Powered by Deep Web Technologies
Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Method for Measuring the Energy Consumption of Furnaces andcalculating the energy consumption of two-stage furnaces.residential gas furnace energy consumption in the DOE test

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

2

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

3

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

4

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

5

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this...

6

Comparison of Furnace Flue Gas Temperature Monitors  

Science Conference Proceedings (OSTI)

This report summarizes the results of a temperature monitor comparison study performed at Ameren Sioux Station, in Missouri. The study compared the accuracy and ease of use of two radiation-based monitors, an Infra-View and SpectraTemp, and a newer tunable-diode laser (TDL) absorption-based device, the LTS-100. The instruments, installed in the upper furnace and allowed to run continuously for approximately 8 weeks, monitored and recorded exit gas temperatures during normal boiler operation and one brief...

2006-09-22T23:59:59.000Z

7

Gas-Fired Boilers and Furnaces | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of...

8

ENERGY STAR Qualified Gas Furnaces | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Furnaces Gas Furnaces Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Gas Furnaces Dataset Summary Description Gas Furnaces that have earned the ENERGY STAR are more efficient than standard models. ENERGY STAR is the trusted symbol for energy efficiency helping consumers save money and protect the environment through energy-efficient products and practices. More information on ENERGY STAR is available at www.energystar.gov. Tags {Furnaces,"Energy Star",products,"energy efficiency",efficient,"greenhouse gas emissions",climate,utility,utilities,household,savings,labels,partners,certification} Dataset Ratings Overall 0 No votes yet Data Utility

9

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

offsets the sizable electricity savings. References TitleElectricity and Natural Gas Efficiency Improvements forfueled by natural gas. Electricity consumption by a furnace

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

10

Covered Product Category: Residential Gas Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Furnaces Gas Furnaces Covered Product Category: Residential Gas Furnaces October 7, 2013 - 10:39am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

11

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

SciTech Connect

Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.

Lekov, Alex; Franco, Victor; Lutz, James

2006-05-12T23:59:59.000Z

12

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

13

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

14

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

15

BPM Motors in Residential Gas Furnaces: What are the Savings...  

NLE Websites -- All DOE Office Websites (Extended Search)

or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity...

16

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Air-Handler Efficiency. ASHRAE Transactions, V. 110, Pt.1,Air Heating System Performance. ASHRAE Transactions, V. 104,Furnace Air Handlers Save? , ASHRAE Transactions, V. 110,

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

17

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

Science Conference Proceedings (OSTI)

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15T23:59:59.000Z

18

Economics of Residential Gas Furnaces and Water Heaters in United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics of Residential Gas Furnaces and Water Heaters in United States Economics of Residential Gas Furnaces and Water Heaters in United States New Construction Market Speaker(s): Alex Lekov Gabrielle Wong-Parodi James McMahon Victor Franco Date: May 8, 2009 - 12:00pm Location: 90-3122 In the new single-family home construction market, the choice of what gas furnace and gas water heater combination to install is primarily driven by first cost considerations. In this study, the authors use a life-cycle cost analysis approach that accounts for uncertainty and variability of inputs to assess the economic benefits of installing different gas furnace and water heater combinations. Among other factors, it assesses the economic feasibility of eliminating the traditional metal vents and replacing them with vents made of plastic materials used in condensing and power vent

19

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network (OSTI)

Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented.

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

1985-05-01T23:59:59.000Z

20

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet)  

SciTech Connect

The objective of this project is to examine the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces, as measured by steady-state efficiency and AFUE. PARR identified twelve furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines Iowa metropolitan area and worked with a local HVAC contractor to retrieve them and test them for steady-state efficiency and AFUE in the lab. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace. After removal from the field the furnaces were transported to the Gas Technology Institute (GTI) laboratory, where PARR conducted steady-state efficiency and AFUE testing. The test results show that steady-state efficiency in the field was 6.4% lower than that measured for the same furnaces under standard conditions in the lab, which included tuning the furnace input and air flow rate. Comparing AFUE measured under ASHRAE standard conditions with the label value shows no reduction in efficiency for the furnaces in this study over their 15 to 24 years of operation when tuned to standard conditions. Further analysis of the data showed no significant correlation between efficiency change and the age or the rated efficiency of the furnace.

Rothgeb, S.; Brand, L.

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

DOE and 2006 ASHRAE Test Procedures Furnace Controls Household Heating Requirementsprocedure (DOE 2004; Habart 2005) Heating Requirements areIn the DOE test procedure, the heating requirements of the

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

22

BPM Motors in Residential Gas Furnaces: What are theSavings?  

Science Conference Proceedings (OSTI)

Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured static pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-05-12T23:59:59.000Z

23

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

SciTech Connect

This report describes a Building America expert meeting hosted on July 28, 2011, by the Partnership for Advanced Residential Retrofit team. The purpose of this meeting was to identify installation practices that provide the best installed efficiency for residential gas furnaces, explain how AFUE and field efficiency can differ, and investigate the impact of installation practices on the efficiency and long-term durability of the furnace.

Brand, L.

2012-03-01T23:59:59.000Z

24

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittals Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

25

Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life  

SciTech Connect

Natural gas furnaces are rated for efficiency using the U.S. Department of Energy (DOE) annual fuel utilization efficiency (AFUE) test standard under controlled laboratory test conditions. In the home, these furnaces are then installed under conditions that can vary significantly from the standard, require adjustment by the installing contractor to adapt to field conditions, may or may not be inspected over their useful lifetimes, and can operate with little maintenance over a 30-year period or longer. At issue is whether the installation practices, field conditions, and wear over the life of the furnace reduce the efficiency significantly from the rated efficiency. In this project, nine furnaces, with 15-24 years of field service, were removed from Iowa homes and tested in the lab under four conditions to determine the effects of installation practices, field operating conditions, and age on efficiency.

Brand, L.; Yee, S.; Baker, J.

2013-08-01T23:59:59.000Z

26

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 iii COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for the Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc. Indiana Harbor Steel Mill, East Chicago, Indiana

27

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

28

Method for providing variable output gas-fired furnace with a constant temperature rise and efficiency  

Science Conference Proceedings (OSTI)

A method is described for providing a variable output gas-fired furnace means with a constant temperature rise and efficiency where the furnace means includes burners, a blower, a thermostat and a delay timer, the method comprising the steps of: sensing the temperature in an area to be conditioned; comparing the sensed temperature to a predetermined set point; if the sensed temperature deviates from the predetermined set point by more than a predetermined amount, gas is supplied to the burners and the blower is started; determining the reference revolution per minute of the blower; determining the reference cubic feet per minute delivered by the blower; determining the manifold pressure; determining whether the furnace is in a high heat or a low heat mode of operation; determining the desired cubic feet per minute delivered by the blower for the current mode of operation; reading the actual revolution per minute of the blower; adjusting the speed of the blower motor if the actual and desired revolution per minute of the blower are not the same; determining whether the thermostat is satisfied; if the thermostat is not satisfied, returning to the step of determining the manifold pressure; and if the thermostat is satisfied, shutting off the gas and starting the delay timer.

Ballard, G.W.; Thompson, K.D.

1987-08-25T23:59:59.000Z

29

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

SciTech Connect

Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

Lekov, Alex; Franco, Victor; Meyers, Steve

2010-05-14T23:59:59.000Z

30

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieving the Best Installed Performance from High- Efficiency Residential Gas Furnaces Larry Brand Partnership for Advanced Residential Retrofit (PARR) March 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade

31

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

transmission, and distribution of electricity and gas. Wedistribution chain, and the installation cost. Electricity and

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

32

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Field Performance the Field Performance of Natural Gas Furnaces Chicago, Illinois PROJECT INFORMATION Project Name: Improving Gas Furnace Performance-A Field and Lab Study at End of Life Location: Chicago, IL Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Natural Gas Furnaces Application: New and/or retrofit; Single and/or multifamily Year Tested: 2012/2013 Applicable Climate Zone(s): All or specify which ones PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $250 for adjustments Projected Energy Savings: 6.4% heating savings Projected Energy Cost Savings: $100/year climate-dependent Gas furnaces can successfully operate in the field for 20 years or longer with

33

"Blue Sky" Approaches to Reduce Greenhouse Gas Emissions: An Initial Assessment of Potential New Types of Greenhouse Gas Emissions Offsets  

Science Conference Proceedings (OSTI)

This report provides an initial assessment of potential new approaches to reducing greenhouse gas (GHG) emissions that might be capable of generating large-scale GHG emissions offsets at relatively low cost compared to other GHG mitigation options. The nine potential blue sky approaches assessed in this report include biochar, destruction of ozone depleting substances, control of natural fugitive methane seeps from coal seams, control of fugitive natural gas emissions associated with hydraulic fracturing...

2011-12-22T23:59:59.000Z

34

Collection and conversion of silicon furnace waste gas into higher value products: Phase 3, 6 MW pilot plant dc closed furnace technology. Final report  

SciTech Connect

The construction and operation of a 6 MW, closed dc furnace for smelting silicon was the primary focus of Phase 3. A 6 MW, dc closed furnace pilot plant was built in East Selkirk, Manitoba, Canada. The furnace is equipped with world`s most modern automatic control system used to control and monitor the process variables and operational data. This control system is suitable for commercial applications and could be used with either closed or open dc furnaces for smelting silicon or ferrosilicon. The construction was started in September 1990, and the facility was operational within 18 months. Following successful commissioning of the pilot plant in June 1992, twelve smelting test campaigns were conducted through November 1994.

Dosaj, V.D.

1995-01-01T23:59:59.000Z

35

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

11 shows the monthly natural gas price forecast for 2010 forthe winter when the natural gas prices are lower compared toSep Oct Nov Dec Fig 11 Natural gas price forecast for 2010

Lekov, Alex B.

2010-01-01T23:59:59.000Z

36

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

11 shows the monthly natural gas price forecast for 2010 forwinter when the natural gas prices are lower compared to theannual prices. Nat. Gas Price (2007$ / MMBtu) New England

Lekov, Alex B.

2010-01-01T23:59:59.000Z

37

Dust-to-gas ratio and star formation history of blue compact dwarf galaxies  

E-Print Network (OSTI)

This paper investigates the origin of the observed large variety in dust-to-gas ratio among blue compact dwarf galaxies (BCDs). By applying our chemical evolution model, we find that the dust destruction can largely suppress the dust-to-gas ratio when the metallicity of a BCD reaches $12+\\log{\\rm (O/H)}\\sim 8$, i.e., a typical metallicity level of BCDs. We also show that dust-to-gas ratio is largely varied owing to the change of dust destruction efficiency that has two effects: (i) a significant contribution of Type Ia supernovae to total supernova rate; (ii) variation of gas mass contained in a star-forming region. While mass loss from BCDs was previously thought to be the major cause for the variance of dust-to-gas ratio, we suggest that the other two effects are also important. We finally discuss the intermittent star formation history, which naturally explains the large dispersion of dust-to-gas ratio among BCDs.

H. Hirashita; Y. Y. Tajiri; H. Kamaya

2002-04-18T23:59:59.000Z

38

Furnace Black Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Black Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher 005F 2 Definitions Particle Aggregate = 20nm to 100nm "Diameter" = 200nm to 1,000nm "Length" = Set of Percolated Aggregates Particle (?) Aggregate Agglomerate Constituents Size = Tech/Scientific Challenge 005F 3 Furnace Process High Temperature Refractory Feedstock Oil Air Natural Gas Reaction Zone Quench 005F 4 Specific Surface Area 005F 5 Structure 3-D Morphology Key Characteristic Summary of Crystallographic Studies 005F 7 Methodologies 005F 8 Summary * For all furnace carbon black 12Å < L C < 17Å * Crystallite L a ≈ 25Å * Amorphous Carbon * No micropores * Very few surface groups (hetero atoms) { 005F 9 Effect of Heat Treatment on Amorphous Carbon

39

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

Not Available

1992-11-01T23:59:59.000Z

40

Furnace | OpenEI  

Open Energy Info (EERE)

Furnace Furnace Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tube furnace  

DOE Patents (OSTI)

A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

1990-01-01T23:59:59.000Z

42

Enameling Furnaces  

Science Conference Proceedings (OSTI)

Table 13 Cycles for firing ground-coated and cover-coated sheet steel parts in a continuous furnace...Architectural panels 16-22 805 1480 2-4 Home laundry equipment 18-22 805 1480 4-5 Water heater tanks 7-16 870 1600 8-12 Range equipment 18-24 805 1480 3-5 Sanitary ware 14-18 815 1500 4-6 Signs 16-22 805 1480 3-5 (a) Temperature varies with composition of frit. (b) Time in hot zone of furnace...

43

Furnace assembly  

DOE Patents (OSTI)

A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

Panayotou, Nicholas F. (Kennewick, WA); Green, Donald R. (Richland, WA); Price, Larry S. (Pittsburg, CA)

1985-01-01T23:59:59.000Z

44

Direct current, closed furnace silicon technology  

Science Conference Proceedings (OSTI)

The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

1994-05-01T23:59:59.000Z

45

Furnace and Boiler Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnace and Boiler Basics Furnace and Boiler Basics Furnace and Boiler Basics August 16, 2013 - 2:50pm Addthis Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating. Furnaces Furnaces are the most common heating systems used in homes in the United States. They can be all electric, gas-fired (including propane or natural gas), or oil-fired. Boilers Boilers consist of a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own boilers, while other buildings have steam or hot water piped in from a central plant. Commercial boilers are manufactured for high- or low-pressure applications.

46

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

1 FURNACE AND BOILER TECHNOLOGY19 Furnace and Boiler Lifetimes Used in the LCC Analysis (PBP RESULTS FOR GAS BOILERS USING ALTERNATIVE INSTALLATION

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

47

Condensing furnaces: Lessons from a utility  

SciTech Connect

for the last several years about 90% of the new natural gas furnaces installed in Wisconsin have been condensing furnaces and a number of lessons have been learned. If you avoid the common mistakes, condensing furnaces typically can deliver heating savings of 20-35 % assuming the old furnace was in the 60% AFUE range. This article describes the common mistakes and how to avoid them: outside air needed 100%; benefits of sealed combustion; follow the installation manual scrupulously; how to avoid potential problems; tips on venting.

Beers, J. [Madison Gas and Electric Company, WI (United States)

1994-11-01T23:59:59.000Z

48

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

DOE Green Energy (OSTI)

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

49

Development of Reverberatory Furnace Using in Copper Scrape ...  

Science Conference Proceedings (OSTI)

... Furnace Using in Copper Scrape Smelting by Reformed Natural Gas ... Oxidation Kinetics of Fe-Cr and Fe-V liquid Alloys under Controlled Oxygen Pressures.

50

Furnaces and Energy  

Science Conference Proceedings (OSTI)

Cast Shop for Aluminum Production: Furnaces and Energy ... Computational Analysis of Thermal Process of a Regenerative Aluminum Melting Furnace: Jimin ... and the appearance of innovative and competing stirrer systems in the market.

51

Precision control of high temperature furnaces  

DOE Patents (OSTI)

It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

Pollock, G.G.

1994-12-31T23:59:59.000Z

52

Furnace Design and Operation  

Science Conference Proceedings (OSTI)

...S. Lampman, Energy-Efficient Heat-Treating Furnace Design and Operation, Heat Treating, Vol 4, ASM Handbook, ASM International,

53

Anode Baking Furnace Operation  

Science Conference Proceedings (OSTI)

The course is directed toward plant managers, anode area managers, process engineers, technical managers, and baking furnace ... ENERGY MANAGEMENT.

54

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 3, July--September 1992  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R & D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

Not Available

1992-11-01T23:59:59.000Z

55

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Progress report No. 12, September--December 1994  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. There are two basic arrangements of our HIPPS cycle. Both are coal-fired combined cycles. One arrangement is the 35% natural gas HIPPS. Coal is converted to fuel gas and char in a pyrolysis process, and these fuels are fired in separate parts of a high temperature advanced furnace (HITAF). The char-fired furnace produces flue gas that is used to heat gas turbine air up to 1400 F. Alloy tubes are used for these tube banks. After leaving the alloy tube banks, the gas turbine air goes through a ceramic air heater where it is heated from 1400 F to 1800 F. The flue gas that goes through the ceramic air heater comes from the combustion of the fuel gas that is produced in the pyrolysis process. This fuel gas is cleaned to remove particulates and alkalies that would corrode and plug a ceramic air heater. The air leaving the ceramic air heater needs to be heated further to achieve the efficiency goal of 47%, and this is done by firing natural gas in the gas turbine combustor. An alternative arrangement of the HIPPS cycle is called the All Coal HIPPS. With this arrangement, the char is used to heat the gas turbine air to 1400 F as before, but instead of then going to a ceramic air heater, the air goes directly to the gas turbine combustor. The fuel gas generated in the pyrolyzer is used as fuel in the gas turbine combustor. In both cycle arrangements, heat is transferred to the steam cycle in the HITAF and a heat recovery steam generator (HRSG).

1995-06-01T23:59:59.000Z

56

Energy saving furnace controller  

Science Conference Proceedings (OSTI)

This patent describes a forced air heating system including a furnace controlled by a household thermostat. The furnace includes a burner, burning valve, heat exchanger, plenum and fan for circulating air through the heat exchanger and plenum. An auxiliary controller comprises: relay means connectable between the household thermostat and the furnace burner valve; and timing means for controlling the duty cycle of the furnace burner valve by opening and closing the relay. The timing means includes means for timing alternating first and second intervals, the first interval at least substantially equal to the length of time the furnace delays between a cell for heat from the household thermostat and the start of the furnace fan when the furnace is started from a cool state. The second interval corresponds to a percentage of the first interval.

Johnson, H.R.; Lombardi, S.E.

1987-05-26T23:59:59.000Z

57

Barges haul LP-gas on inland waterways and the deep-blue sea  

SciTech Connect

Warren Petroleum Co. (Tulsa) owns 23 LP-gas barges and leases another eight to 10, depending on need, for transporting product from Mont Belvieu to terminals on the inland waterways and east to Florida and down into the Caribbean. One of these barges is the Sioux, recently completed by Fredeman Shipyard, located at Carlyss, La. Upon delivery to the owner, M and W Barge Co. of Belle Chasse, La., the barge went on charter to Warren Petroleum. Built under the supervision of project manager Terry T. Frickey, the barge took nine months to complete and provided 20 new jobs at the shipyard. The company is currently negotiating for a similar barge-construction contract.

Not Available

1988-03-01T23:59:59.000Z

58

Combustion Air Preheat on Steam Cracker Furnaces  

E-Print Network (OSTI)

Beginning in 1978, Exxon has started up nine large new steam cracking furnaces with various levels of air preheat, and has seven more under construction. Sources of heat have included process streams, flue gas and gas turbine exhaust. Several aspects of the technology employed have been patented in the U.S. and elsewhere. This paper discusses the use of process heat and gas turbine exhaust for air preheat to provide plant fuel savings of about 8% over and above a modern, fuel efficient alternative furnace without air preheat.

Kenney, W. F.

1983-01-01T23:59:59.000Z

59

Furnaces and Boilers  

Energy.gov (U.S. Department of Energy (DOE))

Furnaces heat air and distribute the heated air through a building using ducts; boilers heat water, providing either hot water or steam for heating.

60

Furnace Black Characterization  

E-Print Network (OSTI)

Furnace Black Characterization Sid Richardson Carbon Co Fort Worth, TX Dr. Michel Gerspacher #12 of Crystallographic Studies #12;005F7 Methodologies #12;005F8 Summary · For all furnace carbon black 12? Surface Unorganized Carbon Identified #12;005F11 SRCC's Model #12;005F12 Carbon Black Surface Activity

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Computer Measurement and Automation System for Gas-fired Heating...  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Measurement and Automation System for Gas-fired Heating Furnace Title Computer Measurement and Automation System for Gas-fired Heating Furnace Publication Type Journal...

62

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

Science Conference Proceedings (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

63

System for generating power with top pressure of blast furnaces  

SciTech Connect

A system for generating power with the top pressure of a plurality of blast furnaces by leading a gas from the top of the furnaces into turbines, corresponding in number to the furnaces, to convert the pressure of the gas into rotational energy and generate power by a generator coupled to the turbines. The turbines connected to the furnaces by main gas channels individually are aligned with their rotor shafts connected together into a single shaft which is connected to the generator. Preferably each pair of the adjacent turbines are arranged with their intake ends positioned in the center of the arrangement so that the gas flows toward the exhaust ends at both sides, or with their intake ends positioned at both sides to cause the gas to flow toward the exhaust ends in the center. The single shaft connecting the pair of turbines together has no intermediate bearing between these turbines.

Kihara, H.; Mizota, T.; Ohmachi, M.; Takao, K.; Toki, K.; Tomita, Y.

1983-06-14T23:59:59.000Z

64

Furnace Systems Technology Workshop  

Science Conference Proceedings (OSTI)

TMS Networking and Online Tools, X ... TMS Social Network and Site Tools .... furnace technology, fundamentals of fans and blowers, reduction of melt loss, refractory ... Sutton - Harbison-Walker Refractories; Jon Gillespie - Gillespie & Powers...

65

High temperature furnace  

DOE Patents (OSTI)

A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

Borkowski, Casimer J. (Oak Ridge, TN)

1976-08-03T23:59:59.000Z

66

Furnace Standards Enforcement Policy Statement | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Standards Enforcement Policy Statement Furnace Standards Enforcement Policy Statement Furnace Standards Enforcement Policy Statement On January 11, 2013, the Department of Justice, on behalf of DOE, and the American Public Gas Association (APGA) filed a joint motion asking the court to enter an agreement to settle APGA's challenge to DOE's June 27, 2011 Direct Final Rule. The settlement agreement would, among other things, vacate the energy conservation standards applicable to non-weatherized gas furnaces established in the DFR. In an exercise of its enforcement discretion, DOE will, during the pendency of the litigation, act in a manner consistent with the terms of the settlement agreement with regard to the enforcement of the standards. Furnace Standards Enforcement Policy Statement - April 5, 2013

67

Vertical two chamber reaction furnace  

DOE Patents (OSTI)

A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

Blaugher, R.D.

1999-03-16T23:59:59.000Z

68

Effect of Batch Initial Velocity on the Glass Furnace Efficiency  

Science Conference Proceedings (OSTI)

There is a direct coloration between the batch distribution techniques and the furnace ... A Review: Solar Thermal Reactors for Materials Production ... Cellulose Acetate Membranes for CO2 Separation from Water-gas-shift Reaction Products.

69

Partially Reduced Feedstocks and Blast Furnace Ironmaking ...  

Science Conference Proceedings (OSTI)

... Partially Reduced Feedstocks and Blast Furnace Ironmaking Carbon Intensity ... simple Rist-style blast furnace mass and energy balance, assuming furnace...

70

Argonne Software Licensing: Glass Furnace Model (GFM)  

The Glass Furnace Model (GFM) The Glass Furnace Model (GFM) Version 4.0, a computational fluid dynamic (CFD) glass furnace simulation code was developed at Argonne ...

