DOE Patents (OSTI)

The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

1984-01-06T23:59:59.000Z

46

Mathematical Modeling of Pottery Production in Different Industrial Furnaces  

Science Journals Connector (OSTI)

The traditional process for pottery production was analyzed in this work by developing a fundamental mathematical model that simulates the operation of rustic pottery furnaces as employed by natives of village...

Marco Aurelio Ramírez Argáez…

2008-10-01T23:59:59.000Z

47

Image-Based Filtering and Control of Tubular Furnaces  

Science Journals Connector (OSTI)

In this paper, an image based advanced control strategies for controling combustion processes and temperature regimes of two flows tubular furnaces in petroluem refinery has been developed as a new approach and design principles have been targeted. In ...

A. G. Abilov; O. Tuzunalp; Z. Telatar

2003-06-01T23:59:59.000Z

48

Sandia National Laboratories: Solar Furnace  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility * NSTTF * Parabolic Dish * Renewable Energy * SAND 2011-4654W * solar * Solar Energy * Solar Furnace * solar power * Solar Research Comments are closed. Renewable...

49

Blast furnace taphole drill  

SciTech Connect

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

50

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

51

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

52

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI  

Open Energy Info (EERE)

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI Jump to: navigation, search Name WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) Place Indiana Zip 46809 Sector Geothermal energy Product WaterFurnace develops and manufactures geothermal heating and cooling systems. References WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) is a company located in Indiana . References ↑ "WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))"

53

Semicoke production and quality at Chinese vertical SJ furnaces  

SciTech Connect

In Russia there has been little interest on the thermal processing of non-sintering coal. However it may be used to obtain many special types of coke and semicoke that are necessary for processes other than blast furnace smelting and employing small metallurgical coke fractions that do not meet the relevant quality requirements. China has recently made great progress in developing the thermal processing of coal (mainly energy coal) to obtain a highly effective product, semicoke, primarily used in metallurgy and adsorption process. The article considers the operation of a Chinese semicoking plant equipped with vertical SJ furnaces. The plant is in the Shenmu district of Shanxi province (Inner Mongolia). The enterprise includes two furnaces of total output of about 100,000 t/yr of semicoke.

V.M. Strakhov; I.V. Surovtseva; A.V. D'yachenko; V.M. Men'shenin [Kuznetsk Center, Eastern Coal-Chemistry Institute (Russian Federation)

2007-05-15T23:59:59.000Z

54

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

standby power consumption in BPM furnaces is significantlytotal electricity consumption by BPM furnaces. This is notOverall, it appears the BPM motors used in furnaces offer

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

55

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

of the total electricity consumption by BPM furnaces. Thisbecause furnace electricity consumption is significant.of furnace electricity consumption. Therefore, accurate

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

56

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

57

Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of...  

Energy Savers (EERE)

Philadelhia Gas Works (PGW) Doe Furnace Rule Philadelhia Gas Works (PGW) Doe Furnace Rule DOE Furnace Rule More Documents & Publications Focus Series: Philadelphia Energyworks: In...

58

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

SciTech Connect

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

60

Effect of Combustion Air Preheat on a Forged Furnace Productivity  

E-Print Network (OSTI)

to determine are the effects of combustion air preheat on four additional furnace operating characteristics. These characteristics are: (1) fuel utilization of a furnace operating cycle; (2) time to heat the furnace load; (3) scale production; and (4) furnace...

Ward, M. E.; Bohn, J.; Davis, S. R.; Knowles, D.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Furnaces and Boilers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

62

Furnace and Boiler Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including...

63

Breakthrough Furnace Can Cut Solar Industry Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace can Cut Solar Industry Costs A game-changing Optical Cavity Furnace (OCF)-developed by the National Renew- able Energy Laboratory (NREL) with funding from the U.S....

64

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

65

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

66

Blast-furnace smelting with the injection of natural gas and coke-oven gas  

Science Journals Connector (OSTI)

A multizone mathematical model developed at Nekrasov Institute of Ferrous Metallurgy reveals the internal relations between the processes in a blast furnace. Using this model, the smelting processes and parameter...

I. G. Tovarovskii; A. E. Merkulov

2011-06-01T23:59:59.000Z

67

An Integrated Model of Coal/Coke Combustion in a Blast Furnace  

Science Journals Connector (OSTI)

A three?dimensional integrated mathematical model of the combustion of pulverized coal and coke is developed. The model is applied to the region of lance?blowpipe?tuyere?raceway?coke bed to simulate the operation of pulverized coal injection in an ironmaking blast furnace. The model integrates two parts: pulverized coal combustion model in the blowpipe?tuyere?raceway?coke bed and the coke combustion model in the coke bed. The model is validated against the measurements in terms of coal burnout and gas composition respectively. The comprehensive in?furnace phenomena are simulated in the raceway and coke bed in terms of flow temperature gas composition and coal burning characteristics. In addition underlying mechanisms for the in?furnace phenomena are analyzed. The model provides a cost?effective tool for understanding and optimizing the in?furnace flow?thermo?chemical characteristics of the PCI process in full?scale blast furnaces.

Y. S. Shen; B. Y. Guo; A. B. Yu; P. Austin; P. Zulli

2010-01-01T23:59:59.000Z

68

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

SciTech Connect

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15T23:59:59.000Z

69

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

70

Selection of Coal Gasification Parameters for Injection of Gasification Products Into a Blast Furnace  

Science Journals Connector (OSTI)

An analytical study was performed on the influence of blast parameters on the course of the processes in the volume of a blast furnace and smelting rates by injection of low-grade coal gasification products. It w...

I. G. Tovarovsky; A. E. Merkulov

2014-01-01T23:59:59.000Z

71

Crystal growth furnace with trap doors  

DOE Patents (OSTI)

An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

Sachs, Emanual M. (Watertown, MA); Mackintosh, Brian H. (Lexington, MA)

1982-06-15T23:59:59.000Z

72

List of Furnaces Incentives | Open Energy Information  

Open Energy Info (EERE)

Furnaces Incentives Furnaces Incentives Jump to: navigation, search The following contains the list of 688 Furnaces Incentives. CSV (rows 1-500) CSV (rows 501-688) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit

73

Furnace Litigation Settled | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy conservation standards for residential furnaces, central air conditioners, and heat pumps, including regional standards for different product types in indicated States....

74

Covered Product Category: Residential Gas Furnaces | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

select products that feature sealed combustion. Condensing furnaces should not use indoor air, which frequently contains contaminants from common household products, for...

75

Collection and conversion of silicon furnace waste gas into higher value products: Phase 3, 6 MW pilot plant dc closed furnace technology. Final report  

SciTech Connect

The construction and operation of a 6 MW, closed dc furnace for smelting silicon was the primary focus of Phase 3. A 6 MW, dc closed furnace pilot plant was built in East Selkirk, Manitoba, Canada. The furnace is equipped with world`s most modern automatic control system used to control and monitor the process variables and operational data. This control system is suitable for commercial applications and could be used with either closed or open dc furnaces for smelting silicon or ferrosilicon. The construction was started in September 1990, and the facility was operational within 18 months. Following successful commissioning of the pilot plant in June 1992, twelve smelting test campaigns were conducted through November 1994.

Dosaj, V.D.

1995-01-01T23:59:59.000Z

76

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

77

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines Injection Nitrogen Control in Electric Arc Furnace Steelmaking by Direct Reduced Iron Fines...

78

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions...

79

Exergy transfer analysis of an aluminum holding furnace  

Science Journals Connector (OSTI)

Abstract This study presents the unsteady exergy transfer analysis of an aluminum holding furnace with new heating resistance scheme. This holding system consists of four multilayer refractory walls and one resistance heating system which is responsible of maintaining the appropriate aluminum temperature and composition for further casting. The purpose of this analysis is to understand and identify heat losses and irreversibilities of the holding process of an aluminum furnace by means of the First and Second Law of Thermodynamics. In this study, bi-dimensional temperature and exergy fields during heat and exergy transfer processes are presented. The exergy balance is completely computed for this system, obtaining: exergy transfer, exergy variation rate, and destroyed exergy rate.

Luis Acevedo; Sergio Usón; Javier Uche

2015-01-01T23:59:59.000Z

80

Time and Temperature Test Results for PFP Thermal Stabilization Furnaces  

SciTech Connect

The national standard for plutonium storage acceptability (standard DOE-STD-3013-99, generally known as ''the 3013 standard'') has been revised to clarify the requirement for processes that will produce acceptable storage materials. The 3013 standard (Reference 1) now states that ''Oxides shall be stabilized by heating the material in an oxidizing atmosphere to a Material Temperature of at least 950 C (1742 F) for not less than 2 hours.'' The process currently in use for producing stable oxides for storage at the Plutonium Finishing Plant (PFP) heats a furnace atmosphere to 1000 C and holds it there for 2 hours. The temperature of the material being stabilized is not measured directly during this process. The Plutonium Process Support Laboratories (PPSL) were requested to demonstrate that the process currently in use at PFP is an acceptable method of producing stable plutonium dioxide consistently. A spare furnace identical to the production furnaces was set up and tested under varying conditions with non-radioactive surrogate materials. Reference 2 was issued to guide the testing program. The process currently in use at the PFP for stabilizing plutonium-bearing powders was shown to heat all the material in the furnace to at least 950 C for at least 2 hours. The current process will work for (1) relatively pure plutonium dioxide, (2) dioxide powders mixed with up to 20 weight percent magnesium oxide, and (3) dioxide powders with up to 11 weight percent magnesium oxide and 20 weight percent magnesium nitrate hexahydrate. Time and temperature data were also consistent with a successful demonstration for a mixture containing 10 weight percent each of sodium and potassium chloride; however, the molten chloride salts destroyed the thermocouples in the powder and temperature data were unavailable for part of that run. These results assume that the current operating limits of no more than 2500 grams per furnace charge and a powder height of no more than 1.5 inches remain in effect, although deeper powder beds (up to 2 inches) also yielded temperatures of greater than 950 C for longer than 2 hours.

COMPTON, J.A.

2000-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coal-oil mixture combustion program: injection into a blast furnace  

SciTech Connect

A chemically stabilized coal-oil mixture (COM) was made and used as an auxiliary fuel in a blast furnace for 44 days. Approximately 485,000 gallons of COM were produced at an on-site COM plant. Composition was 47.9% coal, 47.6% No. 6 oil, 4.0% water, and 0.5% emulsifier. Average injection rates were 3.8 to 13.0 gpm during different periods of the trial. Coal handling equipment, mixing and processing equipment, pumps, piping, fuel lances, and instrumentation are discussed. The blast furnace performance during the trial is compared to a Base Period of injecting No. 6 oil. Blast furnace performance was satisfactory, with one pound of COM replacing one pound of coke or 0.8 pound of No. 6 oil. The production of COM and its usage in a blast furnace is economical and feasible.

Jansto, S.G.; Mertdogan, A.; Marlin, L.A.; Beaucaire, V.D.

1982-04-30T23:59:59.000Z

82

Furnace Blower Performance Improvements- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

This Top Innovation profile describes Building America research into improving efficiency of furnace fan blowers.

83

Sustainable Electric Arc Furnace Steel Production: GREENEAF  

Science Journals Connector (OSTI)

Generally speaking, in the electric furnace, coal (and consequently char) can be used as injected powder or charged into the basket. The syngas can be used for EAF burners.

Loris Bianco; Giulia Baracchini…

2013-01-01T23:59:59.000Z

84

Furnace Blower Performance Improvements - Building America Top...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in preparation for cold weather, they may be unaware of how furnace blowers can impact HVAC efficiency. In fact, studies show that the most common blowers have efficiencies of...

85

Energy Assessment Protocol for Glass Furnaces  

E-Print Network (OSTI)

The Department of Energy funded development of a methodology that could be used by glass producers to increase furnace efficiency, and that could serve as a model for other energy-intensive industries. Accordingly, a team comprising PPG Industries...

Plodinec, M. J.; Kauffman, B. M.; Norton, O. P.; Richards, C.; Connors, J.; Wishnick, D.

2005-01-01T23:59:59.000Z

86

DOE Furnace Rule Ex Parte Communication  

Energy.gov (U.S. Department of Energy (DOE))

Philadelphia Gas Works (POW), the largest municipally-owned  gas utility in the United States, is concerned about the impact that a new furnace efficiency rule could have on POW, its customers, the...

87

Graphite electrode DC arc furnace. Innovative technology summary report  

SciTech Connect

The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of feed composition variations on process operating conditions and slag product performance; and collecting mass balance and operating data to support equipment and instrument design.

NONE

1999-05-01T23:59:59.000Z

88

Air Leakage of Furnaces and Air Handlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

89

Segmented ceramic liner for induction furnaces  

DOE Patents (OSTI)

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

90

A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace  

SciTech Connect

This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

2002-01-21T23:59:59.000Z

91

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

92

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

of two-stage furnaces with BPM motors provides electricityof two-stage furnaces with BPM motors provides electricityPSC) and brushless permanent magnet (BPM) 1 . PSC motors are

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

93

Design and fabrication of a tin-sulfide annealing furnace  

E-Print Network (OSTI)

A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

Lewis, Raymond (Raymond A.)

2011-01-01T23:59:59.000Z

94

DOE Publishes Final Rule for Residential Furnace Fan Test Procedure...  

Office of Environmental Management (EM)

DOE Publishes Final Rule for Residential Furnace Fan Test Procedure DOE Publishes Final Rule for Residential Furnace Fan Test Procedure January 3, 2014 - 12:00am Addthis The...

95

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Solar Energy Center ABSTRACT Currently, total electricity consumption of furnacesFurnace Blower Electricity: National and Regional Savings Potential Victor Franco, James Lutz, Alex Lekov, and Lixing Gu (Florida Solar

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

96

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

total fuel and electricity consumption under laboratoryto decrease the electricity consumption of furnaces, mainlytotal fuel and electricity consumption under laboratory

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

97

DOE Publishes Final Rule for Residential Furnace Fan Test Procedure  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) has published a final rule regarding test procedures for residential furnace fans.

98

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

99

Waste Heat Recovery – Submerged Arc Furnaces (SAF)  

E-Print Network (OSTI)

designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified...

O'Brien, T.

2008-01-01T23:59:59.000Z

100

Covered Product Category: Residential Gas Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Novel Flash Ironmaking Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Objective * Develop a new ironmaking process w significant reduction in energy consumption and CO 2 generation * Blast furnace requires pelletization andor sintering of iron...

102

Pulverized coal firing of aluminum melting furnaces. Second annual technical progress report, July 1979-June 1980  

SciTech Connect

The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has proceeded through design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

West, C E; Stewart, D L

1980-08-01T23:59:59.000Z

103

Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace  

SciTech Connect

Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

Dr. Chenn Zhou

2008-10-15T23:59:59.000Z

104

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

105

Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells  

Science Journals Connector (OSTI)

It is well known that distributed combined heat and power (CHP) systems for commercial and industrial buildings are economically desirable because they conserve energy. Here, a thermophotovoltaic (TPV) unit is described that brings CHP into the home providing both heat and electric power by replacing the typical home heating furnace with a combined TPV furnace–generator. First, the design of a 1.5 kWelectric/12.2 kWthermal TPV furnace–generator is described along with the key components that make it possible. Diffused junction GaSb cells are one of these key components. Secondly, an economic cost target is determined for this system where the cost of the photovoltaic array will be key to the economical implementation of this concept. Finally, it is argued that the GaSb cells and arrays can be manufactured at the required low cost. The cost target can be reached because the GaSb cells in the TPV furnace–generator can produce an electrical power density of 1 W cm?2 which is 100 times higher than the typical solar cell. The cost target can also be reached because the GaSb cell fabrication process parallels the silicon solar cell process where no toxic gases are used, no wafer polish is required and cast polycrystalline cells can be used.

L M Fraas; J E Avery; H X Huang

2003-01-01T23:59:59.000Z

106

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

107

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

108

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

ASHRAE test procedure for several furnace efficiency levels (80%, 81%, 90%,ASHRAE Test Procedure 80% AFUE (Two-stage, BPM) 81% AFUE (Two-stage, BPM) 90%

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

109

Nitrogen oxide emissions from a kraft recovery furnace  

SciTech Connect

Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation.

Prouty, A.L.; Stuart, R.C. (James River Corp., Camas, WA (United States)); Caron, A.L. (NCASI West Coast Regional Office, Corvallis, OR (United States))

1993-01-01T23:59:59.000Z

110

Implementation of an Organic Rankine cycle on a Stepping furnace.  

E-Print Network (OSTI)

?? In this master thesis an implementation of an Organic Rankine Cycle (ORC) on a stepping furnace in a steel mill is modeled and proposed.… (more)

Pižorn, Žiga

2014-01-01T23:59:59.000Z

111

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

112

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents (OSTI)

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

113

Simple Maintenance Saves Costly Furnace Repair/Replacement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement January 6, 2010 - 8:26am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory For the past few weeks, my forced-air gas furnace has been on the fritz. I blame this on the fact that I haven't been as diligent as I should have been with regular furnace maintenance, which includes: Checking the condition of the vent connection pipe and chimney Checking the physical integrity of the heat exchanger Adjusting the controls to provide optimum water and air temperature settings for both efficiency and comfort Having a technician perform a combustion-efficiency test Checking the combustion chamber for cracks. Testing for carbon monoxide

114

ENERGY STAR Qualified Gas Furnaces | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Furnaces Gas Furnaces Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Gas Furnaces Dataset Summary Description Gas Furnaces that have earned the ENERGY STAR are more efficient than standard models. ENERGY STAR is the trusted symbol for energy efficiency helping consumers save money and protect the environment through energy-efficient products and practices. More information on ENERGY STAR is available at www.energystar.gov. Tags {Furnaces,"Energy Star",products,"energy efficiency",efficient,"greenhouse gas emissions",climate,utility,utilities,household,savings,labels,partners,certification} Dataset Ratings Overall 0 No votes yet Data Utility

115

Furnace Standards Enforcement Policy Statement | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Standards Enforcement Policy Statement Furnace Standards Enforcement Policy Statement Furnace Standards Enforcement Policy Statement On January 11, 2013, the Department of Justice, on behalf of DOE, and the American Public Gas Association (APGA) filed a joint motion asking the court to enter an agreement to settle APGA's challenge to DOE's June 27, 2011 Direct Final Rule. The settlement agreement would, among other things, vacate the energy conservation standards applicable to non-weatherized gas furnaces established in the DFR. In an exercise of its enforcement discretion, DOE will, during the pendency of the litigation, act in a manner consistent with the terms of the settlement agreement with regard to the enforcement of the standards. Furnace Standards Enforcement Policy Statement - April 5, 2013

116

Method of operating a centrifugal plasma arc furnace  

DOE Patents (OSTI)

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

1998-03-24T23:59:59.000Z

117

Method of operating a centrifugal plasma arc furnace  

DOE Patents (OSTI)

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

Kujawa, Stephan T. (Butte, MT); Battleson, Daniel M. (Butte, MT); Rademacher, Jr., Edward L. (Butte, MT); Cashell, Patrick V. (Butte, MT); Filius, Krag D. (Butte, MT); Flannery, Philip A. (Ramsey, MT); Whitworth, Clarence G. (Butte, MT)

1998-01-01T23:59:59.000Z

118

E-Print Network 3.0 - arc furnace dust Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection: Renewable Energy 2 The Effec' of Furnace Design and Operation on Air Pollution Summary: chemical constituents in furnace gases arc very malodorous, or toxic, when...

119

Development of coke properties during the descent in the blast furnace.  

E-Print Network (OSTI)

??The efficiency in use of reducing agents in blast furnace (BF) ironmaking has been significantly improved over the years. At most blast furnaces, auxiliary fuels… (more)

Maria Lundgren

2013-01-01T23:59:59.000Z

120

Development of the household sample for furnace and boilerlife-cycle cost analysis  

SciTech Connect

Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

2005-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 March 1993--31 May 1993  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. The basic program is designed to determine the reactivity of both coal and its derived char under blast furnace conditions and to compare the results to similar properties of blast furnace coke. The results of the first two experiments in which coal char pyrolyzed in nitrogen at 1000{degrees}C in an EPR were reacted isothermally in air at 1000{degrees}C and 1200{degrees}C. The reactivity values of the same char in these two experiments were different by an order of magnitude. The char reactivity at 1000{degrees}C was 9.7 {times} 10{sup {minus}4} grams per minute while the reactivity. of the char at 1200{degrees}C was 1.6 {times} 10{sup {minus}3} grams per minute. These results suggest that the temperature of the blast air in the tuyere may be critical in achieving complete carbon burnout.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-09-01T23:59:59.000Z

122

Experimental Investigation of Hydrogen Chloride Bonding with Calcium Hydroxide in the Furnace of a Stoker-Fired Boiler  

Science Journals Connector (OSTI)

The paper presents the results of experimental technical investigations to limit the mobility of chlorine released in the form of hydrogen chloride from the fuel in a stoker-fired boiler furnace. In the combustion process, hydrated lime was used as the ...

S?awomir Poskrobko; Jan ?ach; Danuta Król

2010-03-04T23:59:59.000Z

123

Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

24 24 Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. Homes James Lutz, Camilla Dunham-Whitehead, Alex Lekov, and James McMahon Energy Analysis Department Environmental Energy Technologies Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 February 2004 This work was supported by the Office of Building Technologies and Community Systems of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. ABSTRACT In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an

124

Strategic evaluation of investments in coal-dust fuel for blast furnaces  

SciTech Connect

The paper discusses the evaluation of venture investment projects in pulverized coal injection into blast furnaces.

S.V. Bogdanov; S.M. Kornilaev [State University of Management, Moscow (Russian Federation)

2009-07-01T23:59:59.000Z

125

An Application of the Electric Resistance Furnace to the Determination of Oxygen in Iron and Steel.  

Science Journals Connector (OSTI)

An Application of the Electric Resistance Furnace to the Determination of Oxygen in Iron and Steel. ...

R. H. McMillen

1913-01-01T23:59:59.000Z

126

Covered Product Category: Residential Gas Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Furnaces Gas Furnaces Covered Product Category: Residential Gas Furnaces October 7, 2013 - 10:39am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

127

Legendary West Virginia Senior Citizen Stays Warm With New Furnace |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace April 1, 2010 - 7:16pm Addthis Joshua DeLung For the last 56 years, Beulah Sisk has lived in the same house in Princeton, W.Va. Beulah, who worked for 25 years at Lloyd's Pastry Shop, is well known in Princeton. People still see her on the streets today and recognize her as an icon in the community. After a wind storm damaged Beulah's home last year, it came as no surprise when a senior center employee, concerned for Beulah's safety, told her about the weatherization assistance program. "A tree fell on my house and damaged a lot of things, including my furnace," Beulah says. "I tried to have it repaired, but it still

128

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

129

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

130

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

131

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

132

American Gas Association (AGA) for DOE Furnace Product Class  

Energy.gov (U.S. Department of Energy (DOE))

Thank you for the opportunity to brief your staff in recent weeks on an impact analysis of a national condensing furnace standard, which was conducted jointly by the American Gas Association (AGA),...

133

Voltage flicker prediction for two simultaneously operated ac arc furnaces  

SciTech Connect

An EMTP-based arc furnace model was developed for evaluation of flicker concerns associated with supplying a large integrated steel mill as they go from one to two furnace operation and as system changes are implemented that will affect the short circuit capacity at the 230 kV power supply substation. The model includes a dynamic arc representation which is designed to be characteristic of the initial portions of the melt cycle when the arc characteristics are the most variable (worst flicker conditions). The flicker calculations are verified using previous measurements with one furnace operation. Flicker simulations were then performed to evaluate a variety of different possible system strengths with both one and two furnaces in operation. The primary flicker measure used for this study is the unweighted rms value of the fluctuation envelope, expressed as a percentage of the rms line-to-ground voltage magnitude.

Tang, L. [ABB Power T and D Co., Inc., Raleigh, NC (United States)] [ABB Power T and D Co., Inc., Raleigh, NC (United States); Kolluri, S. [Entergy Services, New Orleans, LA (United States)] [Entergy Services, New Orleans, LA (United States); McGranaghan, M.F. [Electrotek Concepts, Inc., Knoxville, TN (United States)] [Electrotek Concepts, Inc., Knoxville, TN (United States)

1997-04-01T23:59:59.000Z

134

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach...  

Energy Savers (EERE)

source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit, but supplemental heat is provided by a combined DHW and...

135

Valorization of Automotive Shredder Residues in metallurgical furnaces Project REFORBA  

E-Print Network (OSTI)

) and the electric arc furnace (EAF) routes, P1 could be used as substitute for coal or coke, and P2 could replace with raw materials cheaper than coke. As additional potential benefits the amount of CO2 generated

Paris-Sud XI, Université de

136

New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...  

Office of Environmental Management (EM)

by at least 3 billion metric tons in total by 2030, equal to more than a year's carbon pollution from the entire U.S. electricity system. Furnace fans are used to circulate air...

137

Energy expenditures and carbon-dioxide emissions at blast furnaces  

Science Journals Connector (OSTI)

Thermodynamic analysis of the reduction of iron and the material balances of carbon shows that the CO2 levels in the blast-furnace gas may be maintained by lowering the carbon consumption in the direct reduction ...

G. V. Korshikov; V. N. Titov; V. G. Mikhailov

2013-07-01T23:59:59.000Z

138

Use of refractory coatings on linings of electric resistance furnaces  

Science Journals Connector (OSTI)

Results of experimental and theoretical studies of the reduction of power consumption in furnaces with a lining covered by IVAKS-2 and IVA-2 intensifying refractory coatings are presented. The heating curves o...

