Powered by Deep Web Technologies
Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

2

Coke oven gas injection to blast furnaces  

SciTech Connect (OSTI)

U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

1995-12-01T23:59:59.000Z

3

Flare Gas Recovery in Shell Canada Refineries  

E-Print Network [OSTI]

Two of Shell Canada's refineries have logged about six years total operating experience with modern flare gas recovery facilities. The flare gas recovery systems were designed to recover the normal continuous flare gas flow for use in the refinery...

Allen, G. D.; Wey, R. E.; Chan, H. H.

1983-01-01T23:59:59.000Z

4

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect (OSTI)

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

5

Sauget Plant Flare Gas Reduction Project  

E-Print Network [OSTI]

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

6

Covered Product Category: Residential Gas Furnaces  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

7

Recovering Flare Gas Energy - A Different Approach  

E-Print Network [OSTI]

Energy Technology Conference, Houston, TX, September 16-18, 1987 SLIDLIN CH81ICAL CX1'1PANY RARE GAS RECXNERY SYSID1 K.O, ~LM 19) PSIG STEAM F,D, FAN0'1 '" N Z N NAT~L GAS SEAL SEAL FU\\RE OIL PoT STACK TANK FLARE GAS I?T ~y ~LM ~LM ESL...RECOVERING FLARE GAS ENERGY - A DIFFERENT APPROACH \\ WALTER BRENNER Process Engineer SunOlin Chemical Co. Claymont, Delaware AUSTRACT Most petrochemical complexes and oil re fineries have systems to collect and dispose of waste gases...

Brenner, W.

8

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

9

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

by natural gas. Electricity consumption by a furnace blowerto the annual electricity consumption of a major appliance.not account for the electricity consumption of the appliance

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

10

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

11

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

develop condensing gas storage water heaters to qualify forgas furnace and gas storage water heater. This study focusesis predominantly storage water heaters. Regionally, gas-

Lekov, Alex

2011-01-01T23:59:59.000Z

12

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

furnaces and storage water heaters, finds that installing aAs shown in Table 2, storage water heaters in single-familya gas furnace and a gas storage water heater. This market is

Lekov, Alex B.

2010-01-01T23:59:59.000Z

13

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

furnaces and storage water heaters, finds that installing aAs shown in Table 2, storage water heaters in single-familya gas furnace and a gas storage water heater. This market is

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

14

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network [OSTI]

of the total electricity consumption by BPM furnaces. Thisbecause furnace electricity consumption is significant.of furnace electricity consumption. Therefore, accurate

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

15

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network [OSTI]

standby power consumption in BPM furnaces is significantlytotal electricity consumption by BPM furnaces. This is notOverall, it appears the BPM motors used in furnaces offer

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

16

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

17

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

18

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

of two-stage furnaces with BPM motors provides electricityof two-stage furnaces with BPM motors provides electricityPSC) and brushless permanent magnet (BPM) 1 . PSC motors are

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

19

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

total fuel and electricity consumption under laboratoryto decrease the electricity consumption of furnaces, mainlytotal fuel and electricity consumption under laboratory

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

20

Model of the radial distribution of gas in the blast furnace  

SciTech Connect (OSTI)

This paper describes an on-line model for estimating the radial gas distribution in blast furnaces. The model is based on molar and energy flow balances for the blast furnace throat region, and utilizes the top gas temperature and gas temperature measurements from a fixed above-burden probe. The distribution of the gas flux is estimated by a Kalman filter. The method is illustrated to capture short-term dynamics and to detect sudden major changes in the gas distribution in Finnish blast furnace.

Nikus, M.; Saxen, H. [Aabo Akademi Univ. (Finland). Dept. of Chemical Engineering

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect (OSTI)

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

22

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

ASHRAE test procedure for several furnace efficiency levels (80%, 81%, 90%,ASHRAE Test Procedure 80% AFUE (Two-stage, BPM) 81% AFUE (Two-stage, BPM) 90%

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

23

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

SciTech Connect (OSTI)

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15T23:59:59.000Z

24

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network [OSTI]

REFINERY FURNACES RETROFIT WITH GAS TURBINES ACHIEVE BOTH ENERGY SAVINGS AND EMISSION REDUCTIONS F. Giacobbe*, G. Iaquaniello**, R. G. Minet*, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI Sp...A., Rome, Italy ABSTRACT Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented...

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

25

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

SciTech Connect (OSTI)

The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

Rothgeb, S.; Brand, L.

2013-11-01T23:59:59.000Z

26

BPM Motors in Residential Gas Furnaces: What are theSavings?  

SciTech Connect (OSTI)

Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-05-12T23:59:59.000Z

27

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

SciTech Connect (OSTI)

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

Brand, L.

2012-03-01T23:59:59.000Z

28

Florida Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013Fuel2009Vented and Flared

29

Gas-powder flow in blast furnace with different shapes of cohesive zone  

SciTech Connect (OSTI)

With high PCI rate operations, a large quantity of unburned coal/char fines will flow together with the gas into the blast furnace. Under some operating conditions, the holdup of fines results in deterioration of furnace permeability and lower production efficiency. Therefore, it is important to understand the behaviour of powder (unburnt coal/char) inside the blast furnace when operating with different cohesive zone (CZ) shapes. This work is mainly concerned with the effect of cohesive zone shape on the powder flow and accumulation in a blast furnace. A model is presented which is capable of simulating a clear and stable accumulation region in the lower central region of the furnace. The results indicate that powder is likely to accumulate at the lower part of W-shaped CZs and the upper part of V- and inverse V-shaped CZs. For the same CZ shape, a thick cohesive layer can result in a large pressure drop while the resistance of narrow cohesive layers to gas-powder flow is found to be relatively small. Implications of the findings to blast furnace operation are also discussed.

Dong, X.F.; Pinson, D.; Zhang, S.J.; Yu, A.B.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia)

2006-11-15T23:59:59.000Z

30

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect (OSTI)

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

31

Covered Product Category: Residential Gas Furnaces | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor EngineeringDepartment ofBoilersDataHotofFurnaces Covered

32

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

SciTech Connect (OSTI)

Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

Lekov, Alex; Franco, Victor; Meyers, Steve

2010-05-14T23:59:59.000Z

33

Gas-Fired Boilers and Furnaces | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy FreeportEnergy Issues Related-GammaGas

34

Integrated use of burden profile probe and in-burden probe for gas flow control in the blast furnace  

SciTech Connect (OSTI)

Gas flow in the blast furnace is one of the most important factors in controlling a furnace. It not only determines the production but also the fuel consumption and the campaign life. At Nos. 4 and 5 blast furnaces of ROGESA, probes are installed for detection of the burden profiles and of the gas flow distribution. For an optimum use of these probes a program system has been developed by ROGESA and Dango and Dienenthal. With this program system it is possible to analyze the operating condition of a blast furnace by means of a fuzzy logic analysis. In case of deviations from the defined desired condition, recommendations for corrective measures for the material distribution are made. Both furnaces are equipped with a bell-less top, a coal injection system, high-temperature hot blast stoves with heat recovery and a top gas pressure recovery turbine. Most of the time it is impossible to control all the required parameters. For this reason it is meaningful to measure the actual material distribution at the furnace top by means of a burden profile probe which permits quick and repeated measurements without any retroactive effects. The paper describes the instrumentation of the furnace, correlation of measuring methods, and a program system for analysis of measuring data.

Bordemann, F.; Hartig, W.H. [AG der Dillinger Huettenweke, Dillingen (Germany); Grisse, H.J. [Dango and Dienenthal Siegen (Germany); Speranza, B.E. [Dango and Dienenthal, Inc., Highland, IN (United States)

1995-12-01T23:59:59.000Z

35

Heat treatment furnace  

DOE Patents [OSTI]

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

36

Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works  

SciTech Connect (OSTI)

The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M. [Pohang Iron and Steel Co. Ltd. (Korea, Republic of). Technical Research Labs.

1995-12-01T23:59:59.000Z

37

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (Million CubicDecadeVented and Flared

38

Arizona Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVented and Flared (Million Cubic

39

Arizona Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVented and Flared (Million

40

Virginia Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (Billion CubicYear7.14Vented and Flared

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading RoomDOE-Wide NEPA9 Volume15 FINAL

42

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department DOE-STD-1171-2003Department ofDepartment of61

43

Reduced Nitrogen and Natural Gas Consumption at Deepwell Flare  

E-Print Network [OSTI]

Facing both an economic downturn and the liklihood of steep natural gas price increases, company plants were challenged to identify and quickly implement energy saving projects that would reduce natural gas usage. Unit operating personnel...

Williams, C.

2004-01-01T23:59:59.000Z

44

Indiana Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb Mar AprYearDecade

45

Indiana Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb Mar AprYearDecadeYear

46

Kansas Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYearSep-14YearDecade Year-0

47

Kansas Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYearSep-14YearDecade

48

Kentucky Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15IndustrialVehicle Fuel Price (Dollars

49

Kentucky Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15IndustrialVehicle Fuel Price

50

Louisiana Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 011,816 20,970DecadeYearDecade

51

Louisiana Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 011,816

52

Maryland Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0ThousandYear JanDecade

53

Maryland Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0ThousandYear JanDecadeYear

54

Michigan Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year JanDecade Year-0Decade

55

Michigan Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year JanDecade Year-0DecadeYear

56

Mississippi Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan FebFeet) Year

57

Mississippi Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan FebFeet) YearYear Jan Feb

58

Missouri Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15YearThousand CubicTotalDecadeYearDecade

59

Missouri Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15YearThousand

60

Montana Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384FuelYear Jan FebYear

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Montana Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384FuelYear Jan FebYearYear Jan Feb

62

Colorado Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (MillionDecade Year-0 Year-1 Year-2

63

Colorado Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (MillionDecade Year-0 Year-1

64

Florida Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013Fuel2009Vented and

65

Illinois Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawalsDecade Year-0YearVented

66

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

2001 Residential Energy Consumption Survey (RECS 2001; USenergy consumption of residential furnaces and boilers in U.S.US Department of Energy (2001). Residential energy consump- tion survey: household energy consumption

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

67

Blast furnace taphole drill  

SciTech Connect (OSTI)

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

68

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

and F. Southworh. 2004. Heat pump water heater technology:gas tankless water heaters, heat pump water heaters,heat pump space heaters, and solar water heaters, as well as

Lekov, Alex

2011-01-01T23:59:59.000Z

69

Independent Validation and Verification of Process Design and Optimization Technology Diagnostic and Control of Natural Gas Fired Furnaces via Flame Image Analysis Technology  

SciTech Connect (OSTI)

The United States Department of Energy, Industrial Technologies Program has invested in emerging Process Design and Optimizations Technologies (PDOT) to encourage the development of new initiatives that might result in energy savings in industrial processes. Gas fired furnaces present a harsh environment, often making accurate determination of correct air/fuel ratios a challenge. Operation with the correct air/fuel ratio and especially with balanced burners in multi-burner combustion equipment can result in improved system efficiency, yielding lower operating costs and reduced emissions. Flame Image Analysis offers a way to improve individual burner performance by identifying and correcting fuel-rich burners. The anticipated benefit of this technology is improved furnace thermal efficiency, and lower NOx emissions. Independent validation and verification (V&V) testing of the FIA technology was performed at Missouri Forge, Inc., in Doniphan, Missouri by Environ International Corporation (V&V contractor) and Enterprise Energy and Research (EE&R), the developer of the technology. The test site was selected by the technology developer and accepted by Environ after a meeting held at Missouri Forge. As stated in the solicitation for the V&V contractor, 'The objective of this activity is to provide independent verification and validation of the performance of this new technology when demonstrated in industrial applications. A primary goal for the V&V process will be to independently evaluate if this technology, when demonstrated in an industrial application, can be utilized to save a significant amount of the operating energy cost. The Seller will also independently evaluate the other benefits of the demonstrated technology that were previously identified by the developer, including those related to product quality, productivity, environmental impact, etc'. A test plan was provided by the technology developer and is included as an appendix to the summary report submitted by Environ (Appendix A). That plan required the V&V contractor to: (1) Establish the as-found furnace operating conditions; (2) Tune the furnace using currently available technology to establish baseline conditions; (3) Tune the furnace using the FIA technology; and (4) Document the improved performance that resulted from application of the FIA technology. It is important to note that the testing was not designed to be a competition or comparison between two different methodologies that could be used for furnace tuning. Rather, the intent was to quantify improvements in furnace performance that could not be achieved with existing technology. Therefore, the measure of success is improvement beyond the furnace efficiency obtainable using existing furnace optimization methods rather than improvement from the as found condition.

Cox, Daryl [ORNL

2009-05-01T23:59:59.000Z

70

Furnace assembly  

DOE Patents [OSTI]

A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

1985-01-01T23:59:59.000Z

71

Direct current, closed furnace silicon technology  

SciTech Connect (OSTI)

The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

1994-05-01T23:59:59.000Z

72

Smokeless Control of Flare Steam Flow Rate  

E-Print Network [OSTI]

measurement of mass flow rate of flare gas, in spite of the hostile environment. Its use for initiating control of flare steam flow rate and the addition of molecular weight compensation, using specific gravity (relative density) measurement to achieve...

Agar, J.; Balls, B. W.

1979-01-01T23:59:59.000Z

73

Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992  

SciTech Connect (OSTI)

This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

1995-12-01T23:59:59.000Z

74

Flare System Optimization  

E-Print Network [OSTI]

be minimally the flare manufacturer's total recommended flow. For systems with a liquid seal, the purge gas should be added downstream of the seal or designed to continuously flow through the seal at a low pressure. Excessive purge gas should not be added... problems with incorrect purge gas rates include: o Not knowing the correct purge rate o Missing restriction orifices o Improperly sized restriction orifices o Improper flow meter settings o Improperly set pressure regulators o Improper valve...

Aegerter, R.

75

Two chamber reaction furnace  

DOE Patents [OSTI]

A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

Blaugher, Richard D. (Evergreen, CO)

1998-05-05T23:59:59.000Z

76

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

SciTech Connect (OSTI)

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

77

Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec. 31 705 740(MillionCubic

78

FLARING PATTERNS IN BLAZARS  

SciTech Connect (OSTI)

Blazars radiate from relativistic jets launched by a supermassive black hole along our line of sight; the subclass of flat spectrum radio quasars exhibits broad emission lines, a telltale sign of a gas-rich environment and high accretion rate, contrary to the other subclass of the BL Lacertae objects. We show that this dichotomy of the sources in physical properties is enhanced in their flaring activity. The BL Lac flares yielded spectral evidence of being driven by further acceleration of highly relativistic electrons in the jet. Here, we discuss spectral fits of multi-{lambda} data concerning strong flares of the two flat spectrum radio quasars 3C 454.3 and 3C 279 recently detected in {gamma}-rays by the AGILE and Fermi satellites. We find that optimal spectral fits are provided by external Compton radiation enhanced by increasing production of thermal seed photons by growing accretion. We find such flares to trace patterns on the jet-power-electron-energy plane that diverge from those followed by flaring BL Lac objects and discuss why these occur.

Paggi, A.; Cavaliere, A.; Tavani, M. [Dipartimento di Fisica, Universita di Roma 'Tor Vergata', Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Vittorini, V.; D'Ammando, F., E-mail: paggi@roma2.infn.it [INAF/IASF-Roma, Via Fosso del Cavaliere 1, I-00100 Roma (Italy)

2011-08-01T23:59:59.000Z

79

Process control techniques for the Sidmar blast furnaces  

SciTech Connect (OSTI)

The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van [Sidmar N.V., Ghent (Belgium)

1995-12-01T23:59:59.000Z

80

An Embedded Boundary Method for the Modeling of Unsteady Combustion in an Industrial GasFired Furnace \\Lambda  

E-Print Network [OSTI]

for the convective, viscous, and radiative heat transport terms in the mixed cells, while a finite element [20] which accounts for species diffusion, convective and radiative heat transfer, viscous transportAn Embedded Boundary Method for the Modeling of Unsteady Combustion in an Industrial Gas

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Reducing Safety Flaring through Advanced Control  

E-Print Network [OSTI]

An advanced process control application, using DMCplus® (Aspen Technology, Inc.), was developed to substantially reduce fuel gas losses to the flare at a large integrated refining / petrochemical complex. Fluctuations in internal fuel gas system...

Hokanson, D.; Lehman, K.; Matsumoto, S.; Takai, N.; Takase, F.

2010-01-01T23:59:59.000Z

82

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 7, July--September 1993  

SciTech Connect (OSTI)

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. Foster Wheeler Development Corporation (FWDC) is leading a team of companies involved in this effort. The power generating system being developed in this project will be an improvement over current coal-fired systems. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown in Figure 1.

Not Available

1993-11-01T23:59:59.000Z

83

Trends in furnace control  

SciTech Connect (OSTI)

This paper relates Italimpianti's experiences over the past few years in the area of control of reheat furnaces for the steel industry. The focus is on the level 1 area; specifically on the use of PLC-based systems to perform both combustion control and mechanical/hydraulic control. Some topics to be discussed are: overview of reheat furnace control system requirements; PLC only control vs separate PLC and DCS systems; PLC hardware requirements; man machine interface (MMI) requirements; purge, light-on and safety logic; implementation of more sophisticated level 1 control algorithms; furnace temperature optimization: look up tables vs full thermal modeling; and recent trends including integrated PLC/DCS system.

McDonald, T.J.; Keefe, M.D. (Italimpianti of America, Inc., Coraopolis, PA (United States). Instrumentation and Controls Dept.)

1993-07-01T23:59:59.000Z

84

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

85

Reduction of Hydrocarbon Losses to Flare Systems  

E-Print Network [OSTI]

merit consideration because the losses and associated economic penalties are assumed to be small. Flare gas flow is not easily measured and as a result, most plants are unaware of how much product they are actually losing during normal operation...

Page, J.

1979-01-01T23:59:59.000Z

86

Vertical two chamber reaction furnace  

DOE Patents [OSTI]

A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

Blaugher, Richard D. (Evergreen, CO)

1999-03-16T23:59:59.000Z

87

Automatic Control System of Car-Bottom Reheating Furnace  

E-Print Network [OSTI]

At present China has large quantities of two-regenerator gas reheating furnaces which are old in fashion and low in calorific efficiency. Therefore, the question how to increase the calorific efficiency is very much concerned on condition...

Xueqiao, M.; Weilian, X.; Hongchen, Z.

88

Evaluation of heat flux through blast furnace shell with attached sensors  

SciTech Connect (OSTI)

Plant trials to evaluate heat fluxes through a lining/cooling system of a blast furnace were conducted in order to realize the cooling efficiency of the blast furnace under operation. For this purpose, several experiments to measure the in-furnace gas temperatures were cautiously made, and numerical simulations for the temperature distributions over the blast furnace shell and cooling/lining systems were also carried out.

Han, J.W. [Kyonggi Univ., Suwon, Kyonggi (Korea, Republic of). Dept. of Materials Engineering; Lee, J.H.; Suh, Y.K. [POSCO, Kwangyang, Cheonnam (Korea, Republic of). Technical Research Labs.

1996-12-31T23:59:59.000Z

89

E-Print Network 3.0 - arc furnaces Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Solar Energy for the Production of Fullerenes and Summary: with the Odeillo (finance) solar furnace facilities, can be used to vaporize graphite in inert gas atmosphere......

90

Improved graphite furnace atomizer  

DOE Patents [OSTI]

A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

Siemer, D.D.

1983-05-18T23:59:59.000Z

91

The dark connection between the Canis Major dwarf, the Monoceros ring, the gas flaring, the rotation curve and the EGRET excess of diffuse Galactic Gamma Rays  

E-Print Network [OSTI]

The excess of diffuse galactic gamma rays above 1 GeV, as observed by the EGRET telescope on the NASA Compton Gamma Ray Observatory, shows all the key features from Dark Matter (DM) annihilation: (i) the energy spectrum of the excess is the same in all sky directions and is consistent with the gamma rays expected for the annihilation of WIMPs with a mass between 50-100 GeV; (ii) the intensity distribution of the excess in the sky is used to determine the halo profile, which was found to correspond to the usual profile from N-body simulations with additional substructure in the form of two doughnut-shaped structures at radii of 4 and 13 kpc; (iii) recent N-body simulations of the tidal disruption of the Canis Major dwarf galaxy show that it is a perfect progenitor of the ringlike Monoceros tidal stream of stars at 13 kpc with ring parameters in agreement with the EGRET data; (iiii) the mass of the outer ring is so large, that its gravitational effects influence both the gas flaring and the rotation curve of the Milky Way. Both effects are clearly observed in agreement with the DMA interpretation of the EGRET excess.

W. de Boer; I. Gebauer; M. Weber; C. Sander; V. Zhukov; D. Kazakov

2007-10-26T23:59:59.000Z

92

Effect of furnace atmosphere on E-glass foaming  

SciTech Connect (OSTI)

The effect of furnace atmosphere on E-glass foaming generated in crucible has been studied with a specific goal to understand the impact of increased water content on foaming in oxy-fired furnaces. E-glass foams were generated in a fused-quartz crucible located in a quartz window furnace equipped with video recording. The present study showed that humidity in the furnace atmosphere destabilizes foam, while other gases have little effect on foam stability. This study suggests that the higher foaming in oxy-fired furnace compared to air-fired is caused by the effect of water on early sulfate decomposition, promoting more efficient refining gas generation from sulfate (known as “dilution effect”).

Kim, Dong-Sang; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

2006-12-01T23:59:59.000Z

93

Residential Furnace Blower Performance  

E-Print Network [OSTI]

conditioner performance1 , standby power, as well as igniter and combustion air blower power. Energy savings for a typical three-and-a-half ton air conditioner with typical California ducts are 45 kWh. Peak demand combinations of blowers and residential furnaces were tested for air moving performance. The laboratory test

94

CenterPoint Energy- Residential Gas Heating Rebates  

Broader source: Energy.gov [DOE]

CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

95

Operational results of shaft repair by installing stave type cooler at Kimitsu Nos. 3 and 4 blast furnaces  

SciTech Connect (OSTI)

Nos. 3 and 4 blast furnaces in Nippon Steel Corporation Kimitsu Works were both initially fitted with cooling plate systems. With the aging of each furnace, the damage to their respective inner-shaft profiles had become serious. Thus, in order to prevent operational change and prolong the furnace life, the inner-shaft profile of each furnace was repaired by replacing the former cooling plate system with the stave type cooler during the two-week-shutdowns. With this repair, stability of burden descent and gas flow near the wall part of the furnace have been achieved. Thus the prolongation of the furnace life is naturally expected.

Oda, Hiroshi; Amano, Shigeru; Sakamoto, Aiichiro; Anzai, Osamu [Nippon Steel Corp., Kimitsu, Chiba (Japan). Kimitsu Works; Nakagome, Michiru; Kuze, Toshisuke [Nippon Steel Corp., Futtsu, Chiba (Japan); Imuta, Akira [Nippon Steel Corp., Tokyo (Japan). Plant and Machinery Div.

1997-12-31T23:59:59.000Z

96

Non-carbon induction furnace  

DOE Patents [OSTI]

The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

1984-01-06T23:59:59.000Z

97

Application of AI techniques to blast furnace operations  

SciTech Connect (OSTI)

It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination of fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.

Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro [Kawasaki Steel Corp., Kurashiki (Japan)

1995-10-01T23:59:59.000Z

98

Furnaces | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,using RenewableFurnaces Jump to:

99

Modelling of multiphase flow in ironmaking blast furnace  

SciTech Connect (OSTI)

A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P. [University of New South Wales, Sydney, NSW (Australia). School for Material Science and Engineering

2009-01-15T23:59:59.000Z

100

Operating experience with 100% pellet burden on Amanda blast furnace  

SciTech Connect (OSTI)

A number of significant changes in operations at the Ashland Works of the Armco Steel Company occurred in 1992 which directly impacted the Amanda Blast Furnace operation. These changes included the shutdown of the hot strip mill which resulted in coke oven gas enrichment of the Amanda stoves and an increase of 75 C in hot blast temperature, transition to 100% continuous cast operation which resulted in increased variation of the hot metal demand, and the July idling of the sinter plant. Historically, the Amanda Blast Furnace burden was 30% fluxed sinter and 70% acid pellet. It was anticipated that the change to 100% pellet burden would require changes in charging practice and alter furnace performance. The paper gives a general furnace description and then describes the burden characteristics, operating practice with 30% sinter/70% acid pellet burden, preparations for the 100% acid pellet burden operation, the 100% acid pellet operation, and the 100% fluxed pellet burden operation.

Keaton, D.E.; Minakawa, T. (Armco Steel Co., Middletown, OH (United States). Ironmaking Dept.)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cupola Furnace Computer Process Model  

SciTech Connect (OSTI)

The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

Seymour Katz

2004-12-31T23:59:59.000Z

102

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents [OSTI]

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

103

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents [OSTI]

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

104

Natural Gas Vented and Flared  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3Processing:Used

105

Natural Gas Vented and Flared  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2. Average8 2009 2010 2011

106

Environmental assessment for proposed energy conservation standards for two types of consumer products; refrigerators, refrigerator-freezers, and freezers; small gas furnaces; and a proposed No standard standard for television sets  

SciTech Connect (OSTI)

This environmental assessment (EA) evaluates the environmental impacts resulting from new or amended energy-efficiency standard for refrigerators, refrigerator-freezers, freezers, small gas furnaces, and television sets as mandated by the National Appliance Energy Conservation Act of 1987. A complete description of the Engineering and Economic Analysis of the proposed standards may be found elsewhere in the Technical Support Document (TSD). Four of the 14 scenarios for product design changes described in the Engineering Analysis of the TSD are chosen for environmental assessment based on their relative importance as design measures. Values for energy savings that result from product design changes are also taken from the TSD. The two main environmental concerns addressed are emissions from fossil fuel-fired electricity generation and the chlorofluorcarbons used in the production of rigid insulation foam. Each of the 12 design options for refrigerators and freezers result in decreased electricity use and and, therefore, reduced power plant emissions. Design changes that call for additional rigid foam insulation per appliance are of interest because they affect chlorofluorocarbon consumption. There is strong evidence that chlorofluorocarbons migrate to the stratosphere, break down, and catalyze the destruction of stratospheric ozone.

Not Available

1988-01-01T23:59:59.000Z

107

High pressure furnace  

DOE Patents [OSTI]

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

Morris, D.E.

