National Library of Energy BETA

Sample records for fundamental thermodynamic parameters

  1. Fundamental limitations for quantum and nano thermodynamics

    E-Print Network [OSTI]

    Micha? Horodecki; Jonathan Oppenheim

    2014-10-25

    The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit - when the number of particles becomes very large. Here, we study thermodynamics in the opposite regime - at both the nano scale, and when quantum effects become important. Applying results from quantum information theory we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transformations, and as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from nonequilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle.

  2. Adsorption Thermodynamics and Intrinsic Activation Parameters...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adsorption Thermodynamics and Intrinsic Activation Parameters for Monomolecular Cracking of n-Alkanes on Bronsted Acid Sites in Zeolites Previous Next List Amber Janda, Bess...

  3. FUNDAMENTAL PARAMETERS AND CHEMICAL COMPOSITION OF ARCTURUS

    SciTech Connect (OSTI)

    Ramirez, I. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Allende Prieto, C., E-mail: ivan@obs.carnegiescience.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, 38205 La Laguna, Tenerife (Spain)

    2011-12-20

    We derive a self-consistent set of atmospheric parameters and abundances of 17 elements for the red giant star Arcturus: T{sub eff} = 4286 {+-} 30 K, log g = 1.66 {+-} 0.05, and [Fe/H] = -0.52 {+-} 0.04. The effective temperature was determined using model atmosphere fits to the observed spectral energy distribution from the blue to the mid-infrared (0.44 to 10 {mu}m). The surface gravity was calculated using the trigonometric parallax of the star and stellar evolution models. A differential abundance analysis relative to the solar spectrum allowed us to derive iron abundances from equivalent width measurements of 37 Fe I and 9 Fe II lines, unblended in the spectra of both Arcturus and the Sun; the [Fe/H] value adopted is derived from Fe I lines. We also determine the mass, radius, and age of Arcturus: M = 1.08 {+-} 0.06 M{sub Sun }, R = 25.4 {+-} 0.2 R{sub Sun }, and {tau} = 7.1{sup +1.5}{sub -1.2} Gyr. Finally, abundances of the following elements are measured from an equivalent width analysis of atomic features: C, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn. We find the chemical composition of Arcturus typical of that of a local thick-disk star, consistent with its kinematics.

  4. Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms - Final Report

    SciTech Connect (OSTI)

    Williamson, Mark A.; Ebbinghaus, Bartley B.; Navrotsky, Alexandra

    2001-03-01

    The end of the Cold War raised the need for the technical community to be concerned with the disposition of excess nuclear weapon material. The plutonium will either be converted into mixed-oxide fuel for use in nuclear reactors or immobilized in glass or ceramic waste forms and placed in a repository. The stability and behavior of plutonium in the ceramic materials as well as the phase behavior and stability of the ceramic material in the environment is not well established. In order to provide technically sound solutions to these issues, thermodynamic data are essential in developing an understanding of the chemistry and phase equilibria of the actinide-bearing mineral waste form materials proposed as immobilization matrices. Mineral materials of interest include zircon, zirconolite, and pyrochlore. High temperature solution calorimetry is one of the most powerful techniques, sometimes the only technique, for providing the fundamental thermodynamic data needed to establish optimum material fabrication parameters, and more importantly understand and predict the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials.

  5. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  6. Primordial nucleosynthesis as a probe of fundamental physics parameters

    E-Print Network [OSTI]

    Thomas Dent; Steffen Stern; Christof Wetterich

    2007-08-10

    We analyze the effect of variation of fundamental couplings and mass scales on primordial nucleosynthesis in a systematic way. The first step establishes the response of primordial element abundances to the variation of a large number of nuclear physics parameters, including nuclear binding energies. We find a strong influence of the n-p mass difference (for the 4He abundance), of the nucleon mass (for deuterium) and of A=3,4,7 binding energies (for 3He, 6Li and 7Li). A second step relates the nuclear parameters to the parameters of the Standard Model of particle physics. The deuterium, and, above all, 7Li abundances depend strongly on the average light quark mass hat{m} \\equiv (m_u+m_d)/2. We calculate the behaviour of abundances when variations of fundamental parameters obey relations arising from grand unification. We also discuss the possibility of a substantial shift in the lithium abundance while the deuterium and 4He abundances are only weakly affected.

  7. The Possibility Of The Strict Global Thermodynamic Equilibrium In The Expanding Universe At Presence Of The Fundamental Scalar Field

    E-Print Network [OSTI]

    Ignat'ev, Yurii

    2014-01-01

    In the article it is shown that at presence of fundamental scalar fields determining the masses of the scalar charged particles the global thermodynamic equilibrium (GTE) is compatible with a process of the cosmological expansion of the statistical system.

  8. Synthesis, characterization, and thermodynamic parameters of vanadium dioxide

    SciTech Connect (OSTI)

    Qi Ji [Department of Chemical Engineering of Material, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Department of Chemical Engineering, Dalian Life Science College, Dalian Nationalities University, 18 Laohe West Road, Dalian 116600 (China); Ning Guiling [Department of Chemical Engineering of Material, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China)], E-mail: ninggl@dlut.edu.cn; Lin Yuan [Department of Chemical Engineering of Material, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China)

    2008-08-04

    A novel process was developed for synthesizing pure thermochromic vanadium dioxide (VO{sub 2}) by thermal reduction of vanadium pentoxide (V{sub 2}O{sub 5}) in ammonia gas. The process of thermal reduction of V{sub 2}O{sub 5} was optimized by both experiments and modeling of thermodynamic parameters. The product VO{sub 2} was characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TG), and differential scanning calorimetry (DSC). The experimental results indicated that pure thermochromic VO{sub 2} crystal particles were successfully synthesized. The phase transition temperature of the VO{sub 2} is approximately 342.6 K and the enthalpy of phase transition is 44.90 J/g.

  9. Rapid Computation of Thermodynamic Properties Over Multidimensional Nonbonded Parameter Spaces using Adaptive Multistate Reweighting

    E-Print Network [OSTI]

    Naden, Levi N

    2015-01-01

    We show how thermodynamic properties of molecular models can be computed over a large, multidimensional parameter space by combining multistate reweighting analysis with a linear basis function approach. This approach reduces the computational cost to estimate thermodynamic properties from molecular simulations for over 130,000 tested parameter combinations from over a thousand CPU years to tens of CPU days. This speed increase is achieved primarily by computing the potential energy as a linear combination of basis functions, computed from either modified simulation code or as the difference of energy between two reference states, which can be done without any simulation code modification. The thermodynamic properties are then estimated with the Multistate Bennett Acceptance Ratio (MBAR) as a function of multiple model parameters without the need to define a priori how the states are connected by a pathway. Instead, we adaptively sample a set of points in parameter space to create mutual configuration space o...

  10. Non-extensivity Parameter of Thermodynamical Model of Hadronic Interactions at LHC energies

    E-Print Network [OSTI]

    Tadeusz Wibig

    2010-05-31

    The LHC measurements above SPS and Tevatron energies give the opportunity to test predictions of non-extensive thermodynamical picture of hadronic interaction to examine measured transverse momenta distributions for new interaction energy range. We determined Tsallis model non-extensivity parameter for the hadronization process before short-lived particles decayed and distort the initial p_t distribution. We have shown that it follows exactly smooth rise determined at lower energies below present LHC record. The shape of the q parameter energy dependence is consistent with expectations and the evidence of the asymptotic limit may be seen.

  11. Thermal equation of state and thermodynamic Grüneisen parameter of beryllium metal

    SciTech Connect (OSTI)

    Zhang, Jianzhong, E-mail: jzhang@lanl.gov; Zhu, Jinlong [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Velisavljevic, Nenad [Dynamic and Energetic Materials Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Wang, Liping; Zhao, Yusheng [High Pressure Science and Engineering Center and Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154 (United States)

    2013-11-07

    We conducted in-situ high-pressure synchrotron x-ray experiments on beryllium metal at pressures up to 7.9?GPa and temperatures up to 1373?K. A complete pressure (P)–volume (V)–temperature (T) equation of state (EOS) is determined based on the experiment, which includes temperature derivatives of elastic bulk modulus (at both constant pressure and constant volume) and pressure dependence of thermal expansivity. From this EOS, we calculate thermal pressure, heat capacity at constant volume, and thermodynamic Grüneisen parameter as a function of temperature. Above ?600?K, our results show notable deviation from theoretical predictions using the quasiharmonic and local-density approximations, indicating that the free energy calculations need to be further improved within the current scheme of approximations.

  12. On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids

    SciTech Connect (OSTI)

    Sai Venkata Ramana, A.

    2014-04-21

    The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids.

  13. MSE 3050, Thermodynamics and Kinetics of Materials, Leonid Zhigilei Review of classical thermodynamics

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    MSE 3050, Thermodynamics and Kinetics of Materials, Leonid Zhigilei Review of classical thermodynamics Fundamental Laws, Properties and Processes (1) First Law - Energy Balance Thermodynamic functions material in any other textbook on thermodynamics #12;MSE 3050, Thermodynamics and Kinetics of Materials

  14. Fundamental Parameters of Nearby Stars from the Comparison with Evolutionary Calculations: Masses, Radii and Effective temperatures

    E-Print Network [OSTI]

    Carlos Allende Prieto; David L. Lambert

    1999-11-02

    The Hipparcos mission has made it possible to constrain the positions of nearby field stars in the colour-magnitude diagram with very high accuracy. These positions can be compared with the predictions of stellar evolutionary calculations to provide information on the basic parameters of the stars: masses, radii, effective temperatures, ages, and chemical composition. The degeneracy between mass, age, and metallicity is not so large as to prevent a reliable estimate of masses, radii and effective temperatures, at least for stars of solar metallicity. The evolutionary models of Bertelli et al. (1994) predict those parameters finely, and furthermore, the applied transformation from the theoretical (log g-Teff) to the observational (Mv-B-V) plane is precise enough to derive radii with an uncertainty of ~ 6%, masses within ~ 8%, and Teffs within ~ 2% for a certain range of the stellar parameters. This is demonstrated by means of comparison with the measurements in eclipsing binaries and the InfraRed Flux Method. The application of the interpolation procedure in the theoretical isochrones to the stars within 100 pc from the Sun observed with Hipparcos provides estimates for 17,219 stars

  15. Thermodynamic Order Parameters and Statistical-Mechanical Measures for Characterization of the Burst and Spike Synchronizations of Bursting Neurons

    E-Print Network [OSTI]

    Sang-Yoon Kim; Woochang Lim

    2014-10-06

    We are interested in characterization of population synchronization of bursting neurons which exhibit both the slow bursting and the fast spiking timescales, in contrast to spiking neurons. Population synchronization may be well visualized in the raster plot of neural spikes which can be obtained in experiments. The instantaneous population firing rate (IPFR) $R(t)$, which may be directly obtained from the raster plot of spikes, is often used as a realistic collective quantity describing population behaviors in both the computational and the experimental neuroscience. For the case of spiking neurons, realistic thermodynamic order parameter and statistical-mechanical spiking measure, based on $R(t)$, were introduced in our recent work to make practical characterization of spike synchronization. Here, we separate the slow bursting and the fast spiking timescales via frequency filtering, and extend the thermodynamic order parameter and the statistical-mechanical measure to the case of bursting neurons. Consequently, it is shown in explicit examples that both the order parameters and the statistical-mechanical measures may be effectively used to characterize the burst and spike synchronizations of bursting neurons.

  16. Fundamental Parameters and Abundances of Metal-Poor Stars: The SDSS Standard BD +17 4708

    E-Print Network [OSTI]

    I. Ramirez; C. Allende Prieto; S. Redfield; D. L. Lambert

    2006-08-25

    The atmospheric parameters and iron abundance of the Sloan Digital Sky Survey (SDSS) spectrophotometric standard star BD +17 4708 are critically examined using up-to-date Kurucz model atmospheres, LTE line formation calculations, and reliable atomic data. We find Teff = 6141+-50 K, log g = 3.87+-0.08, and [Fe/H]=-1.74+-0.09. The line-of-sight interstellar reddening, bolometric flux, limb-darkened angular diameter, stellar mass, and the abundances of Mg, Si, and Ca are also obtained. This star is a unique example of a moderately metal-poor star for which the effective temperature can be accurately constrained from the observed spectral energy distribution (corrected for reddening). Such analysis leads to a value that is higher than most spectroscopic results previously reported in the literature (~5950 K). We find that the ionization balance of Fe lines is satisfied only if a low Teff (~5950 K) is adopted. With our preferred Teff (6141 K), the mean iron abundance we obtain from the FeII lines is lower by about 0.15 dex than that from the FeI lines, and therefore, the discrepancy between the mean iron abundance from FeI and FeII lines cannot be explained by overionization by UV photons as the main non-LTE effect. We also comment on non-LTE effects and the importance of inelastic collisions with neutral H atoms in the determination of oxygen abundances in metal-poor stars from the 777 nm OI triplet. (Abridged)

  17. Energy and Centrality Dependence of Chemical Freeze-out Thermodynamics parameters

    E-Print Network [OSTI]

    N. Yu; F. Liu; K. Wu

    2014-09-03

    Driven by the Beam Energy Scan (BES) program at the RHIC, researches and discussions on the QCD phase diagram have flourished recently. In order to provide a reference from microscopic transport models, we performed a systematic analysis, using a multiphase transport (AMPT) model for the particle yields and a statistical model (THERMUS) for the thermal fit, for Au+Au collisions at $\\sqrt{s_{\\text{NN}}}$=7.7-200 GeV. It is found that at a fixed collision centrality the chemical freeze-out parameter, temperature $T_{\\text{ch}}$, increases with collision energy and somehow saturates at certain values of $T_{\\text{ch}}$ in collisions near $\\sqrt{s_{\\text{NN}}}$=10 GeV, indicating the limiting temperature in hadronic interactions; meanwhile the baryon chemical potential $\\mu_B$ decrease with the collision energy. The saturation temperature is also found to be dependent on partonic interaction. At a given collision energy, it is found that both $T_{\\text{ch}}$ and $\\mu_B$ decrease towards more peripheral collisions in the grand canonical approach. The energy and centrality dependence of other chemical freeze-out parameters, strangeness chemical potential $\\mu_S$, strangeness undersaturation factor $\\gamma_S$, and the volume of the fireball $V$ are also presented in this paper. The chemical potential ratio $\\mu_s/\\mu_B$ is also compared with lattice QCD calculation. The AMPT default model gives better descriptions on both the particle yields and the chemical freeze-out parameters than those from the AMPT string-melting model.