A. V. Aksenov; V. A. Belyakov

1997-09-01T23:59:59.000Z

139

Laboratory Evaluation of Residential Furnace BlowerPerformance  

SciTech Connect

A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

Walker, Iain S.; Lutz, Jim D.

2005-09-01T23:59:59.000Z

140

Processing Automotive Shredder Fluff for a Blast Furnace Injection  

Science Journals Connector (OSTI)

Automotive shredder fluff is a by-product vacuumed during ... ELV) hulks, and further refined in post-shredder lines of treatment (PST). To date...

S. Guignot; M. Gamet; N. Menad

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieving the Best Installed Performance from High- Efficiency Residential Gas Furnaces Larry Brand Partnership for Advanced Residential Retrofit (PARR) March 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade

142

Fireside carburization of stainless steel furnace tubes  

SciTech Connect

Most heavy Venezuelan crudes are recognized for having a high total acid number (TAN) that is usually associated with a high tendency to produce naphthenic acid corrosion. To resist this type of corrosion in vacuum heaters, 9Cr-1Mo steel and stainless steels containing molybdenum are usually recommended. In 1993 the original 5Cr-1/2Mo roof tubes of the furnace in a vacuum unit were replaced by stainless steel 316Ti to minimize tube replacement and increase heater reliability. Unexpectedly, some of the new tubes failed after only three years of service, and just one year after undergoing the last turnaround inspection. The damage occurred in the form of deep holes and perforations, starting from the outside tube surface on the fireside. Coke build-up occurred due to severe operating conditions, overheating the tubes on the fireside, above 675 C (1250 F). Metallographic and Scanning Electron Microscopic (SEM) examination revealed internal and external carburization of the material due to the presence of coke and combustion ashes, respectively. The increase in the skin metal temperature facilitated the diffusion of carbon from these carbon-rich deposits into the low carbon content material (0.023 O/O).Depletion of chromium at the grain boundaries due to the massive formation of chromium carbides, resulted in a severe intergranular corrosion attack by molten salts rich in vanadium and sulfur due to asphalt burning. Normal operating practice demands the use of steam for the heater tubes to control coke build-up. This practice had been first reduced and then eliminated, during the past two years prior to the failure, because of economic incentives. This paper describes the root cause analysis conducted to account for these premature tube failures.

Mirabal, E.; Molina, C. [PDVSA-Refineria Isla, Curayao (Netherlands); Mayorga, A.; Hau, J.L. [PDVSA-Intevep, Caracas (Venezuela)

1999-11-01T23:59:59.000Z

143

Advanced Laser-Based Sensors for Industrial Process Control  

Energy.gov (U.S. Department of Energy (DOE))

Fact Sheet About Increased Efficiency and Reduced Emissions Using Advanced Laser-Based Sensors for Process Control Monitoring in Electric Arc Furnaces

144

Using Waste Heat for External Processes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Consider Installing a Condensing Economizer...

145

The Big Picture on Process Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications Install Waste Heat Recovery Systems for Fuel-Fired Furnaces Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems...

146

Furnace Blower Electricity: National and Regional Savings Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Blower Electricity: National and Regional Savings Potential Furnace Blower Electricity: National and Regional Savings Potential Title Furnace Blower Electricity: National and Regional Savings Potential Publication Type Report LBNL Report Number LBNL-417E Year of Publication 2008 Authors Franco, Victor H., James D. Lutz, Alexander B. Lekov, and Lixing Gu Document Number LBNL-417E Pagination 14 Date Published August 1 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80% of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressureused in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, whilewarm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

147

A new compact fixed-point blackbody furnace  

SciTech Connect

More and more NMIs are realizing their primary scale themselves with fixed-point blackbodies as their reference standard. However, commercially available fixed-point blackbody furnaces of sufficient quality are not always easy to obtain. CHINO Corp. and NMIJ, AIST jointly developed a new compact fixed-point blackbody furnace. The new furnace has such features as 1) improved temperature uniformity when compared to previous products, enabling better plateau quality, 2) adoption of the hybrid fixed-point cell structure with internal insulation to improve robustness and thereby to extend lifetime, 3) easily ejectable and replaceable heater unit and fixed-point cell design, leading to reduced maintenance cost, 4) interchangeability among multiple fixed points from In to Cu points. The replaceable cell feature facilitates long term maintenance of the scale through management of a group of fixed-point cells of the same type. The compact furnace is easily transportable and therefore can also function as a traveling standard for disseminating the radiation temperature scale, and for maintaining the scale at the secondary level and industrial calibration laboratories. It is expected that the furnace will play a key role of the traveling standard in the anticipated APMP supplementary comparison of the radiation thermometry scale.

Hiraka, K.; Oikawa, H.; Shimizu, T.; Kadoya, S.; Kobayashi, T. [CHINO CORPORATION, Itabashi, Tokyo (Japan)] [CHINO CORPORATION, Itabashi, Tokyo (Japan); Yamada, Y.; Ishii, J. [National Metrology Institute of Japan, AIST, Tsukuba, Ibaraki (Japan)] [National Metrology Institute of Japan, AIST, Tsukuba, Ibaraki (Japan)

2013-09-11T23:59:59.000Z

148

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

149

Furnace Blower Electricity: National and Regional Savings Potential  

SciTech Connect

Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

2008-05-16T23:59:59.000Z

150

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING  

SciTech Connect

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300°C-700°C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

2014-04-22T23:59:59.000Z

151

Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents  

Energy.gov (U.S. Department of Energy (DOE))

This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

152

Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air  

E-Print Network (OSTI)

The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel...

Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

153

DOE Publishes Notice of Proposed Rulemaking for Residential Furnace Fans Energy Conservation Standards  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy has published a notice of proposed rulemaking regarding energy conservation standards for residential furnace fans.

154

High temperature furnaces for small and large angle neutron scattering of disordered materials  

E-Print Network (OSTI)

725 High temperature furnaces for small and large angle neutron scattering of disordered materials and small angle neutron scattering (SANS) experiments respectively. They are vacuum furnaces with a thin maintained in a tantalum box. In a neutron beam, the furnaces produce a very low scattering level (without

Boyer, Edmond

155

Electrode Arrangement As Substitute Bottom For An Electrothermic Slag Smelting Furnace.  

DOE Patents (OSTI)

The electrode arrangement uses vertically oriented electrodes with side wall contacts for an electrothermic smelting furnace for aluminum production. The side wall contacts are radially moveable into the furnace to compensate for wear on the contacts. The side wall contacts can be hollow to allow a slag forming charge to be fed to the furnace.

Aune, Jan Arthur (Enebakk, NO); Brinch, Jon Christian (Oslo, NO); Johansen, Kai (Kristiansand, NO)

2005-12-27T23:59:59.000Z

156

Coke mineral transformations in the experimental blast furnace  

SciTech Connect

Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development (CCSD)

2008-09-15T23:59:59.000Z

157

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

158

Experimenting with concentrated sunlight using the DLR solar furnace  

SciTech Connect

The high flux solar furnace that is operated by the Deutsche Forschungsanstalt fuer Luft- und Raumfahrt (DLR) at Cologne was inaugurated in June 1994 and we are now able to look back onto one year of successful operation. The solar furnace project was founded by the government of the State Northrhine Westfalia within the Study Group AG Solar. The optical design is a two-stage off-axis configuration which uses a flat 52 m{sup 2} heliostat and a concentrator composed of 147 spherical mirror facets. The heliostat redirects the solar light onto the concentrator which focuses the beam out of the optical axis of the system into the laboratory building. At high insolation levels (>800W/m{sup 2}) it is possible to collect a total power of 20 kW with peak flux densities of 4 MW/m{sup 2}. Sixteen different experiment campaigns were carried out during this first year of operation. The main research fields for these experiments were material science, component development and solar chemistry. The furnace also has its own research program leading to develop sophisticated measurement techniques like remote infrared temperature sensing and flux mapping. Another future goal to be realized within the next five years is the improvement of the performance of the furnace itself. 6 refs., 9 figs., 1 tab.

Neumann, A.; Groer, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt Linder Hoehe, Koeln (Germany)] [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt Linder Hoehe, Koeln (Germany)

1996-10-01T23:59:59.000Z

159

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING  

SciTech Connect

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.

Johnson, F.; Stone, M.; Miller, D.

2014-09-03T23:59:59.000Z

160

Mechanism of physical transformations of mineral matter in the blast furnace coke with reference to its reactivity and strength  

SciTech Connect

Examinations of polished and dry cut sections of feed and tuyere coke revealed some possible mechanisms for the physical influence of mineral compounds on the reactivity and strength of coke. It was observed that rounded particles of mineral phases that are exposed to the pore walls and surface of coke at high temperature create an inorganic cover, thus reducing the surface available for gas-solid reactions. The particles of mineral matter that have a low melting point and viscosity can affect the coke at earlier stages in the blast furnace process, acting in the upper parts of the blast furnace (BF). The temperature-driven redistribution of mineral phases within the coke matrix probably leads to the creation of weak spots and in general to anisotropy in its properties, thus reducing its strength. 9 refs., 2 figs., 1 tab.

Stanislav S. Gornostayev; Jouko J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2006-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Utilization of computational fluid dynamics technique in low NOx burner/furnace retrofits  

SciTech Connect

A computational fluid dynamics (CFD) technique has been utilized to provide design guidance for retrofitting low NOx combustion systems and incorporating associated furnace modifications into existing utility boilers. The CFD program utilized is FW-FIRES (Fossil fuel, Water-walled Furnace Integrated Reaction and Emission Simulation) which simulates furnace combustion, heat transfer and pollutant formation based on fundamental principals of mass, momentum and energy conservations. The program models the gas flow field as a three-dimensional turbulent reacting continuum and the particle flow as a series of discrete particle trajectories through the gas continuum. Chemical reaction, heat transfer, and pollutant formation mechanisms are incorporated in the program. FW-FIRES furnace simulation of low NOx combustion system retrofits has been performed for various furnace configurations including front wall-fired, front and real wall-fired, and tangentially-fired furnaces, to determine the effects of burner/furnace modifications on the NOx emission, furnace exit gas temperature, furnace heat absorption, unburned carbon, and furnace wall corrosion. For front wall-fired, and front and real wall-fired furnaces, the NOx emission requirement is met by the use of Foster Wheeler lox NOx burners and overfire air (OFA) staging. Studies of burner and OFA quantify and spacing are conducted to limit NOx emission and unburned carbon to acceptable levels. A major concern in once-through supercritical units with OFA is furnace wall corrosion which is caused by high furnace wall metal temperature and corrosive hydrogen sulfide (H{sub 2}S) created in a reducing atmosphere from part of coal sulfur. The FW-FIRES code is used to minimize this corrosion potential by selecting the proper location and quantity of boundary air. A simulation of tangentially-fired unit, which has been retrofitted with low NOx burners, is used to study the effect of the burner tilt on the furnace exit gas temperature. This paper details the basis and results of several CFD analyses conducted for potential retrofit programs.

Cho, S.M.; Seltzer, A.H.; Ma, J.; Steitz, T.H.; Grusha, J.; Cole, R.W.

1999-07-01T23:59:59.000Z

162

Prediction of Coke Quality in Ironmaking Process: A Data Mining Approach.  

E-Print Network (OSTI)

??Coke is an indispensable material in Ironmaking process by blast furnace. To provide good and constant quality coke for stable and efficient blast furance operation… (more)

Hsieh, Hsu-huang

2006-01-01T23:59:59.000Z

163

Low NOx nozzle tip for a pulverized solid fuel furnace  

DOE Patents (OSTI)

A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

2014-04-22T23:59:59.000Z

164

Furnace control apparatus using polarizing interferometer  

DOE Patents (OSTI)

A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

Schultz, Thomas J. (Maumee, OH); Kotidis, Petros A. (Waban, MA); Woodroffe, Jaime A. (North Reading, MA); Rostler, Peter S. (Newton, MA)

1995-01-01T23:59:59.000Z

165

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

Gary M. Blythe

2001-11-06T23:59:59.000Z

166

Microsoft Word - ACEEE_06_FurnaceBlower_Paper413_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

BPM Motors in Residential Gas Furnaces: What are the Savings? BPM Motors in Residential Gas Furnaces: What are the Savings? James Lutz, Victor Franco, Alex Lekov, and Gabrielle Wong-Parodi Lawrence Berkeley National Laboratory, Berkeley, California ABSTRACT Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized

167

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

168

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

169

Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications  

E-Print Network (OSTI)

of the above premise. The application of vortex stabilized high intensity burners for reformer furnaces in the petrochemical industry is then reviewed and emphasized....

Williams, F. D. M.; Kondratas, H. M.

1983-01-01T23:59:59.000Z

170

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

by natural gas. Electricity consumption by a furnace blowerto the annual electricity consumption of a major appliance.not account for the electricity consumption of the appliance

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

171

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network (OSTI)

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based… (more)

Gao, Chen

2010-01-01T23:59:59.000Z

172

Theoretical and experimental foundations for preparing coke for blast-furnace smelting  

SciTech Connect

This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the -36 mm fraction, the separation of nut coke of the 15-36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2-4.1%.

A.L. Podkorytov; A.M. Kuznetsov; E.N. Dymchenko; V.P. Padalka; S.L. Yaroshevskii; A.V. Kuzin [Enakievo Metallurgical Plant, Enakievo (Ukraine)

2009-05-15T23:59:59.000Z

173

Characterization of Coke Properties at Tuyere Level of an Operating Blast Furnace.  

E-Print Network (OSTI)

??Coke performance in an operating blast furnace is often empirically related to popular bench-scale tests, which are performed at relative much lower temperatures. Due to… (more)

Ye, Zhuozhu

2014-01-01T23:59:59.000Z

174

E-Print Network 3.0 - automatic wood furnaces Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

bagasse. 3. The total cost of the boiler island including stoker, furnace, boiler, economizer... , feeders and bins for handling bark and wood, while experience in dealing with...

175

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

176

E-Print Network 3.0 - arc plasma furnace Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

PLASMA PHYSICS AND ENGINEERING Summary: replace costly traditional technologies as incineration and conventional plasma arc furnaces, and provide... ASSOCIATED LABORATORY ON...

177

E-Print Network 3.0 - arc furnace steelmaking Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

in the furnace cavity. This special ... Source: Oak Ridge National Laboratory Fossil Energy Program; Pint, Bruce A. - Materials Science & Technology Division, Oak Ridge...

178

Mathematical modelling of the flow and combustion of pulverized coal injected in ironmaking blast furnace.  

E-Print Network (OSTI)

??Pulverized coal injection (PCI) technology is widely practised in blast furnace ironmaking due to economic, operational and environmental benefits. High burnout of pulverized coal in… (more)

Shen, Yansong

2008-01-01T23:59:59.000Z

179

E-Print Network 3.0 - air furnace design Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

IN MUNICIPAL INCINERATOR Summary: cal to good furnace performance and to mainten ance of air pollution control. Early in 1967 the writer... of the grate roughly equivalent to...

180

Small Glass-Melting Furnaces for Clear, Tinted, and Specialized Glass  

Science Journals Connector (OSTI)

Data on the design and application areas of small-sized glass-melting furnaces for melting various-purpose glasses are supplied.

A. A. Dymov; V. A. Fedorova

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - arc furnaces Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

of Solar Energy for the Production of Fullerenes and Summary: with the Odeillo (finance) solar furnace facilities, can be used to vaporize graphite in inert gas atmosphere......

182

Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein

183

Heat Recovery From Arc Furnaces Using Water Cooled Panels  

E-Print Network (OSTI)

to maintain a constant cooling water supply temperature in the cold well. The cooling tower fans can be manually reversed on slow speed for de-icing the cooling tower in winter to remove ice buildup on the slats. Level controller LL-2 shuts down pumps PI...HEAT RECOVERY FROM ARC FURNACES USING WATER COOLED PANELS D. F. Darby Deere & Company Moline, Illinois ABSTRACT In 1980-81, the John Deere Foundry at East Moline underwent an expansion program that in creased its capacity by over 60...

Darby, D. F.

184

Variation in coke properties within the blast-furnace shop  

SciTech Connect

In active production at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), samples of melt materials were taken during shutdown and during planned repairs at furnaces 1 and 8. In particular, coke was taken from the tuyere zone at different distances from the tuyere tip. The mass of the point samples was 2-15 kg, depending on the sampling zone. The material extracted from each zone underwent magnetic separation and screening by size class. The resulting coke sample was averaged out and divided into parts: one for determining the granulometric composition and mechanical strength; and the other for technical analysis and determination of the physicochemical properties of the coke.

E.N. Stepanov; I.I. Mel'nikov; V.P. Gridasov; A.A. Stepanova [OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), Magnitogorsk, (Russian Federation)

2009-04-15T23:59:59.000Z

185

Blast furnace coke quality in relation to petroleum coke addition  

SciTech Connect

The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Sirgado, M. [ENSIDESA, Aviles (Spain)

1995-12-01T23:59:59.000Z

186

Self-calibrated active pyrometer for furnace temperature measurements  

DOE Patents (OSTI)

Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

187

Determination of heliostat and concentrator size for solar furnace facilities  

SciTech Connect

There are basically two types of solar furnaces -- a vertical-beam or a horizontal-beam facility. A vertical-beam facility uses movable heliostats to redirect the incoming solar energy vertically upward to a stationary parabolid. A horizontal-beam furnace uses the heliostat to redirect the incoming energy horizontally to the paraboloid. This paper presents a method to determine the optimum size of the heliostat and/or concentrator to meet predetermined design criteria. Usually the concentrator size is fixed by the temperature and flux-density required at the test plane and the problem is to size the heliostat so the facility can be used for a certain length of time each day during the entire year. However, the method can also be used when the heliostat size is fixed and the concentrator size must be determined. The analysis considers energy incident from the sun being reflected from a flat spectral surface (heliostat) onto a concentrating surface (concentrator), which then redirects the energy to a focal spot that can then be used as a high temperature, high-flux density source. The analysis uses the basic relations of geometric optics and considers only the central ray of the incoming cone of energy from the sun. Errors involved with this assumption will be minimal for most cases, but if deemed necessary, the reflected cone can be accounted for in the reflected ray from the heliostat.

Mulholland, G.P.

1983-08-01T23:59:59.000Z

188

Polyx multicrystalline silicon solar cells processed by PF+5 unanalysed ion implantation and rapid thermal annealing  

E-Print Network (OSTI)

of terrestrial solar cells as compared to classical furnace or pulsed laser annealing. Unfortunately, drawbacks695 Polyx multicrystalline silicon solar cells processed by PF+5 unanalysed ion implantation with classical furnace annealing or with classical diffusion process. Revue Phys. Appl. 22 (1987) 695-700 JUILLET

Paris-Sud XI, Université de

189

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

SciTech Connect

The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

Rothgeb, S.; Brand, L.

2013-11-01T23:59:59.000Z

190

Fabrication of microstructures on glass by imprinting in conventional furnace for lab-on-chip application  

Science Journals Connector (OSTI)

Imprinting micro structures on glass in conventional furnace instead of vacuum chamber was carried out using a nickel alloy mold which was fabricated by diode-pumped solid state laser writing. The layout is designed to serve for DNA analysis. In the ... Keywords: Conventional furnace, Glass imprinting, Laser direct writing, Ni alloy mold

Qiuling Chen; Qiuping Chen; Gabriele Maccioni; Adriano Sacco; Sergio Ferrero; Luciano Scaltrito

2012-07-01T23:59:59.000Z

191

Our scenario is akin to the magnetic furnace model proposed by Axford and  

E-Print Network (OSTI)

Our scenario is akin to the magnetic furnace model proposed by Axford and McKenzie (14­16) and to ideas invoking reconnection of mesoscale loops (38, 39). We adopt from the furnace model the idea. However, our model of the nascent solar wind is intrinsically 3-D, and the magnetic field geometry

Pe'er, Dana

192

Assessment of the Modified Emd Ex Ii Dosimeter In Measuring the Exposure of A 1 Khz Induction Furnace Operators  

Science Journals Connector (OSTI)

Magnetic fields in the vicinity of induction furnaces exhibit a marked spatial variation. Those close to a furnace often may exceed 1 mT1 and may exceed exposure guidelines2, but at normal operator positions this...

Philip Chadwick

1999-01-01T23:59:59.000Z

193

What Steps Do You Take to Maintain Your Furnace? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps Do You Take to Maintain Your Furnace? Steps Do You Take to Maintain Your Furnace? What Steps Do You Take to Maintain Your Furnace? January 7, 2010 - 7:30am Addthis This week, Chris told you about his plans to maintain his furnace to keep it running efficiently. Proper maintenance is key to ensuring your heating and cooling systems are in working order. No one wants to wake up on the coldest day of the year to find that they have no heat! What steps do you take to maintain your furnace? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Brrrrr. It's Cold In There! Saving Energy and Money Starts at Home 31,000 Homes Weatherized in June

194

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking  

Energy.gov (U.S. Department of Energy (DOE))

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

195

BPM Motors in Residential Gas Furnaces: What are theSavings?  

SciTech Connect

Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-05-12T23:59:59.000Z

196

Exergy Analysis and Energy-Saving Evaluation of the Fuming Furnace Device in SKS Lead Smelting System  

Science Journals Connector (OSTI)

To highlight the energy-saving feature of the integral device of fuming furnace and waste heat boiler(referred to as ¡°the fuming furnace device¡± for short) in the Shuikoushan lead smelting system (hereinafter referred to as SKS system) and to ... Keywords: SKS lead smelting, fuming furnace, waste heat boiler, exergy analysis, energy-saving

Jiang Aihua; Mei Chi; Shi Zhangming; Wang Hongcai; Yu Huang; Zhu Xiaojun

2011-02-01T23:59:59.000Z

197

Exergy-based analysis and efficiency evaluation for an aluminum melting furnace in a die-casting plant  

Science Journals Connector (OSTI)

The efficiency of a natural gas-fired aluminum melting furnace in a die-casting plant is examined using energy and exergy methods, to improve understanding of the burner system in the furnace and so that potential improvements can be identified. Such ... Keywords: aluminum, die-casting, efficiency, energy, exergy, melting furnace

Marc A. Rosen; Dennis L. Lee

2009-02-01T23:59:59.000Z

198

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

199

Fuel Saving Ideas for Metal and Ceramic Processing  

E-Print Network (OSTI)

An easy method is presented for analyzing sources of heat loss from industrial processing furnaces, kilns, and ovens; and thus for recognizing opportunities for fuel saving. This will relate to melting, heat treating and hot forming of metals...

Reed, R. J.

1982-01-01T23:59:59.000Z

200

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

Not Available

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

LES of swirl-stabilised pulverised coal combustion in IFRF furnace No. 1  

Science Journals Connector (OSTI)

Abstract Swirl-stabilised turbulent flow and pulverised coal combustion in the semi-industrial (2.5 MW) IFRF furnace No. 1 are for the first time simulated by means of large eddy simulation and compared to results from the experimental campaign and RANS predictions by Weber et al. (1992). The large eddy simulation uses the Euler–Lagrange framework for two-phase flows and relatively simple sub-models for the particle heat-up, devolatilisation, char combustion and radiation governing the pulverised coal combustion process are employed. The simulations yield improved predictions of the velocity statistics in the quarl region and result in a favourable agreement of the mean species profiles along the burner centreline compared with the measurements, while some temperature underprediction can be observed. Furthermore, the transient Euler–Lagrange approach allows for a cross-comparison of the velocity and scalar statistics between the two phases and the comparison of the mean axial velocity and temperature shows the two phases to be near thermal and kinetic equilibrium along the burner axis. Individual particle time histories, which are crucial for the coal combustion sub-processes and overall flame stabilisation, are analysed. It is found that there is a lack of oxygen in the inner quarl region leading to a decreased volatile burning rate, which could however, be related to the simplified EBU turbulence–chemistry interaction model.

G. Olenik; O.T. Stein; A. Kronenburg

2014-01-01T23:59:59.000Z

202

Interpenetrative and transverse growth process of self-catalyzed ZnO nanorods  

E-Print Network (OSTI)

for short-wavelength optoelectronics [1] and transparent con- ducting windows for solar cells [2 evaporation process in a horizontal tube furnace. Commercial grade ZnO powder was place in the center of a single zone tube furnace and evacuated for several hours to purge oxygen in the chamber. Polycrystalline

Wang, Zhong L.

203

An example of alkalization of SiO{sub 2} in a blast furnace coke  

SciTech Connect

Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2007-09-15T23:59:59.000Z

204

Economics of Residential Gas Furnaces and Water Heaters in United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

205

Heat Transfer Coefficient Distribution in the Furnace of a 300MWe CFB Boiler  

Science Journals Connector (OSTI)

Properly understanding and calculating the distributions of heat flux and heat transfer coefficient (?) in the furnace is important in designing a circulating fluidized bed (CFB) boiler, especially with supercrit...

P. Zhang; J. F. Lu; H. R. Yang; J. S. Zhang…

2010-01-01T23:59:59.000Z

206

Towards a reliable and efficient furnace simulation tool for coal fired utility boilers  

Science Journals Connector (OSTI)

A validation exercise is presented with the objective of demonstrating that using a mature furnace simulation tool on high end supercomputers enables the reliable prediction of coal-fired utility boiler perfor...