1993-09-14T23:59:59.000Z

108

High pressure oxygen furnace  

DOE Patents [OSTI]

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

109

High pressure oxygen furnace  

DOE Patents [OSTI]

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

110

High pressure furnace  

DOE Patents [OSTI]

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1993-01-01T23:59:59.000Z

111

Laboratory Evaluation of Residential Furnace BlowerPerformance  

SciTech Connect (OSTI)

A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

Walker, Iain S.; Lutz, Jim D.

2005-09-01T23:59:59.000Z

112

Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption  

SciTech Connect (OSTI)

The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

1995-12-01T23:59:59.000Z

113

Rebuilding of Rautaruukki blast furnaces  

SciTech Connect (OSTI)

Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

Kallo, S.; Pisilae, E.; Ojala, K. [Rautaruukki Oy Raahe Steel (Finland)

1997-12-31T23:59:59.000Z

114

Fossil fuel furnace reactor  

DOE Patents [OSTI]

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

115

Steam Cracker Furnace Energy Improvements  

E-Print Network [OSTI]

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

116

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high-temperature furnace (HITAF): Volume 3. Final report  

SciTech Connect (OSTI)

Testing of an atmospheric circulating bed pyrolyzer was done at Southern Illinois University. A variety of experiments have been conducted in a laboratory scale pyrolyzer with coal input flow rates from 2 to 6 lb/h. three feed coal particle sizes, corresponding to a nominal -40 mesh, -30 mesh and -18 mesh were used. The limestone used in the tests was a Genstar limestone. Parameters investigated in the tests include the influence of superficial velocity, temperature and coal-air mass ratios. Char particle size distributions under various test conditions have been measured and the char composition determined. Fuel gas composition, yields and heating values have been investigated. Char morphology has been studied using scanning electron microscopy. Char reactivity for selected samples has been measures, and the influence of feed coal size, bed temperature and superficial velocity has been determined. Material balance calculations have been performed and found to be in very good agreement. Energy audit calculations for the process have been made to investigate the flow of energy and to estimate the losses during the process. Full details of the data, results obtained and conclusions drawn are presented.

NONE

1996-05-01T23:59:59.000Z

117

Variable frequency microwave furnace system  

DOE Patents [OSTI]

A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

118

Variable frequency microwave furnace system  

DOE Patents [OSTI]

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

119

Improvement of tap holes at Wakayama No. 5 blast furnace  

SciTech Connect (OSTI)

The service life of blast furnaces, as the result of various improvement measures, has been extended from the conventional 5 to 7 years to 15 to 20 years. Wakayama No. 5 blast furnace adopted SiC bricks. Though SiC brick excelled in strength and durability, it has raised problems such as tap hole inside temperature lowering attributable to its high thermal conductivity, insufficient mud burning and gas blow-out. Nevertheless, various countermeasures described within have been taken against such problems, and as the result it has now become possible to maintain tap holes in stable conditions.

Yamashita, M.; Kashiwada, M.; Shibuta, H. [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

1995-12-01T23:59:59.000Z

120

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect (OSTI)

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hot metal Si control at Kwangyang blast furnaces  

SciTech Connect (OSTI)

Studies of Si transfer in blast furnaces have shown that the Si level in pig iron is influenced more by the reaction of silicon oxide gas generation in the raceway than the chemical reaction between hot metal and slag at the drop zone. Specifications require a Si content of pig iron below 0.15% at the Kwangyang Works, but the use of soft coking coal in the blend for coke ovens, high pulverized coal injection rate into the blast furnace, and the application of lower grade iron ore has resulted in the need to develop methods to control Si in hot metal. In this paper, the results of in furnace Si control and the desiliconization skills at the casthouse floor are described.

Hur, N.S.; Cho, B.R.; Kim, G.Y.; Choi, J.S.; Kim, B.H. [POSCO, Cheollanamdo (Korea, Republic of). Kwangyang Works

1995-12-01T23:59:59.000Z

122

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

123

Soot and SO[subscript 2] contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery  

E-Print Network [OSTI]

This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order ...

Molina, Luisa Tan

124

Cement advanced furnace and process  

SciTech Connect (OSTI)

This patent describes a suspension shaft furnace for producing discrete cement clinkers from discrete pellets of cement-forming batch materials which are gravity-migrated therethrough. It comprises a vertical furnace housing enclosing a top pellet-feeding and preheating zone comprising an elongate vertical shaft section opening into an intermediate fluidized bed section comprising fuel inlet conduits, an air-permeable clinker-impermeable support; a lower clinker-cooling section beneath the fluidized bed section; clinker-discharge means communicating between the fluidized bed section and the cooling section and air inlet means.

Litka, A.F.; Cohen, S.M.

1992-06-02T23:59:59.000Z

125

Residential Condensing Gas Furnaces | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReply CommentsNext-GenerationDryer (AppendixCondensing

126

Waste Heat Recovery – Submerged Arc Furnaces (SAF)  

E-Print Network [OSTI]

Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000°F using high voltage electricity along with metallurgical carbon to reduce metal oxides to pure elemental form. The process as currently...

O'Brien, T.

2008-01-01T23:59:59.000Z

127

Effect of Combustion Air Preheat on a Forged Furnace Productivity  

E-Print Network [OSTI]

to determine are the effects of combustion air preheat on four additional furnace operating characteristics. These characteristics are: (1) fuel utilization of a furnace operating cycle; (2) time to heat the furnace load; (3) scale production; and (4) furnace...

Ward, M. E.; Bohn, J.; Davis, S. R.; Knowles, D.

1984-01-01T23:59:59.000Z

128

Solar Flares and particle acceleration  

E-Print Network [OSTI]

of Glasgow, UK STFC Summer School, Armagh, 2012 #12;Solar flares: basics X-raysradiowavesParticles1AU Figure energy ~2 1032 ergs #12;"Standard" model of a solar flare/CME Solar corona T ~ 106 K => 0.1 keV per MeV Proton energies >100 MeV Large solar flare releases about 1032 ergs (about half energy

129

Comparing Residential Furnace Blowers for  

E-Print Network [OSTI]

of air conditioner performance, standby power, as well as igniter and combustion air blower power results in 10% lower air conditioner efficiency. For heating, the advantage of the BPM blower was to assess the performance of residential furnace blowers for both heating, cooling and air distribution

130

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

131

Intermountain Gas Company (IGC)- Gas Heating Rebate Program  

Broader source: Energy.gov [DOE]

The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

132

Montana-Dakota Utilities (Gas)- Commercial Natural Gas Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Montana-Dakota Utilities (MDU) offers rebates on energy efficient natural gas furnaces to its eligible commercial customers. New furnaces are eligible for a rebate incentive between $150 and $300,...

133

New England Gas Company- Residential and Commercial Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

In conjunction with Gas Networks, New England Gas Company offers its residential and commercial customers rebates for buying energy efficient gas boilers, furnaces, high efficiency water heaters,...

134

Peoples Gas- Commercial and Industrial Prescriptive Rebate Program  

Broader source: Energy.gov [DOE]

Peoples Gas offers the Chicagoland Natural Gas Savings Program to help non-residential customers purchase energy efficient equipment. Rebates are available on energy efficient furnaces, boilers,...

135

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network [OSTI]

Furnace (2) Heater (35) Water Heater (32) ~ Space u.. c:Emissionsfrom Gas-fired Water Heaters, Report No. 1507,gas furnaces and water heaters," JAPCA 31:1268 (1981). Table

Traynor, G.W.

2011-01-01T23:59:59.000Z

136

PRECURSOR FLARES IN OJ 287  

SciTech Connect (OSTI)

We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending toward the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z{sub c} = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.

Pihajoki, P.; Berdyugin, A.; Lindfors, E.; Reinthal, R.; Sillanpaeae, A.; Takalo, L. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-21500 Piikkioe (Finland)] [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-21500 Piikkioe (Finland); Valtonen, M.; Nilsson, K. [Finnish Centre for Astronomy with ESO, University of Turku, FI-21500 Piikkioe (Finland)] [Finnish Centre for Astronomy with ESO, University of Turku, FI-21500 Piikkioe (Finland); Zola, S.; Koziel-Wierzbowska, D. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, PL-30-244 Krakow (Poland)] [Astronomical Observatory, Jagiellonian University, ul. Orla 171, PL-30-244 Krakow (Poland); Liakos, A. [Department of Astrophysics, Astronomy and Mechanics, University of Athens, GR 157 84 Zografos, Athens, Hellas (Greece)] [Department of Astrophysics, Astronomy and Mechanics, University of Athens, GR 157 84 Zografos, Athens, Hellas (Greece); Drozdz, M.; Winiarski, M.; Ogloza, W. [Mount Suhora Observatory, Pedagogical University, ul. Podchorazych 2, PL-30-084 Krakow (Poland)] [Mount Suhora Observatory, Pedagogical University, ul. Podchorazych 2, PL-30-084 Krakow (Poland); Provencal, J. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)] [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Santangelo, M. M. M. [O.A.C. Osservatorio Astronomico di Capannori, Via di Valle, I-55060 Vorno, Capannori (Italy)] [O.A.C. Osservatorio Astronomico di Capannori, Via di Valle, I-55060 Vorno, Capannori (Italy); Salo, H. [Department of Physical Sciences, University of Oulu, P.O. Box 3000, FI-90014 University of Oulu (Finland)] [Department of Physical Sciences, University of Oulu, P.O. Box 3000, FI-90014 University of Oulu (Finland); Chandra, S.; Ganesh, S.; Baliyan, K. S., E-mail: popiha@utu.fi [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India); and others

2013-02-10T23:59:59.000Z

137

Design Enhancements To Improve Flare Efficiency  

E-Print Network [OSTI]

Two flare systems used at separate units within a larger chemical complex were modified to improve overall performance and efficiency. One system was a standard enclosed ground flare; the other was a less-conventional horizontal ground flare system...

Dooley, K. A.; McLeod, G. M.; Lorenz, M. D.

138

Ferrosilicon smelting in a direct current furnace  

DOE Patents [OSTI]

The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

Dosaj, V.D.; May, J.B.

1992-12-29T23:59:59.000Z

139

Crystal growth furnace with trap doors  

DOE Patents [OSTI]

An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

Sachs, Emanual M. (Watertown, MA); Mackintosh, Brian H. (Lexington, MA)

1982-06-15T23:59:59.000Z

140

Measurement of airflow in residential furnaces  

SciTech Connect (OSTI)

In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-24T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Furnaces Data | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNGEnergy Research | Department ofFurnaces

142

Pulverized coal injection (PCI) at Inland`s No. 7 blast furnace  

SciTech Connect (OSTI)

Fuel injection at the tuyeres has always been part of normal operating practice on this blast furnace. It has been used as much because of the beneficial effects on furnace operation as for the replacement of some of the coke that would otherwise be consumed. Fuel oil was used at first, but since the early 1980s it was more economical to inject natural gas. Studies in 1990 indicated that natural gas could be increased to 75 kg/tHM on No. 7 Furnace, and this would result in a coke rate of approximately 360 kg/tHM. It was apparent that coal injection offered significantly more opportunity for coke savings. Coke rate could be lowered to 300 kg/tHM with coal injected at 175 kg/tHM. Some combustion limitations were expected at that level. A coke rate of 270 kg/tHM with coal at 200 kg/tHM may be possible once these limitations are overcome. Furnace permeability was expected to limit the ability to reduce coke rate any further. In addition, the relative cost of coal would be significantly lower than the cost of coke it replaced. This lead to the decision late in 1991 to install pulverized coal injection (PCI) equipment for all of Inland`s blast furnaces. This paper will deal with PCI experience at No. 7 Blast Furnace.

Carter, W.L.; Greenawald, P.B.; Ranade, M.G.; Ricketts, J.A.; Zuke, D.A. [Inland Steel Co., East Chicago, IN (United States)

1995-12-01T23:59:59.000Z

143

Xcel Energy (Gas)- Residential Conservation Programs  

Broader source: Energy.gov [DOE]

Xcel Energy offers its Wisconsin residential natural gas customers rebates for high efficiency heating equipment. Currently, rebates are available for tankless and storage water heaters, furnaces,...

144

Colorado Natural Gas- Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Colorado Natural Gas offers the Excess is Out Program for residential and commercial customers in Colorado. Incentives are available for purchasing and installing energy efficient furnaces, boilers...

145

Nicor Gas- Commercial Energy Efficiency Rebates  

Broader source: Energy.gov [DOE]

Nicor Gas offers a variety of rebates to commercial customers for the purchase and installation of energy efficient products. Rebates are available on water heaters, furnaces, boilers, boiler...

146

Parameterization of solar flare dose  

E-Print Network [OSTI]

A critical aspect of missions to the Moon or Mars is the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very...

Lamarche, Anne Helene

1995-01-01T23:59:59.000Z

147

Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces  

E-Print Network [OSTI]

Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside...

Haseltine, D. M.; Laffitte, R. D.

148

Existing and prospective blast-furnace conditions  

SciTech Connect (OSTI)

Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk [Ukrainian Academy of Sciences, Dnepropetrovsk (Ukraine). Institute of Ferrous Metallurgy

2009-07-15T23:59:59.000Z

149

Thermal Imaging Control of Furnaces and Combustors  

SciTech Connect (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

150

Optical cavity furnace for semiconductor wafer processing  

DOE Patents [OSTI]

An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

Sopori, Bhushan L.

2014-08-05T23:59:59.000Z

151

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions...

152

DOE Publishes Notice of Proposed Rulemaking for Residential Furnace...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Furnace Fans Energy Conservation Standards DOE Publishes Notice of Proposed Rulemaking for Residential Furnace Fans Energy Conservation Standards October 25, 2013 - 12:00am Addthis...

153

Optimizing Blast Furnace Operation to Increase Efficiency and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs cfdblastfurnace.pdf More...

154

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

155

The formation of an ore free blast furnace center by bell charging  

SciTech Connect (OSTI)

A research program has been started to clarify and support the central gas flow control philosophy of Hoogovens` bell-charged No. 7 blast furnace. Small scale burdening experiments and sampling of the stock surface during shut-downs suggest that a sufficiently high central gas flow is an important condition for maintenance of an ore free, highly permeable furnace center and that fluidization of coke plays a part in its formation. On the basis of these experiments a hypothesis was formulated regarding the formation of an ore free blast furnace center, but could not be confirmed satisfactorily. Forthcoming full-scale burdening experiments will provide a better insight in the burden distribution and its control.

Exter, P. den; Steeghs, A.G.S.; Godijn, R.; Chaigneau, R.; Timmer, R.M.C. [Hoogovens Research and Development, IJmuiden (Netherlands); Toxopeus, H.L.; Vliet, C. van der [Hoogovens Staal Primary Products, IJmuiden (Netherlands)

1997-12-31T23:59:59.000Z

156

High productivity in Australian blast furnaces  

SciTech Connect (OSTI)

Since the emergence of the Australian domestic economy from recession in 1992, the productivity of BHP`s blast furnace has increased significantly to meet the demands of both domestic and export markets. BHP Steel operates six blast furnaces at its three Australian integrated plants. These furnaces vary widely in their size, feed, technology and current campaign status. This paper reviews the principal issues associated with productivity improvements over recent years. These gains have been achieved through activities associated with a wide range of process, equipment and human resource based issues.

Nightingale, R.J.; Mellor, D.G. [BHP Slab and Plate Products Div., Port Kembla, New South Wales (Australia); Jelenich, L. [BHP Rod and Bar Products Div., Newcastle, New South Wales (Australia); Ward, R.F. [BHP Long Products Div., Whyalla, South Australia (Australia)

1995-12-01T23:59:59.000Z

157

Record production on Gary No. 13 blast furnace with 450 lb./THM co-injection rates  

SciTech Connect (OSTI)

Coal injection was initiated on No. 13 Blast Furnace in 1993 with 400 lb/THM achieved in 9 months. In early 1994, cold weather and coal preparation upsets led to the use of a second injectant, oil atomized by natural gas, to supplement the coal. Various combinations of coal and oil were investigated as total injection was increased to 450 lb/THM. Beginning in the last half of 1994, a continuing effort has been made to increase furnace production while maintaining this high co-injection level. Typical furnace production is now in excess of 10,000 THM/day compared with about 8500 THM/day in late 1993.

Schuett, K.J.; White, D.G. [US Steel Group, Gary, IN (United States). Gary Works

1996-12-31T23:59:59.000Z

158

The operation results with the modified charging equipment and ignition furnace at Kwangyang No. 2 sinter plant  

SciTech Connect (OSTI)

There will be another blast furnace, the production capacity of which is 3.0 million tonnes per year in 1999 and mini mill plant, the production capacity of which is 1.8 million tonnes per year in 1996 at Kwangyang Works. Therefore, the coke oven gas and burnt lime will be deficient and more sinter will be needed. To meet with these situations, the authors modified the charging equipment and ignition furnace at Kwangyang No. 2 sinter plant in April 1995. After the modification of the charging equipment and ignition furnace, the consumption of burnt lime and coke oven gas could be decreased and the sinter productivity increased in spite of the reduction of burnt lime consumption. This report describes the operation results with the modification of the charging equipment and ignition furnace in No. 2 sinter plant Kwangyang works.

Lee, K.J.; Pi, Y.J.; Kim, J.R.; Lee, J.N. [POSCO, Kwangyang, Cheonnam (Korea, Republic of)

1996-12-31T23:59:59.000Z

159

Impact of Natural Gas Appliances on Pollutant Levels in California Homes  

E-Print Network [OSTI]

used to power your water heater? a. Natural Gas b. Propaneranges, furnaces and water heaters. The most common gasof gas heaters or water heaters within the home (indicating

Mullen, Nasim A.

2014-01-01T23:59:59.000Z

160

Blast furnace supervision and control system  

SciTech Connect (OSTI)

On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

Remorino, M.; Lingiardi, O.; Zecchi, M. [Siderar S.A.I.C./Ingdesi, San Nicolas (Argentina)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A consortium approach to glass furnace modeling.  

SciTech Connect (OSTI)

Using computational fluid dynamics to model a glass furnace is a difficult task for any one glass company, laboratory, or university to accomplish. The task of building a computational model of the furnace requires knowledge and experience in modeling two dissimilar regimes (the combustion space and the liquid glass bath), along with the skill necessary to couple these two regimes. Also, a detailed set of experimental data is needed in order to evaluate the output of the code to ensure that the code is providing proper results. Since all these diverse skills are not present in any one research institution, a consortium was formed between Argonne National Laboratory, Purdue University, Mississippi State University, and five glass companies in order to marshal these skills into one three-year program. The objective of this program is to develop a fully coupled, validated simulation of a glass melting furnace that may be used by industry to optimize the performance of existing furnaces.

Chang, S.-L.; Golchert, B.; Petrick, M.

1999-04-20T23:59:59.000Z

162

Energy Assessment Protocol for Glass Furnaces  

E-Print Network [OSTI]

The Department of Energy funded development of a methodology that could be used by glass producers to increase furnace efficiency, and that could serve as a model for other energy-intensive industries. Accordingly, a team comprising PPG Industries...

Plodinec, M. J.; Kauffman, B. M.; Norton, O. P.; Richards, C.; Connors, J.; Wishnick, D.

2005-01-01T23:59:59.000Z

163

Studies of charging stream trajectories and burden distribution in the blast furnace  

SciTech Connect (OSTI)

This work discusses the sensitivity of key blast furnace performance parameters to different gas flow distributions achieved by altering the burden distribution. The changes in burden distribution are brought about by different charging stream trajectories, and methods developed and evaluated for measuring the trajectories both on and off line are described.

McCarthy, M.J.; Mayfield, P.L.; Zulli, P.; Rex, A.J.; Tanzil, W.B.U.

1993-01-01T23:59:59.000Z

164

Optimized Design of a Furnace Cooling System  

E-Print Network [OSTI]

-evaluate the dynamics of heat transfer for a key piece of industrial equipment, a sintering furnace. The goal is to optimize furnace operations to relieve an operations bottleneck for a tungsten carbide drill nozzle production facility. In light of plans to mitigate... convection are the radiation shield and the inner chamber door. 2) Analysis Preliminary analysis and calculations have been made to determine the impact of increased convection. This was done by creating a theoretical spherical mass of tungsten carbide...

Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

165

Natural Gas Vented and Flared (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3Processing:UsedNA NA NA

166

Natural Gas Vented and Flared (Summary)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2. Average8 2009 2010 20118 2009

167

Coal-fired furnace for testing of thermionic converters. Topical report  

SciTech Connect (OSTI)

The development of thermionic converter technology has progressed to make near-term applications interesting. One of these applications is the thermionic topping of a pulverized coal-fired central station powerplant. Up to now, thermionic converters have been flame tested using natural gas as fuel. A new test furnace is required for evaluation of thermionic converters in a coal-fired environment. The design and costs of a facility which adapts a coal-fired furnace built by Foster Wheeler Development Corporation (FWDC) for thermionic converter testing are discussed. Such a facility would be exempt from air pollution regulations because of its low firing rate.

Not Available

1980-10-01T23:59:59.000Z

168

Operational considerations for high level blast furnace fuel injection  

SciTech Connect (OSTI)

Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

Poveromo, J.J. [Quebec Cartier Mining Co., Bethlehem, PA (United States)

1996-12-31T23:59:59.000Z

169

Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program  

Broader source: Energy.gov [DOE]

Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and...

170

Minnesota Energy Resources (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Energy Resources provides rebates to their residential customers for the purchase of energy efficient natural gas equipment and set-back thermostats. Rebates are available for furnaces,...

171

Cascade Natural Gas- Conservation Incentives for Existing Homes  

Broader source: Energy.gov [DOE]

Cascade Natural Gas offers a variety of incentives to residential customers for making energy efficiency improvements to existing homes. Eligible equipment includes furnaces, water heaters,...

172

Laclede Gas Company- Residential High Efficiency Heating Rebate Program  

Broader source: Energy.gov [DOE]

Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

173

Columbia Gas of Virginia- Business Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Columbia Gas of Virginia offers rebates to commercial customers for the purchase and installation of energy efficient equipment. Water heaters, furnaces, boilers and controls, laundromat clothes...

174

Orange and Rockland Utilities (Gas)- Residential Efficiency Program  

Broader source: Energy.gov [DOE]

Orange and Rockland Utilities provides rebates for residential customers purchasing energy efficient natural gas equipment. Rebates exist for furnaces, water boilers and controls, steam boilers,...

175

Columbia Gas of Kentucky- Home Savings Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. Water heaters, furnaces and space heating equipment...

176

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Broader source: Energy.gov [DOE]

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

177

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Broader source: Energy.gov [DOE]

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these...

178

PECO Energy (Gas) – Heating Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The PECO Smart Gas Efficiency Upgrade Program offers rebates and incentives to commercial or residential customers that install an ENERGY STAR qualified high-efficiency natural gas furnace or...

179

Oklahoma Natural Gas- Residential Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential customers and builders for furnace, water heating, or space...

180

A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace  

SciTech Connect (OSTI)

This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

2002-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PSNC Energy (Gas)- Energy-Efficient Appliance Rebate Program  

Broader source: Energy.gov [DOE]

PSNC offers rebates to customers who purchase energy-efficient natural gas water heaters or natural gas furnaces. The rebate is available only when existing natural gas-fired water heating or...

182

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL  

SciTech Connect (OSTI)

The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

Gary M. Blythe

2004-01-01T23:59:59.000Z

183

Continuous austempering fluidized bed furnace. Final report  

SciTech Connect (OSTI)

The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

1997-09-23T23:59:59.000Z

184

Lance for fuel and oxygen injection into smelting or refining furnace  

DOE Patents [OSTI]

A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.

Schlichting, Mark R. (Chesterton, IN)

1994-01-01T23:59:59.000Z

185

Lance for fuel and oxygen injection into smelting or refining furnace  

DOE Patents [OSTI]

A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figures.

Schlichting, M.R.

1994-12-20T23:59:59.000Z

186

Blast furnace control after the year 2000  

SciTech Connect (OSTI)

Rapid technical development together with developments in work organization makes it important to investigate possible ways to achieve a cost efficient process control of different metallurgical processes. This paper describes a research project, and proposes a human oriented Information Technology Strategy, ITS, for control of the Blast Furnace process. The method used is that of deductive reasoning from a description of the prevailing technological level and experiences from various development activities. The paper is based on experiences from the No. 2 Blast Furnace at Luleaa Works but the conclusions do not at this stage necessarily reflect the opinion of the management and personnel or reflect their intentions for system development at SSAB.

Gyllenram, R.; Wikstroem, J.O. [MEFOS, Luleaa (Sweden); Hallin, M. [SSAB Tunnplaat AB, Luleaa (Sweden)

1996-12-31T23:59:59.000Z

187

Segmented ceramic liner for induction furnaces  

DOE Patents [OSTI]

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

188

Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge  

SciTech Connect (OSTI)

Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P. [Huazhong University of Science and Technology, Wuhan (China)

2009-03-15T23:59:59.000Z

189

Transition Region Emission and Energy Input to Thermal Plasma During the Impulsive Phase of Solar Flares  

E-Print Network [OSTI]

The energy released in a solar flare is partitioned between thermal and non-thermal particle energy and lost to thermal conduction and radiation over a broad range of wavelengths. It is difficult to determine the conductive losses and the energy radiated at transition region temperatures during the impulsive phases of flares. We use UVCS measurements of O VI photons produced by 5 flares and subsequently scattered by O VI ions in the corona to determine the 5.0 thermal energy and the conductive losses deduced from RHESSI and GOES X-ray data using areas from RHESSI images to estimate the loop volumes, cross-sectional areas and scale lengths. The transition region luminosities during the impulsive phase exceed the X-ray luminosities for the first few minutes, but they are smaller than the rates of increase of thermal energy unless the filling factor of the X-ray emitting gas is ~ 0.01. The estimated conductive losses from the hot gas are too large to be balanced by radiative losses or heating of evaporated plasma, and we conclude that the area of the flare magnetic flux tubes is much smaller than the effective area measured by RHESSI during this phase of the flares. For the 2002 July 23 flare, the energy deposited by non-thermal particles exceeds the X-ray and UV energy losses and the rate of increase of the thermal energy.

J. C. Raymond; G. Holman; A. Ciaravella; A. Panasyuk; Y. -K. Ko; J. Kohl

2007-01-12T23:59:59.000Z

190

Self-calibrated active pyrometer for furnace temperature measurements  

DOE Patents [OSTI]

Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

191

Design and fabrication of a tin-sulfide annealing furnace  

E-Print Network [OSTI]

A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

Lewis, Raymond (Raymond A.)

2011-01-01T23:59:59.000Z

192

DOE Publishes Final Rule for Residential Furnace Fan Test Procedure...  

