Sample records for funds revolutionary storage

  1. DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage...

    Energy Savers [EERE]

    DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage Site DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage Site June 3, 2015 - 8:44am Addthis Photo...

  2. Notice of Intent to Issue Funding Opportunity for Integrated PV and Energy Storage Systems

    Broader source: Energy.gov [DOE]

    As solar power plants proliferate, the variability and uncertainty of the solar resource poses challenges for integrating PV with electric power systems at both the distribution and bulk system levels. In response to these challenges, the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) has issued a notice of intent (NOI) to release the SunShot Sustainable and Holistic IntegratioN of Energy storage and Solar (SHINES) funding opportunity. SHINES will enable the holistic design, development, and widespread sustainable deployment of low-cost, flexible, and reliable energy storage solutions, and will strive to successfully integrate these solutions into PV power plants. SHINES projects can also focus on demand response and load management to achieve target metrics.

  3. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic...

  4. Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) Funding Opportunity

    Broader source: Energy.gov [DOE]

    The Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) solution as envisioned by SunShot will have the following features:

  5. DOE Funds 15 New Projects to Develop Solar Power Storage and...

    Office of Environmental Management (EM)

    the practicality of integrating a thermal energy storage module with a dish stirling engine, enabling the system to operate during cloud transients and to provide...

  6. Stabilized Lithium Metal Powder, Enabling Material and Revolutionary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation es011yakovleva2011p.pdf More Documents & Publications Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion...

  7. BESC, Mascoma develop revolutionary microbe for biofuel production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ron Walli Communications 865.576.0226 BESC, Mascoma develop revolutionary microbe for biofuel production A yeast engineered by Mascoma and BESC could hold the key to accelerating...

  8. Stabilized Lithium Metal Powder, Enabling Material and Revolutionary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. es011yakovleva2010o.pdf More Documents & Publications Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion...

  9. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  10. Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO)

    SciTech Connect (OSTI)

    McIntosh, Jane [MDA; Schumacher, Leon [University of Missouri

    2014-10-23T23:59:59.000Z

    The Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO) program brought together a team of representatives from government, academia, and private industry to enhance the availability of energy efficiency services for small livestock producers in the State of Missouri. The Missouri Department of Agriculture (MDA) managed the project via a subcontract with the University of Missouri (MU), College of Agriculture Food and Natural Resources, MU Extension, the MU College of Human Environmental Sciences, the MU College of Engineering, and the Missouri Agricultural and Small Business Development Authority (MASBDA). MU teamed with EnSave, Inc, a nationally-recognized expert in agricultural energy efficiency to assist with marketing, outreach, provision of farm energy audits and customer service. MU also teamed with independent home contractors to facilitate energy audits of the farm buildings and homes of these livestock producers. The goals of the project were to: (1) improve the environment by reducing fossil fuel emissions and reducing the total energy used on small animal farms; (2) stimulate the economy of local and regional communities by creating or retaining jobs; and (3) improve the profitability of Missouri livestock producers by reducing their energy expenditures. Historically, Missouri scientists/engineers conducted programs on energy use in agriculture, such as in equipment, grain handling and tillage practices. The MAESTRO program was the first to focus strictly on energy efficiency associated with livestock production systems in Missouri and to investigate the applicability and potential of addressing energy efficiency in animal production from a building efficiency perspective. A. Project Objectives The goal of the MAESTRO program was to strengthen the financial viability and environmental soundness of Missouri's small animal farms by helping them implement energy efficient technologies for the production facility, farm buildings, and the homes on these farms. The expected measurable outcomes of the project were to improve the environment and stimulate the economy by: • Reducing annual fossil fuel emissions by 1,942 metric tons of carbon dioxide equivalent, reducing the total annual energy use on at least 323 small animal farms and 100 farm homes by at least 8,000 kWh and 2,343 therms per farm. • Stimulating the economy by creating or retaining at least 69 jobs, and saving small animal farmers an average of $2,071 per farm in annual energy expenditures. B. Project Scope The MAESTRO team chose the target population of small farms because while all agriculture is traditionally underserved in energy efficiency programs, small farms were particularly underserved because they lack the financial resources and access to energy efficiency technologies that larger farms deploy. The MAESTRO team reasoned that energy conservation, financial and educational programs developed while serving the agricultural community could serve as a national model for other states and their agricultural sectors. The target population was approximately 2,365 small animal farm operations in Missouri, specifically those farms that were not by definition a confined animal feeding operation (CAFO). The program was designed to create jobs by training Missouri contractors and Missouri University Extension staff how to conduct farm audits. The local economy would be stimulated by an increase in construction activity and an increasing demand for energy efficient farm equipment. Additionally, the energy savings were deemed critical in keeping Missouri farms in business. This project leveraged funds using a combination of funds from the Missouri Department of Natural Resources’ Missouri Energy Center and its Soil and Water Conservation Program, from the state's Linked Deposits, MASBDA's agricultural loan guarantee programs, and through the in-kind contribution of faculty and staff time to the project from these agencies and MU. Several hundred Missouri livestock producers were contacted during the MAESTRO project. Of the

  11. Revolutionary ultrasonic nozzle can reduce water and energy used for

    E-Print Network [OSTI]

    Sóbester, András

    Revolutionary ultrasonic nozzle can reduce water and energy used for cleaning by ten times by N O R into the air to then settle and contaminate other surfaces). As it is able to use cold water, energy is saved ultrasonic cleaning baths can easily be scaled up and neither can be used To search, type and hit enter " F i

  12. Cardiologists from CU testing revolutionary heart-attack treatment

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Cardiologists from CU testing revolutionary heart-attack treatment Compiled 4.12.2013 23 of the biologically degradable stent in the treatment of myocardial infarctions (heart-attacks). The results with a metal stent in their heart for the rest of their life; instead, the stent does its work then disappears

  13. Hydrogen Storage Related Links

    Broader source: Energy.gov [DOE]

    The following resources provide details about DOE-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links.

  14. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Broader source: Energy.gov (indexed) [DOE]

    Frequently asked questions about the Smart Grid Demonstration and Energy Storage Funding Opportunity Announcement released as part of the American Recovery and Reinvestment Act,...

  15. 05/05/2014 11:01Nanotechnology's Revolutionary Next Phase Page 1 of 7http://www.forbes.com/sites/brucedorminey/2013/02/26/nanotechnologys-civilization-changing-revolutionary-next-phase/

    E-Print Network [OSTI]

    05/05/2014 11:01Nanotechnology's Revolutionary Next Phase Page 1 of 7http://www.forbes.com/sites/brucedorminey/2013/02/26/nanotechnologys-civilization-changing-revolutionary-next-phase/ TECH (/TECHNOLOGY) 5:01Nanotechnology's Revolutionary Next Phase Page 2 of 7http://www.forbes.com/sites/brucedorminey/2013

  16. Project Funding

    Broader source: Energy.gov [DOE]

    Federal energy projects require funding to generate results. Carefully matching available funding options with specific project needs can make the difference between a stalled, unfunded project and a successful project generating energy and cost savings.

  17. Missouri Agricultural and Energy Saving Team – A Revolutionary Opportunity (MAESTRO)

    Broader source: Energy.gov [DOE]

    ''''' Note: Rates listed below are for farmers who signed up for the program by January 1, 2011. Information regarding future funding opportunities will be posted here when it becomes available. '''''

  18. Sandia National Laboratories: thermochemical energy-storage systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy-storage systems Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage,...

  19. A revolutionary concept to improve the efficiency of IC antennas

    SciTech Connect (OSTI)

    Milanesio, D.; Maggiora, R. [Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni (DET), Torino (Italy)

    2014-02-12T23:59:59.000Z

    The successful design of an Ion Cyclotron (IC) antenna mainly relies on the capability of coupling high power to the plasma (MW), feature that is currently reached by allowing rather high voltages (tens of kV) on the unavoidable unmatched part of the feeding lines. This requirement is often responsible of arcs along the transmission lines and other unwanted phenomena that considerably limit the usage of IC launchers. In this work, we suggest and describe a revolutionary approach based on high impedance surfaces, which allows to increase the antenna radiation efficiency and, hence, to highly reduce the imposed voltages to couple the same level of power to the plasma. High-impedance surfaces are periodic metallic structures (patches) displaced usually on top of a dielectric substrate and grounded by means of vertical posts usually embedded inside a dielectric, in a mushroom-like shape. In terms of working properties, high impedance surfaces are electrically thin in-phase reflectors, i.e. they present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. While the usual design of a high impedance surface requires the presence of a dielectric layer, some alternative solutions can be realized in vacuum, taking advantage of double layers ofmetallic patches. After an introductory part on the properties of high impedance surfaces, this work documents both their design by means of numerical codes and their implementation on a scaled mock-up.

  20. act arra funding: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage, Conversion and Utilization Websites Summary: 1 External Research Funding Agreements University Policy No: RH8200 Classification: Research Change: Mandated...

  1. GE Uses DOE Advanced Light Sources to Develop Revolutionary Battery

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearch »Funding Opportunity

  2. Requested Funding Categories

    E-Print Network [OSTI]

    Martinez, Tony R.

    Requested Funding Categories: Department's Funding Priority Request (in the event partial funding is granted): Committee recommends the following funding: Wages for adjunct or part- time faculty or admin Factors: Has unit received previous internship grant funding? _______ ifso

  3. The Children's Milk Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Children's Milk Fund Clever accounting hid the funds needed to develop America's top secret atomic bombs. December 1, 2014 The Children's Milk Fund Milk money was critical in...

  4. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  5. Funding Opportunities

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAM DOE OGeeking Out on Energy910186 Funding

  6. AB Levitator and Electricity Storage

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-03-01T23:59:59.000Z

    The author researched this new idea - support of flight by any aerial vehicles at significant altitude solely by the magnetic field of the planet. It is shown that current technology allows humans to create a light propulsion (AB engine) which does not depend on air, water or ground terrain. Simultaniosly, this revolutionary thruster is a device for the storage of electricity which is extracted and is replenished (during braking) from/into the storage with 100 percent efficiency. The relative weight ratio of this engine is 0.01 - 0.1 (from thrust). For some types of AB engine (toroidal form) the thrust easily may be changed in any direction without turning of engine. The author computed many projects using different versions of offered AB engine: small device for levitation-flight of a human (including flight from Earth to Outer Space), fly VTOL car (track), big VTOL aircrat, suspended low altitude stationary satellite, powerful Space Shuttle-like booster for travel to the Moon and Mars without spending energy (spended energy is replenished in braking when ship returns from other planet to its point of origin), using AB-devices in military, in sea-going ships (submarimes), in energy industry (for example. as small storage of electric energy) and so on. The vehicles equipped with AB propulsion can take flight for days and cover distances of tens thousands of kilometers at hypersonic or extra-atmosphere space speeds. The work contains tens of inventions and innovations which solves problems and breaks limitations which appear in solution of these very complex revolutionary ideas. Key word: AB levitator, levitation, non-rocket outer space flight, electric energy storage, AB propulsion, AB engine, Bolonkin.

  7. Flexible Capital Fund (Vermont)

    Broader source: Energy.gov [DOE]

    The Vermont Sustainable Jobs Fund's Flexible Capital Fund (the “Flex Fund”) is designed for companies in Vermont's rural areas that are smaller and work on a less-than global scale, offering a...

  8. Virtual Center of Excellence for Hydrogen Storage - Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    funded) * Advanced carbon materials (LDRD) - (we propose a support role in the carbon materials virtual center) * Electrochemically active barrier liner for composite storage tanks...

  9. Florida Growth Fund (Florida)

    Broader source: Energy.gov [DOE]

    The Florida Growth Fund can provide investments in technology and growth-related companies through co-investments with other institutional investors. The Fund awards preference to companies...

  10. 2014/2015 CSU Energy Institute Funding Opportunities

    E-Print Network [OSTI]

    Stephens, Graeme L.

    but not limited to: · Biofuels · Smart Grids · Energy Storage · Solar · Wind of the Energy Institute. EI Grant Types I. Discovery Projects a. Description 2014/2015 CSU Energy Institute Funding Opportunities **Due

  11. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30T23:59:59.000Z

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  12. External Research Funding Agreements

    E-Print Network [OSTI]

    Victoria, University of

    1 External Research Funding Agreements University Policy No: RH8200 Classification: Research and university employees under Research Funding Agreements. DEFINITIONS 2.00 Research Funding Agreement means funding provided through an agreement with the university to be used for research purposes, whether

  13. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

  14. Renewable Energy Trust Fund

    Broader source: Energy.gov [DOE]

    The renewable energy fund, known as the Massachusetts Renewable Energy Trust Fund, is supported by a non-bypassable surcharge of $0.0005 per kilowatt-hour (0.5 mill/kWh), imposed on customers of...

  15. Revolving Loan Funds (RLF)

    Broader source: Energy.gov (indexed) [DOE]

    Revolving Loan Funds (RLF) Sam Booth National Renewable Energy laboratory 6 July 2009 Overview Under the American Recovery and Reinvestment Act (ARRA) funding totaling 3.1 B is...

  16. Scholarship Fund (National Forestry

    E-Print Network [OSTI]

    Botea, Adi

    Forestry Scholarship Fund (National Forestry Master's Program (NFMP) The Forestry Scholarship Fund! 2014 Scholarship Offers A degree in forestry is a way of life. Trees, people, habitats, management that you will experience when you chose forestry as a career. #12;TRUSTEE FOR FORESTRY SCHOLARSHIP FUND ABN

  17. Renewing University Base Funding

    E-Print Network [OSTI]

    Renewing University Base Funding The Priority Issues 29 February 2012 e conor funding to universities as an immediate goal. It has already put in place increases worth 3.5%. 2 undergraduate or postgraduate, be funded at the same rate. #12;3 Charles Darwin University Flinders University

  18. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  19. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  20. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

  1. 1 hour, 25 minutes ago Japan will ask the European Union to declare it a "joint host" of a revolutionary nuclear energy project even if the reactor is located in

    E-Print Network [OSTI]

    " of a revolutionary nuclear energy project even if the reactor is located in France, a newspaper said. The Nihon to 'joint host' revolutionary nuclear reactor 6/6/05 8:23 AMPrint Story: Japan to ask EU to 'joint host' revolutionary nuclear reactor on Yahoo! News Page 1 of 1http://news.yahoo.com/s/afp/20050606/sc

  2. Oklahoma Opportunity Fund (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Oklahoma Opportunity Fund was established to promote economic development and related infrastructure development. Eligible applicants are for-profit entities; non-profit entities; and state and...

  3. Enterprise Energy Fund Grants

    Broader source: Energy.gov [DOE]

    '''''Note: This program is fully subscribed and currently is not accepting applications. Check with the program administrator regarding the possibility of future program funding.'''''

  4. Energy Efficiency Fund

    Broader source: Energy.gov [DOE]

    Connecticut's original electric-industry restructuring legislation (Public Act 98-28), enacted in April 1998, created separate funds to support energy efficiency and renewable energy.* The...

  5. Forward Funding Why is Forward Funding useful for project

    E-Print Network [OSTI]

    Mather, Patrick T.

    and administrative risks to the University. Forward funding chartstrings ordinarily will be created when: · allForward Funding - 1 - Why is Forward Funding useful for project management? Forward funding. For continuing year budget segments, forward funding helps ensure (i) the timely management of payroll or other

  6. A review of "Women and the Pamphlet Culture of Revolutionary England, 1640-1660." by Marcus Nevitt,

    E-Print Network [OSTI]

    Skerpan-Wheeler, Elizabeth

    2007-01-01T23:59:59.000Z

    understanding of the revolutionary public sphere and those who shaped it. Rebecca Totaro. Suffering in Paradise: The Bubonic Plague in English Literature from More to Milton. Pittsburgh, PA: Duquesne University Press, 2005. xiv + 242 pp. $58.00. Review... by JOHN GIBBS, TEXAS A&M UNIVERSITY. The actual scope of Rebecca Totaro?s study is significantly less ambitious than the title implies; her more modest major premise is intriguing, however, as she reads early modern English utopian literature exclusively...