Benedetto Risio; Uwe Schnell…

1999-01-01T23:59:59.000Z

207

Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating  

E-Print Network (OSTI)

Here the authors report the use of either furnace heating or Joule heating to pacify the exposed graphene edges by loop formation in a novel graphitic nanoribbonmaterial, grown by chemical vapor deposition. The edge energy ...

Jia, Xiaoting

208

An X-based spatial oxide growth visualization software for furnace characterization  

E-Print Network (OSTI)

important utility-oxide growth on the silicon wafer. The software developed is completely generic and has no affiliation to any make of furnace. The data required for simulation can easily be obtained from the actual piece of equipment. Simulation...

Kumar, Ravi C.K

2012-06-07T23:59:59.000Z

209

E-Print Network 3.0 - air-conditioners furnaces air Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

by connecting it to a leaky duct system. By decreasing the leakage... condensing unit of a split system air conditioner or heat pump, cooling or heating coil, or the furnace...

210

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

2001 Residential Energy Consumption Survey (RECS 2001; USenergy consumption of residential furnaces and boilers in U.S.US Department of Energy (2001). Residential energy consump- tion survey: household energy consumption

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

211

Experimental Investigation of Combustion of Biomass Slurry in an Oil Fired Furnace  

Science Journals Connector (OSTI)

An experimental investigation of combustion of biomass slurry in an oil fired furnace was ... are presented. The calorific value of the biomass slurry increases with equivalence ratio initially, attains ... obser...

S. V. Prakash; S. R. Shankapal

2009-01-01T23:59:59.000Z

212

A Ceramic Waste Heat Recovery System on a Rotary Forge Furnace: An Installation and Operating History  

E-Print Network (OSTI)

heavy duty high temperature ceramic tube recuperator and five high temperature recirculating burners. The energy conservation system was retrofitted onto a rotary hearth furnace with an inside diameter of 11' 5'' (3.5m) and an available hearth area...

Young, S. B.; Campbell, T. E.; Worstell, T. M.

1981-01-01T23:59:59.000Z

213

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

214

Direct thermal to electrical energy conversion using very low bandgap TPV cells in a gas-fired furnace system  

Science Journals Connector (OSTI)

Abstract In this paper, electricity generation using very low bandgap InGaAsSb thermophotovoltaic (TPV) cells whose bandgap is 0.53 eV was investigated in a gas-fired furnace system where thermal radiation was emitted from a metal alloy emitter. The electric output of the InGaAsSb TPV cells was characterized under various operating conditions. The cell short circuit density was measured to be 3.01 A/cm2 at an emitter temperature of 1197 °C. At this emitter temperature, an electric power density of 0.65 W/cm2 was produced by the TPV cells. Experimental results show that direct thermal to electrical energy conversion was achieved in a gas-fired heating furnace system. Such a system could be employed to form a micro-combined heat and power (micro-CHP) process where exhaust heat is utilized for home heating needs. The TPV integrated energy system provides an effective means for primary energy savings.

K. Qiu; A.C.S. Hayden

2014-01-01T23:59:59.000Z

215

Building America Expert Meeting: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

216

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

217

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

218

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler  

SciTech Connect

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

Andrew Seltzer

2005-01-01T23:59:59.000Z

219

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R D plan to develop the concept further. The power generating system being developed in this project will be an improvement over current coal-fired systems. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.

Not Available

1993-02-01T23:59:59.000Z

220

Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)  

SciTech Connect

Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

Dr. Gordon A. Irons

2004-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Evaluation of Retrofit Variable-Speed Furnace Fan Motors  

SciTech Connect

In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

Aldrich, R.; Williamson, J.

2014-01-01T23:59:59.000Z

222

Comparative analysis of failure probability for ethylene cracking furnace tube using Monte Carlo and API RBI technology  

Science Journals Connector (OSTI)

Abstract Ethylene cracking furnace tube is one of the most critical components in the petrochemical industry to crack molecules at high temperature. The furnace tube degrades easily during operations which would cause equipment failure and lead to serious consequences, such as fire and explosion. In this work, a quantitative analysis of failure probability for the ethylene cracking furnace tube is performed using the Monte Carlo method and API Risk-Based Inspection (RBI) technology. The results have shown that the operation life of ethylene cracking furnace tube under interaction of creep and carburization is less than that under creep, and the failure probability calculated based on API RBI technology is lower than that using the Monte Carlo method. Moreover, the comparative analysis results prove further that creep and carburization are two main failure modes of the furnace tube rupture. Therefore, it is very necessary to provide reliable data to perform risk assessment and inspections on ethylene cracking furnace tube.

Wenhe Wang; Kaiwu Liang; Changyou Wang; Qingsheng Wang

2014-01-01T23:59:59.000Z

223

Certain rules of formation of the block in melting brucite in an OKB-955N smelting furnace  

Science Journals Connector (OSTI)

Certain rules of columnar crystallization of periclase and of formation of the block in melting of brucite in an OKB-955N smelting furnace are...

K. V. Simonov

224

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

225

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

226

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 iii COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for the Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc. Indiana Harbor Steel Mill, East Chicago, Indiana

227

The Impact of Forced Air System Blowers on Furnace Performance and Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Forced Air System Blowers on Furnace Performance and Utility The Impact of Forced Air System Blowers on Furnace Performance and Utility Loads Speaker(s): Bert Phillips Date: November 7, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: James Lutz Bert Phillips will talk about the impact of forced air system blower performance on furnace or heating performance and on utility loads, and what can be done to reduce blower power requirements. He will also briefly discuss a ground source heat pump monitoring study that he just finished. Mr. Phillips is a registered Professional Engineer in three Canadian provinces and part owner of UNIES Ltd., an engineering firm in Winnipeg, Manitoba (60 miles straight north of the North Dakota/Minnesota border). He does research and HVAC system design and investigates

228

Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace  

DOE Patents (OSTI)

The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

Mathur, Mahendra P. (Pittsburgh, PA); Ekmann, James M. (Bethel Park, PA)

1989-01-01T23:59:59.000Z

229

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Ranch Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

230

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network (OSTI)

A., Rome, Italy ABSTRACT Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented..., described in Figure 1, 2. The combustion oxygen is carried by a more I I i I' has been used as a design basis. The heater is based on the actual design of a unit built by KTI SpA. The furnace does not include air preheater or steam generation...

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

231

Coal-fired furnace for testing of thermionic converters. Topical report  

SciTech Connect

The development of thermionic converter technology has progressed to make near-term applications interesting. One of these applications is the thermionic topping of a pulverized coal-fired central station powerplant. Up to now, thermionic converters have been flame tested using natural gas as fuel. A new test furnace is required for evaluation of thermionic converters in a coal-fired environment. The design and costs of a facility which adapts a coal-fired furnace built by Foster Wheeler Development Corporation (FWDC) for thermionic converter testing are discussed. Such a facility would be exempt from air pollution regulations because of its low firing rate.

Not Available

1980-10-01T23:59:59.000Z

232

Processing of bone samples for the determination of ultra low-levels of uranium and plutonium  

Science Journals Connector (OSTI)

We have developed cleanroom compatible techniques for processing bone samples for ... dried and ashed in quartz crucibles placed inside cleanroom compatible thermal ashing furnaces. The bone ash...238U and 8 femt...

D. W. Efurd; R. E. Steiner; S. P. LaMont…

2006-09-01T23:59:59.000Z

233

Removal of ammonia from tarry water using a tubular furnace  

SciTech Connect

An ammonia-processing system without the use of live steam from OAO Alchevskkoks plant's supply network is considered. Steam obtained from the wastewater that leaves the ammonia column is used to process the excess tarry water, with the release of volatile ammonia.

V.V. Grabko; V.A. Kofanova; V.M. Li; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

234

Laser-excited atomic fluorescence spectrometry in a graphite furnace with an  

E-Print Network (OSTI)

Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium, for the ® rst time, that solid-state lasers required for analysis (ml or mg) and the technique has direct based

Michel, Robert G.

235

STANDARD OPERATING PROCEDURE FOR TUBE "A1-GateOx" furnace in TRL.  

E-Print Network (OSTI)

the generation of water vapors by Pyrogenic reaction. The gas control is provided by the Argus 581 Gas ControlOx" is an Atmospheric furnace designed to grow thermal SiO2 in the temperature range of 800- 1050C, on Silicon wafers up

Reif, Rafael

236

STANDARD OPERATING PROCEDURE FOR TUBE "B2-Ox-Alloy" furnace in TRL.  

E-Print Network (OSTI)

the generation of water vapors by Pyrogenic reaction. The gas control is provided by the Argus 581 Gas Control_Alloy" is an Atmospheric furnace designed to grow thermal SiO2 in the temperature range of 800- 1050C, on Silicon wafers up

Reif, Rafael

237

STANDARD OPERATING PROCEDURE FOR TUBE "B1-Au" furnace in TRL.  

E-Print Network (OSTI)

the generation of water vapors by Pyrogenic reaction. The gas control is provided by the Argus 581 Gas Control" is an Atmospheric furnace designed to grow thermal SiO2 in the temperature range of 800- 1050C, on Silicon wafers up

Reif, Rafael

238

STANDARD OPERATING PROCEDURE FOR TUBE "A2-WetOxBond" furnace in TRL.  

E-Print Network (OSTI)

the generation of water vapors by Pyrogenic reaction. The gas control is provided by the Argus 581 Gas ControlOxBond" is an Atmospheric furnace designed to grow thermal SiO2 in the temperature range of 800- 1050C, on Silicon wafers up

Reif, Rafael

239

Model of Phosphorus Precipitation and Crystal Formation in Electric Arc Furnace Steel Slag Filters  

Science Journals Connector (OSTI)

Model of Phosphorus Precipitation and Crystal Formation in Electric Arc Furnace Steel Slag Filters ... Phosphorus is generally the limiting nutrient in freshwater systems and its discharge from wastewaters favors eutrophication. ... (1) Stricter regulations for phosphorus discharges to smaller treatment plants creates a need for the development of new and extensive (requiring minimal operation) treatment technologies. ...

Dominique Claveau-Mallet; Scott Wallace; Yves Comeau

2011-12-30T23:59:59.000Z

240

Dofasco`s No. 4 blast furnace hearth breakout, repair and rescue  

SciTech Connect

On May 5, 1994, after producing 9.5 million metric tons of iron, Dofasco`s No. 4 Blast Furnace experienced a hearth breakout 250 millimeters below the west taphole. The hot metal spill caused a fire resulting in severe damage and 33 days of lost production. During a 26-day period, electrical wiring, water drainage systems and both tapholes were repaired. Recovery from an unprepared furnace stop of this length, with the deadman depleted is difficult. To aid with the rescue Hoogovens-designed oxygen/fuel lances were commissioned. The furnace recovery began with a lance in each taphole and all tuyeres plugged. Six days after startup the furnace was casting into torpedo cars, and after nine days operation had returned to normal. This incident prompted Dofasco to expand the hearth monitoring system to detect and prevent similar occurrences. During the repair, 203 new thermocouples were installed in the hearth, concentrating on the tapholes and elephant foot areas. These thermocouples were installed at various depths and locations to allow heat flux calculations. This hearth monitoring system has already identified other problem areas and provided valuable information about hearth drainage patterns. This information has allowed them to develop control strategies to manage localized problem areas.

Donaldson, R.J.; Fischer, A.J.; Sharp, R.M.; Stothart, D.W. [Dofasco Inc., Hamilton, Ontario (Canada)

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

242

Using coal-dust fuel in Ukrainian and Russian blast furnaces  

SciTech Connect

Ukrainian and Russian blast-furnace production falls short of the best global practices. It is no secret that, having switched to oxygen and natural gas in the 1960s, the blast-furnace industries have improved the batch and technological conditions and have attained a productivity of 2.5 and even 3 t/(m{sup 3} day), but have not been able to reduce coke consumption below 400 kg/t, which was the industry standard 40 years ago. The situation is particularly bad in Ukraine: in 2007, furnace productivity was 1.5-2 t/m{sup 3}, with a coke consumption of 432-530 kg/t. Theoretical considerations and industrial experience over the last 20 years show that the large-scale introduction of pulverized fuel, with simultaneous improvement in coke quality and in batch and technological conditions, is the only immediately available means of reducing coke consumption considerably (by 20-40%). By this means, natural-gas consumption is reduced or eliminated, and the efficiency of blast-furnace production and ferrous metallurgy as a whole is increased.

A.A. Minaev; A.N. Ryzhenkov; Y.G. Banninkov; S.L. Yaroshevskii; Y.V. Konovalov; A.V. Kuzin [Donetsk National Technical University, Donetsk (Russian Federation)

2008-02-15T23:59:59.000Z

243

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents (OSTI)

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

Gerdemann, Stephen J. (Albany, OR); White, Jack C. (Albany, OR)

1999-01-01T23:59:59.000Z

244

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents (OSTI)

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

Gerdemann, Stephen J. (Albany, OR); White, Jack C. (Albany, OR)

1998-01-01T23:59:59.000Z

245

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents (OSTI)

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

Gerdemann, S.J.; White, J.C.

1998-08-04T23:59:59.000Z

246

The Utilization and Recovery of Energy from Blast Furnaces and Converters  

E-Print Network (OSTI)

THE UTILIZATION AND RECOVERY OF ENERGY FROM BLAST FURNACES AND CONVERTERS Dr.-Ing. Rolf-D. Baare, Ober-Ing. Karl-Rudolf Hegemann and Ing. (grad.) Theodor Niess Gottfried Bischoff GmbH &Co. KG Essen, W. Germany ABSTRACT The Bischoff Blast...

Hegemann, K. R.; Niess, T.; Baare, R. D.

1979-01-01T23:59:59.000Z

247

A review of NO[sub x] formation mechanisms in recovery furnaces  

SciTech Connect

Review of NOx formation studies shows that NO forms in recovery furnaces primarily by two independent mechanisms, thermal and fuel. Thermal NO formation is extremely temperature-sensitive. However, theoretical predictions indicate that recovery furnace temperatures are not high enough to form significant thermal NO. Fuel NO formation is less temperature-sensitive, and is related to fuel nitrogen content. Black liquors are shown to contain 0.05 to 0.24 weight percent fuel nitrogen. Conversion of just 20% of this would yield approximately 25-120 ppm NOx (at 8% 0[sub 2]) in the flue gas, enough to represent the majority of the total NOx. Data from operating recovery furnaces show NOx emissions ranging from near zero to over 100 ppm at 8% 0[sub 2]. An apparent increase in recovery furnace NOx emissions was observed with increasing solids. This increase is much less than predicted by thermal NO formation theory, indicating that other NO formation/destruction mechanisms, such as fuel NO formation, are important. No data are available to show the relative importance of thermal and fuel NO to total NOx during black liquor combustion.

Nichols, K.M.; Thompson, L.M.; Empie, H.J (Inst. of Paper Science and Technology, Atlanta, GA (United States))

1993-01-01T23:59:59.000Z

248

Temperature Compensated Air/Fuel Ratio Control on a Recuperated Furnace  

E-Print Network (OSTI)

When recuperation is added to a furnace, air/ fuel ratio control seemingly becomes more complicated. Two methods normally used are mass flow control where the fuel pressure or flow is proportional to the mass flow of air or cross-connected control...

Ferri, J. L.

1983-01-01T23:59:59.000Z

249

Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces Fans; Correction  

Energy.gov (U.S. Department of Energy (DOE))

On January 3, 2014 the U.S. Department of Energy (DOE) published a final rule in the Federal Register that established the test procedure for residential furnace fans. Due to drafting errors, that document inadvertently removed necessary incorporation by reference material in the Code of Federal Regulations (CFR). This final rule rectifies this error by once again adding the removed material.

250

Effect of Electric Arc Furnace Bag House Dust on Concrete Durability Researcher: Fahad Al-Mutlaq  

E-Print Network (OSTI)

Effect of Electric Arc Furnace Bag House Dust on Concrete Durability Researcher: Fahad Al billions of dollars annually. While steel is normally protected from corrosion in concrete by a passive of the effects of addition of Bag House Dust (BHD) on aspects of concrete durability. BHD is a fine powder

Birmingham, University of

251

The origin of melt-texture crystal growth process in a simple tube furnace  

Science Journals Connector (OSTI)

The melt-texture growth (MTG) method has been shown to be effective...T csuperconducting bulk samples with highly oriented layers of single crystals. The critical current densityJ

P. C. W. Fung; J. C. L. Chow; T. F. Yu; Z. L. Du

1993-08-01T23:59:59.000Z

252

Three-dimensional simulation of combustion processes in coke-battery furnace chambers  

Science Journals Connector (OSTI)

A three-dimensional model of the heating wall in a coke battery is developed by means of the Fluent CFD program. The results of simulation are in satisfactory agreement with experimental data. The mathematical...

M. V. Isaev; I. A. Sultanguzin

2010-08-01T23:59:59.000Z

253

Optimizing Blast Furnace Operation to Increase Efficiency and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

process in the U.S. A major advance in BF ironmaking has been the use of pulverized coal which partially replaces metallurgi- cal coke. This results in substantial improvement...

254

A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace  

SciTech Connect

A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

Murray, J.P.

1989-01-01T23:59:59.000Z

255

Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking  

Energy.gov (U.S. Department of Energy (DOE))

This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metalized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metalized iron nodules at low cost.

256

AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace  

SciTech Connect

Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and tuyere by 30, in line with pilot scale tests conducted previously.

Michael F. Riley

2002-10-21T23:59:59.000Z

257

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 3, July--September 1992  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R & D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

Not Available

1992-11-01T23:59:59.000Z

258

1.1 Production process  

E-Print Network (OSTI)

Coke was first produced commercially in England in the early eighteenth century. By the early to mid-1800s, coke was being widely produced in Europe and the United States of America as the major fuel for blast furnaces. Coal carbonization is a process that yields metallurgical coke for use in iron-making blast furnaces and other metal-smelting processes. Carbonization entails heating the coal to temperatures as high as 1300 °C in the absence of oxygen to distill out tars and light oils. A gaseous by-product, referred to as coke-oven gas, together with ammonia, water and sulfur compounds are also removed thermally from the coal. The coke that remains after this distillation largely consists

unknown authors

259

Building America Top Innovations 2013 Profile Â… High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Fuel Utilization Annual Fuel Utilization Efficiency [AFUE] and Seasonal Energy Efficiency Ratio [SEER] and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter, and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

260

Thermal-destruction products of coal in the blast-furnace gas-purification system  

SciTech Connect

The lean, poorly clinkering coal and anthracite used to replace coke in blast furnaces has a considerable content of volatile components (low-molecular thermaldestruction products), which enter the water and sludge of the blast-furnace gas-purification system as petroleum products. Therefore, it is important to study the influence of coal on the petroleum-product content in the water and sludge within this system. The liberation of primary thermal-destruction products is investigated for anthracite with around 4 wt % volatiles, using a STA 449C Jupiter thermoanalyzer equipped with a QMC 230 mass spectrometer. The thermoanalyzer determines small changes in mass and thermal effects with high accuracy (weighing accuracy 10{sup -8} g; error in measuring thermal effects 1 mV). This permits experiments with single layers of coal particles, eliminating secondary reactions of its thermal-destruction products.

A.M. Amdur; M.V. Shibanova; E.V. Ental'tsev [Russian Academy of Sciences, Yekaterinburg (Russian Federation). Russia Institute of Metallurgy

2008-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building America Top Innovations 2013 Profile Â… High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

annual fuel utilization annual fuel utilization efficiency (AFUE) and seasonal energy efficiency ratio (SEER) and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

262

Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Inn Pool & Spa Low Temperature Geothermal Facility Inn Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Inn Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

263

The determination of some anions using ion chromatography and ion chromatography-graphite furnace atomic absorption spectrometry  

E-Print Network (OSTI)

THE DETERMINATION OF SOME ANIONS USING ION CHROMATOGRAPHY AND ION CHROMATOGRAPHY-GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY A Thesis by DANIEL C. J. HILLMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1981 Major Subject: Chemistry THE DETERMINATION OF SOME ANIONS USING ION CHROMATOGRAPHY AND ION CHROMATOGRAPHY-GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY A Thesis by DANIEL C. J. HILLMAN...

Hillman, Daniel C

1981-01-01T23:59:59.000Z

264

Investigation of lignite and firewood co-combustion in a furnace for tobacco curing application  

SciTech Connect

Co-combustion of lignite and firewood was investigated for an application in tobacco curing industry in Northern Thailand. Extensive experiments have been carried out in a newly developed furnace suitable for small curing unit, in place of locally made furnace. The aim of this investigation is to evaluate the performance of the combustion chamber in the required thermal output range for tobacco curing and to examine the influence of fuel feed rate, fuel mixture ratio and air staging on the combustion and emission characteristics of the furnace during steady state operation. Their effects are characterized in terms of the observed variations of temperature distributions, emissions of CO, SO{sub 2}, CO{sub 2}, O{sub 2} and combustion efficiency. Co-firing of firewood and lignite has been found to exhibit acceptable temperature distribution, high combustion efficiency and low emissions over a wide thermal output span. Stable operation at low (50 kW) and high (150 kW) thermal output was achieved with average CO and SO{sub 2} content in flue gas typically below 1400 and 100 ppm, respectively. Under the conditions considered, it was showed that the fuel feed rate had greater influence on combustion and emissions than firewood and lignite mixture ratio and air staging.

Nakorn Tippayawong; Chutchawan Tantakitti; Satis Thavornun

2006-07-01T23:59:59.000Z

265

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES  

SciTech Connect

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

Smith, A

2008-12-31T23:59:59.000Z

266

Advanced furnace air staging and burner modifications for ultra-low NOx firing systems  

SciTech Connect

Overfire air is an effective means to reduce NOx emissions from coal fired furnaces. The current range of overfire air usage on wall-fired boilers in the US is in the range of 10 to 20%. In most cases this is enough to achieve current Title IV NOx reduction requirements. Future applications are likely to go beyond 20% Overfire Air to reduce NOx further for lower investment and operating costs of SCR retrofits. Summer ozone reduction requires NOx emissions of 0.15 lb/MBtu. Currently, industry is exploring the conditions under which this goal is attainable. The paper discussed the approach to achieve ultra-low NOx emissions by using advanced furnace air staging. It describes the unique approach of redesigning the burner to maintain low NOx burner performance when the overfire air system is added or increased in capacity. The impact on furnace corrosion and unburned carbon losses are presented. A case study is used to show the effects of overfire air both on emissions and unburned carbon.

McCarthy, K.; Laux, S.; Grusha, J.

1999-07-01T23:59:59.000Z

267

FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces  

SciTech Connect

A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

Ahluwalia, R.K.; Im, K.H.

1992-08-01T23:59:59.000Z

268

FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces  

SciTech Connect

A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

Ahluwalia, R.K.; Im, K.H.

1992-08-01T23:59:59.000Z

269

Production and blast-furnace smelting of boron-alloyed iron-ore pellets  

SciTech Connect

Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

A.A. Akberdin; A.S. Kim [Abishev Chemicometallurgical Institute, Abishev (Kazakhstan)

2008-08-15T23:59:59.000Z

270

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 4, October--December 1992  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The power generating system being developed in this project will be an improvement over current coal-fired systems. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.

Not Available

1993-02-01T23:59:59.000Z

271

Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.  

SciTech Connect

Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

2006-12-29T23:59:59.000Z

272

Electric resistance monitoring as a method for controlling shape memory alloy characteristics during shape-setting treatments in the furnace  

Science Journals Connector (OSTI)

Abstract This paper proposes a method, based on electric resistance, for monitoring online the shape-setting of NiTi shape memory alloys during thermal treatments in the furnace. The experimental part includes straight-annealing experiments of 1 mm Ni-rich NiTi wires with different cold-working degrees (0%, 25%, 30% and - 40% CW series) or at various ageing temperatures (708 K, 748 K, 808 K, 853 K, and 893 K – T series). Furthermore shape-setting experiments of ? springs at 708 K are reported. A test current was injected into each specimen during ageing and the resulting tension was measured continuously over a set length of material, initially for 1800 s. The resulting curves were repeatable and showed an initial drop in voltage, followed by a definite rise, a plateau and a long slow decrease. These epochs are connected to critical latencies that were used to set the durations of subsequent shape-setting experiments of separate samples in the CW and T series. Mechanical tensile tests, DSC, XRD measurements and FEG-SEM analyses were carried out on all specimens. Correlations were established between electric resistance curve latencies, mechanical performance and microstructural evolution in the material. In particular, the point at the end of the plateau region appears to mark optimal pseudoelastic behaviour. This method may improve the efficiency of parameter optimisation in shape memory alloys processing.

Simone Pittaccio; Lorenzo Garavaglia

2014-01-01T23:59:59.000Z

273

Usiing NovoCOS cleaning equipment in repairing the furnace-chamber lining in coke batteries 4 & 5 at OAO Koks  

SciTech Connect

Experience with a new surface-preparation technology for the ceramic resurfacing of the refractory furnace-chamber lining in coke batteries is described.