Broader source: Energy.gov (indexed) [DOE]

Residential Furnace Fan Test Procedure DOE Publishes Final Rule for Residential Furnace Fan Test Procedure January 3, 2014 - 12:00am Addthis The Department of Energy (DOE) has...

193

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network [OSTI]

Solar Energy Center ABSTRACT Currently, total electricity consumption of furnacesFurnace Blower Electricity: National and Regional Savings Potential Victor Franco, James Lutz, Alex Lekov, and Lixing Gu (Florida Solar

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

194

Heat Recovery From Arc Furnaces Using Water Cooled Panels  

E-Print Network [OSTI]

HEAT RECOVERY FROM ARC FURNACES USING WATER COOLED PANELS D. F. Darby Deere & Company Moline, Illinois ABSTRACT In 1980-81, the John Deere Foundry at East Moline underwent an expansion program that in creased its capacity by over 60...%. This expansion was centered around the melt department where the four existing 13MVA electric arc furnaces were augmented with two additional 13MVA arc furnaces. A waste heat recovery system was installed on all six of the arc furnaces which, with modifica...

Darby, D. F.

195

Energy Savings in Electric Arc Furnace Melting  

E-Print Network [OSTI]

Arc furnace melting which at one time was almost exclusively used to produce alloy steel and steel castings is now widely accepted in the industry as an efficient process to produce all types of steel and iron. Presently, about 28% of steel...

Lubbeck, W.

1982-01-01T23:59:59.000Z

196

Proceedings of the 45th electric furnace conference  

SciTech Connect (OSTI)

This book contains the proceedings of the 46th Electric Furnace Conference. Topics included are: EAF Dust Decomposition and Metals Recovery at ScanDust, Optimization of Electric Arc Furnace Process by Pneumatic Stirring, and Melt Down Control for Electric Arc Furnaces.

Not Available

1988-01-01T23:59:59.000Z

197

Partial SOP for Tube Anneal Furnace, EML: 9/04 Instructions for temp controller for Anneal furnace  

E-Print Network [OSTI]

Partial SOP for Tube Anneal Furnace, EML: 9/04 Instructions for temp controller for Anneal furnace the "C" clamp. Take the ceramic and quartz end caps off. 2. Load your samples into a quartz boat. Load

Reif, Rafael

198

Magnetic reconnection configurations and particle acceleration in solar flares  

E-Print Network [OSTI]

types of solar flares. Upper panel: two-ribbon flares; Lower panel: compact flares. The color shows space under different magnetic configurations. Key words: solar flares, magnetic reconnection, particleMagnetic reconnection configurations and particle acceleration in solar flares P. F. Chen, W. J

Chen, P. F.

199

Method for processing aluminum spent potliner in a graphite electrode arc furnace  

DOE Patents [OSTI]

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

O'Connor, William K.; Turner, Paul C.; Addison, G.W. (AJT Enterprises, Inc.)

2002-12-24T23:59:59.000Z

200

Method for processing aluminum spent potliner in a graphite electrode ARC furnace  

DOE Patents [OSTI]

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

O'Connor, William K. (Lebanon, OR); Turner, Paul C. (Independence, OR); Addison, Gerald W. (St. Stephen, SC)

2002-12-24T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Gary No. 13 blast furnace achieves 400 lbs/THM coal injection in 9 months  

SciTech Connect (OSTI)

Number 13 Blast Furnace at Gary began injecting Pulverized Coal in March 1993. The injection level was increased over the next nine months until a level off 409 lbs/THM was achieved for the month of December 1993. Several major areas were critical in achieving this high level of Pulverized coal injection (PCI) including furnace conditions, lance position, tuyere blockage, operating philosophy, and outages. The paper discusses the modifications made to achieve this level of injection. This injection level decreased charged dry coke rate from 750 lbs/THM to about 625 lbs/THM, while eliminating 150 lbs/THM of oil and 20 lbs/THM of natural gas. Assuming a 1.3 replacement ratio for an oil/natural gas mixture, overall coke replacement for the coal is about 0.87 lbs coke/lbs coal. Gary Works anticipates levels of 500 lbs/THM are conceivable.

Sherman, G.J.; Schuett, K.J.; White, D.G.; O`Donnell, E.M. [U.S. Steel Group, Gary, IN (United States)

1995-12-01T23:59:59.000Z

202

Temperatures in the blast furnace refractory lining  

SciTech Connect (OSTI)

The campaign life duration of a blast furnace is mainly determined by the condition of the refractory lining in heavy-duty zones such as the hearth, bosh, belly and lower stack. To achieve a desired lifetime, the temperature of the lining in these areas thereby proved to be the decisive controllable parameter. Low operating temperatures result in prolonged service life and are attained through high cooling efficiency. Besides the refractory grade chosen, the wear profile is mainly determined by the type of cooling system applied and the cooling intensity. Therefore, an appropriate compromise between long service life and energy losses has to be found in each case. In order to predict the service life of a lining it is important to know the wear condition at all times during the campaign. The paper describes the approaches the authors have made so far on European blast furnaces, on a theoretical and practical basis, on how to analyze the lining wear.

Hebel, R.; Streuber, C. [Didier-M and P Energietechnik GmbH, Wiesbaden (Germany); Steiger, R. [Didier-M and P Engineering Services, Highland, IN (United States); Jeschar, R. [TU Clausthal (Germany). Inst. fuer Energieverfahrenstechnik und Brennstofftechnik

1995-12-01T23:59:59.000Z

203

Optimized Utility Systems and Furnace Integration  

E-Print Network [OSTI]

OPTIMIZED UTILITY SYSTEMS AND FURNACE INTEGRATION A. S. McMullan and H. D. Spriggs, Linnhoff March, Inc., Leesburg, Va. ABSTRACT Conventional process design philosophy usually results in utility systems being designed after process design... defines the Process/Utility interface. Clearly, changing the process design can result in different utility demands and possibly in different utility system designs. This paper presents a procedure, using Pinch Technology, for the simultaneous design...

McMullan, A. S.; Spriggs, H. D.

204

MidAmerican Energy (Gas)- Commercial EnergyAdvantage Rebate Program  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for commercial customers to improve the energy efficiency of facilities. Qualified natural gas equipment includes ovens, steamers, fryers, furnaces...

205

Efficiency Maine Business Programs (Unitil Gas)- Commercial Energy Efficiency Programs (Maine)  

Broader source: Energy.gov [DOE]

Efficiency Maine offers natural gas efficiency rebates to Unitil customers. Equipment eligible for rebates includes boilers, furnaces, ECM units, unit heaters and food service equipment. Rebates...

206

Texas Gas Service- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Texas Gas Service offers an incentive for its residential customers within the Austin and Sunset Valley city limits to install new central furnaces, hydronic water heaters, high efficiency gas...

207

PG&E (Gas)- Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov [DOE]

Pacific Gas and Electric Company (PG&E) offers rebates for residential gas customers who install energy efficient furnaces or water heaters in homes. More information and applications for...

208

A new direct steel making process based upon the blast furnace (Including scrap processing with recovery of tramp elements)  

SciTech Connect (OSTI)

Steel is produced from raw materials containing iron and alloying elements with direct elimination of oxygen and impurities in the blast furnace process. The blast furnace shaft is modified to take off load from the liquid bath and carbon is prevented from going into the liquid steel. In the gas purification system sulphur and CO{sub 2} removal facilities are included and purified reducing gases so obtained are combusted in the hearth with oxygen to produce heat for smelting. Scrap can be charged as raw material with the recovery of tramp elements with continuous production of liquid steel.

Nabi, G.

1996-12-31T23:59:59.000Z

209

Earth Planets Space, , , Flares and the Chromosphere  

E-Print Network [OSTI]

The radiative energy of a solar flare appears mainly in the optical and UV continuum, which form in the lowerSSL, UC Berkeley, CA USA 94720-7450 2University of Glasgow, UK (Received xxxx xx, 2003; Revised xxxx produces in the photospheric magnetic field. Key words: Solar flares, Solar chromosphere, Solar corona

Hudson, Hugh

210

OVERVIEW OF SOLAR FLARES The Yohkoh Perspective  

E-Print Network [OSTI]

that solar flares begin with high-energy processes. The key elements are accelerated particlesChapter 8 OVERVIEW OF SOLAR FLARES The Yohkoh Perspective Hugh Hudson Space Sciences Laboratory, UC of Glasgow, Glasgow G12 8QQ, Scotland, U.K. lyndsay@astro.gla.ac.uk Josef I. Khan Dept. of Physics

Hudson, Hugh

211

OVERVIEW OF SOLAR FLARES The Yohkoh Perspective  

E-Print Network [OSTI]

observations from space from the 1960s, revealed that solar flares begin with high-energy processes. The keyChapter 8 OVERVIEW OF SOLAR FLARES The Yohkoh Perspective Hugh Hudson Space Sciences Laboratory, UC of Glasgow, Glasgow G12 8QQ, Scotland, U.K. lyndsay@astro.gla.ac.uk Josef I. Khan Dept. of Physics

California at Berkeley, University of

212

Investigation of a novel passivation technique for gas atomized magnesium powders.  

E-Print Network [OSTI]

??Gas atomized magnesium powders are critical for the production of a wide variety of flares, tracer projectiles, and other munitions for the United States military,… (more)

Steinmetz, Andrew Douglas

2011-01-01T23:59:59.000Z

213

Benefits of ceramic fiber for saving energy in reheat furnaces  

SciTech Connect (OSTI)

Refractory ceramic fiber products offer thermal insulation investment in reheat furnaces by helping to keep operating cost low and product quality high. These products are used in a range of applications that include: furnace linings; charge and discharge door insulation; skidpipe insulation; and furnace repair and maintenance. The many product forms (blankets, modules, boards, textiles, and coatings) provide several key benefits: faster cycling, energy savings and personnel protection.

Norris, A. (Carborundum Co., Niagara Falls, NY (United States))

1993-07-01T23:59:59.000Z

214

Vertical feed stick wood fuel burning furnace system  

DOE Patents [OSTI]

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

215

Vertical feed stick wood fuel burning furnace system  

DOE Patents [OSTI]

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

216

Simple Maintenance Saves Costly Furnace Repair/Replacement |...  

Broader source: Energy.gov (indexed) [DOE]

furnace maintenance, which includes: Checking the condition of the vent connection pipe and chimney Checking the physical integrity of the heat exchanger Adjusting the...

217

Control of carbon balance in a silicon smelting furnace  

DOE Patents [OSTI]

The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

1992-12-29T23:59:59.000Z

218

Waste Heat Reduction and Recovery for Improving Furnace Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and...

219

Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity  

SciTech Connect (OSTI)

The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

Stuart E. Strand

2001-12-06T23:59:59.000Z

220

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect (OSTI)

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electric and Gas Fired Radiant Tubes 'ERT'  

E-Print Network [OSTI]

The paper covers a unique development by the Surface Division of Midland Ross of a radiant tube heating element which will heat an industrial furnace with either gas or electric without any down time or physical conversion required...

Nilsen, E. K.

1981-01-01T23:59:59.000Z

222

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network [OSTI]

looks at the total energy consumption for several efficiencyno difference in the total energy consumption at the samereduction in the total energy consumption. In contrast, the

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

223

Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera STAT.Paul L.3

224

American Gas Association (AGA) for DOE Furnace Product Class | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical Challenges to Smart Grid Implementation |Challenge America'sof

225

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network [OSTI]

Comfort Series 13 Air Conditioner with Puron Refrigerant.for new houses with 3.5 ton air-conditioners from a study ofblower use by the air conditioner and stand-by power.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

226

Furnace and Boiler Basics | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel CellStandardsMotors |EnergyFurnace and

227

Furnace Litigation Settled | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuel CycleDepartment ofFurnace

228

List of Furnaces Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas)BiofuelsInsulationFurnaces Incentives

229

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents [OSTI]

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

230

STRIP TEMPERATURE IN A METAL COATING LINE ANNEALING FURNACE  

E-Print Network [OSTI]

continuously through the furnace, to certain temperatures and then cooling it, resulting in a change, and subsequent coating. The temperature along the furnace is controlled by varying the power supplied to the heating elements and by use of cooling tubes. The cooling tubes are located in the last half

McGuinness, Mark

231

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents [OSTI]

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

232

Recent improvements in casthouse practices at the Kwangyang blast furnaces  

SciTech Connect (OSTI)

POSCO`s Kwangyang blast furnaces have continuously carried out high production and low fuel operation under a high pulverized coal injection rate without complications since the Kwangyang No. 1 blast furnace was blown-in in 1987. The Kwangyang blast furnaces have focused on improving the work environment for the increase of competitive power in terms of increased production, cost savings, and management of optimum manpower through use of low cost fuel and raw material. At this time, the casthouse work lags behind most work in the blast furnace. Therefore, the Kwangyang blast furnaces have adopted a remote control system for the casthouse equipment to solve complications in the casthouse work due to high temperature and fumes. As the result, the casthouse workers can work in clean air and the number of workers has been reduced to 9.5 personnel per shift by reduction of the workload.

Jang, Y.S.; Han, K.W.; Kim, K.Y.; Cho, B.R.; Hur, N.S.

1997-12-31T23:59:59.000Z

233

Method of operating a centrifugal plasma arc furnace  

DOE Patents [OSTI]

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

Kujawa, Stephan T. (Butte, MT); Battleson, Daniel M. (Butte, MT); Rademacher, Jr., Edward L. (Butte, MT); Cashell, Patrick V. (Butte, MT); Filius, Krag D. (Butte, MT); Flannery, Philip A. (Ramsey, MT); Whitworth, Clarence G. (Butte, MT)

1998-01-01T23:59:59.000Z

234

Method of operating a centrifugal plasma arc furnace  

DOE Patents [OSTI]

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

1998-03-24T23:59:59.000Z

235

New waste-heat refrigeration unit cuts flaring, reduces pollution  

SciTech Connect (OSTI)

Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

Brant, B.; Brueske, S. [Planetec Utility Services Co., Inc., Evergreen, CO (United States); Erickson, D.; Papar, R. [Energy Concepts Co., Annapolis, MD (United States)

1998-05-18T23:59:59.000Z

236

E-Print Network 3.0 - arc furnace dust Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Renewable Energy 2 The Effec' of Furnace Design and Operation on Air Pollution Summary: chemical constituents in furnace gases arc very malodorous, or toxic, when...

237

E-Print Network 3.0 - air-conditioners furnaces air Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Space Summary: and electricity. These include boilers and furnaces for heating, air-conditioning systems and heat-pump systems... ) Space Heating Only Furnaces:...

238

Summarizing FLARE assay images in colon carcinogenesis  

E-Print Network [OSTI]

usually develops slowly, the amount of oxidative damage to DNA can be used as a cancer biomarker. This dissertation examines effective ways of analyzing FLARE assay data, which quanti?es oxidative damage. The statistical methods will be implemented...

Leyk Williams, Malgorzata

2006-04-12T23:59:59.000Z

239

Achieve smokeless flaring -- Air or steam assist?  

SciTech Connect (OSTI)

Because of the technological advances made during the past several years, flare system design has become more important with respect to the economics of plant operation. There are many options available to the engineer during the initial design phase of a flare system for a chemical process industries (CPI) plant. An earlier CEP article covered the basics of flare design and how to choose and size the right equipment, such as stack height and diameter, tip design, pilots and pilots flame detectors, seals, and so on. One of the most important factors is how to achieve smokeless operation, which is accomplished by either steam-assisted or air-assisted elevated flare stack assemblies. This article compares the two approaches and outlines the advantages and disadvantages of each with respect to economics, practicality, and operability. Table 1 summarizes the data for a typical plant in the U.S. Gulf Coast area that will be used as the basis for comparing costs.

Chaudhuri, M.; Diefenderfer, J.J.

1995-06-01T23:59:59.000Z

240

Use of sinter in Taranto blast furnaces  

SciTech Connect (OSTI)

Lowering the production cost of the crude steel is the ultimate aim when planning operations in an integrated steelworks. Designing the Blast Furnace burden is a crucial point in this context, for which account must be taken not only of the raw materials cost but also of other important aims such as maximum plants productivity, minimum possible energy consumption, a proper product quality at the various production stages. This paper describes the criteria used in Ilva Laminati Piani (ILP) Taranto Works to design the BF burden, based on sinter, using the results of extensive research activity carried out by Centro Sviluppo Materiali (CSM), the Research Center with major involvement with the R and D of the Italian Steel Industry. Great attention is paid at ILP to the sinter quality in order to obtain the optimum performance of the BFs, which are operating at high productivity, high pulverized coal rate and low fuel consumption.

Palchetti, M.; Palomba, R.; Tolino, E. [CSM Taranto (Italy); Salvatore, E.; Calcagni, M. [ILP Taranto Works (Italy)

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Investigation of lignite and firewood co-combustion in a furnace for tobacco curing application  

SciTech Connect (OSTI)

Co-combustion of lignite and firewood was investigated for an application in tobacco curing industry in Northern Thailand. Extensive experiments have been carried out in a newly developed furnace suitable for small curing unit, in place of locally made furnace. The aim of this investigation is to evaluate the performance of the combustion chamber in the required thermal output range for tobacco curing and to examine the influence of fuel feed rate, fuel mixture ratio and air staging on the combustion and emission characteristics of the furnace during steady state operation. Their effects are characterized in terms of the observed variations of temperature distributions, emissions of CO, SO{sub 2}, CO{sub 2}, O{sub 2} and combustion efficiency. Co-firing of firewood and lignite has been found to exhibit acceptable temperature distribution, high combustion efficiency and low emissions over a wide thermal output span. Stable operation at low (50 kW) and high (150 kW) thermal output was achieved with average CO and SO{sub 2} content in flue gas typically below 1400 and 100 ppm, respectively. Under the conditions considered, it was showed that the fuel feed rate had greater influence on combustion and emissions than firewood and lignite mixture ratio and air staging.

Nakorn Tippayawong; Chutchawan Tantakitti; Satis Thavornun

2006-07-01T23:59:59.000Z

242

Innovative gas energy systems for use with passive solar residences  

SciTech Connect (OSTI)

The GRI asked Booz, Allen, and Hamilton to analyze the integration of passive solar with gas-fired energy systems for heating and cooling homes. Direct gain, trombe wall, thermosiphon and thermal roof storage heating systems were studied. Solar load control, evaporative cooling, earth coupling, and night radiation cooling systems were investigated. The drawbacks of conventional gas backup systems are discussed. Innovative passive/gas combinations are recommended. These include multizone gas furnace, decentralized gas space heater, gas desiccant dehumidifier, and gas dehumidifier for basement drying. The multizone furnace saves $1500, and is recommended for Pilot Version development.

Hartman, D.; Kosar, D.

1983-06-01T23:59:59.000Z

243

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300°C-700°C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

2014-04-22T23:59:59.000Z

244

No. 5 blast furnace 1995 reline and upgrade  

SciTech Connect (OSTI)

The 1995 reline of No. 5 Blast Furnace is an undertaking which has never been approached in previous relines of any blast furnace in the history of Wheeling Pittsburgh Steel Corporation. The scope of the project is such that it represents a radical departure from W.P.S.C.`s traditional methods of ironmaking. The reline of No. 5 Blast Furnace is one of the largest capital improvements performed at W.P.S.C. Blast Furnaces. The improvements made at one single time are taking a furnace from 1960`s technology into the 21st century. With this in mind, employee training was one of the largest parts of the project. Training for the automated stockhouse, castfloor, new skip drive, new instrumentation, new castfloor equipment, hydraulics and overall furnace operation were an absolute necessity. The reline has laid the ground work to give the Corporation an efficient, higher productive, modern Blast Furnace which will place W.P.S.C. in the world class category in ironmaking well into the 21st century.

Kakascik, T.F. Jr.

1996-12-31T23:59:59.000Z

245

Solar Flare Observations Flares are caused by the release of magnetic energy up  

E-Print Network [OSTI]

Solar Flare Observations Flares are caused by the release of magnetic energy up to some 10 27 Joule in the solar atmosphere within a few minutes (Fig.1). The energy input causes a myriad of phenomena including of the primary energy release as electrons. Recent space missions, including Skylab, Solar Max­ imum Mission

246

Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.  

SciTech Connect (OSTI)

Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coat, or both, (2) at the exit of a glass-melting furnace burning natural gas and oxygen, and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

Walsh, Peter M. (University of Alabama at Birmingham and Southern Research Institute, Birmingham, AL); Shaddix, Christopher R.; Sickafoose, Shane M.; Blevins, Linda Gail

2003-02-01T23:59:59.000Z

247

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.

Johnson, F.; Stone, M.; Miller, D.

2014-09-03T23:59:59.000Z

248

The selective adsorption of hydrogen sulfide from natural gas streams  

E-Print Network [OSTI]

on the Magnolia Petroleum Company's Clayton Ranch No. 1 gas well. This well has 100 grains of hydrogen sulfide per 100 ft. of gas, or 0. 0016 m. f. Back Pressure Regulator I Smiley Tester (PbAc) Flare Well Reducing Regulator Separator Heater... to flare The gas out the top passed upward through the adsorbing column, through another back pressure regulator to the positive displacement meter, and thence to flare. Smiley testers were installed in the exit line to test for hydrogen sulfide, using...

Fails, James Clayton

1959-01-01T23:59:59.000Z

249

Integrating Gas Turbines with Cracking Heaters - Impact on Emissions and Energy Efficiency  

E-Print Network [OSTI]

Turbine Exhaust Gas (TEG) contains high levels of oxygen, typically 15 vol. percent, due to gas turbine blade material temperature limits. As such it can be used as an oxidant for combustion in cracking furnaces and reformers. Its high temperature...

Platvoet, E.

2011-01-01T23:59:59.000Z

250

Valorization of Automotive Shredder Residues in metallurgical furnaces Project REFORBA  

E-Print Network [OSTI]

) and the electric arc furnace (EAF) routes, P1 could be used as substitute for coal or coke, and P2 could replace with raw materials cheaper than coke. As additional potential benefits the amount of CO2 generated

Paris-Sud XI, Université de

251

Legendary West Virginia Senior Citizen Stays Warm With New Furnace...  

Broader source: Energy.gov (indexed) [DOE]

concerned for Beulah's safety, told her about the weatherization assistance program. "A tree fell on my house and damaged a lot of things, including my furnace," Beulah says. "I...

252

Voltage flicker prediction for two simultaneously operated ac arc furnaces  

SciTech Connect (OSTI)

An EMTP-based arc furnace model was developed for evaluation of flicker concerns associated with supplying a large integrated steel mill as they go from one to two furnace operation and as system changes are implemented that will affect the short circuit capacity at the 230 kV power supply substation. The model includes a dynamic arc representation which is designed to be characteristic of the initial portions of the melt cycle when the arc characteristics are the most variable (worst flicker conditions). The flicker calculations are verified using previous measurements with one furnace operation. Flicker simulations were then performed to evaluate a variety of different possible system strengths with both one and two furnaces in operation. The primary flicker measure used for this study is the unweighted rms value of the fluctuation envelope, expressed as a percentage of the rms line-to-ground voltage magnitude.

Tang, L. [ABB Power T and D Co., Inc., Raleigh, NC (United States)] [ABB Power T and D Co., Inc., Raleigh, NC (United States); Kolluri, S. [Entergy Services, New Orleans, LA (United States)] [Entergy Services, New Orleans, LA (United States); McGranaghan, M.F. [Electrotek Concepts, Inc., Knoxville, TN (United States)] [Electrotek Concepts, Inc., Knoxville, TN (United States)

1997-04-01T23:59:59.000Z

253

New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...  

Office of Environmental Management (EM)

by at least 3 billion metric tons in total by 2030, equal to more than a year's carbon pollution from the entire U.S. electricity system. Furnace fans are used to circulate air...

254

Effect of furnace atmosphere on E-glass foaming  

E-Print Network [OSTI]

oxy-fired furnaces. E-glass foams were generated in a fused-81.05.K 1. Introduction Glass foams generated in glass-that the stability of E-glass foam decreased with increasing

Kim, D. S.; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

2006-01-01T23:59:59.000Z

255

TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates  

SciTech Connect (OSTI)

Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

Veena Sahajwalla; Sushil Gupta

2005-04-15T23:59:59.000Z

256

Recycling of electric-arc-furnace dust  

SciTech Connect (OSTI)

Electric arc furnace (EAF) dust is one of the largest solid waste streams produced by steel mills, and is classified as a waste under the Resource Conservation and Recovery Act (RCRA) by the U.S. Environmental Protection Agency (EPA). Successful recycle of the valuable metals (iron, zinc, and lead) present in the dust will result in resource conservation while simultaneously reducing the disposal problems. Technical feasibility of a novel recycling method based on using hydrogen as the reductant was established under this project through laboratory experiments. Sponge iron produced was low in zinc, cadmium, and lead to permit its recycle, and nontoxic to permit its safe disposal as an alternative to recycling. Zinc oxide was analyzed to contain 50% to 58% zinc by weight, and can be marketed for recovering zinc and lead. A prototype system was designed to process 2.5 tons per day (600 tons/year) of EAF dust, and a preliminary economic analysis was conducted. The cost of processing dust by this recycling method was estimated to be comparable to or lower than existing methods, even at such low capacities.

Sresty, G.C.

1990-05-01T23:59:59.000Z

257

DIRECT USE OF NATURAL GAS: ANALYSIS AND POLICY OPTIONS  

E-Print Network [OSTI]

heating with various electric and gas systems. The gas requirements for the electric systems shows that forced-air electric heating systems require about twice as much gas as a gas-fired forced-air system. Zonal electric heating systems, where rooms are independently heated without central furnace

258

A close-up of the Sun (shown in ultraviolet light) reveals a mottled surface, bright flares,  

E-Print Network [OSTI]

#12;#12;A close-up of the Sun (shown in ultraviolet light) reveals a mottled surface, bright flares, and tongues of hot gas leaping into space. Though they look like burns in the face of the Sun, sunspots circle in the center of the photo--allows scientists to see the solar wind streaming away from the Sun

Christian, Eric

259

Automatic thermocouple positioner for use in vacuum furnaces  

DOE Patents [OSTI]

The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

Mee, D.K.; Stephens, A.E.