  18. FUNDAMENTAL PARAMETERS, INTEGRATED RED GIANT BRANCH MASS LOSS, AND DUST PRODUCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect (OSTI)

    McDonald, I.; Zijlstra, A. A. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, Manchester, M13 9PL (United Kingdom); Boyer, M. L.; Gordon, K.; Meixner, M.; Sewilo, M.; Shiao, B.; Whitney, B. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Van Loon, J. Th. [Lennard-Jones Laboratories, Keele University, ST5 5BG (United Kingdom); Hora, J. L.; Robitaille, T. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516 (United States); Babler, B.; Meade, M. [Department of Astronomy, University of Wisconsin, Madison, 475 North Charter Street, Madison, WI 53706-1582 (United States); Block, M.; Misselt, K., E-mail: iain.mcdonald-2@manchester.ac.uk [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tuscon, AZ 85721 (United States)

    2011-04-01

    Fundamental parameters and time evolution of mass loss are investigated for post-main-sequence stars in the Galactic globular cluster 47 Tucanae (NGC 104). This is accomplished by fitting spectral energy distributions (SEDs) to existing optical and infrared photometry and spectroscopy, to produce a true Hertzsprung-Russell diagram. We confirm the cluster's distance as d = 4611{sup +213}{sub -200} pc and age as 12 {+-} 1 Gyr. Horizontal branch models appear to confirm that no more red giant branch mass loss occurs in 47 Tuc than in the more metal-poor {omega} Centauri, though difficulties arise due to inconsistencies between the models. Using our SEDs, we identify those stars that exhibit infrared excess, finding excess only among the brightest giants: dusty mass loss begins at a luminosity of {approx}1000 L{sub sun}, becoming ubiquitous above L = 2000 L{sub sun}. Recent claims of dust production around lower-luminosity giants cannot be reproduced, despite using the same archival Spitzer imagery.

  19. Global survey of star clusters in the Milky Way I. The pipeline and fundamental parameters in the second quadrant

    E-Print Network [OSTI]

    Kharchenko, N V; Schilbach, E; Röser, S; Scholz, R -D

    2012-01-01

    Aims: On the basis of the PPMXL star catalogue we performed a survey of star clusters in the second quadrant of the Milky Way. Methods: From the PPMXL catalogue of positions and proper motions we took the subset of stars with near-infrared photometry from 2MASS and added the remaining 2MASS stars without proper motions (called 2MAst, i.e. 2MASS with astrometry). We developed a data-processing pipeline including interactive human control of a standardised set of multi-dimensional diagrams to determine kinematic and photometric membership probabilities for stars in a cluster region. The pipeline simultaneously produced the astrophysical parameters of a cluster. From literature we compiled a target list of presently known open and globular clusters, cluster candidates, associations, and moving groups. From established member stars we derived spatial parameters (coordinates of centres and radii of the main morphological parts of clusters) and cluster kinematics (average proper motions and sometimes radial velocit...

  20. Algorithmic Thermodynamics John C. Baez

    E-Print Network [OSTI]

    Cortes, Corinna

    Algorithmic Thermodynamics John C. Baez Department of Mathematics, University of California in statistical mechanics. This viewpoint allows us to apply many techniques developed for use in thermodynamics and chemical potential. We derive an analogue of the fundamental thermodynamic relation dE = TdS - PdV + µd

  1. High-precision CoRoT space photometry and fundamental parameter determination of the B2.5V star HD 48977

    E-Print Network [OSTI]

    Thoul, Anne; Catala, Claude; Aerts, Conny; Morel, Thierry; Briquet, Maryline; Hillen, Michel; Raskin, Gert; Van Winckel, Hans; Auvergne, Michel; Baglin, Annie; Baudin, Frédéric; Michel, Eric

    2012-01-01

    We present the CoRoT light curve of the bright B2.5V star HD 48977 observed during a short run of the mission in 2008, as well as a high-resolution spectrum gathered with the HERMES spectrograph at the Mercator telescope. We use several time series analysis tools to explore the nature of the variations present in the light curve. We perform a detailed analysis of the spectrum of the star to determine its fundamental parameters and its element abundances. We find a large number of high-order g-modes, and one rotationally induced frequency. We find stable low-amplitude frequencies in the p-mode regime as well. We conclude that HD 48977 is a new Slowly Pulsating B star with fundamental parameters found to be Teff = 20000 $\\pm$ 1000 K and log(g)=4.2 $/pm$ 0.1. The element abundances are similar to those found for other B stars in the solar neighbourhood. HD 48977 was observed during a short run of the CoRoT satellite implying that the frequency precision is insufficient to perform asteroseismic modelling of the s...

  2. Thermodynamics Henri J.F. Jansen

    E-Print Network [OSTI]

    Jansen, Henri J. F.

    Thermodynamics Henri J.F. Jansen Department of Physics Oregon State University August 19, 2010 #12;II #12;Contents PART I. Thermodynamics Fundamentals 1 1 Basic Thermodynamics. 3 1.1 Introduction of Thermodynamics. . . . . . . . . . . . . . . . . . 12 1.4 First law: Energy

  3. Thermodynamics of microstructure evolution: grain growth Victor L. Berdichevsky

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Thermodynamics of microstructure evolution: grain growth Victor L. Berdichevsky Mechanical thermodynamic parameters, entropy of microstructure and temperature of microstruc- ture. It was claimed that there is "one more law of thermodynamics": entropy of microstructure must decay in isolated thermodynamic stable

  4. Spectroscopic determination of the fundamental parameters of 66 B-type stars in the field-of-view of the CoRoT satellite

    E-Print Network [OSTI]

    Lefever, K; Morel, T; Aerts, C; Decin, L; Briquet, M

    2009-01-01

    We aim to determine the fundamental parameters of a sample of B stars with apparent visual magnitudes below 8 in the field-of-view of the CoRoT space mission, from high-resolution spectroscopy. We developed an automatic procedure for the spectroscopic analysis of B-type stars with winds, based on an extensive grid of FASTWIND model atmospheres. We use the equivalent widths and/or the line profile shapes of continuum normalized hydrogen, helium and silicon line profiles to determine the fundamental properties of these stars in an automated way. After thorough tests, both on synthetic datasets and on very high-quality, high-resolution spectra of B stars for which we already had accurate values of their physical properties from alternative analyses, we applied our method to 66 B-type stars contained in the ground-based archive of the CoRoT space mission. We discuss the statistical properties of the sample and compare them with those predicted by evolutionary models of B stars. Our spectroscopic results provide a...

  5. How fundamental are fundamental constants?

    E-Print Network [OSTI]

    M. J. Duff

    2014-12-17

    I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, alpha. For example, the Standard Model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers, scales... they use to measure them. Dimensional constants, on the other hand, such as h, c, G, e, k..., are merely human constructs whose number and values differ from one choice of units to the next. In this sense only dimensionless constants are "fundamental". Similarly, the possible time variation of dimensionless fundamental "constants" of nature is operationally well-defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as c or G on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might disagree depending on their apparatus. All these confusions disappear if one asks only unit-independent questions. We provide a selection of opposing opinions in the literature and respond accordingly.

  6. How fundamental are fundamental constants?

    E-Print Network [OSTI]

    Duff, M J

    2014-01-01

    I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, alpha. For example, the Standard Model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers, scales... they use to measure them. Dimensional constants, on the other hand, such as h, c, G, e, k..., are merely human constructs whose number and values differ from one choice of units to the next. In this sense only dimensionless constants are "fundamental". Similarly, the possible time variation of dimensionless fundamental "constants" of nature is operationally well-defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as c or G on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might...

  7. NonEquilibrium Thermodynamics Explains Semiotic Shapes

    E-Print Network [OSTI]

    Kreinovich, Vladik

    Non­Equilibrium Thermodynamics Explains Semiotic Shapes: Applications to Astronomy and to Non­equilibrium thermodynamics, non­destructive testing, aerospace structures 1. SEMIOTIC SHAPES IN ASTRONOMY: FORMULATION by using the fundamental physical ideas of symmetry and non­equilibrium thermodynamics. 2. MAIN PHYSICAL

  8. THERMODYNAMICS Molecular Simulation of Multicomponent Reaction

    E-Print Network [OSTI]

    Lisal, Martin

    THERMODYNAMICS Molecular Simulation of Multicomponent Reaction and Phase Equilibria in MTBE Ternary System Martin Lisal´ E. Hala Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals N1G 2W1, Canada Ivo Nezbeda E. Hala Laboratory of Thermodynamics, Institute of Chemical Process

  9. Quantum Thermodynamics

    E-Print Network [OSTI]

    Ronnie Kosloff

    2013-05-10

    Quantum thermodynamics addresses the emergence of thermodynamical laws from quantum mechanics. The link is based on the intimate connection of quantum thermodynamics with the theory of open quantum systems. Quantum mechanics inserts dynamics into thermodynamics giving a sound foundation to finite-time-thermodynamics. The emergence of the 0-law I-law II-law and III-law of thermodynamics from quantum considerations is presented. The emphasis is on consistence between the two theories which address the same subject from different foundations. We claim that inconsistency is the result of faulty analysis pointing to flaws in approximations.

  10. Thermodynamic estimation: Ionic materials

    SciTech Connect (OSTI)

    Glasser, Leslie, E-mail: l.glasser@curtin.edu.au

    2013-10-15

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy, lattice energy, enthalpy, Gibbs energy values are available.

  11. Electrochemical thermodynamic measurement system

    DOE Patents [OSTI]

    Reynier, Yvan (Meylan, FR); Yazami, Rachid (Los Angeles, CA); Fultz, Brent T. (Pasadena, CA)

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  12. EMEC 320: THERMODYNAMICS I Updated: June 27, 2012

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    EMEC 320: THERMODYNAMICS I Updated: June 27, 2012 CATALOG DATA: Spring, 3 cr. Basic thermodynamic., Fundamentals of Thermodynamics, 7th ed., Wiley, ISBN 0-470-04192-7 INSTRUCTOR: Dr. Sarah Codd, 201 Roberts Hall of thermodynamics to engineering problems involving closed and open systems. · effectively apply and understand

  13. Thermodynamics of Fractal Universe

    E-Print Network [OSTI]

    Ahmad Sheykhi; Zeinab Teimoori; Bin Wang

    2013-01-12

    We investigate the thermodynamical properties of the apparent horizon in a fractal universe. We find that one can always rewrite the Friedmann equation of the fractal universe in the form of the entropy balance relation $ \\delta Q=T_h d{S_h}$, where $ \\delta Q $ and $ T_{h} $ are the energy flux and Unruh temperature seen by an accelerated observer just inside the apparent horizon. We find that the entropy $S_h$ consists two terms, the first one which obeys the usual area law and the second part which is the entropy production term due to nonequilibrium thermodynamics of fractal universe. This shows that in a fractal universe, a treatment with nonequilibrium thermodynamics of spacetime may be needed. We also study the generalized second law of thermodynamics in the framework of fractal universe. When the temperature of the apparent horizon and the matter fields inside the horizon are equal, i.e. $T=T_h$, the generalized second law of thermodynamics can be fulfilled provided the deceleration and the equation of state parameters ranges either as $-1 \\leq q thermodynamics can be secured in a fractal universe by suitably choosing the fractal parameter $\\beta$.

  14. Entanglement Thermodynamics

    E-Print Network [OSTI]

    Mohsen Alishahiha; Davood Allahbakhshi; Ali Naseh

    2013-08-29

    We study entanglement entropy for an excited state by making use of the proposed holographic description of the entanglement entropy. For a sufficiently small entangling region and with reasonable identifications we find an equation between entanglement entropy and energy which is reminiscent of the first law of thermodynamics. We then suggest four statements which might be thought of as four laws of entanglement thermodynamics.

  15. Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation

    SciTech Connect (OSTI)

    Peter R Zalupski; Leigh R Martin; Ken Nash; Yoshinobu Nakamura; Masahiko Yamamoto

    2009-07-01

    The ingenious combination of lactate and diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.

  16. Thermodynamics of Statistical Inference by Cells Alex H. Lang,1,*

    E-Print Network [OSTI]

    Mehta, Pankaj

    Thermodynamics of Statistical Inference by Cells Alex H. Lang,1,* Charles K. Fisher,1 Thierry Mora June 2014; published 3 October 2014) The deep connection between thermodynamics, computation that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we

  17. ChE 210A M. F. Doherty Thermodynamics

    E-Print Network [OSTI]

    Bigelow, Stephen

    ChE 210A M. F. Doherty Thermodynamics Instructor: Michael F. Doherty (mfd@engineering.ucsb.edu, 893 is an introduction to the fundamentals of classical and statistical thermodynamics. We focus on equilibrium are formulated using either classical or statistical thermodynamics, and these methods have found wide

  18. Quantum Thermodynamics

    E-Print Network [OSTI]

    Sai Vinjanampathy; Janet Anders

    2015-08-25

    Quantum thermodynamics is an emerging research field aiming to extend standard thermodynamics and non-equilibrium statistical physics to ensembles of sizes well below the thermodynamic limit, in non-equilibrium situations, and with the full inclusion of quantum effects. Fuelled by experimental advances and the potential of future nanoscale applications this research effort is pursued by scientists with different backgrounds, including statistical physics, many-body theory, mesoscopic physics and quantum information theory, who bring various tools and methods to the field. A multitude of theoretical questions are being addressed ranging from issues of thermalisation of quantum systems and various definitions of "work", to the efficiency and power of quantum engines. This overview provides a perspective on a selection of these current trends accessible to postgraduate students and researchers alike.