  7. Energy Department Announces up to $4 Million for Advanced Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Up to $4 million in fiscal year 2014 funding will be made available for the continued development of advanced hydrogen storage systems and novel materials to provide adequate onboard storage for a wide range of applications including fuel cell ele

  8. ARRA FUNDED ENERGY PROGRAMS

    E-Print Network [OSTI]

    lower energy costs and fossil fuel energy use. Increasing arra funds with private and public sector. The Clean Energy Business Financing loan program is designed to leverage even more private sector funds programs (such as Clean Energy Business and Municipal Financing programs) when developing the federal

  9. AVAILABLE NOW! Biomass Funding

    E-Print Network [OSTI]

    AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

  10. Small Enterprise Growth Fund (Maine)

    Broader source: Energy.gov [DOE]

    The Small Enterprise Growth Fund is a professionally-managed venture capital fund that invests in Maine companies which demonstrate high potential for growth and public benefit. The fund has...

  11. A revolutionary concept to improve the efficiency of ion cyclotron antennas

    SciTech Connect (OSTI)

    Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R., E-mail: riccardo.maggiora@polito.it [Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni (DET), Torino (Italy)

    2014-06-15T23:59:59.000Z

    The successful design of an ion cyclotron (IC) antenna mainly relies on the capability of coupling high power to the plasma (MW), feature that is currently reached by allowing rather high voltages (tens of kV) on the unavoidable unmatched part of the feeding lines. This requirement is often responsible of arcs along the transmission lines and other unwanted phenomena, such as rectification discharges or hotspots, that considerably limit the usage of IC launchers. In this work, we suggest and describe a revolutionary approach based on high impedance surfaces, which allows to increase the antenna radiation efficiency and, hence, to highly reduce the imposed voltages to couple the same level of power to the plasma. High-impedance surfaces are periodic metallic structures (patches) displaced usually on top of a dielectric substrate and grounded by means of vertical posts usually embedded inside a dielectric, in a mushroom-like shape. In terms of working properties, high impedance surfaces are electrically thin in-phase reflectors, i.e., they present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. While the usual design of a high impedance surface requires the presence of a dielectric layer, some alternative solutions can be realised in vacuum, taking advantage of double layers of metallic patches. After an introductory part on the properties of high impedance surfaces, this work documents both their design by means of numerical codes and their implementation on a scaled mock-up.

  12. Funding | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding Funding Investigators who receive support from the PARC should cite the Washington University Energy Frontier Research Center (EFRC) grant in all publications and projects....

  13. Texas Capital Fund (Texas)

    Broader source: Energy.gov [DOE]

    The Texas Capital Fund is designed to promote growth in rural non-entitlement areas, generally defined as cities with less than 50,000 residents or counties with less than 200,000 residents....

  14. Rural Innovation Fund (Kentucky)

    Broader source: Energy.gov [DOE]

    This fund provides capital to early-stage technology companies located in rural areas of Kentucky. Companies may apply for a $30,000 grant or an investment up to $100,000.

  15. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  16. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  17. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.storage ..2013: Global ocean storage of anthropogenic carbon.

  18. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    storage . . . . . . . . . . . . . . . . . . . . . .example system based on log-structured storage 10.1 SystemA storage bottleneck. . . . . . . . . . . . . . . .

  19. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  20. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  1. The Effects of Nanoparticle Augmentation of Nitrate Thermal Storage Materials for Use in Concentrating Solar Power Applications

    E-Print Network [OSTI]

    Betts, Matthew

    2011-08-08T23:59:59.000Z

    The Department of Energy funded a project to determine if the specific heat of thermal energy storage materials could be improved by adding nanoparticles. The standard thermal energy storage materials are molten salts. The chosen molten salt was a...

  2. Funding Opportunity Announcement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    should protect the privacy of customer-sensitive data and the confidentiality of business-sensitive data in transit and in storage. 4. Smart Meters should ensure the integrity,...

  3. Funding Source Agricultural

    E-Print Network [OSTI]

    Arnold, Jonathan

    Funding Source General Research Agricultural Experiment Station Instruction Public Service,145,610$ 3,716,162DEPARTMENT OF AGRICULTURE $ 1,799,873 $ 8,322,303 $ 30,128,910 $ 0$ 85,000$ 2,127 $ 0$ 4,920,977$ 0US DEPARTMENT OF AGRICULTURE / HATCH $ 0 $ 0 $ 4,920,977 $ 15,348,823FOUNDATION

  4. SPONSORED FUNDS ADMINISTRATION

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    of and spending plan for unobligated balance 3. Assurance that all research compliance activities are approved to the sponsor. If you have any questions, please contact Research Development Services (x7-6136) or SponsoredFORM -20 SPONSORED FUNDS ADMINISTRATION DIVISION OF RESEARCH State University of New York

  5. Trinity College Annual Fund

    E-Print Network [OSTI]

    Lasenby, Joan

    Trinity College Annual Fund 2014 #12;How did Trinity influence your future? By introducing Trinity the Trinity in Cambe programme. Working together, we expect Trin and IntoUniversity to make highe education, the likelihood of getting university and attitudes to learning" Trinity has a long history of nurturing

  6. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  7. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  8. Grow Missouri Loan Fund (Missouri)

    Broader source: Energy.gov [DOE]

    The Grow Missouri Loan Fund is open to private companies with fewer than 500 existing employees. One of the key advantages of the program is that the funding can be used as a prior commitment for...

  9. Energy Loan Fund for Schools

    Broader source: Energy.gov [DOE]

    The Oklahoma Department of Commerce has established a loan/lease fund for public and non-profit K-12 schools to improve energy efficiency. Two categories of funding are available for schools to...

  10. Community Development Financial Institutions Fund

    Broader source: Energy.gov [DOE]

    The U.S. Department of Treasury is accepting applications on the Community Development Financial Institutions (CDFI) Fund, which has opened the fiscal year 2015 funding round for the CDFI Program...

  11. Fund Turnover and Investment Performance 

    E-Print Network [OSTI]

    Adams, Andrew T; Lambert, E

    1997-01-01T23:59:59.000Z

    We examine the level of share dealing activity of UK long-term institutional funds and, for UK pension funds, assess the impact of this dealing activity on investment performance. The analysis is carried out using annual ...

  12. Vermont Sustainable Jobs Fund (Vermont)

    Broader source: Energy.gov [DOE]

    The Vermont Sustainable Job Fund offers grants, loans, and technical assistance. VSJF's grant-making depends on the funds it raised and its strategic market development focus. Grant proposals are...

  13. Technology Commercialization Fund - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fund The Technology Commercialization Fund (TCF) is designed to complement angel investment or early stage corporate product development. The fund totaled nearly 14.3 million in...

  14. Funding Opportunity Announcement: Solar Training and Education...

    Energy Savers [EERE]

    Training and Education for Professionals (STEP) Funding Opportunity Announcement: Solar Training and Education for Professionals (STEP) Funding Number: DE-FOA-0001329 Funding...

  15. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  16. FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT

    E-Print Network [OSTI]

    Rock, Chris

    ....................................................................................................10 G. VALUE/FUNDING FOR DOE/NNSA NATIONAL LABORATORY CONTRACTORS AND NON-DOE/NNSA FFRDC CONTRACTORS

  17. Report on all ARRA Funded Technical Work

    SciTech Connect (OSTI)

    None

    2013-10-05T23:59:59.000Z

    The main focus of this American Recovery and Reinvestment Act of 2009 (ARRA) funded project was to design an energy efficient carbon capture and storage (CCS) process using the Recipient?s membrane system for H{sub 2} separation and CO{sub 2} capture. In the ARRA-funded project, the Recipient accelerated development and scale-up of ongoing hydrogen membrane technology research and development (R&D). Specifically, this project focused on accelerating the current R&D work scope of the base program-funded project, involving lab scale tests, detail design of a 250 lb/day H{sub 2} process development unit (PDU), and scale-up of membrane tube and coating manufacturing. This project scope included the site selection and a Front End Engineering Design (FEED) study of a nominally 4 to 10 ton-per-day (TPD) Pre-Commercial Module (PCM) hydrogen separation membrane system. Process models and techno-economic analysis were updated to include studies on integration of this technology into an Integrated Gasification Combined Cycle (IGCC) power generation system with CCS.

  18. Funding collection programs

    SciTech Connect (OSTI)

    Walsh, P.; Pferdehirt, W.; O'Leary, P. (Univ. of Wisconsin, Madison, WI (United States). Solid and Hazardous Waste Education Center)

    1993-10-01T23:59:59.000Z

    In principle, paying for waste management services should be easy. Each person should be responsible for paying for his or her share of waste management costs. The price paid should be based on the most equitable, most environmentally sound, and most efficient management method. Everyone knows that life is not that simple. In the real world, decisions about how to pay for waste management services are based upon a variety of factors, including cost, equity, administrative ease, legal restrictions, legislative policies and mandates, historic precedent, and politics. Communities and service providers need to carefully consider these and other factors in developing and implementing a funding approach. This chapter will describe the issues that communities and service providers must address in developing the best strategy for funding waste and recyclable collection programs.

  19. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01T23:59:59.000Z

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  20. EU bids to force Japan's hand in nuclear haggle Europe is bidding to force Japan's hand in negotiations on a revolutionary nuclear

    E-Print Network [OSTI]

    EU bids to force Japan's hand in nuclear haggle 25/11/2004 Europe is bidding to force Japan's hand in negotiations on a revolutionary nuclear energy project, by pledging to go it alone unless Japan gives over the choice of site, whether Japan or France. "The Commission will try to reach a positive

  1. New Funding from DOE Boosts Carbon Capture and Storage Research...

    Office of Environmental Management (EM)

    and other countries, it's crucial that we develop ways to capture and store carbon pollution," said Secretary Chu. "These technologies will not only give us a healthier planet,...

  2. New Recovery Act Funding Boosts Industrial Carbon Capture and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines | Department ofUniversalDepartmentResearch and

  3. Apply: Small Business Funding Opportunity for Lighting, Integrated Storage,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americasfor aApplicationDepartment ofand

  4. New Recovery Act Funding Boosts Industrial Carbon Capture and Storage

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan -DepartmentDepartmentCyber SecurityDepartmentResearch

  5. Apply: Small Business Funding Opportunity for Lighting, Integrated Storage,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department of Energy | DecemberCommoditiesLLC |U.SReport | DepartmentReportand

  6. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  7. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  8. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  9. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  10. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  11. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    Stasis: Flexible Transactional Storage by Russell C. Sears AR. Larson Fall 2009 Stasis: Flexible Transactional StorageC. Sears Abstract Stasis: Flexible Transactional Storage by

  12. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J. [comps.

    1995-12-31T23:59:59.000Z

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  13. Funding for IGPPS Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities High EnergyFunding for

  14. Storage Rings

    SciTech Connect (OSTI)

    Fischer, W.

    2011-01-01T23:59:59.000Z

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10{sup -6} eV to 3.5 x 10{sup 12} eV (LHC, 7 x 10{sup 12} eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams. Storage rings have instrumentation to monitor the electrical and mechanical systems, and the beam quality. Computers are used to control the operation. Large storage rings have millions of control points from all systems. The time dependent beam intensity I(t) can often be approximated by an exponential function I(t) = I(0) exp(-t/{tau}) (1) where the decay time {tau} and, correspondingly, the store time ranges from a few turns to 10 days (ISR). {tau} can be dominated by a variety of effects including lattice nonlinearities, beam-beam, space charge, intrabeam and Touschek scattering, interaction with the residual gas or target, or the lifetime of the stored particle. In this case, the beam lifetime measurement itself can be the purpose of a storage ring experiment. The main consideration in the design of a storage ring is the preservation of the beam quality over the store length. The beam size and momentum spread can be reduced through cooling, often leading to an increase in the store time. For long store times vacuum considerations are important since the interaction rate of the stored particles with the residual gas molecules is proportional to the pressure, and an ultra-high vacuum system may be needed. Distributed pumping with warm activated NEG surfaces or cold surfaces in machines with superconducting magnets are ways to provide large pumping speeds and achieve low pressures even under conditions with dynamic gas loads. The largest application of storage rings today are synchrotron light sources, of which about 50 exist world wide. In experiments where the beam collides with an internal target or another beam, a storage ring allows to re-use the accelerated beam many times if the interaction with the target is sufficiently small. In hadron collider and ion storage rings store times of many hours or even days are realized, corresponding to up to 1011 turns and thereby target passages. Ref. [3] is the first proposal for a collider storage ring. A number of storage rings exist where the beam itself or its decay products are the object of s

  15. Cool Storage Performance

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    . This article covers three thermal storage topics. The first section catalogs various thermal storage systems and applications. Included are: load shifting and load leveling, chilled water storage systems, and ice storage systems using Refrigerant 22 or ethylene...

  16. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

  17. Financial Assistance Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    Funding Opportunity Announcement (FOA) for the initial Weatherization Innovation Pilot Program grant, issued in April 2010 and closed in June 2010.

  18. Renewable Energy Resources Trust Fund

    Broader source: Energy.gov [DOE]

    Illinois's 1997 electric-industry restructuring legislation created separate public benefits funds that support renewable energy and residential [http://www.dsireusa.org/library/includes/incentive2...

  19. Clean Energy Development Fund (CEDF)

    Broader source: Energy.gov [DOE]

    NOTE: The Vermont Clean Energy Development Fund has issued its Five Year Strategic Plan. See the web site for details.

  20. Energy Efficiency Investment Fund Rebates

    Broader source: Energy.gov [DOE]

    Specific efficiency requirements for rebates are available at  the Energy Efficiency Investment Fund Website in applications for Lighting and Lighting Control Rebates, Natural Gas and Water Heati...

  1. Economic Development Fund (New York)

    Broader source: Energy.gov [DOE]

    Empire State Development operates the Economic Development Fund, which offers financial assistance to businesses that create or retain business activity and jobs. The program can provide financing...

  2. Go Green Fund (Saskatchewan, Canada)

    Broader source: Energy.gov [DOE]

    The Go Green Fund is a financial commitment from the Government of Saskatchewan to assist Saskatchewan's people, communities, non-government organizations and businesses address the province's most...

  3. Industrial Development Fund (North Carolina)

    Broader source: Energy.gov [DOE]

    The Industrial Development Fund provides financing grants and loans through designated municipalities and counties to assist in infrastructure improvements for targeted industrial projects. The...

  4. Solar energy storage researchers information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01T23:59:59.000Z

    The results of a series of telephone interviews with groups of users of information on solar energy storage are described. In the current study only high-priority groups were examined. Results from 2 groups of researchers are analyzed: DOE-Funded Researchers and Non-DOE-Funded Researchers. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  5. Storage System and IBM System Storage

    E-Print Network [OSTI]

    IBM® XIV® Storage System and IBM System Storage® SAN Volume Controller deliver high performance and smart management for SAP® landscapes IBM SAP International Competence Center #12;"The combination of the XIV Storage System and SAN Volume Controller gives us a smarter way to manage our storage. If we need

  6. NON-UNIVERSITY FUNDING A non-University funding request is defined as any funds requested from an organization, business,

    E-Print Network [OSTI]

    Stuart, Steven J.

    NON-UNIVERSITY FUNDING A non-University funding request is defined as any funds requested from@clemson.edu. Procedures 1. Recognized student organizations seeking non-university funding of more than $1 reflects the proper funds. All University and state spending guidelines must be followed. The Annual Giving

  7. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  8. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  9. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  10. DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide storage in geologic formations.

  11. Third Generation Flywheels for electric storage

    SciTech Connect (OSTI)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29T23:59:59.000Z

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

  12. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

  13. Revolutionary nuclear plant still on the cards. 01/02/2005. ABC News Online [This is the print version of story ]http://www.abc.net.au/news/newsitems/200502/s1293834.htm

    E-Print Network [OSTI]

    ABC Online Revolutionary nuclear plant still on the cards. 01/02/2005. ABC News Online [This, 2005. 8:48pm (AEDT)Last Update: Revolutionary nuclear plant still on the cards Japan says negotiations://abc.net.au/privacy.htm 2/1/05 7:58 AMRevolutionary nuclear plant still on the cards. 01/02/2005. ABC News Online Page 1

  14. The Limits of Hedge Fund Activism

    E-Print Network [OSTI]

    Thompson, Robert

    2006-01-01T23:59:59.000Z

    is the most Robert B. Thompson & Randall S. Thomas, The NewFund Activism Robert B. Thompson New York Alumni Chancellor’Fund Activism Robert B. Thompson ? Hedge funds dominate

  15. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration, Infrastructure Security, News,...