1980-06-06T23:59:59.000Z

260

Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace  

SciTech Connect (OSTI)

This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

STATISTICS OF FLARES SWEEPING ACROSS SUNSPOTS  

SciTech Connect (OSTI)

Flare ribbons are always dynamic and sometimes sweep across sunspots. After examining 588 (513 M-class and 75 X-class) flare events observed by the TRACE satellite and the Hinode/Solar Optical Telescope from 1998 May to 2009 May, we choose the event displaying one of the flare ribbons that completely sweeps across the umbra of a main sunspot of the corresponding active region, and finally obtain 20 (7 X-class and 13 M-class) events as our sample. In each event, we define the main sunspot completely swept across by the flare ribbon as the A-sunspot and its nearby opposite polarity sunspot as the B-sunspot. Observations show that the A-sunspot is a following polarity sunspot in 18 events and displays flux emergence in 13 cases. All of the B-sunspots are relatively simple, exhibiting either one main sunspot or one main sunspot and several small neighboring sunspots (pores). In two days prior to the flare occurrence, the A-sunspot rotates in all the cases, while the B-sunspot rotates in 19 events. The total rotating angle of the A-sunspot and B-sunspot rotates is 193{sup 0} on average, and the rotating directions are the same in 12 events. In all cases; the A-sunspot and B-sunspot manifest shear motions with an average shearing angle of 28.{sup 0}5, and in 14 cases, the shearing direction is opposite to the rotating direction of the A-sunspot. We suggest that the emergence, the rotation, and the shear motions of the A-sunspot and B-sunspot result in the phenomenon that flare ribbons sweep across sunspots completely.

Li Leping; Zhang Jun, E-mail: lepingli@ourstar.bao.ac.c, E-mail: zjun@ourstar.bao.ac.c [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

2009-11-20T23:59:59.000Z

262

Integrated municipal solid waste treatment using a grate furnace incinerator: The Indaver case  

SciTech Connect (OSTI)

An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.

Vandecasteele, C. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)], E-mail: carlo.vandecasteele@cit.kuleuven.be; Wauters, G. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Arickx, S. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium); Jaspers, M. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Van Gerven, T. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)

2007-07-01T23:59:59.000Z

263

Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions  

SciTech Connect (OSTI)

Measurements have been performed in a 300 MWe, front-wall-fired, pulverized-coal, utility boiler. This boiler was retrofitted with boosted over fire air injectors that allowed the operation of the furnace under deeper staging conditions. New data are reported for local mean gas species concentration of O{sub 2}, CO, CO{sub 2}, NOx, gas temperatures and char burnout measured at several ports in the boiler including those in the main combustion and staged air regions. Comparisons of the present data with our previous measurements in this boiler, prior to the retrofitting with the new over fire system, show lower O{sub 2} and higher CO concentrations for the new situation as a consequence of the lower stoichiometry in the main combustion zone associated with the present boiler operating condition. Consistently, the measured mean NOx concentrations in the main combustion zone are now lower than those obtained previously, yielding emissions below 500 mg/Nm{sup 3}at 6% O{sub 2}. Finally, the measured values of particle burnout at the furnace exit are acceptable being those measured in the main combustion zone comparable with those obtained with the conventional over fire system.

Costa, M.; Azevedo, J.L.T. [Universidade Tecnica de Lisboa, Lisbon (Portugal)

2007-07-01T23:59:59.000Z

264

Burden distribution tests of Siderar`s No. 2 blast furnace  

SciTech Connect (OSTI)

Siderar is a company which was created through the merger of Propulsora Siderurgica and the privatized Aceros Parana (the former Somisa, a state-owned steel company). This plant manufacturers flat steel products: hot and cold rolled coils, as well as tin plate coils. After the privatization of the former Somisa in 1992, the new owners decided to modernize the Blast Furnace 2. The relining involved the following: complete furnace with bell less top; cast house with dust collection; INBA granulation system; gas cleaning system; cooling system; modern control system; and revamping of the stock house and the stoves. Burden distribution tests allowed the staff to familiarize themselves with the operation of the top under the three operation modes (manual, semiautomatic and automatic), and also to make adjustments to the top control system. In addition, the tests allowed them to see how materials behave during discharge and building up of ore and coke layers. All this information, together with the available instrumentation, such as fixed probes and heat flux monitoring system, proved to be of use for the gas flow control.

Lingiardi, O.; Partemio, C.; Burrai, O.; Etchevarne, P.

1997-12-31T23:59:59.000Z

265

Blazar Flaring Rates Measured with GLAST  

E-Print Network [OSTI]

We derive the minimum observing time scales to detect a blazar at a given flux level with the LAT on GLAST in the scanning and pointing modes. Based upon Phase 1 observations with EGRET, we predict the GLAST detection rate of blazar flares at different flux levels. With some uncertainty given the poor statistics of bright blazars, we predict that a blazar flare with integral flux >~ 200e-8 ph(> 100 MeV) cm^{-2} s^{-1}, which are the best candidates for Target of Opportunity pointings and extensive temporal and spectral studies, should occur every few days.

Dermer, C D

2004-01-01T23:59:59.000Z

266

Blazar Flaring Rates Measured with GLAST  

E-Print Network [OSTI]

We derive the minimum observing time scales to detect a blazar at a given flux level with the LAT on GLAST in the scanning and pointing modes. Based upon Phase 1 observations with EGRET, we predict the GLAST detection rate of blazar flares at different flux levels. With some uncertainty given the poor statistics of bright blazars, we predict that a blazar flare with integral flux >~ 200e-8 ph(> 100 MeV) cm^{-2} s^{-1}, which are the best candidates for Target of Opportunity pointings and extensive temporal and spectral studies, should occur every few days.

C. D. Dermer; B. L. Dingus

2003-12-22T23:59:59.000Z

267

Fireside carburization of stainless steel furnace tubes  

SciTech Connect (OSTI)

Most heavy Venezuelan crudes are recognized for having a high total acid number (TAN) that is usually associated with a high tendency to produce naphthenic acid corrosion. To resist this type of corrosion in vacuum heaters, 9Cr-1Mo steel and stainless steels containing molybdenum are usually recommended. In 1993 the original 5Cr-1/2Mo roof tubes of the furnace in a vacuum unit were replaced by stainless steel 316Ti to minimize tube replacement and increase heater reliability. Unexpectedly, some of the new tubes failed after only three years of service, and just one year after undergoing the last turnaround inspection. The damage occurred in the form of deep holes and perforations, starting from the outside tube surface on the fireside. Coke build-up occurred due to severe operating conditions, overheating the tubes on the fireside, above 675 C (1250 F). Metallographic and Scanning Electron Microscopic (SEM) examination revealed internal and external carburization of the material due to the presence of coke and combustion ashes, respectively. The increase in the skin metal temperature facilitated the diffusion of carbon from these carbon-rich deposits into the low carbon content material (0.023 O/O).Depletion of chromium at the grain boundaries due to the massive formation of chromium carbides, resulted in a severe intergranular corrosion attack by molten salts rich in vanadium and sulfur due to asphalt burning. Normal operating practice demands the use of steam for the heater tubes to control coke build-up. This practice had been first reduced and then eliminated, during the past two years prior to the failure, because of economic incentives. This paper describes the root cause analysis conducted to account for these premature tube failures.

Mirabal, E.; Molina, C. [PDVSA-Refineria Isla, Curayao (Netherlands); Mayorga, A.; Hau, J.L. [PDVSA-Intevep, Caracas (Venezuela)

1999-11-01T23:59:59.000Z

268

Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)  

SciTech Connect (OSTI)

Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

2003-12-31T23:59:59.000Z

269

Compensation of flare-induced CD changes EUVL  

DOE Patents [OSTI]

A method for compensating for flare-induced critical dimensions (CD) changes in photolithography. Changes in the flare level results in undesirable CD changes. The method when used in extreme ultraviolet (EUV) lithography essentially eliminates the unwanted CD changes. The method is based on the recognition that the intrinsic level of flare for an EUV camera (the flare level for an isolated sub-resolution opaque dot in a bright field mask) is essentially constant over the image field. The method involves calculating the flare and its variation over the area of a patterned mask that will be imaged and then using mask biasing to largely eliminate the CD variations that the flare and its variations would otherwise cause. This method would be difficult to apply to optical or DUV lithography since the intrinsic flare for those lithographies is not constant over the image field.

Bjorkholm, John E. (Pleasanton, CA); Stearns, Daniel G. (Los Altos, CA); Gullikson, Eric M. (Oakland, CA); Tichenor, Daniel A. (Castro Valley, CA); Hector, Scott D. (Oakland, CA)

2004-11-09T23:59:59.000Z

270

GRB Flares: A New Detection Algorithm, Previously Undetected Flares, and Implications on GRB Physics  

E-Print Network [OSTI]

Flares in GRB light curves have been observed since shortly after the discovery of the first GRB afterglow. However, it was not until the launch of the Swift satellite that it was realized how common flares are, appearing in nearly 50% of all X-ray afterglows as observed by the XRT instrument. The majority of these observed X-ray flares are easily distinguishable by eye and have been measured to have up to as much fluence as the original prompt emission. Through studying large numbers of these X-ray flares it has been determined that they likely result from a distinct emission source different than that powering the GRB afterglow. These findings could be confirmed if similar results were found using flares in other energy ranges. However, until now, the UVOT instrument on Swift seemed to have observed far fewer flares in the UV/optical than were seen in the X-ray. This was primarily due to poor sampling and data being spread across multiple filters, but a new optimal co-addition and normalization of the UVOT ...

Swenson, C A

2013-01-01T23:59:59.000Z

271

Recent developments in blast furnace process control within British Steel  

SciTech Connect (OSTI)

British Steel generally operates seven blast furnaces on four integrated works. All furnaces have been equipped with comprehensive instrumentation and data logging computers over the past eight years. The four Scunthorpe furnaces practice coal injection up to 170 kg/tHM (340 lb/THM), the remainder injecting oil at up to 100 kg/tHM (200 lb/THM). Distribution control is effected by Paul Wurth Bell-Less Tops on six of the seven furnaces, and Movable Throat Armour with bells on the remaining one. All have at least one sub burden probe. The blast furnace operator has a vast quantity of data and signals to consider and evaluate when attempting to achieve the objective of providing a consistent supply of hot metal. Techniques have been, and are being, developed to assist the operator to interpret large numbers of signals. A simple operator guidance system has been developed to provide advice, based on current operating procedures and interpreted data. Further development will involve the use of a sophisticated Expert System software shell.

Warren, P.W. [British Steel Technical, Middlesbrough (United Kingdom). Teesside Labs.

1995-12-01T23:59:59.000Z

272

The 1994 intermediate reline of H-3 furnace  

SciTech Connect (OSTI)

LTV Steel`s Indiana Harbor Works H-3 Blast Furnace was rebuilt in 1988 to provide reliable operations at high production rates without damage to the shell for an overall campaign. This Rebuild included: (1) complete bosh and partial stack shell replacement; (2) a spray cooled carbon bosh; (3) a row of staves at the mantle and six rows of stack staves, all stack staves had noses (ledges at the top of the stave) with the exception of row 5; (4) silicon carbide filled semi graphite brick for the bosh, silicon carbide brick from the mantle area and to the top of stave row No. 1, super duty brick in front of the remaining staves and phosphate bonded high alumina brick in the upper stack; (5) movable throat armor; (6) upgraded instrumentation to follow furnace operation and lining wear occurring in the furnace. No work was done to the hearth walls and bottom, since these had been replaced in 1982 with a first generation graphite cooled design and has experienced 7.7 million NTHM. The furnace was blown in November 18, 1988 and operated through September 3, 1994, at which time it was blown down for its first intermediate repair after 7.85 million NTHM. This paper summarizes the operation of the furnace and then discusses the major aspects of the 1994 intermediate repair.

James, J.D.; Nanavati, K.S.; Spirko, E.J.; Wakelin, D.H.

1995-12-01T23:59:59.000Z

273

Hot repair of ceramic burner on hot blast stoves at USS/Kobe`s {number_sign}3 blast furnace  

SciTech Connect (OSTI)

During the 1992 reline of the No. 3 blast furnace, three new stoves were constructed. The design of the stoves, equipped with internal ceramic burners, was for providing a hot blast temperature of 2,000 F at a wind rate of 140,000 SCFM. After 3 years the performance had deteriorated so the burners were cleaned. When a second cleaning did not improve the performance of No. 3 blast furnace, it was decided to repair the refractory while still hot. The paper describes the hot repair procedures, taking a stove off for repairs, maintenance heat up during repairs, two stove operation, stove commissioning, repair of a ceramic burner, and wet gas prevention.

Bernarding, T.F.; Chemorov, M.; Shimono, S.; Phillips, G.R.

1997-12-31T23:59:59.000Z

274

Magnetic Flares and State Transitions in Galactic Black Hole and Neutron Star Systems  

E-Print Network [OSTI]

We here examine the conditions of the two-phase disk model under which magnetic flares arise above the cold accretion disk due to magnetic buoyancy and produce X-rays via Comptonization of the disk's soft radiation. We find that the disk's ability to produce strong magnetic flares is substantially diminished in its radiation dominated regions due to the diffusion of radiation into the magnetic flux tubes. Using a simplified, yet physically self-consistent, model that takes this effect into account, we show that the hard X-ray spectrum of some GBHCs can be explained as the X-ray emission by magnetic flares only when the disk's bolometric luminosity is a relatively small fraction ($\\sim$ 5%) of the Eddington value, $L_{Edd}$. Further, we compute the hard ($20-200$ keV) and soft ($1-20$ keV) X-ray power as a function of the disk's luminosity, and find an excellent agreement with the available data for GBHC transient and persistent sources. We conclude that the observed high-energy spectrum of stellar-sized accretion disk systems can be explained by Comptonization of the disk's soft radiation by the hot gas trapped inside the magnetic flares when the luminosity falls in the range $\\sim 10^{-3}-10^{-1}\\times L_{Edd}$. For higher luminosities, another emission mechanism must be at work. For lower luminosities, the X-ray emissivity may still be dominated by magnetic flares, but this process is more likely to be thermal or non-thermal bremstrahlung, so that the X-ray spectrum below $\\sim 10^{-3}L_{Edd}$ may be quite distinct from the typical hard spectrum for higher luminosities.

Sergei Nayakshin; Fulvio Melia

1997-10-21T23:59:59.000Z

275

Magnetic changes observed in a solar flare  

SciTech Connect (OSTI)

We present observations of a fairly large impulsive flare (1B/M4, starting 17:22 UT, 1980 April 10). Observations of the microwave/hard X-ray burst show the time development of the impulsive energy release. Chromospheric (H..cap alpha..) and photospheric (Fe I lambda5324) filtergrams and photospheric (Fe I lambda8688) magnetograms, intensitygrams, and velocitygrams show magnetic strucutre, flare emission, mass motion, and magnetic changes. From these observations, we conclude: 1. The flare was triggered by a small emerging magnetic bipole. 2. The peak impulsive energy release occurred in the explosive eruption of a filament from over the magnetic inversion line. Hence: a) The filament eruption was the magnetic transient in the heart of the primary energy release in the chromosphere and corona. b) The primary energy release did not occur in approximately stationary magnetic loops, but on field lines undergoing violet motion and drastic changes in direction. 3. In the photospheric magnetograph lines. Fe I lambda5324 and Fe I lambda8688, the impulsive peak of the flare produced emission in a unipolar area of a sunspot. In synchrony with the emission, the polarity of this area transiently reversed in the lambda8688 magnetigrams; apparently, this was an artifact of the line emission. 4. Within a few minutes after the explosive filament eruption. a) A permanent decrease in magnetic flux accompanied the truncation of an umbra. b) A permanent increase in magnetic flux accompanied the severance of the penumbral bridge to a satellite sunspot. Apparently, thee genuine photospheric magnetic changes were consequences of strong flare-wrought magnetic changes in the chromospher and corona.

Moore, R.L.; Hurford, G.J.; Jones, H.P.; Kane, S.R.

1984-01-01T23:59:59.000Z

276

Combustion Air Preheat on Steam Cracker Furnaces  

E-Print Network [OSTI]

Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 FIGURE 6 TYPICAL SEAL ARRANGEMENT FIGURE 1 TYPICAL CHANGEOVER PATTERN 50 GAS TURBlNEICRACKlNO FOONACE SYSTEM GTE/AIR FLOW VI nME O...-_T.,.;'..;.;,M;,;;;E;.:"? .;;.S...

Kenney, W. F.

1983-01-01T23:59:59.000Z

277

Semicoke production and quality at Chinese vertical SJ furnaces  

SciTech Connect (OSTI)

In Russia there has been little interest on the thermal processing of non-sintering coal. However it may be used to obtain many special types of coke and semicoke that are necessary for processes other than blast furnace smelting and employing small metallurgical coke fractions that do not meet the relevant quality requirements. China has recently made great progress in developing the thermal processing of coal (mainly energy coal) to obtain a highly effective product, semicoke, primarily used in metallurgy and adsorption process. The article considers the operation of a Chinese semicoking plant equipped with vertical SJ furnaces. The plant is in the Shenmu district of Shanxi province (Inner Mongolia). The enterprise includes two furnaces of total output of about 100,000 t/yr of semicoke.

V.M. Strakhov; I.V. Surovtseva; A.V. D'yachenko; V.M. Men'shenin [Kuznetsk Center, Eastern Coal-Chemistry Institute (Russian Federation)

2007-05-15T23:59:59.000Z

278

Furnace Blower Electricity: National and Regional Savings Potential  

SciTech Connect (OSTI)

Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

2008-05-16T23:59:59.000Z

279

AISI/DOE Advanced Process Control Program Vol. 1 of 6: Optical Sensors and Controls for Improved Basic Oxygen Furnace Operations  

SciTech Connect (OSTI)

The development of an optical sensor for basic oxygen furnace (BOF) off-gas composition and temperature in this Advanced Process Control project has been a laboratory spectroscopic method evolve into a pre-commercialization prototype sensor system. The sensor simultaneously detects an infrared tunable diode laser ITDL beam transmitted through the process off-gas directly above the furnace mouth, and the infrared greybody emission from the particulate-laden off-gas stream. Following developmental laboratory and field-testing, the sensor prototype was successfully tested in four long-term field trials at Bethlehem Steel's Sparrows Point plant in Baltimore, MD> The resulting optical data were analyzed and reveal correlations with four important process variables: (1) bath turndown temperature; (2) carbon monoxide post-combustion control; (2) bath carbon concentration; and (4) furnace slopping behavior. The optical sensor measurement of the off-gas temperature is modestly correlated with bath turndown temperature. A detailed regression analysis of over 200 heats suggests that a dynamic control level of +25 Degree F can be attained with a stand-alone laser-based optical sensor. The ability to track off-gas temperatures to control post-combustion lance practice is also demonstrated, and may be of great use in optimizing post-combustion efficiency in electric furnace steelmaking operations. In addition to the laser-based absorption spectroscopy data collected by this sensor, a concurrent signal generated by greybody emission from the particle-laden off-gas was collected and analyzed. A detailed regression analysis shows an excellent correlation of a single variable with final bath turndown carbon concentration. Extended field trials in 1998 and early 1999 show a response range from below 0.03% to a least 0.15% carbon concentration with a precision of +0.0007%. Finally, a strong correlation between prolonged drops in the off-gas emission signal and furnace slopping events was observed. A simple computer algorithm was written that successfully predicts furnace slopping for 90% of the heats observed; over 80% are predicted with at least a 30-second warning prior to the initial slopping events,

Sarah Allendorf; David Ottesen; Donald Hardesty

2002-01-31T23:59:59.000Z

280

An Olefin Unit's Energy Audit and Implementation  

E-Print Network [OSTI]

control will be provided to adjust furnace draft based on flue gas analysis. Fuel requirements will be reduced by $350,000 per year. Project No. 6 - Flare Purge Revisions The original flare tip was installed without a molecular seal to reduce flare... additional study. The team identified twelve energy conservation o~portun? ities and endorsed three major capital projects: 1. Additional Furnace Heat Recovery 2. Replacement of Gas Turbine Waste Heat Boilers 3. Installation of Linde cold box...

Buehler, J. H.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

Sopori, Bhushan L. (Denver, CO)

1995-01-01T23:59:59.000Z

282

Overview of Energy Efficiency for Glass Furnace  

E-Print Network [OSTI]

,Particulates (Environmental norms) Global competitiveness #12;3 April, 2006 4Source: www.oilnergy.com Crude Oil Price #12;3 April, 2006 5 Natural Gas Price Source: www.oilnergy.com #12;3 April, 2006 6 Carbon Dioxide Endothermic heat of reaction Glass enthalpy at outlet of tank 1886 From temperature of 20 oC to 1500 oC Batch

Banerjee, Rangan

283

Hadronic Production of TeV Gamma Ray Flares from Blazars  

E-Print Network [OSTI]

We propose that TeV $\\gamma$-ray emission from blazars is produced by collisions near the line of sight of high energy jet protons with gas targets (``clouds'') from the broad emission-line region (BLR). Intense TeV $\\gamma$-ray flares (GRFs) are produced when BLR clouds cross the line of sight close to the black hole. The model reproduces the observed properties of the recently reported very short and intense TeV GRFs from the blazar Markarian 421. Hadronic production of TeV GRF from blazars implies that it is accompanied by a simultaneous emission of high energy neutrinos, and of electrons and positrons with similar intensities, light curves and energy spectra. Cooling of these electrons and positrons by emission of synchrotron radiation and inverse Compton scattering produces delayed optical, X-ray and $\\gamma$-ray flares.

Arnon Dar; Ari Laor

1997-01-13T23:59:59.000Z

284

2015-02-13 Issuance: Test Procedure for Furnaces and Boilers...  

Energy Savers [EERE]

2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed Rulemaking 2015-02-13 Issuance: Test Procedure for Furnaces and Boilers; Notice of Proposed...

285

NREL's Optical Cavity Furnace Brings Together a Myriad of Advances for Processing Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet on 2011 R&D 100 Award winner, the Optical Cavity Furnace. The innovative furnace uses light and unique light-induced effects to make higher-efficiency solar cells at lower cost.

Not Available

2011-08-01T23:59:59.000Z

286

Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents  

Broader source: Energy.gov [DOE]

This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

287

Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air  

E-Print Network [OSTI]

The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel...

Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

288

Flares in GRB afterglows from delayed magnetic dissipation  

E-Print Network [OSTI]

One of the most intriguing discoveries made by the Swift satellite is the flaring activity in about half of the afterglow lightcurves. Flares have been observed on both long and short duration GRBs and on time scales that range from minutes to ~1 day after the prompt emission. The rapid evolution of some flares led to the suggestion that they are caused by late central engine activity. Here, I propose an alternative explanation that does not need reviving of the central engine. Flares can be powered by delayed magnetic dissipation in strongly magnetized (i.e. with initial Poynting to kinetic flux ratio $\\simmore 1$) ejecta during its deceleration due to interaction with the external medium. A closer look at the length scales of the dissipation regions shows that magnetic dissipation can give rise to fast evolving and energetic flares. Multiple flares are also expected in the context of the model.

Dimitrios Giannios

2006-06-19T23:59:59.000Z

289

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

Sopori, Bhushan L. (Denver, CO)

1996-01-01T23:59:59.000Z

290

Single taphole blast furnace casthouse performance optimizing cost and availability  

SciTech Connect (OSTI)

The No. 2 blast furnace is a single taphole furnace with a convection air-cooled iron trough. The iron runner system is designed to fill four 90 ton open-top ladles per cast, which are transported by locomotive to the steel shop. The slag runner system is capable of filling three 800 ft{sup 3} slag pots per cast. The No. 2 blast furnace was blown in from mini-reline with this new casthouse configuration in early December 1991. It was operated for nearly three years until it was banked for planned stove repairs and a trough rebuild in late September 1994. During this period, the furnace produced just over 2.5 million tons of hot metal across the original trough refractory lining system, with 13 intermediate hot patch castable repairs. The entire casthouse refractory usage (main trough, runner systems, and covers) during this campaign was 1.06 pounds per net ton of hot metal. Investigation of the lining during demolition indicated that the trough lining campaign could have been extended to at least 3.0 million tons. This paper will discuss how operating practices, mechanical design, refractory design, maintenance philosophy, and attention to detail synergistically contributed to the long campaign life and low refractory consumption rate.

Fowles, R.D.; Searls, J.B.; Peay, W.R. [Geneva Steel, Provo, UT (United States); Brenneman, R.G.

1995-12-01T23:59:59.000Z

291

Processing automotive shredder fluff for a blast furnace injection  

E-Print Network [OSTI]

led to an optimized iron recovery of 78.5 % corresponding to an elemental iron content of 51 %, close to the ore grade required in a blast furnace. At the global scale of ELV recycling, these results entail an increase by 4 % of the fluff recycling rate, thus helping to meet the European requirements for 2015

Boyer, Edmond

292

Field measurements of interactions between furnaces and forced air distribution systems  

E-Print Network [OSTI]

of equipment that provides the heating energy (the furnace, boiler or heat pump) and the method usedLBNL 40587 Field measurements of interactions between furnaces and forced air distribution systems Vol. 104 Part 1 Field measurements of interactions between furnaces and forced air distribution

293

High temperature furnaces for small and large angle neutron scattering of disordered materials  

E-Print Network [OSTI]

725 High temperature furnaces for small and large angle neutron scattering of disordered materials and small angle neutron scattering (SANS) experiments respectively. They are vacuum furnaces with a thin maintained in a tantalum box. In a neutron beam, the furnaces produce a very low scattering level (without

Boyer, Edmond

294

Electrode Arrangement As Substitute Bottom For An Electrothermic Slag Smelting Furnace.  

DOE Patents [OSTI]

The electrode arrangement uses vertically oriented electrodes with side wall contacts for an electrothermic smelting furnace for aluminum production. The side wall contacts are radially moveable into the furnace to compensate for wear on the contacts. The side wall contacts can be hollow to allow a slag forming charge to be fed to the furnace.

Aune, Jan Arthur (Enebakk, NO); Brinch, Jon Christian (Oslo, NO); Johansen, Kai (Kristiansand, NO)

2005-12-27T23:59:59.000Z

295

Method and apparatus for off-gas composition sensing  

DOE Patents [OSTI]

An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.

Ottesen, David Keith (Livermore, CA); Allendorf, Sarah Williams (Fremont, CA); Hubbard, Gary Lee (Richmond, CA); Rosenberg, David Ezechiel (Columbia, MD)

1999-01-01T23:59:59.000Z

296

Africa's natural gas: potentialities and letdowns  

SciTech Connect (OSTI)

Although Africa has experienced 10 times less hydrocarbon exploration than Western Europe, its proved gas reserves already amount to 220-223 trillion CF or 7% of world reserves, while Europe holds 6% or 167 TCF. Yet Africa marketed only 1.3 TCF in 1982 against Europe's 6.5 TCF. Because of the lack of domestic demand for gas, Africa flares up to 21% of its gas output. Algeria is the continent's primary gas consumer, with Egypt, Libya, and Nigeria trying to expand local gas markets. The vast majority of marketed African gas goes to Europe, either as gas sent through the Trans-Med pipeline or as LNG via tanker.