S.G. Protasov; R. Linden; A. Gross [OAO Koks, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

274

SOURCE ACTIVITY TITLE: SOLID FUEL TRANSFORMATION PLANTS Coke Oven Furnaces Coke Oven (Door Leakage and Extinction) NOSE CODE: 104.12 NFR CODE:  

E-Print Network (OSTI)

1 ACTIVITIES INCLUDED Coke-production in general can be divided into the following steps: Coal handling and storage, coke oven charging, coal coking, extinction of coke, and coke oven gas purification. Combustion in coke oven furnaces (SNAP 010406) is treated in this chapter as well as door leakage and extinction (SNAP 040201). Figure 1-1 gives a key plan of a coke plant with emission relevant process steps and the byproduct recovery section. Figure 1-1: Key plan of a coke plant (Rentz et al. 1995) C o a l S lu d g e B l a s t F u r n a c e G a s f r o m S t e e l M il l A i r E m is s io n s G a s H o ld e r

Ic Activities; So Nox Nmv

275

Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace  

SciTech Connect

This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

2014-01-01T23:59:59.000Z

276

2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for furnaces and boilers, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 13, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

277

2014-06-25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register final rule regarding energy conservation standards for furnace fans, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on June 25, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

278

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (4) conducting a blast furnace test to demonstrate the compatibility of the coke produced; and (5) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: Detailed studies of LTV's site for the installation of the commercial Demonstration Unit with site specific layouts; Environmental Work; Firm commitments for funding from the private sector; and Federal funding to complement the private contribution.

Albert Calderon

1999-06-23T23:59:59.000Z

279

Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works  

SciTech Connect

The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M. [Pohang Iron and Steel Co. Ltd. (Korea, Republic of). Technical Research Labs.

1995-12-01T23:59:59.000Z

280

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

SciTech Connect

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions  

SciTech Connect

Measurements have been performed in a 300 MWe, front-wall-fired, pulverized-coal, utility boiler. This boiler was retrofitted with boosted over fire air injectors that allowed the operation of the furnace under deeper staging conditions. New data are reported for local mean gas species concentration of O{sub 2}, CO, CO{sub 2}, NOx, gas temperatures and char burnout measured at several ports in the boiler including those in the main combustion and staged air regions. Comparisons of the present data with our previous measurements in this boiler, prior to the retrofitting with the new over fire system, show lower O{sub 2} and higher CO concentrations for the new situation as a consequence of the lower stoichiometry in the main combustion zone associated with the present boiler operating condition. Consistently, the measured mean NOx concentrations in the main combustion zone are now lower than those obtained previously, yielding emissions below 500 mg/Nm{sup 3}at 6% O{sub 2}. Finally, the measured values of particle burnout at the furnace exit are acceptable being those measured in the main combustion zone comparable with those obtained with the conventional over fire system.

Costa, M.; Azevedo, J.L.T. [Universidade Tecnica de Lisboa, Lisbon (Portugal)

2007-07-01T23:59:59.000Z

282

A Miniature Maxthal Furnace for X-ray Spectroscopy and Scattering Experiments up to 1200 degrees C  

SciTech Connect

We have built a new small furnace to perform high temperature studies up to 1200 deg. C in vacuum or in oxygen atmosphere. This furnace was originally used as a catalytic reactor optimized for the in situ X-ray Absorption Spectroscopy experiments on beamline ID24. It has now been redesigned for use on the ESRF beamline ID01 for in situ Grazing Incidence Small Angle X-ray Scattering experiments. For these experiments high mechanical stability of the sample holder is necessary to keep the alignment of the sample during heating.

Gorges, Bernard; Vitoux, Hugo; Redondo, Pablo; Carbone, Gerardina [ESRF, BP220 38043 Grenoble CEDEX (France); Mocouta, Cristian [SOLEIL -BP48 91192 Gif-sur-Yvette CEDEX (France); Guilera, Gemma [ALBA CELLS 08290 Cerdanoyla Del Valles Barcelona (Spain)

2010-06-23T23:59:59.000Z

283

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 7, July--September 1993  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. Foster Wheeler Development Corporation (FWDC) is leading a team of companies involved in this effort. The power generating system being developed in this project will be an improvement over current coal-fired systems. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown in Figure 1.

Not Available

1993-11-01T23:59:59.000Z

284

Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL  

SciTech Connect

The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

Gupta, Manish; Baer, Douglas

2013-09-30T23:59:59.000Z

285

Method and apparatus for thermal processing of semiconductor substrates  

DOE Patents (OSTI)

An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

Griffiths, Stewart K. (Danville, CA); Nilson, Robert H. (Cardiss, CA); Mattson, Brad S. (Los Gatos, CA); Savas, Stephen E. (Alameda, CA)

2002-01-01T23:59:59.000Z

286

Method and apparatus for thermal processing of semiconductor substrates  

DOE Patents (OSTI)

An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

Griffiths, Stewart K. (Danville, CA); Nilson, Robert H. (Cardiss, CA); Mattson, Brad S. (Los Gatos, CA); Savas, Stephen E. (Alameda, CA)

2000-01-01T23:59:59.000Z

287

A microprocessor-based data acquisition and instrumentation system for the control of a rice-husk furnace  

Science Journals Connector (OSTI)

The development of efficient combustion systems burning solid agricultural wastes for heat and power generation requires well designed microprocessor-controlled systems. This paper describes the development of a cost-effective system to control the stable and clean combustion of rice husks in a vertical cyclone furnace. Such a system is shown to be economically feasible.

Mashkuri Yaacob; Baharuddin Ali

1990-01-01T23:59:59.000Z

288

New Energy Efficiency Standards for Furnace Fans to Reduce Carbon Pollution, Help Americans Save on Energy Bills  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON – As part of President Obama’s Climate Action Plan, the Energy Department today announced a new energy efficiency standard for furnace fans, the latest of eight finalized standards and nine proposed standards issued since the Climate Action Plan was announced last year.

289

Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report No. 1, May 1--August 1, 1998  

SciTech Connect

The overall aim of the project is to demonstrate the performance and practical use of a laser ultrasonic probe for measuring the thickness of coke deposits located within the high temperature tubes of a thermal cracking furnace. This aim will be met by constructing an optical probe that will be tested using simulated coke deposits that are positioned inside of a bench-scale furnace. Successful development of the optical coke detector will provide industry with the only available method for on-line measurement of coke deposits. The optical coke detector will have numerous uses in the refining and petrochemical sectors including monitoring of visbreakers, hydrotreaters, delayed coking units, vacuum tower heaters, and various other heavy oil heating applications where coke formation is a problem. The coke detector will particularly benefit the olefins industry where high temperature thermal crackers are used to produce ethylene, propylene, butylene and other important olefin intermediates. The ethylene industry requires development of an on-line method for gauging the thickness of coke deposits in cracking furnaces because the current lack of detailed knowledge of coke deposition profiles introduces the single greatest uncertainty in the simulation and control of modern cracking furnaces. The laser ultrasonic coke detector will provide operators with valuable new information allowing them to better optimize the decoking turnaround schedule and therefore maximize production capacity.

NONE

1998-08-15T23:59:59.000Z

290

Determination of boron isotope ratios by Zeeman effect background correction-graphite furnace atomic absorption spectrometry  

Science Journals Connector (OSTI)

A new method for the determination of isotopic ratio of boron using Zeeman effect background correction-graphite furnace atomic absorption spectrometry with conventional atomizer and natural-boron hollow cathode source is described. The isotope-shift Zeeman effect at 208.9 nm is utilized for isotopic ratio determination. At a given concentration of total boron, the net absorbance decreases linearly with increasing 10B/11B ratio. The absorbances are recorded at the field strength of 1.0 T. The isotope ratios measured by the proposed method were in good agreement with the results obtained by inductively coupled plasma-quadruple mass spectrometry or thermal ionization mass spectrometry. The present method is fairly fast and less expensive compared to the above techniques and is quite suitable for plant environments.

S. Thangavel; S.V. Rao; K. Dash; J. Arunachalam

2006-01-01T23:59:59.000Z

291

Optical design of a high radiative flux solar furnace for Mexico  

Science Journals Connector (OSTI)

In the present work, the optical design of a new high radiative flux solar furnace is described. Several optical configurations for the concentrator of the system have been considered. Ray tracing simulations were carried out in order to determine the concentrated radiative flux distributions in the focal zone of the system, for comparing the different proposals. The best configuration was chosen in terms of maximum peak concentration, but also in terms of economical and other practical considerations. It consists of an arrangement of 409 first surface spherical facets with hexagonal shape, mounted on a spherical frame. The individual orientation of the facets is corrected in order to compensate for aberrations. The design considers an intercepted power of 30 kW and a target peak concentration above 10,000 suns. The effect of optical errors was also considered in the simulations.

D. Riveros-Rosas; J. Herrera-Vázquez; C.A. Pérez-Rábago; C.A. Arancibia-Bulnes; S. Vázquez-Montiel; M. Sánchez-González; F. Granados-Agustín; O.A. Jaramillo; C.A. Estrada

2010-01-01T23:59:59.000Z

292

THERMAL TESTING OF PROTOTYPE GENERAL PURPOSE FISSILE PACKAGES USING A FURNACE  

SciTech Connect

The 9977/9978 General Purpose Fissile Package (GPFP) was designed by SRNL to replace the DOT 6M Specification Package and ship Plutonium and Uranium metals and oxides. Urethane foam was used for the overpack to ensure the package would withstand the 10CFR71.73(c)(2) crush test, which is a severe test for drum-type packages. In addition, it was necessary to confirm that the urethane foam configuration provided adequate thermal protection for the containment vessel during the subsequent 10CFR71.73(c)(4) thermal test. Development tests were performed on early prototype test specimens of different diameter overpacks and a range of urethane foam densities. The thermal test was performed using an industrial furnace. Test results were used to optimize the selection of package diameter and foam density, and provided the basis for design enhancements incorporated into the final package design.

Smith, A; Lawrence Gelder, L; Paul Blanton, P

2007-02-16T23:59:59.000Z

293

Correction of the concentrated sunlight spot's drift of the IER-UNAM's solar furnace  

Science Journals Connector (OSTI)

Abstract This paper discusses the methods implemented for the solution of the drift and backlash problems in the heliostat of the High Radiative Flux Solar Furnace recently built at the Renewable Energy Institute (former Center for Energy Research) of the National University of Mexico (IER-UNAM), located at the geographical coordinates 18°50?24? North latitude and 99°15?00? West longitude. To solve the observed drift, several algorithms were analyzed for the calculation of the solar vector, and a closed loop through an electronic device (peephole) was implemented which makes corrections to the position of the heliostat. Using the peephole, drift heliostat decreased significantly; 70% in the horizontal direction and 63% in the vertical direction relative to the no use of peephole. The backlash was corrected by means of unbalancing the heliostat.

R. Pérez-Enciso; E. Brito-Bazan; C.A. Pérez-Rábago; C.A. Arancibia-Bulnes; D. Riveros-Rosas; C.A. Estrada

2014-01-01T23:59:59.000Z

294

Effect coal ash on some refractory properties of alumino-silicate (Kankara) clay for furnace lining  

Science Journals Connector (OSTI)

Abstract The work aimed on the improving the refractory properties of Kankara clay (alumino-silicate) found in Kankara Village, Katsina State, Nigeria by blending with coal ash for the production of refractory bricks was investigated. Coal ash additions were varied from 5 to 25 wt% in the blend. Refractory properties such as: linear shrinkage, apparent porosity, bulk density, cold crushing strength and thermal shock resistance were tested. The results were compared with standard refractory properties for fireclay bricks. All the values obtained from the blends are within the recommended values for medium fireclay bricks. Hence, addition of coal ash to Kankara clay enhanced the refractory properties; the bricks were used in the production of heat treatment furnace with good thermal resistance.

S.B. Hassan; V.S. Aigbodion

2014-01-01T23:59:59.000Z

295

Variable firing rate power burner for high efficiency gas furnaces. Final report  

SciTech Connect

One method for increasing the efficiency of residential furnaces and boilers is to retrofit a burner capable of firing rate (FR) modulation. While maximum FR is still attainable, the average FR is significantly lower, resulting in more effective heat exchanger performance. Equally important is the capability for continuous firing at a very low rate (simmering) which eliminates off-cycle loss, a heavy contributor to inefficiency. Additional performance can be gained by reducing the excess air required by a burner. Based on its previous experience, Foster-Miller Associates, Inc. has designed and tested a low excess air (about 15%) variable firing rate (VFR) burner. The theory of operation and the construction of the test burner are described. Test results are given along with a conclusion/recommendation. A Phase II plan is outlined which suggests methods and steps for fabrication and field testing of a number of prototype units.

Fuller, H.H.; Demler, R.L.; Poulin, E.

1980-02-01T23:59:59.000Z

296

Device for use in a furnace exhaust stream for thermoelectric generation  

DOE Patents (OSTI)

A device for generating voltage or electrical current includes an inner elongated member mounted in an outer elongated member, and a plurality of thermoelectric modules mounted in the space between the inner and the outer members. The outer and/or inner elongated members each include a plurality of passages to move a temperature altering medium through the members so that the device can be used in high temperature environments, e.g. the exhaust system of an oxygen fired glass melting furnace. The modules are designed to include a biasing member and/or other arrangements to compensate for differences in thermal expansion between the first and the second members. In this manner, the modules remain in contact with the first and second members. The voltage generated by the modules can be used to power electrical loads.

Polcyn, Adam D.

2013-06-11T23:59:59.000Z

297

Characterization of tuyere-level core-drill coke samples from blast furnace operation  

SciTech Connect

A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

298

Steel project fact sheet: Steel reheating for further processing  

SciTech Connect

Steel reheating is an energy-intensive process requiring uniform temperature distribution within reheating furnaces. Historically, recuperators have ben used to preheat combustion air, thereby conserving energy. More recent innovations include oxygen enrichment and the use of regenerative burners, which provide higher preheat air temperatures than recuperators. These processes have limitations such as equipment deterioration, decreasing energy efficiency over time, high maintenance costs, and increased NO{sub x} emissions with increased air preheat temperature, unless special equipment is used. Praxair, Inc., supplier of oxygen and other industrial gases to the steel industry, proposes to introduce an innovative oxy-fuel burner technology (using 100% oxygen) to the steel reheating industry. Oxy-fuel combustion reduces or eliminates nitrogen in combustion air and substantially reduces waste heat carried out with flue gas. Based on technology currently used in the glass, hazardous waste, and aluminum industries, Praxair has developed and patented low temperature, oxy-fuel burners that can be used in high temperature industrial furnaces where temperature uniformity is critical and extremely low NO{sub x} emissions are desired. The technical goal of the project is to demonstrate the use of oxy-fuel burners in a slab reheat furnace while reducing energy consumption by 45% and NO{sub x} emissions by 90% within the converted furnace zones. Successful implementation of this technology also will eliminate the need to periodically replace recuperators and install NO{sub x} removal equipment.

NONE

1998-04-01T23:59:59.000Z

299

Thermodynamics of TiO{sub x} in blast furnace-type slags  

SciTech Connect

Equilibrium studies between CaO-SiO{sub 2}-10 pct MgO-Al{sub 2}O{sub 3}-TiO{sub 1.5}-TiO{sub 2} slags, carbon-saturated iron, and a carbon monoxide atmosphere were performed at 1773 K to determine the activities of TiO{sub 1.5} and TiO{sub 2} in the slag. These thermodynamic parameters are required to predict the formation of titanium carbonitride in the blast furnace. In order to calculate the activity of titanium oxide, the activity coefficient of titanium in carbon-saturated iron-carbon-titanium alloys was determined by measuring the solubility of titanium in carbon-saturated iron in equilibrium with titanium carbide. The solubility and the activity coefficient of titanium obtained were 1.3 pct and 0.023 relative to 1 wt pct titanium in liquid iron or 0.0013 relative to pure solid titanium at 1773 K, respectively. Over the concentration range studied, the effect of the TiO{sub x} content on its activity coefficient is small. In the slag system studied containing 35 to 50 pct CaO, 25 to 45 pct SiO{sub 2}, 7 to 22 pct Al{sub 2}O{sub 3}, and 10 pct MgO, the activity coefficients of TiO{sub 1.5} and TiO{sub 2} relative to pure solid standard states range from 2.3 to 8.8 and from 0.1 to 0.3, respectively. Using thermodynamic data obtained, the prediction of the formation of titanium carbonitride was made. Assuming hypothetical TiO{sub 2}, i.e., total titanium in the slag expressed as TiO{sub 2}, and using the values of the activity coefficients of TiO{sub 1.5} and TiO{sub 2} determined, the equilibrium distribution of titanium between blast furnace-type slags and carbon-saturated iron was computed. The value of [pct Ti]/(pct TiO{sub 2}) ranges from 0.1 to 0.2.

Morizane, Y.; Ozturk, B.; Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering

1999-02-01T23:59:59.000Z

300

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Field Performance the Field Performance of Natural Gas Furnaces Chicago, Illinois PROJECT INFORMATION Project Name: Improving Gas Furnace Performance-A Field and Lab Study at End of Life Location: Chicago, IL Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Natural Gas Furnaces Application: New and/or retrofit; Single and/or multifamily Year Tested: 2012/2013 Applicable Climate Zone(s): All or specify which ones PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $250 for adjustments Projected Energy Savings: 6.4% heating savings Projected Energy Cost Savings: $100/year climate-dependent Gas furnaces can successfully operate in the field for 20 years or longer with

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building America Technlogy Solutions for New and Existing Homes: Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, the PARR research team examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE.

302

Detection of carbon monoxide (CO) as a furnace byproduct using a rotating mask spectrometer.  

SciTech Connect

Sandia National Laboratories, in partnership with the Consumer Product Safety Commission (CPSC), has developed an optical-based sensor for the detection of CO in appliances such as residential furnaces. The device is correlation radiometer based on detection of the difference signal between the transmission spectrum of the sample multiplied by two alternating synthetic spectra (called Eigen spectra). These Eigen spectra are derived from a priori knowledge of the interferents present in the exhaust stream. They may be determined empirically for simple spectra, or using a singular value decomposition algorithm for more complex spectra. Data is presented on the details of the design of the instrument and Eigen spectra along with results from detection of CO in background N{sub 2}, and CO in N{sub 2} with large quantities of interferent CO{sub 2}. Results indicate that using the Eigen spectra technique, CO can be measured at levels well below acceptable limits in the presence of strongly interfering species. In addition, a conceptual design is presented for reducing the complexity and cost of the instrument to a level compatible with consumer products.

Sinclair, Michael B.; Flemming, Jeb Hunter; Blair, Raymond (Honeywell Federal Manufacturing & Technologies, Albuqueruque, NM); Pfeifer, Kent Bryant

2006-02-01T23:59:59.000Z

303

Development of a metal hydride electrode waste treatment process  

SciTech Connect

Manufacturing residues of metal hydride electrodes for nickel - metal hydride batteries were chemically processed to recover the metal part and heat treated for the organic part. Chemical recovery yielded Ni-Co alloy after electrolysis of the solution and hydroxides of other metal, mainly rare earths. The organic part, pyrolyzed at 700 C, led to separation between carbon and fluorinated matter. Infrared coupling at the output of the pyrolysis furnace was used to identify the pyrolysis gases.

Bianco, J.C.; Martin, D.; Ansart, F.; Castillo, S.

1999-12-01T23:59:59.000Z

304

2015-02-10 Issuance Energy Conservation Standard for Residential Furnaces; Notice of Proposed Rulemaking and Public Meeting  

Energy.gov (U.S. Department of Energy (DOE))

This document is a pre-publication Federal Register notice of proposed rulemaking and public meeting regarding energy conservation standards for residential furnaces, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 10, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

305

Technical support document: Energy conservation standards for consumer products: Refrigerators and furnaces including: environmental impacts regulatory impact analysis  

SciTech Connect

The National Appliance Energy Conversation Act (NAECA) of 1987 (P.L. 100-12) establishes energy efficiency standards for 13 types of consumer products. The legislation requires the Department of Energy (DOE) to consider new or amended standards on these and other types of products at specified times. DOE is currently selecting standards for two types of products: refrigerators, refrigerator-freezers, and freezers; and small gas furnaces. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of the proposed standards. 8 refs., 39 figs., 135 tabs.

Not Available

1989-11-01T23:59:59.000Z

306

Development of Reduced Combustion Mechanisms for Premixed Flame Modeling in Steam Cracking Furnaces with Emphasis on NO Emission  

Science Journals Connector (OSTI)

A systematic reduction of the detailed combustion chemistry based on the application of quasi steady state (QSS) approximation for some species leads to several reduced mechanisms (7- to 12-step) for a hydrocarbon?hydrogen fuel with a composition representative for industrial steam cracking furnaces. ... The basis for the construction of all reduced mechanisms is a skeletal mechanism obtained from the detailed GRI-Mech 3.0 and consisting of 223 elementary reaction steps. ... for the near-ignition state based on both mechanisms identified the deficiencies of the 1998-mechanism, in particular, the specifics of the low-temp. ...

G. D. Stefanidis; G. J. Heynderickx; G. B. Marin

2005-10-29T23:59:59.000Z

307

Evaluation of the 3D-furnace simulation code AIOLOS by comparing CFD predictions of gas compositions with in-furnace measurements in a 210MW coal-fired utility boiler  

Science Journals Connector (OSTI)

The furnace of a pulverised coal-fired utility boiler with a thermal output of 210MW, with dimensions of 8m x 8m x 29m and 12 burners located on three levels, is considered. Coal combustion is described by a five-step-reaction scheme. The model covers two heterogeneous reactions for pyrolysis and char combustion and three gas phase reactions for the oxidation of volatile matter. A standard k, ?-model is used for the description of turbulence. The interaction of turbulence and chemistry is modelled using the Eddy Dissipation Concept (EDC). The transport equations for mass, momentum, enthalpy and species are formulated in general curvilinear co-ordinates enabling an accurate treatment of boundaries and a very good control over the distribution of the grid lines. The discretisation is based on a non-staggered finite-volume approach and the coupling of velocities and pressure is achieved by the SIMPLEC method. Numerical diffusion is minimised by the use of the higher-order discretisation scheme MLU. The accuracy of the predictions is demonstrated by comparing the computational results with in-furnace measurements of carbon monoxide, carbon dioxide and oxygen concentrations and of temperatures.

Hermann Knaus; Uwe Schnell; Klaus R.G. Hein

2001-01-01T23:59:59.000Z

308

Integrated emissions control system for residential CWS furnace. Annual status report number 1, 20 September 1989--30 September 1990  

SciTech Connect

One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. A reactor provides high sorbent particle residence time within the reactor to control SO{sub 2} emissions, while providing a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any flyash exiting the reactor is completed with the use of high-efficiency bag filters. Tecogen Inc. developed a residential-scale Coal Water Slurry (CWS) combustor which makes use of centrifugal forces to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled to minimize NO{sub x} emissions. During the first year of the program, work encompassed a literature search, developing an analytical model of the SO{sub 2} reactor, fabricating and assembling the initial prototype components, testing the prototype component, and estimating the operating and manufacturing costs.

Balsavich, J.C.; Breault, R.W.

1990-10-01T23:59:59.000Z

309

Thermal insulation constructal optimization for steel rolling reheating furnace wall based on entransy dissipation extremum principle  

Science Journals Connector (OSTI)

Analogizing with the heat conduction process, the entransy dissipation extremum principle for thermal insulation process can be described as: for a ... heat loss) with certain constraints, the thermal insulation ...

HuiJun Feng; LinGen Chen; ZhiHui Xie; FengRui Sun

2012-12-01T23:59:59.000Z

310

Method for processing silicon solar cells  

DOE Patents (OSTI)

The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

1997-05-06T23:59:59.000Z

311

Heat Integrate Heat Engines in Process Plants  

E-Print Network (OSTI)

and refrigeration systems. In many instances these real heat engines may appear as a complex process consisting of flash vessels, heat exchangers, compressors, furnaces, etc. See Figure 18a, which shows a simplified diagram of a "steam Rankine cycle." How... and rejection profiles of the real machine. For example, the heat acceptance and re jection profiles for the steam Rankine cycle shown in Figure 18a have been drawn on T,H coordinates in Figure 18b. Thus providing we know the heat acceptance and rejection...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

312

Dynamic Control for Batch Process Systems Using Stochastic Utility Evaluation  

E-Print Network (OSTI)

single turn; 3. once in operation, it is not possible to shut down a furnace, e.g., to take corrective measures; and 4. batching takes approximately 5 to 10 times longer than serial processing. Products can be processed either as a full batch (the... maximum number of products, i.e. the full capacity of the processor) or as a partial batch. The full batch condition poses fewer decision-making problems since management is needed only to determine which product type has priority in processing...

Park, Hongsuk

2012-10-19T23:59:59.000Z

313

High Temperature Processing Symposium 2014  

E-Print Network (OSTI)

} High temperature recycling operations } Materials sustainability } New furnace technology (including solar) We look forward to seeing you in February 2014. Dr M Akbar Rhamdhani (Chairman HTPS 2014) Prof

Liley, David

314

Research on the evolvement of morphology of coking coal during the coking process  

Science Journals Connector (OSTI)

Abstract The evolvement of morphology and structure of the coal with different metamorphic degrees during coking process in the vertical furnace was investigated by infrared Image detector. Moreover, the temperature distribution in the radial direction and the crack formation were also studied in heating process. The results show that the amount of crack and the shrinkage level of char decrease with the coal rank rising. In addition, the initial temperature of crack formation for char increases with the coal rank rising.

Xiangyun Zhong; Shiyong Wu; Yang Liu; Zhenning Zhao; Yaru Zhang; Jinfeng Bai; Jun Xu; Bai Xi

2013-01-01T23:59:59.000Z

315

Process for making ceramic insulation  

DOE Patents (OSTI)

A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

Akash, Akash (Salt Lake City, UT); Balakrishnan, G. Nair (Sandy, UT)

2009-12-08T23:59:59.000Z

316

Calderon Cokemaking Process/Demonstration Project  

SciTech Connect

This project deals with the demonstration of a coking process using proprietary technology of Calderon with the following objectives in order to enable its commercialization: (i) making coke of such quality as to be suitable for use in high driving (highly productive) blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; and (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process. The activities of the past quarter were entirely focused on operating the Calderon Process Development Unit (PDU-I) in Alliance, Ohio conducting a series of tests under steady state using coal from Bethlehem Steel and U.S. Steel in order to demonstrate the above. The objectives mentioned above were successfully demonstrated.