  16. Sandia National Laboratories: hydrogen storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    storage Energy Department Awards 7M to Advance Hydrogen Storage Systems On June 12, 2014, in CRF, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

  17. Renewable Energy Jobs Fund (Manitoba, Canada)

    Broader source: Energy.gov [DOE]

    To maximize the economic benefits of hydro investment and other renewable energy projects, Manitoba is establishing a new Energy Jobs Fund. The fund will assist companies manufacturing equipment...

  18. Funding Opportunity Announcement: CSP: Concentrating Optics for...

    Broader source: Energy.gov (indexed) [DOE]

    the 2012 SunShot CSP Research and Development funding program, the CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS) funding program seeks to further CSP...

  19. Department of Energy Issues Funding Opportunity Announcements...

    Energy Savers [EERE]

    Funding Opportunity Announcements to Enhance Nuclear Energy Education Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education March 24,...

  20. Funding Opportunity Announcement: Recovery Act ? Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In the event funds are not obligatedcommitted within eighteen (18) months, DOE reserves the right to deobligate the funds and cancel the award. PROGRAM PRINCIPLES DOE has...

  1. City of Columbus- Green Columbus Fund

    Broader source: Energy.gov [DOE]

    The Green Columbus Fund incentivizes sustainable development and redevelopment in Columbus, Ohio. The Fund reimburses private and non-profit developers the application fee for the Green Building...

  2. Webinar: Systems Performance Advancement II Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Systems Performance Advancement II Funding Opportunity Announcement Webinar: Systems Performance Advancement II Funding Opportunity Announcement January 22, 2015 2:00PM to...

  3. Photon Storage Cavities

    E-Print Network [OSTI]

    Kim, K.-J.

    2008-01-01T23:59:59.000Z

    Sessler, "Analysis of Photon Storage Cavities for a Free-configuration of coupled storage cavity and PEL cavity. TheFig. 2. A ring resonator storage cavity coupled through a

  4. Seasonal thermal energy storage

    SciTech Connect (OSTI)

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01T23:59:59.000Z

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  5. Voluntary Solar Resource Development Fund

    Broader source: Energy.gov [DOE]

    The fund will be used to provide loans for residential, commercial, or nonprofit solar energy projects. Qualifying solar energy projects cannot be acquired, installed or operating before July 1, ...

  6. Recovery Act Funds at Work

    Broader source: Energy.gov [DOE]

    Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Here are case studies from a variety of Recovery Act programs.

  7. Economic Development Loan Fund (Virginia)

    Broader source: Energy.gov [DOE]

    The Economic Development Loan Fund helps to fill the financing gap between private debt financing and private equity. Up to $1 million is available for each project and can be used for the...

  8. Big Sky Trust Fund (Montana)

    Broader source: Energy.gov [DOE]

    The Big Sky Trust Fund reimburses expenses incurred in the purchase, leasing, or relocation of real assets for direct use of the assisted business or employee training costs. A local or tribal...

  9. Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids

    SciTech Connect (OSTI)

    None

    2011-02-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

  10. Storage and IO Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burst Buffer User Defined Images Archive Home R & D Storage and IO Technologies Storage and IO Technologies Burst Buffer NVRAM and Burst Buffer Use Cases In collaboration...

  11. NERSC HPSS Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting IO Resources for Scientific Applications at NERSC Optimizing IO performance on the Lustre file...

  12. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

  13. Repository of NSF Funded Publications and Data Sets: "Back of Envelope" 15 year Cost Estimate

    E-Print Network [OSTI]

    Plale, Beth

    Repository of NSF Funded Publications and Data Sets: "Back of Envelope" 15 year Cost and variable costs of setting up and running a data repository (or database) to store and serve for rapid access, and tape for high reliability and cost efficient long-term storage. Data are ingested

  14. University of Utah PETTY CASH FUND

    E-Print Network [OSTI]

    University of Utah PETTY CASH FUND REQUEST/CHANGE FORM INSTRUCTIONS: To request a creation of a NEW-21 of the University Policy and Procedures Manual, and hereby approve issuance of a petty cash fund to the above named PETTY CASH FUND, complete sections 1, 2, & 4 below. To MAKE CHANGES to an existing petty cash fund

  15. University of Pittsburgh Residual Funds on

    E-Print Network [OSTI]

    Sibille, Etienne

    University of Pittsburgh Residual Funds on FINANCIAL GUIDELINE Subject: Sponsored Projects I by the sponsor. Funds cannot be unilaterally retained by the University. Failure to return residual funds related funds on sponsored grants and contracts on the financial accounting records of the University

  16. OLD DOMINION UNIVERSITY IJIU FACULTY CONFERENCE FUNDS

    E-Print Network [OSTI]

    OLD DOMINION UNIVERSITY IJIU FACULTY CONFERENCE FUNDS The Institute for Jewish Studies and Interfaith Understanding announces the availability of funds to assist full-time faculty in defraying and lay the foundations for possible future endowed support of faculty research endeavors. FUNDING Funds

  17. NREL Energy Storage Projects: FY2013 Annual Report

    SciTech Connect (OSTI)

    Pesaran, A.; Ban, C.; Brooker, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Long, D.; Neubauer, J.; Santhanagopalan, S.; Smith, K.; Tenent, R.; Wood, E.; Han, T.; Hartridge, S.; Shaffer, C. E.

    2014-07-01T23:59:59.000Z

    In FY13, DOE funded NREL to make technical contributions to various R&D activities. This report summarizes NREL's R&D projects in FY13 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY13 projects under NREL's Energy Storage R&D program are discussed in depth in this report.

  18. Underground Energy Storage Program: 1981 annual report. Volume I. Progress summary

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1982-06-01T23:59:59.000Z

    This is the 1981 annual report for the Underground Energy Storage Program administered by the Pacific Northwest Laboratory for the US Department of Energy. The two-volume document describes all of the major research funded under this program during the period March 1981 to March 1982. Volume I summarizes the activities and notable progress toward program objectives in both Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). Major changes in program emphasis and structure are also documented.

  19. High temperature storage loop : final design report.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.

    2013-07-01T23:59:59.000Z

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650%C2%B0C) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOE's SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  20. Distributed storage with communication costs

    E-Print Network [OSTI]

    Armstrong, Craig Kenneth

    2011-01-01T23:59:59.000Z

    5 Introduction to Coding for Distributed Storage The Repairflow graph for 1 repair with varying storage capac- itythe Capacity of Storage Nodes . . . 4.1 Characterizing

  1. Storage Space Request Aurora Facility

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Storage Space Request Aurora Facility (1855 Marika) Department and Division: _______________________________________________________ Storage Contact: ____________________________________________________________ Name Phone and fax Fiscal Footage required: ______________ Brief Description of storage items

  2. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage The challenge of creating new advanced batteries and energy storage technologies is one of Argonne's key initiatives. By creating a multidisciplinary...

  3. Sandia National Laboratories: Energy Storage Multimedia Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

  4. Model NOx storage systems: Storage capacity and thermal aging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3NiAl(100). Model NOx storage systems: Storage capacity and thermal aging of BaOtheta- Al2O3...

  5. Storage Ring Operation Modes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in...

  6. Underground Storage Tank Regulations

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

  7. Cool Storage Performance 

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

  8. Safe Home Food Storage

    E-Print Network [OSTI]

    Van Laanen, Peggy

    2002-08-22T23:59:59.000Z

    Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

  9. Public Project Revolving Fund (PPRF) (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Finance Authority’s Public Project Revolving Fund (PPRF) funds infrastructure and capital equipment projects with low-cost and low-interest rate loans.  The key characteristics of...

  10. One North Carolina Fund (North Carolina)

    Broader source: Energy.gov [DOE]

    The One North Carolina Fund, directed by the Commerce Finance Center, helps recruit and expand jobs in high-value industries deemed vital to the state. State appropriations replenish the Fund and...

  11. Recovery Act-Funded Working Fluid Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into working fluid technologies and applications. Projects funded by the...

  12. Recovery Act-Funded Water Heating Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into water heating technologies and applications. Projects funded by the...

  13. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01T23:59:59.000Z

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  14. Funding Opportunities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Funding Opportunities Bioimaging Technology Bioimaging Technology Home About Research Funding Opportunities Contact BER Home Funding Opportunities Print Text Size: A A A...

  15. FOREST CENTRE STORAGE BUILDING

    E-Print Network [OSTI]

    deYoung, Brad

    FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

  16. Getting Started Advanced Search for Funding Opportunities

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    Getting Started Advanced Search for Funding Opportunities For Assistance Delete Criteria to Update Search Funding ­ Finding Additional Sources Saving and Printing SPIN Search Results Past funding opportunities can be searched in InfoEd to: · find opportunities that were added prior to your account set

  17. Sustainable Energy Revolving Loan Fund CLOSEOUT FORM

    E-Print Network [OSTI]

    Escher, Christine

    Sustainable Energy Revolving Loan Fund CLOSEOUT FORM I. Project Information 1. Project Title 2. By signing Section V below, the OSU Student Sustainability Initiative accepts the Applicant's assertion No Other funding sources. Provide source name, fund, or index number. Exclude possible Energy Trust

  18. QUEEN'S UNIVERSITY BELFAST Student Support Fund Framework

    E-Print Network [OSTI]

    Paxton, Anthony T.

    that it continues to comply with best practice and the Department for Employment and Learning (NI) Support Funds of awards made will be dependent upon a number of factors including demand made on the fund each year shortfall, being claimed, is unexpected. 3. Roles and Responsibilities 3.1 There is a Student Support Fund

  19. DOROTHY EVANS LYNE FUND REQUEST FOR PROPOSALS

    E-Print Network [OSTI]

    Niebur, Ernst

    designed to improve patient care and outcomes, providing evidence to validate clinical practice and/or examine effectiveness of clinical care delivery systems. The fund will be administered by The Johns of Nursing. Goals: · To provide funding for teams of nurses to explore clinical questions · To fund pilot

  20. Program development fund: FY 1987

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    It is the objective of the Fund to encourage innovative research to maintain the Laboratory's position at the forefront of science. Funds are used to explore new ideas and concepts that may potentially develop into new directions of research for the Laboratory and that are consistent with the major needs, overall goals, and mission of the Laboratory and the DOE. The types of projects eligible for support from PDF include: work in forefront areas of science and technology for the primary purpose of enriching Laboratory research and development capabilities; advanced study of new hypotheses, new experimental concepts, or innovative approaches to energy problems; experiments directed toward ''proof of principle'' or early determination of the utility of a new concept; and conception, design analyses, and development of experimental devices, instruments, or components. This report is a review of these research programs.

  1. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure Security, Materials...

  2. Groundwater and Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  3. SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014 OBJECTIVES: The SUNY Technology Accelerator Fund ("TAF") provides funding to support the advancement of SUNY technologies from the lab to the marketplace. In many cases, SUNY technology developed

  4. Storage : DAS / SAN / NAS Dploiement

    E-Print Network [OSTI]

    Collette. Sébastien

    CH8 Divers Agenda · Storage : DAS / SAN / NAS · Déploiement · VLAN ­ 802.1Q · Gestion d · Sécurisation de Windows · Sécurisation de UNIX · Qu'est-ce que... ­ Firewall, VPN, IDS/IPS, PKI Storage : DAS, NAS, SAN #12;Storage : DAS, NAS, SAN · Direct Attached Storage · Network Attached Storage · Storage

  5. Storage Ring Revised March 1994

    E-Print Network [OSTI]

    Brookhaven National Laboratory - Experiment 821

    Chapter 8. Storage Ring Revised March 1994 8.1. Introduction -- 107 -- #12; 108 Storage Ring 8.2. Magnetic Design and Field Calculations 8.2.1. Conceptual Approach #12; Storage Ring 109 #12; 110 Storage Ring 8.2.2. Computer Aided Refined Pole Designs #12; Storage Ring 111 #12; 112 Storage Ring #12

  6. Upcoming Funding Opportunity for Marine and Hydrokinetic Development...

    Energy Savers [EERE]

    Upcoming Funding Opportunity for Marine and Hydrokinetic Development University Consortium Upcoming Funding Opportunity for Marine and Hydrokinetic Development University...

  7. University of Florida Change, Petty Cash, and Research Stipend Funds

    E-Print Network [OSTI]

    Watson, Craig A.

    University of Florida Change, Petty Cash, and Research Stipend Funds Change to Existing Fund EXISTING FUND INFORMATION CHANGES TO FUND Complete all areas that are applicable for your fund request. CHANGE IN FUND LOCATION CHANGE IN CUSTODIANSHIP New Custodian InformationExisting Custodian Information

  8. WINDExchange: Funding School Wind Projects

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 m 01-APR-2011 2.1.1Funding

  9. Interactions Between Energy Efficiecy Programs Funded Under Recover Act and Utility Customer-funded Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Interactions Between Energy Efficiecy Programs Funded Under Recover Act and Utility Customer-funded Energy Efficiency Programs Webinar.

  10. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  11. EA-1831: Phase II ICCS Initiative Funding Award for Calera Corporation, Moss Landing, California

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal to provide American Recovery and Reinvestment Act funds for a project that would receive flue gas from the gas-fired Moss Landing, CA power plant and capture CO2 for permanent storage in a cementitious substitute material and process useless byproducts into useable chemicals. NOTE: This EA has been cancelled. NEPA coverage for this project is now a CX as of 9/17/2012.

  12. Energy Storage Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers HEV & PHEV Technology Roadmaps R&D Timeline Overview 3 Develop electrochemical energy storage technologies which support the commercialization of hybrid and electric...

  13. Culex quinquefasciatus Storage Proteins

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    and hemolymph proteins of Cx. quinquefasciatus . A and B:of typical storage proteins in Cx. quinquefasciatus.Fourth-instar Cx. quinquefasciatus larvae and early pupae

  14. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

  15. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

  16. Secondary Storage Management Himanshu Gupta

    E-Print Network [OSTI]

    Gupta, Himanshu

    Secondary Storage Management Himanshu Gupta Storage­1 #12;Outline · Memory Hierarchy · Disk Records/Fields · Deletions and Insertions of Records Himanshu Gupta Storage­2 #12;Himanshu Gupta Storage­3 Memory Hierarchy Cache (1 MB; 1-5 nsec) Main Memory (GBs; 10-100 nsec) Secondary Storage

  17. Optimal Storage Allocation for Serial

    E-Print Network [OSTI]

    Yechiali, Uri

    Optimal Storage Allocation for Serial Haim Mendelson, Joseph S. Pliskin, and Uri Yechiali Tel Aviv reside on a direct-access storage device in which storage space is limited. Records are added allocating storage space to the files. Key Words and Phrases: serial files, storage allocation

  18. Finance 101 Student Organization Funding Workshop

    E-Print Network [OSTI]

    Finance 101 Student Organization Funding Workshop #12;Finance Committee Mission Statement successful events Finance Committee Goals 2012-2013 2 #12;ASI Budget Allowance 5% Business & Administration

  19. Energy Revolving Loan Fund- Public Entities

    Broader source: Energy.gov [DOE]

    '''''Note: Michigan Economic Development Corporation is not currently accepting applications for this loan fund. Check the program web site for future solicitations. '''''

  20. Renewable Energy Facilities Revolving Loan Fund (Delaware)

    Broader source: Energy.gov [DOE]

    Renewable Energy Facilities Revolving Loan Fund provides loans at market to below-market interest rates to businesses that cannot otherwise obtain capital, provided that those businesses will...

  1. DEMEC - Green Energy Fund | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delaware Department of Natural Resources and Environmental Control '''''Note: The Green Energy Fund regulations are currently under revision to improve program function and...

  2. The Limits of Hedge Fund Activism

    E-Print Network [OSTI]

    Thompson, Robert

    2006-01-01T23:59:59.000Z

    extent that there economic incentives, as distinguished fromface different economic incentives than do traditionalthis backdrop, the economic incentives of hedge funds as

  3. Missouri Agribusiness Revolving Loan Fund (Missouri)

    Broader source: Energy.gov [DOE]

    The Missouri Agricultural and Small Business Development Authority’s (MASBDA) Missouri Agribusiness Revolving Loan Fund offers financing to value-added agriculture enterprises, agriculture support...