Baladian, K.

1983-11-01T23:59:59.000Z

297

A Statistical Solar Flare Forecast Method  

E-Print Network [OSTI]

A Bayesian approach to solar flare prediction has been developed, which uses only the event statistics of flares already observed. The method is simple, objective, and makes few ad hoc assumptions. It is argued that this approach should be used to provide a baseline prediction for certain space weather purposes, upon which other methods, incorporating additional information, can improve. A practical implementation of the method for whole-Sun prediction of Geostationary Observational Environment Satellite (GOES) events is described in detail, and is demonstrated for 4 November 2003, the day of the largest recorded GOES flare. A test of the method is described based on the historical record of GOES events (1975-2003), and a detailed comparison is made with US National Oceanic and Atmospheric Administration (NOAA) predictions for 1987-2003. Although the NOAA forecasts incorporate a variety of other information, the present method out-performs the NOAA method in predicting mean numbers of event days, for both M-X and X events. Skill scores and other measures show that the present method is slightly less accurate at predicting M-X events than the NOAA method, but substantially more accurate at predicting X events, which are important contributors to space weather.

M. S. Wheatland

2005-05-14T23:59:59.000Z

298

West Virginia Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010 2011Feet)

299

West Virginia Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010 2011Feet)Year Jan Feb

300

Wyoming Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYear

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wyoming Natural Gas Vented and Flared (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14YearYearYear Jan Feb Mar

302

Nevada Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan Feb MarYearYearDecadeVehicle

303

Nevada Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan Feb MarYearYearDecadeVehicleYear Jan

304

New Mexico Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYear Jan Feb Mar AprDecade Year-0

305

New Mexico Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYear Jan Feb Mar AprDecade

306

New York Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

307

New York Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5Year

308

North Dakota Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0 Year-1 Year-2Decade Year-0 Year-1

309

North Dakota Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0 Year-1 Year-2Decade Year-0

310

Ohio Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (Million CubicDecadeVented and

311

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecade

312

Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) YearTotalDecadeVented and

313

Oregon Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1 Year-2 (MillionDecadeYearDecade

314

Oregon Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1 Year-2 (MillionDecadeYearDecadeYear

315

Other States Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1Cubic Feet)Feet)Vented and

316

Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep OctVented

317

Pennsylvania Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep

318

South Dakota Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) Decade Year-0 Year-1YearVehicleDecade

319

South Dakota Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) Decade Year-0

320

Tennessee Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24.TotalVehicle Fuel PriceVented

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Tennessee Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24.TotalVehicle Fuel

322

Texas Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 (MillionSep-14YearDecade Year-0

323

Texas Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 (MillionSep-14YearDecade

324

Alabama Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan Feb Mar AprDecade Year-0 Year-1

325

Alabama Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan Feb Mar AprDecade Year-0 Year-1Year

326

Alaska Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan

327

Alaska Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan Feb Mar Apr May Jun Jul Aug

328

Arkansas Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVentedYearUnderground

329

Arkansas Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVentedYearUndergroundYear Jan Feb

330

California Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998Decade Year-0Feet)YearDecade

331

California Natural Gas Vented and Flared (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998Decade

332

Utah Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 (MillionDecadeYearDecade

333

Utah Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 (MillionDecadeYearDecadeYear

334

Virginia Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (Billion CubicYear7.14Vented and

335

Nebraska Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb Mar Apr May Jun JulDecade

336

Nebraska Natural Gas Vented and Flared (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb Mar Apr May Jun JulDecadeYear

337

Coal combustion under conditions of blast furnace injection  

SciTech Connect (OSTI)

Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

1995-12-01T23:59:59.000Z

338

X-ray Flares in Gamma-Ray Bursts.  

E-Print Network [OSTI]

??Data from the Swift mission have now shown that flares are a common component of Gamma-Ray Burst afterglows, appearing in roughly 50% of GRBs to… (more)

Morris, David

2008-01-01T23:59:59.000Z

339

Simulation of blast-furnace tuyere and raceway conditions in a wire mesh reactor: extents of combustion and gasification  

SciTech Connect (OSTI)

A wire mesh reactor has been modified to investigate reactions of coal particles in the tuyeres and raceways of blast furnaces. At temperatures above 1000{sup o}C, pyrolysis reactions are completed within 1 s. The release of organic volatiles is probably completed by 1500{sup o}C, but the volatile yield shows a small increase up to 2000{sup o}C. The additional weight loss at the higher temperature may be due to weight loss from inorganic material. The residence time in the raceway is typically 20 ms, so it is likely that pyrolysis of the coal will continue throughout the passage along the raceway and into the base of the furnace shaft. Combustion reactions were investigated using a trapped air injection system, which admitted a short pulse of air into the wire mesh reactor sweep gas stream. In these experiments, the temperature and partial pressure of O{sub 2} were limited by the oxidation of the molybdenum mesh. However, the tests have provided valid insight into the extent of this reaction at conditions close to those experienced in the raceway. Extents of combustion of the char were low (mostly, less than 5%, daf basis). The work indicates that the extent of this reaction is limited in the raceway by the low residence time and by the effect of released volatiles, which scavenge the O{sub 2} and prevent access to the char. CO{sub 2} gasification has also been studied and high conversions achieved within a residence time of 5-10 s. The latter residence time is far longer than that in the raceway and more typical of small particles travelling upward in the furnace shaft. The results indicate that this reaction is capable of destroying most of the char. However, the extent of the gasification reaction appears limited by the decrease in temperature as the material moves up through the furnace. 44 refs., 12 figs., 6 tabs.

Long Wu; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-08-15T23:59:59.000Z

340

High-Efficiency Low-Dross Combustion System for Aluminum Remelting Reverberatory Furnaces, Project Final Report, July 2005  

SciTech Connect (OSTI)

GTI, and its commercial partners, have developed a high-efficiency low-dross combustion system that offers environmental and energy efficiency benefits at lower capital costs for the secondary aluminum industry users of reverberatory furnaces. The high-efficiency low-dross combustion system, also called Self-Optimizing Combustion System (SOCS), includes the flex-flame burner firing an air or oxygen-enriched natural gas flame, a non-contact optical flame sensor, and a combustion control system. The flex-flame burner, developed and tested by GTI, provides an innovative firing process in which the flame shape and velocity can be controlled. The burner produces a flame that keeps oxygen away from the bath surface by including an O2-enriched fuel-rich zone on the bottom and an air-fired fuel-lean zone on the top. Flame shape and velocity can be changed at constant firing rate or held constant over a range of firing conditions. A non-intrusive optical sensor is used to monitor the flame at all times. Information from the optical sensor(s) and thermocouples can be used to control the flow of natural gas, air, and oxygen to the burner as needed to maintain desired flame characteristics. This type of control is particularly important to keep oxygen away from the melt surface and thus reduce dross formation. This retrofit technology decreases fuel usage, increases furnace production rate, lowers gaseous emissions, and reduces dross formation. The highest priority research need listed under Recycled Materials is to turn aluminum process waste into usable materials which this technology accomplishes directly by decreasing dross formation and therefore increasing aluminum yield from a gas-fired reverberatory furnace. Emissions of NOx will be reduced to approximately 0.3 lb/ton of aluminum, in compliance with air emission regulations.

Soupos, V.; Zelepouga, S.; Rue, D.

2005-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

federal minimum energy conservation standards. Thus, someEnergy Conservation Act (NAECA) legislation of 1987 established the initial minimum standards

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

342

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

of Energy-Energy Information Administration, A Look atof Energy-Energy Information Administration. Annual Energyof Energy - Energy Information Administration, Annual Energy

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

343

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network [OSTI]

Administration. Annual Energy Outlook 2003: With ProjectionsAdministration, Annual Energy Outlook 2002: With Projectionschanges in EIA’s Annual Energy Outlook 2003 (AEO2003) [4] to

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

344

Technical support document: Energy conservation standards for consumer products: Refrigerators and furnaces including: environmental impacts regulatory impact analysis  

SciTech Connect (OSTI)

The National Appliance Energy Conversation Act (NAECA) of 1987 (P.L. 100-12) establishes energy efficiency standards for 13 types of consumer products. The legislation requires the Department of Energy (DOE) to consider new or amended standards on these and other types of products at specified times. DOE is currently selecting standards for two types of products: refrigerators, refrigerator-freezers, and freezers; and small gas furnaces. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of the proposed standards. 8 refs., 39 figs., 135 tabs.

Not Available

1989-11-01T23:59:59.000Z

345

An Accretion-Induced X-ray Flare in Sgr A*  

E-Print Network [OSTI]

The recent detection of a three-hour X-ray flare from Sgr A* by Chandra provides very strong evidence for a compact emitting region near this supermassive black hole at the Galactic center. Sgr A*'s mm/sub-mm spectrum and polarimetric properties, and its quiescent-state X-ray flux density, are consistent with a model in which low angular momentum gas captured at large radii circularizes to form a hot, magnetized Keplerian flow within tens of Schwarzschild radii of the black hole's event horizon. In Sgr A*'s quiescent state, the X-ray emission appears to be produced by self-Comptonization (SSC) of the mm/sub-mm synchrotron photons emitted in this region. In this paper, we show that the prominent X-ray flare seen in Sgr A* may be due to a sudden enhancement of accretion through the circularized flow. Depending on whether the associated response of the anomalous viscosity is to increase or decrease in tandem with this additional injection of mass, the X-ray photons during the outburst may be produced either via thermal bremsstrahlung (if the viscosity decreases), or via SSC (if the viscosity increases). However, the latter predicts a softer X-ray spectrum than was seen by Chandra, so it appears that a bremsstrahlung origin for the X-ray outburst is favored. A strong correlation is expected between the mm/sub-mm and X-ray fluxes when the flare X-rays are produced by SSC, while the correlated variability is strongest between the sub-mm/far-IR and X-rays when bremsstrahlung emission is dominant during the flare. In addition, we shows that future coordinated multi-wavelength observations planned for the 2002 and 2003 cycles may be able to distinguish between the accretion and jet scenarios.

Siming Liu; Fulvio Melia

2002-01-21T23:59:59.000Z

346

Relationships between physical and observational parameters during flares on  

E-Print Network [OSTI]

for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. 3 Armagh Observatory, College Hill, Armagh BT61 9DG 2200 AG Noordwijk, The Netherlands. Summary. A great number of short and weak non white-light flares Solar flares were discovered by Carrington and Hodgson on September 1, 1859 [2, 19]. However

Complutense de Madrid, Universidad

347

Size dependence of solar X-ray flare properties  

E-Print Network [OSTI]

Non-thermal and thermal parameters of 85 solar flares of GOES class B1 to M6 (background subtracted classes A1 to M6) have been compared to each other. The hard X-ray flux has been measured by RHESSI and a spectral fitting provided flux and spectral index of the non-thermal emission, as well as temperature and emission measure of the thermal emission. The soft X-ray flux was taken from GOES measurements. We find a linear correlation in a double logarithmic plot between the non-thermal flux and the spectral index. The higher the acceleration rate of a flare, the harder the non-thermal electron distribution. The relation is similar to the one found by a comparison of the same parameters from several sub-peaks of a single flare. Thus small flares behave like small subpeaks of large flares. Thermal flare properties such as temperature, emission measure and the soft X-ray flux also correlate with peak non-thermal flux. A large non-thermal peak flux entails an enhancement in both thermal parameters. The relation between spectral index and the non-thermal flux is an intrinsic feature of the particle acceleration process, depending on flare size. This property affects the reported frequency distribution of flare energies.

Marina Battaglia; Paolo C. Grigis; Arnold O. Benz

2005-05-09T23:59:59.000Z

348

Low NOx nozzle tip for a pulverized solid fuel furnace  

DOE Patents [OSTI]

A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

2014-04-22T23:59:59.000Z

349

Innovative Self- Generating Projects  

E-Print Network [OSTI]

Steam Driven Cooling Water Pump Blast Furnace Coke Plant Flares Boilers Steam Header Electric Cooling Water Pump (Back-up) Process Steam (Main Plant) Coal Hot Mill Reheat Furnace COG Bunker Oil ESL-IE-13-05-06 Proceedings... Driven Cooling Pump (New Back-up) Blast Furnace Coke Plant Flares Boilers Parastic Loads Natural Gas Turbine Steam Header Electric Cooling Water Pump (with Power Meter) Net ElectricityG Process Steam (Main Plant) Coal Hot Mill Reheat...

Kelly, L.

2013-01-01T23:59:59.000Z

350

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

Sopori, B.L.

1996-11-19T23:59:59.000Z

351

EVIDENCE FOR HOT FAST FLOW ABOVE A SOLAR FLARE ARCADE  

SciTech Connect (OSTI)

Solar flares are one of the main forces behind space weather events. However, the mechanism that drives such energetic phenomena is not fully understood. The standard eruptive flare model predicts that magnetic reconnection occurs high in the corona where hot fast flows are created. Some imaging or spectroscopic observations have indicated the presence of these hot fast flows, but there have been no spectroscopic scanning observations to date to measure the two-dimensional structure quantitatively. We analyzed a flare that occurred on the west solar limb on 2012 January 27 observed by the Hinode EUV Imaging Spectrometer (EIS) and found that the hot (?30MK) fast (>500 km s{sup –1}) component was located above the flare loop. This is consistent with magnetic reconnection taking place above the flare loop.

Imada, S. [Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)] [Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Aoki, K.; Hara, H.; Watanabe, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588 (Japan); Harra, L. K. [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)] [UCL-Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Shimizu, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara-shi, Kanagawa 229-8510 (Japan)] [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara-shi, Kanagawa 229-8510 (Japan)

2013-10-10T23:59:59.000Z

352

A BLAZAR-LIKE RADIO FLARE IN MRK 231  

SciTech Connect (OSTI)

Radio monitoring of the broad absorption line quasar (BALQSO) Mrk 231 from 13.9 GHz to 17.6 GHz detected a strong flat spectrum flare. Even though BALQSOs are typically weak radio sources, the 17.6 GHz flux density doubled in ?150 days, from ?135 mJy to ?270 mJy. It is demonstrated that the elapsed rise time in the quasar rest frame and the relative magnitude of the flare is typical of some of the stronger flares in blazars that are usually associated with the ejection of discrete components on parsec scales. The decay of a similar flare was found in a previous monitoring campaign at 22 GHz. We conclude that these flares are not rare. The implication is that Mrk 231 seems to be a quasar in which the physical mechanism that produces the broad absorption line wind is in tension with the emergence of a fledgling blazar.

Reynolds, Cormac; Hurley-Walker, Natasha [ICRAR-Curtin University, GPO Box U1987, Perth, Western Australia, 6102 (Australia)] [ICRAR-Curtin University, GPO Box U1987, Perth, Western Australia, 6102 (Australia); Punsly, Brian [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States)] [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States); O'Dea, Christopher P., E-mail: brian.punsly1@verizon.net, E-mail: brian.punsly@comdev-usa.com [Laboratory for Multiwavelength Astrophysics, School of Physics and Astronomy, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

2013-10-20T23:59:59.000Z

353

Raceway behaviors in blast furnace with pulverized coal injection  

SciTech Connect (OSTI)

The blast furnace raceway shows different characteristics with PCR (pulverized coal injection rate). It was found in this study that with the increase of PCR the raceway depth decreases, and the size of birds nest and sometimes with liquid holdup, increases. Oxygen enrichment with co-axial lances was known to be very effective on the extension of raceway depth and size reduction of birds nest. It was also found that there are various factors which affect the coke properties at tuyere level of the blast furnace. Coke traveling time was calculated to be extended with PCR and it had a close relationship with the coke size in bosh. Coke mean size decreased with the increase of coke traveling time, that is, with the increase of PCR. Both DI (the strength of coke in cold) and CSR (the strength of coke after reaction) were also decreased with PCR. RAFT (Raceway Adiabatic Flame Temperature) had a tendency to be decreased with the increase of PCR, which is obtained by the estimation of coke temperature via XRD analysis. From the analysis of alkali contents in coke sampled along the radius of the blast furnace, it was understood that no difference in alkali contents between fine and lump coke represents that coke fines generated from upper burden might appear at tuyere level.

Chung, J.K.; Han, J.W.; Cho, B.R. [POSCO, Cheollanamdo (Korea, Republic of)

1995-12-01T23:59:59.000Z

354

Plasma-supported coal combustion in boiler furnace  

SciTech Connect (OSTI)

Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B. [Kazakh National University, Alma Ata (Kazakhstan). Dept. of Physics

2007-12-15T23:59:59.000Z

355

LPG recovery from refinery flare by waste heat powered absorption refrigeration  

SciTech Connect (OSTI)

A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

Erickson, D.C.; Kelly, F.

1998-07-01T23:59:59.000Z

356

Xray Flare Light Curves and Dimensions of the Flaring S. Serio, F. Reale, R. Betta, G. Peres  

E-Print Network [OSTI]

the temperature evolution as tracer of the presence of heating during the decay. Many solar flares appear). We outline here the method and some testing on spatially­resolved solar flares observed with Yohkoh (slope in a Log/Log plot) depends on the decay time of the heating re­ leased in the loop during

357

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the previous semi-annual technical progress report (April 1, 2001 through September 30, 2001). During the current reporting period, additional balance of plant impact information was determined for one of the two tests. These additional balance-of-plant results are presented and discussed in this report. There was no other technical progress to report, because all planned testing as part of this project has been completed.

Gary M. Blythe

2002-04-29T23:59:59.000Z

358

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. Balance of plant impacts, primarily on the ESP particulate control device, were also determined during both tests. These results are presented and discussed in this report.

Gary M. Blythe

2001-11-06T23:59:59.000Z

359

Time and Temperature Test Results for PFP Thermal Stabilization Furnaces  

SciTech Connect (OSTI)

The national standard for plutonium storage acceptability (standard DOE-STD-3013-99, generally known as ''the 3013 standard'') has been revised to clarify the requirement for processes that will produce acceptable storage materials. The 3013 standard (Reference 1) now states that ''Oxides shall be stabilized by heating the material in an oxidizing atmosphere to a Material Temperature of at least 950 C (1742 F) for not less than 2 hours.'' The process currently in use for producing stable oxides for storage at the Plutonium Finishing Plant (PFP) heats a furnace atmosphere to 1000 C and holds it there for 2 hours. The temperature of the material being stabilized is not measured directly during this process. The Plutonium Process Support Laboratories (PPSL) were requested to demonstrate that the process currently in use at PFP is an acceptable method of producing stable plutonium dioxide consistently. A spare furnace identical to the production furnaces was set up and tested under varying conditions with non-radioactive surrogate materials. Reference 2 was issued to guide the testing program. The process currently in use at the PFP for stabilizing plutonium-bearing powders was shown to heat all the material in the furnace to at least 950 C for at least 2 hours. The current process will work for (1) relatively pure plutonium dioxide, (2) dioxide powders mixed with up to 20 weight percent magnesium oxide, and (3) dioxide powders with up to 11 weight percent magnesium oxide and 20 weight percent magnesium nitrate hexahydrate. Time and temperature data were also consistent with a successful demonstration for a mixture containing 10 weight percent each of sodium and potassium chloride; however, the molten chloride salts destroyed the thermocouples in the powder and temperature data were unavailable for part of that run. These results assume that the current operating limits of no more than 2500 grams per furnace charge and a powder height of no more than 1.5 inches remain in effect, although deeper powder beds (up to 2 inches) also yielded temperatures of greater than 950 C for longer than 2 hours.

COMPTON, J.A.

2000-08-09T23:59:59.000Z

360

Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project  

SciTech Connect (OSTI)

The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

Duncan, A.

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

36Super-fast solar flares ! NASA's Ramaty High Energy Solar  

E-Print Network [OSTI]

36Super-fast solar flares ! NASA's Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite has been studying solar flares since 2002. The sequence of figures to the left shows a flaring region hr/3600 sec = 0.98 kilometers/sec. The solar flare blob was traveling at 207 kilometers per second

362

Solar Flare Measurements with STIX and MiSolFA  

E-Print Network [OSTI]

Solar flares are the most powerful events in the solar system and the brightest sources of X-rays, often associated with emission of particles reaching the Earth and causing geomagnetic storms, giving problems to communication, airplanes and even black-outs. X-rays emitted by accelerated electrons are the most direct probe of solar flare phenomena. The Micro Solar-Flare Apparatus (MiSolFA) is a proposed compact X-ray detector which will address the two biggest issues in solar flare modeling. Dynamic range limitations prevent simultaneous spectroscopy with a single instrument of all X-ray emitting regions of a flare. In addition, most X-ray observations so far are inconsistent with the high anisotropy predicted by the models usually adopted for solar flares. Operated at the same time as the STIX instrument of the ESA Solar Orbiter mission, at the next solar maximum (2020), they will have the unique opportunity to look at the same flare from two different directions: Solar Orbiter gets very close to the Sun wit...

Casadei, Diego

2014-01-01T23:59:59.000Z

363

OBSERVATIONS OF THERMAL FLARE PLASMA WITH THE EUV VARIABILITY EXPERIMENT  

SciTech Connect (OSTI)

One of the defining characteristics of a solar flare is the impulsive formation of very high temperature plasma. The properties of the thermal emission are not well understood, however, and the analysis of solar flare observations is often predicated on the assumption that the flare plasma is isothermal. The EUV Variability Experiment (EVE) on the Solar Dynamics Observatory provides spectrally resolved observations of emission lines that span a wide range of temperatures (e.g., Fe XV-Fe XXIV) and allow for thermal flare plasma to be studied in detail. In this paper we describe a method for computing the differential emission measure distribution in a flare using EVE observations and apply it to several representative events. We find that in all phases of the flare the differential emission measure distribution is broad. Comparisons of EVE spectra with calculations based on parameters derived from the Geostationary Operational Environmental Satellites soft X-ray fluxes indicate that the isothermal approximation is generally a poor representation of the thermal structure of a flare.

Warren, Harry P.; Doschek, George A. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Mariska, John T. [School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

2013-06-20T23:59:59.000Z

364

Soft X-ray Pulsations in Solar Flares  

E-Print Network [OSTI]

The soft X-ray emissions of solar flares come mainly from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the bulk of the total flare energy goes elsewhere. Recently Dolla et al. (2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES (Geostationary Operational Environmental Satellite) spacecraft. We analyze the suitability of the GOES data for this kind of analysis and find them to be generally valuable after Sept. 2010 (GOES-15). We then extend Dolla et al. results to a list of X-class flares from Cycle 24, and show that most of them display QPP in the impulsive phase. During the impulsive phase the footpoints of the newly-forming flare loops may also contribute to the observed soft X-ray variations. The QPP show up cleanly in both channels of the GOES dat...

Simões, Paulo J A; Fletcher, Lyndsay

2014-01-01T23:59:59.000Z

365

Sign singularity and flares in solar active region NOAA 11158  

E-Print Network [OSTI]

Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares, and the presence of correlation with EUV and X-ray flux, suggest that eruption of large flares can be linked to the small scale properties of the current structures.

Sorriso-Valvo, Luca; Kazachenko, Maria D; Krucker, Sam; Primavera, Leonardo; Servidio, Sergio; Vecchio, Antonio; Welsch, Brian T; Fisher, George H; Lepreti, Fabio; Carbone, Vincenzo

2015-01-01T23:59:59.000Z

366

Modeling coal combustion behavior in an ironmaking blast furnace raceway: model development and applications  

SciTech Connect (OSTI)

A numerical model has been developed and validated for the investigation of coal combustion phenomena under blast furnace operating conditions. The model is fully three-dimensional, with a broad capacity to analyze significant operational and equipment design changes. The model was used in a number of studies, including: Effect of cooling gas type in coaxial lance arrangements. It was found that oxygen cooling improves coal burnout by 7% compared with natural gas cooling under conditions that have the same amount of oxygen enrichment in the hot blast. Effect of coal particle size distribution. It was found that during two similar periods of operation at Port Kembla's BF6, a difference in PCI capability could be attributed to the difference in coal size distribution. Effect of longer tuyeres. Longer tuyeres were installed at Port Kembla's BF5, leading to its reline scheduled for March 2009. The model predicted an increase in blast velocity at the tuyere nose due to the combustion of volatiles within the tuyere, with implications for tuyere pressure drop and PCI capability. Effect of lance tip geometry. A number of alternate designs were studied, with the best-performing designs promoting the dispersion of the coal particles. It was also found that the base case design promoted size segregation of the coal particles, forcing smaller coal particles to one side of the plume, leaving larger coal particles on the other side. 11 refs., 15 figs., 4 tabs.

Maldonado, D.; Austin, P.R.; Zulli, P.; Guo B. [BlueScope Steel Research Laboratories, Port Kembla, NSW (Australia)

2009-03-15T23:59:59.000Z

367

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

SciTech Connect (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

Gary M. Blythe

2003-10-01T23:59:59.000Z

368

E-Print Network 3.0 - arc furnace steel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TID electric arc furnaces for MSW ash are ... Source: Columbia University - Waste-to-Energy Research and Technology Council (WTERT) Collection: Renewable Energy Page: << < 1 2...

369

E-Print Network 3.0 - arc plasma furnace Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PLASMA PHYSICS AND ENGINEERING Summary: replace costly traditional technologies as incineration and conventional plasma arc furnaces, and provide... ASSOCIATED LABORATORY ON...

370

E-Print Network 3.0 - arc furnace steelmaking Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the furnace cavity. This special ... Source: Oak Ridge National Laboratory Fossil Energy Program; Pint, Bruce A. - Materials Science & Technology Division, Oak Ridge...

371

E-Print Network 3.0 - air furnace design Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IN MUNICIPAL INCINERATOR Summary: cal to good furnace performance and to mainten ance of air pollution control. Early in 1967 the writer... of the grate roughly equivalent to...

372

Active radiometer for self-calibrated furnace temperature measurements  

DOE Patents [OSTI]

Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnut Hill, MA); Titus, Charles H. (Newtown Square, PA); Wittle, J. Kenneth (Chester Springs, PA); Surma, Jeffrey E. (Kennewick, WA)

1996-01-01T23:59:59.000Z

373

The limitation of hearth sidewall wear at Redcar blast furnace  

SciTech Connect (OSTI)

The Redcar blast furnace with 14m hearth diameter was blown-in for its second campaign in August 1996. It is currently in its 10th year of operation and to date has produced just over 30 million tonnes. Current plans are to continue the second campaign to the year 2000 and beyond, producing over 40 million tonnes. In order to achieve this objective, any further wear on the lining, and in particular the hearth sidewall, needs to be minimized. This paper describes the present hearth design, the monitoring of hearth wear, the predicted wear profile, and the protection measures that have been taken or are being considered.