71

Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

Not Available

2006-02-01T23:59:59.000Z

72

Simple Maintenance Saves Costly Furnace Repair/Replacement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement January 6, 2010 - 8:26am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory For the past few weeks, my forced-air gas furnace has been on the fritz. I blame this on the fact that I haven't been as diligent as I should have been with regular furnace maintenance, which includes: Checking the condition of the vent connection pipe and chimney Checking the physical integrity of the heat exchanger Adjusting the controls to provide optimum water and air temperature settings for both efficiency and comfort Having a technician perform a combustion-efficiency test Checking the combustion chamber for cracks. Testing for carbon monoxide

73

ComEd, Nicor Gas, Peoples Gas & North Shore Gas - Bonus Rebate...  

Open Energy Info (EERE)

Rebates Central Air Conditioner Unit 14 SEER or above: 350 Central Air Conditioner Unit Energy Star rated: 500 Nicor Gas, Peoples Gas & North Shore Gas Furnace: 200 - 500...

74

Electricity and Natural Gas Efficiency Improvements for Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S....

75

Austin Utilities (Gas and Electric) - Residential Conserve and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for each EER point over requirement, plus 250 per desuperheater Natural Gas Rebates Boilers: 100 - 300 Electronic Ignition Hearth: 75 Furnaces: 100 - 200 Furnace Fan Motor:...

76

Tritium extraction furnace  

DOE Patents (OSTI)

This invention is comprised of apparatus for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having, negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible`s internal volume is sufficient by itself to hold and enclose the bundle`s volume after heating. The crucible can then be covered and disposed of, the sleeve, on the other hand, can be reused.

Heung, L.K.

1992-12-31T23:59:59.000Z

77

Microsoft Word - ACEEE_06_FurnaceBlower_Paper413_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

BPM Motors in Residential Gas Furnaces: What are the Savings? BPM Motors in Residential Gas Furnaces: What are the Savings? James Lutz, Victor Franco, Alex Lekov, and Gabrielle Wong-Parodi Lawrence Berkeley National Laboratory, Berkeley, California ABSTRACT Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized

78

Exergy-based analysis and efficiency evaluation for an aluminum melting furnace in a die-casting plant  

Science Conference Proceedings (OSTI)

The efficiency of a natural gas-fired aluminum melting furnace in a die-casting plant is examined using energy and exergy methods, to improve understanding of the burner system in the furnace and so that potential improvements can be identified. Such ... Keywords: aluminum, die-casting, efficiency, energy, exergy, melting furnace

Marc A. Rosen; Dennis L. Lee

2009-02-01T23:59:59.000Z

79

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

factors for production of coal products -- patent fuel, cokeoven coke,coke oven gas, blast furnace gas and briquettes (BKB) --

2006-01-01T23:59:59.000Z

80

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

equipment = furnace Heating fuel = oil Home type = single orequipment = boiler Heating fuel = oil Home type = single orHOME HEATING FUEL CON 3 NATURAL GAS FROM UNDERGROUND PIPES = 1 BOTTLED GAS (LPG OR PROPANE) = 2 FUEL OIL

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Final report on the project entitled: Highly Preheated Combustion Air System with/without Oxygen Enrichment for Metal Processing Furnaces  

SciTech Connect

This work develops and demonstrates a laboratory-scale high temperature natural gas furnace that can operate with/without oxygen enrichment to significantly improve energy efficiency and reduce emissions. The laboratory-scale is 5ft in diameter & 8ft tall. This furnace was constructed and tested. This report demonstrates the efficiency and pollutant prevention capabilities of this test furnace. The project also developed optical detection technology to control the furnace output.

Arvind Atreya

2007-02-16T23:59:59.000Z

82

HIGH TEMPERATURE MICROSCOPE AND FURNACE  

DOE Patents (OSTI)

A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

Olson, D.M.

1961-01-31T23:59:59.000Z

83

Post combustion trials at Dofasco's KOBM furnace  

DOE Green Energy (OSTI)

Post combustion trials were conducted at Dofasco's 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

Farrand, B.L.; Wood, J.E.; Goetz, F.J.

1992-01-01T23:59:59.000Z

84

Reduce Air Infiltration in Furnaces  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

Not Available

2006-01-01T23:59:59.000Z

85

Cupola Furnace Computer Process Model  

Science Conference Proceedings (OSTI)

The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

Seymour Katz

2004-12-31T23:59:59.000Z

86

Central Hudson Gas & Electric (Gas) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of energy efficient equipment. Natural gas rebates apply to water heaters, natural gas boilers, steam boilers, boiler controls, furnaces, programmable thermostats, and duct and air...

87

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

88

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents (OSTI)

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

89

The Modeling of a Laboratory Natural GasFired Furnace with a HigherOrder Projection Method for Unsteady Combustion \\Lambda  

E-Print Network (OSTI)

for Unsteady Combustion \\Lambda R.B. Pember, P. Colella, L.H. Howell, A.S. Almgren, J.B. Bell, W.Y. Crutchfield method for axisymmetric, unsteady, low­ Mach number combustion is used to model a natural gas flame from axisymmetric reacting flow code in order to evaluate the combustion model and the numerical method. The results

90

Regenerative Burners Assessment in Holding Reverberatory Furnace  

Science Conference Proceedings (OSTI)

The assessment showed that the regenerative burner furnaces are not profitable in saving energy in addition to the negative impact on the furnace life.

91

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report  

SciTech Connect

A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

NONE

1996-02-01T23:59:59.000Z

92

Ameren Missouri (Gas) - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

efficient measures and natural gas equipment. Rebates are available for furnaces, boilers, ceiling insulation, programmable thermostats and comprehensive measures resulting...

93

High pressure furnace  

DOE Patents (OSTI)

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1993-01-01T23:59:59.000Z

94

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

95

High pressure oxygen furnace  

DOE Patents (OSTI)

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

96

High pressure furnace  

DOE Patents (OSTI)

A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

Morris, D.E.

1993-09-14T23:59:59.000Z

97

Fuel-Fired Furnaces  

Science Conference Proceedings (OSTI)

...Fuel must arrive at the burner in the correct quantity and at the correct time for safe combustion. Fuel pressure thus must be proven within an allowable range. Gas-pressure switches for both high and low gas limits are installed in the main gas

98

Laboratory Evaluation of Residential Furnace BlowerPerformance  

SciTech Connect

A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

Walker, Iain S.; Lutz, Jim D.

2005-09-01T23:59:59.000Z

99

Detroit blues women.  

E-Print Network (OSTI)

??ABSTRACT DETROIT BLUES WOMEN by Michael Duggan Murphy August 2011 Advisor: Dr. John J. Bukowczyk Major: History Degree: Doctor of Philosophy "Detroit Blues Women" explores (more)

Murphy, Michael Duggan

2011-01-01T23:59:59.000Z

100

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI  

Open Energy Info (EERE)

WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI WaterFurnace Renewable Energy Inc formerly WaterFurnace Industries Inc WFI Jump to: navigation, search Name WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) Place Indiana Zip 46809 Sector Geothermal energy Product WaterFurnace develops and manufactures geothermal heating and cooling systems. References WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI)) is a company located in Indiana . References ↑ "WaterFurnace Renewable Energy Inc (formerly: WaterFurnace Industries, Inc (WFI))"

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fossil fuel furnace reactor  

DOE Patents (OSTI)

A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

Parkinson, William J. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

102

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high-temperature furnace (HITAF): Volume 4. Final report  

Science Conference Proceedings (OSTI)

An outgrowth of our studies of the FWDC coal-fired high performance power systems (HIPPS) concept was the development of a concept for the repowering of existing boilers. The initial analysis of this concept indicates that it will be both technically and economically viable. A unique feature of our greenfields HIPPS concept is that it integrates the operation of a pressurized pyrolyzer and a pulverized fuel-fired boiler/air heater. Once this type of operation is achieved, there are a few different applications of this core technology. Two greenfields plant options are the base case plant and a plant where ceramic air heaters are used to extend the limit of air heating in the HITAF. The greenfields designs can be used for repowering in the conventional sense which involves replacing almost everything in the plant except the steam turbine and accessories. Another option is to keep the existing boiler and add a pyrolyzer and gas turbine to the plant. The study was done on an Eastern utility plant. The owner is currently considering replacing two units with atmospheric fluidized bed boilers, but is interested in a comparison with HIPPS technology. After repowering, the emissions levels need to be 0.25 lb SO{sub x}/MMBtu and 0.15 lb NO{sub x}/MMBtu.

NONE

1996-05-01T23:59:59.000Z

103

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

104

Variable frequency microwave furnace system  

DOE Patents (OSTI)

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

105

Blast furnaces make way for new steel technology  

Science Conference Proceedings (OSTI)

Increasingly stringent environmental regulations, aging production units, and a competitive market are forcing iron and steelmakers to improve the environmental performance and cost efficiencies of their processes. The traditional integrated steel unit isn`t obsolete -- yet. Blast furnaces will be around for at least another 15 years. However, traditional technology is in for some changes, and stepped up rivalry from electric arc furnace minimills and ironmaking processes that use gas or coal. The paper discusses direct iron making processes, the DRI-minimill connection, the iron carbide process, and reclaiming iron from waste.

Ondrey, G.; Parkinson, G.; Moore, S.

1995-03-01T23:59:59.000Z

106

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

of separate costs for natural gas or oil, and electricity.receives oil-fired boilers INPUTS First Cost Inputs The flowfurnaces, and oil-fired furnaces, we scaled the cost for

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

107

Microsoft Word - ACEEE_06_FurnaceBlower_Paper413_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We...

108

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

109

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

SciTech Connect

In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-02-01T23:59:59.000Z

110

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

111

Duke Energy (Gas & Electric) - Residential and Builder Energy...  

Open Energy Info (EERE)

(dealer) Existing Home Gas Furnace: 200 (home owner); 100 (builder) Heat PumpAC in New Home: 300heat pump installed (builder) New Home Gas Furnace: 300 (builder) AC Cycling...

112

SourceGas- Residential Energy Efficiency Rebate Program (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

SourceGas offers various incentives for high efficiency home heating and water heating equipment. Rebates are available for the purchase of direct vent wall furnaces, standard gas furnaces,...

113

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

Andrew Seltzer

2005-01-01T23:59:59.000Z

114

Application of Argonne's Glass Furnace Model to longhorn glass corporation oxy-fuel furnace for the production of amber glass.  

SciTech Connect

The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation into the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.

Golchert, B.; Shell, J.; Jones, S.; Energy Systems; Shell Glass Consulting; Anheuser-Busch Packaging Group

2006-09-06T23:59:59.000Z

115

Gas furnace efficiency has large implications for ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... ...

116

Blue-green algae  

NLE Websites -- All DOE Office Websites (Extended Search)

green algae Name: Renee Location: NA Country: NA Date: NA Question: How much oxygen does green-blue algae produce, and how big are they? Replies: Blue-green algae...

117

Furnaces and Boilers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Furnaces and Boilers Furnaces and Boilers Furnaces and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. What does this mean for me? To maintain your heating system's efficiency and ensure healthy indoor air quality, it's critical to maintain the unit and its venting mechanism. Proper maintenance extends the life of your furnace or boiler and saves you money. Most U.S. homes are heated with either furnaces or boilers. Furnaces heat air and distribute the heated air through the house using ducts. Boilers heat water, and provide either hot water or steam for heating. Steam is distributed via pipes to steam radiators, and hot water can be distributed

118

Measurement of airflow in residential furnaces  

E-Print Network (OSTI)

cut out of a piece of plywood that is attached to the inlet.the size of the furnace outlet cut in the plywood. ESLtaped the furnace to the plywood and strapped it in place.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-01T23:59:59.000Z

119

Furnace Systems Technology Workshop Brochure (PDF)  

Science Conference Proceedings (OSTI)

To register, visit the furnace systems technology ... transfer, atmospheres and purging requirements, effective control systems, and fuel efficiency, production...

120

Alabama Gas Corporation- Residential Natural Gas Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment....

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Batch Preheat for glass and related furnace processing operations  

SciTech Connect

The objectives that our development work addressed are: (1) Establish through lab tests a salt eutectic with a melting point of about 250 F and a working range of 250 to 1800 F. (2) Establish the most economical material of construction for the screened salt eutectics identified in the first objective. (3) Establish the material of construction for the salt heater liner. Objectives 2 and 3 were determined through corrosion tests using selected metallurgical samples. Successful completion of the above-stated goals will be incorporated in a heat recovery design that can be used in high temperature processes and furnaces, typical of which is the glass melting process. The process design incorporates the following unit operations: a vertical batch heater (whereby the batch flows down through tubes in a shell and tube exchanger; a molten salt eutectic is circulated on the shell side); a molten salt heater utilizing furnace flue gas in a radiation type heater (molten salt is circulated in the annular space between the inner and outer shells of the vertical heater, and flue gas passes from the furnace exhaust through the inner shell of the heater); a cantilever type molten salt circulating pump; and a jacketed mixer/conveyor to drive off moisture from the batch prior to feeding the batch to the vertical batch heater. Historically, radiation heaters, when applied to glass or fiberglass furnace recuperation, have experienced failures due to uneven heat flux rates, which increases internal stresses and spot overheating conditions. Low heat transfer coefficients result in requirements for large heat transfer surface areas in gas to gas or gas to air exchangers. Fouling is another factor that results in lower unit availability and reduced performance. These factors are accommodated in this process by the incorporation of several design features. The salt heater will be a vertical double wall radiation design, similar to radiation air heaters used in high temperature heat recovery. The unit utilizes an inner shell that the furnace exhaust gas passes through: this provides essentially a self-cleaning surface. Utilization of radiation air heaters in fiberglass furnaces has demonstrated that the inner shell provides a surface from which molten ash can drain down. The molten salt eutectic will be pumped through the annulus between this inner wall and the outer wall of the unit. The annular space tempering via the molten salt will promote more uniform expansion for the unit, and thereby promote more uniform heat flux rates. Heat transfer would be via radiation mainly, with a minor convective contributor.

Energy & Environmental Resources, Inc

2002-08-12T23:59:59.000Z

122

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network (OSTI)

from residential natural gas appliances. CH 4 Furnace (2)ng/J) distribution from residential natural gas appliances.rates from unvented gas appliances," Environ. Intern. 12:

Traynor, G.W.

2011-01-01T23:59:59.000Z

123

Ferrosilicon smelting in a direct current furnace  

DOE Patents (OSTI)

The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

Dosaj, V.D.; May, J.B.

1992-12-29T23:59:59.000Z

124

Intermountain Gas Company (IGC) - Gas Heating Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program Intermountain Gas Company (IGC) - Gas Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Furnace: $200/unit Provider Customer Service The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system using another energy source. New furnaces must meet a minimum AFUE efficiency rating of 90%, and the home must have been built at least three years prior to the furnace conversion to qualify for the rebate. Visit IGC's program web site for more

125

Post combustion trials at Dofasco`s KOBM furnace  

DOE Green Energy (OSTI)

Post combustion trials were conducted at Dofasco`s 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

Farrand, B.L.; Wood, J.E.; Goetz, F.J.

1992-12-31T23:59:59.000Z

126

List of Furnaces Incentives | Open Energy Information  

Open Energy Info (EERE)

Furnaces Incentives Furnaces Incentives Jump to: navigation, search The following contains the list of 688 Furnaces Incentives. CSV (rows 1-500) CSV (rows 501-688) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit

127

Blast Furnace Granulated Coal Injection System Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880,...

128

Energy Control in Primary Aluminium Casthouse Furnaces  

Science Conference Proceedings (OSTI)

In order to effectively run a furnace with low energy consumption the burner's fuel ... Oxidation of Commercial Purity Aluminium Melts: An Experimental Study.

129

Measurement of airflow in residential furnaces  

SciTech Connect

In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

Biermayer, Peter J.; Lutz, James; Lekov, Alex

2004-01-24T23:59:59.000Z

130

Dataplot Commands for Furnace Case Study  

Science Conference Proceedings (OSTI)

... variable label run Run Number variable label zone Furnace Location variable label wafer Wafer Number variable label filmthic Film Thickness (ang ...

2012-03-31T23:59:59.000Z

131

High Performance Sealing for Anode Baking Furnaces  

Science Conference Proceedings (OSTI)

Operation of an Open Type Anode Baking Furnace with a Temporary Crossover ... Wireless Communication for Secured Firing and Control Systems of Anode...

132

Energy Efficiency Improvement in Anode Baking Furnaces  

Science Conference Proceedings (OSTI)

One of the high energy consumption facilities in a smelter is the Anode Baking ... Hydro Aluminium's Historical Evolution of Closed Type Anode Baking Furnace...

133

VAPOR SHIELD FOR INDUCTION FURNACE  

DOE Patents (OSTI)

This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

Reese, S.L.; Samoriga, S.A.

1958-03-11T23:59:59.000Z

134

Mathematical model of a tube furnace for catalytic conversion of hydrocarbons  

Science Conference Proceedings (OSTI)

The tube furnace is a complex unit in which there are hundreds of reaction tubes and coils for heating the reaction mixture, gas, air, steam and water. Optimum design of such a unit can be done only with a mathematical model of it. A number of physicochemical processes occur in the reaction furnace: conversions of natural gas with heat supplied through the wall of the tube, combustion of fuel in the firebox, transfer of heat from the radiating walls or flame to the reaction tubes, heating of the vapor-gas mixture and other flows in the convective zone of the furnace. These processes are interrelated and there are some difficulties in writing a mathematical model for the furnace. We have adopted the following principle for construction of a model: individual processes are being modeled and the starting data for calculation of these are the results of modeling of other processes. Calculation is made by sequential approximations until material and thermal balances are observed for all processes, as is indicated on the calculation flowsheet. Thermal calculations were made by methods discussed in (2). Modeling the tube furnace on a computer makes it possible to determine its working characteristics and range of safe operation. Computer calculations permit the time required for design of furnaces to be reduced substantially and the quality of the design to be improved. Higher demands are beingmade on tube furnaces for catalytic conversion of natural gas both with regard to operating reliability and economy because of the sharp increase of the unit capacities of ammonia and methanol synthesis plants.

Stepanov, A.V.; Sul'zhik, N.I.; Kadygrob, L.A.; Gorlov, V.F.; Mishin, V.P.; Dugach, V.V.

1981-02-01T23:59:59.000Z

135

BRANCHED ALKANES FROM BLUE-GREEN ALGAE  

DOE Green Energy (OSTI)

Branched alkanes from blue-green algae were separated on a 750 feet high resolution capillary gas chromatographic column. The mixture was found to be 90% of 1:1 ratio 7-methyl, and 8-methyl-heptadecane, and 10% of 6-methylheptadecane. An optical rotation of +2.5 {+-} 0.5 was obtained on a 5 mg of mixture.

Han, Jerry; Calvin, Melvin.

1970-08-01T23:59:59.000Z

136

Minnesota Energy Resources (Gas) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

natural gas equipment and set-back thermostats. Rebates are available for furnaces, boilers, integrated space and water heating systems, programmable thermostats, water heaters...

137

Colorado Natural Gas- Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Colorado Natural Gas offers the Excess is Out Program for residential and commercial customers in Colorado. Incentives are available for purchasing and installing energy efficient furnaces, boilers...

138

Ameren Illinois (Gas) - Residential Energy Efficiency Rebates...  

Open Energy Info (EERE)

upgrades and improvements. Incentives are currently available to residential homeowners for natural gas boiler, furnaces, insulation, certain ENERGY STAR appliances, and...

139

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar.

Andrew Seltzer

2006-05-01T23:59:59.000Z

140

Optimized Design of a Furnace Cooling System  

E-Print Network (OSTI)

This paper presents a case study of manufacturing furnace optimized re-design. The bottleneck in the production process is the cooling of heat treatment furnaces. These ovens are on an approximate 24-hour cycle, heating for 12 hours and cooling for 12 hours. Pressurized argon and process water are used to expedite cooling. The proposed modifications aim to minimize cycling by reducing cooling time; they are grouped into three fundamental mechanisms. The first is a recommendation to modify current operating procedures. This entails opening the furnace doors at higher than normal temperatures. A furnace temperature model based on current parameters is used to show the reduction in cooling time in response to opening the furnace doors at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat from the furnace envelope. Heat transfer models based on convective Nusselt correlations are used to determine the increase in heat transfer rate. The last mechanism considers a modification to the current heat exchanger. By decreasing the temperature of the water jacket and increasing heat exchanger efficiency, heat transfer from the furnace is increased and cooling time is shortened. This analysis is done using the Effectiveness-NTU method.

Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Thermal Imaging Control of Furnaces and Combustors  

Science Conference Proceedings (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

142

Alabama Gas Corporation - Residential Natural Gas Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program Alabama Gas Corporation - Residential Natural Gas Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Furnace (Replacement): $200 Dryer (Replacement): $100 Natural Gas Range/Cooktop (Replacement): $100 Water Heaters (Replacement): $200 Tankless Water Heaters (Replacement): $200 Provider Alabama Gas Corporation Alabama Gas Corporation (Alagasco) offers various rebates to its residential customers who replace older furnaces, water heaters, cooktops, ranges and clothes dryers with new, efficient equipment. All equipment

143

Building Technologies Office: Residential Furnaces and Boilers Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Furnaces Residential Furnaces and Boilers Framework Meeting to someone by E-mail Share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Facebook Tweet about Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Twitter Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Google Bookmark Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Delicious Rank Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on Digg Find More places to share Building Technologies Office: Residential Furnaces and Boilers Framework Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

144

Insulation of Pipe Bends Improves Efficiency of Hot Oil Furnaces  

E-Print Network (OSTI)

Thermodynamic analyses of processes indicated low furnace efficiencies on certain hot oil furnaces. Further investigation, which included Infrared (IR) thermography testing of several furnaces, identified extremely hot surfaces on the outside of the convective sections. Consultation with the furnace manufacturer then revealed that furnaces made in the 1960's tended to not insulate the pipe bends in the convective section. When insulation was added within the covers of the pipe bends on one furnace, the energy efficiency improved by approximately 11%. The total savings are approximately 14,000 Million Btu/yr on one furnace. Insulation will be applied to several other furnaces at the site.

Haseltine, D. M.; Laffitte, R. D.