  4. Nova Scotia Jobs Fund (Nova Scotia, Canada)

    Broader source: Energy.gov [DOE]

    The Nova Scotia Jobs Fund pursues investment opportunities for assisting communities in transition, supporting industry sectors, offering regional support, assisting small businesses programs, and...

  5. High Penetration Solar Deployment Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed...

  6. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Environmental Management (EM)

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  7. Sandia National Laboratories: implement energy storage projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    implement energy storage projects Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration,...

  8. Sandia National Laboratories: Stationary Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageStationary Energy Storage Stationary Energy Storage The 1 MW Energy Storage Test Pad integrated with renewable energy generation at Sandia's Distributed Energy Technology...

  9. Sandia National Laboratories: Batteries & Energy Storage Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

  10. Sandia National Laboratories: evaluate energy storage opportunity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage opportunity Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration,...

  11. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    The Legalization of Ground Water Storage," Water Resourcesprocedure to above ground storage of heat in huge insulatedthis project is heat storage in ground-water regions storage

  12. Sandia Energy - Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Test Pad (ESTP) Home Energy Permalink Gallery Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Energy, Energy Storage, Energy Storage Systems, Energy...

  13. Ideum awarded Venture Acceleration Funds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER Subscribe to

  14. Energy storage capacitors

    SciTech Connect (OSTI)

    Sarjeant, W.J.

    1984-01-01T23:59:59.000Z

    The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

  15. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  16. Decreased Funding Reduces Orders Timeline Citing the impact of reduced funding, Navy

    E-Print Network [OSTI]

    Decreased Funding Reduces Orders Timeline Citing the impact of reduced funding, Navy announced Feb that allows for continuous normal operations while a final budget is approved. Navy Personnel Command the orders are released. Navy has utilized this prioritization strategy in previous PCS funding

  17. Green Fund Proposal Guidelines March 15, 2010 UNBC GREEN FUND PROPOSAL GUIDELINES

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Green Fund Proposal Guidelines March 15, 2010 UNBC GREEN FUND PROPOSAL GUIDELINES In order to advance the overall sustainability of UNBC as an institution a "UNBC Green Fund" has been created from UNBC parking revenues. Green research and project proposals will be accepted by the Green University

  18. Green Fund Proposal Guidelines September 15, 2010 UNBC GREEN FUND PROPOSAL GUIDELINES

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Green Fund Proposal Guidelines September 15, 2010 UNBC GREEN FUND PROPOSAL GUIDELINES In order to advance the overall sustainability of UNBC as an institution a "UNBC Green Fund" has been created from UNBC parking revenues. Green research and project proposals will be accepted by the Green University

  19. Green Fund Proposal Guidelines August 10, 2012 UNBC GREEN FUND PROPOSAL GUIDELINES

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Green Fund Proposal Guidelines August 10, 2012 UNBC GREEN FUND PROPOSAL GUIDELINES In order to advance the overall sustainability of UNBC as an institution a "UNBC Green Fund" has been created from UNBC parking revenues. Green research and project proposals are accepted by the Green University

  20. Guidelines for Student Projects Fund Application What is the Student Projects Fund?

    E-Print Network [OSTI]

    Banaji,. Murad

    /departments/faculties/schools around the University and in Kent Union, for funding to support student focussed projects and activities that meet the following criteria will be considered for funding: Support one or more of the University is funded by donations from alumni and friends of the University

  1. PARTNERSHIP PROFILE: THE GLOBAL FUND | 1 About the Global Fund to Fight AIDS,

    E-Print Network [OSTI]

    Klein, Ophir

    largest source of funding for malaria control, accounting for an estimated 50% of total international model. A key element of this process is its strategy for 2012­2016, called Investing for Impact, adopted a Consolidated Transformation Plan which sought to move the Global Fund from a past focus on emergency funding

  2. Application pack for funding commencing in 2012

    E-Print Network [OSTI]

    Kheifets, Anatoli

    Application pack for funding commencing in 2012 GROUP OF EIGHT AUSTRALIA­GERMANY JOINT RESEARCH COOPERATION SCHEME #12;PAGE 2 OF 9GROUP OF EIGHT AUSTRALIA­GERMANY JOINT RESEARCH COOPERATION SCHEME © GROUP OF EIGHT Application pack for funding commencing in 2012 ABOUT THE GROUP OF EIGHT AUSTRALIA­GERMANY JOINT

  3. The Connaught Fund Terms of Reference

    E-Print Network [OSTI]

    Sun, Yu

    website or other means, on the following: the capital value of the Fund, the income earned by the Fund expertise and resources of the University to matters of public interest in all research fields. Management Laboratories and sold to the Metropolitan Toronto and Region Conservation Authority. 4. The interest earnings

  4. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Aspiring...

  5. Improving energy storage devices | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage devices Improving energy storage devices Released: April 15, 2014 Lithium-sulfur batteries last longer with nanomaterial-packed cathode A new PNNL-developed...

  6. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture & Storage, Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Storage, Facilities, Livermore Valley Open Campus (LVOC), Materials Science, News,...

  7. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Facilities, Grid Integration,...

  8. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  9. University of Florida Change, Petty Cash, and Research Stipend Funds

    E-Print Network [OSTI]

    Watson, Craig A.

    University of Florida Change, Petty Cash, and Research Stipend Funds New Fund Information for the stewardship of the University's cash and investments, including research stipend funds. We need assurance - Research Stipend Fund Department Name Fund Amount ($) Note to Custodian: Treasury Management is responsible

  10. University of Florida Change, Petty Cash, and Research Stipend Funds

    E-Print Network [OSTI]

    Watson, Craig A.

    University of Florida Change, Petty Cash, and Research Stipend Funds New Fund Information - Petty for the stewardship of the University's cash and investments, including petty cash funds. We need assurance Cash Fund Department Name Fund Amount ($) Note to Custodian: Treasury Management is responsible

  11. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect (OSTI)

    Yakovleva, Marina

    2012-12-31T23:59:59.000Z

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  12. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  13. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  14. FY2011 Annual Report for NREL Energy Storage Projects

    SciTech Connect (OSTI)

    Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

    2012-04-01T23:59:59.000Z

    This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

  15. Storage Exchange: A Global Trading Platform for Storage Services

    E-Print Network [OSTI]

    Melbourne, University of

    Storage Exchange: A Global Trading Platform for Storage Services Martin Placek and Rajkumar Buyya,raj}@csse.unimelb.edu.au Abstract. The Storage Exchange (SX) is a new platform allowing stor- age to be treated as a tradeable resource. Organisations with varying storage requirements can use the SX platform to trade and exchange

  16. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage

    E-Print Network [OSTI]

    Minnesota, University of

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim are witnessing a revival of Storage Service Providers (SSP) in the form of new vendors as well as traditional players. While storage outsourcing is cost-effective, many companies are hesitating to outsource

  17. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Encrgy Storage Plant" , EPRI Report EM-3457, April 1984. [4521st century. REFERENCES The EPRI Regional Systems preparedby J. J. Mulvaney, EPRI Report EPRI P-19S0SR, (1981). [2J O.

  18. Marketing Cool Storage Technology 

    E-Print Network [OSTI]

    McCannon, L.

    1987-01-01T23:59:59.000Z

    in the field. The International Thermal Storage Advisory Council was formed to help meet this perceived need. This paper will review activities of EPRI and ITSAC to achieve widespread acceptance of the technology....

  19. Hydrogen storage compositions

    SciTech Connect (OSTI)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  20. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19T23:59:59.000Z

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  1. APS Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010 This document list the...

  2. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    He and Bowei Du implemented Oasys, and helped with my firstwas built on top of a C++ object persistence library, Oasys.Oasys uses plug-in storage modules that implement persistent

  3. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  4. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    World's First 290 MW Gas Turbine Air Storage Peaking Plant",hydro e lectric plants and gas turbines, are less effectedelectricity. For a gas turbine the conversion efficiency may

  5. Storage Tanks (Arkansas)

    Broader source: Energy.gov [DOE]

    The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters...

  6. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05T23:59:59.000Z

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  7. Energy Storage 101

    Broader source: Energy.gov (indexed) [DOE]

    the storage of heat or cold between opposing seasons in deep aquifers or bedrock. A wind-up clock stores potential energy, in this case mechanical, in the spring tension. ...

  8. How Active is Your Real Estate Fund Manager?

    E-Print Network [OSTI]

    Cremers, Martijn; Lizieri, Colin

    2015-01-01T23:59:59.000Z

    . These funds do not seem to take increased risk and their outperformance cannot be explained by fund size alone, though on average they are smaller funds. This paper was sponsored by Aberdeen Asset Management PLC and was independently written...

  9. Storage management solutions Buyer's guide: purchasing criteria

    E-Print Network [OSTI]

    Storage management solutions Buyer's guide: purchasing criteria Manage your storage to meet service storage environment cohesively As new guidelines or regulations surface, storage administrators receive increasing numbers of requests for change (RFCs) in storage provisioning. Simultaneously, routine changes

  10. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program defines a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  11. Storage In C Matt Bishop

    E-Print Network [OSTI]

    Bishop, Matt

    Storage In C Matt Bishop Research Institute for Advanced Computer Science NASA Ames Research Center. Intimately bound with the idea of scope is that of storage. When a program deÞnes a variable, the compiler storage (such as on a stack) or as more permanent storage (in data space.) Recall that the format of a C

  12. Revolving Loan Funds (RLF) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFund Webinars Revolving Loan FundFunds

  13. Funding Opportunity Announcement: Concentrating Solar Power:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the plant, including solar collectors, receivers and heat transfer fluids, thermal energy storage, power cycles, as well as operations and maintenance. The total federal...

  14. Illiquidity Premia in Asset Returns: An Empirical Analysis of Hedge Funds, Mutual Funds, and US Equity Portfolios

    E-Print Network [OSTI]

    Lo, Andrew W.

    We establish a link between illiquidity and positive autocorrelation in asset returns among a sample of hedge funds, mutual funds, and various equity portfolios. For hedge funds, this link can be confirmed by comparing the ...

  15. Recovery Act, Office of the Biomass Program,Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special...

  16. Energy Efficiency Fund (Electric)- Home Energy Solutions and Performance Programs

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Fund, funded by Connecticut's public benefits charge, provides home energy efficiency rebate programs to customers of The Connecticut Light and Power Company, The United...

  17. Energy Secretary Chu Announces $384 Million in Recovery Act Funding...

    Energy Savers [EERE]

    384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico Energy Secretary Chu Announces 384 Million in Recovery Act Funding for Environmental Cleanup in New...

  18. Request for Information Regarding a Proposed Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regarding a Proposed Funding Opportunity for Administration of the Wave Energy Converter Prize Request for Information Regarding a Proposed Funding Opportunity for Administration...

  19. aises scholarship fund: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can do Glasgow, University of 7 Dan Dipert Family Fund Scholarship for Honors Nursing Students Engineering Websites Summary: Dan Dipert Family Fund Scholarship for Honors...

  20. averts agency funds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space-robotic systems, next-generation life support and autonomous landing, the Johnson Innovation Fund 437 Scientific Productivity, Research Funding, Race and Ethnicity...

  1. Vehicle Technologies Office Announces $14 M in Funding for Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces 14 M in Funding for Innovative Technologies Vehicle Technologies Office Announces 14 M in Funding for Innovative Technologies January 16, 2015 - 4:26pm Addthis The...

  2. Data Collection Requirements for the Federal Funding Accounting...

    Office of Environmental Management (EM)

    Data Collection Requirements for the Federal Funding Accounting and Transparency Act (FFATA) of 2006 Data Collection Requirements for the Federal Funding Accounting and...

  3. Apply: Funding Opportunity - Advancing Solutions to Improve Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency...

  4. Funding Opportunity Announcement: Solar Bankability Data to Advance...

    Energy Savers [EERE]

    Data to Advance Transactions and Access (SB-DATA) Funding Opportunity Announcement: Solar Bankability Data to Advance Transactions and Access (SB-DATA) Funding Number:...

  5. Robust Investment Management with Uncertainty in Fund Managers ...

    E-Print Network [OSTI]

    2014-12-12T23:59:59.000Z

    set of fund managers, whose asset class allocations are not precisely known to the ... Institutional investors, such as pension funds, university endowments and ...

  6. President Obama Announces Over $467 Million in Recovery Act Funding...

    Office of Environmental Management (EM)

    Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar...

  7. President Obama Announces Over $467 Million in Recovery Act Funding...

    Energy Savers [EERE]

    President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for...

  8. Solar Powering America by Recognizing Communities Funding Opportunity...

    Energy Savers [EERE]

    Solar Powering America by Recognizing Communities Funding Opportunity Solar Powering America by Recognizing Communities Funding Opportunity March 5, 2015 5:00PM EST U.S. Department...

  9. Credit Enhancements and Capital Markets to Fund Solar Deployment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Credit Enhancements and Capital Markets to Fund Solar Deployment: Leveraging Public Funds to Open Private Sector Investment Michael Mendelsohn and Marley Urdanick National...

  10. Amendment to Funding Opportunity Announcement, DE-FOA-0000522...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amendment to Funding Opportunity Announcement, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Amendment to Funding Opportunity...

  11. Energy Department Announces Funding to Provide Better Visibility...

    Office of Environmental Management (EM)

    Announces Funding to Provide Better Visibility into the Health of the Nation's Electric Grid Energy Department Announces Funding to Provide Better Visibility into the Health of the...

  12. SBIR/STTR Release 2 Funding Opportunity Deadline December 15...

    Office of Environmental Management (EM)

    Funding Opportunity Deadline December 15-Includes Hydrogen and Fuel Cells SBIRSTTR Release 2 Funding Opportunity Deadline December 15-Includes Hydrogen and Fuel Cells December 8,...

  13. DOE Issues Funding Opportunity for Innovations to Increase Cybersecuri...

    Office of Environmental Management (EM)

    Funding Opportunity for Innovations to Increase Cybersecurity for Energy Delivery Systems DOE Issues Funding Opportunity for Innovations to Increase Cybersecurity for Energy...

  14. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

  15. Storage and Infrastructure

    E-Print Network [OSTI]

    Madey, Gregory R.

    Data Driven Discovery Data Driven Science Research Opportunities & Challenges Examples / Funding Statistics Data Mining Machine Learning DataBase Queries Data Visualization http://bio.informatics.indiana.edu/VLDB07/ #12;Data Driven Science Engineering Astrophysics High Energy Physics Bioinformatics Chem

  16. The Williams Parents Fund Committee thanks these

    E-Print Network [OSTI]

    Stoiciu, Mihai

    indicate Parents Fund Committee members PURPLE MOUNTAIN ASSOCIATION David Bartsch & Joan Haffenreffer Bartsch Dr. & Mrs. Richard Berk Mr. & Mrs. Paul C. Bishop Mr. & Mrs. L. Price Blackford Mr. Thomas Bliska

  17. Can hedge funds time market liquidity?

    E-Print Network [OSTI]

    Cao, Charles

    We explore a new dimension of fund managers' timing ability by examining whether they can time market liquidity through adjusting their portfolios' market exposure as aggregate liquidity conditions change. Using a large ...

  18. Spent Fuel Disposal Trust Fund (Maine)

    Broader source: Energy.gov [DOE]

    Any licensee operating a nuclear power plant in this State shall establish a segregated Spent Nuclear Fuel Disposal Trust Fund in accordance with this subchapter for the eventual disposal of spent...

  19. The Ohio Enterprise Bond Fund (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Enterprise Bond Fund (OEBF) was created in 1988 to promote economic development, create and retain quality jobs and assist governmental operations. The program enables non-profit and for...

  20. Now Accepting Applications: BUILD Funding Opportunity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 14, 2014 5:00PM EST to December 19, 2014 5:00PM EST Through its annual Buildings University Innovators and Leaders Development (BUILD) funding opportunity, the Energy...