Parratt, J.E.

1996-12-31T23:59:59.000Z

374

A system for interpretation of blast furnace stockrod measurements  

SciTech Connect (OSTI)

A system for intelligent monitoring and interpretation of signals from blast furnace stockrods is presented. The system visualizes the measurements and estimates the local burden layer thickness (under the rods) after every dump. Furthermore, it analyzes the burden descent rate to distinguish between slips, hangings, normal descent and peaks, etc., and also combines the stockrod information with findings of temperature measurements from an above-burden probe. The preprocessing of the signals and some features of the system, which is under development, are treated in this paper.

Hinnelae, J.; Saxen, H. [Aabo Akademi Univ. (Finland). Dept. of Chemical Engineering

1997-12-31T23:59:59.000Z

375

Graphite electrode DC arc furnace. Innovative technology summary report  

SciTech Connect (OSTI)

The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of feed composition variations on process operating conditions and slag product performance; and collecting mass balance and operating data to support equipment and instrument design.

NONE

1999-05-01T23:59:59.000Z

376

Obscuration of Flare Emission by an Eruptive Prominence  

E-Print Network [OSTI]

We report on the eclipsing of microwave flare emission by an eruptive prominence from a neighboring region as observed by the Nobeyama Radioheliograph at 17 GHz. The obscuration of the flare emission appears as a dimming feature in the microwave flare light curve. We use the dimming feature to derive the temperature of the prominence and the distribution of heating along the length of the filament. We find that the prominence is heated to a temperature above the quiet Sun temperature at 17 GHz. The duration of the dimming is the time taken by the eruptive prominence in passing over the flaring region. We also find evidence for the obscuration in EUV images obtained by the Solar and Heliospheric Observatory (SOHO) mission.

Gopalswamy, Nat

2013-01-01T23:59:59.000Z

377

Blast furnace coke quality in relation to petroleum coke addition  

SciTech Connect (OSTI)

The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Sirgado, M. [ENSIDESA, Aviles (Spain)

1995-12-01T23:59:59.000Z

378

ANATOMY OF A SOLAR FLARE: MEASUREMENTS OF THE 2006 DECEMBER 14 X-CLASS FLARE WITH GONG, HINODE, AND RHESSI  

SciTech Connect (OSTI)

Some of the most challenging observations to explain in the context of existing flare models are those related to the lower atmosphere and below the solar surface. Such observations, including changes in the photospheric magnetic field and seismic emission, indicate the poorly understood connections between energy release in the corona and its impact in the photosphere and the solar interior. Using data from Hinode, TRACE, RHESSI, and GONG we study the temporal and spatial evolution of the 2006 December 14 X-class flare in the chromosphere, photosphere, and the solar interior. We investigate the connections between the emission at various atmospheric depths, including acoustic signatures obtained by time-distance and holography methods from the GONG data. We report the horizontal displacements observed in the photosphere linked to the timing and locations of the acoustic signatures we believe to be associated with this flare, their vertical and horizontal displacement velocities, and their potential implications for current models of flare dynamics.

Matthews, S. A.; Zharkov, S. [UCL Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, RH5 6NT UK (United Kingdom); Zharkova, V. V. [Horton D Building, Department of Mathematics, University of Bradford, Bradford, BD7 1DP (United Kingdom)

2011-10-01T23:59:59.000Z

379

Process control techniques at the blast furnaces of Thyssen Stahl AG  

SciTech Connect (OSTI)

Process improvements, capacity increases and the use of modern measuring and process control techniques have helped to ensure that the blast furnace will remain an indispensable means of supplying steelworks with hot metal until well into the next century. The survival of a future-oriented company such as Thyssen Stahl AG depends on long-term improvements in economic viability. Today, Thyssen Stahl AG operates two blast furnace plants comprising a total of five blast furnaces with hearth diameters ranging from 9.3 to 14.9m. This choice of furnaces permits flexible adjustment to changing workload situations and enables about ten million tons of hot metal to be produced each year. The wide range of measuring devices specially fitted on Schwelgern blast furnace No. 1 made a vital contribution to the development of blast furnace models. The purpose of these models was to make a general assessment of the state of the furnace and so create an objective basis for furnace operation. The paper describes the development of these measuring techniques and process model and the application of the model.

Kowalski, W.; Bachhofen, H.J.; Beppler, E.; Kreibich, K.; Muelheims, K.; Peters, M.; Wieters, C.U. [Thyssen Stahl AG, Duisburg (Germany)

1995-12-01T23:59:59.000Z

380

Long life hearth in blast furnace -- Kokura No. 2 B.F. of Sumitomo Metals  

SciTech Connect (OSTI)

The factors elongating hearth life of Sumitomo Kokura No. 2 B.F. were investigated by use of an estimation system of the furnace hearth condition, which consisted of four mathematical simulation models. Lowered heat load operation together with integrated design of both refractories and cooling enabled the furnace life to be extended for over 16 years without severe damage in the hearth.

Yamamoto, Takaiku; Sunahara, Kouhei; Inada, Takanobu; Takatani, Kouji; Miyahara, Mitsuo; Sato, Yasusi; Hatano, Yasuhiko; Takata, Kouzo

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Air Leakage of Furnaces and Air Handlers Iain S. Walker, Mike Lubliner, Darryl Dickerhoff,  

E-Print Network [OSTI]

Air Leakage of Furnaces and Air Handlers of California. #12;1 Air Leakage of Furnaces and Air Handlers Iain S. Walker, LBNL Mike Lubliner, Washington been made in reducing air leakage in residential and to a lesser extent small commercial forced air

382

Evaluation of PFP Furnace Systems for Thermal Stabilization of Washed High Chloride Plutonium Oxide Items  

SciTech Connect (OSTI)

High chloride content plutonium (HCP) oxides are impure plutonium oxide scrap which contains NaCl, KCl, MgCl2 and/or CaCl2 salts at potentially high concentrations and must be stabilized at 950 C per the DOE Standard, DOE-STD-3013-2000. The chlorides pose challenges to stabilization because volatile chloride salts and decomposition products can corrode furnace heating elements and downstream ventilation components. A high-temperature furnace (same make and model as used at the RMC at Plutonium Finishing Plant) and the associated offgas system were set up at PNNL to identify system vulnerabilities and to investigate alternative materials and operating conditions that would mitigate any corrosion and plugging of furnace and offgas components. The key areas of interest for this testing were the furnace heating elements, the offgas line located inside the furnace, the offgas line between the furnace and the filter/knockout pot, the filter/knockout pot, the sample boat, and corrosion coupons to evaluate alternative materials of construction. The evaluation was conducted by charging the furnace with CeO2 that had been impregnated with a mixture of chloride salts (selected to represent the expected residual chloride salt level in washed high chloride items) and heated in the furnace in accordance with the temperature ramp rates and hold times used at PFP.

Fischer, Christopher M.; Elmore, Monte R.; Schmidt, Andrew J.; Gerber, Mark A.; Muzatko, Danielle S.; Gano, Susan R.; Thornton, Brenda M.

2002-12-17T23:59:59.000Z

383

Our scenario is akin to the magnetic furnace model proposed by Axford and  

E-Print Network [OSTI]

Our scenario is akin to the magnetic furnace model proposed by Axford and McKenzie (14­16) and to ideas invoking reconnection of mesoscale loops (38, 39). We adopt from the furnace model the idea. However, our model of the nascent solar wind is intrinsically 3-D, and the magnetic field geometry

Pe'er, Dana

384

Gamma-Ray Polarimetry of Two X-Class Solar Flares  

E-Print Network [OSTI]

We have performed the first polarimetry of solar flare emission at gamma-ray energies (0.2-1 MeV). These observations were performed with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) for two large flares: the GOES X4.8-class solar flare of 2002 July 23, and the X17-class flare of 2003 October 28. We have marginal polarization detections in both flares, at levels of 21% +/- 9% and -11% +/- 5% respectively. These measurements significantly constrain the levels and directions of solar flare gamma-ray polarization, and begin to probe the underlying electron distributions.

Steven E. Boggs; W. Coburn; E. Kalemci

2005-10-19T23:59:59.000Z

385

Optimization of ferrous burden high temperature properties to meet blast furnace requirements in British Steel  

SciTech Connect (OSTI)

The high temperature properties of ferrous burden materials have long been an important consideration in the operation of British Steel blast furnaces. Previous research presented at this conference has shown that the behavior of materials in the lower stack and bosh can have a significant effect on furnace permeability and stability of operation. However, with increasing levels of hydrocarbon injection via the tuyeres, the reduction conditions inside British Steel blast furnaces have significantly altered over recent years. This paper focuses on the further work that has been undertaken to study the effect on ferrous burden high temperatures properties of the widely differing reduction regimes which can be experienced in today`s blast furnaces. The implications of the findings, and how they have been used in optimizing blast furnace operation and burden quality, are discussed.

Bergstrand, R.

1996-12-31T23:59:59.000Z

386

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

387

Quantification of Liquid Holdup in the Dropping Zone of a Blast Furnace--A Cold Model Study  

E-Print Network [OSTI]

.S. GUPTA and K. NAVEEN A two-dimensional cold model study, replicating an ironmaking blast furnace dropping

388

Flue gas desulfurization method and apparatus  

DOE Patents [OSTI]

A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

Madden, D.A.; Farthing, G.A.

1998-09-29T23:59:59.000Z

389

Flue gas desulfurization method and apparatus  

DOE Patents [OSTI]

A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

Madden, D.A.; Farthing, G.A.

1998-08-18T23:59:59.000Z

390

ROSAT Observations of the Flare Star CC Eri  

E-Print Network [OSTI]

The flare/spotted spectroscopic binary star CC Eri was observed with the Position Sensitive Proportional Counter (PSPC) on the X-ray satellite ROSAT on 1990 July 9-11 and 1992 January 26-27. During the observations, the source was variable on time scales from a few minutes to several hours, with the X-ray (0.2-2 keV) luminosity in the range $\\sim 2.5-6.8\\times 10^{29} erg s^{-1}$. An X-ray flare-like event, which has a one hour characteristic rise time and a two hour decay time, was observed from CC Eri on 1990 July 10 16:14-21:34 (UT). The X-ray spectrum of the source can be described by current thermal plasma codes with two temperature components or with a continuous temperature distribution. The spectral results show that plasma at $Te\\sim 10^{7}$ K exists in the corona of CC Eri. The variations in the observed source flux and spectra can be reproduced by a flare, adopting a magnetic reconnection model. Comparisons with an unheated model, late in the flare, suggest that the area and volume of the flare are substantially larger than in a solar two ribbon flare, while the electron pressure is similar. The emission measure and temperature of the non-flaring emission, interpreted as the average corona, lead to an electron pressure similar to that in a well-developed solar active region. Rotational modulation of a spot related active region requires an unphysically large X-ray flux in a concentrated area.

H. C. Pan; C. Jordan

1994-09-16T23:59:59.000Z

391

Processing electric arc furnace dust into saleable chemical products  

SciTech Connect (OSTI)

The modern steel industry uses electric arc furnace (EAF) technology to manufacture steel. A major drawback of this technology is the production of EAF dust, which is listed by the U.S. Environmental Protection Agency as a hazardous waste under the Resource Conservation and Recovery Act. The annual disposal of approximately 0.65 million tons of EAF dust in the United States and Canada is an expensive, unresolved problem for the steel industry. EAF dust byproducts are generated during the manufacturing process by a variety of mechanisms. The dust consists of various metals (e.g., zinc, lead, cadmium) that occur as vapors at 1,600{degrees}C (EAF hearth temperature); these vapors are condensed and collected in a baghouse. The production of one ton of steel will generate approximately 25 pounds of EAF dust as a byproduct, which is currently disposed of in landfills.

NONE

1998-04-01T23:59:59.000Z

392

Effect of furnace atmosphere on E-glass foaming Dong-Sang Kim a,*, Bryan C. Dutton b  

E-Print Network [OSTI]

Effect of furnace atmosphere on E-glass foaming Dong-Sang Kim a,*, Bryan C. Dutton b , Pavel R in revised form 21 August 2006 Abstract The effect of furnace atmosphere on E-glass foaming has been studied with the specific goal of understanding the impact of increased water content on foaming in oxy-fired furnaces. E-glass

Pilon, Laurent

393

E-Print Network 3.0 - alberta flare research Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FLARES Yingna Su,1,2 Leon Golub... ) footpoints in two-ribbon flares, using the high spatial resolution data obtained in 1998Y2005 by TRACE. To do... this study, we have...

394

E-Print Network 3.0 - acute gout flare Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gout flare Search Powered by Explorit Topic List Advanced Search Sample search results for: acute gout flare Page: << < 1 2 3 4 5 > >> 1 Uricase for gout treatment Chapter 5.1...

395

Repeated X-ray Flaring Activity in Sagittarius A*  

E-Print Network [OSTI]

Investigating the spectral and temporal characteristics of the X-rays coming from Sagittarius A* (Sgr A*) is essential to our development of a more complete understanding of the emission mechanisms in this supermassive black hole located at the center of our Galaxy. Several X-ray flares with varying durations and spectral features have already been observed from this object. Here we present the results of two long XMM-Newton observations of the Galactic nucleus carried out in 2004, for a total exposure time of nearly 500 ks. During these observations we detected two flares from Sgr A* with peak 2-10 keV luminosities about 40 times (L ~ 9x10^34 erg s?1) above the quiescent luminosity: one on 2004 March 31 and another on 2004 August 31. The first flare lasted about 2.5 ks and the second about 5 ks. The combined fit on the Epic spectra yield photon indeces of about 1.5 and 1.9 for the first and second flare respectively. This hard photon index strongly suggests the presence of an important population of non-thermal electrons during the event and supports the view that the majority of flaring events tend to be hard and not very luminous.

Guillaume Belanger; Andrea Goldwurm; Fulvio Melia; Farah Yusef-Zadeh; Philippe Ferrando; Delphine Porquet; Nicolas Grosso; Robert Warwick

2005-08-19T23:59:59.000Z

396

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

397

An example of alkalization of SiO{sub 2} in a blast furnace coke  

SciTech Connect (OSTI)

Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2007-09-15T23:59:59.000Z

398

Solar Flare Intermittency and the Earth's Temperature Anomalies Nicola Scafetta1,2  

E-Print Network [OSTI]

Solar Flare Intermittency and the Earth's Temperature Anomalies Nicola Scafetta1,2 and Bruce J; published 17 June 2003) We argue that Earth's short-term temperature anomalies and the solar flare data sets that corresponds to the one that would be induced by the solar flare intermittency. The mean

Scafetta, Nicola

399

Flares GRAVITY Relativistic simulations Conclusion Simulating observations to test GR at the  

E-Print Network [OSTI]

Flares GRAVITY Relativistic simulations Conclusion Simulating observations to test GR at the Galactic Center with GRAVITY GR19 Mexico Frédéric VINCENT1 Thibaut PAUMARD2 , Eric GOURGOULHON3 , Guy at the Galactic Center #12;Flares GRAVITY Relativistic simulations Conclusion 1 Sagittarius A* : a flaring black

Gourgoulhon, Eric

400

Simulations of Spectral Profiles Observed in a C5.6 Limb Flare  

E-Print Network [OSTI]

, Nanjing 210008, China Abstract We obtained a complete set of H# , CaII 8542 Å¡ A and HeI 10830 Å¡ A spectra of the flare loop. Key words: limb flare, line profile, infrared PACS: 1 Introduction Solar flare spectra velocities, electron temperatures and densities [1--4]. Spectral lines are thought be wide in solar limb

Li, Hui

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Automatic Solar Flare Detection Using MLP, RBF and SVM , Frank Y. Shih1  

E-Print Network [OSTI]

in light curves. In the mean time, solar flares also emit high velocity charged particles that take one1 Automatic Solar Flare Detection Using MLP, RBF and SVM Ming Qu1 , Frank Y. Shih1 , Ju Jing2. The focus of the automatic solar flare detection is on the development of efficient feature

402

Energy Partitions and Evolution in a Purely Thermal Solar Flare  

E-Print Network [OSTI]

This paper presents a solely thermal flare, which we detected in the microwave range from the thermal gyro- and free-free emission it produced. An advantage of analyzing thermal gyro emission is its unique ability to precisely yield the magnetic field in the radiating volume. When combined with observationally-deduced plasma density and temperature, these magnetic field measurements offer a straightforward way of tracking evolution of the magnetic and thermal energies in the flare. For the event described here, the magnetic energy density in the radio-emitting volume declines over the flare rise phase, then stays roughly constant during the extended peak phase, but recovers to the original level over the decay phase. At the stage where the magnetic energy density decreases, the thermal energy density increases; however, this increase is insufficient, by roughly an order of magnitude, to compensate for the magnetic energy decrease. When the magnetic energy release is over, the source parameters come back to ne...

Fleishman, Gregory D; Gary, Dale E

2015-01-01T23:59:59.000Z

403

Monitoring lining and hearth conditions at Inland`s No. 7 blast furnace  

SciTech Connect (OSTI)

The paper describes: furnace statistics; mini-reline undertaken in November, 1993; the stack condition; throat gunning; stabilizing the graphite bricks; the hearth condition; reactions to temperature excursions; future instrumentation; and hot blast system areas of concern. The present data from monitoring systems and inspections indicate that the furnace should be able to operate well beyond the expectation for the 1993 mini-reline (3--5 years) with: (1) consistent, high quality raw materials; (2) instrumentation, diagnostic, remedial, and preventative techniques developed; and (3) stopping quickly any water leaks into the furnace. The longevity of this campaign has undoubtedly been a result of this monitoring program.

Quisenberry, P.; Grant, M.; Carter, W.

1997-12-31T23:59:59.000Z

404

On numerical simulation of flow, heat transfer and combustion processes in tangentially-fired furnace  

SciTech Connect (OSTI)

In this work, an Eulerian/Lagrangian approach has been employed to investigate numerically flow characteristics, heat transfer and combustion processes inside corner-fired power plant boiler furnace. To avoid pseudo-diffusion that is significant in modeling tangentially-fired furnaces, some attempts have been made at improving the finite-difference scheme. Comparisons have been made between standard {kappa}-{epsilon} model and RNG {kappa}-{epsilon} model. Some new developments on turbulent diffusion of particles are taken into account in an attempt to improve computational accuracy. Finally, temperature deviation is studied numerically so as to gain deeper insight into tangentially fired furnace.

Sun, P.; Fan, J.; Cen, K.

1999-07-01T23:59:59.000Z

405

Stochastic Electron Acceleration During the NIR and X-ray Flares in Sagittarius A*  

E-Print Network [OSTI]

Recent near-IR (NIR) and X-ray observations of Sagittarius A*'s spectrum have yielded several strong constraints on the transient energization mechanism, justifying a re-examination of the stochastic acceleration model proposed previously for these events. We here demonstrate that the new results are fully consistent with the acceleration of electrons via the transit-time damping process. But more importantly, these new NIR and X-ray flares now can constrain the source size, the gas density, the magnetic field, and the wave energy density in the turbulent plasma. Future simultaneous multi-wavelength observations with good spectral information will, in addition, allow us to study their temporal evolution, which will eventually lead to an accurate determination of the behavior of the plasma just minutes prior to its absorption by the black hole.

Siming Liu; Fulvio Melia; Vahe Petrosian

2005-06-07T23:59:59.000Z

406

Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare  

E-Print Network [OSTI]

A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.

J. Kasparova; M. Karlicky; E. P. Kontar; R. A. Schwartz; B. R. Dennis

2005-08-30T23:59:59.000Z

407

Introduction The Sun is a mass of incandescent gas  

E-Print Network [OSTI]

Chapter 1 Introduction The Sun is a mass of incandescent gas A gigantic nuclear furnace Building that our bodies contain atoms that, like most elements and their isotopes in the Solar System, were part of the molecular cloud from which the Solar System condensed, and were trapped in primitive

Nittler, Larry R.

408

Direct Use of Natural Gas: Economic Fuel Choices from the Regional Power  

E-Print Network [OSTI]

and furnaces or to generate electricity for electrical space and water heating systems that provide space and water heating systems to gas systems.1 That study showed there were many cost- effective fuel. The Council has not promoted conversion of electric space and water heat equipment to natural gas equipment

409

Titanium addition practice, and maintenance for the hearths in AHMSA`s blast furnaces  

SciTech Connect (OSTI)

Altos Hornos de Mexico (AHMSA) is a steel company located in Northern Mexico, in the state of Coahuila. Currently there are three blast furnaces in operation and one more about to finish its general repair. This last one is to remain as a back-up unit. Because of blast furnace hearth wear outs AHMSA has developed some maintenance procedures. These procedures are based on titanium ore additions and hearth thermic control monitoring. There are also some other maintenance practices adopted to the working operations to assure that such operations detect and avoid in time hearth wear outs that place personnel and/or the unit in danger (due to hearth leaks). This paper describes titanium ore addition to No. 2 blast furnace during the final campaign and it also illustrates maintenance practices and continuous monitoring of temperature trends both of which were implemented at AHMSA`s No. 5 blast furnace.

Boone, A.G.; Jimenez, G.; Castillo, J. [Altos Hornos de Mexico, Monclova (Mexico)

1997-12-31T23:59:59.000Z

410

Operational results for high pulverized coal injection rate at Kimitsu No. 3 blast furnace  

SciTech Connect (OSTI)

In order to further develop the technology for high-rate pulverized coal injection (PCI), namely over 200 kg/t-pig, Nippon Steel performed a high injection rate test at the Kimitsu No. 3 blast furnace in November, 1993. The paper describes PCI equipment; the operational design of the test, including blast conditions, reducibility of sinter, coke strength and burden distribution; and test results. These results include a discussion of the transition of operation, burden distribution control, replacement ratio of coke, permeability at upper and lower parts of the furnace, reducibility at lower part of the furnace, accumulation of fines in the deadman, and generation and accumulation of unburnt char. Stable operation was achieved at a PCI rate of 190 kg/t-pig. With injection rates between 200--300 kg/t-pig, the problem becomes how to improve the reduction-meltdown behavior in the lower part of the furnace.

Ueno, Hiromitsu; Matsunaga, Shin`ichi; Kakuichi, Kazumoto; Amano, Shigeru; Yamaguchi, Kazuyoshi

1995-12-01T23:59:59.000Z

411

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Broader source: Energy.gov [DOE]

The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The...

412

Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications  

E-Print Network [OSTI]

and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design...

Williams, F. D. M.; Kondratas, H. M.

1983-01-01T23:59:59.000Z

413

BLAST FURNACE GRANULAR COAL INJECTION SYSTEM. Final Report Volume 2: Project Performance and Economics  

SciTech Connect (OSTI)

Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem in November 1990. The design of the project was completed in December 1993 and construction was completed in January 1995. The equipment startup period continued to November 1995 at which time the operating and testing program began. The blast furnace test program with different injected coals was completed in December 1998.

Unknown

1999-10-01T23:59:59.000Z

414

Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking  

Broader source: Energy.gov [DOE]

This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metalized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metalized iron nodules at low cost.

415

TIDAL DISRUPTION FLARES: THE ACCRETION DISK PHASE  

SciTech Connect (OSTI)

The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of the main results derived from our simulations is that blackbody fits of X-ray data tend to overestimate the true mean disk temperature. In fact, the temperature derived from blackbody fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous (or accretion) timescale, which also fixes the rising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution of the light curve depends on the evolution of the debris fallback rate. Peak bolometric luminosities are in the range 10{sup 45}-10{sup 46} erg s{sup -1}, whereas peak luminosities in soft X-rays (0.2-2.0 keV) are typically one order of magnitude lower. The typical timescale derived from our preferred models for the flare luminosity to decay by two orders of magnitude is about 3-4 yr. Predicted soft X-ray light curves reproduce quite well data on galaxies in which a variable X-ray emission possibly related to a tidal event was detected. In the cases of NGC 3599 and IC 3599, data are reproduced well by models defined by a black hole with mass {approx}10{sup 7} M{sub sun} and a disrupted star of about 1 solar mass. The X-ray variation observed in XMMSL1 is consistent with a model defined by a black hole with mass {approx}3 x 10{sup 6} M{sub sun} and a disrupted star of 1 solar mass, while that observed in the galaxy situated in the cluster A1689 is consistent with a model including a black hole of {approx}10{sup 7} M{sub sun} and a disrupted star of {approx}0.5 M{sub sun}.

Montesinos Armijo, Matias; De Freitas Pacheco, Jose A. [Observatoire de la Cote d'Azur, Laboratoire Cassiopee, Universite de Nice Sophia-Antipolis Bd de l'Observatoire, BP 4229, 06304 Nice Cedex 4 (France)

2011-08-01T23:59:59.000Z

416

Understanding environmental leachability of electric arc furnace dust  

SciTech Connect (OSTI)

Dust from production of steel in an electric arc furnace (EAF) contains a mixture of elements that pose a challenge for both recovery and disposal. This paper relates the leachability of six Canadian EAF dusts in four leaching tests [distilled water, Ontario Regulation 347 Leachate Extraction Procedure, Amount Available for Leaching (AALT), and pH 5 Stat] to their mineralogy. Chromium and nickel contaminants in EAF dust are largely unleachable (<5% available in AALT and pH 5 Stat), as they are found with the predominant spinel ferrite phase in EAF dust. However, even a small proportion of oxidized chromium can result in significant leachate concentrations of highly toxic chromate. The leachability of zinc (7--50% available), lead (2--17% available), and cadmium (9--55% available) can be significant, as large fractions of these contaminants are found as chlorides and oxides. The leaching of these metals is largely controlled by pH. The acid neutralization capacity of the EAF dusts appeared to be controlled by dissolution of lime and zincite, and results from regulatory leaching tests can be misleading because the variable acid neutralization capacity of EAF dusts can lead to very different final leachate pHs (5--12.4). A more informative approach would be to evaluate the total amounts of contaminants available in the long term, and the acid neutralization capacity.

Stegemann, J.A.; Roy, A.; Caldwell, R.J.; Schilling, P.J.; Tittsworth, R.