1999-05-01T23:59:59.000Z

145

Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Commercial Natural Gas Efficiency (Gas) - Commercial Natural Gas Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate Program < Back Eligibility Commercial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $300 Custom: Varies by project Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers rebates on energy efficient natural gas furnaces to its eligible commercial customers. New furnaces are eligible for a rebate incentive between $150 and $300, if the equipment meets program efficiency standards. Furnaces with AFUE between 92% of 95% are eligible for rebates if they are being installed as replacement units

146

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

147

The Utilization and Recovery of Energy from Blast Furnaces and Converters  

E-Print Network (OSTI)

The Bischoff Blast Furnace Top Gas Process for high pressure blast furnaces is presented as an example of a modern gas treatment process in the iron and steel industry: the work potential of the high pressure top gas is utilized in a plant comprising a gas cleaning unit for dust removal and a turbine for converting the recoverable thermal energy into mechanical and electrical energy. The adjustable annular gap scrubber for separating fine dust also serves as an element for regulating the gas pressure at the blast furnace top so that pressure control by the turbine and its control gear is no longer necessary. Moreover, in the event of a turbine outage the annular gap scrubber can be used as a low noise, pressure-throttling element. The economic use of a turbine for recovering energy from top gas depends on many parameters, such as top pressure, top gas rate, clean gas temperature, local cost of electric power, etc. A profitability analysis for a specific installation shows a remarkably short payback period. The process incorporates a new concept in blast air compression. Mechanical energy from the turbine is transferred directly to the axial flow compressor so that the prior conversion of energy via the power generating cycle is dispensed with. Coupled to the turbine is the compressor motor which, while rated to cover the full power requirement, uses about 40% less electrical power from the power supply system. Finally, as an example of the future potential of this process, a new continuous steelmaking process is presented which employs a closed top converter. The gas, held under pressure during refining, is subsequently cleaned and expanded as the blast furnace process described above. This gas is cleaned without any entrainment of air to furnish a gaseous fuel of high calorific value. Since the steelmaking process is continuous, the gas is constantly available and can be fed into the distribution system without any intermediate storage.

Hegemann, K. R.; Niess, T.; Baare, R. D.

1979-01-01T23:59:59.000Z

148

Ladle Refining Furnaces for the Steel Industry  

Science Conference Proceedings (OSTI)

There has been a tremendous interest in the use of ladle refining furnaces in the last few years. Several units have been or are being constructed in the United States and most steel companies are seriously considering installing them. The purpose of this report is to inform the member companies of EPRI of the development and operations of ladle furnaces and to assist steel companies in determining if ladle furnaces fit their goals and which particular unit would be best for their operation. In this repo...

1990-01-31T23:59:59.000Z

149

Blue-eyed Babies  

NLE Websites -- All DOE Office Websites (Extended Search)

Blue-eyed Babies Blue-eyed Babies Name: Jill Location: N/A Country: N/A Date: N/A Question: One of my students asked me the other day why all babies are born with blue eyes, even though they are truly brown-eyed, once their eyes change colour. What causes this phenomenon? Exposure to air, maybe? Replies: Hi, First of all not all babies are born with blue eyes. This is especially evident in the Asian/ Indian continents. The cause for the delay is nothing more than a delay in the enzymes that bring on the darker color proteins. You are probably aware that eye color is determined by more than one gene. The darker colors have blue coloration as part of their make-up and that may be the only protein of the color exposed at birth for many individuals. The proteins that give the darker colors usually turn on within a year of birth and this timing varies with individuals.

150

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

151

High-bandwidth continuous-flow arc furnace  

DOE Patents (OSTI)

A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

Hardt, D.E.; Lee, S.G.

1996-08-06T23:59:59.000Z

152

Multiple hearth furnace for reducing iron oxide  

SciTech Connect

A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

Brandon, Mark M. (Charlotte, NC); True, Bradford G. (Charlotte, NC)

2012-03-13T23:59:59.000Z

153

Optical Furnace offers improved semiconductor device ...  

This means that the furnace is almost immune to the contamination from hot walls of ... NREL 94-26 US 5,897,331 High Efficiency Low Cost Thin Film ...

154

Furnaces and Boilers | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and Boilers June 24, 2012 - 4:56pm Addthis Upgrading to a high efficiency furnace or boiler is an effective way to save money on home heating. Upgrading to a high efficiency...

155

Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Energy (Gas) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heating Program Info State Maryland Program Type Utility Rebate Program Rebate Amount Gas Furnace: $300 or $400 Duct Sealing: $200 Tune-ups: $100 Installation Rebates: Contact BGE The Baltimore Gas and Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available for furnaces, HVAC system tune-ups, and insulation measures. All equipment and installation

156

Blue Ridge Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Blue Ridge Biofuels LLC Jump to: navigation, search Name Blue Ridge Biofuels LLC Place Asheville, North Carolina Zip 28801 Sector Biofuels Product Blue Ridge Biofuels is a worker...

157

Energy Basics: Furnaces and Boilers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a vessel or tank where heat produced from the combustion of such fuels as natural gas, fuel oil, or coal is used to generate hot water or steam. Many buildings have their own...

158

Classic Template - Blue  

Science Conference Proceedings (OSTI)

... Fire detecting and extinguishing equipment Liquefied Petroleum Gas (LPG) utilization equipment (commercial and industrial) ...

2012-10-30T23:59:59.000Z

159

Columbia Gas of Virginia- Business Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Gas of Virginia offers rebates to commercial customers for the purchase and installation of energy efficient equipment. Water heaters, furnaces, boilers and controls, laundromat clothes...

160

Minnesota Energy Resources (Gas)- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Minnesota Energy Resources provides rebates to their residential customers for the purchase of energy efficient natural gas equipment and set-back thermostats. Rebates are available for furnaces,...

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Columbia Gas of Virginia- Home Savings Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Gas of Virginia offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. Water heaters, furnaces, windows, insulation and...

162

Ameren Illinois (Gas) - Business Efficiency Incentives (Illinois...  

Open Energy Info (EERE)

- 6,000 Gas Furnace Replacement: 200 - 800unit Gas Boiler Tune-Up: 100 - 2400 Steam Trap Survey (HVAC): 30trap (<15 psig) Steam Trap Repair Replacement (HVAC): 100...

163

PECO Energy (Gas) Heating Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The PECO Smart Gas Efficiency Upgrade Program offers rebates and incentives to commercial or residential customers that install an ENERGY STAR qualified high-efficiency natural gas furnace or...

164

Oklahoma Natural Gas- Residential Efficiency Rebates (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential customers and builders for furnace, water heating, or space...

165

Piedmont Natural Gas- Residential Equipment Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 201-Residential Service Rate or 221-Residential Service...

166

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

167

A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace  

SciTech Connect

This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

2002-01-21T23:59:59.000Z

168

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL  

Science Conference Proceedings (OSTI)

The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

Gary M. Blythe

2004-01-01T23:59:59.000Z

169

Air Leakage of Furnaces and Air Handlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

170

Waste Heat Recovery Submerged Arc Furnaces (SAF)  

E-Print Network (OSTI)

Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000F using high voltage electricity along with metallurgical carbon to reduce metal oxides to pure elemental form. The process as currently designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btus required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified to recover this heat and convert it to power. The system will then reduce the amount of purchased power by approximately 25% without any additional use of fuel. The cost of this power is virtually unchanged over the life of the project because of the use of capital to displace fuel consumed from the purchased power source.

O'Brien, T.

2008-01-01T23:59:59.000Z

171

Control of energy use in a furnace  

Science Conference Proceedings (OSTI)

This patent describes, in a residential furnace of the type which is responsive to a thermostat and has an electronic ignitor, and a circulating air blower that May be operated on a continuous basis, an improved process of controlling the thermostat, electrical ignitor and blower in an ignition sequence of the furnace. It comprises: upon receiving a call for heat from a thermostat, checking to determine if the circulating air blower is on; if the blower is on, turning it off; and only after the blower is turned off, turning on the ignitor to initiate the combustion process.

Ballard, G.W.; Dempsey, D.J.

1990-01-02T23:59:59.000Z

172

Segmented ceramic liner for induction furnaces  

DOE Patents (OSTI)

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

173

Lance for fuel and oxygen injection into smelting or refining furnace  

DOE Patents (OSTI)

A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figures.

Schlichting, M.R.

1994-12-20T23:59:59.000Z

174

Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge  

SciTech Connect

Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P. [Huazhong University of Science and Technology, Wuhan (China)

2009-03-15T23:59:59.000Z

175

Self-calibrated active pyrometer for furnace temperature measurements  

DOE Patents (OSTI)

Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

176

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Residential Furnaces and Boilers in U.S. homes Title Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. homes Publication Type Report...

177

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

Ducts Total Electricity Consumption (kWh/year) ity ni x FrDucts Total Electricity Consumption (kWh/year) nt a ni x Fryear. Furnace blowers account for about 80% of the total furnace electricity consumption

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

178

Grate Furnace Combustion: A Submodel for the Solid Fuel Layer  

Science Conference Proceedings (OSTI)

The reduction of NOx-formation in biomass fired grate furnaces requires the development of numerical models. To represent the variety in scales and physical processes playing a role in the conversion, newly developed ... Keywords: Grate furnace, biomass, reverse combustion

H. A. Kuijk; R. J. Bastiaans; J. A. Oijen; L. P. Goey

2007-05-01T23:59:59.000Z

179

Design and fabrication of a tin-sulfide annealing furnace  

E-Print Network (OSTI)

A furnace was designed and its heat transfer properties were analyzed for use in annealing thin-film tins-ulfide solar cells. Tin sulfide has been explored as an earth abundant solar cell material, and the furnace was ...

Lewis, Raymond, S.M. (Raymond A.) Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

180

Using coal-dust fuel in Ukrainian and Russian blast furnaces  

SciTech Connect

Ukrainian and Russian blast-furnace production falls short of the best global practices. It is no secret that, having switched to oxygen and natural gas in the 1960s, the blast-furnace industries have improved the batch and technological conditions and have attained a productivity of 2.5 and even 3 t/(m{sup 3} day), but have not been able to reduce coke consumption below 400 kg/t, which was the industry standard 40 years ago. The situation is particularly bad in Ukraine: in 2007, furnace productivity was 1.5-2 t/m{sup 3}, with a coke consumption of 432-530 kg/t. Theoretical considerations and industrial experience over the last 20 years show that the large-scale introduction of pulverized fuel, with simultaneous improvement in coke quality and in batch and technological conditions, is the only immediately available means of reducing coke consumption considerably (by 20-40%). By this means, natural-gas consumption is reduced or eliminated, and the efficiency of blast-furnace production and ferrous metallurgy as a whole is increased.

A.A. Minaev; A.N. Ryzhenkov; Y.G. Banninkov; S.L. Yaroshevskii; Y.V. Konovalov; A.V. Kuzin [Donetsk National Technical University, Donetsk (Russian Federation)

2008-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Furnace Efficiency Energy and Throughput - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Furnace Efficiency Energy and Throughput. Sponsorship, The Minerals...

182

The information furnace: consolidated home control  

Science Conference Proceedings (OSTI)

?The Information Furnace is a basement-installed PC-type device that integrates existing consumer home-control, infotainment, security and communication technologies to transparently provide accessible and value-added services. A modern home contains ... Keywords: Automation, Consumer electronics, Home-control, Multi-modal interfaces

Diomidis D. Spinellis

2003-05-01T23:59:59.000Z

183

Field Demonstration of the Thermostone III Electric Thermal Storage Furnace  

Science Conference Proceedings (OSTI)

Heat storage furnaces use low-cost, off-peak electricity to satisfy all of a customer's heating needs. This field demonstration showed that prototype heat storage furnaces maintained comfort under diverse climate conditions, usage patterns, and lengths of off-peak periods. In addition, these furnaces effectively shifted the load to off-peak hours.

1992-04-01T23:59:59.000Z

184

Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain...  

Open Energy Info (EERE)

DOI: Unavailable Core Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Geothermal...

185

Method for processing aluminum spent potliner in a graphite electrode arc furnace  

DOE Patents (OSTI)

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

O' Connor, William K.; Turner, Paul C.; Addison, G.W. (AJT Enterprises, Inc.)

2002-12-24T23:59:59.000Z

186

Method for processing aluminum spent potliner in a graphite electrode ARC furnace  

SciTech Connect

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

O' Connor, William K. (Lebanon, OR); Turner, Paul C. (Independence, OR); Addison, Gerald W. (St. Stephen, SC)

2002-12-24T23:59:59.000Z

187

Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air  

E-Print Network (OSTI)

The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel usage. These savings are primarily the result of the sensible heat increase of the combustion air and, to some extent, improved combustion efficiency. The amount of fuel saved will depend on the exhaust gas temperature, amount of excess air used, the type of burner and the furnace control system. These fuel savings may be accurately measured by metering the energy consumption per unit of production before and after installation of the recuperator. In the design of a waste heat recuperation system, it is necessary to be able to estimate the fuel saved by use of such a system. Standard industrial practice refers to the method described in the North American Combustion Handbook with its curves and tables that directly predict the percentage fuel savings. This paper analyzes the standard estimation technique and suggests a more realistic approach to calculation of percent fuel savings. Mass and enthalpy balances are provided for both methods and a typical furnace recuperation example is detailed to illustrate the differences in the two methods of calculating the percent energy saved.

Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

188

Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace  

SciTech Connect

Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated.

Freeman, C.J.

1997-05-01T23:59:59.000Z

189

Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Commercial Energy Efficiency Program Central Hudson Gas and Electric (Gas) - Commercial Energy Efficiency Program < Back Eligibility Commercial Installer/Contractor Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Construction Appliances & Electronics Water Heating Maximum Rebate See Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $500 Furnace with ECM Fan: $700 - $900 Water Boiler: $800 - $1,200 Steam Boiler: $800 Boiler Reset Control: $100 Indirect Water Heater: $300 Programmable Thermostats: $25 Provider Central Hudson Gas and Electric The Business Energy SavingsCentral program is for non-residential gas customers of Central Hudson. This includes businesses, local governments,

190

BRANCHED ALKANES FROM BLUE-GREEN ALGAE  

E-Print Network (OSTI)

ALKANES FROM BLUE-GREEN ALGAE RECEIV r - LAWREW RADIATIONAlkanes From Blue-Green Algae by Jerry Han and Oep~rtment l~alkanes from blue-green algae were separated on a The

Han, Jerry; Calvin, Melvin.

2008-01-01T23:59:59.000Z

191

Development of models and online diagnostic monitors of the high-temperature corrosion of refractories in oxy/fuel glass furnaces : final project report.  

Science Conference Proceedings (OSTI)

This report summarizes the results of a five-year effort to understand the mechanisms and develop models that predict the corrosion of refractories in oxygen-fuel glass-melting furnaces. Thermodynamic data for the Si-O-(Na or K) and Al-O-(Na or K) systems are reported, allowing equilibrium calculations to be performed to evaluate corrosion of silica- and alumina-based refractories under typical furnace operating conditions. A detailed analysis of processes contributing to corrosion is also presented. Using this analysis, a model of the corrosion process was developed and used to predict corrosion rates in an actual industrial glass furnace. The rate-limiting process is most likely the transport of NaOH(gas) through the mass-transport boundary layer from the furnace atmosphere to the crown surface. Corrosion rates predicted on this basis are in better agreement with observation than those produced by any other mechanism, although the absolute values are highly sensitive to the crown temperature and the NaOH(gas) concentration at equilibrium and at the edge of the boundary layer. Finally, the project explored the development of excimer laser induced fragmentation (ELIF) fluorescence spectroscopy for the detection of gas-phase alkali hydroxides (e.g., NaOH) that are predicted to be the key species causing accelerated corrosion in these furnaces. The development of ELIF and the construction of field-portable instrumentation for glass furnace applications are reported and the method is shown to be effective in industrial settings.

Griffiths, Stewart K.; Gupta, Amul (Monofrax Inc., Falconer, NY); Walsh, Peter M.; Rice, Steven F.; Velez, Mariano (University of Missouri, Rolla, MO); Allendorf, Mark D.; Pecoraro, George A. (PPG Industries, Inc., Pittsburgh, PA); Nilson, Robert H.; Wolfe, H. Edward (ANH Refractories, Pittsburgh, PA); Yang, Nancy Y. C.; Bugeat, Benjamin () American Air Liquide, Countryside, IL); Spear, Karl E. (Pennsylvania State University, University Park, PA); Marin, Ovidiu () American Air Liquide, Countryside, IL); Ghani, M. Usman (American Air Liquide, Countryside, IL)

2005-02-01T23:59:59.000Z

192

SourceGas- Commercial and Industrial Energy Efficiency Rebate Program (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

SourceGas offers a variety of incentives for high efficiency commercial and industrial equipment. Rebates are available for the purchase of qualifying furnaces, hydronic heating systems, high...

193

Sticking of Iron Ore Pellets in Direct Reduction with Coal Gas  

Science Conference Proceedings (OSTI)

Abstract Scope, A series of reduction experiments of iron ore pellets with coal gasification gas were carried out in a laboratory scale shaft furnace. The sticking

194

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term....

195

Blue Ng | Open Energy Information  

Open Energy Info (EERE)

Ng Jump to: navigation, search Name Blue-Ng Place Bath, United Kingdom Zip BA1 1SR Sector Biomass Product UK-based company that constructs and operates combined heat and...

196

Assessment of selected furnace technologies for RWMC waste  

SciTech Connect

This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

Batdorf, J.; Gillins, R. [Science Applications International Corp., Idaho Falls, ID (United States); Anderson, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-03-01T23:59:59.000Z

197

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1984-01-01T23:59:59.000Z

198

Vertical feed stick wood fuel burning furnace system  

DOE Patents (OSTI)

A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

Hill, Richard C. (Orono, ME)

1982-01-01T23:59:59.000Z

199

Recovering Zinc and Lead from Electric Arc Furnace Dust  

Science Conference Proceedings (OSTI)

Aug 1, 2000 ... Non-member price: 25.00. TMS Student Member price: 10.00. Product In Stock. Description Increasing amounts of electric arc furnace dust...

200

Induction Furnace Quench & Temper of Oil Field Tubular Goods  

Science Conference Proceedings (OSTI)

Because of the unique operating features of an induction furnace, each pipe is individually heat treated, producing more uniform properties than possible with...

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

140th Annual Meeting & Exhibition Furnace Efficiency Energy and ...  

Science Conference Proceedings (OSTI)

140th Annual Meeting & Exhibition. February 27 to March 3, 2011. San Diego Convention Center San Diego, California USA. Furnace Efficiency Energy and ...

202

Effect Of Batch Charging Equipment On Glass Furnace Efficiency  

Science Conference Proceedings (OSTI)

This paper investigates the effects of batch pattern in the melt space caused by charging equipment on the energy efficiency of the furnace focusing on the...

203

The Limitations of CFD Modeling for Furnace Atmosphere ... - TMS  

Science Conference Proceedings (OSTI)

Feb 1, 2002 ... The Limitations of CFD Modeling for Furnace Atmosphere Troubleshooting by P.F. Stratton, N. Saxena and M. Huggahalli...

204

Maximum Rate of Pulverized Coal Injection into Blast Furnace with ...  

Science Conference Proceedings (OSTI)

The pulverized coal consumption efficiency is determined by means of microscopic and chemical analysis. The carbon structure of coke fines in the blast furnace...

205

Energy Efficient Operation of Secondary Aluminum Melting Furnaces  

Science Conference Proceedings (OSTI)

Jun 1, 2007 ... Energy Efficient Operation of Secondary Aluminum Melting Furnaces by P.E. King, J.J. Hatem, and B.M. Golchert...

206

The Comparison between Vertical Shaft Furnace and Rotary Kiln for ...  

Science Conference Proceedings (OSTI)

Therefore, calcination of coke used for aluminum reduction by vertical shaft furnace is more competitive based on the existing quality of the green petroleum ...

207

Improved Furnace Efficiency through the Use of Refractory Materials  

Science Conference Proceedings (OSTI)

... refractory users, and academic institutions, to improve energy efficiency of U.S. industry through increased furnace efficiency brought about by the employment...

208

Furnace Efficiency Energy and Throughput - Programmaster.org  

Science Conference Proceedings (OSTI)

Since throughput and energy efficiency are very closely tied together, this symposium looks to optimize furnace operations in both areas. Specific methods to...

209

Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity  

DOE Green Energy (OSTI)

The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

Stuart E. Strand

2001-12-06T23:59:59.000Z

210

Biomass Boiler and Furnace Emissions and Safety Regulations in...  

Open Energy Info (EERE)

in the Northeast States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency...

211

NRELs Optical Furnace Technology Sparks Solar Industry Interest  

NREL Principal Engineer Bhushan Sopori has fired up an optical furnace he developed to efficiently fabricate solar cells. Credit: Ray David, NREL

212

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

213

Furnace Blower Electricity: National and Regional Savings Potential  

E-Print Network (OSTI)

cooling operation or standby, which account for a largethe cooling season, and standby. Furnace electricity use isElectricity Use during Standby PE standby Burner Operating

Franco, Victor; Florida Solar Energy Center

2008-01-01T23:59:59.000Z

214

Alloys for Ethylene Production Furnaces - Energy Innovation Portal  

Ethylene production is one of the most energy intensive processes in the chemical industry, due to the decoking necessary to maintain ethylene furnace ...

215

Control of carbon balance in a silicon smelting furnace  

DOE Patents (OSTI)

The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

1992-12-29T23:59:59.000Z

216

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

In the DOE test procedure, the heating requirements areCooling requirements were calculated using DOE-2. Since theDOE-2 model to derive the hourly heating and cooling requirements

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

217

Economics of Residential Gas Furnaces and Water Heaters in United...  

NLE Websites -- All DOE Office Websites (Extended Search)

driven by first cost considerations and the availability of power vent and condensing water heaters. Little analysis has been performed to assess the economic impacts of the...

218

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

Conditions Electricity Consumption (kWh/year) Single-Stage (Stand by Electricity Consumption (kWh/year) Single-Stage (Stand by Electricity Consumption (kWh/year) Single-Stage (

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

219

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

Brushless Permanent Magnet (BPM) motor. Blowers account forIn a BPM motor the rotor contains permanent magnets. Themotors: Permanent Split Capacitor (PSC) and Brushless Permanent Magnet (

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

220

Residential Two-Stage Gas Furnaces - Do They Save Energy?  

E-Print Network (OSTI)

Refrigerating and Air-Conditioning Engineers, Inc. [Lennox]Refrigerating and Air-Conditioning Engineers, Inc. Pigg,Refrigerating and Air-Conditioning Engineers, Inc. Stanely,

Lekov, Alex; Franco, Victor; Lutz, James

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

BPM Motors in Residential Gas Furnaces: What are the Savings?  

E-Print Network (OSTI)

duct systems. In addition, standby power consumption in BPMthe air conditioner or standby power. Figure 1: Distributionseason, and during standby. In the DOE test procedure, the

Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

2006-01-01T23:59:59.000Z

222

Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications  

E-Print Network (OSTI)

Developments over the past fifteen years have evolved new short flame, high intensity (1,000,000 BTU/HR/ft3 ) combustion systems for industrial uses. Such systems produce a more uniform and higher heat flux than conventional low intensity systems and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design performance. High intensity combustion systems can operate at zero excess air conditions without generating undesirable constituents in the exhaust. A more uniform gas temperature and gas emissivity renders modeling and design of the furnace radiant heat transfer section more realistic. 'Over-design' to allow for the less determinate conditions typical of low intensity, turbulent diffusion oil flame systems should be avoidable. A model has been set up and results generated which indicate the potentialities of the above premise. The application of vortex stabilized high intensity burners for reformer furnaces in the petrochemical industry is then reviewed and emphasized.