None

1998-04-08T23:59:59.000Z

317

TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates  

SciTech Connect

Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

Veena Sahajwalla; Sushil Gupta

2005-04-15T23:59:59.000Z

318

Experimental Study on Co-Firing of Syngas as a Reburn/Alternative Fuel in a Commercial Water-Tube Boiler and a Pilot-Scale Vertical Furnace  

Science Journals Connector (OSTI)

The second was a vertical furnace with 4 heavy oil burners, for various heat replacements by syngas cofiring at various heating values. ... The cleaned syngas is then introduced to the host boiler through a gas burner or nozzles. ... The combustible species in the mixed gas are completely burnt-out by overfire air in the burn-out zone. ...

Won Yang; Dong Jin Yang; Sin Young Choi; Jong Soo Kim

2011-05-17T23:59:59.000Z

319

Energy audit of three energy-conserving devices in a steel-industry demonstration program. Task I. Hague forge furnaces. Final report  

SciTech Connect

A program to demonstrate to industry the benefits of installing particular types of energy-conserving devices and equipment was carried out. One of these types of equipment and the results obtained under production conditions in commercial plants are described. The equipment under consideration includes improved forge furnaces and associated heat-recovery components. They are used to heat steel to about 2300 F prior to hot forging. The energy-conserving devices include improved insulation, automatic air-fuel ratio control, and a ceramic recuperator that recovers heat from hot combustion gases and delivers preheated air to high-temperature recirculating burners. Twelve Hague furnaces and retrofit packages were purchased and installed by eleven host forge shops that agree to furnish performance data for the purpose of demonstrating the energy and economic savings that can be achieved in comparison with existing equipment. Fuel savings were reported by comparing the specific energy consumption (Btu's per pound of steel heated) for each Hague furnace with that of a comparison furnace. Economic comparisons were made using payback period based on annual after-tax cash flow. Payback periods for the Hague equipment varied from less than two years to five years or more. In several cases, payback times were high only because the units were operated at a small fraction of their available capacity.

Lownie, H.W.; Holden, F.C.

1982-06-01T23:59:59.000Z

320

Building America Technology Solutions for New and Existing Homes: Replacement, Variable-Speed Motors for Furnaces, Syracuse, New York, (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, the CARB team tested the Concept 3 replacement motors for residential furnaces in eight homes in and near Syracuse, New York, to test how these brushless, permanent magnet motors can use much less electricity than their permanent split capacitor predecessors.

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Process / CI Process  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Process/Continual Improvement Rev. 11_0406 Page 1 of 6 2 Process/Continual Improvement Rev. 11_0406 Page 1 of 6 EOTA - Business Process Document Title: Process/Continual Improvement Document Number: P-012 Rev 11_0406 Document Owner: Elizabeth Sousa Backup Owner: David Rocha Approver(s): Melissa Otero Parent Document: Q-001 Quality Manual Notify of Changes: EOTA Staff Referenced Document(s): F-016 Process/Continual Improvement Form, P-001 Document Control Process, P-008 Corrective Action and Preventive Action, P-004 Business System Management Review P-012 Process/Continual Improvement Rev. 11_0406 Page 2 of 6 Revision History:

322

List of Processing and Manufacturing Equipment Incentives | Open Energy  

Open Energy Info (EERE)

Equipment Incentives Equipment Incentives Jump to: navigation, search The following contains the list of 130 Processing and Manufacturing Equipment Incentives. CSV (rows 1 - 130) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Custom Project Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Boilers Central Air conditioners Chillers Custom/Others pending approval Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Processing and Manufacturing Equipment Refrigerators Yes AEP Ohio - Commercial Self Direct Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial

323

Control of thermal processes in a fluidized bed combustor (FBC)  

SciTech Connect

Heat and mass balance equations for the transient process of a fluidized bed furnace are described. The equations involve heat release from char and volatiles combustion, heat consumption during moisture evaporation, and heating of char and circulating particles. Calculations and experimental data for steady-state and unsteady conditions are compared. The results show that the height of the dense bed, the excess-air ratio and kinetic features of the fuel affect the rate of the transient process. The time constant for a disturbance by a change of the air flow rate was found to be smaller than the one for a change of the fuel input.

Munts, V.A.; Filippovskij, N.F.; Baskakov, A.P.; Pavliok, E.J. [Ural State Technical Univ., Ekaterinburg (Russian Federation). Heat Power Dept.; Leckner, B. [Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Energy Conversion

1997-12-31T23:59:59.000Z

324

Pulverized coal firing of aluminum melting furnaces. Quarterly technical progress report, October 1-December 31, 1979  

SciTech Connect

Heaviest acitivity this quarter has been in the area of system design and specification and purchase of system components. Mechanical design is now complete. The design of electrical power, process control and data acquisition systems has begun. Combustor design meetings with General Electric Space Science Labs have resulted in an increasing awareness that analytical flow field modeling of the cyclonic combustor could not only enhance current understanding of the process but also broaden the future scope of implementation. A proposal to add specific additional modeling tasks was presented to the Department of Energy, and is included herein in Appendix B. Equipment procurement will continue and system construction will begin during the next quarter.

West, C E

1980-10-01T23:59:59.000Z

325

STANDARD OPERATING PROCEDURE FOR TUBE "B3-DryOx" furnace in TRL.  

E-Print Network (OSTI)

profile in the Center Zone; they are arranged in a master/slave configuration and the temperature profile start. The wafers should have been RCA cleaned in TRL , less than 4 hours before you start the run and your process must be approved by PTC. 2) Load the wafers into the tube: - place the wafers

Reif, Rafael

326

Chapter 5, Residential Furnaces and Boilers Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Residential 5: Residential Furnaces and Boilers Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 5 - 1 Chapter 5 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol ....................................................................................... 3 3 Savings Calculations .............................................................................................................. 5 4 Measurement and Verification Plan ....................................................................................... 8

327

Innovative Energy Conservation Through Scrao Pre-heating in an Electric Arc Furnace  

E-Print Network (OSTI)

and tons of steel throughput of the base case. It was found that 260,000 tls was produced during 2011. Analysis of the heat data for 2011 determined an overall energy intensity of 343 kWh/tls. The Consteel system allows the batch processing time... not quantified. Table 1 - Proposed vs. Case Studies (1,6) Ivaco (Proposed), ON Ameristeel NC Co-Steel Sayreville, NJ Year Consteel Installed TBD 1990 1994 Year Data Reported 2012 1995 1998 Capacity, MW 35.7 24 35 Capacity, Mt/hour 82.6 54 82...

Dicion, A.

2013-01-01T23:59:59.000Z

328

Trace elements found in the fuel and in-furnace fine particles collected from 80MW BFB combusting solid recovered fuel  

Science Journals Connector (OSTI)

The main fine particle (dp SRF) combustion the main elements were found to be: Ba, Br, Cr, Cu, Fe, Pb, Sb, Sn and Zn. Fine particle composition is presented for 6 different furnace heights of a bubbling fluidized bed (BFB) boiler. As the fine particles are formed of vaporized ash species the experimental results are discussed with the support of thermodynamic equilibrium modeling for estimating the forms of the gaseous elements in the furnace. The occurrence of bromine was found to be similar to chlorine as the main forms of bromine in the furnace were estimated to be KBr(g) and NaBr(g) complemented with CuBr3(g). It is proposed that the trace elements mentioned originate mainly from plastics and rubber where they are used as production additives, stabilisers, dyes, colorants and flame retardants. Cr, Cu and Zn may originate to a large extent from alloys and other metallic impurities. SEM-EDS analyses carried out for the SRF supports the postulated origin of the elements.

P. Vainikka; D. Lindberg; A. Moilanen; H. Ollila; M. Tiainen; J. Silvennoinen; M. Hupa

2013-01-01T23:59:59.000Z

329

Major PM expansion at Universal-Cyclops features new consolidation process  

SciTech Connect

A major expansion of powder-metallurgy facilities at Bridgeville, PA., has been recently announced by Universal-Cyclops Speciality Steel Div., Cyclops Corp. Production capacity for high-temperature alloys initially will be increased to two million pounds. Included in the planned project will be expansion of vacuum-induction melting (VIM), gas atomization, screening, blending, degassing, and handling capabilities. Air-atmosphere sintering furnaces will be installed to consolidate powder preforms by Universal-Cyclops' patented CAP (Consolidation by Atmospheric Pressure) process. Production from the new facility will serve the aircraft gas-turbine market. After chemical activation, the powder is placed in glass molds which are then evacuated and sealed. The filled molds are placed in a refractory container, surrounded by sand, and the entire assembly is heated in conventional air atmosphere electric or gas-fired furnace to temperatures over 2000/degree/F.

Not Available

1981-12-01T23:59:59.000Z

330

Advanced Process Heater for the Steel, Aluminum and Chemical Industries of the Future  

SciTech Connect

The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: “Improved performance of high temperature materials; improved methods for stabilizing low emission flames; heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer”. Radiant tubes are used in almost every industry of the future. Examples include Aluminum re-heat furnaces; Steel strip annealing furnaces, Petroleum cracking/ refining furnaces, Metal Casting/Heat Treating in atmosphere and fluidized bed furnaces, Glass lair annealing furnaces, Forest Products infrared paper driers, Chemical heat exchangers and immersion heaters, and the indirect grain driers in the Agriculture Industry. Several common needs among the industries are evident: (1) Energy Reductions, (2) Productivity Improvements, (3) Zero Emissions, and (4) Increased Component Life. The Category I award entitled “Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future” met the technical feasibility goals of: (1) doubling the heat transfer rates (2) improving thermal efficiencies by 20%, (3) improving temperature uniformity by 100oF (38 oC) and (4) simultaneously reducing NOx and CO2 emissions. The APH addresses EERE’s primary mission of increasing efficiency/reducing fuel usage in energy intensive industries. The primary goal of this project was to design, manufacture and test a commercial APH prototype by integrating three components: (1) Helical Heat Exchanger, (2) Shared Wall Radiant U-tube, and (3) Helical Flame Stabilization Element. To accomplish the above, a near net shape powder ceramic Si-SiC low-cost forming process was used to manufacture the components. The project defined the methods for making an Advanced Process Heater that produced an efficiency between 70% to 80% with temperature uniformities of less than 5oF/ft (9oC/m). Three spin-off products resulted from this project: (1) a low-cost, high-temperature heat exchanger, (2) a new radiant heat transfer system, and (3) a hybrid or integral advanced process heater that incorporates a high surface area ceramic heat exchanger and burner combined with either a metallic or ceramic radiant tube and heat transfer elements.

Thomas D. Briselden

2007-10-31T23:59:59.000Z

331

Process / CI Process  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Post Travel Summary 11_0221 Page 1 of 3 7 Post Travel Summary 11_0221 Page 1 of 3 EOTA - Business Process Document Title: Post Travel Summary Document Number: ADMF-017 Post Travel Summary 11_0221 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ADMP-004, Contractor Travel Process Notify of Changes: EOTA Staff Referenced Document(s): ADMF-007 EOTA Pre-Travel Authorization Form ADMF-017 Post Travel Summary 11_0221 Page 2 of 3 Revision History: Rev. Description of Change 11_0221 Initial Release ADMF-017 Post Travel Summary 11_0221 Page 3 of 3

332

Sandia National Laboratories: Tutorial on FMEA Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

333

Integrated approaches to the optimization of process-utility systems  

E-Print Network (OSTI)

.0% (Figure 3.3). 18 0 0.5 1 1.5 2 2.5 0 500 1000 1500 2000 Super heat ( o F) | R e l a t i v e e rro r (% )| Figure 3.3 The absolute relative error of the enthalpy as a function of steam temperature and saturation temperature, for different superheat... a t iv e e rro r (% )| Figure 3.5 The absolute relative error of the entropy as a function of steam temperature and saturation temperature at different pressure values 0 1 2 3 4 5 6 7 0 500 1000 1500 2000 Superheat temperature ( o F) | R e l a...

Al-Azri, Nasser Ahmed

2009-05-15T23:59:59.000Z

334

Residential Furnace Blower Performance  

E-Print Network (OSTI)

, dominant in the market, with a Brushless Permanent Magnet (BPM) blower2 . Annual energy savings of the variable speed BPM motors were found to de

335

Furnace Black Characterization  

E-Print Network (OSTI)

Bertrand (Belgium) · SIMS T.O.F. · E.S.C.A. / Auger · Surface hydrogen proportional to total hydrogen Total

336

Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

Not Available

2011-10-01T23:59:59.000Z

337

Process oil manufacturing process  

SciTech Connect

A method is described for producing a naphthenic process oil having reduced sulfur, nitrogen and polynuclear aromatics contents from a naphthenic feed containing same and having an atmospheric boiling range of about 650/sup 0/ to about 1200/sup 0/F. comprising: A. passing the feed into a first hydrotreating stage having a hydrotreating catalyst therein, the stage maintained at a temperature of about 600/sup 0/ to about 750/sup 0/F. and at a hydrogen partial pressure of about 400 to about 1500 psig, to convert at least a portion of the sulfur to hydrogen sulfide and the nitrogen to ammonia; B. passing the hydrotreated feed from the first hydrotreating stage in an intermediate stripping stage wherein hydrogen sulfide, ammonia, or both is removed; C. passing the hydrotreated feed from the intermediate stage into a second hydrotreating stage having therein a hydrotreating catalyst selected from the group consisting of nickel-molybdenum, cobalt-molybdenum, nickel-tungsten and mixtures thereof, the second hydrotreating stage maintained at a temperature lower than that of the first hydrotreating stage and at a hydrogen partial pressure ranging between about 400 and about 1,500 psig; D. monitoring the polynuclear aromatics content, the degree of saturation, or both of the product exiting the second hydrotreating stage; and, E. adjusting the temperature in the second hydrotreating stage to keep the polynuclear aromatics content, the degree of saturation, or both below a limit suitable for process oil.

Corman, B.G.; Korbach, P.F.; Webber, K.M.

1989-01-31T23:59:59.000Z

338

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (i) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; and (iv) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: ? Consolidation of the project team-players; ? Recruiting Koppers Industries as an additional stakeholder; ? Developing a closed system for the production of binder pitch from tar in the Calderon coking process as the incentive for Koppers to join the team; ? Gathering appropriate equipment for conducting a set of experiments at bench scale to simulate tar quality produced from the Calderon coking process for the production of binder pitch; and ? Further progress made in the design of the commercial coking reactor.

ALBERT CALDERON

1998-09-22T23:59:59.000Z

339

Establish the multi-source data fusion model of the shape of blast furnace burden surface based on co-universal kriging estimation method  

Science Journals Connector (OSTI)

This paper presents a multi-source data fusion model method which could improve the blast furnace (BF) burden surface model accuracy. First, the three sections of straight line are used to describe the cross section of BF burden surface, and apply the motion law of the furnace burden to constrain the specific parameters of the three sections of straight line. Secondly, a multi-source data fusion method based on co-universal kriging estimation method is proposed. The temperature and height data are combined to build the unbiased estimation for the burden surface shape. Finally, an example of surface shape model using our proposed method in a 2500 m³ BF of a steel plant is discussed. The application shows that, contrasted with the traditional model, the model accuracy has arisen by 8%, and the resolution of surface shape has arisen by 0.32. The novel method can provide necessary guidance for energy saving and emission reduction in operation of the BF.

Liangliang Miao; Xianzhong Chen; Shilong Zhao; Zhenlong Bai

2014-01-01T23:59:59.000Z

340

MATERIAL PROCESSING FOR SELF-ASSEMBLING MACHINE SYSTEMS  

SciTech Connect

We are developing an important aspect of a new technology based on self-reproducing machine systems. Such systems could overcome resource limitations and control the deleterious side effects of human activities on the environment. Machine systems capable of building themselves promise an increase in industrial productivity as dramatic as that of the industrial revolution. To operate successfully, such systems must procure necessary raw materials from their surroundings. Therefore, next to automation, most critical for this new technology is the ability to extract important chemicals from readily available soils. In contrast to conventional metallurgical practice, these extraction processes cannot make substantial use of rare elements. We have designed a thermodynamically viable process and experimentally demonstrated most steps that differ from common practice. To this end we had to develop a small, disposable vacuum furnace system. Our work points to a viable extraction process.

K. LACKNER; D. BUTT; C. WENDT

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS  

SciTech Connect

The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

Gary M. Blythe; Richard McMillan

2002-03-04T23:59:59.000Z

342

SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS  

SciTech Connect

The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

Gary M. Blythe; Richard McMillan

2002-02-04T23:59:59.000Z

343

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Process Deviation 11_0304 Page 1 of 6 0 Process Deviation 11_0304 Page 1 of 6 EOTA - Business Process Document Title: Process Deviation Document Number: P-010 Rev 11-0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): F-013 Process Deviation Form, P-008 Corrective/Preventive Action, F-014 Process Deviation Log, ADMP-001 Procurement Process P-010 Process Deviation 11_0304 Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 08_0822 Process assigned to new owner. Process and flowchart modified to require completion of all items on F-013. 09_0122 Process and flowchart modified to reflect process modifications.

344

Processing Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Processing Science Related to the Electron Beam Melting Additive Manufacturing Process October 14 th , 2014 Ryan Dehoff Metal Additive Manufacturing Thrust Lead Manufacturing...

345

CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)  

SciTech Connect

This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

2007-01-25T23:59:59.000Z

346

Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report. Report No. 5 for reporting period May 1, 1999 through August 1, 1999  

SciTech Connect

The overall aim of the project is to demonstrate the performance and practical use of a probe for measuring the thickness of coke deposits located within the high-temperature tubes of a thermal cracking furnace. The objective of work during this period was to enhance the sensitivity and signal-to-noise ratio of the probe measurement. Testing identified that the primary source of signal noise was traced to imperfections in the sacrificial stand-off, which was formed using a casting procedure. Laminations, voids, and impurities contained in the casting result in attenuation and dispersion of the ultrasonic signal. This report describes the work performed to optimize the signal conductance of the sacrificial stand-off.

NONE

1999-08-15T23:59:59.000Z

347

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitating commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; and (4) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on three main activities: Continuation of design of the coking reactor; Raising funds from the private sector; and Detailed analysis of the tests conducted in Alliance, Ohio. The design of the reactor work centered on the provision for the capability to inspect and maintain the internals of the reactor. The activities relating to raising funds from the steel industry have been fruitful. Bethlehem Steel has agreed to contribute funds. The collected data from the tests at Alliance were analyzed and a detailed report was completed and presented to the International Iron & Steel Institute by invitation.

ALBERT CALDERON

1998-06-22T23:59:59.000Z

348

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Course/Analysis Initiation Process 11_0512 Page 1 of 6 10 Course/Analysis Initiation Process 11_0512 Page 1 of 6 EOTA - Business Process Document Title: Course/Analysis Initiation Process Document Number: ISDP- 010 Rev 11_0512 Document Owner: Elizabeth Sousa Backup Owner: Vickie Pleau Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-001 Technical Direction, ISDF-035 Analysis Feasibility Assessment, ISDP-010, Course Analysis Initiation Process, ISDP-015, WBT/ILT/Ex Design Process ISDP-010 Course/Analysis Initiation Process 11_0512 Page 2 of 6 Revision History: Rev. Description of Change 10_0630 Initial Release 11_0512 Modified verbiage for clarification and updated referenced documents.

349

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Course Evaluation and Close-out Process 10_0630 Page 1 of 5 4 Course Evaluation and Close-out Process 10_0630 Page 1 of 5 EOTA - Business Process Document Title: Course Evaluation and Close-out Process Document Number: ISDP-014 Rev. 10_0630 Document Owner: Vickie Pleau Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-011, ISD History File Acceptance, ISDF-012, ISD History File Checklist ISDP-014 Course Evaluation and Close-out Process 10_0630 Page 2 of 5 Revision History: Rev. Description of Change 10_0630 Initial Release ISDP-014 Course Evaluation and Close-out Process 10_0630 Page 3 of 5 I. Purpose To effectively plan and control the process for evaluating and finalizing EOTA ILT, EX and WBT training products, assuring

350

Thermal Processes  

Energy.gov (U.S. Department of Energy (DOE))

Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

351

Photolytic Processes  

Energy.gov (U.S. Department of Energy (DOE))

Photolytic processes use the energy in sunlight to separate water into hydrogen and oxygen. These processes are in the very early stages of research but offer long-term potential for sustainable...

352

Novel Membranes and Processes for Oxygen Enrichment  

SciTech Connect

The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a Bloom baffle burner at GTI. The results are positive and confirm that oxygen-enriched combustion can be carried out without producing higher levels of NOx than normal air firing, if lancing of combustion air is used and the excess air levels are controlled. A simple economic study shows that the membrane processes can produce O{sub 2} at less than $40/ton EPO{sub 2} and an energy cost of 1.1-1.5 MMBtu/ton EPO{sub 2}, which are very favorable compared with conventional technologies such as cryogenics and vacuum pressure swing adsorption processes. The benefits of integrated membrane processes/combustion process trains have been evaluated, and show good savings in process costs and energy consumption, as well as reduced CO{sub 2} emissions. For example, if air containing 30% oxygen is used in natural gas furnaces, the net natural gas savings are an estimated 18% at a burner temperature of 2,500 F, and 32% at a burner temperature of 3,000 F. With a 20% market penetration of membrane-based oxygen-enriched combustion in all combustion processes by 2020, the energy savings would be 414-736 TBtu/y in the U.S. The comparable net cost savings are estimated at $1.2-2.1 billion per year by 2020, calculated as the value of fuel savings subtracted from the cost of oxygen production. The fuel savings of 18%-32% by the membrane/oxygen-enriched combustion corresponds to an 18%-32% reduction in CO{sub 2} emissions, or 23-40 MM ton/y less CO{sub 2} from natural gas-fired furnaces by 2020. In summary, results from this project (Concept Definition phase) are highly promising and clearly demonstrate that membrane processes can produce oxygen-enriched air in a low cost manner that will lower operating costs and energy consumption in industrial combustion processes. Future work will focus on proof-of-concept bench-scale demonstration in the laboratory.

Lin, Haiqing

2011-11-15T23:59:59.000Z

353

Chemical recovery process using break up steam control to prevent smelt explosions  

DOE Patents (OSTI)

An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.

Kohl, Arthur L. (Woodland Hills, CA); Stewart, Albert E. (Eagle Rock, CA)

1988-08-02T23:59:59.000Z

354

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

5 WBT/ILT/EX Course Design Process 10_0630 Page 1 of 6 5 WBT/ILT/EX Course Design Process 10_0630 Page 1 of 6 EOTA - Business Process Document Title: WBT/ILT/EX Course Design Process Document Number: ISDP-015 Rev. 10_0630 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-046 Training Design/Development Summary, ISDF-004 Design Document, ISDF-006A WBT Script Template, ISDF- 007 Lesson Plan Template, ISDF-012, ISD History File Checklist ISDP-015 WBT/ILT/EX Course Design Process 10_0630 Page 2 of 6 Revision History: Rev. Description of Change 10_0630 Initial Release ISDP-015 WBT/ILT/EX Course Design Process 10_0630 Page 3 of 6

355

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Exercise Development Process 11_0414 Page 1 of 8 7 Exercise Development Process 11_0414 Page 1 of 8 EOTA - Business Process Document Title: Exercise Development Process Document Number: ISDP-017 Revision 11_0414 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Product Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-001 Technical Direction, ISDF-004 Design Document, ISDF-006 WBT Script Template, ISDF-007 Lesson Plan Template, ITTP-016 WBT Programming ISDP-017 Exercise Development Process 11_0414 Page 2 of 8 Revision History: Rev. Description of Change 10_0630 Initial Release 11_0223 Made changes to accurately reflect TPP. 11_0414 Added Derivative Classifier to step 12.0 ISDP-017 Exercise Development Process 11_0414 Page 3 of 8

356

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Website Development-Maintenance Process 11_0419Page 1 of 6 5 Website Development-Maintenance Process 11_0419Page 1 of 6 EOTA - Business Process Document Title: Website Development-Maintenance Process Document Number: ITTP-015 Rev. 11_0419 Document Owner: Benjamin Aragon Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: ITT Referenced Document(s): ITTF-016 Website Development/Maintenance Log, ISDP-002 Training Production Process ITTP-015 Website Development-Maintenance Process 11_0419Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 11_0419 Deleted decision point 2.1 and 2.2, incorporated Notifying Requester into step 2.0, modified verbiage for clarification. ITTP-015 Website Development-Maintenance Process 11_0419Page 3 of 6

357

Energy Conservation Design Features of the ARCO Metals Logan County Aluminum Process Complex  

E-Print Network (OSTI)

. The protective atmosphere in these furnaces is provided by nitrogen from an electric powered air separation unit thereby eliminating the use natural gas to produce exothermic gas. These furnaces will also use variable speed fan drives to minimize cycle time...

Speer, J. A.