  19. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect (OSTI)

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  20. Exact solution of the thermodynamics and size parameters of a polymer confined to a lattice of finite size: Large chain limit

    SciTech Connect (OSTI)

    Snyder, Chad R. Guttman, Charles M.; Di Marzio, Edmund A.

    2014-01-21

    We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic properties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic boundary conditions can also be employed to reduce computation time. Advantages to this method include easy definition of chemical and physical structure (or surface roughness) of the lattice and site-specific monomer-specific energetics, and straightforward relatively fast computations. We show the usefulness and ease of implementation of this extension by examining the effect of energy variation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look particularly at the polymer density profile as a function of temperature in the confined region for very long polymers. One particularly striking result is the shift in the critical condition for adsorption due to surface energy inhomogeneities and the length scale of the inhomogeneities; an observation that could have important implications for polymer chromatography. Our method should have applications to both copolymers and biopolymers of arbitrary molar mass.

  1. DOE fundamentals handbook: Chemistry

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids).

  2. Thermodynamics of error correction

    E-Print Network [OSTI]

    Pablo Sartori; Simone Pigolotti

    2015-04-24

    Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and dissipated work of the process. Its derivation is based on the second law of thermodynamics, hence its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  3. QCD Thermodynamics

    E-Print Network [OSTI]

    Z. Fodor

    2007-11-02

    Recent results on QCD thermodynamics are presented. The nature of the T>0 transition is determined, which turns out to be an analytic cross-over. The absolute scale for this transition is calculated. The temperature dependent static potential is given. The results were obtained by using a Symanzik improved gauge and stout-link improved fermionic action. In order to approach the continuum limit four different sets of lattice spacings were used with temporal extensions N_t=4, 6, 8 and 10 (they correspond to lattice spacings a \\sim 0.3, 0.2, 0.15 and 0.12 fm). A new technique is presented, which --in contrast to earlier methods-- enables one to determine the equation of state at very large temperatures.

  4. Thermodynamics and Finite size scaling in Scalar Field Theory

    E-Print Network [OSTI]

    Institute of Fundamental Research, Mumbai for the degree of Master of Science, in Physics By Debasish Research, Mumbai December 2008 #12;ii #12;Synopsis In this work we study the thermodynamics

  5. Thermodynamic States in Explosion Fields

    SciTech Connect (OSTI)

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

  6. Thermodynamics Review and Relations

    E-Print Network [OSTI]

    Thermodynamics Review and Relations Review · Gas filled piston Motivation Thermodynamics the efficiency of steam engine. Only macroscopic continues states of matter are con- sidered. Thermodynamics of thermodynamics is essential since it easily to statistical mechanics. Definitions and Convention Signs The sign

  7. Thermodynamics and Phase Equilibria

    E-Print Network [OSTI]

    New South Wales, University of

    potential. Cell potentials and thermodynamic functions. Nernst equation. Pourbaix diagrams. 4 Equilibrium

  8. Adsorption Thermodynamics and Intrinsic Activation Parameters for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act RecoveryTechnologies | BlandineMonomolecular

  9. Hessian geometry and entanglement thermodynamics

    E-Print Network [OSTI]

    Matsueda, Hiroaki

    2015-01-01

    We reconstruct entanglement thermodynamics by means of Hessian geometry, since this method exactly generalizes thermodynamics into much wider exponential family cases including quantum entanglement. Starting with the correct first law of entanglement thermodynamics, we derive that a proper choice of the Hessian potential leads to both of the entanglement entropy scaling for quantum critical systems and hyperbolic metric (or AdS space with imaginary time). We also derive geometric representation of the entanglement entropy in which the entropy is described as integration of local conserved current of information flowing across an entangling surface. We find that the entangling surface is equivalent to the domain boundary of the Hessian potential. This feature originates in a special property of critical systems in which we can identify the entanglement entropy with the Hessian potential after the second derivative by the canonical parameters, and this identification guarantees violation of extensive nature of ...

  10. Hessian geometry and entanglement thermodynamics

    E-Print Network [OSTI]

    Hiroaki Matsueda

    2015-08-11

    We reconstruct entanglement thermodynamics by means of Hessian geometry, since this method exactly generalizes thermodynamics into much wider exponential family cases including quantum entanglement. Starting with the correct first law of entanglement thermodynamics, we derive that a proper choice of the Hessian potential leads to both of the entanglement entropy scaling for quantum critical systems and hyperbolic metric (or AdS space with imaginary time). We also derive geometric representation of the entanglement entropy in which the entropy is described as integration of local conserved current of information flowing across an entangling surface. We find that the entangling surface is equivalent to the domain boundary of the Hessian potential. This feature originates in a special property of critical systems in which we can identify the entanglement entropy with the Hessian potential after the second derivative by the canonical parameters, and this identification guarantees violation of extensive nature of the entropy.

  11. Thermodynamic Origin of the Null Energy Condition

    E-Print Network [OSTI]

    Maulik Parikh; Andrew Svesko

    2015-11-20

    We derive the classical null energy condition, understood as a constraint on the Ricci tensor, from the second law of thermodynamics applied to Bekenstein-Hawking entropy. The derivation provides evidence that the null energy condition, which has usually been regarded as a condition on matter, is fundamentally a property of gravity.

  12. Thermodynamic Origin of the Null Energy Condition

    E-Print Network [OSTI]

    Parikh, Maulik

    2015-01-01

    We derive the classical null energy condition, understood as a constraint on the Ricci tensor, from the second law of thermodynamics applied to Bekenstein-Hawking entropy. The derivation provides evidence that the null energy condition, which has usually been regarded as a condition on matter, is fundamentally a property of gravity.

  13. Thermodynamic cost of creating correlations

    E-Print Network [OSTI]

    Marcus Huber; Martí Perarnau-Llobet; Karen V. Hovhannisyan; Paul Skrzypczyk; Claude Klöckl; Nicolas Brunner; Antonio Acín

    2015-01-15

    We investigate the fundamental limitations imposed by thermodynamics for creating correlations. Considering a collection of initially uncorrelated thermal quantum systems, we ask how much classical and quantum correlations can be obtained via a cyclic Hamiltonian process. We derive bounds on both the mutual information and entanglement of formation, as a function of the temperature of the systems and the available energy. While for a finite number of systems there is a maximal temperature allowing for the creation of entanglement, we show that genuine multipartite entanglement---the strongest form of entanglement in multipartite systems---can be created at any temperature when sufficiently many systems are considered. This approach may find applications, e.g. in quantum information processing, for physical platforms in which thermodynamic considerations cannot be ignored.

  14. Thermodynamics of an accelerated expanding universe

    E-Print Network [OSTI]

    Bin Wang; Yungui Gong; Elcio Abdalla

    2005-11-10

    We investigate the laws of thermodynamics in an accelerating universe driven by dark energy with a time-dependent equation of state. In the case we consider that the physically relevant part of the Universe is that envelopped by the dynamical apparent horizon, we have shown that both the first law and second law of thermodynamics are satisfied. On the other hand, if the boundary of the Universe is considered to be the cosmological event horizon the thermodynamical description based on the definitions of boundary entropy and temperature breaks down. No parameter redefinition can rescue the thermodynamics laws from such a fate, rendering the cosmological event horizon unphysical from the point of view of the laws of thermodynamics.

  15. THERMODYNAMICS AND MECHANISMS OF SINTERING

    E-Print Network [OSTI]

    Pask, J.A.

    2011-01-01

    E. Hoge and Joseph A. Pask, "Thermodynamics of So:!.id StateJoseph A. Pask, "Thermodynamics and Geometric Considerations8419 r- ,y / ( /)~; - - I THERMODYNAMICS AND MECHANISMS OF

  16. Rigorous and General Definition of Thermodynamic Entropy

    E-Print Network [OSTI]

    Gian Paolo Beretta; Enzo Zanchini

    2010-10-05

    The physical foundations of a variety of emerging technologies --- ranging from the applications of quantum entanglement in quantum information to the applications of nonequilibrium bulk and interface phenomena in microfluidics, biology, materials science, energy engineering, etc. --- require understanding thermodynamic entropy beyond the equilibrium realm of its traditional definition. This paper presents a rigorous logical scheme that provides a generalized definition of entropy free of the usual unnecessary assumptions which constrain the theory to the equilibrium domain. The scheme is based on carefully worded operative definitions for all the fundamental concepts employed, including those of system, property, state, isolated system, environment, process, separable system, system uncorrelated from its environment, and parameters of a system. The treatment considers also systems with movable internal walls and/or semipermeable walls, with chemical reactions and/or external force fields, and with small numbers of particles. The definition of reversible process is revised by introducing the new concept of scenario. The definition of entropy involves neither the concept of heat nor that of quasistatic process; it applies to both equilibrium and nonequilibrium states. The role of correlations on the domain of definition and on the additivity of energy and entropy is discussed: it is proved that energy is defined and additive for all separable systems, while entropy is defined and additive only for separable systems uncorrelated from their environment; decorrelation entropy is defined. The definitions of energy and entropy are extended rigorously to open systems. Finally, to complete the discussion, the existence of the fundamental relation for stable equilibrium states is proved, in our context, for both closed and open systems.

  17. Spring 2014 Thermodynamics -1

    E-Print Network [OSTI]

    Battaglia, Francine

    Spring 2014 Thermodynamics - 1 Consider an insulated (adiabatic) piston and cylinder arrangement. Confirm this statement using the second law of thermodynamics. (b) (20) She now wants to calculate the work done by the air on the piston by using the first law of thermodynamics. Do this. Draw a T

  18. Student Code Number: Thermodynamics

    E-Print Network [OSTI]

    Feeny, Brian

    Student Code Number: Thermodynamics Ph.D. Qualifying Exam Department of Mechanical Engineering;Thermodynamics Qualifier January 2013 Problem 1 Air is compressed in an axial-flow compressor operating at steady of exergy destruction within the compressor, in kJ per kg of air flowing. #12;Thermodynamics Qualifier

  19. SECOND LAW OF THERMODYNAMICS

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    SECOND LAW OF THERMODYNAMICS: STATUS AND CHALLENGES San Diego, California, USA 14 ­ 15 June 2011 The First Law of energy conservation was even known (Joule 1843) and long before Thermodynamic concepts were, including this one. The Laws of Thermodynamics have much wider, including philosophical significance

  20. Masters thesis Thermodynamics

    E-Print Network [OSTI]

    Cambridge, University of

    I Masters thesis Thermodynamics of Solutes in Cementite Using First-Principles Calculations JangFirst-PrinciplesCalculations Jang,JaeHoon #12;III cementite Thermodynamics of Solutes in Cementite Using First-Principles Calculations #12;IV Thermodynamics of Solutes in Cementite Using First-Principles Calculations By Jang, Jae

  1. Particle Production and Universal Thermodynamics

    E-Print Network [OSTI]

    Subhajit Saha; Subenoy Chakraborty

    2015-07-06

    In the present work, particle creation mechanism has been employed to the Universe as a thermodynamical system. The Universe is considered to be a spatially flat FRW model and cosmic fluid is chosen as a perfect fluid with a barotropic equation of state -- $p = (\\gamma -1)\\rho$. By proper choice of the particle creation rate, expressions for the entropy and temperature have been determined at various stages of evolution of the Universe. Finally, using the deceleration parameter $q$ as a function of the redshift parameter $z$ based on recent observations, the particle creation rate has been evaluated and its variation at different epochs have been shown graphically.

  2. Duality, Residues, Fundamental class

    E-Print Network [OSTI]

    2011-05-22

    May 22, 2011 ... Duality, Residues, Fundamental class. Joseph Lipman. Purdue University. Department of Mathematics lipman@math.purdue.edu. May 22 ...

  3. Fundamental Equation of State for Deuterium

    SciTech Connect (OSTI)

    Richardson, I. A.; Leachman, J. W., E-mail: jacob.leachman@wsu.edu [HYdrogen Properties for Energy Research (HYPER) Laboratory, School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, Washington 99164 (United States); Lemmon, E. W. [Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)] [Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)

    2014-03-15

    World utilization of deuterium is anticipated to increase with the rise of fusion-energy machines such as ITER and NIF. We present a new fundamental equation of state for the thermodynamic properties of fluid deuterium. Differences between thermodynamic properties of orthodeuterium, normal deuterium, and paradeuterium are described. Separate ideal-gas functions were fitted for these separable forms together with a single real-fluid residual function. The equation of state is valid from the melting line to a maximum pressure of 2000 MPa and an upper temperature limit of 600 K, corresponding to available experimental measurements. The uncertainty in predicted density is 0.5% over the valid temperature range and pressures up to 300 MPa. The uncertainties of vapor pressures and saturated liquid densities are 2% and 3%, respectively, while speed-of-sound values are accurate to within 1% in the liquid phase.

  4. Thermodynamic entropy is the Noether invariant

    E-Print Network [OSTI]

    Sasa, Shin-ichi

    2015-01-01

    We study a classical many-particle system with an external control represented by a time dependent parameter in a Lagrangian. We show that thermodynamic entropy of the system is the Noether invariant associated with a symmetry for an infinitesimal non-uniform time translation $t\\to t+\\eta\\hbar \\beta$, where $\\eta$ is a small parameter, $\\hbar$ is the Planck constant, $\\beta$ is the inverse temperature that depends on the energy, and trajectories in the phase space are restricted to those consistent with quasi-static processes in thermodynamics.

  5. Introduction Systems Engineering Fundamentals ENGINEERING

    E-Print Network [OSTI]

    Rhoads, James

    Introduction Systems Engineering Fundamentals i SYSTEMS ENGINEERING FUNDAMENTALS January 2001;Systems Engineering Fundamentals Introduction ii #12;Introduction Systems Engineering Fundamentals iii ............................................................................................................................................. iv PART 1. INTRODUCTION Chapter 1. Introduction to Systems Engineering Management

  6. Thermodynamics and scale relativity

    E-Print Network [OSTI]

    Robert Carroll

    2011-10-13

    It is shown how the fractal paths of scale relativity (following Nottale) can be introduced into a thermodynamical context (following Asadov-Kechkin).