Williams, F. D. M.; Kondratas, H. M.

1983-01-01T23:59:59.000Z

223

The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel  

SciTech Connect

The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

2012-10-01T23:59:59.000Z

224

Efficiency Maine Business Programs (Unitil Gas) - Commercial...  

Open Energy Info (EERE)

Furnaces; 1000 Condensing Boilers: 1500 - 4500 Non-Condensing Boilers: 750-3,000 Steam Boiler: 800 or 1MBtuh Infrared Unit Heaters: 500 Natural Gas Warm-Air Unit...

225

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents (OSTI)

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

226

Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

1994-12-31T23:59:59.000Z

227

Glass Furnace Model (GFM) development and technology transfer program final report.  

Science Conference Proceedings (OSTI)

A Glass Furnace Model (GFM) was developed under a cost-shared R&D program by the U.S. Department of Energy's Argonne National Laboratory in close collaboration with a consortium of five glass industry members: Techneglas, Inc., Owens-Corning, Libbey, Inc., Osram Sylvania, Inc., and Visteon, Inc. Purdue University and Mississippi State University's DIAL Laboratory were also collaborators in the consortium. The GFM glass furnace simulation model that was developed is a tool industry can use to help define and evaluate furnace design changes and operating strategies to: (1) reduce energy use per unit of production; (2) solve problems related to production and glass quality by defining optimal operating windows to reduce cullet generation due to rejects and maximize throughput; and (3) make changes in furnace design and/or operation to reduce critical emissions, such as NO{sub x} and particulates. A two-part program was pursued to develop and validate the furnace model. The focus of the Part I program was to develop a fully coupled furnace model which had the requisite basic capabilities for furnace simulation. The principal outcome from the Phase I program was a furnace simulation model, GFM 2.0, which was copyrighted. The basic capabilities of GFM 2.0 were: (1) built-in burner models that can be included in the combustion space simulation; (2) a participating media spectral radiation model that maintains local and global energy balances throughout the furnace volume; and (3) a multiphase (liquid, solid) melt model that calculates (does not impose) the batch-melting rate and the batch length. The key objectives of the Part II program, which overlapped the Part I program were: (1) to incorporate a full multiphase flow analytical capability with reduced glass chemistry models in the glass melt model and thus be able to compute and track key solid, gas, and liquid species through the melt and the combustion space above; and (2) to incorporate glass quality indices into the simulation to facilitate optimization studies with regard to productivity, energy use and emissions. Midway through the Part II program, however, at the urging of the industrial consortium members, the decision was made to refocus limited resources on transfer of the existing GFM 2.0 software to the industry to speed up commercialization of the technology. This decision, in turn, necessitated a de-emphasis of the development of the planned final version of the GFM software that had full multiphase capability, GFM 3.0. As a result, version 3.0 was not completed; considerable progress, however, was made before the effort was terminated. The objectives of the Technology Transfer program were to transfer the Glass Furnace Model (GFM) to the glass industry and to promote its widespread use by providing the requisite technical support to allow effective use of the software. GFM Version 2.0 was offered at no cost on a trial, six-month basis to expedite its introduction to and use by the industry. The trial licenses were issued to generate a much more thorough user beta test of the software than the relatively small amount completed by the consortium members prior to the release of version 2.0.

Lottes, S. A.; Petrick, M.; Energy Systems

2007-12-04T23:59:59.000Z

228

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents (OSTI)

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

229

Application of Regenerative Combustion Technology on Reheating Furnace in PISCO  

Science Conference Proceedings (OSTI)

The key features of the regenerative combustion technology were introduced and its application in the reheating furnace of Rail & Beam plant of PISCOPanzhihua Iron & Steel Co.was discussedComparedwith the traditional combustion technologythe ... Keywords: Regenerative Style, Combustion Technology, Reheating Furnace, Energy Conservation

Chen Yong; Pan Hong; Xue Nianfu

2011-02-01T23:59:59.000Z

230

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) ComEd, Nicor Gas, Peoples Gas and North Shore Gas - Bonus Rebate Program (Illinois) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Maximum Rebate $1,000 Program Info Start Date 01/01/2013 Expiration Date 04/30/2013 State Illinois Program Type Utility Rebate Program Rebate Amount ComEd Rebates Central Air Conditioner Unit 14 SEER or above: $350 Central Air Conditioner Unit Energy Star rated: $500 Nicor Gas, Peoples Gas and North Shore Gas Furnace: $200 - $500 (varies based on gas company and unit installed) Provider ComEd Energy ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is

231

Method of operating a centrifugal plasma arc furnace  

DOE Patents (OSTI)

A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

1998-03-24T23:59:59.000Z

232

Research and Application of the Natural Gas Heater  

Science Conference Proceedings (OSTI)

The natural gas heater is an indispensable piece of equipment in natural gas production, transmission, and application systems and is widely used in gas wellhead, metering station, transfer station and gas power plant etc. As a special type of furnace, ... Keywords: energy science and technology, natural gas heater, flow field organization, large cylinder, heat-transfer medium

Guo Yun; Cao Wei-wu

2009-10-01T23:59:59.000Z

233

Blue-green upconversion laser  

DOE Patents (OSTI)

A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

Nguyen, D.C.; Faulkner, G.E.

1990-08-14T23:59:59.000Z

234

Blue-green upconversion laser  

DOE Patents (OSTI)

A blue-green laser (450-550 nm) uses a host crystal doped with Tm{sup 3+}. The Tm{sup 3+} is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconducting laser, e.g., GaAlAs and InGaAlP.

Nguyen, Dinh C.; Faulkner, G.E.

1989-08-25T23:59:59.000Z

235

Blue-green upconversion laser  

DOE Patents (OSTI)

A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

Nguyen, Dinh C. (Los Alamos, NM); Faulkner, George E. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

236

Blue light emitting thiogallate phosphor  

DOE Patents (OSTI)

A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

Dye, Robert C. (Los Alamos, NM); Smith, David C. (Los Alamos, NM); King, Christopher N. (Portland, OR); Tuenge, Richard T. (Hillsboro, OR)

1998-01-01T23:59:59.000Z

237

Blue Marble Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Jump to: navigation, search Name Blue Marble Energy Address P.O. Box 9190 Place Seattle, Washington Zip 98109 Sector Biomass Product Aims to turn algae and other cellulosic biomass into natural gas Website http://www.bluemarbleenergy.ne Coordinates 47.6163159°, -122.3463563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6163159,"lon":-122.3463563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Development of a bench-scale metal distillation furnace  

SciTech Connect

Design of an inductively heated bench-scale distillation furnace (retort) capable of processing actinides is described. The apparatus consists of a vacuum/inert gas bell jar, a bell-jar lift, a nonwater-cooled induction coil, the induction tank circuit, and a series of components designed to contain the metal melts and vapors. The apparatus is located within a nitrogen glovebox and is designed to process plutonium-containing feeds. The electrical parameters of the induction coil and tank circuit necessary for design were determined by two different methods; one is based solely on calculated impedance values, and the other used high-frequency impedance measurements on a mock-up of the induction coil/susceptor arrangement. During the design state, the two methods of determining electrical parameters gave similar results. With the as-built system, the impedance meter did detect some efficiency loss to the metal bell jar and coil support that the calculational method did not predict. These losses were not significant enough to cause operating problems, and thus, both methods were shown to be adequate for the intended purpose. Zinc and magnesium were distilled, and uranium was melted in a successful series of shake-down runs.

Vest, M.A.; Lewandowski, E.F.; Pierce, R.D.; Smith, J.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

1997-12-01T23:59:59.000Z

239

Dehydrated Prussian Blues for CO2 Storage and Separation Applications  

Science Conference Proceedings (OSTI)

Adsorption isotherms of pure gases present in flue and natural gas including CO2, N2, CH4 and water were studied using prussian blues of chemical formula M3[Co(CN)6]2 (M = Cu, Ni, Mn). These materials adsorbed 8-12 wt % of CO2 at room temperature and 1 bar of pressure with heats of adsorption ranging from 6 to 16 kcal/mol.

Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter; Ghorishi, Behrooz S.

2010-08-13T23:59:59.000Z

240

Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.  

DOE Green Energy (OSTI)

Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coat, or both, (2) at the exit of a glass-melting furnace burning natural gas and oxygen, and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

Walsh, Peter M. (University of Alabama at Birmingham and Southern Research Institute, Birmingham, AL); Shaddix, Christopher R.; Sickafoose, Shane M.; Blevins, Linda Gail

2003-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

`blue-sky' science Spending review  

E-Print Network (OSTI)

. Cooling Towers Fiddlers Ferry #12;What are the benefits of `blue-sky' science? At a time where every penny

242

Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation  

SciTech Connect

Due to the complicated processes for coal particles burning in industrial furnaces, their radiative properties, such as the absorption and scattering coefficients, which are essential to make reliable calculation of radiative transfer in combustion computation, are hard to be given exactly by the existing methods. In this paper, multiple color image detectors were used to capture approximately red, green, and blue monochromatic radiative intensity images in the visible wavelength region, and the flame emissivity and the radiative properties of the particulate media in three pulverized-coal-fired boiler furnaces were got from the flame images. It was shown that as the load increased, the flame emissivity and the radiative properties increased too; these radiative parameters had the largest values near the burner zone, and decreased along the combustion process. Compared with the combustion medium with a low-volatile anthracite coal burning in a 670 t/h boiler, the emissivity and the absorption coefficient of the medium with a high-volatile bituminous coal burning in a 1025 t/h boiler were smaller near the outlet zone, but were larger near the burner zone of the furnace, due to the significant contribution of soot to the radiation. This work will be of practical importance in modeling and calculating the radiative heat transfer in combustion processes, and improving the technology for in situ, multi-dimensional visualization of large-scale combustion processes in coal-fired furnaces of power plants. 18 refs., 10 figs., 8 tabs.

Chun Lou; Huai-Chun Zhou; Peng-Feng Yu; Zhi-Wei Jiang [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

2007-07-01T23:59:59.000Z

243

Strategic evaluation of investments in coal-dust fuel for blast furnaces  

SciTech Connect

The paper discusses the evaluation of venture investment projects in pulverized coal injection into blast furnaces.

S.V. Bogdanov; S.M. Kornilaev [State University of Management, Moscow (Russian Federation)

2009-07-01T23:59:59.000Z

244

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

245

Legendary West Virginia Senior Citizen Stays Warm With New Furnace |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace Legendary West Virginia Senior Citizen Stays Warm With New Furnace April 1, 2010 - 7:16pm Addthis Joshua DeLung For the last 56 years, Beulah Sisk has lived in the same house in Princeton, W.Va. Beulah, who worked for 25 years at Lloyd's Pastry Shop, is well known in Princeton. People still see her on the streets today and recognize her as an icon in the community. After a wind storm damaged Beulah's home last year, it came as no surprise when a senior center employee, concerned for Beulah's safety, told her about the weatherization assistance program. "A tree fell on my house and damaged a lot of things, including my furnace," Beulah says. "I tried to have it repaired, but it still

246

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

247

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

248

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Increases Energy Efficiency Standards for Residential Furnaces DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers DOE Increases Energy Efficiency Standards for Residential Furnaces & Boilers November 19, 2007 - 4:31pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has increased the energy efficiency standards for residential furnaces and boilers, underscoring the Department's commitment to meet its aggressive, five-year appliance standard rulemaking schedule, as established in its January 31, 2006, Report to Congress. The Department estimates that these amended standards, which become effective in 2015, will save the equivalent of the total amount of energy consumed by 2.5 million American households in one year, or approximately 0.25 quadrillion (10x15) British thermal

249

EOI, Electric Tube Conversion Furnaces | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tube ... EOI, Electric Tube Conversion Furnaces B&W Y-12, LLC (hereafter known as "Y-12"; for additional company information, see the website), acting under its Prime Contract No....

250

Furnace characterization for horizontal shipping container thermal testing  

SciTech Connect

In order to perform regulatory thermal tests required by 10 CFR 71.73(c)(3) on the newly designed Horizontal Shipping Container (HSC), it was necessary to find a company involved in the business of heat treating who was willing to allow their furnace to be used for these tests. Of the companies responding to a request for interest, Lindberg Heat Treating Company`s Solon, Ohio, facility was found to be the best available vendor for this activity. Their furnace was instrumented and characterized such that these tests could be performed in a manner that would conform to the specifications contained in 10 CFR 71. It was found that Lindberg`s furnace was usable for this task, and recommendations concerning the use of this furnace for the above stated purpose are made herein.

Feldman, M.R.

1994-05-01T23:59:59.000Z

251

Optical processing furnace with quartz muffle and diffuser ...  

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz ...

252

Development of the Household Sample for Furnace and Boiler Life...  

NLE Websites -- All DOE Office Websites (Extended Search)

households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler...

253

Status of Blue Ridge Reservoir  

DOE Green Energy (OSTI)

This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

Not Available

1990-09-01T23:59:59.000Z

254

Blue Summit | Open Energy Information  

Open Energy Info (EERE)

Summit Summit Jump to: navigation, search Name Blue Summit Facility Blue Summit Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Undisclosed PPA Location Vernon TX Coordinates 34.304837°, -99.376873° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.304837,"lon":-99.376873,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

GasSense: appliance-level, single-point sensing of gas activity in the home  

Science Conference Proceedings (OSTI)

This paper presents GasSense, a low-cost, single-point sensing solution for automatically identifying gas use down to its source (e.g., water heater, furnace, fireplace). This work adds a complementary sensing solution to the growing body of work in ... Keywords: gas, sensing, sustainability, ubiquitous computing

Gabe Cohn; Sidhant Gupta; Jon Froehlich; Eric Larson; Shwetak N. Patel

2010-05-01T23:59:59.000Z

256

NIST Blue Ribbon Commission on Management and Safety ? ...  

Science Conference Proceedings (OSTI)

NIST Blue Ribbon Commission on Management and Safety II. The NIST Blue Ribbon Commission on Management and ...

2012-08-27T23:59:59.000Z

257

NIST Blue Ribbon Commission on Management and Safety ...  

Science Conference Proceedings (OSTI)

... See NIST Blue Ribbon Commission on Management and Safety II. NIST Blue Ribbon Commission on Management and Safety. ...

2010-10-05T23:59:59.000Z

258

Integrated municipal solid waste treatment using a grate furnace incinerator: The Indaver case  

SciTech Connect

An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.

Vandecasteele, C. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)], E-mail: carlo.vandecasteele@cit.kuleuven.be; Wauters, G. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Arickx, S. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium); Jaspers, M. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Van Gerven, T. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)

2007-07-01T23:59:59.000Z

259

Deep Blue No. 2-A Resource in the Making at Blue Mountain | Open Energy  

Open Energy Info (EERE)

Deep Blue No. 2-A Resource in the Making at Blue Mountain Deep Blue No. 2-A Resource in the Making at Blue Mountain Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Deep Blue No. 2-A Resource in the Making at Blue Mountain Abstract This paper provides a summary of the drilling operations, flow and injection testing and downhole measurements obtained during the drilling and testing of Deep Blue No.2. This well was sited as a step out to Deep Blue No.1 which measured 145°C at a depth of 645 meters. The maximum temperature recorded in Deep Blue No.2 while drilling was 167.5°C at a depth of 585 meters. Preliminary geothermometry from the short rigon flow test conducted last April 2004 indicated a parent reservoir temperature of 240°C. The results from the November 2004 flow and injection testing

260

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info State Utah Program Type Utility Rebate Program Rebate Amount Exterior Wall Insulation: $350 (single family), $150 (multifamily) Windows: $2.50/sq. ft. Gas Furnace: $200 - $400 Gas Storage Water Heater: $50-$100 Gas Condensing Water Heater: $350 Gas Boiler: $400 -$600 Tankless Gas Water Heater: $350 Single Family Homes (New Construction): $50 - $500 Multifamily Homes (New Construction): $50 - $300/unit

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Furnace Blower Electricity: National and Regional Savings Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace Blower Electricity: National and Regional Savings Potential Furnace Blower Electricity: National and Regional Savings Potential Title Furnace Blower Electricity: National and Regional Savings Potential Publication Type Report LBNL Report Number LBNL-417E Year of Publication 2008 Authors Franco, Victor H., James D. Lutz, Alexander B. Lekov, and Lixing Gu Document Number LBNL-417E Pagination 14 Date Published August 1 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80% of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressureused in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, whilewarm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

262

Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Norwich Public Utilities (Gas) - Residential Energy Efficiency Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Furnaces: $400 Boilers: $600 Tankless Boiler/Water Heater Combined: $850 - $1050 Indirect Fired/Tankless Water Heaters: $250 - $450 Provider Norwich Public Utilities Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $1050 for natural gas furnaces, boilers,

263

Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Programmable Thermostat: 1 per address Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $300 Programmable Thermostat: $20 Natural Gas Water Heater: $50 - $100 Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient measures and natural gas equipment. New furnaces, water heaters and programmable thermostats are eligible for a rebate incentive if the

264

Mechanism of physical transformations of mineral matter in the blast furnace coke with reference to its reactivity and strength  

SciTech Connect

Examinations of polished and dry cut sections of feed and tuyere coke revealed some possible mechanisms for the physical influence of mineral compounds on the reactivity and strength of coke. It was observed that rounded particles of mineral phases that are exposed to the pore walls and surface of coke at high temperature create an inorganic cover, thus reducing the surface available for gas-solid reactions. The particles of mineral matter that have a low melting point and viscosity can affect the coke at earlier stages in the blast furnace process, acting in the upper parts of the blast furnace (BF). The temperature-driven redistribution of mineral phases within the coke matrix probably leads to the creation of weak spots and in general to anisotropy in its properties, thus reducing its strength. 9 refs., 2 figs., 1 tab.

Stanislav S. Gornostayev; Jouko J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2006-12-15T23:59:59.000Z

265

Blue Sun Biodiesel | Open Energy Information  

Open Energy Info (EERE)

held Blue Sun Biodiesel is a breakthrough agriculture energy company, developing oilseed energy crops and production and distribution networks to bring high-performance biodiesel...

266

Blue Green Capital | Open Energy Information  

Open Energy Info (EERE)

Capital Jump to: navigation, search Name Blue Green Capital Place Spain Zip 8860 Sector Renewable Energy, Solar Product String representation "Spanish develop ... their projects."...

267

Blue Planet Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Product Belgium-based firm that offers installation, operating, developing and investment services for solar projects. References Blue Planet Solar1 LinkedIn Connections...

268

Blue C Ltd | Open Energy Information  

Open Energy Info (EERE)

Zip 98104 Sector Renewable Energy Product An advisory firm providing project and investment advice to renewable energy projects. References Blue C, Ltd.1 LinkedIn Connections...

269

On the stellar and baryonic mass fractions of central blue and red galaxies  

E-Print Network (OSTI)

By means of the abundance matching technique, we infer the local stellar and baryonic mass-halo mass (Ms-Mh and Mb-Mh) relation for central blue and red galaxies separately in the mass range Ms~10^8.5-10^12.0 Msun. The observational inputs are the SDSS central blue and red Galaxy Stellar Mass Functions reported in Yang et al. 2009, and the measured local gas mass-Ms relations for blue and red galaxies. For the Halo Mass Function associated to central blue galaxies, the distinct LCDM one is used and set up to exclude: (i) the observed group/cluster mass function (blue galaxies are rare as centers of groups/clusters), and (ii) halos with a central major merger at resdshifts z10^11.5 Msun, the Ms's of red galaxies tend to be higher than those of blue ones for a given Mh, the difference not being larger than 1.7. For Mh<10^11.5 Msun, this trend is inverted. For blue (red) galaxies: (a) the maximum value of fs=Ms/Mh is 0.021^{+0.016}_{-0.009} (0.034{+0.026}_{-0.015}) and it is attained atlog(Mh/Msun)~12.0 (log(...

Rodriguez-Puebla, A; Firmani, C; Colin, P

2011-01-01T23:59:59.000Z

270

Sohar Aluminium's Anode Baking Furnace Operation  

Science Conference Proceedings (OSTI)

Gas consumption of less 1.9 GJ/t for a baking level (Lc) of greater than 33 angstrom has ... Historical and Future Challenges with the Vibrated Bulk Density Test Methods for ... Prebaked Anode from Coal Extract (2) - Effects of the Properties of...

271

Biomass Boiler and Furnace Emissions and Safety Regulations in the  

Open Energy Info (EERE)

Biomass Boiler and Furnace Emissions and Safety Regulations in the Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Jump to: navigation, search Tool Summary Name: Biomass Boiler and Furnace Emissions and Safety Regulations in the Northeast States Agency/Company /Organization: CONEG Policy Research Center Inc. Partner: Massachusetts Department of Energy Resources, Rick Handley and Associates, Northeast States for Coordinated Air Use Management (NESCAUM) Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, Economic Development Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Other Website: www.mass.gov/Eoeea/docs/doer/renewables/biomass/DOER%20Biomass%20Emiss Country: United States

272

Furnace Blower Electricity: National and Regional Savings Potential  

Science Conference Proceedings (OSTI)

Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

2008-05-16T23:59:59.000Z

273

Tips: Natural Gas and Oil Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas and Oil Heating Systems Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems May 30, 2012 - 5:41pm Addthis Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the equipment is off. Consider a sealed-combustion furnace -- they are safer and more efficient. Long-Term Savings Tip Install a new energy-efficient furnace to save money over the long term. Look for the ENERGY STAR® and EnergyGuide labels to compare efficiency and

274

Optical processing furnace with quartz muffle and diffuser plate  

SciTech Connect

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

Sopori, Bhushan L. (Denver, CO)

1995-01-01T23:59:59.000Z

275

Blue LED for RS Monitor  

E-Print Network (OSTI)

Abstract We report on a design of RS gain monitor system based on blue LED. Gain of each RS PMT is monitored by a LED, which is mounted in front of the PMT window in its _-metal shield. The blue LED well simulates scintillation light with its short pulse and wavelength. The LED is as small as 3 mmOE. The light yield is stable and has small temperature dependence. These are nice properties to install in present RS system with small modification and to operate without air conditioning. In this note we will present outline of our design and test results which demonstrate its desirable properties. 1 Introduction RS gain monitor has been carried out with K_2 events at E787. They are sat- isfactory to monitor long and medium term stability but it is not satisfactory to monitor short term stability and to check PMT and related electronics quickly and frequently. These capabilities are important to reduce setup time and loss time in long E949 run. For these purpose triggerable and stable light source is required at RS system. We consider two types of monitoring system. One is the system which consists of one light source and its light distribution network, such as a Xe lamp with a optical fiber network. It has the advantage that light intensity of the source itself can be monitored and be corrected. But, practically, it is not easy to estimate light output of individual fiber correctly by checking light source and to handle optical fibers, and we have to think out a solution how we introduce lights to RS or its PMT. Also the system is rather expensive and it will take long time to

unknown authors

2000-01-01T23:59:59.000Z

276

Piedmont Natural Gas - Residential Equipment Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate 2 rebates per household Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount High-Efficiency Furnace: $175 Tankless Water Heater: $150 Tank Water Heater: $50 Provider Gas Technology and Energy Services Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these rebates. Rebates are only provided for qualifying natural gas equipment that is installed to

277

Rapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor  

E-Print Network (OSTI)

as compared to conventional steam-methane reforming and furnace black processing. Introduction by the furnace black process. For steam reforming, steam is reacted with methane over a reforming catalyst. Currently, hydrogen is produced through the steam reforming of natural gas and carbon black is produced

278

Multi-class blue noise sampling  

Science Conference Proceedings (OSTI)

Sampling is a core process for a variety of graphics applications. Among existing sampling methods, blue noise sampling remains popular thanks to its spatial uniformity and absence of aliasing artifacts. However, research so far has been mainly focused ... Keywords: blue noise, dart throwing, multi-class, poisson hard/soft disk, relaxation, sampling

Li-Yi Wei

2010-07-01T23:59:59.000Z

279

Scalable Time Warp on Blue Gene Supercomputers  

Science Conference Proceedings (OSTI)

n this paper we illustrate scalable parallel performance for the TimeWarp synchronization protocol on the L and P variants of the IBM BlueGene supercomputer. Scalable Time Warp performance for models that communicate a large percentage of the event population ... Keywords: Time Warp, Blue Gene Supercomputer

David W. Bauer Jr.; Christopher D. Carothers; Akintayo Holder

2009-06-01T23:59:59.000Z

280

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Eligibility Multi-Family Residential...