  1. Tribal DERA Grant Funding Opportunity Review Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Prosper Sustainably is hosting a free webinar on July 16, 2014 at 1pm PST that reviews the EPA’s Tribal Diesel Emissions Reduction Act (DERA) funding opportunity. During the webinar Josh Simmons,...

  2. New Jersey Business Growth Fund (New Jersey)

    Broader source: Energy.gov [DOE]

    Creditworthy small or mid-sized companies that are creating or retaining jobs in New Jersey can apply for financing through the New Jersey Business Growth Fund, a joint program of the EDA and PNC...

  3. Recovery Act-Funded HVAC projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into heating, ventilation, and air conditioning (HVAC) technologies and...

  4. Regional Revolving Loan Trust Fund (New York)

    Broader source: Energy.gov [DOE]

    The Regional Revolving Loan Trust Fund Program, coordinated by the Empire State Development program, is operated in six regions by nonprofit organizations and provides working capital loans (up to ...

  5. Saudi arabia to inject funds into ITFC

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    "Saudi Arabian will infuse the Islamic Trade Financing Corporation (ITFC) with SR112.5 million ($30 million). The money will come from the General Investment fund." (1 page)

  6. Recycled Unbound Base Pooled Fund Study

    E-Print Network [OSTI]

    Minnesota, University of

    Recycled Unbound Base Pooled Fund Study Tuncer B. Edil Recycled Materials Resource Center Geological Engineering Program University of Wisconsin-Madison #12;·! Recycled Concrete Aggregate (RCA absorption ­! Un-Hydrated cement increases strength and durability ·! Recycled asphalt pavement (RAP

  7. Energy Revolving Loan Fund- Passive Solar

    Broader source: Energy.gov [DOE]

    In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Passive Solar Systems portion of the loan...

  8. Energy Revolving Loan Fund- Farm Energy

    Broader source: Energy.gov [DOE]

    In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Farm Energy Audit/Assessment portion of...

  9. ANNOUNCEMENT OF FEDERAL FUNDING OPPORTUNITY EXECUTIVE SUMMARY

    E-Print Network [OSTI]

    , and candidate or proposed species, as well as post-delisting monitoring of recovered species. Funded activities or endangered species, species proposed for listing, de-listed species, or candidate species. Recovery efforts

  10. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    E-Print Network [OSTI]

    Goldman, Charles A.

    2011-01-01T23:59:59.000Z

    3. SEP funding for building energy efficiency by marketSEP funding for building energy efficiency by market sectoroverall budget for buildings energy efficiency, while some

  11. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

  12. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03T23:59:59.000Z

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  13. PETASCALE DATA STORAGE INSTITUTE (PDSI) Final Report

    SciTech Connect (OSTI)

    Gibson, Garth [Carnegie Mellon University

    2012-11-26T23:59:59.000Z

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability. The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools. The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz. Because the Institute focuses on low level files systems and storage systems, its role in improving SciDAC systems was one of supporting application middleware such as data management and system-level performance tuning. In retrospect, the Petascale Data Storage Institute’s most innovative and impactful contribution is the Parallel Log-structured File System (PLFS). Published in SC09, PLFS is middleware that operates in MPI-IO or embedded in FUSE for non-MPI applications. Its function is to decouple concurrently written files into a per-process log file, whose impact (the contents of the single file that the parallel application was concurrently writing) is determined on later reading, rather than during its writing. PLFS is transparent to the parallel application, offering a POSIX or MPI-IO interface, and it shows an order of magnitude speedup to the Chombo benchmark and two orders of magnitude to the FLASH benchmark. Moreover, LANL production applications see speedups of 5X to 28X, so PLFS has been put into production at LANL. Originally conceived and prototyped in a PDSI collaboration between LANL and CMU, it has grown to engage many other PDSI institutes, international partners like AWE, and has a large team at EMC supporting and enhancing it. PLFS is open sourced with a BSD license on sourceforge. Post PDSI funding comes from NNSA and industry sources. Moreover, PLFS has spin out half a dozen or more papers, partnered on research with multiple schools and vendors, and has projects to transparently 1) dis- tribute metadata over independent metadata servers, 2) exploit drastically non-POSIX Hadoop storage for HPC POSIX applications, 3) compress checkpoints on the fly, 4) batch delayed writes for write speed, 5) compress read-back indexes and parallelize their redistribution, 6) double-buffer writes in NAND Flash storage to decouple host blocking during checkpoint from disk write time in the storage system, 7) pack small files into a smaller number of bigger containers. There are two large scale open source Linux software projects that PDSI significantly incubated, though neither were initated in PDSI. These are 1) Ceph, a UCSC parallel object storage research project that has continued to be a vehicle for research, and has become a released part of Linux, and 2) Parallel NFS (pNFS) a portion of the IETF’s NFSv4.1 that brings the core data parallelism found in Lustre, PanFS, PVFS, and Ceph to the industry standard NFS, with released code in Linux 3.0, and its vendor offerings, with products from NetApp, EMC, BlueArc and RedHat. Both are fundamentally supported and advanced by vendor companies now, but were critcally transferred from research demonstration to viable product with funding from PDSI, in part. At this point Lustre remains the primary path to scalable IO in Exascale systems, but both Ceph and pNFS are viable alternatives with different fundamental advantages. Finally, research community building was a big success for PDSI. Through the HECFSIO workshops and HECURA project with NSF PDSI stimulated and helped to steer leveraged funding of over $25M. Through the Petascale (now Parallel) Data Storage Workshop series, www.pdsw.org, colocated with SCxy each year, PDSI created and incubated five offerings of this high-attendance workshop. The

  14. CHEMICAL STORAGE: MYTHS VERSUS REALITY

    SciTech Connect (OSTI)

    Simmons, F

    2007-03-19T23:59:59.000Z

    A large number of resources explaining proper chemical storage are available. These resources include books, databases/tables, and articles that explain various aspects of chemical storage including compatible chemical storage, signage, and regulatory requirements. Another source is the chemical manufacturer or distributor who provides storage information in the form of icons or color coding schemes on container labels. Despite the availability of these resources, chemical accidents stemming from improper storage, according to recent reports (1) (2), make up almost 25% of all chemical accidents. This relatively high percentage of chemical storage accidents suggests that these publications and color coding schemes although helpful, still provide incomplete information that may not completely mitigate storage risks. This manuscript will explore some ways published storage information may be incomplete, examine the associated risks, and suggest methods to help further eliminate chemical storage risks.

  15. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494StorageStorage

  16. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  17. Quantitative selection of hedge funds using data envelopment analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Quantitative selection of hedge funds using data envelopment analysis Huyen Nguyen-Thi-Thanh First Envelopment Analysis (DEA) could be a good tool to evaluate fund performance, especially the performance of hedge funds as it can incorporate multiple risk-return attributes characterizing hedge fund's non normal

  18. University of Florida Change, Petty Cash, and Research Stipend Funds

    E-Print Network [OSTI]

    Watson, Craig A.

    University of Florida Change, Petty Cash, and Research Stipend Funds Request for New Fund DEPARTMENT INFORMATION FUND INFORMATION CHARTFIELD INFORMATION CONTACT INFORMATION Custodian Prepared by (if College name Amount requested ($) Type of fund Research stipendPetty cashChange What is the primary

  19. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandian Spoke at the New York Energy Storage Expo On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems, Grid Integration, Infrastructure Security, News, News &...

  20. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

  1. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

  2. Sandia National Laboratories: DOE International Energy Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Energy Storage Database Has Logged 420 Energy Storage Projects Worldwide with 123 GW of Installed Capacity DOE International Energy Storage Database Has Logged 420...

  3. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    tiles for thermal energy storage,” working paper, Colorado1991). Wallboard with latent heat storage for passive solarR. (2000). Thermal energy storage for space cooling, Pacific

  4. Sandia National Laboratories: Electricity Storage Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  5. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    for Electrochemical Energy Storage Nanostructured ElectrodesCells for Energy Storage and Generation . . . . . . . . . .batteries and their energy storage efficiency. vii Contents

  6. NERSC Frontiers in Advanced Storage Technology Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to...

  7. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Survey of Thermal Energy Storage in Aquifers Coupled withAnnual Thermal Energy Storage Contractors' InformationLarge-Scale Thermal Energy Storage for Cogeneration and

  8. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    of new energy generation and storage technologies arenew energy generation and storage technologies is importantBased Energy Storage and Generation Technologies The world

  9. Water Heaters (Storage Oil) | Department of Energy

    Energy Savers [EERE]

    Oil) Water Heaters (Storage Oil) Water Heater, Storage Oil - v1.0.xlsx More Documents & Publications Water Heaters (Tankless Electric) Water Heaters (Storage Electric)...

  10. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

  11. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30T23:59:59.000Z

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  12. NGLW RCRA Storage Study

    SciTech Connect (OSTI)

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

    2000-06-01T23:59:59.000Z

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  13. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01T23:59:59.000Z

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  14. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    automotive start-up. · Air/Thermal/Water Management ­ improved air systems, high temperature membranes, heat to pump Hydrogen Fuel/ Storage/ Infrastructure $45/kW (2010) $30kW (2015) 325 W/kg 220 W/L 60% (hydrogen system Component Air management, sensors, MEA's, membranes, Bipolar Plates, fuel processor reactor zones

  15. Storage Ring | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electron Storage Ring The 7-GeV electrons are injected into the 1104-m-circumference storage ring, a circle of more than 1,000 electromagnets and associated equipment, located...

  16. Chit-based Remote Storage

    E-Print Network [OSTI]

    Paluska, Justin Mazzola

    We propose a model for reliable remote storage founded on contract law. Consumers submit their bits to storage providers in exchange for a chit. A chit is a cryptographically secure, verifiable contract between a consumer ...

  17. Gaseous and Liquid Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

  18. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01T23:59:59.000Z

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  19. Webinar: Hydrogen Storage Materials Requirements

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

  20. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  1. HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE

    E-Print Network [OSTI]

    Tobagi, Fouad

    HIERARCHICAL STORAGE SYSTEMS FOR INTERACTIVE VIDEO­ON­DEMAND Shueng­Han Gary Chan and Fouad A; Hierarchical Storage Systems for Interactive Video­On­Demand Shueng­Han Gary Chan and Fouad A. Tobagi Technical­9040 pubs@shasta.stanford.edu Abstract On­demand video servers based on hierarchical storage systems

  2. GETTING CARBON CAPTURE AND STORAGE

    E-Print Network [OSTI]

    Haszeldine, Stuart

    GETTING CARBON CAPTURE AND STORAGE TECHNOLOGIES TO MARKET BREAKING THE DEADLOCK Report of a Science: Carbon Capture and Storage © OECD/IEA 2009, fig. 1, p. 6 Figures 2 and 3 reprinted with permission from `UK Carbon storage and capture, where is it?' by Stuart Haszeldine, Professor of Carbon Capture

  3. Normal matter storage of antiprotons

    SciTech Connect (OSTI)

    Campbell, L.J.

    1987-01-01T23:59:59.000Z

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

  4. Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage

    SciTech Connect (OSTI)

    Hobson, M. J.

    1981-11-01T23:59:59.000Z

    The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

  5. Above Ground Storage Tank (AST) Inspection Form

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name.ehs.cornell.edu/env/bulk-material-storage/petroleum-bulk-storage/Documents/AST_Inspection_Form.pdf #12;

  6. Panel 4, Hydrogen Energy Storage Policy Considerations

    Broader source: Energy.gov (indexed) [DOE]

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage...

  7. Central Storage for Unsealed Radioactive Materials

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Central Storage for Unsealed Radioactive Materials Radiation Safety Form PERMIT HOLDER NAME:______________________________ PHONE #: ____________________________ ADDRESS/DEPT.: _______________________________ Storage Location: Refrigerator Freezer Dry Storage List each item being transferred to storage separately: EH&S LAB WIPE SURVEY

  8. Revolving Loan Fund Webinars | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFund Webinars Revolving Loan Fund

  9. Environmental Technologies Fund | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMission Ltd JumpFundEnvironmentaldo:Fund

  10. Funding available for New Mexico businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity from NOAA's Office ofFunding

  11. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reserve University On January 28, 2014, in Computational Modeling & Simulation, Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, Materials Science,...

  12. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Facilities, Infrastructure Security, Materials...

  13. Project Profile: Thermochemical Storage with Anhydrous Ammonia...

    Office of Environmental Management (EM)

    Storage with Anhydrous Ammonia: Optimizing the Synthesis Reactor for Direct Production of Supercritical Steam Project Profile: Thermochemical Storage with Anhydrous...

  14. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    1975. Underground Storage of Treated Water: A Field Test.1975. "Underground Storage of Treated Water: A Field Test,"

  15. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

  16. Combinatorial Approaches for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

  17. Nanoscale data storage

    E-Print Network [OSTI]

    J. C. Li

    2007-01-29T23:59:59.000Z

    The object of this article is to review the development of ultrahigh-density, nanoscale data storage, i.e., nanostorage. As a fundamentally new type of storage system, the recording mechanisms of nanostorage may be completely different to those of the traditional devices. Currently, two types of molecules are being studied for potential application in nanostorage. One is molecular electronic elements including molecular wires, rectifiers, switches, and transistors. The other approach employs nanostructured materials such as nanotubes, nanowires, and nanoparticles. The challenges for nanostorage are not only the materials, ultrahigh data-densities, fabrication-costs, device operating temperatures and large-scale integration, but also the development of the physical principles and models. There are already some breakthroughs obtained, but it is still unclear what kind of nanostorage systems can ultimately replace the current silicon based transistors. A promising candidate may be a molecular-nanostructure hybrid device with sub-5 nm dimensions.

  18. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01T23:59:59.000Z

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  19. Monitored retrievable storage submission to Congress: Volume 3, Monitored retrievable storage program plan. [Contains glossary

    SciTech Connect (OSTI)

    none,

    1987-03-01T23:59:59.000Z

    This document presents the current DOE program objectives and the strategy for implementing the proposed program for the integral MRS facility. If the MRS proposal is approved by Congress, any needed revisions to the Program Plan will be made available to the Congress, the State of Tennessee, affected Indian tribes, local governments, other federal agencies, and the public. The proposal for constructing an MRS facility must include: the establishment of a federal program for the siting, development, construction, and operation of MRS facilities; a plan for funding the construction and operation of MRS facilities; site-specific designs, specifications, and cost estimates for the first such facility; a plan for integrating MRS facilities with other storage and disposal facilities authorized by the NWPA. 32 refs., 14 figs., 1 tab.

  20. HYDROGEN USAGE AND STORAGE

    E-Print Network [OSTI]

    It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

  1. Money Related Decommissioning and Funding Decision Making

    SciTech Connect (OSTI)

    Goodman, Lynne S. [Detroit Edison Company, 6400 N. Dixie Highway, Newport, Michigan 48162 (United States)

    2008-01-15T23:59:59.000Z

    'Money makes the world go round', as the song says. It definitely influences decommissioning decision-making and financial assurance for future decommissioning. This paper will address two money-related decommissioning topics. The first is the evaluation of whether to continue or to halt decommissioning activities at Fermi 1. The second is maintaining adequacy of financial assurance for future decommissioning of operating plants. Decommissioning costs considerable money and costs are often higher than originally estimated. If costs increase significantly and decommissioning is not well funded, decommissioning activities may be deferred. Several decommissioning projects have been deferred when decision-makers determined future spending is preferable than current spending, or when costs have risen significantly. Decommissioning activity timing is being reevaluated for the Fermi 1 project. Assumptions for waste cost-escalation significantly impact the decision being made this year on the Fermi 1 decommissioning project. They also have a major impact on the estimated costs for decommissioning currently operating plants. Adequately funding full decommissioning during plant operation will ensure that the users who receive the benefit pay the full price of the nuclear-generated electricity. Funding throughout operation also will better ensure that money is available following shutdown to allow decommissioning to be conducted without need for additional funds.

  2. Undergraduate Internship Funding Sources Summer 2012

    E-Print Network [OSTI]

    Snider, Barry B.