  7. Addressing the Crisis in Fundamental Physics

    E-Print Network [OSTI]

    Christopher W. Stubbs

    2007-12-18

    I present the case for fundamental physics experiments in space playing an important role in addressing the current "dark energy'' crisis. If cosmological observations continue to favor a value of the dark energy equation of state parameter w=-1, with no change over cosmic time, then we will have difficulty understanding this new fundamental physics. We will then face a very real risk of stagnation unless we detect some other experimental anomaly. The advantages of space-based experiments could prove invaluable in the search for the a more complete understanding of dark energy. This talk was delivered at the start of the Fundamental Physics Research in Space Workshop in May 2006.

  8. Why gravity is fundamental

    E-Print Network [OSTI]

    Shan Gao

    2011-07-16

    It is argued that the existence of a minimum size of spacetime may imply the fundamental existence of gravity as a geometric property of spacetime described by general relativity.

  9. Thermodynamic States in Explosion Fields

    SciTech Connect (OSTI)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  10. Physics 112 Thermodynamics and Statistical Physics Winter 2000 Instructor: Howard Haber

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Physics 112 Thermodynamics and Statistical Physics Winter 2000 Instructor: Howard Haber Office Hall--Room 289 REQUIRED TEXTBOOK: Thermal Physics, by Ralph Baierlein Recommended Outside Reading: Thermal Physics, by Charles Kittel and Herbert Kroemer Fundamentals of Statistical and Thermal Physics

  11. Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure

    E-Print Network [OSTI]

    Takahiro Sagawa; Masahito Ueda

    2009-05-30

    The fundamental lower bounds of the thermodynamic energy cost (work) needed for the measurement and the erasure of information are found. The lower bound for the erasure vindicates the "Landauer's principle" for a special case, but otherwise implies its breakdown, indicating that no unique relationship exists between logical reversibility and physical one. Our results constitute the second law of "information thermodynamics", in which the information content and thermodynamic variables are treated on an equal footing.

  12. First Law of Thermodynamics First Law of Thermodynamics

    E-Print Network [OSTI]

    Winokur, Michael

    First Law of Thermodynamics First Law of Thermodynamics Eth =W +Q Thermal energy Eth : Microscopic. #12;First Law of Thermodynamics Work W done on a gas is (area under the pV curve) W = - pdV = Vi Vf - tools First Law of Thermodynamics An adiabatic process is one for which Q = 0. Fast process but still

  13. Big bang nucleosynthesis as a probe of fundamental "constants"

    E-Print Network [OSTI]

    Thomas Dent; Steffen Stern

    2007-10-25

    Big Bang nucleosynthesis (BBN) is the earliest sensitive probe of the values of many fundamental particle physics parameters. We have found the leading linear dependences of primordial abundances on all relevant parameters of the standard BBN code, including binding energies and nuclear reaction rates. This enables us to set limits on possible variations of fundamental parameters. We find that 7Li is expected to be significantly more sensitive than other species to many fundamental parameters, a result which also holds for variations of coupling strengths in grand unified (GUT) models. Our work also indicates which areas of nuclear theory need further development if the values of ``constants'' are to be more accurately probed.

  14. From Quantum Mechanics to Thermodynamics?

    E-Print Network [OSTI]

    Steinhoff, Heinz-Jürgen

    From Quantum Mechanics to Thermodynamics? Dresden, 22.11.2004 Jochen Gemmer Universit¨at Osnabr to thermodynamical behavior · Quantum approach to thermodynamical behavior · The route to equilibrium · Summary of thermodynamical behavior entirely on the basis of Hamilton models and Schr¨odinger-type quantum dynamics. · define

  15. EWONAP Procurement Fundamentals

    Broader source: Energy.gov [DOE]

    HUD's Eastern Woodlands Office of Native American Programs in collaboration with the Seminole Tribe of Florida Native Learning Center invites you to attend the Procurement Fundamentals training instructed by Vince Franco, Compliance & Resource Development Director of the Native Learning Center in Atlanta, Georgia on September 8-9, 2014.

  16. Extensivity and Relativistic Thermodynamics

    E-Print Network [OSTI]

    J. Dunning-Davies

    2007-06-27

    The mathematical properties associated with the widely accepted concept of the extensivity of many of the common thermodynamic variables are examined and some of their consequences considered. The possible conflict between some of these and currently accepted results of special relativistic thermodynamics is highlighted. Although several questions are raised, answers are not advanced as this seems an area demanding calm, widespread reflection which could conceivably lead to radical revision of part, or parts, of theoretical physics.

  17. Pauli problem in thermodynamics

    E-Print Network [OSTI]

    Artur E. Ruuge

    2013-08-01

    A thermodynamic analogue of the Pauli problem (reconstruction of a wavefunction from the position and momentum distributions) is formulated. The coordinates of a quantum system are replaced by the inverse absolute temperature and other intensive quantities, and the Planck constant is replaced by the Boltzmann constant multiplied by two. A new natural mathematical generalization of the quasithermodynamic fluctuation theory is suggested and sufficient conditions for the existence of asymptotic solutions of the thermodynamic Pauli problem are obtained.

  18. Black Hole Thermodynamics in Modified Gravity

    E-Print Network [OSTI]

    Jonas R. Mureika; John W. Moffat; Mir Faizal

    2015-03-03

    We analyze the thermodynamics of a non-rotating and rotating black hole in a modified theory of gravity that includes scalar and vector modifications to general relativity, which results in a modified gravitational constant $G = G_N(1+\\alpha)$ and a new gravitational charge $Q = \\sqrt{\\alpha G_N}M$. The influence of the parameter $\\alpha$ alters the non-rotating black hole's lifetime, temperature and entropy profiles from the standard Schwarzschild case. The thermodynamics of a rotating black hole is analyzed and it is shown to possess stable, cold remnants. The thermodynamic properties of a vacuum solution regular at $r=0$ are investigated and the solution without a horizon called a "gray hole" is not expected to possess an information loss problem.

  19. Thermodynamic Origin of the Cardassian Universe

    E-Print Network [OSTI]

    Chao-Jun Feng; Xin-Zhou Li; Xian-Yong Shen

    2011-01-31

    In the Cadassian universe, one can explain the acceleration of the universe without introducing dark energy component. However, the dynamical equations of this model can not be directly obtained from the action principle. Recently, works on the relation between thermodynamics and gravity indicates that gravity force may not be the fundamental force. In this paper, we study the thermodynamics of the Cardassian universe, and regard it as the origin of this cosmological model. We find that the corresponding entropy obeys ordinary area law when the area of the trapping horizon is small, while it becomes a constant when area is going to be large in the original and modified polytropic Cardassian model, and it has a maximum value in the exponential one. It seems that the Cardassian universe only contains finite information according to the holographic principle, which states that all the information in the bulk should be encoded in the boundary of the bulk.

  20. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    E-Print Network [OSTI]

    Matteo Lostaglio; David Jennings; Terry Rudolph

    2015-03-16

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilard engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

  1. Thermodynamics of Ideal Gas in Cosmology

    E-Print Network [OSTI]

    Ying-Qiu Gu

    2009-10-04

    The equation of state and the state functions for the gravitational source are necessary conditions for solving cosmological model and stellar structure. The usual treatments are directly based on the laws of thermodynamics, and the physical meanings of some concepts are obscure. This letter show that, we can actually derive all explicit fundamental state functions for the ideal gas in the context of cosmology via rigorous dynamical and statistical calculation. These relations have clear physical meanings, and are valid in both non-relativistic and ultra-relativistic cases. Some features of the equation of state are important for a stable structure of a star with huge mass.

  2. DOE fundamentals handbook: Chemistry

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems.

  3. Thermodynamics of electroweak matter

    E-Print Network [OSTI]

    A. Gynther

    2006-09-21

    This paper is a slightly modified version of the introductory part of a PhD thesis, also containing the articles hep-ph/0303019, hep-ph/0510375 and hep-ph/0512177. We provide a short history of the research of electroweak thermodynamics and a brief introduction to the theory as well as to the necessary theoretical tools needed to work at finite temperatures. We then review computations regarding the pressure of electroweak matter at high temperatures (the full expression of the perturbative expansion of the pressure is given in the appendix) and the electroweak phase diagram at finite chemical potentials. Finally, we compare electroweak and QCD thermodynamics.

  4. Confusion in Thermodynamics

    E-Print Network [OSTI]

    Jeremy Dunning-Davies; David Sands

    2011-05-17

    For a long time now, confusion has existed in the minds of many over the meaning of various concepts in thermodynamics. Recently, this point has been brought to people's attention by two articles appearing on the well-known archive (arxiv) web site. The content of these two pieces serves to illustrate many of the problems and has occasioned the construction of this answer to at least some of them. The position of the axiom proposed by Carath\\'eodory is central in this matter and here its position is clarified and secured within the framework of thermodynamics. In particular, its relation to the First Law is examined and justified.

  5. Thermodynamics in the Viscous Early Universe

    E-Print Network [OSTI]

    Tawfik, A

    2010-01-01

    Assuming that the matter filling the background geometry in the Early Universe was a free gas and no phase transitions took place, we discuss the thermodynamics of this closed system using classical approaches. We found that essential cosmological quantities, such as the Hubble parameter $H$, the scaling factor $a$ and the curvature parameter $k$, can be derived from this simple model. The results are compatible with the Friedmann-Robertson-Walker model and Einstein field equations. Including finite bulk viscosity coefficient leads to important changes in the cosmological quantities. Accordingly, our picture about evolution of the Universe and its astrophysical consequences seems to be a subject of radical revision. We found that $k$ strongly depends on thermodynamics of the cosmic background matter. The time scale, at which negative curvature might take place, depends on the relation between the matter content and the total energy. Using quantum and statistical approaches, we introduced expressions for $H$ a...

  6. Characterization of Fundamental Particles

    E-Print Network [OSTI]

    Ben J Baten

    2009-05-25

    This report provides an alternative to the Standard Model of particle physics. The model described here is based on results from Quantum Field Mechanics, according to which all fundamental particles and interactions originate from the interaction of two pre-space/pre-time protofields. In contrast with the Standard Model, (virtual) interaction-particles are absent in the description of any of the four fundamental interactions. Electrons perform a single quantum beat process while mesons and baryons have, respectively, two and three bound quantum beat processes. Quantum Field Mechanics suggests that the charge of an electron and positron can be identified with the two possible phases of a quantum beat process as observed in the electromagnetic protofield. This report assumes that short-range binding interaction between quantum beat processes has a masking effect on the externally observable charge of hadrons. Using this assumption, the internal structure of particles is derived from their known particle charges and relative masses. The particle structures are used to obtain the so-called charge-quantum phase law. The fractional charge of quantum beat processes inside a particle is deduced by rewriting the charge-quantum phase law in terms of a linear combination of charge contributions of individual constituent quantum beat processes. Strangeness and isospin are mathematically defined in terms of the quantum beat phases of sets of particles of the same type. Application of conservation laws to particle processes leads to relations between quantum phase, strangeness and isospin.

  7. Hessian matrix, specific heats, Nambu brackets, and thermodynamic geometry

    E-Print Network [OSTI]

    Seyed Ali Hosseini Mansoori; Behrouz Mirza; Mohamadreza Fazel

    2015-05-06

    As an extension to our earlier work \\cite{Mirza2}, we employ the Nambu brackets to prove that the divergences of heat capacities correspond to their counterparts in thermodynamic geometry. We also obtain a simple representation for the conformal transformations that connect different thermodynamics metrics to each other. Using our bracket approach, we obtain interesting exact relations between the Hessian matrix with any number of parameters and specific heat capacities. Finally, we employ this approach to investigate some thermodynamic properties of the Meyers-Perry black holes with three spins.

  8. Zeroth Law compatibility of non-additive thermodynamics

    E-Print Network [OSTI]

    T. S. Biró; P. Ván

    2011-06-02

    Non-extensive thermodynamics was criticized among others by stating that the Zeroth Law cannot be satisfied with non-additive composition rules. In this paper we determine the general functional form of those non-additive composition rules which are compatible with the Zeroth Law of thermodynamics. We find that this general form is additive for the formal logarithms of the original quantities and the familiar relations of thermodynamics apply to these. Our result offers a possible solution to the longstanding problem about equilibrium between extensive and non-extensive systems or systems with different non-extensivity parameters.

  9. Methods for thermodynamic evaluation of battery state of health

    DOE Patents [OSTI]

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2013-05-21

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  10. Mathematical thermodynamics of fluids Eduard Feireisl

    E-Print Network [OSTI]

    Krejcí, Pavel

    Mathematical thermodynamics of fluids Eduard Feireisl Institute of Mathematics, Academy of Sciences Agreement 320078 CIME courses, Cetraro 29 June - 4 July 2015 Eduard Feireisl Thermodynamics of fluids #12 Thermodynamics of fluids #12;Fluids at equilibrium Thermodynamic state variables mass density

  11. Spring 2015 Thermodynamics -2

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2015 Thermodynamics - 2 As indicated in the adjacent figure, a steady- flow cogeneration: recirculating hot water and electricity. Steam flows at 200 kg/s into the cogeneration plant at 5 bar to the factory. b. [30 pts] Determine the rate of entropy production within the cogeneration plant. The plant

  12. Thermodynamics and gravitational collapse

    E-Print Network [OSTI]

    Daniele Malafarina; Pankaj S. Joshi

    2011-06-19

    It is known now that a typical gravitational collapse in general relativity, evolving from regular initial data and under physically reasonable conditions would end in either a black hole or a naked singularity final state. An important question that needs to be answered in this connection is, whether the analogues of the laws of thermodynamics, as formulated for relativistic horizons are respected by the dynamical spacetimes for collapse that end in the formation of a naked singularity. We investigate here the thermodynamical behaviour of the dynamical horizons that form in spherically symmetric gravitational collapse and we show that the first and second laws of black hole thermodynamics, as extended to dynamical spacetimes in a suitable manner, are not violated whether the collapse ends in a black hole or a naked singularity. We then make a distinction between the naked singularities that result from gravitational collapse, and those that exist in solutions of Einstein equations in vacuum axially symmetric and stationary spacetimes, and discuss their connection with thermodynamics in view of the cosmic censorship conjecture and the validity of the third law of black hole mechanics.