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL's Optical Cavity Furnace Brings Together a Myriad of Advances for Processing Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet on 2011 R&D 100 Award winner, the Optical Cavity Furnace. The innovative furnace uses light and unique light-induced effects to make higher-efficiency solar cells at lower cost.

Not Available

2011-08-01T23:59:59.000Z

282

Blue Flint Ethanol | Open Energy Information  

Open Energy Info (EERE)

Flint Ethanol Flint Ethanol Jump to: navigation, search Name Blue Flint Ethanol Place Underwood, North Dakota Zip ND 58576 Product Joint Venture bentween Great River Energy and Headwaters Incorporated, was established to build and operate a 50 million gallon per year dry mill ethanol plant in Underwood, North Dakota. References Blue Flint Ethanol[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Blue Flint Ethanol is a company located in Underwood, North Dakota . References ↑ "Blue Flint Ethanol" Retrieved from "http://en.openei.org/w/index.php?title=Blue_Flint_Ethanol&oldid=342914" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

283

Blue Marble Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Energy Corporation Energy Corporation Jump to: navigation, search Name Blue Marble Energy Corporation Place Seattle, Washington Zip 98108 Sector Bioenergy Product Washington State-based firm developing technology to convert biowaste into bioenergy and biochemicals. References Blue Marble Energy Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Blue Marble Energy Corporation is a company located in Seattle, Washington . References ↑ "Blue Marble Energy Corporation" Retrieved from "http://en.openei.org/w/index.php?title=Blue_Marble_Energy_Corporation&oldid=380764" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

284

Big Blue Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Big Blue Wind Farm Big Blue Wind Farm Jump to: navigation, search Name Big Blue Wind Farm Facility Big Blue Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Xcel Energy Location Blue Earth MN Coordinates 43.64324946°, -94.22179699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.64324946,"lon":-94.22179699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Deep Blue No 2- A Resource In The Making At Blue Mountain | Open Energy  

Open Energy Info (EERE)

2- A Resource In The Making At Blue Mountain 2- A Resource In The Making At Blue Mountain Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Deep Blue No 2- A Resource In The Making At Blue Mountain Details Activities (1) Areas (1) Regions (0) Abstract: This paper provides a summary of the drilling operations, flow and injection testing and downhole measurements obtained during the drilling and testing of Deep Blue No.2. This well was sited as a step out to Deep Blue No.1 which measured 145°C at a depth of 645 meters. The maximum temperature recorded in Deep Blue No.2 while drilling was 167.5°C at a depth of 585 meters. Preliminary geothermometry from the short rigon flow test conducted last April 2004 indicated a parent reservoir temperature of 240°C. The results from the November 2004 flow and

286

Questar Gas - Home Builder Gas Appliance Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program Questar Gas - Home Builder Gas Appliance Rebate Program < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info Start Date 7/1/2009 State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Star Home Certification: $500 Storage Water Heater: $50 Tankless Water Heater: $300 Furnace: $300 Boiler: $400 Provider Questar Gas Questar Gas provides incentives for home builders to construct energy efficient homes. Rebates are provided for both energy efficient gas equipment and whole home Energy Star certification. All equipment and

287

The data furnace: heating up with cloud computing  

Science Conference Proceedings (OSTI)

In this paper, we argue that servers can be sent to homes and office buildings and used as a primary heat source. We call this approach the Data Furnace or DF. Data Furances have three advantages over traditional data centers: 1) a smaller carbon footprint ...

Jie Liu; Michel Goraczko; Sean James; Christian Belady; Jiakang Lu; Kamin Whitehouse

2011-06-01T23:59:59.000Z

288

Electrode immersion depth determination and control in electroslag remelting furnace  

DOE Patents (OSTI)

An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.

Melgaard, David K. (Albuquerque, NM); Beaman, Joseph J. (Austin, TX); Shelmidine, Gregory J. (Tijeras, NM)

2007-02-20T23:59:59.000Z

289

The effects of improved residential furnace filtration on airborne particles  

SciTech Connect

Forced air furnaces with distributed ducting systems have always had an air filter, but traditionally the filter quality was only adequate to protect the furnace fan and heat exchanger from debris. In the past several years, there has been an increasing number of more effective particulate filters that are being marketed to reduce airborne particulate or dust. These include upgraded panel filters, passive electrostatic, active electrostatic, and HEPA or near-HEPA variants. Consumers are bewildered by the lack of standardized and comprehensible performance results and need better advice on whether it would be useful for them to upgrade their current furnace filter. In order to help them make these decisions, the whole range of available furnace filters were tested in six occupied houses. The filter efficiency was determined by particulate measurement in the ducting system before and after the filter. Indoor particulates were measured in a bedroom and living room, and outdoor levels were monitored simultaneously. Testing encompassed several weeks in each house, and the results are available in the whole range of particle sizes. The project also looked at the air-cleaning effectiveness of a stand-alone air cleaner and at the ozone production of electrostatic precipitators installed in 20 houses. Test results will be helpful in specifying suitable filtration for houses.

Fugler, D.; Bowser, D.; Kwan, W.

2000-07-01T23:59:59.000Z

290

Lot sizing and furnace scheduling in small foundries  

Science Conference Proceedings (OSTI)

A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size ... Keywords: Lot sizing and scheduling, Meta-heuristics, Mixed integer programming

Silvio A. de Araujo; Marcos N. Arenales; Alistair R. Clark

2008-03-01T23:59:59.000Z

291

Coke mineral transformations in the experimental blast furnace  

SciTech Connect

Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development (CCSD)

2008-09-15T23:59:59.000Z

292

Science at LLNL with IBM Blue Gene/Q  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) has a long history of working with IBM on Blue Gene supercomputers. Beginning in November 2001 with the joint announcement of a partnership to expand the Blue Gene research project (including Blue Gene/L ...

B. Carnes, B. Chan, E. W. Draeger, J.-L. Fattebert, L. Fried, J. Glosli, W. D. Krauss, S. H. Langer, R. McCallen, A. A. Mirin, F. Najjar, A. L. Nichols, T. Oppelstrup, J. A. Rathkopf, D. Richards, F. Streitz, P. M. Vranas, J. J. Rice, J. A. Gunnels, V. Gurev, C. Kim, J. Magerlein, M. Reumann, H.-F. Wen

2013-01-01T23:59:59.000Z

293

BlueFire Ethanol, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BlueFire Ethanol, Inc. BlueFire Ethanol, Inc. A proposal issued by BlueFire Ethanol Inc,describing a project that will give DOE understanding of a new biological fermentation...

294

Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Free Forced Air Furnace: $400 Dual Fuel Furnace: $300 Tankless Water Heater: $300 Tank Water Heater: $200 Power Vent Water Heater: $250 Space Heater: $100 Provider Columbia Gas of Kentucky Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. Water heaters, furnaces and space heating equipment are available for cash

295

Montana-Dakota Utilities (Gas) - Residential New Construction Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana-Dakota Utilities (Gas) - Residential New Construction Montana-Dakota Utilities (Gas) - Residential New Construction Rebate Program Montana-Dakota Utilities (Gas) - Residential New Construction Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Eligible Furnace: $300 Natural Gas Water Heater: $50 - $100 Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers rebates to customers who install energy efficient natural gas equipment in new construction. New furnaces and water heaters are eligible for incentives through this offering. All new eligible homes with qualifying furnaces will receive a $300 rebate and

296

Update on Blue Ribbon Commission for America's Nuclear Future...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Future Update on Blue Ribbon Commission for America's Nuclear Future BRC-SEAB-October-12%202011.pdf More Documents & Publications Blue Ribbon Commission on America's...

297

Changes related to "Blue Spark Technologies formerly Thin Battery...  

Open Energy Info (EERE)

icon Twitter icon Changes related to "Blue Spark Technologies formerly Thin Battery Technologies Inc" Blue Spark Technologies formerly Thin Battery Technologies Inc...

298

Pages that link to "Blue Spark Technologies formerly Thin Battery...  

Open Energy Info (EERE)

icon Twitter icon Pages that link to "Blue Spark Technologies formerly Thin Battery Technologies Inc" Blue Spark Technologies formerly Thin Battery Technologies Inc...

299

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

the national annual energy consumption by multiplying thedetermining national annual energy consumption, we initiallyNational Energy Savings We calculated annual NES as the difference between: annual energy consumption (

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

300

Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S.  

E-Print Network (OSTI)

For some variables, such as energy price and climate, theWe used marginal energy prices to calculate the cost ofequipment. Marginal energy prices are the prices consumers

Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Blue Star Energy Services | Open Energy Information  

Open Energy Info (EERE)

BlueStar) BlueStar) Jump to: navigation, search Name Blue Star Energy Services Place Illinois Utility Id 55722 Utility Location Yes Ownership R NERC Location RFC NERC RFC Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1180/kWh Commercial: $0.0687/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Blue_Star_Energy_Services&oldid=409064" Categories: EIA Utility Companies and Aliases

302

CA-TRIBE-BLUE LAKE RANCHERIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-TRIBE-BLUE LAKE RANCHERIA CA-TRIBE-BLUE LAKE RANCHERIA Location: Tribe CA-TRIBE-BLUE CA LAKE RANCHERIA American Recovery and Reinvestment Act: Proposed Action or Project Description The Blue Lake Rancheria Tribe of California proposes to hire a technical consultant to gather additional information and make recommendations as to the best energy efficiency and conservation project or projects to utilize energy efficiency and conservation block grant funds. Following these recommendations, a decision will be made on building retrofits, and the specific retrofits will be identified and submitted for NEPA review. Conditions: None Categorical Exclusion(s) Applied: A9, A11 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

303

The California Economy: Singing the Housing Blues  

E-Print Network (OSTI)

THECALIFORNIAECONOMY:SINGINGTHEHOUSING BLUESMany parts of the economy are doing better thantowards2007theentireeconomyisbeingthreatenedbythe

Thornberg, Christopher

2007-01-01T23:59:59.000Z

304

Blue Star Energy Services | Open Energy Information  

Open Energy Info (EERE)

Blue Star Energy Services Place Illinois Utility Id 55722 Utility Location Yes Ownership R NERC Location RFC NERC RFC Yes Activity Retail Marketing Yes References EIA Form EIA-861...

305

CenterPoint Energy - Residential Gas Heating Rebates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy - Residential Gas Heating Rebates CenterPoint Energy - Residential Gas Heating Rebates CenterPoint Energy - Residential Gas Heating Rebates < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Storage Tank Water Heater: $75 Tankless Water Heater: $500 Forced-Air Furnace: $400 - $600 Forced-Air Furnace (Back-Up System): $125 - $175 Hydronic Heating System: $400 Provider CenterPoint Energy CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage water heaters and tankless water heaters. All equipment must meet program requirements for efficiency and

306

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents (OSTI)

An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.

Sopori, B.L.

1996-11-19T23:59:59.000Z

307

Detailed model for practical pulverized coal furnaces and gasifiers  

Science Conference Proceedings (OSTI)

This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

Smith, P.J.; Smoot, L.D.

1989-08-01T23:59:59.000Z

308

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Caulking/Weather Stripping: $200 Ceiling/Foundation/Wall Insulation: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Boilers: $150 - $400 Furnaces: $250 - $400 Efficient Fan Motor: $50 Programmable Thermostats: $25 Furnace or Boiler Clean and Tune: $30

309

Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project  

Science Conference Proceedings (OSTI)

The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

Duncan, A.

2007-12-31T23:59:59.000Z

310

Deep Blue No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt  

Open Energy Info (EERE)

No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Deep Blue No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt County, Nevada Abstract The purpose of this paper is to provide a summary of the geology, drilling operations, and down-hole measurements obtained during the drilling of Deep Blue No.1. This well was sited on the basis of proximity to numerous gold exploration holes that indicated thermal water, high temperature gradients recorded in the 12 shallow gradient holes, and low resistivity values associated with certain interpreted major faults. The well was targeted to intersect fracture zones associated with the West and Central Faults, two

311

Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt  

Open Energy Info (EERE)

1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The purpose of this paper is to provide a summary of the geology, drilling operations, and down-hole measurements obtained during the drilling of Deep Blue No.1. This well was sited on the basis of proximity to numerous gold exploration holes that indicated thermal water, high temperature gradients recorded in the 12 shallow gradient holes, and low resistivity values associated with certain interpreted major faults. The well was targeted to intersect fracture zones associated with the West and

312

Process of producing combustible gas and for carbonizing coal  

SciTech Connect

This patent describes a process of producing combustible gas by supporting a column of fuel in a shaft furnace, intermittently blasting a combustion-supporting gas transversely through a mid portion of said column to produce a mid zone of sufficiently high temperature to decompose steam. The steam then circulated upwardly through said column between said blasting operations.

Doherty, H.L.

1922-08-15T23:59:59.000Z

313

BlueFire Ethanol | Open Energy Information  

Open Energy Info (EERE)

BlueFire Ethanol BlueFire Ethanol Jump to: navigation, search Name BlueFire Ethanol Place Irvine, California Zip 92618 Sector Hydro Product US biofuel producer that utilises a patented concentrated acid hydrolysis technology to process various cellulosic waste materials into ethanol. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Blue Valley Energy | Open Energy Information  

Open Energy Info (EERE)

Blue Valley Energy Blue Valley Energy Name Blue Valley Energy Address 3075 75th Street Place Boulder, Colorado Zip 80301 Sector Efficiency Product Geothermal heating and cooling systems Website http://www.bluevalleyenergy.co Coordinates 40.030298°, -105.179643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.030298,"lon":-105.179643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

Gary M. Blythe

2003-10-01T23:59:59.000Z

316

Mathematical modelling of the flow and combustion of pulverized coal injected in ironmaking blast furnace.  

E-Print Network (OSTI)

??Pulverized coal injection (PCI) technology is widely practised in blast furnace ironmaking due to economic, operational and environmental benefits. High burnout of pulverized coal in (more)

Shen, Yansong

2008-01-01T23:59:59.000Z

317

A 3D Mathematical Model of a Horizontal Anode Baking Furnace as ...  

Science Conference Proceedings (OSTI)

... phenomena occurring in the furnace and was validated using plant data. ... of the Composite Parts by Arranging Ply Lay-up for Even Resin Distribution and...

318

Theoretical and experimental foundations for preparing coke for blast-furnace smelting  

SciTech Connect

This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the -36 mm fraction, the separation of nut coke of the 15-36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2-4.1%.

A.L. Podkorytov; A.M. Kuznetsov; E.N. Dymchenko; V.P. Padalka; S.L. Yaroshevskii; A.V. Kuzin [Enakievo Metallurgical Plant, Enakievo (Ukraine)

2009-05-15T23:59:59.000Z

319

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network (OSTI)

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based (more)

Gao, Chen

2010-01-01T23:59:59.000Z

320

PG&E (Gas) - Residential Energy Efficiency Rebate Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PG&E (Gas) - Residential Energy Efficiency Rebate Programs PG&E (Gas) - Residential Energy Efficiency Rebate Programs PG&E (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Storage Tank Water Heater: $200 Central Furnace: $150 - $300/Unit Program Info Funding Source System Benefits Charge State California Program Type Utility Rebate Program Rebate Amount Storage Tank Water Heater: $200 Central Furnace: $150 - $300/Unit Provider Pacific Gas and Electric Company Pacific Gas and Electric Company (PG&E) offers rebates for residential gas customers who install energy efficient furnaces or water heaters in homes. More information and applications for rebates are available at the program

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Variation in coke properties within the blast-furnace shop  

SciTech Connect

In active production at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), samples of melt materials were taken during shutdown and during planned repairs at furnaces 1 and 8. In particular, coke was taken from the tuyere zone at different distances from the tuyere tip. The mass of the point samples was 2-15 kg, depending on the sampling zone. The material extracted from each zone underwent magnetic separation and screening by size class. The resulting coke sample was averaged out and divided into parts: one for determining the granulometric composition and mechanical strength; and the other for technical analysis and determination of the physicochemical properties of the coke.

E.N. Stepanov; I.I. Mel'nikov; V.P. Gridasov; A.A. Stepanova [OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), Magnitogorsk, (Russian Federation)

2009-04-15T23:59:59.000Z

322

Questar Gas - Residential Energy Efficiency Rebate Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maximum Rebate Maximum Rebate Limit of two rebates per appliance type Program Info Start Date 3/1/2011 State Utah Program Type Utility Rebate Program Rebate Amount Gas Furnace: $200 - $400 Gas Storage Water Heater: $50-$100 Gas Condensing Water Heater: $350 Gas Boiler: $400 -$600 Tankless Gas Water Heater: $350 Clothes Washer: $50 Windows: $0.95/sq. ft. Insulation (Wall): $0.30/sq. ft. Insulation (Floor): $0.20/sq. ft. Insulation (Attic): $0.07 - $0.25/sq. ft. Duct Sealing/Insulation: $100 + $5.25/ln. ft. Air Sealing: $100 + $.20/sq. ft. Programmable Thermostat: $30 In-Home Energy Audit: Discounted to $25 Provider Questar Gas Questar Gas provides rebates for energy efficient appliances and heating equipment, and certain weatherization measures through the ThermWise program. This equipment includes clothes washers, water heaters, furnaces,

323

Blue Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blue Mountain Geothermal Area Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blue Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":-118.13,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Blue Sun Biodiesel LLC | Open Energy Information  

Open Energy Info (EERE)

Blue Sun Biodiesel LLC Blue Sun Biodiesel LLC Jump to: navigation, search Logo: Blue Sun Energy, Inc. Name Blue Sun Energy, Inc. Address 14143 Denver West Parkway Place Golden, Colorado Zip 80401 Sector Biofuels Product Biofuels marketer and distributor Year founded 2001 Number of employees 11-50 Phone number 303-865-7700 Website http://www.gobluesun.com/ Coordinates 39.7438336°, -105.1614242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7438336,"lon":-105.1614242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

gas | OpenEI  

Open Energy Info (EERE)

gas gas Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

326

Columbia Gas of Virginia - Home Savings Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Virginia - Home Savings Rebate Program Columbia Gas of Virginia - Home Savings Rebate Program Columbia Gas of Virginia - Home Savings Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Virginia Program Type Utility Rebate Program Rebate Amount Energy Star Gas Storage Water Heater: $50 Energy Star Gas Tankless Water Heater: $300 High Efficiency Gas Furnace: $300 High Efficiency Windows (Replacement): $1/sq. ft. Attic and Floor Insulation (Replacement): $0.30/sq. ft. Duct Insulation (Replacement): $200 - $250/site Provider Columbia Gas of Virginia

327

Blue Cross and Blue Shield of Illinois, a Division of Health Care Service Corporation,  

E-Print Network (OSTI)

Intelligence and Counterintelligence Operations, April 2002. #12; FM 2 COUNTERINTELLIGENCE INTENT Degrade Red's Visualization of Blue TARGET · Adversary Intelligence Activities FUNCTIONSFM 2-22.3 (FM 34-52) HUMAN INTELLIGENCE COLLECTOR OPERATIONS HEADQUARTERS, DEPARTMENT OF THE ARMY

Shull, Kenneth R.

328

IBM Blue Gene Parallel Supercomputer, Brookhaven National Laboratory, (BNL)  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Login How to Login Please note, New York Blue/L has been decommissioned and these web pages have not yet been updated to reflect its removal from service. The New York Blue/P is now one rack and remains in service. The BNL Blue Gene/Q also remains in service. Introduction Accessing the Blue Gene SSH Gateways Accessing the Blue Gene Front-End Nodes Accessing the Visualization Cluster Accessing the CSC GPU Cluster SSH Tunneling Introduction The only way to access Blue Gene computing resources remotely (outside the Blue Gene network enclave) is through the Blue Gene ssh gateways. Even users connecting from inside the BNL campus network need to go through the gateways. Outside the BNL campus the gateways are known as: ssh.bluegene.bnl.gov Inside the BNL campus they are known as: ssh.bluegene.bnl.local

329

Account Request Form | IBM Blue Gene Parallel Supercomputer,...  

NLE Websites -- All DOE Office Websites (Extended Search)

(check all that apply) Please make at least one selection Brookhaven Blue GeneQ Argonne Leadership Computing Facility (based on Blue GeneQ) What is the name of the code? Do you...

330

BlueSol Solar Energy | Open Energy Information  

Open Energy Info (EERE)

BlueSol Solar Energy Jump to: navigation, search Name BlueSol - Solar Energy Place Sao Paulo, Sao Paulo, Brazil Zip 04551-060 Sector Solar Product Sao Paulo-based sole distributor...

331

Video - Microbial Bebop - Blues for Elle | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Blues for Elle Share Topic Environment Biology Computational biology Environmental biology Metagenomics Molecular biology Environmental science & technology Ecology This musical...

332

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration...

333

Ground Gravity Survey At Blue Mountain Area (Fairbank Engineering...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Area (Fairbank Engineering, 2006) Exploration Activity...

334

Self-powered automatic secondary air controllers for woodstoves and small furnaces  

DOE Patents (OSTI)

This invention relates to the regulation of combustion in woodstoves, small furnaces and the like, so as to produce efficient combustion, while maximizing the possible heat output and minimizing air pollution. More specifically, the invention relates to controllers for automatically regulating and the supply of secondary combustion air to woodstoves, small furnaces or the like. 9 figs.

Siemer, D.D.