    Undergraduate Internship Funding Sources Summer 2012 Sorensen Fellowship Eli Segal Citizen Foundation Internship Grant Internship focus Issues of ethics, broadly defined Civic engagement placements weeks/ full-time Summer ­ no minimum 8 weeks/ 8 weeks/ 200 hrs 200 hrs 200 hrs Unpaid internship? Yes

  3. IRO INTERNAL MANAGEMENT Funded by the

    E-Print Network [OSTI]

    Management · OGPI approach · Information and Management Systems #12;· The analysis will be focus "tools" that improve the quality of the costs management: The Economic Management Tool (IntranetIRO INTERNAL MANAGEMENT - UA - Funded by the European Union 3rd Workshop: IROs Models Tunisia, 30

  4. Sustainable Energy Revolving Loan Fund PROJECT APPLICATION

    E-Print Network [OSTI]

    Escher, Christine

    1 Sustainable Energy Revolving Loan Fund PROJECT APPLICATION I. Project Administration 1. Project;2 III. Estimated Annual Energy Savings SHOW CALCULATIONS, RATIONALE AND/OR METHODOLOGY Attach additional documentation if needed Estimated Energy Savings Estimated Financial Savings ELECTRICAL ­ Kilowatt hour and

  5. Gerardo Chowell Director's Funded Postdoctoral Fellow

    E-Print Network [OSTI]

    Chowell, Gerardo

    Postdoctoral Fellowship (2005-2006) Los Alamos National Laboratory, Los Alamos, New Mexico. National PrizeGerardo Chowell Director's Funded Postdoctoral Fellow Los Alamos National Laboratory Mathematical Modeling and Analysis, MS B284 Los Alamos National Laboratory Los Alamos, NM 87545 Email: chowell

  6. Revolving Loan Funds and Loan Loss Reserves

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) State Energy Program (SEP) guidance to states, Indian tribes, and overseas U.S. territories receiving SEP grants under the 209 Recovery Act dealing with loan loss reserves for revolving loan funds.

  7. AGREEMENT FOR DOE-FUNDED TECHNOLOGY ASSISTANCE

    E-Print Network [OSTI]

    National Laboratory, agrees to provide the Technology services described below at no cost to the REQUESTERAGREEMENT FOR DOE-FUNDED TECHNOLOGY ASSISTANCE Date: Agreement: TO: FROM: Battelle Memorial Title: Field of Use: The activities to be performed under this Technology assistance will be: BATTELLE

  8. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01T23:59:59.000Z

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  9. DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2

  10. DOE-Funded Project Testing Laser CO2 Monitoring at Carbon Storage Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of Energy DOE's

  11. DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2Durability |

  12. New Funding from DOE Boosts Carbon Capture and Storage Research and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan -DepartmentDepartment ofDevelopment | Department of

  13. New Funding from DOE Boosts Carbon Capture and Storage Research and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverview | Department of1-93EnergyEnergy |So beARPA-E

  14. Apply: Small Business Funding Opportunity for Lighting, Integrated...

    Energy Savers [EERE]

    Integrated Storage and Distributed Generation for Buildings DOE's BTO seeks to identify energy storage and distributed generation technologies not for emergency generation, but...

  15. Subtask 2.17 - CO{sub 2} Storage Efficiency in Deep Saline Formations

    SciTech Connect (OSTI)

    Gorecki, Charles; Liu, Guoxiang; Braunberger, Jason; Klenner, Robert; Ayash, Scott; Dotzenrod, Neil; Steadman, Edward; Harju, John

    2014-02-01T23:59:59.000Z

    As the field of carbon capture and storage (CCS) continues to advance, and large-scale implementation of geologic carbon dioxide (CO{sub 2}) storage progresses, it will be important to understand the potential of geologic formations to store meaningful amounts of CO{sub 2}. Geologic CO{sub 2} storage in deep saline formations (DSFs) has been suggested as one of the best potential methods for reducing anthropogenic CO{sub 2} emission to the atmosphere, and as such, updated storage resource estimation methods will continue to be an important component for the widespread deployment of CCS around the world. While there have been several methodologies suggested in the literature, most of these methods are based on a volumetric calculation of the pore volume of the DSF multiplied by a storage efficiency term and do not consider the effect of site-specific dynamic factors such as injection rate, injection pattern, timing of injection, pressure interference between injection locations, and overall formation pressure buildup. These volumetric methods may be excellent for comparing the potential between particular formations or basins, but they have not been validated through real-world experience or full-formation injection simulations. Several studies have also suggested that the dynamic components of geologic storage may play the most important role in storing CO{sub 2} in DSFs but until now have not directly compared CO{sub 2} storage resource estimates made with volumetric methodologies to estimates made using dynamic CO{sub 2} storage methodologies. In this study, two DSFs, in geographically separate areas with geologically diverse properties, were evaluated with both volumetric and dynamic CO{sub 2} storage resource estimation methodologies to compare the results and determine the applicability of both approaches. In the end, it was determined that the dynamic CO{sub 2} storage resource potential is timedependent and it asymptotically approaches the volumetric CO{sub 2} storage resource potential over very long periods of time in the two systems that were evaluated. These results indicate that the volumetric assessments can be used as long as the appropriate storage efficiency terms are used and it is understood that it will take many wells over very long periods of time to fully realize the storage potential of a target formation. This subtask was funded through the Energy & Environmental Research Center (EERC)– U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the IEA Greenhouse Gas R&D Programme.

  16. Neutrino signals in electron-capture storage-ring experiments

    E-Print Network [OSTI]

    Avraham Gal

    2015-05-26T23:59:59.000Z

    Neutrino signals in electron-capture storage-ring experiments at GSI are reconsidered, with special emphasis placed on the quasi-circular motion of the daughter ions in two-body decays. Whereas parent-ion decay rates cannot exhibit modulation with the several-second period reported in these experiments, the time evolution of the detected daughter ions is shown to produce oscillations that under certain conditions may provide resolution of the `GSI Oscillations' puzzle. New dedicated storage-ring or trap experiments could look up for these oscillations.

  17. The Future of Utility Customer-Funded Energy Efficiency Programs

    E-Print Network [OSTI]

    LBNL-5803E The Future of Utility Customer- Funded Energy Efficiency Programs in the United States Customer-Funded Energy Efficiency Programs in the United States: Projected Spending and Savings to 2025

  18. Georgia Cities Foundation- Green Communities Revolving Loan Fund (Georgia)

    Broader source: Energy.gov [DOE]

    The Green Communities Fund is a revolving loan fund providing low-interest loans to businesses located within the city limits of any city in Georgia. Loans are available for existing as well as new...

  19. The Shifting Landscape of Ratepayer-Funded Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    local EE programs on existing and emerging ratepayer-funded EE programs. However, the infusion of funding for energy efficiency provided by ARRA does present several near-term...

  20. Public Funding of Political Parties in Ghana: an Outmoded Conception?

    E-Print Network [OSTI]

    Gyampo, Ransford Edward Van

    2015-01-01T23:59:59.000Z

    Institute of Economic Affairs (IEA), Draft Public Funding ofParties Bill, 2008 (Accra: IEA-Ghana, 2008), 2. 4 Ibid. , 4.7 Ibid. , 3. UFAHAMU Ibid. , 6. IEA, Draft Public Funding of

  1. Magnified Effects of Changes in NIH Research Funding Levels

    E-Print Network [OSTI]

    Ghaffarzadegan, Navid

    What happens within the university-based research enterprise when a federal funding agency abruptly changes research grant funding levels, up or down? We use simple difference equation models to show that an apparently ...

  2. Athens-Clarke County- Green Business Revolving Loan Fund

    Broader source: Energy.gov [DOE]

    Athens-Clarke County has created a Green Business Revolving Loan Fund for new or existing businesses. Funding is available for implementing eco-friendly products or services into a business or...

  3. Job Maintenance and Capital Development Fund (North Carolina)

    Broader source: Energy.gov [DOE]

    The Job Maintenance and Capital Development Fund provides annual grants to businesses which are located in Development Tier I counties. The Fund is intended to encourage the retention of...

  4. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  5. EECBG Revolving Loan Fund Webinar (Text Version) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    uses of funds. So you can say you'll be allowed 2 loan funds for energy efficiency investment, but not for the cost of obtaining a financing. Next Slide: Determine...

  6. Better Buildings Webinar: Making Utility Energy Efficiency Funds...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Webinar: Making Utility Energy Efficiency Funds Work for You Better Buildings Webinar: Making Utility Energy Efficiency Funds Work for You December 2, 2014 3:00PM...

  7. Evaluation of existing Hanford buildings for the storage of solid wastes

    SciTech Connect (OSTI)

    Carlson, M.C.; Hodgson, R.D.; Sabin, J.C.

    1993-05-01T23:59:59.000Z

    Existing storage space at the Hanford Site for solid low-level mixed waste (LLMW) will be filled up by 1997. Westinghouse Hanford Company (WHC) has initiated the project funding cycle for additional storage space to assure that new facilities are available when needed. In the course of considering the funding request, the US Department of Energy (DOE) has asked WHC to identify and review any existing Hanford Site facilities that could be modified and used as an alternative to constructing the proposed W-112 Project. This report documents the results of that review. In summary, no buildings exist at the Hanford Site that can be utilized for storage of solid LLMW on a cost-effective basis when compared to new construction. The nearest approach to an economically sensible conversion would involve upgrade of 100,000 ft{sup 2} of space in the 2101-M Building in the 200 East Area. Here, modified storage space is estimated to cost about $106 per ft{sup 2} while new construction will cost about $50 per ft{sup 2}. Construction costs for the waste storage portion of the W-112 Project are comparable with W-016 Project actual costs, with escalation considered. Details of the cost evaluation for this building and for other selected candidate facilities are presented in this report. All comparisons presented address the potential decontamination and decommissioning (D&D) cost avoidances realized by using existing facilities.

  8. Funding Federal Energy and Water Projects (Fact Sheets)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    Overview of alternative financing mechanisms available to Federal agencies to fund renewable energy and energy efficiency projects.

  9. Solar Powering America by Recognizing Communities Funding Opportunity

    Broader source: Energy.gov [DOE]

    DOE's SunShot Initiative is accepting applications for the Solar Powering America by Recognizing Communities funding opportunity.

  10. Alaska Renewable Energy Fund Grants for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

  11. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  12. Entanglement Storage Units

    E-Print Network [OSTI]

    T. Caneva; T. Calarco; S. Montangero

    2012-09-27T23:59:59.000Z

    We introduce a protocol based on optimal control to drive many body quantum systems into long-lived entangled states, protected from decoherence by big energy gaps, without requiring any apriori knowledge of the system. With this approach it is possible to implement scalable entanglement-storage units. We test the protocol in the Lipkin-Meshkov-Glick model, a prototype many-body quantum system that describes different experimental setups, and in the ordered Ising chain, a model representing a possible implementation of a quantum bus.

  13. Interim storage study report

    SciTech Connect (OSTI)

    Rawlins, J.K.

    1998-02-01T23:59:59.000Z

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  14. Multiported storage devices

    E-Print Network [OSTI]

    Grande, Marcus Bryan

    2000-01-01T23:59:59.000Z

    of niultiported storage device 3 Linux file I/O subsystem 4 Windows NT layered I/O driver model 10 15 5 Location of multiported module in I/O stack 17 6 The bulfer cache . . . 20 7 Queuing of I/O requests 8 Processing of I/O requests by smart blkfiltcr 9... Registering of filter applet via Linux stacked module mechanism . 21 22 . . 26 10 Table of registered filter applets (functions) . . 27 11 Overhead due to presence of smart blkfilter alone . 12 Overhead of smart blkfilter using rot13 filter port 31 33...

  15. Storage | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & Solar Solar How much doStorage

  16. Warehouse and Storage Buildings

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810 0 0349,980Warehouse and Storage

  17. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochastic Weekly DownloadRegionalStorage Ring

  18. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council ExecutivegeochemStorage

  19. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494Storage Ring

  20. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiralingSecurity217,354 217,814 218,494Storage

  1. NERSC HPSS Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVA Portal: Submit2014ftp ftp Storage Trends

  2. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-06-27T23:59:59.000Z

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  3. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12T23:59:59.000Z

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  4. Underground caverns for hydrocarbon storage

    SciTech Connect (OSTI)

    Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

    1998-12-31T23:59:59.000Z

    Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

  5. DOE FY 2010 Budget Request and Recovery Act Funding for Energy Research, Development, Demonstration, and Deployment: Analysis and Recommendations

    SciTech Connect (OSTI)

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Bunn, Matthew

    2009-06-01T23:59:59.000Z

    The combination of the FY 2010 budget request for the Department of Energy (DOE) and the portion of the American Recovery and Reinvestment Act of 2009 (ARRA) funds likely to be available in 2010 would (assuming that they would be split evenly between FY 2010 and FY 2011) result in a doubling in funding available for energy research, development, and deployment (ERD and D) from $3.6 billion in FY 2009 to $7.2 billion in FY 2010. Without the stimulus funds, DOE ERD and D investments in FY 2010 would decrease very slightly when compared to FY 2009. Excluding the $7.5 billion for the Advanced Technology Vehicles Manufacturing Loans in FY 2009, the FY 2010 budget request for deployment represents a 33 percent decrease from the FY 2009 levels from $520 million to $350 million. This decrease is largely due to the large amounts of funds appropriated in ARRA for DOE deployment programs, or $23.6 billion, which are three times greater than those appropriated in the FY 2009 budget. These very substantial funding amounts, coupled with the broad range of institutional innovations the administration is putting in place and movement toward putting a price on carbon emissions, will help accelerate innovation for a broad range of energy technologies. DOE's Advanced Research Projects Agency-Energy (ARPA-E) and the Energy Innovation Hubs are important initiatives that could contribute to two weak points of the government's energy innovation effort, namely funding high-risk projects in transformational technologies and in companies that have not traditionally worked with the government and strengthening the integration of basic and applied research in priority areas. Increasing the funding for different types of energy storage research, providing some support for exploring opportunities in coal-to-liquids with carbon capture and storage (CCS) and coal-and-biomass-to-liquids with CCS, and reducing funding for fission RD and D are other actions that Congress could take in the short-term. Energy storage may play a crucial role in the future of the power and transportation systems, which together consume two thirds of primary energy in the United States. A recent National Academy of Science report recommended carrying out detailed scenario assessments of the penetration of unconventional fuels from coal and coal and biomass with CCS. And the research plan provided for nuclear fission does not justify spending as many funds as were requested. The proposed funding for FY 2010 and the resources from ARRA, however, do not guarantee that the United States will finally enjoy the predictable and consistent publicly-funded energy technology innovation effort that it needs. The Obama administration must put in place a comprehensive energy technology innovation strategy that will ensure that an expanded ERD3 effort is both sustainable and efficient. This commission would be charged with, inter alia, developing a strategy that optimizes the integration of the various stages of innovation (research, development, demonstration, early deployment), as well as integrates efforts across technology areas. The database upon which this analysis is based may be downloaded in Excel format at: http://belfercenter.ksg.harvard.edu/publication/19119/ .

  6. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  7. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations Reveal Ion Dynamics in Polymer Electrolyte On November 13, 2012, in Energy Storage, News, News & Events Improving battery electrolytes is highly desirable, particularly...

  8. Holographic Storage of Biphoton Entanglement

    E-Print Network [OSTI]

    Han-Ning Dai; Han Zhang; Sheng-Jun Yang; Tian-Ming Zhao; Jun Rui; You-Jin Deng; Li Li; Nai-Le Liu; Shuai Chen; Xiao-Hui Bao; Xian-Min Jin; Bo Zhao; Jian-Wei Pan

    2012-04-06T23:59:59.000Z

    Coherent and reversible storage of multi-photon entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although single photon has been successfully stored in different quantum systems, storage of multi-photon entanglement remains challenging because of the critical requirement for coherent control of photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates Bell's inequality for 1 microsecond storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

  9. Sandia National Laboratories: Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Joint SandiaUniversity of...

  10. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Recent Sandia Secure,...