  13. 2, 15151615, 2005 Thermodynamic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - tions of the standard molal thermodynamic properties of ionized proteins as a func- tion of temperature and T at high temperature were taken from the recent literature, which ensures an internally consistent revision, pressure, composition and intra- and extracellular chemical potentials of O2, H2, NH3, H2PO4 and CO2. 1516

  14. Thermodynamics of Potassium Exchange in Soil Using a Kinetics Approach1 D. L. SPARKS AND P. M. JARDINEZ

    E-Print Network [OSTI]

    Sparks, Donald L.

    Thermodynamics of Potassium Exchange in Soil Using a Kinetics Approach1 D. L. SPARKS AND P. M. JARDINEZ ABSTRACT Thermodynamics of potassium (K) exchange using a kinetics ap- proach was investigated that more energy was needed to desorb K than to adsorb K. Thermodynamic and pseudother- modynamic parameters

  15. Cyclic Thermodynamics with Open Flow

    SciTech Connect (OSTI)

    Reid, R.S.; Ward, W.C.; Swift, G.W.

    1998-05-01

    Some general features of a new class of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process are discussed and experimentally demonstrated in the context of a thermoacoustic refrigerator. {copyright} {ital 1998} {ital The American Physical Society}

  16. Kinetic equilibrium and relativistic thermodynamics

    E-Print Network [OSTI]

    P. Ván

    2011-02-01

    Relativistic thermodynamics is treated from the point of view of kinetic theory. It is shown that the generalized J\\"uttner distribution suggested in [1] is compatible with kinetic equilibrium. The requirement of compatibility of kinetic and thermodynamic equilibrium reveals several generalizations of the Gibbs relation where the velocity field is an independent thermodynamic variable.

  17. Thermodynamics CHE 361, 4 credits

    E-Print Network [OSTI]

    Fuchs, Alan

    Thermodynamics CHE 361, 4 credits Spring Semester 2006 Tuesday and Thursday, 11:00 ­ 12:15PM, LME Chemical Engineering Thermodynamics", Prentice Hall PTR, 1999. Prerequisites Calculus III (Math 283 of this course, students will understand the first and second laws, PVT properties of fluids, thermodynamic

  18. Phenomenological thermodynamics in a nutshell

    E-Print Network [OSTI]

    Neumaier, Arnold

    Phenomenological thermodynamics in a nutshell Arnold Neumaier Fakult¨at f¨ur Mathematik, Universit of phenomeno- logical equilibrium thermodynamics for single-phase systems in the absence of chemical reactions-known thermodynamics book the basic concepts by means of a few postulates from which every- thing else follows. His

  19. Geometric Thermodynamics of Kerr-AdS black hole with a Cosmological Constant as State Variable

    E-Print Network [OSTI]

    Alexis Larranaga; Sindi Mojica

    2012-04-17

    The thermodynamics of the Kerr-AdS black hole is reformulated within the context of the formalism of geometrothermodynamics (GTD) and the cosmological constant is considered as a new thermodynamical parameter. We conclude that the mass of the black hole corresponds to the total enthalpy of this system. Choosing appropriately the metric in the equilibrium states manifold, we study the phase transitions as a divergence of the thermodynamical curvature scalar. This approach reproduces the Hawking-Page transition and shows that considering the cosmological constant as a thermodynamical parameter does not contribute with new phase transitions.

  20. Contact Symmetries and Hamiltonian Thermodynamics

    E-Print Network [OSTI]

    A. Bravetti; C. S. Lopez-Monsalvo; F. Nettel

    2015-02-22

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher's Information Matrix. In this work we analyze several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.

  1. Thermodynamics of Chaplygin gas

    E-Print Network [OSTI]

    Yun Soo Myung

    2011-05-11

    We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

  2. Classical QGP : IV. Thermodynamics

    E-Print Network [OSTI]

    Sungtae Cho; Ismail Zahed

    2008-12-09

    We construct the equation of a state of the classical QGP valid for all values of Gamma=V/K, the ratio of the mean Coulomb to kinetic energy. By enforcing the Gibbs relations, we derive the pertinent pressure and entropy densities for all Gamma. For the case of an SU(2) classical gluonic plasma our results compare well with lattice simulations. We show that the strongly coupled component of the classical QGP contributes significantly to the bulk thermodynamics across T_c.

  3. Gravity, Dimension, Equilibrium, & Thermodynamics

    E-Print Network [OSTI]

    Jerome Perez

    2006-03-30

    Is it actually possible to interpret gravitation as space's property in a pure classical way. Then, we note that extended self-gravitating system equilibrium depends directly on the number of dimension of the space in which it evolves. Given those precisions, we review the principal thermodynamical knowledge in the context of classical gravity with arbitrary dimension of space. Stability analyses for bounded 3D systems, namely the Antonov instability paradigm, are then rapproched to some amazing properties of globular clusters and galaxies.

  4. Thermodynamic behavior and stability of Polytropic gas

    E-Print Network [OSTI]

    H. Moradpour; A. Abri; H. Ebadi

    2015-07-10

    We focus on the thermodynamic behavior of Polytropic gas as a candidate for dark energy. We use the general arguments of thermodynamics to investigate its properties and behavior. We find that a Polytropic gas may exhibit the dark energy like behavior in the large volume and low temperature limits. It also may be used to simulate a fluid with zero pressure at the small volume and high temperature limits. Briefly, our study shows that this gas may be used to describe the universe expansion history from the matter dominated era to the current accelerating era. By applying some initial condition to the system, we can establish a relation between the Polytropic gas parameters and initial conditions. Relationships with related works has also been addressed.

  5. A dissipation bound for thermodynamic control

    E-Print Network [OSTI]

    Machta, Benjamin B

    2015-01-01

    Biological and engineered systems operate by coupling function to the transfer of heat and/or particles down a thermal or chemical gradient. In idealized \\textit{deterministically} driven systems, thermodynamic control can be exerted reversibly, with no entropy production, as long as the rate of the protocol is made slow compared to the equilibration time of the system. Here we consider \\textit{fully realizable, entropically driven} systems where the control parameters themselves obey rules that are reversible and that acquire directionality in time solely through dissipation. We show that when such a system moves in a directed way through thermodynamic space, it must produce entropy that is on average larger than its generalized displacement as measured by the Fisher information metric. This distance measure is sub-extensive but cannot be made small by slowing the rate of the protocol.

  6. Thermodynamics of free Domain Wall fermions

    E-Print Network [OSTI]

    R. V. Gavai; Sayantan Sharma

    2008-11-19

    Studying various thermodynamic quantities for the free domain wall fermions for both finite and infinite fifth dimensional extent N_5, we find that the lattice corrections are minimum for $N_T\\geq10$ for both energy density and susceptibility, for its irrelevant parameter M in the range 1.45-1.50. The correction terms are, however, quite large for small lattice sizes of $N_T\\leq8$. We propose modifications of the domain wall operator, as well as the overlap operator, to reduce the finite cut-off effects to within 10% of the continuum results of the thermodynamic quantities for the currently used N_T=6-8 lattices. Incorporating chemical potential, we show that \\mu^2 divergences are absent for a large class of such domain wall fermion actions although the chiral symmetry is broken for $\\mu\

  7. A new approach toward geometrical concept of black hole thermodynamics

    E-Print Network [OSTI]

    S. H. Hendi; S. Panahiyan; B. Elam Panah; M. Momennia

    2015-10-28

    Motivated by the energy representation of Riemannian metric, in this paper we study different approaches toward the geometrical concept of black hole thermodynamics. We investigate thermodynamical Ricci scalar of Weinhold, Ruppeiner and Quevedo metrics and show that their number and location of divergences do not coincide with phase transition points arisen from heat capacity. Next, we introduce a new metric to solve these problems. We show that the denominator of the Ricci scalar of the new metric contains terms which coincide with different types of phase transitions. We elaborate the effectiveness of the new metric and shortcomings of the previous metrics with some examples. Furthermore, we find a characteristic behavior of the new thermodynamical Ricci scalar which enables one to distinguish two types of phase transitions. In addition, we generalize the new metric for the cases of more than two extensive parameters and show that in these cases the divergencies of thermodynamical Ricci scalar coincide with phase transition points of the heat capacity.

  8. Thermodynamics of scalar-tensor theory with non-minimally derivative coupling

    E-Print Network [OSTI]

    Huang, Yumei; Liang, Dicong; Yi, Zhu

    2015-01-01

    With the usual definitions for the entropy and the temperature associated with the apparent horizon, we show that the unified first law on the apparent horizon is equivalent to the Friedmann equation for the scalar-tensor theory with non-minimally derivative coupling. The second law of thermodynamics on the apparent horizon is also satisfied. The results support a deep and fundamental connection between gravitation, thermodynamics and quantum theory.

  9. Thermodynamics of scalar-tensor theory with non-minimally derivative coupling

    E-Print Network [OSTI]

    Yumei Huang; Yungui Gong; Dicong Liang; Zhu Yi

    2015-04-06

    With the usual definitions for the entropy and the temperature associated with the apparent horizon, we show that the unified first law on the apparent horizon is equivalent to the Friedmann equation for the scalar-tensor theory with non-minimally derivative coupling. The second law of thermodynamics on the apparent horizon is also satisfied. The results support a deep and fundamental connection between gravitation, thermodynamics and quantum theory.

  10. Thermodynamic Stability of Nanobubbles

    E-Print Network [OSTI]

    Phil Attard

    2015-03-15

    The observed stability of nanobubbles contradicts the well-known result in classical nucleation theory, that the critical radius is both microscopic and thermodynamically unstable. Here nanoscopic stability is shown to be the combined result of two non-classical mechanisms. It is shown that the surface tension decreases with increasing supersaturation, and that this gives a nanoscopic critical radius. Whilst neither a free spherical bubble nor a hemispherical bubble mobile on an hydrophobic surface are stable, it is shown that an immobilized hemispherical bubble with a pinned contact rim is stable and that the total entropy is a maximum at the critical radius.

  11. CHEMISTRY COURSE OFFERINGS CHEM 0001-01 & 0001-02 -CHEMICAL FUNDAMENTALS W/LAB

    E-Print Network [OSTI]

    Kounaves, Samuel P.

    CHEMISTRY COURSE OFFERINGS FALL, 2015 (4/9/2015) CHEM 0001-01 & 0001-02 - CHEMICAL FUNDAMENTALS W, and thermochemistry. Additional topics may include qualitative thermodynamics and equilibrium and chemistry chemistry, and chemistry of selected elements. Three lectures, one laboratory, one recitation. Only one

  12. Thermodynamic analysis of universes with the initial and final de-Sitter eras

    E-Print Network [OSTI]

    Moradpour, H; Ghasemi, A

    2015-01-01

    Our aim is studying the thermodynamics of cosmological models including initial and final de-Sitter eras. For this propose, bearing Cai-Kim temperature in mind, we investigate the thermodynamic properties of a dark energy candidate with variable energy density, and show that the state parameter of this dark energy candidate should obey the $\\omega_D\

  13. Thermodynamic analysis of universes with the initial and final de-Sitter eras

    E-Print Network [OSTI]

    H. Moradpour; M. T. Mohammadi Sabet; A. Ghasemi

    2015-05-18

    Our aim is studying the thermodynamics of cosmological models including initial and final de-Sitter eras. For this propose, bearing Cai-Kim temperature in mind, we investigate the thermodynamic properties of a dark energy candidate with variable energy density, and show that the state parameter of this dark energy candidate should obey the $\\omega_D\

  14. Fundamentals of gas measurement II

    SciTech Connect (OSTI)

    Smith, J.P.

    1995-12-01

    A knowledge of the Fundamentals of Gas Measurement is essential for all technicians and engineers that are called upon to perform gas volume calculations. These same people must have at least a working knowledge of the fundamentals to perform their everyday jobs including equipment calibrations, specific gravity tests, collecting gas samples, etc. To understand the fundamentals, one must be familiar with the definitions of the terms that are used in day-to- day gas measurement operations. They also must know how to convert some values from one quantity as measured to another quantity that is called for in the gas purchase or sales contracts or transportation agreements.

  15. Thermodynamics in Loop Quantum Cosmology

    E-Print Network [OSTI]

    Li-Fang Li; Jian-Yang Zhu

    2008-12-18

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. And the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but are actually also found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  16. Anisotropic Dark Energy and the Generalized Second Law of Thermodynamics

    E-Print Network [OSTI]

    M. Sharif; Farida Khanum

    2011-11-12

    We consider a Bianchi type $I$ model in which anisotropic dark energy is interacting with dark matter and anisotropic radiation. With this scenario, we investigate the validity of the generalized second law of thermodynamics. It is concluded that the validity of this law depends on different parameters like shear, skewness and equation of state.

  17. Practical Thermodynamic Quantities for Aqueous Vanadium- and...

    Office of Scientific and Technical Information (OSTI)

    Practical Thermodynamic Quantities for Aqueous Vanadium- and Iron-Based Flow Batteries. Citation Details In-Document Search Title: Practical Thermodynamic Quantities for Aqueous...

  18. Thermodynamics of metallic systems | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermodynamics of metallic systems Many thermodynamics properties of metallic systems are not readily available through experimental measurements or widely available databases...

  19. Tribal Energy NEPA Fundamentals Workshop

    Broader source: Energy.gov [DOE]

    The Tribal Energy NEPA Fundamentals Workshop is a three-day workshop for tribes to understand how to manage the National Environmental Policy Act (NEPA) process and implement the Council on...