2000-02-01T23:59:59.000Z

417

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

SciTech Connect (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

418

Recycling of electric arc furnace dust: Jorgensen steel facility  

SciTech Connect (OSTI)

This document is an evaluation of the Ek Glassification(TM) Process to recycle and convert K061-listed waste (Electric Arc Furnace or EAF dust) and other byproducts of the steel-making industry into usable products. The Process holds potential for replacing the need for expensive disposal costs associated with the listed waste with the generation of marketable products. The products include colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sandblasting grit; and materials for Portland cement production. Field testing of the technology was conducted by the U.S. Environmental Protection Agency (U.S. EPA) in early July of 1991 at the Earle M. Jorgensen Steel Co. (EMJ) plant in Seattle, Washington, and both technical and economic aspects of the technology were examined. TCLP testing of the product determined that leachability characteristics of metals in the product meet treatment standards for K061-listed waste. The Process was also shown to be economically viable, based on capital and operating cost estimates, and profit and revenue forecasts for a 21,000 ton-per-year operation. Although this effort showed that the technology holds promise, regulatory compliance should be evaluated on the basis of the actual hardware configuration and operating procedures along with the leachability of the specific product formulations to be used.

Jackson, T.W.; Chapman, J.S.

1995-01-01T23:59:59.000Z

419

Detailed model for practical pulverized coal furnaces and gasifiers  

SciTech Connect (OSTI)

The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

Philips, S.D.; Smoot, L.D.

1989-08-01T23:59:59.000Z

420

Hearth monitoring experiences at Dofasco`s No. 4 blast furnace  

SciTech Connect (OSTI)

As a result of a 1994 taphole breakout at Dofasco`s No. 4 Blast Furnace, extensive effort has gone into monitoring, understanding and controlling hearth wear. This paper reviews the hearth monitoring system developed and the various hearth operating and maintenance techniques used to ensure No. 4 Blast Furnace safely reaches its 1998 reline date. The impact of changes in coke quality, productivity, casting practice and leaking cooling members on hearth refractory temperature fluctuations will also be examined.

Stothart, D.W.; Chaykowski, R.D.; Donaldson, R.J.; Pomeroy, D.H.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Blast furnace injection of massive quantities of coal with enriched air or pure oxygen  

SciTech Connect (OSTI)

An extensive study of the phenomena associated with the blast furnace injection of massive quantities of coal is described. Trials with conventional lances or oxy-coal injectors and hot blast at different oxygen contents - up to 40% - or with cold pure oxygen were realized at coal to oxygen ratios corresponding to a range of 150 to 440 kg. Pilot scale rigs, empty or filled with coke, as well as industrial blast furnaces were utilized.

Ponghis, N.; Dufresne, P.; Vidal, R.; Poos, A. (Center de Recherches Metallurgiques, Liege (Belgium))

1993-01-01T23:59:59.000Z

422

Evaluation of Advanced PSA and Oxygen Combustion System for Industrial Furnace Applications  

E-Print Network [OSTI]

M. A. Delano Union Carbide Corp. Tarrytown, NY ABSTRACT EVALUATION OF ADVANCED PSA AND OXYGEN COMBUSTION SYSTEM FOR INDUSTRIAL FURNACE APPLICATIONS D. Lagree Union Carbide Corp. Tonawanda, NY The performance of a pilot scale advanced PSA... oxygen generation system and a low NO x oxygen burner was evaluated for industrial furnace applications. The PSA system employs a two-bed vacuum cycle design with a capacity of 1.3 TPD at 90% O 2 purity. The oxygen generated from the PSA system...

Delano, M. A.; Lagree, D.; Kwan, Y.

423

Reducing Emissions in Plant Flaring Operations  

E-Print Network [OSTI]

and Water Saving Management which was applied to all operating equipment in the 13 company owned oil and gas fields, the 22 refineries and 3 pipeline companies. The plan for the refineries focused on key areas such as improving energy efficiency, utilizing...

Duck, B.

2011-01-01T23:59:59.000Z

424

Magnetic and dynamical photospheric disturbances observed during an M3.2 solar flare  

E-Print Network [OSTI]

This letter reports on a set of full-Stokes spectropolarimetric observations in the near infrared He I 10830 A spectral region covering the pre-, flare, and post-flare phases of an M3.2 class solar flare. The flare originated on 2013 May 17 and belonged to active region NOAA 11748. We detected strong He I 10830 A emission in the flare. The red component of the He I triplet peaks at an intensity ratio to the continuum of about 1.86. During the flare, He I Stokes V is substantially larger and appears reversed compared to the usually larger Si I Stokes V profile. The photospheric Si I inversions of the four Stokes profiles reveal the following: (1) the magnetic field strength in the photosphere decreases or is even absent during the flare phase, as compared to the pre-flare phase. However, this decrease is not permanent. After the flare the magnetic field recovers its pre-flare configuration in a short time (i.e., in 30 minutes after the flare). (2) In the photosphere, the line-of-sight velocities show a regular...

Kuckein, C; Sainz, R Manso

2015-01-01T23:59:59.000Z

425

Magnetic Flares and the Observed Optical Depth in Seyfert Galaxies  

E-Print Network [OSTI]

We here consider the pressure equilibrium during an intense magnetic flare above the surface of a cold accretion disk. Under the assumption that the heating source for the plasma trapped within the flaring region is an influx of energy transported inwards with a group velocity close to $c$, e.g., by magnetohydrodynamic waves, this pressure equilibrium can constrain the Thomson optical depth $\\tau_T$ to be of order unity. We suggest that this may be the reason why $\\tau_T\\sim 1$ in Seyfert Galaxies. We also consider whether current data can distinguish between the spectrum produced by a single X-ray emitting region with $\\tau_T\\sim 1$ and that formed by many different flares spanning a range of $\\tau_T$. We find that the current observations do not yet have the required energy resolution to permit such a differentiation. Thus, it is possible that the entire X-ray/$\\gamma$-ray spectrum of Seyfert Galaxies is produced by many independent magnetic flares with an optical depth $0.5<\\tau_T<2$.

Sergei Nayakshin; Fulvio Melia

1997-05-30T23:59:59.000Z

426

Large Eddy Simulation of Industrial Flares Philip Smith  

E-Print Network [OSTI]

At the Institute for Clean and Secure Energy at the University of Utah we are focused on education through and private industry companies to promote rapid deployment of new technologies through the use of high to solve many industrially relevant problems such as industrial flares, oxy-coal combustion processes

Utah, University of

427

SOLAR FLARE CYCLES , M. D. POPESCU1, 2  

E-Print Network [OSTI]

on the solar disk. They occur when magnetic field loops undergo reorganization, releasing energy into the solar of a large amount of magnetic energy, previously stored in the solar corona, and dissipated through magneticSOLAR FLARE CYCLES G. MARI1 , M. D. POPESCU1, 2 1 Astronomical Institute of the Romanian Academy

428

Global Energetics of Solar Flares: II. Thermal Energies  

E-Print Network [OSTI]

We present the second part of a project on the global energetics of solar flares and CMEs that includes about 400 M- and X-class flares observed with AIA/SDO during the first 3.5 years of its mission. In this Paper II we compute the differential emission measure (DEM) distribution functions and associated multi-thermal energies, using a spatially-synthesized Gaussian DEM forward-fitting method. The multi-thermal DEM function yields a significantly higher (by an average factor of $\\approx 14$), but more comprehensive (multi-)thermal energy than an isothermal energy estimate from the same AIA data. We find a statistical energy ratio of $E_{th}/E_{diss} \\approx 2\\%-40\\%$ between the multi-thermal energy $E_{th}$ and the magnetically dissipated energy $E_{diss}$, which is an order of magnitude higher than the estimates of Emslie et al.~2012. For the analyzed set of M and X-class flares we find the following physical parameter ranges: $L=10^{8.2}-10^{9.7}$ cm for the length scale of the flare areas, $T_p=10^{5.7}-...

Aschwanden, M J; Ryan, D; Caspi, A; McTiernan, J M; Warren, H P

2015-01-01T23:59:59.000Z

429

Gas-Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows  

E-Print Network [OSTI]

Gas-Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows Wei Liao and Li-Shi Luo Old. The gas-kinetic schemes are validated with simulations of the hypersonic flow past a hollow flare at Mach and simulation of complex hypersonic flows become very challenging for computa- tional fluid dynamics (CFD) [1

Xu, Kun

430

A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace  

SciTech Connect (OSTI)

A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

Murray, J.P.

1989-01-01T23:59:59.000Z

431

Iran seeking help in regaining prerevolution oil and gas flow  

SciTech Connect (OSTI)

This paper reviews the goals of the Iranian oil and gas industry to rebuild their oil and gas production facilities by using foreign investment. It discusses the historical consequences of war in the region to diminish the production and postpone the recovery of natural gas which is currently flared. It describes the major projects Iran hopes to develop through international partnerships and includes field development, pipeline construction, gas reinjection, gas treatment facilities, and new offshore operation. The paper also reviews the US policy on Iran and its attempt to apply sanctions towards this country.

Tippee, B.

1996-02-19T23:59:59.000Z

432

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

Release. Energy Information Administration, Washington, DC.products. Energy Information Administration, Washington, DC.to 2030. Energy Information Administration, Washington, DC.

Lekov, Alex B.

2010-01-01T23:59:59.000Z

433

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

Star Residential Water Heaters: Final criteria analysis.2004. Heat pump water heater technology: Experiences ofmarket research on solar water heaters. National Renewable

Lekov, Alex

2011-01-01T23:59:59.000Z

434

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

2004). Heat pump water heater technology: Experiences ofStar Residential Water Heaters: Final criteria analysis.market research on solar water heaters. National Renewable

Lekov, Alex B.

2010-01-01T23:59:59.000Z

435

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

al. (2004). Heat pump water heater technology: Experiencesstar residential water heaters: Final criteria analysis.market research on solar water heaters. National Renew- able

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

436

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

Energy (2009a). Annual energy outlook 2009 with projectionsEnergy (2008). Annual energy outlook 2008 with projectionsfrom the 2008 Annual Energy Outlook (AEO 2008; US Department

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

437

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

Energy (2009a). Annual energy outlook 2009 with projectionsEnergy (2008). Annual energy outlook 2008 with projectionsfrom the 2008 Annual Energy Outlook (AEO 2008) (U.S.

Lekov, Alex B.

2010-01-01T23:59:59.000Z

438

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive Summit on WindMarch Achieving the Best

439

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

and F. Southworh. (2004). Heat pump water heater technology:a larger market for heat pump water heaters (U.S. Departmentfurnace or heat pump and electric water heater (26%). (U.S.

Lekov, Alex B.

2010-01-01T23:59:59.000Z

440

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

al. (2004). Heat pump water heater technology: Experienceslarger market for heat pump water heaters (US Department offurnace or heat pump and electric water heater (26%; US

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ARE CORONAE OF MAGNETICALLY ACTIVE STARS HEATED BY FLARES? II. EXTREME ULTRAVIOLET AND X-RAY FLARE STATISTICS AND THE  

E-Print Network [OSTI]

@astro.columbia.edu Vinay L. Kashyap and Jeremy J. Drake Harvard-Smithsonian Center for Astrophysics, 60 Garden Street distribution in radiated energy of the late-type active star AD Leo. Occurrence rates of solar flares have almost 2 orders of magnitude in their radiated energy. We compare the observed light curves with light

Audard, Marc

442

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)  

SciTech Connect (OSTI)

Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

Not Available

2014-01-01T23:59:59.000Z

443

Uncertainty of calorimeter measurements at NREL's high flux solar furnace  

SciTech Connect (OSTI)

The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

Bingham, C.E.

1991-12-01T23:59:59.000Z

444

Evaluation of Retrofit Variable-Speed Furnace Fan Motors  

SciTech Connect (OSTI)

In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

Aldrich, R.; Williamson, J.

2014-01-01T23:59:59.000Z

445

The optical flare and afterglow light curve of GRB 050904 at redshift z=6.29  

E-Print Network [OSTI]

GRB050904 is very interesting since it is by far the most distant GRB event known to date($z=6.29$). It was reported that during the prompt high energy emission phase, a very bright optical flare was detected, and it was temporal coincident with an X-ray flare. Here we use two models to explain the optical flare, One is the "late internal shock model", in which the optical flare is produced by the synchrotron radiation of the electrons accelerated by the late internal shock, and the X-ray flare is produced by the synchrotron-self-Compton mechanism. The other is the external forward-reverse shock model, in which the optical flare is from the reverse shock emission and the X-ray flare is attributed to the central engine activity. We show that with proper parameters, a bright optical flare can appear in both models. We think the "late internal shock model" is more favored since in this model the optical flash and the X-ray flare have the same origin, which provides a natural explanation of the temporal coincidence of them. In the forward-reverse shock scenario, fits to the optical flare and the late afterglow suggests that the physical parameters of the reverse shock are much different from that of forward shock, as found in modeling the optical flash of GRB 990123 previously.

D. M. Wei; T. Yan; Y. Z. Fan

2005-12-07T23:59:59.000Z

446

High-Energy Gamma-Ray Emission From Solar Flares: Summary of Fermi LAT Detections and Analysis of Two M-Class Flares  

E-Print Network [OSTI]

We present the detections of 19 solar flares detected in high-energy gamma rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first four years of operation. Interestingly, all flares are associated with fairly fast Coronal Mass Ejections (CMEs) and are not all powerful X-ray flares. We then describe the detailed temporal, spatial and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying gamma-ray emission over 13 hours, and the 2011 June 7 M2.5 flare, which was followed by gamma-ray emission lasting for 2 hours. We compare the Fermi-LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that a hadronic origin of the gamma rays is more likely than a leptonic origin and find that the energy spectrum of the proton distribution softens after the 2011 March 7 flare, favoring a scenario with continuous acceleration at the flare site. This work suggests that proton acceleratio...

,

2013-01-01T23:59:59.000Z

447

Mineral matter transformations in a pressurized drop-tube furnace  

SciTech Connect (OSTI)

To meet the objectives of the program, a pressurized combustion vessel was built to allow the operating parameters of a direct-fired gas turbine combustor to be simulated. One goal in building this equipment was to design the gas turbine simulator as small as possible to reduce the quantity of test fuel needed, while not undersizing the combustor such that wall effects had a significant effect on the measured combustion performance. Based on computer modeling, a rich-lean, two-stage, nonslagging combustor was constructed to simulate a direct-fired gas turbine. This design was selected to maximize the information that could be obtained on the impact of low-rank coal`s unique properties on the gas turbine combustor, its turbomachinery, and the required hot-gas cleanup devices (such as high-temperature/high-pressure (HTHP) cyclones). Seventeen successful combustion tests using coal-water fuels were completed. These tests included seven tests with a commercially available Otisca Industries-produced, Taggart seam bituminous fuel and five tests each with physically and chemically cleaned Beulah-Zap lignite and a chemically cleaned Kemmerer subbituminous fuel. LRC-fueled heat engine testing conducted at the Energy and Environmental Research Center (EERC) has indicated that LRC fuels perform very well in short residence time heat engine combustion systems. Analyses of the emission and fly ash samples highlighted the superior burnout experienced by the LRC fuels as compared to the bituminous fuel even under a longer residence time profile for the bituminous fuel.

Swanson, M.L.; Tibbetts, J.E.

1992-12-31T23:59:59.000Z

448

Mineral matter transformations in a pressurized drop-tube furnace  

SciTech Connect (OSTI)

To meet the objectives of the program, a pressurized combustion vessel was built to allow the operating parameters of a direct-fired gas turbine combustor to be simulated. One goal in building this equipment was to design the gas turbine simulator as small as possible to reduce the quantity of test fuel needed, while not undersizing the combustor such that wall effects had a significant effect on the measured combustion performance. Based on computer modeling, a rich-lean, two-stage, nonslagging combustor was constructed to simulate a direct-fired gas turbine. This design was selected to maximize the information that could be obtained on the impact of low-rank coal's unique properties on the gas turbine combustor, its turbomachinery, and the required hot-gas cleanup devices (such as high-temperature/high-pressure (HTHP) cyclones). Seventeen successful combustion tests using coal-water fuels were completed. These tests included seven tests with a commercially available Otisca Industries-produced, Taggart seam bituminous fuel and five tests each with physically and chemically cleaned Beulah-Zap lignite and a chemically cleaned Kemmerer subbituminous fuel. LRC-fueled heat engine testing conducted at the Energy and Environmental Research Center (EERC) has indicated that LRC fuels perform very well in short residence time heat engine combustion systems. Analyses of the emission and fly ash samples highlighted the superior burnout experienced by the LRC fuels as compared to the bituminous fuel even under a longer residence time profile for the bituminous fuel.

Swanson, M.L.; Tibbetts, J.E.

1992-01-01T23:59:59.000Z

449

Effect of coal and coke qualities on blast furnace injection and productivity at Taranto  

SciTech Connect (OSTI)

Injection rates at Taranto blast furnaces Nos. 2 and 4, for more than 16 months, was maintained above 175 kg/thm. Monthly average injection rate for two months stabilized above 190 kg/thm. This performance was possible due to the very high combined availabilities of Taranto blast furnaces and the KST injection system. Based upon this experience the quantitative relationships between coke/coal and blast furnace operational parameters were studied and are shown graphically. During this period due to coke quality changes, injection rate had to be reduced. The effect of using coke breeze in coke/ferrous charge as well as coal blend was also evaluated. Permeability of the furnace was found to be directly affected by O{sub 2} enrichment level, while at a high PCI rate no correlation between actual change in coke quality and permeability could be established. The future of PCI technology lies in better understanding of relationships between material specifications and blast furnace parameters of which permeability is of prime importance.

Salvatore, E.; Calcagni, M. [ILVA, Taranto (Italy); Eichinger, F.; Rafi, M.

1995-12-01T23:59:59.000Z

450

Development and application of new techniques for blast furnace process control at SSAB Tunnplaat, Luleaa Works  

SciTech Connect (OSTI)

SSAB Tunnplaat AB operates two blast furnaces (M1 and M2) in Luleaa. In recent years research efforts have to a great extent been aimed at the development of new techniques for blast furnace process control. An example is the installation of a burden profile measurement system, which was useful in the development of a new burden distribution praxis on the big furnace (M2), equipped with a bell-less-top. Hearth level detection and continuous measurement of the hot metal temperature in the runner are under evaluation. The purpose of these techniques is to give earlier information concerning the state of the blast furnace process. Parallel to this work, models for prediction of silicon in hot metal, the position and shape of the cohesive zone and slip-warning are being developed and tested off-line. These new models and information from new measuring techniques will be integrated into a new Operating Guidance System, hopefully resulting in a powerful tool in the efforts to stabilize blast furnace operations.

Braemming, M.; Hallin, M. [SSAB Tunnplaat AB, Luleaa (Sweden); Zuo, G. [Luleaa Univ. (Sweden). Dept. of Process Metallurgy

1995-12-01T23:59:59.000Z

451

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

452

Return currents and energy transport in the solar flaring atmosphere  

E-Print Network [OSTI]

According to a standard ohmic perspective, the injection of accelerated electrons into the flaring region violates local charge equilibrium and therefore, in response, return currents are driven by an electric field to equilibrate such charge violation. In this framework, the energy loss rate associated to these local currents has an ohmic nature and significantly shortens the acceleration electron path. In the present paper we adopt a different viewpoint and, specifically, we study the impact of the background drift velocity on the energy loss rate of accelerated electrons in solar flares. We first utilize the Rutherford cross-section to derive the formula of the energy loss rate when the collisional target has a finite temperature and the background instantaneously and coherently moves up to equilibrate the electron injection. We then use the continuity equation for electrons and imaging spectroscopy data provided by RHESSI to validate this model. Specifically, we show that this new formula for the energy l...

Codispoti, Anna; Piana, Michele; Pinamonti, Nicola

2013-01-01T23:59:59.000Z

453

Diagnostics of stellar flares from X-ray observations: from the decay to the rise phase  

E-Print Network [OSTI]

The diagnostics of stellar flaring coronal loops have been so far largely based on the analysis of the decay phase. We derive new diagnostics from the analysis of the rise and peak phase of stellar flares. We release the assumption of full equilibrium of the flaring loop at the flare peak, according to the frequently observed delay between the temperature and the density maximum. From scaling laws and hydrodynamic simulations we derive diagnostic formulas as a function of observable quantities and times. We obtain a diagnostic toolset related to the rise phase, including the loop length, density and aspect ratio. We discuss the limitations of this approach and find that the assumption of loop equilibrium in the analysis of the decay leads to a moderate overestimate of the loop length. A few relevant applications to previously analyzed stellar flares are shown. The analysis of the flare rise and peak phase complements and completes the analysis of the decay phase.

F. Reale

2007-05-23T23:59:59.000Z

454

A Flared, Orbiting, Dusty Disk Around HD 233517  

E-Print Network [OSTI]

We find that the infrared excess around HD 233517, a first ascent red giant, can be naturally explained if the star possesses an orbiting, flared dusty disk. We estimate that the outer radius of this disk is 45 AU and that the total mass within the disk is about 0.01 the mass of the Sun. We speculate that this disk is the result of the engulfment of a low mass companion star that occurred when HD 233517 became a red giant.

M. Jura

2002-09-13T23:59:59.000Z

455

Seismic Emissions from a Highly Impulsive M6.7 Solar Flare  

E-Print Network [OSTI]

On 10 March 2001 the active region NOAA 9368 produced an unusually impulsive solar flare in close proximity to the solar limb. This flare has previously been studied in great detail, with observations classifying it as a type 1 white-light flare with a very hard spectrum in hard X-rays. The flare was also associated with a type II radio burst and coronal mass ejection. The flare emission characteristics appeared to closely correspond with previous instances of seismic emission from acoustically active flares. Using standard local helioseismic methods, we identified the seismic signatures produced by the flare that, to date, is the least energetic (in soft X-rays) of the flares known to have generated a detectable acoustic transient. Holographic analysis of the flare shows a compact acoustic source strongly correlated with the impulsive hard X-ray, visible continuum, and radio emission. Time-distance diagrams of the seismic waves emanating from the flare region also show faint signatures, mainly in the eastern sector of the active region. The strong spatial coincidence between the seismic source and the impulsive visible continuum emission reinforces the theory that a substantial component of the seismic emission seen is a result of sudden heating of the low photosphere associated with the observed visible continuum emission. Furthermore, the low-altitude magnetic loop structure inferred from potential--field extrapolations in the flaring region suggests that there is a significant inverse correlation between the seismicity of a flare and the height of the magnetic loops that conduct the particle beams from the corona.

J. C. Martinez-Oliveros; H. Moradi; A-C. Donea

2008-01-09T23:59:59.000Z

456

Magnetic Energy Dissipation during the 2014 March 29 Solar Flares  

E-Print Network [OSTI]

We calculated the time evolution of the free magnetic energy during the 2014-Mar-29 flare (SOL2014-03-29T17:48), the first X-class flare detected by IRIS. The free energy was calculated from the difference between the nonpotential field, constrained by the geometry of observed loop structures, and the potential field. We use AIA/SDO and IRIS images to delineate the geometry of coronal loops in EUV wavelengths, as well as to trace magnetic field directions in UV wavelengths in the chromosphere and transition region. We find an identical evolution of the free energy for both the coronal and chromospheric tracers, as well as agreement between AIA and IRIS results, with a peak free energy of $E_{free}(t_{peak}) \\approx (45 \\pm 2) \\times 10^{30}$ erg, which decreases by an amount of $\\Delta E_{free} \\approx (29 \\pm 3) \\times 10^{30}$ erg during the flare decay phase. The consistency of free energies measured from different EUV and UV wavelengths for the first time here, demonstrates that vertical electric currents...

Aschwanden, Markus J

2015-01-01T23:59:59.000Z

457

Hoogovens blast furnace No. 6 -- The first eleven years of a continuing campaign  

SciTech Connect (OSTI)

Blast furnace No. 6 of Hoogovens Steel has just completed its eleventh year of the fourth (running) campaign, with a total production of approx. 23 million metric tonnes of hot metal. During the last reline in 1985 the furnace was equipped with a third taphole and a bell-less top. The lining consists of graphite and semi-graphite and the cooling consists of a dense pattern of copper plate coolers. The current campaign is marked by several important operational events, in particular the high productivity and PCI rates, but also by the remarkable performance of the lining which has shown limited wear in the first four years of the campaign, and hardly any reduction of the lining thickness in the last seven years. This paper discusses the design of the furnace, and the history of the current campaign with respect to its productivity, PCI rates and lining wear.

Tijhuis, G.; Toxopeus, H.; Berg, H. van den; Vliet, C. van der [Hoogovens Steel, IJmuiden (Netherlands)

1997-12-31T23:59:59.000Z

458

Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace  

DOE Patents [OSTI]

The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

Mathur, Mahendra P. (Pittsburgh, PA); Ekmann, James M. (Bethel Park, PA)

1989-01-01T23:59:59.000Z

459

Natural gas monthly, November 1988  

SciTech Connect (OSTI)

Gross withdrawals of natural gas (wet, after lease separation) from gas and oil wells in the United States during November 1988, were estimated at 1755 billion cubic feet, 1.3 percent above withdrawals during November 1987. Of the total quantity, an estimated 215 billion cubic feet were returned to gas and oil reservoirs for repressuring, pressure maintenance, and cycling; 35 billion cubic feet of nonhydrocarbon gases were removed; and 13 billion cubic feet were vented or flared. The remaining wet marketed production totaled 1492 billion cubic feet. Dry gas production (wet marketed production minus 70 billion cubic feet of extraction loss) totaled an estimated 1422 billion cubic feet, similar to the November 1987 level. The total dry gas supply available for disposition in November 1988 was estimated at 1702 billion cubic feet, including 173 billion cubic feet withdrawn from storage, 12 billion cubic feet of supplemental supplies, and 95 billion cubic feet that were imported. In November 1987, dry gas available for disposition totaled 1684 billion cubic feet. Of the total dry gas supply available for disposition in November 1988, an estimated 1467 billion cubic feet were consumed, 148 billion cubic feet were injected into underground storage reservoirs, and 5 billion cubic feet were exported, leaving 82 billion cubic feet unaccounted for.