  11. Underground Storage Tanks (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install,...

  12. The Petascale Data Storage Institute

    SciTech Connect (OSTI)

    Gibson, Garth [Carnegie Mellon University; Long, Darrell [The Regents of the University of California, Santa Cruz; Honeyman, Peter [University of Michigan at Ann Arbor; Grider, Gary [Los Alamos National Laboratory; Kramer, William [National Energy Research Scientific Computing Center; Shalf, John [National Energy Research Scientific Computing Center; Roth, Philip [Oak Ridge National Laboratory; Felix, Evan [Pacific Northwest National Laboratory; Ward, Lee [Sandia National Laboratory

    2013-07-01T23:59:59.000Z

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability. The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools. The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  13. CO2 Geologic Storage (Kentucky)

    Broader source: Energy.gov [DOE]

    Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon...

  14. Underground Storage Tanks (New Jersey)

    Broader source: Energy.gov [DOE]

    This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and...

  15. Underground Storage Tank Program (Vermont)

    Broader source: Energy.gov [DOE]

    These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

  16. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect (OSTI)

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31T23:59:59.000Z

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO? nanowires, which are a promising replacement for RuO?, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm?¹, a maximum energy density of approximately 15 Jcm?³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m?¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  17. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09T23:59:59.000Z

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  18. Chemical Hydrogen Storage Center Center of Excellence

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Chemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY Barriers Addressed #12;3 Chemical Hydrogen Storage Center Chemical Hydrogen Storage Center National

  19. Bike Storage on McMaster University BIKE STORAGE ON CAMPUS

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Bike Storage on Campus McMaster University BIKE STORAGE ON CAMPUS Secure Bike Storage on Campus Located on the west side of Chester New Hall, the Secure Bike Storage facility features video surveillance

  20. Sandia National Laboratories: Energy Storage Test Pad (ESTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Test Pad (ESTP) Evaluating Powerful Batteries for Modular Electric Grid Energy Storage On December 12, 2014, in Energy, Energy Storage, Energy Storage Systems,...

  1. Sandia National Laboratories: DOE Energy Storage Systems program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Energy Storage Systems program 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

  2. Sandia National Laboratories: NM Renewable Energy Storage Task...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Storage Task Force New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security,...

  3. Sandia National Laboratories: incentivize renewable-energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    incentivize renewable-energy storage infrastructure development New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage...

  4. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    trates a design load profile for a partial storage system.load management / full storage / ice storage / partialfor partial storage) because part of the cooling load is

  5. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04T23:59:59.000Z

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  6. COLD STORAGE DESIGN REFRIGERATION EQUIPMENT

    E-Print Network [OSTI]

    COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I Fishery Leaflet 427 Washington 25, D. C. June 1956 REFRIGERATION OF FISH - PART em; COlD STORAGE DESIGN AND REFRIGERATION EQUIPMENT By Charles Butler (Section 1), Joseph W. Slavin (Sections 1, 2, and 3), Max Patashnik

  7. Catalytically Enhanced Hydrogen Storage Systems

    E-Print Network [OSTI]

    with the Freedom CAR hydrogen storage system targets (Key parameters: cost, specific energy, and energy density). #12;Objectives I. Determination of the chemical nature of the titanium species responsible that are compatible with the Freedom CAR hydrogen storage system targets. Key parameters: cost, specific energy

  8. MATERIAL HANDLING, STORAGE, AND DISPOSAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

  9. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10T23:59:59.000Z

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  10. March 29, 2008 OS: Mass Storage Structure 1 Mass-Storage Structure

    E-Print Network [OSTI]

    Adam, Salah

    March 29, 2008 OS: Mass Storage Structure 1 Mass-Storage Structure Chapter 12 #12;March 29, 2008 OS: Mass Storage Structure 2 Objectives Describe the physical structure of secondary and tertiary storage of mass-storage devices Discuss operating-system services provided for mass storage, including RAID

  11. Cooperative Repair with Minimum-Storage Regenerating Codes for Distributed Storage

    E-Print Network [OSTI]

    Li, Baochun

    Cooperative Repair with Minimum-Storage Regenerating Codes for Distributed Storage Jun Li, Baochun--Distributed storage systems store redundant data to tolerate failures of storage nodes and lost data should be repaired when storage nodes fail. A class of MDS codes, called minimum- storage regenerating (MSR) codes

  12. March 24, 2008 ADBS: Storage 1 Disk Storage, Basic File Structures, and

    E-Print Network [OSTI]

    Adam, Salah

    March 24, 2008 ADBS: Storage 1 Disk Storage, Basic File Structures, and Hashing. #12;March 24, 2008 ADBS: Storage 2 Chapter Outline The Storage Hierarchy How Far is Your Data Disk Storage Devices Records Blocking Files of Records Unordered Files Ordered Files Hashed Files RAID Technology Storage Area Network

  13. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R. J.

    1980-08-01T23:59:59.000Z

    During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

  14. AQUIFER THERMAL ENERGY STORAGE-A SURVEY

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2012-01-01T23:59:59.000Z

    solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

  15. On Storage Rings for Short Wavelength FELs

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01T23:59:59.000Z

    for a hypothetical 144 m long storage ring optimized for FELin the Proceedings On Storage Rings for Short WavelengthLBL-28483 ESG Note-92 ON STORAGE RINGS FOR SHORT WAVELENGTH

  16. Storage Viability and Optimization Web Service

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    of Heat and Electricity Storage and Reliability on MicrogridEPRI-DOE Handbook of Energy Storage for Transmission andLong- vs. Short-Term Energy Storage Technologies Analysis, A

  17. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

  18. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    in floor tiles for thermal energy storage,” working paper,D. R. (2000). Thermal energy storage for space cooling,A simple model of thermal energy storage is developed as a

  19. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01T23:59:59.000Z

    energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

  20. NATURAL GAS STORAGE ENGINEERING Kashy Aminian

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Shahab D. Mohaghegh Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory

  1. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    must be if mal energy storage technologies as means for con-Robert Thorne. Energy Storage is more technology-orientedEnergy with Heat Storage Wells," Environmental Science and Technology,

  2. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

  3. Generating External Funding for Research at CSUF Scott Hewitt and Roberta Rikli

    E-Print Network [OSTI]

    de Lijser, Peter

    the University do to Improve its Record of External Grant Funding? 3) Update on Generating External Funding university reputation and chances for additional funding--funding agencies like to fund projects to university. 2) What Can the University Do to Improve its Record of External Funding? For the reasons

  4. Electric Fund (CDWR) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation, searchElectric Fund (CDWR) Jump to:

  5. Sevin Rosen Funds (California) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma:Sevin Rosen Funds (California) Jump to:

  6. Lab seeks ideas for Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVenture Acceleration Fund ideas

  7. Lab seeks ideas for venture acceleration fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVenture Acceleration Fund

  8. Property:FundingAgencies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation, search Property NameFirstWellDepthPropertyFundingAgencies Jump

  9. Property:FundingAgency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation, search Property NameFirstWellDepthPropertyFundingAgencies

  10. Stimulus Funding Will Accelerate Cleanup In Idaho

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep Slope CalculatorSteveStewardshipSTIMULUS FUNDING

  11. Funding Opportunities Calendar | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOEDepartmentEnergy Years ofFred L.Projects Funding

  12. Climate Investment Funds | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLCInformationFunds Jump to:

  13. Environmental Defense Fund | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMission Ltd JumpFund Place: New York, New

  14. Ormat Funding Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy InformationOregon: EnergyOrlovista, Florida: EnergyFunding

  15. Climate Protection Action Fund | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFund Jump to: navigation, search Logo:

  16. Nationwide Solar Funding | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy Information ConferenceProject| OpenFunding

  17. Forecast and Funding Arrangements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) Target 1Annual Waste Forecast and Funding

  18. Access Fund Partners LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki HomeASN Power ProjectsAbrahamAccess Fund

  19. University of Rochester Event Security Fund The purpose of this fund is to assist SA recognized organizations who (a) have a small membership or (b)

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    University of Rochester Event Security Fund The purpose of this fund is to assist SA recognized of this fund. o The event will have a beneficial impact on the University of Rochester community. o The size. This fund will be used to supplement budgeted event funds. Prerequisites for applying for the Event Security

  20. Funding Sources Available Through the Office of the Vice Chancellor for Student Affairs: Council of Student Affairs Directors (CSAD) Diversity Program Fund

    E-Print Network [OSTI]

    Powers, Robert

    of Student Affairs Directors (CSAD) Diversity Program Fund Pepsi Diversity Program Fund Pepsi Student Events) Office or cost object number. 4. The purpose of the CSAD Diversity and/or Pepsi Diversity Program Funds academic departments or colleges may request funding from the Pepsi Student Events Fund for special events

  1. UMBC Policy # UMBC VIII-7.12 Page 1 of 2 UMBC POLICY CONCERNING WORKING FUND/ PETTY CASH/CHANGE FUNDS

    E-Print Network [OSTI]

    Adali, Tulay

    UMBC Policy # UMBC VIII-7.12 Page 1 of 2 UMBC POLICY CONCERNING WORKING FUND/ PETTY CASH/CHANGE FUNDS UMBC Policy # UMBC VIII-7.12 I. POLICY STATEMENT This policy on the working fund/petty cash/change funds is intended to define the conditions for such funds. II. PURPOSE FOR POLICY This policy

  2. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy Savers [EERE]

    flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. Fact Sheet: Energy...

  3. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

  4. Sandia National Laboratories: energy storage resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Outages With New 'Smart Grid' System On June 20, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  5. Sandia National Laboratories: energy storage requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

  6. JCESR | Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    want. More Sandia: High Density Storage JCESR Partner Sandia discusses high density energy storage for electric vehicles and the grid More JCESR and NASA team up JCESR and...

  7. Sandia National Laboratories: solar thermal energy storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

  8. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Address Flooding, Water, and Power Systems On June 11, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Infrastructure Security, Microgrid,...

  9. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Office of Environmental Management (EM)

    Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012, Clean...

  10. Carbon Storage Atlas, Employee Newsletter Earn International...

    Broader source: Energy.gov (indexed) [DOE]

    NETL's Carbon Storage Atlas IV and FE's internal employee newsletter, inTouch, earned 2013 National Association of Government Communicators awards. NETL's Carbon Storage Atlas IV...

  11. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM...

  12. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Savers [EERE]

    Systems 2010 Update Conference Presentations - Day 1, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems...

  13. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Poster Session Energy Storage Systems 2010 Update Conference Presentations - Day 3: Poster Session The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking...

  14. Hydrogen Storage Materials Workshop Proceedings Workshop, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings Workshop, October 16th, 2002 Hydrogen Storage Materials Workshop Proceedings Workshop, October 16th, 2002 A workshop on compressed and liquefied hydrogen storage was a...

  15. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Footprint: Separation Distances, Storage Options, and Pre-Cooling Station Footprint: Separation Distances, Storage Options, and Pre-Cooling This presentation by Aaron...

  16. Combinatorial Approach for Hydrogen Storage Materials (presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center of Excellence Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials High ThroughputCombinatorial Screening of...

  17. BNL Gas Storage Achievements, Research Capabilities, Interests...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Hydride Center of Excellence Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials EA-1321: Final Environmental Assessment...

  18. Hydrogen Storage Materials Requirements (Text Version) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Requirements (Text Version) Hydrogen Storage Materials Requirements (Text Version) Below is the text version of the webinar titled "Hydrogen Storage Materials Requirements,"...

  19. Underground Storage Tank Act (West Virginia)

    Broader source: Energy.gov [DOE]

    New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored...

  20. Georgia Underground Storage Tank Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (“USTs”) of “regulated substances” other than...

  1. Agenda: Natural Gas: Transmission, Storage and Distribution ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas: Transmission, Storage and Distribution Agenda: Natural Gas: Transmission, Storage and Distribution A Public Meeting on the Quadrennial Energy Review, Hosted by the...

  2. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01T23:59:59.000Z

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  3. Performance assessment of the PNM Prosperity electricity storage project :

    SciTech Connect (OSTI)

    Roberson, Dakota; Ellison, James F.; Bhatnagar, Dhruv; Schoenwald, David A.

    2014-05-01T23:59:59.000Z

    The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shifting system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.

  4. Parameter study of a vehicle-scale hydrogen storage system.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01T23:59:59.000Z

    Sandia National Laboratories has developed a vehicle-scale prototype hydrogen storage system as part of a Work For Others project funded by General Motors. This Demonstration System was developed using the complex metal hydride sodium alanate. For the current work, we have continued our evaluation of the GM Demonstration System to provide learning to DOE's hydrogen storage programs, specifically the new Hydrogen Storage Engineering Center of Excellence. Baseline refueling data during testing for GM was taken over a narrow range of optimized parameter values. Further testing was conducted over a broader range. Parameters considered included hydrogen pressure and coolant flow rate. This data confirmed the choice of design pressure of the Demonstration System, but indicated that the system was over-designed for cooling. Baseline hydrogen delivery data was insufficient to map out delivery rate as a function of temperature and capacity for the full-scale system. A more rigorous matrix of tests was performed to better define delivery capabilities. These studies were compared with 1-D and 2-D coupled multi-physics modeling results. The relative merits of these models are discussed along with opportunities for improved efficiency or reduced mass and volume.

  5. Sub-Nanostructured Non Transition Metal Complex Grids for Hydrogen Storage

    SciTech Connect (OSTI)

    Dr. Orhan Talu; Dr. Surendra N. Tewari

    2007-10-27T23:59:59.000Z

    This project involved growing sub-nanostructured metal grids to increase dynamic hydrogen storage capacity of metal hydride systems. The nano particles of any material have unique properties unlike its bulk form. Nano-structuring metal hydride materials can result in: {sm_bullet}Increased hydrogen molecule dissociation rate, {sm_bullet} Increased hydrogen atom transport rate, {sm_bullet} Decreased decrepitation caused by cycling, {sm_bullet} Increased energy transfer in the metal matrix, {sm_bullet} Possible additional contribution by physical adsorption, and {sm_bullet} Possible additional contribution by quantum effects The project succeeded in making nano-structured palladium using electrochemical growth in templates including zeolites, mesoporous silica, polycarbonate films and anodized alumina. Other metals were used to fine-tune the synthesis procedures. Palladium was chosen to demonstrate the effects of nano-structuring since its bulk hydrogen storage capacity and kinetics are well known. Reduced project funding was not sufficient for complete characterization of these materials for hydrogen storage application. The project team intends to seek further funding in the future to complete the characterization of these materials for hydrogen storage.

  6. Update 1983: energy funding for Latin America

    SciTech Connect (OSTI)

    Not Available

    1983-07-13T23:59:59.000Z

    Funding to Latin America from the three principal multinational financial institutions (the World Bank, the Interamerican Development Bank, and the Caribbean Development Bank) reflects a growing emphasis on energy. Economic and energy forecasters in these and other donor agencies, as well as in oil companies and private banks, warn of strong possibilities of a petroleum-supply shortfall, and higher prices, before the year 2000. If developing countries, with or without conventional energy resources, are to plan effectively for economic growth, external institutional and private energy funding won't be enough: conservation, more-efficient management, and higher prices for electricity and other energy will be necessary. There is marked hemispheric cooperation to promote Latin America's energy and economic advancement, when bilateral and international agreements are examined: US and Canadian loans are via bilateral and institutional channels. Mexico, Colombia, and Venezuela, all Third World countries but with substantial hydrocarbon resources, stand out both as energy aid donors, and as three of the five Latin American promoters (the Contadora Group) that are seeking to increase dialogue between warring factions among some of their Caribbean and Central American neighbors. This issue presents the Energy Detente fuel price/tax series and the principal industrial fuel prices for July 1983 for countries of the Eastern Hemisphere.