1983-01-01T23:59:59.000Z

358

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Functional/Job/Task Analysis Process 11_0718 Page 1 of 8 5 Functional/Job/Task Analysis Process 11_0718 Page 1 of 8 EOTA - Business Process Document Title: Functional/Job/Task Analysis Process Document Number: ISDP-005 Rev 11_0718 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: PM2 Referenced Document(s): ISDF-XXX Vision User Guide (currently being developed ) ISDP-005 Functional/Job/Task Analysis Process 11_0718 Page 2 of 8 Revision History: Rev. Description of Change 08_0410 Initial Release 10_0630 Process modified to match steps within the TPP 11_0718 Minor editorial changes; changed step 8.0 from Task-to-Training Matrix to "Analysis"-to-Training Matrix.

359

Process for producing large grain cadmium telluride  

DOE Patents (OSTI)

A process is described for producing a cadmium telluride polycrystalline film having grain sizes greater than about 20 {micro}m. The process comprises providing a substrate upon which cadmium telluride can be deposited and placing that substrate within a vacuum chamber containing a cadmium telluride effusion cell. A polycrystalline film is then deposited on the substrate through the steps of evacuating the vacuum chamber to a pressure of at least 10{sup {minus}6} torr.; heating the effusion cell to a temperature whereat the cell releases stoichiometric amounts of cadmium telluride usable as a molecular beam source for growth of grains on the substrate; heating the substrate to a temperature whereat a stoichiometric film of cadmium telluride can be deposited; and releasing cadmium telluride from the effusion cell for deposition as a film on the substrate. The substrate then is placed in a furnace having an inert gas atmosphere and heated for a sufficient period of time at an annealing temperature whereat cadmium telluride grains on the substrate grow to sizes greater than about 20 {micro}m.

Hasoon, F.S.; Nelson, A.J.

1996-01-16T23:59:59.000Z

360

Proposal Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Testbed Results Current Testbed Research Proposal Process Terms and Conditions Dark Fiber Testbed Performance (perfSONAR) Software & Tools Development Partnerships...

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Connecting section and associated systems concept for the spray calciner/in-can melter process  

SciTech Connect

For a number of years, researchers at the Pacific Northwest Laboratory have been developing processes and equipment for converting high-level liquid wastes to solid forms. One of these processes is the Spray Calciner/In-Can Melter system. To immobilize high-level liquid wastes, this system must be operated remotely, and the calcine must be reliably conveyed from the calciner to the melting furnace. A concept for such a remote conveyance system was developed at the Pacific Northwest Laboratory, and equipment was tested under full-scale, nonradioactive conditions. This concept and the design of demonstration equipment are described, and the results of equipment operation during experimental runs of 7 d are presented. The design includes a connecting section and its associated systems - a canister sypport and alignment concept and a weight-monitoring system for the melting furnace. Overall, the runs demonstrated that the concept design is an acceptable method of connecting the two pieces of process equipment together. Although the connecting section has not been optimized in all areas of concern, it provides a first-generation design of a production-oriented system.

Petkus, L.L.; Gorton, P.S.; Blair, H.T.

1981-06-01T23:59:59.000Z

362

Tracking the catalyzed growth process of nanowires by in situ x-ray diffraction  

E-Print Network (OSTI)

capacity.4­7 Silicon nanowires have also found application in solar cells, both as ab- sorber OF NANOSTRUCTURES Gold-catalyzed silicon nanowires were grown in an x-ray furnace so that in situ x-ray diffraction-type furnace attached to a Pana- lytical X'Pert PRO diffractometer. The temperature of the furnace

Wang, Zhong L.

363

The Effects of Cold; Together with Observations of the Longitude, Latitude, and Declination of the Magnetic Needle, at Prince of Wales's Fort, upon Churchill-River in Hudson's Bay, North America; By Capt. Christopher Middleton, F. R. S. Commander of His Majesty's Ship Furnace, 1741-2  

Science Journals Connector (OSTI)

1742-1743 research-article The Effects of Cold; Together with Observations of the Longitude, Latitude...Christopher Middleton, F. R. S. Commander of His Majesty's Ship Furnace, 1741-2 Christopher Middleton The Royal Society is...

1742-01-01T23:59:59.000Z

364

HYDROLOGICAL PROCESSES Hydrol. Process. (2011)  

E-Print Network (OSTI)

HYDROLOGICAL PROCESSES Hydrol. Process. (2011) Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/hyp.8056 Hydrological principles for sustainable management of forest of the cleanest and most plentiful freshwater supplies, sustaining many downstream communities. Given the ongoing

365

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 ILT Course Implementation 11_0512 Page 1 of 8 2 ILT Course Implementation 11_0512 Page 1 of 8 EOTA - Business Process Document Title: ILT Course Implementation Document Number: ISDP-012 Rev. 11_0512 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-007 Lesson Plan Template, ISDF-014 Course Announcement, ISDF-010, After Action Report, ISDF-008 ILT Student Feedback Survey, ISDF-009, Design/Development Review Checklist, ITTF-014 Publication Review and Approval, ISDF-048, After Action Report Calculation Template, ISDP-011, Exercise Course Implementation Process, ITTP-015 Website Development/Maintenance Process, ISDF-015, ILT/EX Course Support Checklist

366

Macdonald processes  

E-Print Network (OSTI)

Macdonald processes are probability measures on sequences of partitions defined in terms of nonnegative specializations of the Macdonald symmetric functions and two Macdonald parameters q,t ? [0,1). We prove several results ...

Borodin, Alexei

367

Ionic Processes  

Science Journals Connector (OSTI)

Processes based on the properties of ions, encountered in brackish and seawater, are described and discussed in this chapter. Whereas in distillation the amount and kind of salts contained in the raw feed wate...

Anthony A. Delyannis; Eurydike A. Delyannis

1974-01-01T23:59:59.000Z

368

Dissolution of refractories for gasification process of petroleum coke for the steel industry  

Science Journals Connector (OSTI)

The production of energizing gases such as H2 and CO by gasification process of solid fuels is a technology that has increased in recent years since it is an efficient and clean process. To enable the production of gases, it is necessary to use refractory materials capable of withstanding high temperatures, thermal shock and contact with aggressive media. Nowadays, there is not published literature on refractory materials used for furnaces lining for petroleum coke gasification at high temperatures (?1900 °C). Therefore, this paper deals with the study of alumina and magnesium aluminate/alumina-based refractories as candidates for the furnace lining used in the petroleum coke gasification for steel production. Refractory samples were made with some designed formulations which were subjected to chemical interactions with pellets made of petroleum coke and petroleum coke ash at 1650 °C for 4 h. After completing the tests, the formulations were cut transversely and were characterized by SEM-EDS and XRD to evaluate the resistance to slag penetration and formation of low melting point phases. The results show that slag penetration and corrosion in the refractory formulations occur due to the formation of hibonite, spinels (Ni2+, Fe2+, Mg2+)(Al, Fe)2O4 and gehlenite phases. However, these phases together stop the molten slag penetration.

R. Puente-Ornelas; C.J. Lizcano-Zulaica; A.M. Guzmán; P.C. Zambrano; T.K. Das-Roy

2012-01-01T23:59:59.000Z

369

Macdonald processes  

E-Print Network (OSTI)

Macdonald processes are probability measures on sequences of partitions defined in terms of nonnegative specializations of the Macdonald symmetric functions and two Macdonald parameters q,t in [0,1). We prove several results about these processes, which include the following. (1) We explicitly evaluate expectations of a rich family of observables for these processes. (2) In the case t=0, we find a Fredholm determinant formula for a q-Laplace transform of the distribution of the last part of the Macdonald-random partition. (3) We introduce Markov dynamics that preserve the class of Macdonald processes and lead to new "integrable" 2d and 1d interacting particle systems. (4) In a large time limit transition, and as q goes to 1, the particles of these systems crystallize on a lattice, and fluctuations around the lattice converge to O'Connell's Whittaker process that describe semi-discrete Brownian directed polymers. (5) This yields a Fredholm determinant for the Laplace transform of the polymer partition function, and taking its asymptotics we prove KPZ universality for the polymer (free energy fluctuation exponent 1/3 and Tracy-Widom GUE limit law). (6) Under intermediate disorder scaling, we recover the Laplace transform of the solution of the KPZ equation with narrow wedge initial data. (7) We provide contour integral formulas for a wide array of polymer moments. (8) This results in a new ansatz for solving quantum many body systems such as the delta Bose gas.

Alexei Borodin; Ivan Corwin

2013-01-06T23:59:59.000Z

370

A coal-fired combustion system for industrial process heating applications  

SciTech Connect

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Phase III development contract DE-AC22-91PC91161 for a Coal-Fired Combustion System for Industrial Process Heating Applications'' is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec's Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

371

Deposition Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Pulsed Plasma Processing Pulsed Plasma Processing NEW: Downloadable: Invited Talk "Pulsed Metal Plasmas," presented at the 2006 AVS Meeting, San Francisco, California, November 15, 2006. (PDF, file size 8 MB). Plasma Sources for Window Coatings Deposition processes for low-emittance and solar control coatings can be improved through the use of advanced plasma technology developed at LBNL. A new type of constricted glow-discharge plasma source was selected for the 1997 R&D 100 Award. Invented by LBNL researchers Andre Anders, Mike Rubin, and Mike Dickinson, the source was designed to be compatible with industrial vacuum deposition equipment and practice. Construction is simple, rugged and inexpensive. It can operate indefinitely over a wide range of chamber pressure without any consumable parts such as filaments or grids. Several different gases including Argon, Oxygen and Nitrogen have been tested successfully.

372

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 WBT Course Implementation 11_0512 Page 1 of 7 3 WBT Course Implementation 11_0512 Page 1 of 7 EOTA - Business Process Document Title: WBT Course Implementation Document Number: ISDP-013 Rev. 11_0512 Document Owner: Elizabeth Sousa Backup Owner: Vickie Pleau Approver(s): Melissa Otero Parent Document: ISDP-002, Training Product Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-014, Course Announcement Template, ITTF-014, Publication Review and Approval, ISDF-010 After Action Report, ISDF-042 Validation & Acceptance, ISDF-048, After Action Report Calculation Template, ITTP-015, Website Development Maintenance ISDP-013 WBT Course Implementation 11_0512 Page 2 of 7 Revision History: Rev. Description of Change 10_0630 Initial Release 11_0405 Added ISDF-048, After Action Report Calculation Template to process.

373

Direct solid sample analysis with graphite furnace atomic absorption spectrometry—A fast and reliable screening procedure for the determination of inorganic arsenic in fish and seafood  

Science Journals Connector (OSTI)

Abstract Direct solid sample analysis with graphite furnace atomic absorption spectrometry (SS-GF AAS) was investigated initially with the intention of developing a method for the determination of total As in fish and other seafood. A mixture of 0.1% Pd+0.06% Mg+0.06% Triton X-100 was used as the chemical modifier, added in solution over the solid samples, making possible the use of pyrolysis and atomization temperatures of 1200 °C and 2400 °C, respectively. The sample mass had to be limited to 0.25 mg, as the integrated absorbance did not increase further with increasing sample mass. Nevertheless, the recovery of As from several certified reference materials was of the order of 50% lower than the certified value. Strong molecular absorption due to the phosphorus monoxide molecule (PO) was observed with high-resolution continuum source AAS (HR CS AAS), which, however, did not cause any spectral interference. A microwave-assisted digestion with HNO3/H2O2 was also investigated to solve the problem; however, the results obtained for several certified reference materials were statistically not different from those found with direct SS-GF AAS. Accurate values were obtained using inductively coupled plasma mass spectrometry (ICP-MS) to analyze the digested samples, which suggested that organic As compounds are responsible for the low recoveries. HPLC–ICP-MS was used to determine the arsenobetaine (AB) concentration. Accurate results that were not different from the certified values were obtained when the AB concentration was added to the As concentration found by SS-GF AAS for most certified reference materials (CRM) and samples, suggesting that SS-GF AAS could be used as a fast screening procedure for inorganic As determination in fish and seafood.

Ariane V. Zmozinski; Toni Llorente-Mirandes; Isabel C.F. Damin; José F. López-Sánchez; Maria Goreti R. Vale; Bernhard Welz; Márcia M. Silva

2015-01-01T23:59:59.000Z

374

Process Deviation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Exercise Course Implementation 10_0630 Page 1 of 8 1 Exercise Course Implementation 10_0630 Page 1 of 8 EOTA - Business Process Document Title: Exercise Course Implementation Document Number: ISDP-011 Rev. 10_0630 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ISD, ITT, MGT Referenced Document(s): ISDF-004 Design Document, ISDF-006 WBT Script Template, ISDF-007 Lesson Plan Template, ISDP-012, ILT Course Implementation, ISDF-008 ILT Student Feedback Survey, ISDF-010 After Action Report ISDP-011 Exercise Course Implementation 10_0630 Page 2 of 8 Revision History: Rev. Description of Change 10_0630 Initial Release ISDP-011 Exercise Course Implementation 10_0630 Page 3 of 8

375

Fermentation process  

SciTech Connect

Fermentation process consists essentially of fermenting a 10-45% w/w aqueous slurry of granular starch for the production of ethanol with an ethanol-producing microorganism in the presence of alpha-amylase and glucoamylase, the conduct of said fermentation being characterized by low levels of dextrin and fermentable sugars in solution in the fermentation broth throughout the fermentation, and thereafter recovering enzymes from the fermentation broth for use anew in fermentation of granular starch.

Lutzen, N.W.

1982-02-23T23:59:59.000Z

376

Electrolytic Processes  

Energy.gov (U.S. Department of Energy (DOE))

Electrolysis is the process of using electricity to split water into hydrogen and oxygen. This reaction takes place in a unit called an electrolyzer. Electrolyzers can be small, appliance-size equipment and well-suited for small-scale distributed hydrogen production. Research is also under way to examine larger-scale electrolysis that could be tied directly to renewable or other non-greenhouse gas emitting electricity production. Hydrogen production at a wind farm generating electricity is an example of this.

377

Successful application of the Top-Layer-Sintering Process for recycling of ferrous residuals contaminated with organic substances  

SciTech Connect

The value of by-products and residues from steel production processes stem from their metal content and their inherent heat of combustion. However, the organic contents of sludge, scale and of other ferrous residuals make it difficult to recycle them via the conventional sinter process due to low burning rates. Insufficient burning rates will increase the dust load, could harm the ESTP and is responsible for the formation of the blue haze. The Top-Layer-Sintering Process using a second ignition hood which ignites the second layer on top of the main sinterbed has opened an economical and ecologically clean way for returning waste materials to valuable blast furnace burden by sintering. In pot grate test series and semi industrial tests the process was optimized. An industrial recycling plant for treatment of organic containing residuals is now in operation.

Kinzel, J.; Pammer, O. [Voest-Alpine Industrieanlagenbau GmbH, Linz (Austria); Trimmel, W. [Voest-Alpine Stahl Linz GmbH (Austria); Zellner, H. [Voest-Alpine Stahl Donawitz GmbH, Leoben-Donawitz (Austria)

1997-12-31T23:59:59.000Z

378

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

2006-05-12T23:59:59.000Z

379

Thermomechanical processing of plasma sprayed intermetallic sheets  

DOE Patents (OSTI)

A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

Hajaligol, Mohammad R. (Midlothian, VA); Scorey, Clive (Cheshire, CT); Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); Lilly, Jr., A. Clifton (Chesterfield, VA); German, Randall M. (State College, PA)

2001-01-01T23:59:59.000Z

380

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

2006-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

382

Numerical modelling of solid fuel combustion processes using advanced CFD-based simulation tools  

Science Journals Connector (OSTI)

Computational modelling of combustion processes has been the subject of coninuous research at the Institute of Process Engineering and Power Plant Technology (IVD) over the last two decades. To this end, finite-volume-based computer codes have been developed. In the present paper, some fundamental ideas and approaches of the applied mathematical models and the numerical methods are described, followed by some examples of typical applications of the procedures with special emphasis on the validation of simulation results. These examples show that the application of combustion simulation codes has been extended to comprise a wide range of several different areas ranging from huge bituminous coal-fired utility boilers for electricity production to decentralised small-scale furnaces and tile stove heating inserts for domestic heating.

Uwe Schnell

2001-01-01T23:59:59.000Z

383

Reduction of iron-oxide-carbon composites: part II. Rates of reduction of composite pellets in a rotary hearth furnace simulator  

SciTech Connect

A new ironmaking concept is being proposed that involves the combination of a rotary hearth furnace (RHF) with an iron-bath smelter. The RHF makes use of iron-oxide-carbon composite pellets as the charge material and the final product is direct-reduced iron (DRI) in the solid or molten state. This part of the research includes the development of a reactor that simulated the heat transfer in an RHF. The external heat-transport and high heating rates were simulated by means of infrared (IR) emitting lamps. The reaction rates were measured by analyzing the off-gas and computing both the amount of CO and CO{sub 2} generated and the degree of reduction. The reduction times were found to be comparable to the residence times observed in industrial RHFs. Both artificial ferric oxide (PAH) and naturally occurring hematite and taconite ores were used as the sources of iron oxide. Coal char and devolatilized wood charcoal were the reductants. Wood charcoal appeared to be a faster reductant than coal char. However, in the PAH-containing pellets, the reverse was found to be true because of heat-transfer limitations. For the same type of reductant, hematite-containing pellets were observed to reduce faster than taconite-containing pellets because of the development of internal porosity due to cracking and fissure formation during the Fe2O{sub 3}-to-Fe3O{sub 4} transition. This is, however, absent during the reduction of taconite, which is primarily Fe3O{sub 4}. The PAH-wood-charcoal pellets were found to undergo a significant amount of swelling at low-temperature conditions, which impeded the external heat transport to the lower layers. If the average degree of reduction targeted in an RHF is reduced from 95 to approximately 70 pct by coupling the RHF with a bath smelter, the productivity of the RHF can be enhanced 1.5 to 2 times. The use of a two- or three-layer bed was found to be superior to that of a single layer, for higher productivities.

Halder, S.; Fruehan, R.J. [Praxair Inc., Tonawanda, NY (United States). Praxair Technological Center

2008-12-15T23:59:59.000Z

384

The Ceramic Waste Form Process at Idaho National Laboratory  

SciTech Connect

The treatment of spent nuclear fuel for disposition using an electrometallurgical technique results in two high-level waste forms: a ceramic waste form (CWF) and a metal waste form. Reactive metal fuel constituents, including all the transuranic metals and the majority of the fission products remain in the salt as chlorides and are processed into the CWF. The solidified salt is containerized and transferred to the CWF process where it is ground in an argon atmosphere. Zeolite 4A is ground and then dried in a mechanically-fluidized dryer. The salt and zeolite are mixed in a V-mixer and heated to 500°C to occlude the salt into the structure of the zeolite. The salt-loaded zeolite is cooled, mixed with borosilicate glass frit, and transferred to a crucible, which is placed in a furnace and heated to 925°C. During this process, known as pressureless consolidation, the zeolite is converted to the final sodalite form and the glass thoroughly encapsulates the sodalite, producing a dense, leach-resistant final waste form.

Stephen Priebe

2007-05-01T23:59:59.000Z

385

A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1992--June 1992  

SciTech Connect

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec`s Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

386

Process Design and Operation for Energy Efficiency  

E-Print Network (OSTI)

Extraction Plant. A large European metals extraction plant recently installed an M&T system as a part of a program to raise the efficiency of its kilns and furnaces. The kilns are major oil users, and the furnaces major consumers of electricity... opportunities were identified: 1. Operator Performance and Training. The M&T system provides a quantitative basis for evaluating the performance of shift teams and individual operators. This is illustrated by Figure 2. A standard for oil usage in the kilns...

Rossiter, A. P.; Nath, R.; Yell, M. D.

387

Development of a process control sensor for the glass industry  

SciTech Connect

This project was initiated to fill a need in the glass industry for a non-contact temperature sensor for glass melts. At present, the glass forming industry (e.g., bottle manufacture) consumes significant amounts of energy. Careful control of temperature at the point the bottle is molded is necessary to prevent the bottle from being rejected as out-of-specification. In general, the entire glass melting and conditioning process is designed to minimize this rejection rate, maximize throughput and thus control energy and production costs. This program focuses on the design, development and testing of an advanced optically based pyrometer for glass melts. The pyrometer operates simultaneously at four wavelengths; through analytical treatment of the signals, internal temperature profiles within the glass melt can be resolved. A novel multiplexer alloys optical signals from a large number of fiber-optic sensors to be collected and resolved by a single detector at a location remote from the process. This results in a significant cost savings on a per measurement point basis. The development program is divided into two phases. Phase 1 involves the construction of a breadboard version on the instrument and its testing on a pilot-scale furnace. In Phase 2, a prototype analyzer will be constructed and tested on a commercial forehearth. This report covers the Phase 1 activities.

Gardner, M.; Candee, A.; Kramlich, J.; Koppang, R.

1991-05-01T23:59:59.000Z

388

Optimal Operation of closed cycles for heating and Jrgen B. Jensen Sigurd Skogestad  

E-Print Network (OSTI)

super-heating, pressure, liquid level or valve set-point. Unlike open systems the initial charge applications have also merged together to give a system able to operate in both heating and cooling mode indicates that 33% of the gained heat is addet as electricity. In industrial processes, especially

Skogestad, Sigurd

389

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network (OSTI)

with a flameless atomic absorption detector for speciationA. , "Graphite furnace atomic absorption spectrophotometerscoupled with an atomic absorption detector," in preparation,

Fish, Richard H.

2013-01-01T23:59:59.000Z

390

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

2006-08-01T23:59:59.000Z

391

Extensible packet processing architecture  

DOE Patents (OSTI)

A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.

Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.

2013-08-20T23:59:59.000Z

392

Theoretical and experimental investigations into the particular features of the process of converting coal gas hydrocarbons on incandescent coke  

SciTech Connect

The prospects of the use of reducing gases in ferrous metallurgy and the possibilities for using them as a basis for coke production have been presented by the authors of the present article in the past. In the present report, the authors present certain results of theoretical and experimental investigations into the process of converting coal gas hydrocarbons on incandescent coke. The modification of the present-day method of thermodynamically calculating stable compositions of coking products, which was developed by the authors, has made it possible to apply it to specific chemical systems and process conditions not met with before, such as the conversion of hydrocarbons in mixtures of actual industrial gases (coal gas and blast furnace gas) in the presence of carbon and considerable amounts of hydrogen.

Zubilin, I.G.; Umanskii, V.E.

1984-01-01T23:59:59.000Z

393

Synthesis and characterization of titania aerogels  

Science Journals Connector (OSTI)

Synthesis and characterization of titania aerogels ... Nanoengineering Super Heat-Resistant, Strong Alumina Aerogels ... Nanoengineering Super Heat-Resistant, Strong Alumina Aerogels ...

L. K. Campbell; B. K. Na; E. I. Ko

1992-11-01T23:59:59.000Z

394

INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES  

SciTech Connect

The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, the efforts focused on developing an innovative high temperature distributed fiber optic sensor by fabricating in-fiber gratings in single crystal sapphire fibers. So far, our major accomplishments include: Successfully grown alumina cladding layers on single crystal sapphire fibers, successfully fabricated in-fiber gratings in single crystal sapphire fibers, and successfully developed a high temperature distributed fiber optic sensor. Under Task 2, the emphasis has been on putting into place a computational capability for simulation of combustors. A PC workstation was acquired with dual Xeon processors and sufficient memory to support 3-D calculations. An existing license for Fluent software was expanded to include two PC processes, where the existing license was for a Unix workstation. Under Task 3, intelligent state estimation theory is being developed which will map the set of 1D (located judiciously within a 3D environment) measurement data into a 3D temperature profile. This theory presents a semigroup-based approach to the design and training of a system type neural network which performs function extrapolation. The assumption of the semigroup property suffices to guarantee the existence of a generic mathematical architecture and operation which is explicit enough to support the direct design and training of a neural network.

Kwang Y. Lee; Stuart S. Yin; Andre Boheman

2003-12-26T23:59:59.000Z

395

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

The commercialization path of the Calderon technology for making a feedstock for steelmaking with assistance from DOE initially focused on making coke and work was done which proved that the Calderon technology is capable of making good coke for hard driving blast furnaces. U.S. Steel which participated in such demonstration felt that the Calderon technology would be more meaningful in lowering the costs of making steel by adapting it to the making of iron--thus obviating the need for coke. U.S. Steel and Calderon teamed up to jointly work together to demonstrate that the Calderon technology will produce in a closed system iron units from iron concentrate (ore) and coal competitively by eliminating pelletizing, sintering, coking and blast furnace operation. If such process steps could be eliminated, a huge reduction in polluting emissions and greenhouse gases (including CO{sub 2}) relating to steelmaking would ensue. Such reduction will restructure the steel industry away from the very energy-intensive steelmaking steps currently practiced and drastically reduce costs of making steel. The development of a technology to lower U.S. steelmaking costs and become globally competitive is a priority of major importance. Therefore, the development work which Calderon is conducting presently under this Agreement with the U.S. Department of Energy becomes more crucial than ever. During the 3rd quarter of 2005 which the present report covers, virtually all the effort to advance the Calderon technology to make iron units was concentrated towards forming a team with a steelmaker who needs both iron units in the form of hot metal and a substitute for natural gas (SNG), both being major contributors to higher costs in steelmaking. Calderon felt that a very good candidate would be Steel Dynamics (SDI) by virtue that it operates a rotary hearth facility in Butler, Indiana that uses large amounts of natural gas to reduce briquettes made from ore and coal that they subsequently melt in a submerged arc furnace that is a large consumer of electric power. This facility is operated as a division of SDI under the name of Iron Dynamics (IDI). It is no secret that IDI has had and still has a great number of operational problems, including high cost for natural gas.