Not Available

1989-01-31T23:59:59.000Z

460

Natural gas monthly, March 1989  

SciTech Connect (OSTI)

Gross withdrawals of natural gas (wet, after lease separation) from gas and oil wells in the United States during March 1989, were estimated at 1777 billion cubic feet, 0.4 percent below withdrawals during March 1988. Of the total quantity, an estimated 211 billion cubic feet were returned to gas and oil reservoirs for repressuring, pressure maintenance, and cycling; 36 billion cubic feet of nonhydrocarbon gases were removed; and 12 billion cubic feet were vented or flared. The remaining wet marketed production totaled 1518 billion cubic feet. Dry gas production (wet marketed production minus 71 billion cubic feet of extraction loss) totaled an estimated 1447 billion cubic feet, similar to the March 1988 level. The total dry gas supply available for disposition in March 1989 was estimated at 1881 billion cubic feet, including 319 billion cubic feet withdrawn from storage, 14 billion cubic feet of supplemental supplies, and 101 billion cubic feet that were imported. In March 1988, dry gas available for disposition totaled 1841 billion cubic feet. Of the total dry gas supply available for disposition in March 1989, an estimated 1837 billion cubic feet were consumed, 93 billion cubic feet were injected into underground storage reservoirs and 8 billion cubic feet were exported, leaving 57 billion cubic feet unaccounted for.

Not Available

1989-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

MEASUREMENTS OF THE CORONAL ACCELERATION REGION OF A SOLAR FLARE  

SciTech Connect (OSTI)

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Nobeyama Radioheliograph (NoRH) are used to investigate coronal hard X-ray and microwave emissions in the partially disk-occulted solar flare of 2007 December 31. The STEREO mission provides EUV images of the flare site at different viewing angles, establishing a two-ribbon flare geometry and occultation heights of the RHESSI and NoRH observations of {approx}16 Mm and {approx}25 Mm, respectively. Despite the occultation, intense hard X-ray emission up to {approx}80 keV occurs during the impulsive phase from a coronal source that is also seen in microwaves. The hard X-ray and microwave source during the impulsive phase is located {approx}6 Mm above thermal flare loops seen later at the soft X-ray peak time, similar in location to the above-the-loop-top source in the Masuda flare. A single non-thermal electron population with a power-law distribution (with spectral index of {approx}3.7 from {approx}16 keV up to the MeV range) radiating in both bremsstrahlung and gyrosynchrotron emission can explain the observed hard X-ray and microwave spectrum, respectively. This clearly establishes the non-thermal nature of the above-the-loop-top source. The large hard X-ray intensity requires a very large number (>5 x 10{sup 35} above 16 keV for the derived upper limit of the ambient density of {approx}8 x 10{sup 9} cm{sup -3}) of suprathermal electrons to be present in this above-the-loop-top source. This is of the same order of magnitude as the number of ambient thermal electrons. We show that collisional losses of these accelerated electrons would heat all ambient electrons to superhot temperatures (tens of keV) within seconds. Hence, the standard scenario, with hard X-rays produced by a beam comprising the tail of a dominant thermal core plasma, does not work. Instead, all electrons in the above-the-loop-top source seem to be accelerated, suggesting that the above-the-loop-top source is itself the electron acceleration region.

Krucker, Saem; Hudson, H. S.; Glesener, L.; Lin, R. P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); White, S. M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Masuda, S. [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Wuelser, J.-P., E-mail: krucker@ssl.berkeley.ed [Solar and Astrophysics Laboratory, Lockheed Martin ATC, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2010-05-10T23:59:59.000Z

462

Altos Hornos de Mexico blast furnace No. 5 certification in ISO-9002 standard  

SciTech Connect (OSTI)

Altos Hornos de Mexico`s Blast Furnace No. 5, as a means to improve its product quality, sought and obtained the certification of its quality system based on the international standard ISO-9002. The certification was obtained under this quality standard in Dec. 1995 and has successfully been maintained after two continuance audits. For blast furnace No. 5 (BF5) the benefits are reflected by a reduction in the hot metal silicon content variability, a decrease in fuel consumption and a higher productivity. Benefits were also obtained in the working environment where the personnel became more highly motivated, procedures were carried out to completion and the quality records were filled correctly.

Gamez, O.; Liceaga, F.; Arredondo, J. [Altos Hornos de Mexico, Monclova (Mexico)

1997-12-31T23:59:59.000Z

463

Continuous measurement of blast furnace burden profile at SSAB Tunnplat AB  

SciTech Connect (OSTI)

A unique profile meter system is installed on Blast Furnace No. 2 in SSAB - Swedish Steel AB, Lulea, Sweden. This system measures the charge material burden profile across the furnace top diameter before and after each charge. The system generates real-time data, which is graphically presented by the system on a monitor and includes burden descent speed, layer thickness of the coke and ore (corrected for descent), ore to coke ratio, and burden skewing. The system is described along with operational results.

Virtala, J.; Edberg, N.; Hallin, M. (SSAB Tunnplat AB, Lulea (Sweden). Ironmaking Division)

1993-01-01T23:59:59.000Z

464

Bosh repairs No. 3 blast furnace, Edgar Thomson Plant Mon Valley Works  

SciTech Connect (OSTI)

The paper describes in detail the steps taken from quenching to dry out of the furnace to repair the bosh area of the No.3 blast furnace. Inspection of the area revealed that there was no brick anywhere in the bosh. Brick in the tuyere breast area had been peeled back to reveal the steel plate, and descaling revealed 14 pipes fully exposed. None were leaking, but one seemed badly deteriorated. Conventional repairs could not take place before the scheduled blow-in. Installation of coolers were instead tried.

Stoupis, M.G.

1993-01-01T23:59:59.000Z

465

Blast-furnace ironmaking -- Existing capital and continued improvements are a winning formula for a bright future  

SciTech Connect (OSTI)

Throughout the years the blast-furnace process has been improved upon significantly. Increases to the hot-blast temperature, improvements to the physical, chemical, and metallurgical properties of coke and burden materials, the use of more fuel injectants, and improvements to the design of the furnace facilities have led to significant decreases in furnace coke rate, increases in productivity, and increases in furnace campaign life. As a result, many of the alternative cokeless reduction processes have not replaced blast-furnace hot-metal production in North America. In the future, these continued blast-furnace improvements will potentially result in coke rates decreasing to 400 pounds per net ton of hot metal (lb/NTHM) as more pulverized coal is injected. These improvements, coupled with the fact that existing blast furnaces and coke plants can be refurbished for approximately $110 per annual ton of hot metal [$100 per annual net ton of hot metal (NTHM)], will result in extending the life of the North American blast furnaces well into the twenty-first century.

Oshnock, T.W.; Colinear, J.A. [U.S. Steel, Monroeville, PA (United States)

1995-12-01T23:59:59.000Z

466

X-ray flaring from the young stars in CygnusOB2  

E-Print Network [OSTI]

Aims: We characterize individual and ensemble properties of X-ray flares from stars in the CygOB2 and ONC star-forming regions. Method: We analyzed X-ray lightcurves of 1003 CygOB2 sources observed with Chandra for 100 ksec and of 1616 ONC sources detected in the ``Chandra Orion Ultra-deep Project'' 850 ksec observation. We employed a binning-free maximum likelihood method to segment the light-curves into intervals of constants signal and identified flares on the basis of both the amplitude and the time-derivative of the source luminosity. We then derived and compared the flare frequency and energy distribution of CygOB2 and ONC sources. The effect of the length of the observation on these results was investigated by repeating the statistical analysis on five 100 ksec-long segments extracted from the ONC data. Results: We detected 147 and 954 flares from the CygOB2 and ONC sources, respectively. The flares in CygOB2 have decay times ranging from ~0.5 to about 10 hours. The flare energy distributions of all considered flare samples are described at high energies well by a power law with index alpha=-(2.1+-0.1). At low energies, the distributions flatten, probably because of detection incompleteness. We derived average flare frequencies as a function of flare energy. The flare frequency is seen to depend on the source's intrinsic X-ray luminosity, but its determination is affected by the length of the observation. The slope of the high-energy tail of the energy distribution is, however, affected little. A comparison of CygOB2 and ONC sources, accounting for observational biases, shows that the two populations, known to have similar X-ray emission levels, have very similar flare activity.

J. F. Albacete Colombo; M. Caramazza; E. Flaccomio; G. Micela; S. Sciortino

2007-08-17T23:59:59.000Z

467

GeV-TeV and X-ray flares from gamma-ray bursts  

E-Print Network [OSTI]

The recent detection of delayed X-ray flares during the afterglow phase of gamma-ray bursts (GRBs) suggests an inner-engine origin, at radii inside the deceleration radius characterizing the beginning of the forward shock afterglow emission. Given the observed temporal overlapping between the flares and afterglows, there must be inverse Compton (IC) emission arising from such flare photons scattered by forward shock afterglow electrons. We find that this IC emission produces GeV-TeV flares, which may be detected by GLAST and ground-based TeV telescopes. We speculate that this kind of emission may already have been detected by EGRET from a very strong burst--GRB940217. The enhanced cooling of the forward shock electrons by the X-ray flare photons may suppress the synchrotron emission of the afterglows during the flare period. The detection of GeV-TeV flares combined with low energy observations may help to constrain the poorly known magnetic field in afterglow shocks. We also consider the self-IC emission in the context of internal-shock and external-shock models for X-ray flares. The emission above GeV from internal shocks is low, while the external shock model can also produce GeV-TeV flares, but with a different temporal behavior from that caused by IC scattering of flare photons by afterglow electrons. This suggests a useful approach for distinguishing whether X-ray flares originate from late central engine activity or from external shocks.

Xiang-Yu Wang; Zhuo Li; Peter Meszaros

2006-03-13T23:59:59.000Z

468

GRB 060714: No Clear Dividing Line Between Prompt Emission and X-Ray Flares  

SciTech Connect (OSTI)

The long gamma-ray burst GRB 060714 was observed to exhibit a series of five X-ray flares beginning {approx} 70 s after the burst trigger T{sub 0} and continuing until {approx} T{sub 0} + 200 s. The first two flares were detected by the Burst Alert Telescope (BAT) on the Swift satellite, before Swift had slewed to the burst location, while the last three flares were strongly detected by the X-Ray Telescope (XRT) but only weakly detected by the BAT. This burst provides an unusual opportunity to track a complete sequence of flares over a wide energy range. The flares were very similar in their light curve morphology, showing power-law rise and fall components, and in most cases significant sub-structure. The flares also showed strong evolution with time, both spectrally and temporally. The small time scale and large amplitude variability observed are incompatible with an external shock origin for the flares, and support instead late time sporadic activity either of the central source or of localized dissipation events within the outflow. We show that the flares in GRB 060714 cannot be the result of internal shocks in which the contrast in the Lorentz factor of the colliding shells is very small, and that this mechanism faces serious difficulties in most Swift GRBs. The morphological similarity of the flares and the prompt emission and the gradual and continual evolution of the flares with time makes it difficult and arbitrary to draw a dividing line between the prompt emission and the flares.

Krimm, Hans A.; /NASA, Goddard /Universities Space Research Assoc.; Granot, J.; /KIPAC, Menlo Park; Marshal, F.; /NASA, Goddard; Perri, M.; /ASDC, Frascati; Barthelmy, S.D.; /NASA, Goddard; Burrows, D.N.; /Penn State U., Astron. Astrophys.; Gehrels, N.; /NASA, Goddard; Meszaros, P.; Morris, D.; /Penn State U., Astron. Astrophys.; ,

2007-02-26T23:59:59.000Z

469

Pyrometric temperature measurement method and apparatus for measuring particle temperatures in hot furnaces: Application to reacting black liquor  

SciTech Connect (OSTI)

A specialized two-color pyrometric method has been developed for the measurement of particle surface temperatures in hot, radiating environments. In this work, the method has been applied to the measurement of surface temperatures of single reacting black liquor char particles in an electrically heated muffle furnace. Black liquor was introduced into the hot furnace as wet droplets. After drying, the resulted particles were processed in different atmospheres corresponding to combustion, pyrolysis, and gasification at furnace temperatures of 700{endash}900{degree}C. The pyrometric measurement is performed using two silicon photodiode detectors and 10 nm bandpass filters centered at 650 and 1050 nm. Thermal radiation is transferred using an uncooled fiberoptic probe brought into the vicinity of the char particle. The key features of the pyrometric apparatus and analysis method are: (1) Single particle temperature is resolved temporally at high speed. (2) The thermal radiation originating from the furnace and reflected by the particle is accounted for in the measurement of the surface temperature. (3) Particle temperatures above or below the furnace temperature can be measured without the need of a cooled background assisting the measurement in the hot furnace. To accomplish this, a minimum particle size is needed that is a function of the temperature difference between the particle and furnace. Particles cooler than the furnace can be measured if their diameter is more than 0.7 mm. Surface temperatures of 300{endash}400{degree}C above the furnace temperature were measured during combustion of black liquor char particles in air. In atmospheres corresponding to gasification, endothermic reactions occurred, and char temperature remained typically 40{degree} below the furnace temperature. {copyright} {ital 1996 American Institute of Physics.}

Stenberg, J. [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland)] [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland); Frederick, W.J. [Oregon State University, Gleeson 103, Corvallis, Oregon 97331 (United States)] [Oregon State University, Gleeson 103, Corvallis, Oregon 97331 (United States); Bostroem, S. [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)] [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland); Hernberg, R. [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland)] [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland); Hupa, M. [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)] [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)

1996-05-01T23:59:59.000Z

470

Condensing economizers for small coal-fired boilers and furnaces  

SciTech Connect (OSTI)

Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impactors are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

Butcher, T.A.; Litzke, W.

1994-01-01T23:59:59.000Z

471

Pellet property requirements for future blast-furnace operations and other new ironmaking processes  

SciTech Connect (OSTI)

The requirements for the physical, chemical and metallurgical properties of pellets have continued to become more stringent as blast-furnace productivity and coke rate have been rapidly improved during the last decade. In addition, the age and deterioration of the North American coke batteries, the lack of capital to sufficiently rebuild them, and the threat of increasingly more stringent environmental controls for the coke batteries has forced North American ironmakers to begin implementing pulverized coal injection to minimize the coke requirements for the blast furnace and to seriously investigate developing other ironmaking processes that use coal instead of coke. Therefore, the next major step in North American ironmaking has included injecting pulverized coal (PC) at 200 kilograms per ton of hot metal (kg/ton) [400 pounds per net ton of hot metal (lb/NTHM)] or greater which will result in the coke rate decreasing to less than 300 kg/ton (600 lb/NTHM) or less. As a result, the pellets will spend more time in the furnace and will be required to support more total weight. Pellets can also be a major iron unit source for other cokeless ironmaking processes such as the COREX process or the AISI direct ironmaking process. This paper will explore the pellet property requirements for future blast-furnace operations and cokeless ironmaking processes.

Agrawal, A.K.; Oshnock, T.W. [U.S. Steel, Monroeville, PA (United States)

1995-12-01T23:59:59.000Z

472

Development of quick repairing technique for ceramic burner in hot stove of blast furnace  

SciTech Connect (OSTI)

Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

1997-12-31T23:59:59.000Z

473

Dofasco`s No. 4 blast furnace hearth breakout, repair and rescue  

SciTech Connect (OSTI)

On May 5, 1994, after producing 9.5 million metric tons of iron, Dofasco`s No. 4 Blast Furnace experienced a hearth breakout 250 millimeters below the west taphole. The hot metal spill caused a fire resulting in severe damage and 33 days of lost production. During a 26-day period, electrical wiring, water drainage systems and both tapholes were repaired. Recovery from an unprepared furnace stop of this length, with the deadman depleted is difficult. To aid with the rescue Hoogovens-designed oxygen/fuel lances were commissioned. The furnace recovery began with a lance in each taphole and all tuyeres plugged. Six days after startup the furnace was casting into torpedo cars, and after nine days operation had returned to normal. This incident prompted Dofasco to expand the hearth monitoring system to detect and prevent similar occurrences. During the repair, 203 new thermocouples were installed in the hearth, concentrating on the tapholes and elephant foot areas. These thermocouples were installed at various depths and locations to allow heat flux calculations. This hearth monitoring system has already identified other problem areas and provided valuable information about hearth drainage patterns. This information has allowed them to develop control strategies to manage localized problem areas.

Donaldson, R.J.; Fischer, A.J.; Sharp, R.M.; Stothart, D.W. [Dofasco Inc., Hamilton, Ontario (Canada)

1995-12-01T23:59:59.000Z

474

Pulverized coal firing of aluminum melting furnaces. Second annual technical progress report, July 1979-June 1980  

SciTech Connect (OSTI)

The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has proceeded through design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

West, C E; Stewart, D L

1980-08-01T23:59:59.000Z

475

Pulverized coal firing of aluminum melting furnaces. Quarterly technical progress report, July 1-September 30, 1979  

SciTech Connect (OSTI)

The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

West, C E

1980-09-01T23:59:59.000Z

476

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents [OSTI]

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

Gerdemann, Stephen J. (Albany, OR); White, Jack C. (Albany, OR)

1999-01-01T23:59:59.000Z

477

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents [OSTI]

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

Gerdemann, Stephen J. (Albany, OR); White, Jack C. (Albany, OR)

1998-01-01T23:59:59.000Z

478

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents [OSTI]

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

Gerdemann, S.J.; White, J.C.

1998-08-04T23:59:59.000Z

479

Directly induced swing for closed loop control of electroslag remelting furnace  

DOE Patents [OSTI]

An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.

Damkroger, B.

1998-04-07T23:59:59.000Z

480

Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces Fans; Correction  

Broader source: Energy.gov [DOE]

On January 3, 2014 the U.S. Department of Energy (DOE) published a final rule in the Federal Register that established the test procedure for residential furnace fans. Due to drafting errors, that document inadvertently removed necessary incorporation by reference material in the Code of Federal Regulations (CFR). This final rule rectifies this error by once again adding the removed material.

Note: This page contains sample records for the topic "furnace gas flare" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Savings from new oil furnaces: A study conducted as part of Washington State's Oil Help Program  

SciTech Connect (OSTI)

The Washington State Energy Office (WSEO) has been running the Oil Help program for three years. Originally operated as a loan program, Oil Help switched to rebates during the 1987 and 1988. Rebates for oil furnace replacements made up over 70 percent of rebate funds, which totaled about $1.3 million. WSEO Evaluation started research in summer of 1988, with the goal of including 100 new furnace households (with a control group of similar size) in the study. Our intention was to look at long-term oil consumption comparing each household with itself over the two periods. The final study group consists of 43 households and a control group of 87 households. The report begins with a review of related research. A discussion of research methodology, weather normalization procedure, data attrition, and important descriptive details follows. Changes in consumption for the new furnace and control groups are reported and are tested for significance. Finally, we discuss the implications of the results for the cost effectiveness of an oil furnace replacement.

Davis, R.

1989-12-01T23:59:59.000Z

482

Temperature Compensated Air/Fuel Ratio Control on a Recuperated Furnace  

E-Print Network [OSTI]

When recuperation is added to a furnace, air/ fuel ratio control seemingly becomes more complicated. Two methods normally used are mass flow control where the fuel pressure or flow is proportional to the mass flow of air or cross-connected control...

Ferri, J. L.

1983-01-01T23:59:59.000Z

483

Laser-excited atomic fluorescence spectrometry in a graphite furnace with an  

E-Print Network [OSTI]

Laser-excited atomic fluorescence spectrometry in a graphite furnace with an optical parametric oscillator laser for sequential multi-element determination of cadmium, cobalt, lead, manganese and thallium, for the ® rst time, that solid-state lasers required for analysis (ml or mg) and the technique has direct based

Michel, Robert G.

484

Effect of Electric Arc Furnace Bag House Dust on Concrete Durability Researcher: Fahad Al-Mutlaq  

E-Print Network [OSTI]

Effect of Electric Arc Furnace Bag House Dust on Concrete Durability Researcher: Fahad Al billions of dollars annually. While steel is normally protected from corrosion in concrete by a passive of the effects of addition of Bag House Dust (BHD) on aspects of concrete durability. BHD is a fine powder

Birmingham, University of

485

Unveiling the origin of X-ray flares in Gamma-Ray Bursts  

E-Print Network [OSTI]

We present an updated catalog of 113 X-ray flares detected by Swift in the ~33% of the X-ray afterglows of Gamma-Ray Bursts (GRB). 43 flares have a measured redshift. For the first time the analysis is performed in 4 different X-ray energy bands, allowing us to constrain the evolution of the flare temporal properties with energy. We find that flares are narrower at higher energies: their width follows a power-law relation w~E^{-0.5} reminiscent of the prompt emission. Flares are asymmetric structures, with a decay time which is twice the rise time on average. Both time scales linearly evolve with time, giving rise to a constant rise-to-decay ratio: this implies that both time scales are stretched by the same factor. As a consequence, the flare width linearly evolves with time to larger values: this is a key point that clearly distinguishes the flare from the GRB prompt emission. The flare 0.3-10 keV peak luminosity decreases with time, following a power-law behaviour with large scatter: L_{pk}~ t_{pk}^{-2.7}....

Chincarini, G; Margutti, R; Bernardini, M G; Guidorzi, C; Pasotti, F; Giannios, D; Della Valle, M; Moretti, A; Romano, P; D'Avanzo, P; Cusumano, G; Giommi, P

2010-01-01T23:59:59.000Z

486

FLARE HEATING IN STELLAR CORONAE Vinay L. Kashyap and Jeremy J. Drake  

E-Print Network [OSTI]

for Astrophysics, 60 Garden Street, Cambridge, MA 02138; vkashyap@cfa.harvard.edu, jdrake 2002 March 25; accepted 2002 August 2 ABSTRACT An open question in the field of solar and stellar to flares that are increasingly less energetic but are more numerous. Previous analyses of flares in light

Audard, Marc

487

Free Magnetic Energy and Flare Productivity of Active Regions , Changyi Tan2,3  

E-Print Network [OSTI]

Free Magnetic Energy and Flare Productivity of Active Regions Ju Jing1 , Changyi Tan2,3 , Yuan Yuan with which we are able to estimate the free magnetic energy stored in the active regions. The magnitude scaling correlation between the free magnetic energy and the soft X-ray flare index of active regions

488

A SOLAR FLARE MODEL IN BETWEEN MHD AND CELLULAR AUTOMATON* Heinz Isliker1  

E-Print Network [OSTI]

and still unresolved problems in solar physics is the nature of energy release in the solar atmosphere) and the reproduction of the observed solar flare statistics. On the other hand the energy release process has been, complementary approaches (CA and MHD) for the solar flare problem. * In The Proceedings of 4th Astronomical

Anastasiadis, Anastasios

489

Automatic Solar Flare Tracking Using Image Processing Qu Ming and Shih Frank (shih@njit.edu)  

E-Print Network [OSTI]

Automatic Solar Flare Tracking Using Image Processing Techniques Qu Ming and Shih Frank (shih Center for Solar-Terrestrial Research, New Jersey Institute of Technology Newark, NJ 07102 Big Bear Solar Abstract. Measurement of the evolution properties of solar flares through their complete cyclic development

490

Regularized reconstruction of the differential emission measure from solar flare hard X-ray spectra  

E-Print Network [OSTI]

Regularized reconstruction of the differential emission measure from solar flare hard X-ray spectra for solar flare hard X-rays, it is currently unclear whether the electron distribution responsible between (T) and J( ). However, in the last years, two issues have made this inversion problem more

Piana, Michele

491

Particle acceleration and radiation by direct electric fields in flaring complex solar active regions  

E-Print Network [OSTI]

to connect the energy re- lease process with the acceleration of electrons in solar flares, using a CA modelParticle acceleration and radiation by direct electric fields in flaring complex solar active-Meudon, 92195 Meudon Cedex, FRANCE Abstract The acceleration and radiation of solar energetic particles

Anastasiadis, Anastasios

492

CONSERVATION OF BOTH CURRENT AND HELICITY IN A QUADRUPOLAR MODEL FOR SOLAR FLARES  

E-Print Network [OSTI]

is neglected. 1. Introduction Solar flares are attributed to magnetic energy release in the solar coronaCONSERVATION OF BOTH CURRENT AND HELICITY IN A QUADRUPOLAR MODEL FOR SOLAR FLARES DON MELROSE School of Physics,University of Sydney, NSW 2006, Australia (Received 25 Novemebr 2003; accepted 9

Melrose, Don

493

White-light flares: A TRACE/RHESSI overview H. S. Hudson  

E-Print Network [OSTI]

White-light flares: A TRACE/RHESSI overview H. S. Hudson Space Sciences Laboratory, University includes a "white light" imaging capability with novel characteristics. Many flares with such white. The spectral response of the TRACE white-light passband extends into the UV, so these data capture

Hudson, Hugh

494

Broadening Calculation of the HeI 10830 A Line in Solar Limb Flare  

E-Print Network [OSTI]

Broadening Calculation of the HeI 10830 °A Line in Solar Limb Flare LI Hui and YOU Jianqi Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China Abstract The Doppler broadening, Stark broadening and various kinds of broadening param- eters of the HeI 10830 °A line in solar flare

Li, Hui

495

Broadening Calculation of the HeI 10830 A Line in Solar Limb Flare #  

E-Print Network [OSTI]

Broadening Calculation of the HeI 10830 š A Line in Solar Limb Flare # LI Hui and YOU Jianqi Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China Abstract The Doppler broadening, Stark broadening and various kinds of broadening param­ eters of the HeI 10830 š A line in solar flare

Li, Hui

496

Seismic Emissions from a Highly Impulsive M6.7 Solar Flare  

E-Print Network [OSTI]

Seismic Emissions from a Highly Impulsive M6.7 Solar Flare J.C. Mart´inez-Oliveros, H. Moradi, A characteristics appeared to closely correspond with previous instances of seismic emission from acoustically active flares. Using standard local helioseismic methods, we identified the seismic sig- natures produced

California at Berkeley, University of

497

NEUTRON AND ELECTROMAGNETIC EMISSIONS DURING THE 1990 MAY 24 SOLAR FLARE  

E-Print Network [OSTI]

NEUTRON AND ELECTROMAGNETIC EMISSIONS DURING THE 1990 MAY 24 SOLAR FLARE L. G. KOCHAROV,* JEONGWOO revised form 15 July, 1994) Abstract. In this paper, we are primarilyconcerned with the solar neutron emission during the 1990 May 24 flare, utilizing the counting rate of the Climax neutron monitor

Usoskin, Ilya G.

498

Topology and current ribbons: A model for current, reconnection and flaring in a complex, evolving corona  

E-Print Network [OSTI]

(MCC), for the build­up of magnetic energy in a three­dimensional corona of arbitrary geometry. The MCCTopology and current ribbons: A model for current, reconnection and flaring in a complex, evolving of energy from the Sun's chromosphere and corona. The build­up and release of energy in a flare has been

Longcope, Dana

499

Using the Maximum X-ray Flux Ratio and X-ray Background to Predict Solar Flare Class  

E-Print Network [OSTI]

We present the discovery of a relationship between the maximum ratio o