  20. Thermodynamics of clusterized matter

    E-Print Network [OSTI]

    Ad. R. Raduta; F. Gulminelli

    2009-08-26

    Thermodynamics of clusterized matter is studied in the framework of statistical models with non-interacting cluster degrees of freedom. At variance with the analytical Fisher model, exact Metropolis simulation results indicate that the transition from homogeneous to clusterized matter lies along the $\\rho=\\rho_0$ axis at all temperatures and the limiting point of the phase diagram is not a critical point even if the surface energy vanishes at this point. Sensitivity of the inferred phase diagram to the employed statistical framework in the case of finite systems is discussed by considering the grand-canonical and constant-pressure canonical ensembles. A Wigner-Seitz formalism in which the fragment charge is neutralized by an uniform electron distribution allows to build the phase diagram of neutron star matter.

  1. Thermodynamics and cement science

    SciTech Connect (OSTI)

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  2. Thermodynamic Origin of Life

    E-Print Network [OSTI]

    Michaelian, K

    2009-01-01

    Understanding the thermodynamic function of life may shed light on its origin. Out of equilibrium structuring in space and time is contingent on continuous entropy production. Entropy production is a measure of the rate of the natural tendency of Nature to explore all available microstates. The process producing the greatest amount of entropy in the biosphere is the absorption and transformation of sunlight, leading to the transpiration of water by plants and cyanobacteria. Here we hypothesize that life began, and exists today, as a dynamic catalyst for the absorption and transformation of sunlight into heat, which could then be efficiently harvested by the water cycle, hurricanes, and ocean and wind currents. RNA and DNA are the most efficient of all known molecules for absorbing the ultraviolet light that could have penetrated the dense early atmosphere, and are extremely rapid in transforming this light into heat that can be readily absorbed by liquid water. The origin and evolution of life was thus driven...

  3. The fundamental plane of clusters of galaxies: a quest for understanding cluster dynamics and morphology

    E-Print Network [OSTI]

    Christoph Fritsch; Thomas Buchert

    1999-03-10

    We discuss implications of the fundamental plane parameters of clusters of galaxies derived from combined optical and X-ray data of a sample of 78 nearby clusters. In particular, we investigate the dependence of these parameters on the dynamical state of the cluster. We introduce a new concept of allocation of the fundamental plane of clusters derived from their intrinsic morphological properties, and put some theoretical implications of the existence of a fundamental plane into perspective.

  4. Thermodynamic geometry of holographic superconductors

    E-Print Network [OSTI]

    Sayan Basak; Pankaj Chaturvedi; Poulami Nandi; Gautam Sengupta

    2015-09-02

    We obtain the thermodynamic geometry of a (2+1) dimensional strongly coupled quantum field theory at a finite temperature in a holographic set up through the gauge/gravity correspondence. The bulk dual gravitational theory is described by a 3+1 dimensional charged AdS black hole in the presence of a charged massive scalar field. The holographic free energy of the (2+1) dimensional strongly coupled boundary field theory is computed analytically through the bulk boundary correspondence. The thermodynamic metric and the corresponding scalar curvature is then obtained from the holographic free energy. The thermodynamic scalar curvature characterizes the superconducting phase transition of the boundary field theory.

  5. Thermodynamic geometry of holographic superconductors

    E-Print Network [OSTI]

    Sayan Basak; Pankaj Chaturvedi; Poulami Nandi; Gautam Sengupta

    2015-09-21

    We obtain the thermodynamic geometry of a (2+1) dimensional strongly coupled quantum field theory at a finite temperature in a holographic set up, through the gauge/gravity correspondence. The bulk dual gravitational theory is described by a (3+1) dimensional charged AdS black hole in the presence of a massive charged scalar field. The holographic free energy of the (2+1) dimensional strongly coupled boundary field theory is computed analytically through the bulk boundary correspondence. The thermodynamic metric and the corresponding scalar curvature is then obtained from the holographic free energy. The thermodynamic scalar curvature characterizes the superconducting phase transition of the boundary field theory.

  6. Thermodynamic geometry of holographic superconductors

    E-Print Network [OSTI]

    Basak, Sayan; Nandi, Poulami; Sengupta, Gautam

    2015-01-01

    We obtain the thermodynamic geometry of a (2+1) dimensional strongly coupled quantum field theory at a finite temperature in a holographic set up through the gauge/gravity correspondence. The bulk dual gravitational theory is described by a 3+1 dimensional charged AdS black hole in the presence of a charged massive scalar field. The holographic free energy of the (2+1) dimensional strongly coupled boundary field theory is computed analytically through the bulk boundary correspondence. The thermodynamic metric and the corresponding scalar curvature is then obtained from the holographic free energy. The thermodynamic scalar curvature characterizes the superconducting phase transition of the boundary field theory.

  7. QCD Thermodynamics with Improved Actions

    E-Print Network [OSTI]

    Karsch, Frithjof; Engels, J; Joswig, R; Laermann, E; Peikert, A; Petersson, B

    1996-01-01

    The thermodynamics of the SU(3) gauge theory has been analyzed with tree level and tadpole improved Symanzik actions. A comparison with the continuum extrapolated results for the standard Wilson action shows that improved actions lead to a drastic reduction of finite cut-off effects already on lattices with temporal extent $N_\\tau=4$. Results for the pressure, the critical temperature, surface tension and latent heat are presented. First results for the thermodynamics of four-flavour QCD with an improved staggered action are also presented. They indicate similarly large improvement factors for bulk thermodynamics.

  8. Black Hole Thermodynamic Products in Einstein Gauss Bonnet Gravity

    E-Print Network [OSTI]

    Mandal, Abhijit

    2015-01-01

    We study the thermodynamic properties of black hole horizons in Einstein Gauss Bonnet gravity. We derive the thermodynamic products of characteristic parameters to mark which are global. We further interpret the stability of the black holes by computing the specific heat for both horizons. Stable and unstable phases of horizons are pointed out. The phase transitions with respect to the charge in nature of specific heat are also observed. All these calculation might be helpful to understand the microscopic nature of such black holes.

  9. Fundamental

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFrom the Building to the

  10. Some topics in thermodynamics and quantum mechanics

    E-Print Network [OSTI]

    Robert Carroll

    2012-11-17

    We sketch some connecting relations involving fractional and quantum calculi, fractal structure, thermodynamics, and quantum mechanics.

  11. THE LANDAUER LIMIT AND THERMODYNAMICS OF

    E-Print Network [OSTI]

    Baez, John

    THE LANDAUER LIMIT AND THERMODYNAMICS OF BIOLOGICAL SYSTEMS David H. Wolpert Santa Fe Institute1 v2 b) h 2R vv1 v2 c) h vv1 v2 R Thermodynamic cost to erase a bit - the minimal amount of entropy be thermodynamically reversible ... but if it is applied to known data, it is thermodynamically irreversible." #12;HEAT

  12. Relativisticlike structure of classical thermodynamics

    E-Print Network [OSTI]

    Hernando Quevedo; Alberto Sanchez; Alejandro Vazquez

    2014-10-26

    We analyze in the context of geometrothermodynamics a Legendre invariant metric structure in the equilibrium space of an ideal gas. We introduce the concept of thermodynamic geodesic as a succession of points, each corresponding to a state of equilibrium, so that the resulting curve represents a quasi-static process. A rigorous geometric structure is derived in which the thermodynamic geodesics at a given point split the equilibrium space into two disconnected regions separated by adiabatic geodesics. This resembles the causal structure of special relativity, which we use to introduce the concept of adiabatic cone for thermodynamic systems. This result might be interpreted as an alternative indication of the inter-relationship between relativistic physics and classical thermodynamics.

  13. On the Mathematics of Thermodynamics

    E-Print Network [OSTI]

    J. B. Cooper; T. Russell

    2011-02-08

    We show that the mathematical structure of Gibbsian thermodynamics flows from the following simple elements: the state space of a thermodynamical substance is a measure space together with two orderings (corresponding to "warmer than" and "adiabatically accessible from") which satisfy certain plausible physical axioms and an area condition which was introduced by Paul Samuelson. We show how the basic identities of thermodynamics, in particular the Maxwell relations, follow and so the existence of energy, free energy, enthalpy and the Gibbs potential function. We also discuss some questions which we have not found dealt with in the literature, such as the amount of information required to reconstruct the equations of state of a substance and a systematic approach to thermodynamical identities.

  14. Thermodynamics of regular black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2008-09-21

    We investigate thermodynamics for a magnetically charged regular black hole (MCRBH), which comes from the action of general relativity and nonlinear electromagnetics, comparing with the Reissner-Norstr\\"om (RN) black hole in both four and two dimensions after dimensional reduction. We find that there is no thermodynamic difference between the regular and RN black holes for a fixed charge $Q$ in both dimensions. This means that the condition for either singularity or regularity at the origin of coordinate does not affect the thermodynamics of black hole. Furthermore, we describe the near-horizon AdS$_2$ thermodynamics of the MCRBH with the connection of the Jackiw-Teitelboim theory. We also identify the near-horizon entropy as the statistical entropy by using the AdS$_2$/CFT$_1$ correspondence.

  15. Thermodynamics of Modified Chaplygin Gas and Tachyonic Field

    E-Print Network [OSTI]

    Samarpita Bhattacharya; Ujjal Debnath

    2010-12-26

    Here we generalize the results of the work of ref. [10] in modified Chaplygin gas model and tachyonic field model. Here we have studied the thermodynamical behaviour and the equation of state in terms of volume and temperature for both models. We have used the solution and the corresponding equation of state of our previous work [12] for tachyonic field model. We have also studied the thermodynamical stability using thermal equation of state for the tachyonic field model and have shown that there is no critical points during thermodynamical expansion. The determination of $T_{*}$ due to expansion for the tachyonic field have been discussed by assuming some initial conditions. Here, the thermal quantities have been investigated using some reduced parameters.

  16. Exact equalities and thermodynamic relations for nonequilibrium steady states

    E-Print Network [OSTI]

    Teruhisa S. Komatsu; Naoko Nakagawa; Shin-ichi Sasa; Hal Tasaki

    2014-12-25

    We study thermodynamic operations which bring a nonequilibrium steady state (NESS) to another NESS in physical systems under nonequilibrium conditions. We model the system by a suitable Markov jump process, and treat thermodynamic operations as protocols according to which the external agent varies parameters of the Markov process. Then we prove, among other relations, a NESS version of the Jarzynski equality and the extended Clausius relation. The latter can be a starting point of thermodynamics for NESS. We also find that the corresponding nonequilibrium entropy has a microscopic representation in terms of symmetrized Shannon entropy in systems where the microscopic description of states involves "momenta". All the results in the present paper are mathematically rigorous.

  17. Calculation of the thermodynamic properties of fuel-vapor species from spectroscopic data

    SciTech Connect (OSTI)

    Green, D.W.

    1980-09-01

    Measured spectroscopic data, estimated molecular parameters, and a densty-of-states model for electronic structure have been used to calculate thermodynamic functions for gaseous ThO, ThO/sub 2/, UO, UO/sub 2/, UO/sub 3/, PuO, and PuO/sub 2/. Various methods for estimating parameters have been considered and numerically evaluated. The sensitivity of the calculated thermodynamic functions to molecular parameters has been examined quantitatively. New values of the standard enthalpies of formation at 298.15/sup 0/K have been derived from the best available ..delta..G/sup 0//sub f/ equations and the calculated thermodynamic functions. Estimates of the uncertainties have been made for measured and estimated data as well as for various mathematical and physical approximations. Tables of the thermodynamic functions to 6000/sup 0/K are recommended for gaseous thorium, uranium, and plutonium oxides.

  18. Physics 112 Thermodynamics and Statistical Physics Winter 2000 Instructor: Howard Haber

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Physics 112 Thermodynamics and Statistical Physics Winter 2000 Instructor: Howard Haber OÆce: Kerr Hall|Room 289 REQUIRED TEXTBOOK: Thermal Physics, by Ralph Baierlein Recommended Outside Reading: Thermal Physics, by Charles Kittel and Herbert Kroemer Fundamentals of Statistical and Thermal Physics

  19. Biodiversity, Entropy and Thermodynamics http://math.ucr.edu/home/baez/bio info/

    E-Print Network [OSTI]

    Baez, John

    . In biodiversity studies, the entropy of an ecosystem is the expected amount of information we gain about 29, 2014 Biological and Bio-Inspired Information Theory BIRS #12;Shannon entropy S(p) = - n i=1 pi ln(pi ) is fundamental to thermodynamics and information theory. But it's also used to measure biodiversity, where pi

  20. Theory of Thermodynamics of Computation Ming Li \\Lambda Paul Vit'anyi y

    E-Print Network [OSTI]

    Vitanyi, Paul M.B.

    thermodynamic cost of computing from x to y. Other than its fundamental importance, such research has@math.waterloo.edu The Netherlands, paulv@cwi.nl Abstract We investigate a new research area: we are inter­ ested in the ultimate implications for future miniaturiza­ tion of VLSI chips reducing the energy dissipation be­ low kT (thermal

  1. DISTRIBUTION FUNCTIONS IN PHYSICS: FUNDAMENTALS

    E-Print Network [OSTI]

    O'Connell, Robert F.

    DISTRIBUTION FUNCTIONS IN PHYSICS: FUNDAMENTALS M. HILLERY Institute for Modern Optics, University of Physics Letters) 106, No. 3 (1984) 121--167. North-Holland, Amsterdam DISTRIBUTION FUNCTIONS IN PHYSICS. Introduction 123 4.1. Normal ordering 156 2. Wigner distribution 126 4.2. Symmetric ordering 158 2

  2. Combining fundamental research of experimental

    E-Print Network [OSTI]

    Langendoen, Koen

    . Profile courses: Kite Power and Propulsion, Wind Turbine Aeroelasticity, Wind Turbine Design and Site of it in the design of next generation wind turbines. At TU Delft we offer you a leading academic programme Energy combines fundamental and applied research disciplines of aerospace an wind-power systems, focusing

  3. Fundamental development of numerical and

    E-Print Network [OSTI]

    Langendoen, Koen

    Power and Propulsion, Wind Turbine Aeroelasticity, Wind Turbine Design and Site Conditions for Wind Energy combines fundamental and applied research disciplines of aerospace and wind-power systems aerodynamics · Be familiar with the design of wind tunnel experiments, and have experience with modern

  4. Cognitive Radio: Fundamentals and Opportunities

    E-Print Network [OSTI]

    Morelos-Zaragoza, Robert H.