1989-03-15T23:59:59.000Z

335

Plan for the Startup of HA-21I Furnace Operations at the Plutonium Finishing Plant (PFP)  

Science Conference Proceedings (OSTI)

Achievement of Thermal Stabilization mission elements require the installation and startup of three additional muffle furnaces for the thermal stabilization of plutonium and plutonium bearing materials at the Plutonium Finishing Plant (PFP). The release to operate these additional furnaces will require an Activity Based Startup Review. The conduct of the Activity Based Startup Review (ABSR) was approved by Fluor Daniel Hanford on October 15, 1999. This plan has been developed with the objective of identifying those activities needed to guide the controlled startup of five furnaces from authorization to unrestricted operations by adding the HA-211 furnaces in an orderly and safe manner after the approval to Startup has been given. The Startup Plan provides a phased approach that bridges the activities between the completion of the Activity Based Startup Review authorizing the use of the three additional furnaces and the unrestricted operation of the five thermal stabilization muffle furnaces. The four phases are: (1) the initiation of five furnace operations using three empty (simulated full) boat charges from HA-211 and two full charges from HC-21C; (2) three furnace operations (one full charge from HA-211 and two full charges from HC-21C); (3) four furnace operations (two full charges from HA-211 and two full charges from HC-21C); and (4) integrated five furnace operations and unrestricted operations. Phase 1 of the Plan will be considered as the cold runs. This Plan also provides management oversight and administrative controls that are to be implemented until unrestricted operations are authorized. It also provides a formal review process for ensuring that all preparations needed for full five furnace operations are completed and formally reviewed prior to proceeding to the increased activity levels associated with five furnace operations. Specific objectives include: (1) To ensure that activities are conducted in a safe manner. (2) To provide supplemental technical and managerial support to Thermal Stabilization activities during the initial use of the HA-211 Furnaces until the commencement of full five furnace, unrestricted operations. (3) Ensure that operations can be conducted in a manner that meets PFP and DOE expectations associated with the principles of integrated safety management. (4) To ensure that all interfacing activities needed to meet Thermal Stabilization mission objectives are completed.

WILLIS, H.T.

2000-02-17T23:59:59.000Z

336

Laboratory Shuttle Bus Routes: Blue Route  

NLE Websites -- All DOE Office Websites (Extended Search)

Blue Route Map (On-Site/Off-Site) Blue Route Map (On-Site/Off-Site) Scroll down or click here for schedule ↓ Printable Map Blue Route map Blue Route Schedule Effective May 3, 2013 Text Box: BLUE SHUTTLE SCHEDULE BLUE Route # 65 DOWNHILL BART 65 UPHILL 62/66 1 6:20 AM 6:30 AM 6:40 AM 6:52 AM 2 6:30 AM 6:40 AM 6:50 AM 7:02 AM 3 6:40 AM 6:50 AM 7:00 AM 7:12 AM 4 6:50 AM 7:00 AM 7:10 AM 7:22 AM 1 7:04 AM 7:16 AM 7:28 AM 7:40 AM 2 7:16 AM 7:28 AM 7:40 AM 7:52 AM 3 7:28 AM 7:40 AM 7:52 AM 8:04 AM 4 7:40 AM 7:52 AM 8:04 AM 8:16 AM 1 7:52 AM 8:04 AM 8:16 AM 8:28 AM 2 8:04 AM 8:16 AM 8:28 AM 8:40 AM 3 8:16 AM 8:28 AM 8:40 AM 8:52 AM 4 8:28 AM 8:40 AM 8:52 AM 9:04 AM 1 8:40 AM 8:52 AM 9:04 AM 9:16 AM 2 8:52 AM 9:04 AM 9:16 AM 9:28 AM 3 9:04 AM 9:16 AM 9:28 AM 9:40 AM 4 9:16 AM 9:28 AM 9:40 AM 9:52 AM 1 9:28 AM 9:40 AM 9:52 AM 10:04 AM 2 9:40 AM 9:52 AM 10:04 AM 10:16 AM 3 9:52 AM 10:04 AM

337

PG&E (Gas) - Residential Energy Efficiency Rebate Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PG&E (Gas) - Residential Energy Efficiency Rebate Programs PG&E (Gas) - Residential Energy Efficiency Rebate Programs PG&E (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Furnace: $300 Program Info Funding Source System Benefits Charge State California Program Type Utility Rebate Program Rebate Amount Storage Tank Water Heater: $200 Central Furnace: $150 - $300/Unit Pacific Gas and Electric Company (PG&E) offers rebates for residential gas customers who install energy efficient furnaces or water heaters in homes. More information and applications for rebates are available at the program web site and customers can apply for the rebates online through the

338

What Steps Do You Take to Maintain Your Furnace? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps Do You Take to Maintain Your Furnace? Steps Do You Take to Maintain Your Furnace? What Steps Do You Take to Maintain Your Furnace? January 7, 2010 - 7:30am Addthis This week, Chris told you about his plans to maintain his furnace to keep it running efficiently. Proper maintenance is key to ensuring your heating and cooling systems are in working order. No one wants to wake up on the coldest day of the year to find that they have no heat! What steps do you take to maintain your furnace? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Brrrrr. It's Cold In There! Saving Energy and Money Starts at Home 31,000 Homes Weatherized in June

339

Adaptation to space applications of a 2000 c furnace with oxidizing atmosphere  

SciTech Connect

The possibility of using a low weight low power consumption furnace with oxidizing atmosphere at 2000 C for space applications is discussed. The main heating element is made of zirconium oxide with a platinum preheating system. The structure and stabilization of zirconium oxide are detailed together with its application to the space situation. The static and dynamic regimes are discussed with regard to measurement of the resistivity as a function of temperature and dynamic model. The temperature distribution in the furnace and in a main heating element were studied in relation to thermal insulation and weight budget. A model is proposed for optimal control and thermostat using analog simulation. The final concept requires 350 W for an isothermal furnace of 20 mm diameter weighing 3 kg. The cases of temperature gradient furnaces and of universal furnaces are reviewed. (GRA)

1975-01-01T23:59:59.000Z

340

Laclede Gas Company - Residential High Efficiency Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential High Efficiency Heating Rebate Residential High Efficiency Heating Rebate Program Laclede Gas Company - Residential High Efficiency Heating Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Heating System: 2 maximum Programmable Thermostats: 2 maximum Multi-Family Property Owners: 50 thermostat rebates, 50 furnace rebates over the life of the program Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Gas Furnace: $150 - $200 Gas Boiler: $150 Programmable Setback Thermostat: $25 Gas Water Heater: $50 - $200 Provider Laclede Gas Company Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Summit Blue Consulting | Open Energy Information  

Open Energy Info (EERE)

Summit Blue Consulting Summit Blue Consulting Place Boulder, Colorado Zip 80302 Sector Efficiency, Renewable Energy Product String representation "Consulting firm ... egy development" is too long. Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Blue Sky Bio Fuels | Open Energy Information  

Open Energy Info (EERE)

Bio Fuels Bio Fuels Jump to: navigation, search Name Blue Sky Bio-Fuels Place Oakland, California Zip 94602 Product Blue Sky owns and operates a biodiesel plant in Idaho with a capacity of 37.9mLpa (10m gallons annually). Coordinates 37.805065°, -122.273024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.805065,"lon":-122.273024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Blue Ribbon Commission on America's Nuclear Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blue Ribbon Commission on America's Nuclear Future Blue Ribbon Commission on America's Nuclear Future Agenda March 25 - 26, 2010 Willard Intercontinental Hotel, Washington, DC Thursday, March 25, 2010 Open Meeting - Grand Ballroom 11:00 a.m. Open meeting/review agenda Tim Frazier 11:10 a.m. Opening comments from Secretary Chu 11:25 a.m. Opening discussion - Co-chairs Honorable Lee Hamilton General Brent Scowcroft 11:35 a.m. Opening discussion - members Honorable Pete Domenici Honorable Chuck Hagel Honorable Phil Sharp Mr. Mark H. Ayers Honorable Vicky Bailey Dr. Albert Carnesale Ms. Susan Eisenhower Mr. Jonathan Lash Dr. Allison Macfarlane Dr. Richard A. Meserve Dr. Ernie Moniz Mr. John Rowe Dr. Per F. Peterson 12:30 p.m. Lunch

344

Blue Canyon VI | Open Energy Information  

Open Energy Info (EERE)

VI VI Jump to: navigation, search Name Blue Canyon VI Facility Blue Canyon VI Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EDP Renewables North America LLC Developer EDP Renewables North America LLC Energy Purchaser Merchant Location Lawton OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Blue Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser First Energy Solutions Location Van Wert County OH Coordinates 41.018286°, -84.615355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.018286,"lon":-84.615355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Blue Sky Optimum Energy | Open Energy Information  

Open Energy Info (EERE)

Optimum Energy Optimum Energy Jump to: navigation, search Name Blue Sky Optimum Energy Place Buffalo, New York Product Blue Sky offers a processing system to produce biodiesel at a cheaper price. Coordinates 42.88544°, -78.878464° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.88544,"lon":-78.878464,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Tracing Impurities in Silicon Production in the Microwave Furnace  

Science Conference Proceedings (OSTI)

A New Centrifuge CVD Reactor that will Challenge the Siemens Process ... Boron Removal from Silicon Melts by H2O/H2 Gas Blowing Gas-phase Mass...

348

Sandjet- A New Alternative for Cleaning Furnace Tubes  

E-Print Network (OSTI)

Energy management in modern refineries is becoming more difficult as the real cost of in-house and purchased fuel escalates and the quality of feed stocks decreases. Furnace tube maintenance has been made more complex by the presence of not only coke but extensive inorganic deposits while the demands of efficient fuel utilization require superior results from decoking procedures. Union Carbide Industrial Services Co., (UCISCO), is continuing the development of its proprietary 'SANDJET' system that removes coke as well as other inorganic deposits efficiently and rapidly. The procedure features computerized job planning and control in order to assure accurate estimates of cost and the proper selection of cleaning parameters and materials. Energy saving benefits of the process have recently become obvious and case studies summarizing these results are discussed. A description of the newly developed job controls and a brief summary of recent experiences in the field will be described in this paper.

Pollock, C. B.

1981-01-01T23:59:59.000Z

349

Cascade Natural Gas - Conservation Incentives for New Homes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cascade Natural Gas - Conservation Incentives for New Homes Cascade Natural Gas - Conservation Incentives for New Homes Cascade Natural Gas - Conservation Incentives for New Homes < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heating Appliances & Electronics Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount High Efficiency Natural Gas Furnace: $150 High Efficiency Natural Gas Hearth: $70 Conventional Natural Gas Water Heater: $40 Condensing Tankless Water Heater: $200 Combined Domestic Water/Hydronic Space Heating System (usingTankless Water Heater): $800 Energy Star Certified Home: $350 Energy Star Certified Plus Home: $750

350

An example of alkalization of SiO{sub 2} in a blast furnace coke  

SciTech Connect

Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2007-09-15T23:59:59.000Z

351

Field Measurements of Heating Efficiency of Electric Forced-Air Furnaces in Six Manufactured Homes.  

Science Conference Proceedings (OSTI)

This report presents the results of field measurements of heating efficiency for six manufactured homes in the Pacific Northwest heated with electric forced-air systems. This is the first in a series of regional and national efforts to measure in detail the heating efficiency of manufactured homes. Only six homes were included in this study because of budgetary constraints; therefore this is not a representative sample. These investigations do provide some useful information on the heating efficiency of these homes. Useful comparisons can be drawn between these study homes and site-built heating efficiencies measured with a similar protocol. The protocol used to test these homes is very similar to another Ecotope protocol used in the study conducted in 1992 and 1993 for the Bonneville Power Administration to test the heating efficiency of 24 homes. This protocol combined real-time power measurements of furnace energy usage with energy usage during co-heat periods. Accessory data such as house and duct tightness measurements and tracer gas measurements were used to describe these homes and their heating system efficiency. Ensuring that manufactured housing is constructed in an energy and resource efficient manner is of increasing concern to manufactured home builders and consumers. No comparable work has been done to measure the heating system efficiency of MCS manufactured homes, although some co-heat tests have been performed on manufactured homes heated with natural gas to validate HUD thermal standards. It is expected that later in 1994 more research of this kind will be conducted, and perhaps a less costly and less time-consuming method for testing efficiencies will be develops.

Davis, Bob; Palmiter, Larry S.; Siegel, Jeff

1994-07-26T23:59:59.000Z

352

Cascade Natural Gas - Conservation Incentives for Existing Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Homes Existing Homes Cascade Natural Gas - Conservation Incentives for Existing Homes < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Floor Insulation: $0.45 per sq. ft. Wall Insulation: $0.40 per sq. ft. Ceiling or Attic Insulation: $0.25 per sq. ft. High Efficiency Natural Gas Furnace: $150 Duct Sealing: $150 High Efficiency Natural Gas Furnace and Duct Sealing: $400 High Efficiency Natural Gas Hearth: $70 Conventional Natural Gas Water Heater: $40 Combination Domestic Water/Hydronic Space Heating System (using Tankless

353

Texas Gas Service - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Gas Service - Residential Energy Efficiency Rebate Program Texas Gas Service - Residential Energy Efficiency Rebate Program Texas Gas Service - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Ventilation Heating Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Texas Program Type Utility Rebate Program Rebate Amount Attic Insulation: Up to $300 Duct Sealing: $0.08/sq ft. Natural Gas Equipment for Weatherization: Free Residential Hydronic Heating Program: $125 Water Heater: $40 Tankless or Super High-efficiency Water Heater: $300 Solar Water Heater with Natural Gas Backup: $750 Furnace $75 Furnace Tune-Up: $40

354

SourceGas - Energy Efficiency Programs (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SourceGas - Energy Efficiency Programs (Arkansas) SourceGas - Energy Efficiency Programs (Arkansas) SourceGas - Energy Efficiency Programs (Arkansas) < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate See program web site Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount $500 mail-in rebate incentive for a tankless water heater, 82% EF or higher or a condensing type water heater with a 90% EF or higher. $50 mail-in rebate incentive for a storage tank water heater, 62% EF or higher (not available for commercial customers in Fayetteville, AR). $400 mail-in rebate incentive for natural gas forced air furnaces, 90% to 94.9% AFUE. $600 mail-in rebate incentive for natural gas forced air furnaces, 95% AFUE

355

Chemical Evolution of Dwarf Spheroidal and Blue Compact Galaxies  

E-Print Network (OSTI)

We studied the chemical evolution of Dwarf Spheroidal (dSph) and Blue Compact Galaxies (BCGs) by means of comparison between the predictions of chemical evolution models and several observed abundance ratios. Detailed models with up to date nucleosynthesis taking into account the role played by supernovae of different types (II, Ia) were developed for both types of galaxies allowing us to follow the evolution of several chemical elements. The models are specified by the prescriptions of the star formation (SF) and galactic wind efficiencies chosen to reproduce the main features of these galaxies. We also investigated a possible connection in the evolution of dSph and BCGs and compared the predictions of the models to the abundance ratios observed in Damped Lyman alpha Systems (DLAs). The main conclusions are: i) the observed distribution of [alpha/Fe] vs. [Fe/H] in dSph is mainly a result of the SF rate coupled with the wind efficiency; ii) a low SF efficiency and a high wind efficiency are required to reproduce the observational data for dSph; iii) the low gas content of these galaxies is the result of the combined action of gas consumption by SF and gas removal by galactic winds; iv) the BCGs abundance ratios are reproduced by models with 2 to 7 bursts of SF with low efficiencies ; v) the low values of N/O observed in BCGs are the natural result of a bursting SF; vi) a connection between dSph and BCGs in an unified evolutionary scenario is unlikely; vii) the models for the dSph and BCGs imply different formation scenarios for the DLAs; viii) a suitable amount of primary N produced in massive stars can be perhaps an explanation for the low plateau in the [N/$\\alpha$] distribution observed in DLAs, if real.

Gustavo A. Lanfranchi; Francesca Matteucci

2003-06-23T23:59:59.000Z

356

Blue, green, orange, and red upconversion laser  

DOE Patents (OSTI)

A laser for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr.sup.3+ ions and Yb.sup.3+ ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output.

Xie, Ping (San Jose, CA); Gosnell, Timothy R. (Sante Fe, NM)

1998-01-01T23:59:59.000Z

357

Blue, green, orange, and red upconversion laser  

DOE Patents (OSTI)

A laser is disclosed for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr{sup 3+} ions and Yb{sup 3+} ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output. 11 figs.

Xie, P.; Gosnell, T.R.

1998-09-08T23:59:59.000Z

358

IBM Blue Gene Parallel Supercomputer, Brookhaven National Laboratory, (BNL)  

NLE Websites -- All DOE Office Websites (Extended Search)

L L Overview Simple Example: Compile, Link, Run Compiler Invocation Compile and Link Tips Batch Job Submission Applications Support Math Libraries MPI Version IBM Fortran Blue Gene & Linux Manuals (IBM Redbooks) Much of the info you need will be in the Linux manual, but there is also some Blue Gene-specific info in the Blue Gene manual. Current Fortran compiler version number can be determined on fen by typing: ls /opt/ibmcmp/xlf/bg, will be highest number listed. IBM C/C++ Blue Gene & Linux Manuals (IBM Redbooks) Much of the info you need will be in the Linux manual, but there is also some Blue Gene-specific info in the Blue Gene manual. Linux Manual: Go to XL C/C++ for Linux, choose the Product Library link, then select current version number in tab at page top. (Current C/C++

359

A Preliminary Structural Model for the Blue Mountain Geothermal Field,  

Open Energy Info (EERE)

Structural Model for the Blue Mountain Geothermal Field, Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Preliminary Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Abstract The Blue Mountain geothermal field is a blind geothermalprospect (i.e., no surface hot springs) along the west flank of BlueMountain in southern Humboldt County, Nevada. Developmentwells in the system have high flow rates and temperatures above190°C at depths of ~600 to 1,070 m. Blue Mountain is a small~8-km-long east-tilted fault block situated between the EugeneMountains and Slumbering Hills. The geothermal field occupiesthe intersection between a regional NNE- to ENE-striking,west-dipping

360

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

is standard in HVAC design and fan selection books 6 . Theof modulating design options. The cooling fan curve passesfan curve and the duct system curve. We calculated the furnace fuel consumption for each design

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Infrared Imaging of Temperature Distribution in a High Temperature X-Ray Diffraction Furnace  

Science Conference Proceedings (OSTI)

High Temperature X-ray Diffraction (HTXRD) is a very powerful tool for studies of reaction kinetics, phase transformations, and lattice thermal expansion of advanced materials. Accurate temperature measurement is a critical part of the technique. Traditionally, thermocouples, thermistors, and optical pyrometers have been used for temperature control and measurement and temperature could only be measured at a single point. Infrared imaging was utilized in this study to characterize the thermal gradients resulting from various sample and furnace configurations in a commercial strip heater furnace. Furnace configurations include a metallic strip heater, with and without a secondary surround heater, or a surround heater alone. Sample configurations include low and high thermal conductivity powders and solids. The IR imaging results have been used to calibrate sample temperatures in the HTXRD furnace.

Payzant, E.A.; Wang, H.

1999-04-05T23:59:59.000Z

362

Microsoft Word - ACEEE_06_ModulatingFurnaces_Paper236_lbl.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the...

363

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Maximum Rebate $6,000 Program Info Funding Source New Hampshire Renewable Energy Fund (FY 2013) Start Date 04/14/2010 Expiration Date When progr State New Hampshire Program Type State Rebate Program Rebate Amount 30% Provider New Hampshire Public Utilities Commission The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The maximum rebate is $6,000. To qualify, systems must (1) become operational on or after May 1,

364

Blue Oak Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Jump to: navigation, search Logo: Blue Oak Energy Name Blue Oak Energy Address 4614 Second Street Place Davis, California Zip 95618 Sector Solar Product photovoltaics, design and engineering, feasibility studies, turn-key installation, system maintenance, PV products Year founded 2003 Number of employees 11-50 Phone number (530) 747-2026 Website http://www.blueoakenergy.com Coordinates 38.5509256°, -121.7069073° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5509256,"lon":-121.7069073,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Blue Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Blue Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blue Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":-118.13,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Blue Hill Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Logo: Blue Hill Partners LLC Name Blue Hill Partners LLC Address 40 W. Evergreen Ave. Place Philadelphia, Pennsylvania Zip 19118 Region Northeast - NY NJ CT PA Area Product Invests equity capital in venture-stage companies in the advanced industrial technology sector Phone number (215) 247-2400 Website http://www.bluehillpartners.co Coordinates 40.075493°, -75.208266° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.075493,"lon":-75.208266,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trial 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal  

SciTech Connect

This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993. Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test orI C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

1997-11-01T23:59:59.000Z

368

Detailed model for practical pulverized coal furnaces and gasifiers  

SciTech Connect

The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

Philips, S.D.; Smoot, L.D.

1989-08-01T23:59:59.000Z

369

Thermal Treatment of Solid Wastes Using the Electric Arc Furnace  

Science Conference Proceedings (OSTI)

A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

O'Connor, W.K.; Turner, P.C.

1999-09-01T23:59:59.000Z

370

Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004) Exploration Activity Details Location...

371

Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Exploration Activity Details Location Blue Mountain Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

372

Update on Blue Ribbon Commission for America's Nuclear Future...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Summary Minutes of the Secretary of Energy Advisory Board Public Meeting on October 12, 2011 Blue Ribbon Commission on...

373

Epithermal Gold Mineralization and a Geothermal Resource at Blue...  

Open Energy Info (EERE)

1991 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,...

374

Blue Crane Holdings Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Blue Crane Holdings Pvt. Ltd. Place Mumbai, Maharashtra, India Zip 400023 Sector Efficiency, Solar, Wind energy Product Mumbai-based firm involved...

375

Energy Materials Blue Ribbon Panel Releases Vision Report  

Science Conference Proceedings (OSTI)

Jun 22, 2010 ... Said Blue Ribbon Panel member Michael J. Dolan, senior vice ... Solar technology, while being designated as a moderately important MSE...

376

Jazz and Blues Legends Rock the Northeast, Help Save Louisiana ...  

U.S. Energy Information Administration (EIA)

Jazz and Blues Legends Rock the Northeast, Help Save Louisiana's Coastal Wetlands. 6.8.2006 Neville Brothers, Dr. John and Mavis Staples Highlight the ...

377

Energy Materials Blue Ribbon Panel Report June 2010 - TMS  

Science Conference Proceedings (OSTI)

Jun 22, 2010 ... The Energy Materials Blue Ribbon Panel convened by TMS has released Linking Transformational Materials and Processing for an Energy-...

378

Blue Hill Investment Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Investment Partners LLC Jump to: navigation, search Name Blue Hill Investment Partners LLC Place Philadelphia, Pennsylvania Zip PA 19118 Sector Renewable Energy Product A...

379

Improved Performance of a Fluorescent Blue Organic Light Emitting ...  