Albert Calderon

2005-10-14T23:59:59.000Z

396

Development of a Commercial Process for the Production of Silicon Carbide Fibrils  

SciTech Connect

A patent was issued on ''VLS'' silicon carbide fibrils to North American Phillips Corporation in 1975. Various laboratories and companies have been attempting to improve this process and scale it to larger quantities since that time. All of these efforts met with minimal success because they were using the original technology while attempting to improve the equipment. The principal impediments have been: (1) Slow crystal growth during fibril production; (2) Sensitive stoichiometry factors in the crystal growth chamber; and (3) Precise control of a high temperature process. The principal investigator has scaled silicon carbide whisker production at American Matrix and the SiC fiber process at Advanced Composite Materials Corporation from grams in the laboratory to tons per year production. This project is a proof-of-concept effort to apply some of the recent technology to the problems listed above in the fibril growth process. Two different technology approaches were investigated. A major problem with fibril growth has been generating a consistent supply of the required SiO gas reactant, which is a product of reducing SiO{sub 2}. The first approach, in this project addresses the SiO gas production, involved mixing silica and carbon fibrous raw materials in the immediate proximity of the graphite fibril growth plates to generate SiO nearer to individual sites of fibril growth. Iron bearing catalyst was painted on the graphite plates and the SiO generator mix was placed above the plate. This system was then heated to 1600/1650 C in a graphite resistance furnace. Some fibrils were started but the growth rate and fibril quality were unacceptably low. A second approach, which uses MTS + H{sub 2} gases to address stoichiometry control, was investigated to improve fibril growth rates while reducing the previous high temperature requirements for the process. A partial vacuum chamber was construct inside a commercial microwave furnace. The fibril growth container was coated with an iron catalyst and brought to 1200 C by the microwave field. A mixture of hydrogen and methyl trichlorosilane gases were fed to the fibril reaction container. Excellent silicon carbide fibrils were produced at a growth rate that was over four times greater than previously reported processes. The next phase of the development will be an optimization of operating parameters to improve fibril yield in the microwave growth process. The development activities will then move to the construction and testing of a pilot unit.

Nixdorf, R.D.

1999-04-01T23:59:59.000Z

397

Waste Processing | Department of Energy  

Office of Environmental Management (EM)

Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Centers Cask Processing Enclosure. Workers process and repackage waste at...

398

7 -ATOMIC PROCESSES Atomic processes can be  

E-Print Network (OSTI)

1 7 - ATOMIC PROCESSES Atomic processes can be: 1. Scattering 2. Absorption/Thermal Emission scattering, although the results won't change much when this condition is relaxed. #12;2 Absorption/Thermal Emission Free-free (continuum) ("Bremsstrahlung") Emission/Absorption Bound-Bound & Bound-Free Processes

Sitko, Michael L.

399

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect

This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

2009-12-31T23:59:59.000Z

400

SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS  

SciTech Connect

ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materials in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.

Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EEO Complaint Process EEO Complaint Process INFORMAL PROCESS-COUNSELING  

National Nuclear Security Administration (NNSA)

Complaint Process Complaint Process EEO Complaint Process INFORMAL PROCESS-COUNSELING National Nuclear Security Administration Office of Civil Rights Equal Employment Opportunity: Collaborating For Mission Success EEO POLICY The Department of Energy (DOE) does not discriminate on the basis of age, color, race, disability (physical or mental), national origin, reprisal, religion, sex (including sexual harassment), sexual orientation, genetic information or any other non-merit factor. DOE is committed to equal employment opportunity principles and practices in all management decisions and personnel practices. The Department is committed to providing equal employment opportunity; eliminating discrimination in employment; and maintaining an environment that

402

Energy efficiency of alternative coke-free metallurgical technologies  

SciTech Connect

Energy analysis is undertaken for the blast-furnace process, for liquid-phase processes (Corex, Hismelt, Romelt), for solid-phase pellet reduction (Midrex, HYL III, LP-V in a shaft furnace), for steel production in systems consisting of a blast furnace and a converter, a Midrex unit and an arc furnace, or a Romelt unit and an arc furnace, and for scrap processing in an arc furnace or in an LP-V shaft furnace. Three blast-furnace processes with sinter and coke are adopted as the basis of comparison, as in: the standard blast-furnace process used in Russia; the improved blast-furnace process with coal-dust injection; and the production of vanadium hot metal from vanadium-bearing titanomagnetite ore (with a subsequent duplex process, ferrovanadium production, and its use in the arc furnace).

V.G. Lisienko; A.V. Lapteva; A.E. Paren'kov [Ural State Technical University - Ural Polytechnic Institute, Yekaterinburg (Russian Federation)

2009-02-15T23:59:59.000Z

403

Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization  

Science Journals Connector (OSTI)

The performance of Natural Gas Processing Plants (NGPPs) can be enhanced with the integration of Combined Cooling, Heating and Power (CCHP) generation schemes. This paper analyzes the integration of a trigeneration scheme within a NGPP, that utilizes waste heat from gas turbine exhaust gases to generate process steam in a Waste Heat Recovery Steam Generator (WHRSG). Part of the steam generated is used to power double-effect water–lithium bromide (H2O–LiBr) absorption chillers that provide gas turbine compressor inlet air-cooling. Another portion of the steam is utilized to meet part furnace heating load, and supplement plant electrical power in a combined regenerative Rankine cycle. A detailed techno-economic analysis of scheme performance is presented based on thermodynamic predictions obtained using Engineering Equation Solver (EES). The results indicate that the trigeneration system could recover 79.7 MW of gas turbine waste heat, 37.1 MW of which could be utilized by three steam-fired H2O–LiBr absorption chillers to provide 45 MW of cooling at 5 °C. This could save approximately 9 MW of electric energy required by a typical compression chiller, while providing the same amount of cooling. In addition, the combined cycle generates 22.6 MW of additional electrical energy for the plant, while process heating reduces furnace oil consumption by 0.23 MSCM per annum. Overall, the trigeneration scheme would result in annual natural gas fuel savings of approximately 1879 MSCM, and annual operating cost savings of approximately US$ 20.9 million, with a payback period of 1 year. This study highlights the significant economical and environmental benefits that could be achieved through implementation of the proposed integrated cogeneration scheme in NGPPs, particularly in elevated ambient temperature and humidity conditions such as encountered in Middle East facilities.

Sahil Popli; Peter Rodgers; Valerie Eveloy

2012-01-01T23:59:59.000Z

404

Commentary on industrial processes  

Science Journals Connector (OSTI)

...crucial for an industrial process, namely: catalyst activity...of catalysis to industrial processes. The papers, however, do...at the heart of successful commercialization of catalytic science and technology...addressed in any industrial process, namely: activity-the...

2005-01-01T23:59:59.000Z

405

Desalination processes and performance  

SciTech Connect

Different desalination processes are evaluated for feed, capacity, performance, energy requirements, and cost. These include distillation, reverse osmosis, or electrodialysis. Detailed information is given on distillation processes and membrane processes.

Summers, L. J.

1995-06-01T23:59:59.000Z

406

Silica Scaling Removal Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Silica Scaling Removal Process Silica Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal...

407

Sustainable Process Chemistry  

Science Journals Connector (OSTI)

Sustainable Process Chemistry ... Increase energy efficiency ... Implementation of such processes is believed to reduce waste (first principle of Green Chemistry) and increase sustainability. ...

Robert Appell; Dinesh Gala; Yogesh S. Sanghvi

2011-06-06T23:59:59.000Z

408

Integrated analysis and design optimization of germanium purification process using zone-refining technique  

Science Journals Connector (OSTI)

Abstract Germanium (Ge) is a preferred material in the fabrication of high-performance gamma radiation detector for spectroscopy in nuclear physics. To maintain an intrinsic region in which electrons and holes reach the contacts to produce a spectroscopic signal, germanium crystals are usually doped with lithium (Li) ions. Consequently, hyperpure germanium (HPGe) should be prepared before the doping process to eliminate the interference of unexpected impurities in the Li dopant. Zone-refining technique, widely used in purification of ultra-pure materials, is chosen as one of the purification steps during detector-grade germanium production. In the paper, numerical analysis has been conducted to analyze heat transfer, melt flow and impurity segregation during a multi-pass zone-refining process of germanium in a Cyberstar mirror furnace. By modifying the effective redistribution coefficients, axial segregations of various impurities are investigated. Marangoni convection is found dominant in the melt. It affects the purification process through modifying the boundary layer thickness. Impurity distributions along the ingot are obtained with different conditions, such as pass number, zone travel rate, initial impurity concentration, segregation coefficient, and hot-zone length. Based on the analysis, optimization of the purification process design is proposed.

Sen Wang; H.S. Fang; Z.L. Jin; C.J. Zhao; L.L. Zheng

2014-01-01T23:59:59.000Z

409

Multi-step process for concentrating magnetic particles in waste sludges  

DOE Patents (OSTI)

This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

Watson, John L. (Rolla, MO)

1990-01-01T23:59:59.000Z

410

Moderate or Intense Low-Oxygen Dilution Oxy-combustion Characteristics of Light Oil and Pulverized Coal in a Pilot-Scale Furnace  

Science Journals Connector (OSTI)

The primary and secondary oxidizer streams are preheated to 450 and 400 K with electrical heaters, respectively. ... on the heat transfer, the comparison of flameless oxyfuel and flameless air fuel combustion results of lab. ... processes that coal particles experience during combustion, the characteristics of oxy-fuel combustion are reviewed in the context of heat and mass transfer, fuel delivery and injection, coal particle heating and moisture evapn., devolatilization and ignition, char oxidn. ...

P. Li; F. Wang; Y. Tu; Z. Mei; J. Zhang; Y. Zheng; H. Liu; Z. Liu; J. Mi; C. Zheng

2014-01-06T23:59:59.000Z

411

HYDROLOGICAL PROCESSES Hydrol. Process. 23, 13371348 (2009)  

E-Print Network (OSTI)

HYDROLOGICAL PROCESSES Hydrol. Process. 23, 1337­1348 (2009) Published online 4 February 2009-Ecosystem in Fengqiu, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese- Ecosystem in Fengqiu, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science

Flury, Markus

412

7 -ATOMIC PROCESSES Atomic processes can be  

E-Print Network (OSTI)

1 7 - ATOMIC PROCESSES Atomic processes can be: 1. Scattering 2. Absorption/Thermal Emission scattering, although the results won't change much when this condition is relaxed. Absorption/Thermal Emission Free-free (continuum) ("Bremsstrahlung") Emission/Absorption #12;2 Bound-Bound & Bound

Sitko, Michael L.

413

Deactivation models by fitting the progression of temperature profiles – Coking model for the MTG process in adiabatic reactors  

Science Journals Connector (OSTI)

Abstract A methodology for estimating deactivation models for catalysts in industrial application is proposed. The method applies the movement of the measured axial temperature profile to gain information of the deactivating phenomena. For adiabatic reactors the conditions must be obtained by controlled heat compensation in a reactor furnace. As an example a deactivation model for the industrial methanol-to-gasoline (MTG) process is developed. The deactivation model together with suitable reactor models is a system of coupled partial differential equations with time and spatial coordinate as the independent variables. The unknown model parameters are estimated via a non-linear least square method, by matching predicted axial temperature profiles with measured profiles obtained in a pilot reactor containing a gasoline synthesis test catalyst.

Martin Dan Palis Sørensen

2014-01-01T23:59:59.000Z

414

Chapter 5 - Gasification Processes  

Science Journals Connector (OSTI)

Publisher Summary There is a broad range of reactor types that are used in the practical realization of the gasification process. For most purposes, these reactor types can be grouped into one of three categories: moving-bed gasifiers, fluid-bed gasifiers, and entrained-flow gasifiers. Moving-bed processes are the oldest processes, and two processes in particular, the producer gas process and the water gas process, have played an important role in the production of synthesis gas from coal and coke. In moving bed processes, there are the sasol-lurgi dry bottom process, British Gas/Lurgi (BGL) slagging gasifier, that are detailed in the chapter along with their applications. Following this, fluid-bed processes are discussed in which the blast has two functions: that of blast as a reactant and that of the fluidizing medium for the bed. The best known fluid-bed gasifiers that have no tar problem are regenerators of catalytic cracking units that often operate under reducing, that is, gasification conditions that can be found in many refineries. HRL process, BHEL gasifier, circulating fluidized-bed (CFB) processes, the KBR transport gasifier, agglomerating fluid-bed processes, the Pratt & Whitney Rocketdyne (PWR) gasifier, the GEE gasification process, the Shell Gasification Process (SGP), Lurgi’ s Multi-Purpose Gasification process (MPG), etc. are the various processes discussed in the chapter.

Christopher Higman; Maarten van der Burgt

2008-01-01T23:59:59.000Z

415

Development of Novel RTP-like Processing for Solar Cell Fabrication using UV-Rich Light Sources: Cooperative Research and Development Final Report, CRADA No. CRD-11-442  

SciTech Connect

NREL and Mattson Technology are interested in developing new processing techniques for fabrication of solar cells using UV-rich optical processing. UV light has a very high absorption coefficient in most semiconductors, allowing the semiconductor surface to be heated locally and, in some cases, without a significant increase in the substrate temperature. NREL has several projects related to cell processing that currently use an optical furnace (having a spectrum rich in visible and infrared light). Mattson Technology has developed a UV rich light source that can be used in either pulse or continuous modes. The objective of this CRADA is to explore applications in solar cell processing where absorption characteristics of UV light can lead to lower cell cost and/or higher efficiencies.

Sopori, B.

2013-01-01T23:59:59.000Z

416

Ceramic Processing.qrk  

NLE Websites -- All DOE Office Websites (Extended Search)

Processing Processing Manufacturing Technologies The Ceramics and Glass Department devel- ops fabrication processes for ceramic compo- nents used in weapon applications. All phases of ceramic processing, from powders to fin- ished products, are addressed; including pow- der processing, blending, granulation, com- paction, sintering, grinding, metallization, and property measurements. In addition, multilay- er processing techniques are used to fabricate layered electrical devices. Our department has extensive experience in ferroelectric (PZT) and alumina ceramics, including cermet composi- tions (alumina - molybdenum composites) developed for hermetic electrical feedthrus, and alumina ceramics with buried ruthenium oxide based resistors. Capabilities * Perform process development activities for

417

Low effluent processing in the pulp and paper industry: Electrodialysis for continuous selective chloride removal  

SciTech Connect

Pollution prevention is currently a major focus of the United States pulp and paper industry. Significant process changes are inevitable to implement low effluent processing. The kraft pulping process is prevalent for the production of wood pulp. About 50 million tons of wood pulp are produced annually in the United States alone using the kraft process. Water consumption is currently roughly between 30 and 200 m{sup 3} of water per ton of air dry bleached kraft pulp. In-process recycling of water is now being implemented by many mills to reduce the use of increasingly scarce water resources and to reduce the need for waste-water treatment. Mass balance considerations and industrial experience show that nonprocess elements, which are detrimental to the kraft process, such as chloride and potassium, will quickly build up once water use is significantly reduced. High concentrations of chloride and potassium can cause corrosion and lead to more frequent mill shutdowns due to fouling of heat exchanger surfaces in the kraft recovery furnace. Electrodialysis will monovalent selective anion and cation exchange membranes was explored here to selectively remove chlorine as sodium and potassium chloride from a feed stream with very high ionic strength. Experiments with model solutions and extended tests with the actual pulp mill materials were performed. Very good selectivities and current efficiencies were observed for chloride over sulfate. The outstanding performance of the process with actual mill materials containing organic and inorganic contamination shows great promise for rapid transfer to the pilot scale. This work is an example of the usefulness of membrane separations as a kidney in low effluent industrial processing.

Pfromm, P.H. [Institute of Paper Science and Technology, Atlanta, GA (United States)

1997-12-01T23:59:59.000Z

418

The Ceramic Waste Form Process at the Idaho National Laboratory  

SciTech Connect

The treatment of spent nuclear fuel for disposition using an electrometallurgical technique results in two high-level waste forms: a ceramic waste form (CWF) and a metal waste form (MWF). The CWF is a composite of sodalite and glass, which stabilizes the active fission products (alkali, alkaline earths, and rare earths) and transuranic (TRU) elements. Reactive metal fuel constituents, including all the TRU metals and the majority of the fission products remain in the salt as chlorides and are processed into the CWF. The solidified salt is containerized and transferred to the CWF process where it is ground in an argon atmosphere. Zeolite 4A is dried in a mechanically-fluidized dryer to about 0.1 wt% moisture and ground to a particle-size range of 45µ to 250µ. The salt and zeolite are mixed in a V-mixer and heated to 500°C for about 18 hours. During this process, the salt occludes into the structure of the zeolite. The salt-loaded zeolite (SLZ) is cooled and then mixed with borosilicate glass frit with a comparable particle-size range. The SLZ/glass mixture is transferred to a crucible, which is placed in a furnace and heated to 925°C. During this process, known as pressureless consolidation, the zeolite is converted to the final sodalite form and the glass thoroughly encapsulates the sodalite, producing a dense, leach-resistant final waste form. During the last several years, changes have occurred to the process, including: particle size of input materials and conversion from hot isostatic pressing to pressureless consolidation, This paper is intended to provide the current status of the CWF process focusing on the adaptation to pressureless consolidation. Discussions will include impacts of particle size on final waste form and the pressureless consolidation cycle. A model will be presented that shows the heating and cooling cycles and the effect of radioactive decay heat on the amount of fission products that can be incorporated into the CWF.

Ken Bateman; Stephen Priebe

2006-08-01T23:59:59.000Z

419

Environmental assessment for proposed energy conservation standards for two types of consumer products; refrigerators, refrigerator-freezers, and freezers; small gas furnaces; and a proposed No standard standard for television sets  

SciTech Connect

This environmental assessment (EA) evaluates the environmental impacts resulting from new or amended energy-efficiency standard for refrigerators, refrigerator-freezers, freezers, small gas furnaces, and television sets as mandated by the National Appliance Energy Conservation Act of 1987. A complete description of the Engineering and Economic Analysis of the proposed standards may be found elsewhere in the Technical Support Document (TSD). Four of the 14 scenarios for product design changes described in the Engineering Analysis of the TSD are chosen for environmental assessment based on their relative importance as design measures. Values for energy savings that result from product design changes are also taken from the TSD. The two main environmental concerns addressed are emissions from fossil fuel-fired electricity generation and the chlorofluorcarbons used in the production of rigid insulation foam. Each of the 12 design options for refrigerators and freezers result in decreased electricity use and and, therefore, reduced power plant emissions. Design changes that call for additional rigid foam insulation per appliance are of interest because they affect chlorofluorocarbon consumption. There is strong evidence that chlorofluorocarbons migrate to the stratosphere, break down, and catalyze the destruction of stratospheric ozone.

Not Available

1988-01-01T23:59:59.000Z

420

A time-resolved x-ray scattering experiment for the study of phase transitions and crystallization processes in metallic alloys  

SciTech Connect

An experimental setup to perform high-resolution time-resolved X-ray scattering has been commissioned on the side station of beamline 8-ID at the Advanced Photon Source. A Peltier-cooled diode detector array covering an angle range of 20 degrees is mounted on a 4-circle goniometer and is used to temporally resolve X-ray scattering patterns with a resolution up to 10 ms. Metallic ribbon samples can be quickly heated and cooled from temperatures up to 500 C inside a furnace with controllable atmosphere and equipped with a beryllium window. A description of the setup is presented along with actual results showing time-resolved phase transitions and crystallization processes in AlYNi metallic alloys. These results demonstrate the power of this technique to investigate complex crystallization processes as well as the versatility of this time-resolved X-ray scattering spectrometer.

Pelletier, J. F.; Sutton, M.; Altounian, Z.; Saini, S.; Luriom L. B.; Sandy, A. R.; Lumma, D.; Borthwick, M. A.; Falus, P.; Mochrie, S. G. J.; Stephenson, G. B.

1999-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Process and technological aspects of municipal solid waste gasification. A review  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Critical assessment of the main commercially available MSW gasifiers. Black-Right-Pointing-Pointer Detailed discussion of the basic features of gasification process. Black-Right-Pointing-Pointer Description of configurations of gasification-based waste-to-energy units. Black-Right-Pointing-Pointer Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

Arena, Umberto, E-mail: umberto.arena@unina2.it [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy)

2012-04-15T23:59:59.000Z

422

Process Analytical Chemistry  

Science Journals Connector (OSTI)

The book focuses on the relationship of process control to steady-state process characteristics rather than to dynamic process characteristics. ... In a popularizing article, Wold (93) explains how chemical instrumentation and chemometrics provides a formidable toolbox for investigating and analyzing data from chemical processes with the characteristic patterns relating to classes, trends and other relations uncovered in the data interpreted by comparison with patterns from known and well understood systems and processes. ... Web-based molecular processing tools installed on corporate Intranets bring cheminformatics and molecular modeling capabilities directly to the desks of synthetic chemists, giving them direct access molecular structural and property visualization data and analysis. ...

Jerome Workman, Jr.; Mel Koch; Barry Lavine; Ray Chrisman

2009-05-08T23:59:59.000Z

423

A three-dimensional phase field model coupled with lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field  

SciTech Connect

In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.

Lin, Guang; Bao, Jie; Xu, Zhijie

2014-11-01T23:59:59.000Z

424

Alternative Fuel for Portland Cement Processing  

SciTech Connect

The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted at a full-scale cement plant with alternative fuels to examine their compatibility with the cement production process. Construction and demolition waste, woodchips, and soybean seeds were used as alternative fuels at a full-scale cement production facility. These fuels were co-fired with coal and waste plastics. The alternative fuels used in this trial accounted for 5 to 16 % of the total energy consumed during these burns. The overall performance of the portland cement produced during the various trial burns performed for practical purposes very similar to the cement produced during the control burn. The cement plant was successful in implementing alternative fuels to produce a consistent, high-quality product that increased cement performance while reducing the environmental footprint of the plant. The utilization of construction and demolition waste, woodchips and soybean seeds proved to be viable replacements for traditional fuels. The future use of these fuels depends on local availability, associated costs, and compatibility with a facilityâ??s production process.

Anton K. Schindler; Steve R. Duke; Thomas E. Burch; Edward W. Davis; Ralph H. Zee; David I. Bransby; Carla Hopkins; Rutherford L. Thompson; Jingran Duan; Vignesh Venkatasubramanian; Stephen Giles.

2012-06-30T23:59:59.000Z

425

Nonconforming Material Process  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Nonconforming Material / Product Process 11_0304 Page 1 of 6 11 Nonconforming Material / Product Process 11_0304 Page 1 of 6 EOTA - Business Process Document Title: Nonconforming Material / Product Process Document Number: P-011 Rev. 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): F-015 Nonconformance Report, REG-003 Record Register, ISDP-002 Training Production Process P-011 Nonconforming Material / Product Process 11_0304 Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 08_0416 Added verbiage CAR/PAR/IO to Step 2 P-011 Nonconforming Material / Product Process 11_0304 Page 3 of 6 I. Purpose To establish the process for nonconforming material to be identified, segregated and dispositioned to prevent its unintended

426

Process Deviation Log  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Deviation Log 09_0730 Process Deviation Log 09_0730 EOTA - Business Form Document Title: P-010, Process Deviation Process Document Number: Process Deviation Log EOTA Employees Melissa Otero N/A Referenced Documents: Parent Document: F-014 Rev. 11_0316 Approvers: Melissa Otero Document Owner: Elizabeth Sousa Backup Owner: Notify of Changes: A 09_0730 11_0316 Revision History: Rev. Description of Change Intitial Release. Revised log to reflect date/date range that PD is in effect. Removed drop-down menu items. Added ECD, Extension Date and Closed Column. F-014 Process Deviation Log 09_0730 Process Deviation # Date Requestor Departme nt Process # Has PD Occurred ? (Y/N) CAR/PAR # Distributio n Date Estimated Closure Date Extension Date Closed Date Comment PD-001 PD-002 PD-003 PD-004 PD-005 PD-006 PD-007 PD-008 PD-009

427

FEDERAL INFORMATION PROCESSING STANDARD  

E-Print Network (OSTI)

March 2004 FEDERAL INFORMATION PROCESSING STANDARD (FIPS) 199, STANDARDS FOR SECURITY Information Technology Laboratory National Institute of Standards and Technology A new Federal Information Processing Standard (FIPS), recently approved by the Secretary of Commerce, will help federal agencies

428

New-Hire Process  

NLE Websites -- All DOE Office Websites (Extended Search)

New-Hire Process careersassetsimagesicon-lego.jpg New-Hire Process Employees and retirees are the building blocks of the Lab's success. Our employees get to contribute to the...

429

Administrative Policy Approval Process  

E-Print Network (OSTI)

Administrative Policy Approval Process Faculty Handbook Policy Approval Process Policy idea. Faculty Handbook Committee meets during the academic year to discuss and evaluate proposed changes to Handbook policies. Policy changes approved by the Handbook Committee are forwarded to the President

430

Chemistry of Combustion Processes  

Science Journals Connector (OSTI)

The quantitative description and understanding of combustion processes needs extreme computational efforts and has at ... treatment can give a lot of insight into combustion processes, as demonstrated in the foll...