    Cognitive Radio: Fundamentals and Opportunities Robert H. Morelos-Zaragoza Department of Electrical Engineering San Jose State University October 12, 2007 #12;Cognitive Radio - RHMZ - 2007 Slide 2 of 18 Outline 1. Software-defined radio (SDR) a) Black-box approach b) Components and attributes (Mitola) 2

  5. Mehrbenutzerbetrieb Elmasri/Navathe:Fundamentals

    E-Print Network [OSTI]

    Brass, Stefan

    12. Updates in SQL / Mehrbenutzerbetrieb 12­1 Teil 12: Updates in SQL Literatur: . Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999. Chap. 8, ``SQL --- The Relational Database Standard'' . Kemper/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison­Wesley, 1997. . van der Lans: SQL, Der ISO

  6. References: Elmasri/Navathe:Fundamentals

    E-Print Network [OSTI]

    Brass, Stefan

    7. SQL I 7­1 Part 7: SQL I References: . Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999. Chap. 8, ``SQL --- The Relational Database Standard'' (Sect. 8.2, 8.3.3, part of 8. . Date/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison­Wesley , 1997. . Date: A Guide

  7. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect (OSTI)

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  8. Energy Literacy: Essential Principles and Fundamental Concepts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Literacy: Essential Principles and Fundamental Concepts for Energy Education Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education Energy Literacy:...

  9. Thermodynamics for Fractal Statistics

    E-Print Network [OSTI]

    Wellington da Cruz

    1998-12-15

    We consider for an anyon gas its termodynamics properties taking into account the fractal statistics obtained by us recently. This approach describes the anyonic excitations in terms of equivalence classes labeled by fractal parameter or Hausdorff dimension $h$. An exact equation of state is obtained in the high-temperature and low-temperature limits, for gases with a constant density of states.

  10. Black hole thermodynamics in finite time

    E-Print Network [OSTI]

    Gruber, Christine

    2016-01-01

    Finite-time thermodynamics provides the means to revisit ideal thermodynamic equilibrium processes in the light of reality and investigate the energetic "price of haste", i.e. the consequences of carrying out a process in finite time, when perfect equilibrium cannot be awaited due to economic reasons or the nature of the process. Employing the formalism of geometric thermodynamics, a lower bound on the energy dissipated during a process is derived from the thermodynamic length of that process. The notion of length is hereby defined via a metric structure on the space of equilibrium thermodynamics, spanned by a set of thermodynamic variables describing the system. Since the aim of finite-time thermodynamics is to obtain realistic limitations on idealized scenarios, it is a useful tool to reassess the efficiency of thermodynamic processes. We examine its implications for black hole thermodynamics, in particular scenarios inspired by the Penrose process, a thought experiment by which work can be extracted from a...

  11. Conformal Gauge Transformations in Thermodynamics

    E-Print Network [OSTI]

    A. Bravetti; C. S. Lopez-Monsalvo; F. Nettel

    2015-06-23

    In this work we consider conformal gauge transformations of the geometric structure of thermodynamic fluctuation theory. In particular, we show that the Thermodynamic Phase Space is naturally endowed with a non-integrable connection, defined by all those processes that annihilate the Gibbs 1-form, i.e. reversible processes. Therefore the geometry of reversible processes is invariant under re-scalings, that is, it has a conformal gauge freedom. Interestingly, as a consequence of the non-integrability of the connection, its curvature is not invariant under conformal gauge transformations and, therefore, neither is the associated pseudo-Riemannian geometry. We argue that this is not surprising, since these two objects are associated with irreversible processes. Moreover, we provide the explicit form in which all the elements of the geometric structure of the Thermodynamic Phase Space change under a conformal gauge transformation. As an example, we revisit the change of the thermodynamic representation and consider the resulting change between the two metrics on the Thermodynamic Phase Space which induce Weinhold's energy metric and Ruppeiner's entropy metric. As a by-product we obtain a proof of the well-known conformal relation between Weinhold's and Ruppeiner's metrics along the equilibrium directions. Finally, we find interesting properties of the almost para-contact structure and of its eigenvectors which may be of physical interest.

  12. Distinguished rheological models in the framework of a thermodynamical internal variable theory

    E-Print Network [OSTI]

    Cs. Asszonyi; T. Fülöp; P. Ván

    2014-10-22

    We present and analyze a thermodynamical theory of rheology with single internal variable. The universality of the model is ensured as long as the mesoscopic and/or microscopic background processes satisfy the applied thermodynamical principles, which are the second law, the basic balances and the existence of an additional-tensorial-state variable. The resulting model, which we suggest to call the Kluitenberg-Verh\\'as body, is the Poynting-Thomson-Zener body with an additional inertial element, or, in other words, is the extension of Jeffreys model to solids. We argue that this Kluitenberg-Verh\\'as body is the natural thermodynamical building block of rheology. An important feature of the presented methodology is that nontrivial inequality-type restrictions arise for the four parameters of the model. We compare these conditions and other aspects to those of other known thermodynamical approaches, like Extended Irreversible Thermodynamics or the original theory of Kluitenberg.

  13. Distinguished rheological models in the framework of a thermodynamical internal variable theory

    E-Print Network [OSTI]

    Asszonyi, Cs; Ván, P

    2014-01-01

    We present and analyze a thermodynamical theory of rheology with single internal variable. The universality of the model is ensured as long as the mesoscopic and/or microscopic background processes satisfy the applied thermodynamical principles, which are the second law, the basic balances and the existence of an additional-tensorial-state variable. The resulting model, which we suggest to call the Kluitenberg-Verh\\'as body, is the Poynting-Thomson-Zener body with an additional inertial element, or, in other words, is the extension of Jeffreys model to solids. We argue that this Kluitenberg-Verh\\'as body is the natural thermodynamical building block of rheology. An important feature of the presented methodology is that nontrivial inequality-type restrictions arise for the four parameters of the model. We compare these conditions and other aspects to those of other known thermodynamical approaches, like Extended Irreversible Thermodynamics or the original theory of Kluitenberg.

  14. Thermodynamics of Neptunium (V) Complexes with Phosphate at Elevated Temperatures

    E-Print Network [OSTI]

    Xia, Yuanxian

    2009-01-01

    VITORGE, H. WANNER, Chemical Thermodynamics of Neptunium andData Bank, Chemical Thermodynamics 4, Elsevier, New York 4.Thermodynamics of Neptunium (V) Complexes with Phosphate at

  15. Thermodynamics, Entropy, Information and the Efficiency of Solar Cells

    E-Print Network [OSTI]

    Abrams, Zeev R.

    2012-01-01

    and P.T. Landsberg, Thermodynamics and reciprocity of solar59. E. Yablonovitch, Thermodynamics of the fluorescentC. 139. E. Yablonovitch, Thermodynamics of the fluorescent

  16. Thermodynamics and Ionic Conductivity of Block Copolymer Electrolytes

    E-Print Network [OSTI]

    Wanakule, Nisita Sidra

    2010-01-01

    2.3 REFERENCES Flory, P.J. , Thermodynamics of high polymerBlock Copolymer Thermodynamics - Theory And Experiment.on block copolymer thermodynamics by measuring the changes

  17. Thermodynamics of Nanoscale Calcium and Strontium Titanate Perovskites

    E-Print Network [OSTI]

    Sahu, Sulata Kumari

    2013-01-01

    and A. Navrotsky, “Thermodynamics of Nanoscale Lead Titanate2007. A. Navrotsky, “Thermodynamics of Solid Electrolytesand Y. Fei, “The Thermodynamics of Ordered Perovskites on

  18. On the geometrical thermodynamics of chemical reactions

    E-Print Network [OSTI]

    Manuel Santoro; Albert S. Benight

    2005-07-08

    The formal structure of geometrical thermodynamics is reviewed with particular emphasis on the geometry of equilibria submanifolds. On these submanifolds thermodynamic metrics are defined as the Hessian of thermodynamic potentials. Links between geometry and thermodynamics are explored for single and multiple component, closed and open systems. For multi-component closed and open systems the Gibbs free energy is employed as the thermodynamic potential to investigate the connection between geometry and thermodynamics. The Gibbs free energy is chosen for the analysis of multicomponent systems and, in particular, chemical reactions.

  19. Non-hermitian quantum thermodynamics

    E-Print Network [OSTI]

    Bart?omiej Gardas; Sebastian Deffner; Avadh Saxena

    2015-11-19

    Thermodynamics is a phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law is reflected in the Carnot bound and it is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose a setup to test our predictions. The quantum system in question consists of strongly interacting excitons and photons in a semiconductor microcavity.

  20. Thermodynamics of quantum photon spheres

    E-Print Network [OSTI]

    M. C. Baldiotti; Walace S. Elias; C. Molina; Thiago S. Pereira

    2014-11-21

    Photon spheres, surfaces where massless particles are confined in closed orbits, are expected to be common astrophysical structures surrounding ultracompact objects. In this paper a semiclassical treatment of a photon sphere is proposed. We consider the quantum Maxwell field and derive its energy spectra. A thermodynamic approach for the quantum photon sphere is developed and explored. Within this treatment, an expression for the spectral energy density of the emitted radiation is presented. Our results suggest that photon spheres, when thermalized with their environment, have nonusual thermodynamic properties, which could lead to distinct observational signatures.

  1. Horizon thermodynamics and composite metrics

    E-Print Network [OSTI]

    Lorenzo Sindoni

    2012-11-12

    We examine the conditions under which the thermodynamic behaviour of gravity can be explained within an emergent gravity scenario, where the metric is defined as a composite operator. We show that due to the availability of a boundary of a boundary principle for the quantum effective action, Clausius-like relations can always be constructed. Hence, any true explanation of the thermodynamic nature of the metric tensor has to be referred to an equilibration process, associated to the presence of an H-theorem, possibly driven by decoherence induced by the pregeometric degrees of freedom, and their entanglement with the geometric ones.

  2. The thermodynamics of creating correlations: Limitations and optimal protocols

    E-Print Network [OSTI]

    David Edward Bruschi; Martí Perarnau-Llobet; Nicolai Friis; Karen V. Hovhannisyan; Marcus Huber

    2015-03-11

    We establish a rigorous connection between fundamental resource theories at the quantum scale. Correlations and entanglement constitute indispensable resources for numerous quantum information tasks. However, their establishment comes at the cost of energy, the resource of thermodynamics, and is limited by the initial entropy. Here, the optimal conversion of energy into correlations is investigated. Assuming the presence of a thermal bath, we establish general bounds for arbitrary systems and construct a protocol saturating them. The amount of correlations, quantified by the mutual information, can increase at most linearly with the available energy, and we determine where the linear regime breaks down. We further consider the generation of genuine quantum correlations, focusing on the fundamental constituents of our universe: fermions and bosons. For fermionic modes, we find the optimal entangling protocol. For bosonic modes, we show that while Gaussian operations can be outperformed in creating entanglement, their performance is optimal for high energies.

  3. Hamilton-Jacobi formalism for string gas thermodynamics

    E-Print Network [OSTI]

    Anosh Joseph; S. G. Rajeev

    2009-03-27

    We show that the thermodynamics of a system of strings at high energy densities under the ideal gas approximation has a formulation in terms of Hamilton-Jacobi theory. The two parameters of the system, which have dimensions of energy density and number density, respectively, define a family of hypersurfaces of co-dimension one, which can be described by the vanishing of a function F that plays the role of a Hamiltonian.

  4. Thermodynamics of dark energy interacting with dark matter and radiation

    E-Print Network [OSTI]

    Mubasher Jamil; Emmanuel N. Saridakis; M. R. Setare

    2010-07-18

    We investigate the validity of the generalized second law of thermodynamics, in the cosmological scenario where dark energy interacts with both dark matter and radiation. Calculating separately the entropy variation for each fluid component and for the apparent horizon itself, we show that the generalized second law is always and generally valid, independently of the specific interaction form, of the fluids equation-of-state parameters and of the background geometry.

  5. Methods and systems for thermodynamic evaluation of battery state of health

    DOE Patents [OSTI]

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2014-12-02

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  6. Quantum measurement and its role in thermodynamics

    E-Print Network [OSTI]

    Philipp Kammerlander; Janet Anders

    2015-02-09

    A central goal of the research effort in quantum thermodynamics is the extension of standard thermodynamics to include small-scale and quantum effects. Here we lay out consequences of seeing measurement, one of the central pillars of quantum theory, not merely as a mathematical projection but as a thermodynamic process. We uncover that measurement, a component of any experimental realisation, is accompanied by work and heat contributions and that these are distinct in classical and quantum thermodynamics. Implications are far-reaching, giving a thermodynamic interpretation to quantum coherence, extending the link between thermodynamics and information theory, and providing key input for the construction of a future quantum thermodynamic framework. Repercussions for existing quantum thermodynamic relations that omitted the role of measurement are discussed, including quantum work fluctuation relations and single-shot approaches.

  7. Fundamental Limits to Cellular Sensing

    E-Print Network [OSTI]

    Pieter Rein ten Wolde; Nils B. Becker; Thomas E. Ouldridge; A. Mugler

    2015-05-25

    In recent years experiments have demonstrated that living cells can measure low chemical concentrations with high precision, and much progress has been made in understanding what sets the fundamental limit to the precision of chemical sensing. Chemical concentration measurements start with the binding of ligand molecules to receptor proteins, which is an inherently noisy process, especially at low concentrations. The signaling networks that transmit the information on the ligand concentration from the receptors into the cell have to filter this noise extrinsic to the cell as much as possible. These networks, however, are also stochastic in nature, which means that they will also add noise to the transmitted signal. In this review, we will first discuss how the diffusive transport and binding of ligand to the receptor sets the receptor correlation time, and then how downstream signaling pathways integrate the noise in the receptor state; we will discuss how the number of receptors, the receptor correlation time, and the effective integration time together set a fundamental limit on the precision of sensing. We then discuss how cells can remove the receptor noise while simultaneously suppressing the intrinsic noise in the signaling network. We describe why this mechanism of time integration requires three classes of resources---receptors and their integration time, readout molecules, energy---and how each resource class sets a fundamental sensing limit. We also briefly discuss the scheme of maximum-likelihood estimation, the role of receptor cooperativity, and how cellular copy protocols differ from canonical copy protocols typically considered in the computational literature, explaining why cellular sensing systems can never reach the Landauer limit on the optimal trade-off between accuracy and energetic cost.