Science Conference Proceedings (OSTI)

Presentation Title, Improved Performance of a Fluorescent Blue Organic Light Emitting Diode with Hole Blocking Materials as Dopants for Transport Layers.

380

Pages that link to "Aeromagnetic Survey At Blue Mountain Area...  

Open Energy Info (EERE)

wikiSpecial:WhatLinksHereAeromagneticSurveyAtBlueMountainArea(FairbankEngineering,2004)" Special pages About us Disclaimers Energy blogs Developer services...

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Pages that link to "Aeromagnetic Survey At Blue Mountain Area...  

Open Energy Info (EERE)

wikiSpecial:WhatLinksHereAeromagneticSurveyAtBlueMountainArea(FairbankEngineering,2003)" Special pages About us Disclaimers Energy blogs Developer services...

382

Coal combustion under conditions of blast furnace injection. Final technical report, September 1, 1992--August 31, 1993  

Science Conference Proceedings (OSTI)

A potentially new use for Illinois coal is as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. During the first phase of this project a number of the objectives were realized, specifically: (1) a blast furnace sampling system was developed and used successfully to collect samples inside an active furnace; (2) two sets of blast furnace samples were collected and petrographic analysis showed that char derived from injected coal is entering the reduction zone of the furnace; (3) a coal/char sampling probe was designed and fabricated; (4) the completion of a program of reactivity experiments on the injected coal char, blast furnace coke and Herrin No. 6 char. The results of the reactivity experiments indicate that Herrin No. 6 coal is similar or even superior to coals now being used in blast furnace injection and that additional testing is warranted.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-12-31T23:59:59.000Z

383

Hydrogen adsorption in thin films of Prussian blue analogue  

DOE Green Energy (OSTI)

Quartz crystal microbalance with dissipation (QCM-D) measurement was used to investigate the kinetics of the molecular hydrogen adsorption into thin films of prussian blue analogues - Cu{sub 3}[Co(CN){sub 6}]{sub 2} at ambient conditions. Although the equilibrium adsorption seems to be independent of the thickness, the adsorption rate substantially decreases with the thickness of the films. In addition, the reversibility of H{sub 2} adsorption into the Cu{sub 3}[Co(CN){sub 6}]{sub 2} films was investigated. The results indicate that the Cu{sub 3}[Co(CN){sub 6}]{sub 2} maily interacts with H{sub 2} molecules physically. The highest H{sub 2} uptake by the Cu{sub 3}[Co(CN){sub 6}]{sub 2} films is obtained when the gas phase is stagnant inside the testing cell. However, the unusual high H{sub 2} uptake obtained from the QCM-D measurement makes us question how reliable this analytic methodology is.

Yang, Dali [Los Alamos National Laboratory; Ding, Vivian [Los Alamos National Laboratory; Luo, Junhua [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Obrey, Steve [Los Alamos National Laboratory; Zhao, Yusheng [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

384

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

heating appliances 3 , solar water heating, district heatingOther includes solar, wood, no heating c Electric resistance

Lekov, Alex B.

2010-01-01T23:59:59.000Z

385

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

heating appliances, 3 solar water heating, district heating,Other includes solar, wood, and no heating b Table 2 US

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

386

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network (OSTI)

market research on solar water heaters. National Renewablespace heaters, and solar water heaters, as well as other

Lekov, Alex

2011-01-01T23:59:59.000Z

387

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

market research on solar water heaters. National Renew- ablecom- bined space/water heaters, solar water heaters,combined solar space/water heater, electric water heaters

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

388

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

market research on solar water heaters. National Renewabletankless combined space/water heaterds, solar water heaters,combined solar space/water heater, electric water heaters

Lekov, Alex B.

2010-01-01T23:59:59.000Z

389

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

gy.gov/buildings/appliance_standards/residential/water_Efficiency in Domestic Appliances and Lighting (EEDAL 06).http://www1.eere.energy.gov/ buildings/appliance_standards/

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

390

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

outlook 2009 with projections to 2030 Early Release. Energywith projections to 2030. Energy Information Administra-a 20-year period (2010 2030) using the average LCC results

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

391

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

outlook 2009 with projections to 2030 Early Release. Energywith projections to 2030. Energy Information Administration,a 20-year period (2010-2030) using the average LCC results

Lekov, Alex B.

2010-01-01T23:59:59.000Z

392

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

are derived from historical monthly energy prices (U.S.Department of Energy 2006a; U.S.Department of Energy 2006b; U.S. Department of Energy 2005;

Lekov, Alex B.

2010-01-01T23:59:59.000Z

393

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

D. Winiarski. (1999). WHAM: Simplified tool for calculatingDepartment of Energy 2009b). WHAM yields total water heaterWater Heater Analysis Model (WHAM) method (Lutz et al. 1999)

Lekov, Alex B.

2010-01-01T23:59:59.000Z

394

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

Winiarski, D. (1999). WHAM: Simplified tool for calculatingDepartment of Energy 2009b). WHAM yields total water-heaterWater Heater Analysis Model (WHAM) method (Lutz et al. 1999)

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

395

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network (OSTI)

seds.html. USDOE. 2009. Residential Energy ConsumptionUSEPA) 2008. Energy Star Residential Water Heaters: FinalExperiences of residential consumers and utilities. Oak

Lekov, Alex

2011-01-01T23:59:59.000Z

396

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

use and operating costs Energy Efficiency (2010) 3:203222h) Manufacturing costs a Energy Efficiency (2010) 3:203222operating cost by option box plot Energy Efficiency (2010)

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

397

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

Lifetime Operating Cost Energy Prices Maintenance/ RepairRate Maintenance Cost Energy Price Trend Fig. 3 Life-cyclee.g. , discount rate, energy prices, and equipment lifetime)

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

398

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Refrigeration Institute 2008a). The efficiency of water heaters, depending on the rated volume and other design

Lekov, Alex B.

2010-01-01T23:59:59.000Z

399

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

Refrigeration Institute 2008a). The efficiency of water heaters, depending on the rated volume and other design

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

400

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network (OSTI)

Efficiency in Domestic Appliances and Lighting (EEDAL 06).http://www1.eere.energy.gov/buildings/appliance_standards/http://www1.eere.energy.gov/buildings/appliance_standards/

Lekov, Alex B.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Residential Energy Efficiency Rebate Gas) - Residential Energy Efficiency Rebate Programs MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Program Info Expiration Date 12/31/2013 State Nebraska Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Furnaces: $250-$400 Boilers: $150 or $400 Water Heaters: $50 or $100 Provider Remittance MidAmerican Energy offers basic energy efficiency incentives for residential customers in Nebraska to improve the comfort and savings in participating homes. These incentives include gas heating equipment such as boilers, furnaces, and water heaters. Free energy audits are also available

402

SourceGas - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program SourceGas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Hot Water Insulation/Infiltration Measures: minimum purchase of $40 Programmable Thermostats: 2 per account Insulation/Air Sealing: $300 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Furnace: $200 - $300 Boiler: $150 Proper Sizing of Boiler/Furnace: $50 Hot Water Heater (Tank): $50 Hot Water Heater (Tankless): $300 Programmable Thermostat: $25 Hot Water Insulation/Infiltration Measures: $25 Insulation/Air Sealing: 30% of cost

403

SourceGas - Commercial Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Efficiency Rebate Program Commercial Energy Efficiency Rebate Program SourceGas - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Hot Water Insulation/Infiltration Measures: minimum purchase of $40 Programmable Thermostats: 2 per account Program Info State Colorado Program Type Utility Rebate Program Rebate Amount '''Small Commercial''' Furnace: $200 - $300 Boiler: $150 Proper Sizing of Boiler/Furnace: $50 Hot Water Heater (Tank): $50 Hot Water Heater (Tankless): $300 Programmable Thermostat: $25 Hot Water Insulation/Infiltration Measures: $25 Integrated Space/Water Heater: $300

404

Avista Utilities (Gas) - Oregon Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Residential Energy Efficiency Oregon Residential Energy Efficiency Rebate Program Avista Utilities (Gas) - Oregon Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Forced Air Furnaces and Boilers: $200 Programmable Thermostats: $50 Windows: $2.25/sq. ft. Insulation: 50% of cost Provider Avista Utilities Avista Utilities offers a variety of equipment rebates to Oregon residential customers. Rebates are available for boilers, furnaces, insulation measures, windows and programmable thermostats. All equipment must meet certain energy efficiency standards listed on the program web

405

Integrating Coal Gasification into a Rotary Kiln Electric Furnace Plant  

Science Conference Proceedings (OSTI)

Coal gasification is a potential alternative to conventional coal or natural gas- fired power plants ... Fundamentals of Spark-Plasma Sintering: Net-Shaping and Size Effects ... Investigation on a Microwave High-Temperature Air Heat Exchanger.

406

Pacific Blue Energy | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Pacific Blue Energy Place Flagstaff, Arizona Zip 86001 Sector Solar Product Arizona-based solar project developer. Coordinates 45.238793°, -70.330276° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.238793,"lon":-70.330276,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Statistical thermodynamics of supercapacitors and blue engines  

E-Print Network (OSTI)

We study the thermodynamics of electrode-electrolyte systems, for instance supercapacitors filled with an ionic liquid or blue-energy devices filled with river- or sea water. By a suitable mapping of thermodynamic variables, we identify a strong analogy with classical heat engines. We introduce several Legendre transformations and Maxwell relations. We argue that one should distinguish between the differential capacity at constant ion number and at constant ion chemical potential, and derive a relation between them that resembles the standard relation between heat capacity at constant volume and constant pressure. Finally, we consider the probability distribution of the electrode charge at a given electrode potential, the standard deviation of which is given by the differential capacity.

Ren van Roij

2012-11-06T23:59:59.000Z

408

Blue Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Blue Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/Horizon Developer Zilkha Renewable/Kirmart Corp. Energy Purchaser Western Farmers' Electric Cooperative Location North of Lawton OK Coordinates 34.852678°, -98.551807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.852678,"lon":-98.551807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Uncertainty of calorimeter measurements at NREL's high flux solar furnace  

DOE Green Energy (OSTI)

The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

Bingham, C.E.

1991-12-01T23:59:59.000Z

410

Users to fight rule on wider gas surcharge  

SciTech Connect

Industrial users are seeking judicial, administrative, and legislative responses to a court ruling that applies the incremental-price surcharge on natural gas to non-boiler use. The ruling has an economic impact on firms using gas in processes, feedstocks, kilns, and furnaces because it places a heavier burden of decontrol on industry. Users have appealed to the Supreme Court to review the case, the Federal Energy Regulatory Commission the ruling, and Congress to repeal the incremental-pricing rule. (DCK)

Betts, M.

1982-02-08T23:59:59.000Z

411

BlueTorrent: Cooperative content sharing for Bluetooth users  

Science Conference Proceedings (OSTI)

People wish to enjoy their everyday lives in various ways, among which entertainment plays a major role. In order to improve lifestyle with more ready access to entertainment content, we propose BlueTorrent, a P2P file sharing application based on ubiquitous ... Keywords: BlueTorrent, Bluetooth, P2P

Sewook Jung; Uichin Lee; Alexander Chang; Dae-Ki Cho; Mario Gerla

2007-12-01T23:59:59.000Z

412

EnsemBlue: integrating distributed storage and consumer electronics  

Science Conference Proceedings (OSTI)

EnsemBlue is a distributed file system for personal multimedia that incorporates both general-purpose computers and consumer electronic devices (CEDs). Ensem-Blue leverages the capabilities of a few general-purpose computers to make CEDs first class ...

Daniel Peek; Jason Flinn

2006-11-01T23:59:59.000Z

413

BlueGene/L applications: Parallelism On a Massive Scale  

Science Conference Proceedings (OSTI)

BlueGene/L (BG/L), developed through a partnership between IBM and Lawrence Livermore National Laboratory (LLNL), is currently the world's largest system both in terms of scale, with 131,072 processors, and absolute performance, with a peak rate of ... Keywords: BlueGene/L, application scalability, massively parallel architectures, performance study and optimization

Bronis R. De Supinski; Martin Schulz; Vasily V. Bulatov; William Cabot; Bor Chan; Andrew W. Cook; Erik W. Draeger; James N. Glosli; Jeffrey A. Greenough; Keith Henderson; Alison Kubota; Steve Louis; Brian J. Miller; Mehul V. Patel; Thomas E. Spelce; Frederick H. Streitz; Peter L. Williams; Robert K. Yates; Andy Yoo; George Almasi; Gyan Bhanot; Alan Gara; John A. Gunnels; Manish Gupta; Jose Moreira; James Sexton; Bob Walkup; Charles Archer; Francois Gygi; Timothy C. Germann; Kai Kadau; Peter S. Lomdahl; Charles Rendleman; Michael L. Welcome; William Mclendon; Bruce Hendrickson; Franz Franchetti; Stefan Kral; Jrgen Lorenz; Christoph W. berhuber; Edmond Chow; mit atalyrek

2008-02-01T23:59:59.000Z

414

Early Experience on the Blue Gene/Q Supercomputing System  

Science Conference Proceedings (OSTI)

The Argonne Leadership Computing Facility (ALCF) is home to Mira, a10 PF Blue Gene/Q (BG/Q) system. The BG/Q system is the third generation in Blue Gene architecture from IBM and like its predecessors combines system-on-chip technology with a proprietary ... Keywords: supercomputing, performance, multi-core, scalability, applications

Vitali Morozov, Kalyan Kumaran, Venkatram Vishwanath, Jiayuan Meng, Michael E. Papka

2013-05-01T23:59:59.000Z

415

Petascale Debugging via Allinea DDT for IBM Blue Gene /P  

E-Print Network (OSTI)

@allinea.com> Senior Systems Engineer, Allinea Software Inc. ALCF L2P Workshop, May 23, 2012 #12;Outline ExperienceArchitecture #12;Current Status IBM Blue Gene /P Acceptance testing at ALCF (Allinea DDT 3.1) ­ Scale (Allinea DDT 3.2) ­ Early access for IBM Blue Gene /Q expected July 2012 ALCF requirement ­ Scale for Mira

Kemner, Ken

416

Parallel volume rendering on the IBM Blue Gene/P  

Science Conference Proceedings (OSTI)

Parallel volume rendering is implemented and tested on an IBM Blue Gene distributed-memory parallel architecture. The goal of studying the cost of parallel rendering on a new class of supercomputers such as the Blue Gene/P is not necessarily to achieve ...

Tom Peterka; Hongfeng Yu; Robert Ross; Kwan-Liu Ma

2008-04-01T23:59:59.000Z

417

Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel  

Open Energy Info (EERE)

the Vicinity of Blue Mountain and Pumpernickel the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Abstract From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in

418

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

419

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Exploration Activity Details Location Blue Mountain Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Using a precision thermistor probe, EGI, University of Utah, obtained detailed temperature logs of eleven new mineral exploration holes drilled at Blue Mountain. The holes, ranging in depth from 99 to 244 meters (325 to 800 feet), were drilled in areas to the northeast, northwest and southwest of, and up to distances of two kilometers from, the earlier mineral exploration drill holes that encountered hot artesian flows. Unfortunately,

420

The Blue Ribbon Commission Offers Strong Step Forward | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Blue Ribbon Commission Offers Strong Step Forward The Blue Ribbon Commission Offers Strong Step Forward The Blue Ribbon Commission Offers Strong Step Forward July 29, 2011 - 12:27pm Addthis Damien LaVera Damien LaVera Deputy Director, Office of Public Affairs Today, the Blue Ribbon Commission on America's Nuclear Future issued a draft of its recommendations. The Obama Administration continues to believe that nuclear energy has an important role to play as America moves to a clean energy future. As part of our commitment to restarting the American nuclear industry and creating thousands of new jobs and export opportunities in the process, we are committed to finding a sustainable approach to assuring safe, secure long-term disposal of used nuclear fuel and nuclear waste. Secretary Chu appreciates the hard work done by the members of the Blue

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Blue Lake Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blue Lake Plant Biomass Facility Blue Lake Plant Biomass Facility Jump to: navigation, search Name Blue Lake Plant Biomass Facility Facility Blue Lake Plant Sector Biomass Location Blue Lake, California Coordinates 40.8829072°, -123.9839488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8829072,"lon":-123.9839488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Building Energy Software Tools Directory: BlueSol  

NLE Websites -- All DOE Office Websites (Extended Search)

BlueSol BlueSol tool_bluesol BlueSol is a software for the design of photovoltaic systems in every country in the world. It allows you to perform the entire process of designing a PV system, from the preliminary assessment of producibility to the realization of the project documentation. Screen Shots Keywords PV system sizing, PV system simulation, grid-connected PV systems, electrical components, shading, economic analysis. Validation/Testing N/A Expertise Required No special expertise or training needed. Users BlueSol runs in English language and has been released in may 2013. BlueSol originates from his Italian version: over 2100 copies of Italian version dowloaded since it was first release in november 2009. Audience PV specialists, energy and electrical engineers, system installers, energy

423

CSER 99-007 Criticality Safety Evaluation Report for PFP Glovebox HA-21I Muffle Furnace Operation for Plutonium Stabilization  

SciTech Connect

Criticality Safety Evaluation Report for operation of PFP Glovebox HA-21I muffle furnace for plutonium stabilization. Glovebox limits are specified for processing metal and oxide fissile materials.

DOBBIN, K.D.

1999-12-16T23:59:59.000Z

424

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

425

X:\\m_drive\\Docs\\Publications\\LBNL-55088 (Marginal Prices )\\LCC...  

NLE Websites -- All DOE Office Websites (Extended Search)

equipment product classes (non-weatherized gas furnaces, weatherized gas furnaces, mobile home gas furnaces, oil furnaces, hot-water gas boilers, and hot- water oil boilers). The...

426

Atmos Energy - Natural Gas and Weatherization Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmos Energy - Natural Gas and Weatherization Efficiency Program Atmos Energy - Natural Gas and Weatherization Efficiency Program Atmos Energy - Natural Gas and Weatherization Efficiency Program < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Construction Commercial Weatherization Design & Remodeling Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Forced Air Furnace: $250 - $400 Boiler: $250 High Efficiency Tank Water Heater: $200 - $300 Tankless Model: $400 Programmable Thermostat: $25 Weatherization Assistance: Up to $3,000 Provider Atmos Energy Kentucky Rebate Offer Atmos Energy provides rebates to residential and commercial for natural gas

427

Columbia Gas of Massachusetts - Residential Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Massachusetts - Residential Energy Efficiency Columbia Gas of Massachusetts - Residential Energy Efficiency Programs Columbia Gas of Massachusetts - Residential Energy Efficiency Programs < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Insulation Weatherization: $2,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Insulation Weatherization: 75% of project cost Energy Star homes: $350 - $8,000, varies by number of units and efficiency Warm Air Furnace: $500 - $800 Gas Boiler: $1,000 - $1,500 Integrated Water Heater/Boiler: $1,200

428

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $275 Boiler: $300 Storage Water Heater: $125 Tankless Water Heater: $150 Programmable Thermostat: $20 Attic Insulation: Up to $600 Wall Insulation: Up to $700 Air Sealing: Up to $250 Provider Vectren Energy Delivery of Ohio Vectren Energy Delivery offers residential natural gas customers in Ohio

429

New England Gas Company - Residential and Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New England Gas Company - Residential and Commercial Energy New England Gas Company - Residential and Commercial Energy Efficiency Rebate Programs New England Gas Company - Residential and Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Heat Pumps Appliances & Electronics Water Heating Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Residential Furnace: $300 - $450 Boilers: $1000 - $1500 Combined High Efficiency Boiler/Water Heater: $1,200 Heat Recovery Ventilator: $500 High Efficiency Indirect Water Heater: $400 Condensing Gas Water Heater: $500 High Efficiency On-Demand, Tankless Water Heater: $500 - $800

430

Atmos Energy (Gas) - Residential Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Efficiency Program (Gas) - Residential Efficiency Program Atmos Energy (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Furnace lowest $250, $325, or $400 Boiler: $150 or $400 Condensing Water Heater: $300 Storage Water Heater: $75 Tankless Water Heater: $300 Provider Energy Federation Incorporated '''As of August 1, 2012, Iowa energy efficiency programs are offered by Liberty Utilities. ''' Atmos Energy provides rebates for residential natural gas heating equipment through their High Efficiency Rebate Program. When Atmos Receives the

431

1. Introduction The Electric Arc Furnace (EAF), designed for steelmak-  

E-Print Network (OSTI)

dust to be stored in specific landfills. Therefore, the management of dust accounts for a signifi- cant to the recovery of the zinc it contains. In order to define the best operating conditions to achieve this strategy of these particles by the gas flow in the fume extraction system, the in-flight physico-chemical transformations

Paris-Sud XI, Université de

432

OIL and GAS ENGINEERING Page 1 of 3 2009/2010 Curriculum  

E-Print Network (OSTI)

% of unconventional resources (blue) Figure 1 helps make clear why the tar sands and other unconventional fossil fuels are important. The purple bars show the total emissions to date from the conventional fossil fuels (oil, gas of the CO2 increase from 280 to 391 ppm. The blue bar is 50% of known unconventional fossil fuel (UFF

Calgary, University of

433

The Impact of Forced Air System Blowers on Furnace Performance and Utility  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Forced Air System Blowers on Furnace Performance and Utility The Impact of Forced Air System Blowers on Furnace Performance and Utility Loads Speaker(s): Bert Phillips Date: November 7, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: James Lutz Bert Phillips will talk about the impact of forced air system blower performance on furnace or heating performance and on utility loads, and what can be done to reduce blower power requirements. He will also briefly discuss a ground source heat pump monitoring study that he just finished. Mr. Phillips is a registered Professional Engineer in three Canadian provinces and part owner of UNIES Ltd., an engineering firm in Winnipeg, Manitoba (60 miles straight north of the North Dakota/Minnesota border). He does research and HVAC system design and investigates

434

HEU Holdup Measurements in 321-M B and Spare U-Al Casting Furnaces  

Science Conference Proceedings (OSTI)

The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Decontamination Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. This report covers holdup measurements in two uranium aluminum alloy (U-Al) casting furnaces. Our results indicate an upper limit of 235U content for the B and Spare furnaces of 51 and 67 g respectively. This report discusses the methodology, non-destructive assay (NDA) measurements, and results of the uranium holdup on the two furnaces.

Salaymeh, S.R.

2002-04-30T23:59:59.000Z

435

Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace  

DOE Patents (OSTI)

The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

Mathur, Mahendra P. (Pittsburgh, PA); Ekmann, James M. (Bethel Park, PA)

1989-01-01T23:59:59.000Z

436

Blast furnace granular coal injection project. Annual report, January--December 1993  

SciTech Connect

This initial annual report describes the Blast Furnace Granular Coal Injection project being implemented at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. This installation will be the first in the United States to employ British Steel technology that uses granular coal to provide part of the fuel requirement of blast furnaces. The project will demonstrate/assess a broad range of technical/economic issues associated with the use of coal for this purpose. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. Preliminary Design (Phase 1) began in 1991 with detailed design commencing in 1993. Construction at Burns Harbor (Phase 2) began in August 1993. Construction is expected to complete in the first quarter of 1995 which will be followed by the demonstration test program (Phase 3). Progress is described.