J. Warnatz

2000-01-01T23:59:59.000Z

431

Milestone Plan Process Improvement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestone Plan Process Improvement Milestone Plan Process Improvement Milestone Plan Process Improvement Background In response to our community's concern over the milestone plan (MP) process within the system, the STRIPES Project Office initiated an in-depth evaluation of the required steps and issues surrounding this process. We concluded that the MP process could be improved for most users by tuning the system configuration. With the approval of both the STRIPES Executive Steering Committee and the STRIPES Project Office, we launched the MP Process Improvement Initiative. After many meetings with members of the STRIPES Team and Working Group, we are ready to "go-live" with this initiative. On October 1 st , 2012 the new MP process will be implemented for use by most field offices.

432

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

433

Semisolid Metal Processing Consortium  

SciTech Connect

Mathematical modeling and simulations of semisolid filling processes remains a critical issue in understanding and optimizing the process. Semisolid slurries are non-Newtonian materials that exhibit complex rheological behavior. There the way these slurries flow in cavities is very different from the way liquid in classical casting fills cavities. Actually filling in semisolid processing is often counter intuitive

Apelian,Diran

2002-01-10T23:59:59.000Z

434

VacuumProcesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes Processes Manufacturing Technologies The vacuum processing capabilities in the Thin Film, Vacuum, & Packaging Laboratory encompass several areas. Capabilities include vacuum, inert gas and hydrogen firing; thermal desorption mass spectroscopy; vacuum out- gassing rate measurement; ion beam milling; and cermet densification. Capabilities * Expertise in the development of cleaning processes and materials characterization of vacuum materials and components * Vacuum and hydrogen firing of components for oxide reduction and cleaning of vacuum components * Large scale cleaning processes, vapor degreasing and vacu- um firing for large vol- ume components * Thermal desorption mass spectroscopy of material and components with controlled tem- perature ramp rates to 1500°C in a UHV

435

Document Control Process  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Document Control Process 11_0304 Page 1 of 7 1 Document Control Process 11_0304 Page 1 of 7 EOTA - Business Process Document Title: Document Control Process Document Number: P-001 Rev 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): F-001 Document Control Template - Process, F-002 Document Control Template - Instruction, F-003 Document Control Template - Screenshot, F-004 Document Control Template - Form, F-005 Document Control Template - Form - Excel, MGTP-002 Skill Set Model, Q-003 EOTA Processes: Sequence and Interaction, P-003, Control of Records P-001 Document Control Process 11_0304 Page 2 of 7 Revision History: Rev. Description of Change

436

Supplier Selection Management Process  

NLE Websites -- All DOE Office Websites (Extended Search)

ADMP-002 Vendor Selection and Management Process 11_0203 1 of 9 ADMP-002 Vendor Selection and Management Process 11_0203 1 of 9 EOTA - Business Process Document Title: Vendor Selection and Management Process Document Number: ADMP-002 Rev. 11_0203 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): ADMF-009 Vendor Audit Plan, ADMF-010 Vendor Audit Checklist, ADMF-011 Vendor Audit Report, ADMF-015 Vendor Evaluation Record, ADMP-001 Procurement Process, ADMF-016 EOTA Vendor List, REG-003 Record Register ADMP-002 Vendor Selection and Management Process 11_0203 2 of 9 Revision History: Rev. Description of Change A Initial Release 08_1110 Added verbiage and reference for ADMF-016, EOTA Vendor List to process.

437

Manhattan Project: Processes  

Office of Scientific and Technical Information (OSTI)

Processes Processes Uranium Mining, Milling, and Refining Uranium Isotope Separation Plutonium Production Bomb Design, Development, and Production Bomb Testing and Weapon Effects Processes PLEASE NOTE: The Processes pages are not yet available. Links to the pages listed below and to the left will be activated as content is developed. Select topics relating to the industrial processes of the Manhattan Project have been grouped into the categories listed to the left. A quick overview of processes involved in the mission of the Manhattan Project can be obtained by reading the summary pages for each of the categories, located in the left navigation bar. Each summary page also has a listing of all the subtopics included within that category. For a complete menu of all process pages, see the comprehensive list of topics below.

438

URANIUM METAL POWDER PRODUCTION, PARTICLE DISTRIBUTION ANALYSIS, AND REACTION RATE STUDIES OF A HYDRIDE-DEHYDRIDE PROCESS  

E-Print Network (OSTI)

atmosphere to reduce sample oxidation .................................................................................................. 13 12 Aluminum oxide crucible located at the bottom of the hydride-dehydride rig. ... 14 13 Furnace and furnace... at 60 minutes, 5psig, 250?C hydride, 325?C dehydride ................................................................................................... 30 27 Rotary kiln designed at ORNL for use in voloxidation...

Sames, William

2011-08-08T23:59:59.000Z

439

2Laser Materials Processing LISI Process  

E-Print Network (OSTI)

and a common delimitation failure point in laser clad material. The LISI process is somewhere in between surface treatment and laser cladding. In LISI a metal or metal/ceramic mixture is pre effects experienced in cladding and welding operations. Laser Induced Surface Improvement (LISI

Davis, Lloyd M.

440

Process / CI Form  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Process / Continual Improvement Form 11_0119 Page 1 of 3 6 Process / Continual Improvement Form 11_0119 Page 1 of 3 EOTA - Business Form Document Title: Process / Continual Improvement Form Document Number: F-016 Rev 11_0119 Document Owner: Elizabeth Sousa Backup Owner: David Rocha Approver(s): Melissa Otero Parent Document: P-012, Process / Continual Improvement Notify of Changes: EOTA Employees Referenced Document(s): N/A F-016 Process / Continual Improvement Form 11_0119 Page 2 of 3 Revision History: Rev. Description of Change A Initial Release 08_0425 Corrected minor problems and updated revision number. 11_0119 Merged F-019 Improvement Opportunity Planning Worksheet into this document F-016 Process / Continual Improvement Form 11_0119 Page 3 of 3

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electrotechnologies in Process Industries  

E-Print Network (OSTI)

Processes Motor drives are mainly used in prime movers (pumps, fans, compressors, etc.) and in materials processing and handling (grinders, conveyors, etc.). EPRI develops and promotes technologies such as industrial heat pumps, freeze concentra tion... the need to disseminate the results of its research and development so that they can be applied broadly across the industrial sector. Specific technology transfer activities in process industries include: o Conferences and workshops o Tech...

Amarnath, K. R.

442

Chapter Ten - Gas Processing  

Science Journals Connector (OSTI)

Abstract This chapter describes the objectives of natural gas liquid (NGL) recovery. It then discusses the value of NGL components, providing the definitions of common gas-processing terminology. In addition, the chapter considers the most common liquid recovery processes, such as lean oil absorption, mechanical refrigeration, Joule-Thomson (J-T) Expansion, and cryogenic (turbo-expander) plants. It also provides guidance on process selection, and it ends by examining fractionation and design considerations.

Maurice I. Stewart Jr.

2014-01-01T23:59:59.000Z

443

Rare muon processes  

SciTech Connect

The status of rare muon processes as tests of the standard model is reviewed with the emphasis on results that are expected from experiments in the near future.

Cooper, M.D.; The MEGA Collaboration

1993-05-01T23:59:59.000Z

444

Rare muon processes  

SciTech Connect

The status of rare muon processes as tests of the standard model is reviewed with the emphasis on results that are expected from experiments in the near future.

Cooper, M.D.

1993-01-01T23:59:59.000Z

445

In Situ Processing  

E-Print Network (OSTI)

Processing 4.1 Service Oriented Architecture for Data9] Thomas Erl. Service-Oriented Architecture: Concepts,resources. Service Oriented Architecture for Data Management

Childs, Hank

2013-01-01T23:59:59.000Z

446

Industrial process surveillance system  

DOE Patents (OSTI)

A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

1998-06-09T23:59:59.000Z

447

Strategic Energy Planning Process  

Energy.gov (U.S. Department of Energy (DOE))

The nine-step process for community strategic energy planning helps Tribes establish a comprehensive understanding of current energy use and costs, get insight into efficiency and conservation...

448

Chemical process hazards analysis  

SciTech Connect

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

449

Microsystem process networks  

DOE Patents (OSTI)

Various aspects and applications of microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having exergetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

Wegeng, Robert S. (Richland, WA); TeGrotenhuis, Ward E. (Kennewick, WA); Whyatt, Greg A. (West Richland, WA)

2006-10-24T23:59:59.000Z

450

Microwave processing of ceramics  

SciTech Connect

Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

Katz, J.D.

1993-04-01T23:59:59.000Z

451

Microwave processing of ceramics  

SciTech Connect

Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

Katz, J.D.

1993-01-01T23:59:59.000Z

452

Hepa filter dissolution process  

DOE Patents (OSTI)

A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

Brewer, Ken N. (Arco, ID); Murphy, James A. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

453

Microsystem process networks  

DOE Patents (OSTI)

Various aspects and applications or microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA

2010-01-26T23:59:59.000Z

454

Microsystem process networks  

DOE Patents (OSTI)

Various aspects and applications of microsystem process networks are described. The design of many types of Microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

Wegeng, Robert S. (Richland, WA); TeGrotenhuis, Ward E. (Kennewick, WA); Whyatt, Greg A. (West Richland, WA)

2007-09-18T23:59:59.000Z

455

PHOTOSYNTHESIS AND RELATED PROCESSES  

E-Print Network (OSTI)

#12;#12;#12;#12;PHOTOSYNTHESIS AND RELATED PROCESSES VOLUME II Part 2 #12;� '�;- py as- b^ Section Research, 7, 288, 1954). #12;PHOTOSYNTHESIS nnd Related Processes By EUGENE I. RABINOWITCH Research Professor, Photosynthesis Research Labora- tory, Department of Botany, University of Illinois. Formerly

Govindjee

456

Solar-Thermal Processing of Methane to Produce Hydrogen and Syngas  

Science Journals Connector (OSTI)

A solar-thermal aerosol flow reactor has been constructed, installed, and tested with the High-Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL). Experiments were successfully carried out for the dissociation of methane to ...

Jaimee K. Dahl; Joseph Tamburini; Alan W. Weimer; Allan Lewandowski; Roland Pitts; Carl Bingham

2001-07-27T23:59:59.000Z

457

Zone Freezing Study for Pyrochemical Process Waste Minimization  

SciTech Connect

Pyroprocessing technology is a non-aqueous separation process for treatment of used nuclear fuel. At the heart of pyroprocessing lies the electrorefiner, which electrochemically dissolves uranium from the used fuel at the anode and deposits it onto a cathode. During this operation, sodium, transuranics, and fission product chlorides accumulate in the electrolyte salt (LiCl-KCl). These contaminates change the characteristics of the salt overtime and as a result, large volumes of contaminated salt are being removed, reprocessed and stored as radioactive waste. To reduce the storage volumes and improve recycling process for cost minimization, a salt purification method called zone freezing has been proposed at Korea Atomic Energy Research Institute (KAERI). Zone freezing is melt crystallization process similar to the vertical Bridgeman method. In this process, the eutectic salt is slowly cooled axially from top to bottom. As solidification occurs, the fission products are rejected from the solid interface and forced into the liquid phase. The resulting product is a grown crystal with the bulk of the fission products near the bottom of the salt ingot, where they can be easily be sectioned and removed. Despite successful feasibility report from KAERI on this process, there were many unexplored parameters to help understanding and improving its operational routines. Thus, this becomes the main motivation of this proposed study. The majority of this work has been focused on the CsCl-LiCl-KCl ternary salt. CeCl3-LiCl-KCl was also investigated to check whether or not this process is feasible for the trivalent species—surrogate for rare-earths and transuranics. For the main part of the work, several parameters were varied, they are: (1) the retort advancement rate—1.8, 3.2, and 5.0 mm/hr, (2) the crucible lid configurations—lid versus no-lid, (3) the amount or size of mixture—50 and 400 g, (4) the composition of CsCl in the salt—1, 3, and 5 wt%, and (5) the temperature differences between the high and low furnace zones—200 and 300 ?C. During each experiment, the temperatures at selected locations around the crucible were measured and recorded to provide temperature profiles. Following each experiment, samples were collected and elemental analysis was done to determine the composition of iii the salt. Several models—non-mixed, well-mixed, Favier, and hybrid—were explored to describe the zone freezing process. For CsCl-LiCl-KCl system, experimental results indicate that through this process up to 90% of the used salt can be recycled, effectively reducing waste volume by a factor of ten. The optimal configuration was found to be a 5.0 mm/hr rate with a lid configuration and a ?T of 200°C. The larger 400 g mixtures had recycle percentages similar to the 50 g mixtures; however, the throughput per time was greater for the 400 g case. As a result, the 400 g case is recommended. For the CeCl3-LiCl-KCl system, the result implies that it is possible to use this process to separate the rare-earth and transuranics chlorides. Different models were applied to only CsCl ternary system. The best fit model was the hybrid model as a result of a solute transport transition from non- mixed to well-mixed throughout the growing process.

Ammon Williams

2012-05-01T23:59:59.000Z

458

Skill Set Training Process  

NLE Websites -- All DOE Office Websites (Extended Search)

MGTP-002 Skill Set/Training Process 11_0502 Page 1 of 7 MGTP-002 Skill Set/Training Process 11_0502 Page 1 of 7 EOTA - Business Process Document Title: Skill Set/Training Process Document Number: MGTP-002 Rev. 11_0502 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Documents: MGTF-002 Skill Set Model, MGTF-003 Training Review/Record, MGTF-004 New Employee Checklist, MGTF-005 Departing Employee Checklist, MGTF-006 Position Descriptions MGTP-002 Skill Set/Training Process 11_0502 Page 2 of 7 Revision History: Rev. Description of Change A Initial revision B Made minor, non-content editorial changes based on internal audit results 08_0805 Minor, non-content editorial changes based on internal audit results

459

Salt Waste Processing Initiatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

460

Structuring product development processes  

Science Journals Connector (OSTI)

This paper proposes operational frameworks for structuring product development processes. The primary objective of this research is to develop procedures to minimize iterations during the development process which adversely affect development time and costs. Several procedures are introduced to restructure the development process. The computation of the corresponding product development times is facilitated by two Markov models addressing different types of learning. The methodologies are employed to identify a set of managerial concerns in restructuring the product development processes. The developed framework has become an integral part of a re-engineering project for the development of rocket engines at Rocketdyne Division of Rockwell International. Throughout the paper, the methodologies are illustrated with the help of this process.

Reza Ahmadi; Thomas A. Roemer; Robert H. Wang

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Elemental sulfur recovery process  

DOE Patents (OSTI)

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

462

Carcinogenic Hydrocarbons and Related Compounds in Processed Rubber  

Science Journals Connector (OSTI)

...is made by the incomplete combustion of natural gas. Furnace black...obtained by the incomplete combustion of oils and tars. It might...BARRON,H. Modern Rubber Chemistry, pp. 154-81, 202- 34...3,4-Benzpyrene from Coal Tar. Nature, 156:601...

Hans L. Falk; Paul E. Steiner; Sam Goldfein; Alexander Breslow; and Ruth Hykes

1951-05-01T23:59:59.000Z

463

Energy Conservation R. D. & D. Programs in High Temperature Processes  

E-Print Network (OSTI)

of energy is actually required to produce the product. This broad sweeping statement covers many sins and many virtues. The blast furnace, for example, is the largest user of energy per net ton of steel produced and operates at approximately 67...

Sheneman, R. L.

1979-01-01T23:59:59.000Z

464

Protecting Your Precious Recuperators in High Temperature Processes  

E-Print Network (OSTI)

Recuperators are very useful heat exchangers that recover waste heat from products of combustion (poc) in a furnace stack and give them back to the heating operation in the form of preheated combustion air for the burners. Since part of the chemical...

Reed, R. J.

1983-01-01T23:59:59.000Z

465

Gaia Data Processing Architecture  

E-Print Network (OSTI)

Gaia is ESA's ambitious space astrometry mission the main objective of which is to astrometrically and spectro-photometrically map 1000 Million celestial objects (mostly in our galaxy) with unprecedented accuracy. The announcement of opportunity for the data processing will be issued by ESA late in 2006. The Gaia Data Processing and Analysis Consortium (DPAC) has been formed recently and is preparing an answer. The satellite will downlink close to 100 TB of raw telemetry data over 5 years. To achieve its required accuracy of a few 10s of Microarcsecond astrometry, a highly involved processing of this data is required. In addition to the main astrometric instrument Gaia will host a Radial Velocity instrument, two low-resolution dispersers for multi-color photometry and two Star Mappers. Gaia is a flying Giga Pixel camera. The various instruments each require relatively complex processing while at the same time being interdependent. We describe the overall composition of the DPAC and the envisaged overall architecture of the Gaia data processing system. We shall delve further into the core processing - one of the nine, so-called, coordination units comprising the Gaia processing system.

W. O'Mullane; U. Lammers; C. Bailer-Jones; U. Bastian; A. Brown; R. Drimmel; L. Eyer; C. Huc; F. Jansen; D. Katz; L. Lindegren; D. Pourbaix; X. Luri; F. Mignard; J. Torra; F. van Leeuwen

2006-11-29T23:59:59.000Z

466

FOIA Process Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process Overview Process Overview The FOIA process begins when requesters file FOIA requests with DOE to obtain agency records. FOIA requests may be filed with DOE; however, the records must be in the Agency's possession and control and must be located after a reasonable search. Agencies are not required to perform additional researches, analyze data, answer written questions or create records. 1. Request Received by FOIA Office  The written request initially goes to the FOIA Officer in the Department's FOIA office in the Office of Information Resources. The requests should be as specific as possible.  Upon receipt, the FOIA Officer must decide within 20 days whether to grant the request

467

Coal liquefaction quenching process  

DOE Patents (OSTI)

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

468

REAL ESTATE PROCESS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REAL ESTATE PROCESS REAL ESTATE PROCESS TABLE OF CONTENTS DISCLAIMER The content of this information is somewhat dated and not specifically reflective of actual documents in use. It is provided for reference only and as such provides a vast wealth of information and corporate knowledge. Any information taken from this source should be referenced against modern standards. The sources for such are the Federal Management Regulations, Code of Federal Regulations, DOE Orders, Guides and written policy. Additional information is available from variety of agency websites. Most leasing requirements can be found at the GSA website. DOE Real Estate Process.................................................................. Page 1 Appendix 1.................................................................................. Page 3

469

Process Evolution in a Distributed Process Execution Environment  

Science Journals Connector (OSTI)

To allow the distribution of control and visibility of cross-organizational process models and increase availability and performance of the processes, a process model can be fragmented into logically different parts and distributed in the enterprise ... Keywords: Business Process Enactment, Distributed Business Processes, Process Evolution, Service Oriented Architecture, Workflow Change

Pieter Hens; Monique Snoeck; Geert Poels; Manu De Backer

2013-04-01T23:59:59.000Z

470

BCP Annual Rate Process  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 BCP Annual Rate Process 2013 BCP Annual Rate Process Informal Process Rate Activity Schedule (doc) Informal Customer Meeting Thursday March 6, 2013 at 10:30 A.M. Conf Rms 3&4 Informal Customer Meeting Presentation (Pdf) PRS Executive Summary (Mar 07, 2013) (Pdf) FY2014 Final Ten Year Operating Plan PRS Executive Summary (PDF) FORM for Foreign Visits (doc) Formal Process Initial Federal Register Notice (pdf) Public Information Forum March 27,2013 at 10:30 A.M. Conf Rms3&4 Customer Meeting Presentation PIF Presentation (PPT) Presentation Details (pdf) Reclamation Fund Status Report PIF PRS Executive Summary (pdf) PIF Transcripts (PDF) Visitor Center Cost Analysis Questions - Responses Public Comment Forum April 10, 2013 at 10:30 A.M. Conf Rms3&4 PCF Transcripts Customer Letters

471

Silica Scaling Removal Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Silica Scaling Removal Process Silica Scaling Removal Process Silica Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal silica using small gel particles. Available for thumbnail of Feynman Center (505) 665-9090 Email Silica Scaling Removal Process Applications: Cooling tower systems Water treatment systems Water evaporation systems Potential mining applications (produced water) Industry applications for which silica scaling must be prevented Benefits: Reduces scaling in cooling towers by up to 50% Increases the number of cycles of concentration substantially Reduces the amount of antiscaling chemical additives needed Decreases the amount of makeup water and subsequent discharged water (blowdown) Enables considerable cost savings derived from reductions in

472

Multiple System Rate Process  

NLE Websites -- All DOE Office Websites (Extended Search)

DSW Multiple System Transmission Rate Process DSW Multiple System Transmission Rate Process Federal Register Notice Withdrawing Rate Proposal (PDF) Formal Process Extension Federal Register Notice (PDF) Customer Savings Under Various MSTR (XLS) Public Information Forum March 29, 2005 Customer Meeting Overview (Power Point) Customer Meeting Overview (PDF) Customer Meeting Transcript (PDF) Public Comment Forum April 6, 2005 Customer Meeting Transcript (PDF) Response Letter 5-17-05 (PDF) Customer Letters Tonopah ID-5/25/05 (PDF) APS-5/26/05 (PDF) SRP-5/27/05 (PDF) RSLynch-6/1/05 (PDF) KRSaline-6/1/05 (PDF) Formal Process Federal Register Notice (Word) Federal Register Notice (PDF) Brochure (Word) Appendices to Brochure: A B C D E1 E2 F1 F2 GH Public Information Forum July 14, 2004 Customer Meeting Overview (Power Point)

473

Fuel Processing [and Discussion  

Science Journals Connector (OSTI)

28 June 1990 research-article Fuel Processing [and Discussion] R. H. Allardice R. S...efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system...

1990-01-01T23:59:59.000Z

474

Continuous sulfur removal process  

DOE Patents (OSTI)

A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed. 4 figures.

Jalan, V.; Ryu, J.

1994-04-26T23:59:59.000Z

475

Physical process Mechanical mechanisms  

E-Print Network (OSTI)

1 Physical process Generation · Mechanical mechanisms F = m·a · Electric/Magnetic mechanisms F ­ Quadrupoles......shear stress fluctuations ­ High order poles...... phys. interpretation difficult Governing

Berlin,Technische Universität

476

Associative list processing unit  

DOE Patents (OSTI)

An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full.

Hemmert, Karl Scott; Underwood, Keith D

2014-04-01T23:59:59.000Z

477

Chemical Processing White Papers  

E-Print Network (OSTI)

hydrogen from hydrocarbon mixtures, and propylene from propane, and if scaled up, could cut the cost to traditional energy-intensive separation processes such as distillation or cryogenic techniques, molecular

Nair, Sankar

478

Direct coal liquefaction process  

DOE Patents (OSTI)

An improved multistep liquefaction process for organic carbonaceous mater which produces a virtually completely solvent-soluble carbonaceous liquid product. The solubilized product may be more amenable to further processing than liquid products produced by current methods. In the initial processing step, the finely divided organic carbonaceous material is treated with a hydrocarbonaceous pasting solvent containing from 10% and 100% by weight process-derived phenolic species at a temperature within the range of 300.degree. C. to 400.degree. C. for typically from 2 minutes to 120 minutes in the presence of a carbon monoxide reductant and an optional hydrogen sulfide reaction promoter in an amount ranging from 0 to 10% by weight of the moisture- and ash-free organic carbonaceous material fed to the system. As a result, hydrogen is generated via the water/gas shift reaction at a rate necessary to prevent condensation reactions. In a second step, the reaction product of the first step is hydrogenated.

Rindt, John R. (Grand Forks, ND); Hetland, Melanie D. (Grand Forks, ND)

1993-01-01T23:59:59.000Z

479

Processing Poultry at Home  

E-Print Network (OSTI)

With hot water for scalding, ice water for chilling and a sharp knife, poultry can be processed at home for dressed poultry shows or home consumption. This publication discusses facilities and equipment, New York dressing, evisceration, chilling...

Davis, Michael

2006-01-04T23:59:59.000Z

480

Enabling Processes and Integration  

Science Journals Connector (OSTI)

Integrating a process on a chip requires a thorough and, throughout the development cycle, continuous understanding of how it will be applied. This includes the definition of a set of required components, comp...

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace process super-heated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solar Thermal Processes  

Science Journals Connector (OSTI)

The use of solar energy for desalination purposes was one of ... The process is based on the use of solar thermal energy to evaporate water, thus separating pure ... brine. In this chapter an overview of solar thermal

M.T. Chaibi; Ali M. El-Nashar

2009-01-01T23:59:59.000Z

482

Reverse Osmosis Process  

Science Journals Connector (OSTI)

An empirical modeling method has been suggested for the reverse osmosis process. Least-square fitting of data to a third-order’ polynomial has resulted in the accurate modeling of Du Pont’s hollow fiber B-10 m...

Prof. Dr. Anthony Delyannis; Dr. Euridike-Emmy Delyannis

1980-01-01T23:59:59.000Z

483

Dry Process Electrode Fabrication  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

250m of free standing dry process cathode at thickness >200 m thickness. + Validate cost model by running pilot coating line at >25 mmin. + Deliver 24 cells in A123 SOA EV...

484

Dry Process Electrode Fabrication  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

free standing dry process cathode that retains 50% capacity at 1C rate. + Validate cost model by running pilot coating line. + Deliver 24 cells in SOA EV cell format....

485

Dry Process Electrode Fabrication  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

free standing dry process cathode that retains 50% capacity at 1C rate. + Validate cost model by running pilot coating line. + Deliver 24 cells in SOA EV cell format. 3...

486

Hydrogen recovery process  

DOE Patents (OSTI)

A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2000-01-01T23:59:59.000Z

487

Coal liquefaction process  

DOE Patents (OSTI)

This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

488

Helium process cycle  

DOE Patents (OSTI)

A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

Ganni, Venkatarao (Yorktown, VA)

2008-08-12T23:59:59.000Z