  7. Metal-Containing Organic and Carbon Aerogels for Hydrogen Storage

    SciTech Connect (OSTI)

    Satcher, Jr., J H; Baumann, T F; Herberg, J L

    2005-01-10T23:59:59.000Z

    This document and the accompanying manuscript summarize the technical accomplishments of our one-year LDRD-ER effort. Hydrogen storage and hydrogen fuel cells are important components of the 2003 Hydrogen Fuel Initiative focused on the reduction of America's dependence on oil. To compete with oil as an energy source, however, one must be able to transport and utilize hydrogen at or above the target set by DOE (6 wt.% H{sub 2}) for the transportation sector. Other than liquid hydrogen, current technology falls well short of this DOE target. As a result, a variety of materials have recently been investigated to address this issue. Carbon nanostructures have received significant attention as hydrogen storage materials due to their low molecular weight, tunable microporosity and high specific surface areas. For example, the National Renewable Energy Laboratory (NREL) achieved 5 to 10 wt.% H{sub 2} storage using metal-doped carbon nanotubes. That study showed that the intimate mix of metal nanoparticles with graphitic carbon resulted in the unanticipated hydrogen adsorption at near ambient conditions. The focus of our LDRD effort was the investigation of metal-doped carbon aerogels (MDCAs) as hydrogen storage materials. In addition to their low mass densities, continuous porosities and high surface areas, these materials are promising candidates for hydrogen storage because MDCAs contain a nanometric mix of metal nanoparticles and graphitic nanostructures. For FY04, our goals were to: (1) prepare a variety of metal-doped CAs (where the metal is cobalt, nickel or iron) at different densities and carbonization temperatures, (2) characterize the microstructure of these materials and (3) initiate hydrogen adsorption/desorption studies to determine H2 storage properties of these materials. Since the start of this effort, we have successfully prepared and characterized Ni- and Co-doped carbon aerogels at different densities and carbonization temperatures. The bulk of this work is described in the attached manuscript entitled 'Formation of Carbon Nanostructures in Cobalt- and Nickel- Doped Carbon Aerogels'. This one-year effort has lead to our incorporation into the DOE Carbon-based Hydrogen Storage Center of Excellence at NREL, with funding from DOE's Energy Efficiency and Renewable Energy (EERE) Program starting in FY05.

  8. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  9. Storage containers for radioactive material

    DOE Patents [OSTI]

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31T23:59:59.000Z

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  10. Drying Rough Rice in Storage.

    E-Print Network [OSTI]

    Sorenson, J. W. Jr.; Crane, L. E.

    1960-01-01T23:59:59.000Z

    Drying. Rough Rice in Storage Ih AGRf""' TURP YPERIMENT STAT10 I. TEXAS SUMMARY Research was conducted at the Rice-Pasture Experiment Station near Beaumont during 7 crop years (1952-53 through 1958-59) to determine the engineering problems... and the practicability of dry- ing rough rice in storage in Texas. Drying rice in storage means drying rice in the same bin in which it is to be stored. Rough rice, with initial moisture contents of 15.0 to 23.0 percent, was dried at depths of 4 to 10 feet...

  11. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

    2014-10-07T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries.

  12. Recombinant electric storage battery

    SciTech Connect (OSTI)

    Flicker, R.P.; Fenstermacher, S.

    1989-10-10T23:59:59.000Z

    This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

  13. Integrated Building Energy Systems Design Considering Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    electric storage, energy efficiency, heat storage, micro-generation systems, photovoltaic, software, solar thermal

  14. Mixed waste storage facility CDR review, Paducah Gaseous Diffusion Plant; Solid waste landfill CDR review, Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    This report consists of two papers reviewing the waste storage facility and the landfill projects proposed for the Paducah Gaseous Diffusion Plant complex. The first paper is a review of DOE`s conceptual design report for a mixed waste storage facility. This evaluation is to review the necessity of constructing a separate mixed waste storage facility. The structure is to be capable of receiving, weighing, sampling and the interim storage of wastes for a five year period beginning in 1996. The estimated cost is assessed at approximately $18 million. The review is to help comprehend and decide whether a new storage building is a feasible approach to the PGDP mixed waste storage problem or should some alternate approach be considered. The second paper reviews DOE`s conceptual design report for a solid waste landfill. This solid waste landfill evaluation is to compare costs and the necessity to provide a new landfill that would meet State of Kentucky regulations. The assessment considered funding for a ten year storage facility, but includes a review of other facility needs such as a radiation detection building, compactor/baler machinery, material handling equipment, along with other personnel and equipment storage buildings at a cost of approximately $4.1 million. The review is to help discern whether a landfill only or the addition of compaction equipment is prudent.

  15. Production, Storage, and FC Analysis

    Broader source: Energy.gov [DOE]

    Presentation on Production, Storage, and FC Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  16. A Successful Cool Storage Rate 

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01T23:59:59.000Z

    Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's ...

  17. Forecourt Storage and Compression Options

    E-Print Network [OSTI]

    pressure, capacity ­ Compressor output, power, electric demand ­ Station and dispenser load profiles Pro > Station demand profiles > Operational analysis results ­ Compressor-storage relationships ­ Vehicle fueling times ­ Temperature effects > Cost profiles > Considerations for 70 MPa > Next steps #12

  18. CFES RESEARCH THRUSTS: Energy Storage

    E-Print Network [OSTI]

    Lü, James Jian-Qiang

    CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our with the student to finalize the project plan. To sponsor an Energy Scholar, a company agrees to: · Assign

  19. A Successful Cool Storage Rate

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01T23:59:59.000Z

    Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air...

  20. Device-transparent personal storage

    E-Print Network [OSTI]

    Strauss, Jacob A. (Jacob Alo), 1979-

    2010-01-01T23:59:59.000Z

    Users increasingly store data collections such as digital photographs on multiple personal devices, each of which typically presents the user with a storage management interface isolated from the contents of all other ...

  1. Energy Efficiency Fund (Gas)- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Through the Connecticut Energy Efficiency Fund, rebates are available for commercial, industrial or municipal customers of Connecticut Natural Gas Corporation, Southern Connecticut Gas Company, or...

  2. Construction of Risk-Averse Enhanced Index Funds

    E-Print Network [OSTI]

    2010-10-24T23:59:59.000Z

    Construction of Risk-Averse Enhanced Index Funds. Miguel Lejeune ?. Gülay Samatl?-Paç†. Abstract: We propose a partial replication strategy to construct ...

  3. Pre-Announcement Meeting Notice for Financial Assistance Funding...

    Office of Environmental Management (EM)

    pre-announcement meeting for manufacturing research and development for hydrogen and fuel cell systems. frnmanufacture.pdf More Documents & Publications FA Funding Opportunity...

  4. Summit Attendees to Learn About SunShot Funding Opportunities...

    Energy Savers [EERE]

    look at how new funding opportunities are born and SunShot's five subprogram areas: photovoltaics and concentrating solar power research and development, systems integration,...

  5. $787 Million Total in Small Business Contract Funding Awarded...

    National Nuclear Security Administration (NNSA)

    787 Million Total in Small Business Contract Funding Awarded in FY2009 by DOE Programs in Oak Ridge | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  6. Sovereign Wealth Funds: Stylized Facts about their Determinants and Governance*

    E-Print Network [OSTI]

    Aizenman, Joshua; Glick, Reuven

    2008-01-01T23:59:59.000Z

    Algeria Brunei Korea Kazakhstan Venezuela Malaysia Nigeriac Algeria Brunei Korea Kazakhstan Venezuela Malaysia NigeriaFund for the Republic of Kazakhstan National Development

  7. Department of Energy Announces Funding to Help Consumers Better...

    Broader source: Energy.gov (indexed) [DOE]

    consumers to better manage their electricity use through improved access to their own electricity consumption data. Under the "Smart Grid Data Access" Funding Opportunity...

  8. $60 Million to Fund Projects Advancing Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The SunShot initiative announces a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States.

  9. Draft Michigan SAVES Loan Loss Reserve Fund Agreement

    Broader source: Energy.gov [DOE]

    A sample LRF agreement between a grantee and an financial institution setting the terms and conditions of the loan loss reserve fund.

  10. Draft "Michigan Saves" Loan Loss Reserve Fund Agreement

    Broader source: Energy.gov [DOE]

    A sample loan loss reserve agreement between a state or local government and a financial institution setting the terms and conditions of the loan loss reserve fund.

  11. Funding for Nationwide Student-Focused Clean Energy Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    entrepreneurs, U.S. Energy Secretary Steven Chu today announced 2 million in available funding for the National University Clean Energy Business Challenge. This nationwide...

  12. Webinar: Learn about the BUILD funding opportunity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    19, 2014 | 3pm to 4pm EST The Energy Department announces the 1 million Buildings University Innovators and Leaders Development (BUILD) Funding Opportunity Announcement...

  13. Funding Opportunity Announcement for a Marine and Hydrokinetic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University Consortium." This funding opportunity is supporting the advancement of wave and tidal energy technologies while developing a globally competitive MHK workforce....

  14. Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic...

    Office of Environmental Management (EM)

    Competitive Marine and Hydrokinetic (MHK) Demonstrations at the Navy's Wave Energy Test Site (WETS) Upcoming Funding Opportunity for Competitive Marine and Hydrokinetic (MHK)...

  15. Energy Department Announces Funding to Develop "Plug-and-Play...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Develop "Plug-and-Play" Solar Energy Systems for Homeowners Energy Department Announces Funding to Develop "Plug-and-Play" Solar Energy Systems for Homeowners April 24, 2012 -...

  16. Energy Secretary Chu Announces $148 million in Recovery Act Funding...

    Broader source: Energy.gov (indexed) [DOE]

    New York. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former...

  17. Energy Secretary Chu Announces $6 Billion in Recovery Act Funding...

    Energy Savers [EERE]

    Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced 6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental...

  18. Energy Efficiency Fund (Electric and Gas)- Residential New Construction Program

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Fund offers a program designed to encourage the construction of energy efficient homes. The Residential New Construction Program offers incentives targeted at increasing...

  19. act funding announcements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is included and will be the basis of determining timeliness. Hard copy resource management and public policy. CPO funds eleven different RISA teams across the United States...

  20. Miami-Dade County- Targeted Jobs Incentive Fund

    Broader source: Energy.gov [DOE]

    The Targeted Jobs Incentive Fund (TJIF) provides financial incentives for select industries, including solar thermal and photovoltaic manufacturing, installation and repair companies that are...

  1. Energy Department Announces Notice of Intent to Issue Funding...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office (BETO), a funding opportunity announcement (FOA),"Targeted Algal Biofuels and Bioproducts." BETO's 2019 projected state of technology for the cost of algal...

  2. Transitioning to a Utility Funded Program Environment: What Do...

    Broader source: Energy.gov (indexed) [DOE]

    Program Sustainability Peer Exchange Call: Transitioning to a Utility Funded Program Environment: What Do I Need To Know? call slides and discussion summary, January 17, 2013. Call...

  3. BENEFIT 2015 Funding Opportunity Announcement Webinar 1 (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, BENEFIT 2015 Funding Opportunity Announcement, presented in October 2014 by Antonio Bouza, technology manager, and Pat Phelan, program manager, Building...

  4. Sponsored by The Meyer Fund for Sustainable Development

    E-Print Network [OSTI]

    Oregon, University of

    Sponsored by The Meyer Fund for Sustainable Development and curriculum designed and developed by: Stanley Micklavzina stanm@uoregon.edu Frank Vignola fev

  5. Department of Energy Announces Funding for Nationwide Student...

    Office of Environmental Management (EM)

    has the workforce we need to secure our energy future, create jobs here at home, and win the future." This funding opportunity announcement (FOA) will consider applications...

  6. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and installed with DOE Recovery Act Funding. Blast Furnace Gas Recovery Boiler Provides Steam and Power at Steel Mill More Documents & Publications Capturing Waste Gas: Saves...

  7. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1981-01-01T23:59:59.000Z

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  8. The Storage of Shelled Pecans.

    E-Print Network [OSTI]

    Brison, Fred R. (Fred Robert)

    1945-01-01T23:59:59.000Z

    AGRIC - KPERIA .. -. STATIC t,4L EI rlENT ! C. H. MCUOSELL, Act~ng mrector Collegz Station. Texas 'LLETIN NO. 667 MARCH, THE STORAGE OF SHELLED PEC-4NS FRED R. BRISON Division of Horticulture . AGRICULTURAL AND MECHANICAL COLLEGE OF TE... Gibb Gilchrist, President [Blank Page in Original Bulletin] Shelled pecans may change in flavor, texture, and color, while in storage. They may also change as a result of insect or disease damage. Kernels change in flavor by becoming progressively...

  9. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  10. FAFCO Ice Storage test report

    SciTech Connect (OSTI)

    Stovall, T.K.

    1993-11-01T23:59:59.000Z

    The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. FAFCO provided a storage tank equipped with coils designed for use with a secondary fluid system. The FAFCO ice storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank fully, storing from 150 to 200 ton-h. However, the charging rate showed significant variations during the latter portion of the charge cycle. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate and tank state of charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend on both charge and discharge conditions. This report describes FAFCO system performance fully under both charging and discharging conditions. While the test results reported here are accurate for the prototype 1990 FAFCO Model 200, currently available FAFCO models incorporate significant design enhancements beyond the Model 200. At least one major modification was instituted as a direct result of the ISTF tests. Such design improvements were one of EPRI`s primary goals in founding the ISTF.

  11. The High Performance Storage System

    SciTech Connect (OSTI)

    Coyne, R.A.; Hulen, H. [IBM Federal Systems Co., Houston, TX (United States); Watson, R. [Lawrence Livermore National Lab., CA (United States)

    1993-09-01T23:59:59.000Z

    The National Storage Laboratory (NSL) was organized to develop, demonstrate and commercialize technology for the storage system that will be the future repositories for our national information assets. Within the NSL four Department of Energy laboratories and IBM Federal System Company have pooled their resources to develop an entirely new High Performance Storage System (HPSS). The HPSS project concentrates on scalable parallel storage system for highly parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting the high end of storage system and data management requirements, HPSS is designed using network-connected storage devices to transfer data at rates of 100 million bytes per second and beyond. The resulting products will be portable to many vendor`s platforms. The three year project is targeted to be complete in 1995. This paper provides an overview of the requirements, design issues, and architecture of HPSS, as well as a description of the distributed, multi-organization industry and national laboratory HPSS project.

  12. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    A thermal energy storage system comprising a germanium phase change material and a graphite container.

  13. Presented by Robust Storage Management in the

    E-Print Network [OSTI]

    Vazhkudai, Sudharshan

    , intermediate checkpoint storage or a staging ground ­ Job's own allocated nodes can contribute storage spacePresented by Robust Storage Management in the Machine Room and Beyond Sudharshan Vazhkudai Computer Problem space: HPC storage crisis · Data checkpointing, staging, and offloading are all affected by data

  14. Bulk Storage Program Compliance Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Bulk Storage Program Compliance Written Program Cornell University 5/8/2013 #12;Bulk Storage.......................................................... 5 4.2.2 Aboveground Petroleum Storage Tanks­ University activities/operations designed to prevent releases of oil from Aboveground Petroleum Storage Tanks (ASTs) required to comply with following

  15. New York's Energy Storage System Gets Recharged

    Broader source: Energy.gov [DOE]

    Jonathan Silver and Matt Rogers on a major breakthrough for New York state's energy storage capacity.

  16. Optimize Storage Placement in Sensor Networks

    E-Print Network [OSTI]

    Li, Qun

    of limited storage, communication capacity, and battery power is ameliorated. Placing storage nodesOptimize Storage Placement in Sensor Networks Bo Sheng, Member, IEEE, Qun Li, Member, IEEE, and Weizhen Mao Abstract--Data storage has become an important issue in sensor networks as a large amount

  17. Hydrogen Storage Technologies Roadmap, November 2005

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing plan for research into and development of hydrogen storage technology for transportation applications.

  18. Energy Storage Management for VG Integration (Presentation)

    SciTech Connect (OSTI)

    Kirby, B.

    2011-10-01T23:59:59.000Z

    This presentation describes how you economically manage integration costs of storage and variable generation.

  19. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01T23:59:59.000Z

    microgrid can be fuel cells, PV, solar thermal, stationary storage, absorption cooling, combined heat and power,

  20. Uranium enrichment decontamination and decommissioning fund

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    One of the most challenging issues facing the Department of Energy`s Office of Environmental Management is the cleanup of the three gaseous diffusion plants. In October 1992, Congress passed the Energy Policy Act of 1992 and established the Uranium Enrichment Decontamination and Decommissioning Fund to accomplish this task. This mission is being undertaken in an environmentally and financially responsible way by: devising cost-effective technical solutions; producing realistic life-cycle cost estimates, based on practical assumptions and thorough analysis; generating coherent long-term plans which are based on risk assessments, land use, and input from stakeholders; and, showing near-term progress in the cleanup of the gaseous diffusion facilities at Oak Ridge.