1994-06-01T23:59:59.000Z

437

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Ranch Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

438

National Fuel (Gas) - Residential Energy Efficiency Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Rebate amount cannot exceed the purchase price Program Info Start Date 1/1/2013 Expiration Date 3/31/2014 State New York Program Type Utility Rebate Program Rebate Amount Furnace: $250 Forced Air Furnace with ECM: $350 Hot Water Boiler: $350 Steam Boiler: $200 Programmable Thermostat: $25 Indirect Water Heater: $250 Provider Energy Federation Incorporated (EFI) National Fuel offers pre-qualified equipment rebates for the installation of certain energy efficiency measures to residential customers in Western

439

Philadelphia Gas Works - Residential and Small Business Equipment Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Residential and Small Business Equipment Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Start Date 4/1/2011 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler (Purchase prior to 02/17/12): $1000 Boiler (Purchase 02/17/12 or after): $2000 Furnace (Purchase prior to 02/17/12): $250 Furnace (Purchase prior to 02/17/12): $500

440

MidAmerican Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliances & Electronics Appliances & Electronics Water Heating Program Info Expiration Date 12/31/2013 State Iowa Program Type Utility Rebate Program Rebate Amount Natural Gas Furnace: $250 - $400 Efficient Furnace Fan Motor: $50 Natural Gas Boiler: $150 - $400 Natural Gas Water Heater: $50 - $300 Programmable thermostat: $20 Provider MidAmerican Energy MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Residential Equipment Brochure on the program web site above provides specific rebate amounts, efficiency requirements and further details. After installing qualifying equipment, customers should submit a completed Equipment Rebate Application and a detailed invoice to MidAmerican. Heating and cooling

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding support from the DOE's Office of Geothermal Technology (DOE/OGT).

442

Coal combustion under conditions of blast furnace injection. Technical report, March 1, 1994--May 31, 1994  

Science Conference Proceedings (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposal is a follow-up to one funded for the 1992-93 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter samples of two feed coals and the IBCSP 112 (Herrin No. 6) were prepared for reactivity testing and compared to blast furnace coke, and char fines taken from an active blast furnace. As the initial part of a broad reactivity analysis program, these same samples were also analyzed on a thermogravimetric analyzer (TGA) to determine their combustion and reactivity properties.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States)

1994-09-01T23:59:59.000Z

443

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

444

< Previous: August is Blue on Planet Green  

E-Print Network (OSTI)

our electric cars. In order to fill up we would have to either raid the toilets at all the gas they are some people already planning already to install a toilet in the trunk of a bio-electric car electricity when placed in mud and wastewater, has been evolved into a far more productive strain, as part

Lovley, Derek

445

Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laclede Gas Company - Commercial and Industrial Energy Efficiency Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Maximum Rebate Commercial Incentive: Contact Laclede Gas for general program incentive maximum Gas Boilers: 1,000,000 BTU/hr ($3,000) Continuous Modulating Burner: $15,000 cap per burner Gas-fired Boiler Tune Up: $750 per building (non-profit), $500 per boiler (C&I) High Efficiency Air-Forced Furnaces: $200-$250 Vent Dampers: $500 per boiler Steam Trap Replacements: $2,500 Primary Air Dampers: $500 Food Service Gas Steamer: $475 Food Service Gas Fryer: $350

446

Blue Ridge Electric Cooperative - Heat Pump Loan Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Blue Ridge Electric Cooperative - Heat Pump Loan Program Blue Ridge Electric Cooperative - Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 12,000 Program Info State South Carolina Program Type Utility Loan Program Rebate Amount $500 - $12,000 Provider Blue Ridge Electric Cooperative Blue Ridge Electric Cooperative (BREC) offers low interest loans to help members finance the purchase of energy efficient heat pumps. Loans under $1,500 can be financed for up to 42 months, and loans above $1,500 can be financed for up to 60 months for houses and 48 months for mobile homes. Homeowners planning to install one heat pump, electric or geothermal can

447

Reflection Survey At Blue Mountain Area (Fairbank Engineering, 2007) | Open  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Engineering, 2007) Blue Mountain Area (Fairbank Engineering, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Blue Mountain Area (Fairbank Engineering, 2007) Exploration Activity Details Location Blue Mountain Area Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes A high-resolution seismic reflection survey was conducted by Utah Geophysical, Inc. (1990) along four widely spaced survey lines normal to range front fault sets. The survey was designed primarily to detect silicified zones or zones of argillic alteration, and faulting, to depths of about 300 meters (1000 feet), as part of the precious metals exploration program. One interpretation of the data showed discrete, high-angle faults

448

IBM Blue Gene Parallel Supercomputer, Brookhaven National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

SSH Tunneling One-hop logins and file transfers using ssh tunneling Please note, New York BlueL has been decommissioned and these web pages have not yet been updated to reflect...

449

Task Force for Strategic Developments to Blue Ribbon Commission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Force for Strategic Developments to Blue Ribbon Commission Task Force for Strategic Developments to Blue Ribbon Commission Recommendations Task Force for Strategic Developments to Blue Ribbon Commission Recommendations Formed at the direction of the President to Secretary Chu and included leading experts. Purpose to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle; i.e., recycle before storage and permanent disposal. Detailed analysis, with eight major recommendations; also recommended near-term actions. Task Force for Strategic Developments to Blue Ribbon Commission Recommendations More Documents & Publications Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy DOE Office of Nuclear Energy Transportation Planning, Route Selection, and

450

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,  

Open Energy Info (EERE)

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Abstract Shallow exploration drilling on the west flank of Blue Mountain discovered sub economic gold mineralization and a spatially associated active geothermal system. The gold mineralization is an unusual example of an acid sulfate type epithermal system developed in pre Tertiary sedimentary host rocks. The geothermal system is largely unexplored but is unusual in that surface manifestation s typically associated with active geothermal system are not present. Authors Andrew J. Parr and Timothy J. Percival

451

USD 384 Blue Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Blue Valley Wind Project Blue Valley Wind Project Jump to: navigation, search Name USD 384 Blue Valley Wind Project Facility USD 384 Blue Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.433575°, -96.758011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.433575,"lon":-96.758011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Drilling Success at Blue Mountain, Nevada Drilling Success at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect has led to the confirmation of a geothermal resource at Blue Mt.Nevada. The latest results include drilling of three production wells into Piedmont faults. These wells produce from a 185 to 190°C dilute benign brine reservoir. Short flow tests have shown prolific flow rates and indications of reservoir continuity.Well entries have shown that system permeability is fault-dominated. This is confirmed by the results of seismic reflection imaging. Young faulting in the area includes intersecting range front faults that strike NW, NS, and NE. Exposure of

453

Aeromagnetic Survey At Blue Mountain Area (Fairbank Engineering, 2003) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Blue Mountain Area (Fairbank Engineering, 2003) Exploration Activity Details Location Blue Mountain Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The airborne magnetometer and VLF-EM surveys carried out by Aerodat Limited, in 1988, covered the western flank of Blue Mountain including most of the geothermal lease area. The interpreted data (total field magnetic contours; calculated vertical magnetic gradient) indicate parallel sets of northerly, northeasterly, and northwesterly-trending structures that correspond well with the major fault sets identified from geologic mapping and interpreted drilling sections. Also, an elongate northerly-trending area of low magnetic gradient coincides closely with the area of intense

454

MHK Technologies/Blue Motion Energy marine turbine | Open Energy  

Open Energy Info (EERE)

Motion Energy marine turbine Motion Energy marine turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Blue Motion Energy marine turbine.jpg Technology Profile Primary Organization Blue Motion Energy Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Description The Blue Motion Energy marine turbine however uses a patented system of seawalls A placed radial around the vertically mounted rotor B this way it is possible to funnel the current and significantly increase the flow velocity independent of the direction of the current Technology Dimensions Device Testing Date Submitted 59:30.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Blue_Motion_Energy_marine_turbine&oldid=681547

455

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

456

Secretary Chu Announces Blue Ribbon Commission on America's Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blue Ribbon Commission on America's Blue Ribbon Commission on America's Nuclear Future Secretary Chu Announces Blue Ribbon Commission on America's Nuclear Future January 29, 2010 - 12:57pm Addthis As part of the Obama Administration's commitment to restarting America's nuclear industry, U.S. Secretary of Energy Steven Chu today announced the formation of a Blue Ribbon Commission on America's Nuclear Future to provide recommendations for developing a safe, long-term solution to managing the Nation's used nuclear fuel and nuclear waste. The Commission is being co-chaired by former Congressman Lee Hamilton and former National Security Advisor Brent Scowcroft. In light of the Administration's decision not to proceed with the Yucca Mountain nuclear waste repository, President Obama has directed Secretary

457

Second Generation Renewable Fuels Blue-Green Seminar  

E-Print Network (OSTI)

Abstract Second Generation Renewable Fuels Blue-Green Seminar at University of Michigan by Michael Ladisch Laboratory of Renewable Resources Engineering Purdue University Potter Engineering Center 500 footprint will require commercialization of industrial processes that transform renewable lignocellulosic

Eustice, Ryan

458

A disposable biosensor with Prussian blue deposited electrode  

Science Conference Proceedings (OSTI)

We propose a novel electrochemical detector (ECD) to catalyze redox efficiently by electrodepositing Prussian blue (PB, ferric hexacyanoferrate) on the indium tin oxide (ITO) electrode. Capillary electrophoresis (CE) and amperometric methods were used. ... Keywords: Amperometric, Biosensor, Catecchol, Dopamine, ITO

In-Je Yi; Ju-Ho Kim; Y. J. Choi; C. J. Kang; Yong-Sang Kim

2006-04-01T23:59:59.000Z

459

NETL: News Release - NETL Receives Blue Pencil and Gold Screen...  

NLE Websites -- All DOE Office Websites (Extended Search)

The honor was awarded at the NAGC Blue Pencil and Gold Screen Awards Reception and Banquet on Monday, May 17,2010, in Bethesda, Md., during the 2010 NAGC Communications School....

460

Blue-green and green phosphors for lighting applications  

Science Conference Proceedings (OSTI)

Embodiments of the present techniques provide a related family of phosphors that may be used in lighting systems to generate blue or blue-green light. The phosphors include systems having a general formula of: ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.s- ub.y)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) (I), wherein 0lighting systems, such as LEDs and fluorescent tubes, among others, to produce blue and blue/green light. Further, the phosphors may be used in blends with other phosphors, or in combined lighting systems, to produce white light suitable for illumination.

Setlur, Anant Achyut; Chandran, Ramachandran Gopi; Henderson, Claire Susan; Nammalwar, Pransanth Kumar; Radkov, Emil

2012-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Highly efficient blue polyfluorene-based polymer light-emitting...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Physics Volume 42 Pagination 5 Abstract A highly efficient blue polymer light-emitting diode based on poly(9,9-di(2-(2-(2-methoxy-ethoxy)ethoxy)ethyl)fluorenyl-2,7-diyl)...

462

REFERENCE: The Blue Planet An Introduction to Earth System  

E-Print Network (OSTI)

REFERENCE: The Blue Planet An Introduction to Earth System Science. Brian J. Skinner and Barbara Glacier E. Piedmont Glaciers #12;A. Cirque glaciers occupies a bowl shape depression on a mountainside

Gilbes, Fernando

463

Secretary Chu Announces Blue Ribbon Commission on America's Nuclear Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blue Ribbon Commission on America's Nuclear Blue Ribbon Commission on America's Nuclear Future Secretary Chu Announces Blue Ribbon Commission on America's Nuclear Future January 29, 2010 - 12:00am Addthis Washington, D.C. - As part of the Obama Administration's commitment to restarting America's nuclear industry, U.S. Secretary of Energy Steven Chu today announced the formation of a Blue Ribbon Commission on America's Nuclear Future to provide recommendations for developing a safe, long-term solution to managing the Nation's used nuclear fuel and nuclear waste. The Commission is being co-chaired by former Congressman Lee Hamilton and former National Security Advisor Brent Scowcroft. In light of the Administration's decision not to proceed with the Yucca Mountain nuclear waste repository, President Obama has directed Secretary

464

Task Force for Strategic Developments to Blue Ribbon Commission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Force for Strategic Developments to Blue Ribbon Commission Task Force for Strategic Developments to Blue Ribbon Commission Recommendations Task Force for Strategic Developments to Blue Ribbon Commission Recommendations Formed at the direction of the President to Secretary Chu and included leading experts. Purpose to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle; i.e., recycle before storage and permanent disposal. Detailed analysis, with eight major recommendations; also recommended near-term actions. Task Force for Strategic Developments to Blue Ribbon Commission Recommendations More Documents & Publications DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive

465

FERN Blue Ribbon Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

FERN Blue Ribbon Wind Farm I FERN Blue Ribbon Wind Farm I Jump to: navigation, search Name FERN Blue Ribbon Wind Farm I Facility FERN Blue Ribbon Wind Farm I Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Fishermen's Energy Location Offshore from Atlantic City NJ Coordinates 39.311°, -74.41° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.311,"lon":-74.41,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Blue Peter Project Group Inc | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Blue Peter Project Group Inc Place Oakville, Ontario, Canada Zip L6M 2B8 Sector Solar Product Alternative energy project developer in Canada,...

467

Blue Breezes I & II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Blue Breezes I & II Wind Farm Blue Breezes I & II Wind Farm Jump to: navigation, search Name Blue Breezes I & II Wind Farm Facility Blue Breezes I & II Sector Wind energy Facility Type Community Wind Facility Status In Service Owner John Deere Wind Energy Developer Dan Moore/John Deere Wind Energy Energy Purchaser City of Blue Earth Location City of Blue Earth MN Coordinates 43.6352°, -94.0942° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6352,"lon":-94.0942,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Research on Stability Criterion of Furnace Flame Combustion Based on Image Processing  

Science Conference Proceedings (OSTI)

This paper proposes and analyzes the stability criterion of furnace flame combustion based on image processing, which uses the maximum criterion of gray scale difference, the distance criterion of gravity center and mass center in the high temperature ... Keywords: image processing, stability, flame detection, boiler safety

Rongbao Chen, Wuting Fan, Jingci Bian, Fanhui Meng

2012-12-01T23:59:59.000Z

469

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

alternative furnaces used in each house required derivation of the heating and coolingalternative efficiency levels and design options to meet the same heating and coolingand cooling loads of each sample house are known, it is possible to estimate what the energy consumption of alternative (

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

470

Recovery of titanium values from titanium grinding swarf by electric furnace smelting  

DOE Patents (OSTI)

A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

Gerdemann, S.J.; White, J.C.

1998-08-04T23:59:59.000Z

471

Directly induced swing for closed loop control of electroslag remelting furnace  

DOE Patents (OSTI)

An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.

Damkroger, B.

1998-04-07T23:59:59.000Z

472

Atomic-absorption analysis in a graphite furnace fitted with a metal ballast collector  

SciTech Connect

One reason for the deterioration in sensitivity in the electrothermal atomic absorption spectroscopy of petroleum products is the uncontrolled spread and diffusion of the liquid throughout the furnace. This paper describes a metal ballast collector whose wettability and sorptive properties contain the sample and allow for its uniform and controlled evaporation and atomization.

Katskov, D.A.; Vasil' eva, L.A.; Grinshtein, I.L.; Savel' eva, G.O.

1987-10-01T23:59:59.000Z

473

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Area (Fairbank & Neggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration Activity Details Location Blue Mountain Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Blue_Mountain_Area_(Fairbank_%26_Neggemann,_2004)&oldid=386709" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link

474

Stepout-Deepening Wells At Blue Mountain Area (Niggemann Et Al, 2005) |  

Open Energy Info (EERE)

Blue Mountain Area (Niggemann Et Al, 2005) Blue Mountain Area (Niggemann Et Al, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Step-out Well At Blue Mountain Area (Niggemann Et Al, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Step-out Well Activity Date Usefulness not indicated DOE-funding Unknown Notes Deep Blue No. 2 was sited as a step out t5 meters.5o Deep Blue No. 1 which measured 145oC at a depth of 645 m. Max temp recorded in Deep Blue No. 2 while drilling was 167.5oC at References Kim Niggemann, Brian Fairbank, Susan Petty (2005) Deep Blue No 2- A Resource In The Making At Blue Mountain Retrieved from "http://en.openei.org/w/index.php?title=Stepout-Deepening_Wells_At_Blue_Mountain_Area_(Niggemann_Et_Al,_2005)&oldid=687863"

475

Avista Utilities (Gas) - Oregon Residential Energy Efficiency...  

Open Energy Info (EERE)

Amount Forced Air Furnaces: 200 Boiler Systems: 200 Programmable Thermostats: 50 Windows: 2.25sq. ft. Insulation: 50% of cost Equipment Requirements Forced Air Furnaces:...

476

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Attic and Wall Insulation: $1000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount ENERGY STAR New Construction: $600-$3500/home Home Energy Audit: Free Boilers: $150 or $400 depending on AFUE Furnaces: $250 or $400 depending on AFUE Programmable Thermostats: $25

477

Dominion East Ohio (Gas) - Home Performance Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dominion East Ohio (Gas) - Home Performance Program Dominion East Ohio (Gas) - Home Performance Program Dominion East Ohio (Gas) - Home Performance Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Furnace: $300-$400 Boiler: $250-$300 Duct Sealing: $40/hour Air Sealing: $40/hour Programmable Thermostat: $30/thermostat Storage Water Heater: $100 Tankless Water Heater: $150 Condensing Water Heater: $125 Water Heater Tank Insulation: $10 Attic Access Insulation: $30 Wall/Attic/Duct Insulation: $0.30/sq. ft.

478

Alliant Energy Interstate Power and Light (Gas) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Business Energy Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Programs (Minnesota) Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Programs (Minnesota) < Back Eligibility Commercial Fed. Government Local Government Multi-Family Residential Retail Supplier State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Tank Water Heater: $50 Furnace: $250-$400 Boiler: $150 or $400 Programmable Thermostat: $25 Windows/Sash: $20 Custom: Based on Annual Energy Dollar Savings Provider

479

Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs Ameren Missouri (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Appliances & Electronics Maximum Rebate Ceiling Insulation: $200 Program Info Start Date 1/1/2013 Expiration Date 12/31/2013 State Missouri Program Type Utility Rebate Program Rebate Amount Furnace: $200 (Owner Occupied); $300 (Landlord) Boiler: $100 - $150 (Owner Occupied); $150 - $300 (Landlord) Programmable Thermostat: $25 or 50% of cost Ceiling Insulation: $0.008 x sq ft Comprehensive Audit Measures: Varies widely

480

Peoples Gas - Residential Rebate Program (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Water Heating Maximum Rebate 100% of project cost Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Furnace: $300 -$500 Boiler: varies, depending on size and efficiency Boiler Controls: $100/unit Complete HVAC System Replacement: $650 - $1,000 Water Heater (Tankless): $450 Water Heater (Indirect): $275 Water Heater (Storage Tank): $100 Attic Insulation: $0.10/sq ft Programmable Thermostat: $50

Note: This page contains sample records for the topic "furnace gas blue" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Central Hudson Gas and Electric (Electric) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Hudson Gas and Electric (Electric) - Residential Energy Central Hudson Gas and Electric (Electric) - Residential Energy Efficiency Rebate Program Central Hudson Gas and Electric (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Manufacturing Appliances & Electronics Water Heating Maximum Rebate Air Sealing: $600 Program Info State New York Program Type Utility Rebate Program Rebate Amount Central AC: $400 - $600, depending on efficiency Air-source Heat Pumps: $400 - $600, depending on efficiency Electronically Commutated Motor (ECM) Furnace Fans: $200 Electric Heat Pump Water Heaters: $400 Programmable Thermostats: $25

482

Orange and Rockland Utilities (Gas) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange and Rockland Utilities (Gas) - Residential Efficiency Orange and Rockland Utilities (Gas) - Residential Efficiency Program Orange and Rockland Utilities (Gas) - Residential Efficiency Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Water Heating Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140 - $420 Water Boiler: $350 or $700 Steam Boiler: $350 Boiler Reset Control: $70 Indirect Water Heater: $210 Programmable Thermostat: $18 Duct and Air Sealing: up to $420 Provider Orange and Rockland Utilities, Inc. Orange and Rockland Utilities provides rebates for residential customers

483

Black Hills Energy (Gas) - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate All Incentives: $750/customer Ceiling/Wall/Foundation Insulation: $500 Infiltration Control/Caulking/Weather Stripping: $200 Duct Insulation: $150 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Qualified New Homes (Builders): Contact Black Hills Energy Evaluations: Free or reduced cost Storage Water Heater: $75 or $300 Tankless Water Heater: $300 Furnace/Boiler Maintenance: $30 or $100

484

Efficiency United (Gas) - Commercial Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency United (Gas) - Commercial Efficiency Program Efficiency United (Gas) - Commercial Efficiency Program Efficiency United (Gas) - Commercial Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Other Construction Manufacturing Water Heating Maximum Rebate See Page Four of Utility Application: $100-$50,000/customer/year depending on utility and remaining funding Custom:40% of project cost Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Trap Repair or Replacement: $50/unit Boilers: $1-$1.50/MBH Furnace Replacement: $1.50/MBH or $150/unit Boiler Modulation Burner Control Retrofit: $1000/unit Boiler Water Reset Control: $300/unit

485

Efficiency United (Gas) - Residential Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program Efficiency United (Gas) - Residential Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Construction Design & Remodeling Other Ventilation Manufacturing Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: 50% of the cost Windows: $150 Water Heaters/Clothes Washers: 1 Pipe Wrap: Limit of 10 linear ft. Faucet Aerators: 2 High Efficiency Shower Head: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Boiler: $200 Furnace: $100 - $200

486

Berkshire Gas - Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkshire Gas - Residential Energy Efficiency Rebate Program Berkshire Gas - Residential Energy Efficiency Rebate Program Berkshire Gas - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Sealing Your Home Ventilation Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization: $2,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Weatherization - Single Family: 75% of cost Weatherization - Multi-Family: 50% of cost Weatherization - Low-Income: 100% of cost Furnaces: $500 - $800 Boilers: $1,000 - $1,500 Combined Boiler/Water Heater: $1,200

487

Atmos Energy - Residential Natural Gas and Weatherization Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Residential Natural Gas and Weatherization - Residential Natural Gas and Weatherization Efficiency Program Atmos Energy - Residential Natural Gas and Weatherization Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Water Heating Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Comprehensive Upgrades (Energize Homes): Up to $5,00 Furnace: $200-$300 Boiler: $200-$300 Combination Boiler/Water Heater: $450 Storage Water Heater: $50-$125 Tankless/Condensing Water Heater: $200 Programmable Thermostat $25 Provider Energy Federation Incorporated '''As of August 1, 2012, Missouri energy efficiency programs are offered by