  8. Dynamic Stability and Thermodynamic Characterization in an Enzymatic Reaction at the Single Molecule Level

    E-Print Network [OSTI]

    Moisés Santillán

    2011-05-27

    In this work we study, at the single molecular level, the thermodynamic and dynamic characteristics of an enzymatic reaction comprising a rate limiting step. We investigate how the stability of the enzyme-state stationary probability distribution, the reaction velocity, and its efficiency of energy conversion depend on the system parameters. We employ in this study a recently introduced formalism for performing a multiscale thermodynamic analysis in continuous-time discrete-state stochastic systems.

  9. Fundamental Interactions - Research - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServicesAmesFourFromFuel CellFullFundamental

  10. Hawking Emission and Black Hole Thermodynamics

    E-Print Network [OSTI]

    Don N. Page

    2006-12-18

    A brief review of Hawking radiation and black hole thermodynamics is given, based largely upon hep-th/0409024.

  11. Cosmological two-fluid thermodynamics

    E-Print Network [OSTI]

    Winfried Zimdahl; Diego Pavón

    2000-05-17

    We reveal unifying thermodynamic aspects of so different phenomena as the cosmological electron-positron annihilation, the evaporation of primordial black holes with a narrow mass range, and the ``deflationary'' transition from an initial de Sitter phase to a subsequent standard Friedmann-Lema\\^{\\i}tre-Robertson-Walker begin (FLRW) behavior.

  12. Thermodynamic Analysis for Energy Conservation 

    E-Print Network [OSTI]

    Kenney, W. F.

    1981-01-01

    This paper describes a methodology for performing a thermodynamic analysis of a process, and it demonstrates how such a study can be useful in identifying areas in the process with the greatest potential for improvement in energy use. The basis is a...

  13. Equilibrium Thermodynamics of Lattice QCD

    E-Print Network [OSTI]

    D. K. Sinclair

    2007-02-03

    Lattice QCD allows us to simulate QCD at non-zero temperature and/or densities. Such equilibrium thermodynamics calculations are relevant to the physics of relativistic heavy-ion collisions. I give a brief review of the field with emphasis on our work.

  14. Dabasinksas: Thermodynamics and Energy Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    later. G E F F B D A C Internal Energy (Joules) t t t t t t t t First Law of Thermodynamics: UQ+W for a closed system Q h t i t d W k i t +Q heat input and +W ...

  15. Conservation of Energy Thermodynamic Energy Equation

    E-Print Network [OSTI]

    Hennon, Christopher C.

    , is derived beginning with an alternative form of the 1st Law of Thermodynamics, the internal energy formConservation of Energy Thermodynamic Energy Equation The previous two sections dealt addresses the conservation of energy. The first law of thermodynamics, of which you should be very familiar

  16. CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings

    E-Print Network [OSTI]

    Sherrill, David

    CHEM 6471 CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings 9:35 ­ 10:55 am, Tuesday and Thursday of October 22-26 Textbooks Molecular Thermodynamics by D.A McQuarrie and J.D. Simon, University Science Books the laws of classical thermodynamics and some of their chemical applications. It also covers basic

  17. Particles, maps and Irreversible Thermodynamics { I

    E-Print Network [OSTI]

    Rondoni, Lamberto

    Particles, maps and Irreversible Thermodynamics { I E. G. D. Cohen The Rockefeller University New Thermodynamics from deterministic dynamics. We #12;nd that these models do not posses the crucial property of local thermodynamic equilibrium, since they rep- resent noninteracting particles systems. Hence

  18. Vibrational Thermodynamics of Materials Brent Fultz

    E-Print Network [OSTI]

    Fultz, Brent

    Vibrational Thermodynamics of Materials Brent Fultz California Institute of Technology, W. M. Keck Laboratory, Pasadena CA 91125 USA July 6, 2009 Abstract. The literature on vibrational thermodynamics of harmonic phonons in alloys are organized into thermodynamic models for unmixing and ordering

  19. Thermodynamics of Protein Folding Erik Sandelin

    E-Print Network [OSTI]

    Sandelin, Erik

    Thermodynamics of Protein Folding and Design Erik Sandelin Department of Theoretical Physics Lund Sölvegatan 14A 223 62 LUND September 2000 Erik Sandelin Thermodynamics of Protein Folding and Design sequence-independent local interactions which are found to strongly influence the thermodynamics

  20. Thermodynamics of viscoelastic fluids: the temperature equation.

    E-Print Network [OSTI]

    Wapperom, Peter

    Thermodynamics of viscoelastic fluids: the temperature equation. Peter Wapperom Martien A. Hulsen and Hydrodynamics Rotterdamseweg 145 2628 AL Delft (The Netherlands) Abstract From the thermodynamics with internal. The well- known stress differential models that fit into the thermodynamic theory will be treated

  1. Thermodynamics and Mass Transport in Multicomponent,

    E-Print Network [OSTI]

    Manga, Michael

    Thermodynamics and Mass Transport in Multicomponent, Multiphase H2O Systems of Planetary Interest, cryogenic systems, thermodynamics, fluid dynamics, clathrates, Mars, Enceladus, sound speed Abstract Heat of the noncondensible components can greatly alter the thermodynamic properties of the phases and their flow properties

  2. Thermodynamics and timeaverages October 13, 2004

    E-Print Network [OSTI]

    Carati, Andrea

    Thermodynamics and time­averages A. Carati October 13, 2004 ABSTRACT For a dynamical system far­averages, and the main problem is then how to formulate an appropriate statistical thermodynamics. The com- mon answer: Thermodynamics and time­averages Universit`a di Milano, Dipartimento di Matematica Via Saldini 50, 20133 Milano

  3. Thermodynamics of a Nonlocal PNJL Model

    E-Print Network [OSTI]

    Weise, Wolfram

    Thermodynamics of a Nonlocal PNJL Model Thomas Hell, Simon Rößner and Wolfram Weise Physik Th. Hell Thermodynamics of a Nonlocal NJL-type Model #12;Outline 1 The Nonlocal Nambu Approximation Dynamical Quark Mass 2 Thermodynamics of the Nonlocal PNJL Model Coupling Quarks and Polyakov Loop

  4. Thermodynamics of a Nonlocal PNJL Model

    E-Print Network [OSTI]

    Weise, Wolfram

    Thermodynamics of a Nonlocal PNJL Model Thomas Hell, Simon Rößner and Wolfram Weise Physik Darmstadt, March 14th 2008 T. Hell Thermodynamics of a Nonlocal NJL-type Model #12;Outline 1 The Nonlocal Model Mean Field Approximation Dynamical Quark Mass 2 Thermodynamics of the Nonlocal PNJL Model Coupling

  5. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    SciTech Connect (OSTI)

    Leigh R. Martin

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  6. From Rényi Relative Entropic Generalization to Quantum Thermodynamical Universality

    E-Print Network [OSTI]

    Avijit Misra; Uttam Singh; Manabendra Nath Bera; A. K. Rajagopal

    2015-06-10

    It is shown that the structure of thermodynamics is "form invariant", when it is derived using maximum entropy principle for various choices of entropy and even beyond equilibrium. By the form invariance of thermodynamics, it is meant that the form of the free energy (internal energy minus the temperature times entropy) remains unaltered when all the entities entering this relation are suitably defined. The useful ingredients for this are the equilibrium entropy associated with thermal density matrix and the relative entropy between an arbitrary density matrix and the thermal density matrix. To delineate the form invariance, we consider the quantum R\\'enyi entropic versions (indexed by a parameter $\\alpha$), i.e., R\\'enyi entropy with appropriate internal energy and equilibrium state defined for all $\\alpha$. These results reduce to the well-known Gibbs-von Neumann results when $\\alpha \\rightarrow 1$. Moreover, we show that the \\textit{universality} of the Carnot statement of the second law is the consequence of the form invariance of the free energy. Further, the Clausius inequality, which is the precursor to the Carnot cycle, is also shown to hold based on the known data processing inequalities for the traditional and the sandwiched R\\'enyi relative entropies. Thus, we find the thermodynamics of nonequilibrium state and its deviation from equilibrium together determine the thermodynamic laws.

  7. FUNDAMENTAL PERFORMANCE LIMITS OF WIRELESS SENSOR NETWORKS

    E-Print Network [OSTI]

    Li, Baochun

    FUNDAMENTAL PERFORMANCE LIMITS OF WIRELESS SENSOR NETWORKS ZHIHUA HU, BAOCHUN LI Abstract. Understanding the fundamental performance limits of wireless sensor networks is critical towards. In addition to presenting the general results with respect to the maximum sustainable throughput of wireless

  8. Fundamental studies of polymer filtration

    SciTech Connect (OSTI)

    Smith, B.F.; Lu, M.T.; Robison, T.W.; Rogers, Y.C.; Wilson, K.V.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were (1) to develop an enhanced fundamental understanding of the coordination chemistry of hazardous-metal-ion complexation with water-soluble metal-binding polymers, and (2) to exploit this knowledge to develop improved separations for analytical methods, metals processing, and waste treatment. We investigated features of water-soluble metal-binding polymers that affect their binding constants and selectivity for selected transition metal ions. We evaluated backbone polymers using light scattering and ultrafiltration techniques to determine the effect of pH and ionic strength on the molecular volume of the polymers. The backbone polymers were incrementally functionalized with a metal-binding ligand. A procedure and analytical method to determine the absolute level of functionalization was developed and the results correlated with the elemental analysis, viscosity, and molecular size.

  9. Hyperbolic metamaterials: fundamentals and applications

    E-Print Network [OSTI]

    Shekhar, Prashant; Jacob, Zubin

    2014-01-01

    Metamaterials are nano-engineered media with designed properties beyond those available in nature with applications in all aspects of materials science. In particular, metamaterials have shown promise for next generation of optical materials with electromagnetic responses that cannot be obtained from conventional media. We review the fundamental properties of metamaterials with hyperbolic dispersion and present the various applications where such media offer potential for transformative impact. These artificial materials support unique bulk electromagnetic states which can tailor light-matter interaction at the nanoscale. We present a unified view of current research in the field of hyperbolic metamaterials such as sub-wavelength imaging and broadband photonic density of states engineering. The review introduces the concepts central to the theory of hyperbolic media as well as nanofabrication and characterization details essential to experimentalists. Finally, we outline the challenges in the area and offer a...

  10. Short Papers___________________________________________________________________________________________________ Estimating the Fundamental Matrix

    E-Print Network [OSTI]

    Martin, Ralph R.

    ___________________________________________________________________________________________________ Estimating the Fundamental Matrix via Constrained Least-Squares: A Convex Approach Graziano Chesi, AndreaÐIn this paper, a new method for the estimation of the fundamental matrix from point correspondences is presented on the fundamental matrix. It is shown how this nonconvex optimization problem can be solved avoiding local minima

  11. The Thermodynamics of Energy Conservation 

    E-Print Network [OSTI]

    Witte, L. C.

    1986-01-01

    OF ENERGY CONSERVAXION LARRY C. WITTE DEPARTMENT OF MECHANICAL ENGINEERING UNIVERSITY OF HOUSTON HOUSTON, TEXAS ABSTRACT This paper is part of a session dealing with the fundamentals of energy conservation. The paper is intended to be a tutorial...

  12. Thermodynamics of the PNJL model

    E-Print Network [OSTI]

    C. Ratti; S. Roessner; M. A. Thaler; W. Weise

    2006-09-21

    QCD thermodynamics is investigated by means of the Polyakov-loop-extended Nambu Jona-Lasinio (PNJL) model, in which quarks couple simultaneously to the chiral condensate and to a background temporal gauge field representing Polyakov loop dynamics. The behaviour of the Polyakov loop as a function of temperature is obtained by minimizing the thermodynamic potential of the system. A Taylor series expansion of the pressure is performed. Pressure difference and quark number density are then evaluated up to sixth order in quark chemical potential, and compared to the corresponding lattice data. The validity of the Taylor expansion is discussed within our model, through a comparison between the full results and the truncated ones.

  13. Black Hole Thermodynamics and Electromagnetism

    E-Print Network [OSTI]

    Burra G. Sidharth

    2005-07-15

    We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

  14. Nuclear and fundamental physics instrumentation for the ANS project

    SciTech Connect (OSTI)

    Robinson, S.J. [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics; Raman, S.; Arterburn, J.; McManamy, T.; Peretz, F.J. [Oak Ridge National Lab., TN (United States); Faust, H. [Institut Laue-Langevin, 38 - Grenoble (France); Piotrowski, A.E. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1996-05-01

    This report summarizes work carried out during the period 1991-1995 in connection with the refinement of the concepts and detailed designs for nuclear and fundamental physics research instrumentation at the proposed Advanced Neutron source at Oak Ridge National Laboratory. Initially, emphasis was placed on refining the existing System Design Document (SDD-43) to detail more accurately the needs and interfaces of the instruments that are identified in the document. The conceptual designs of these instruments were also refined to reflect current thinking in the field of nuclear and fundamental physics. In particular, the on-line isotope separator (ISOL) facility design was reconsidered in the light of the development of interest in radioactive ion beams within the nuclear physics community. The second stage of this work was to define those instrument parameters that would interface directly with the reactor systems so that these parameters could be considered for the ISOL facility and particularly for its associated ion source. Since two of these options involved ion sources internal to the long slant beam tube, these were studied in detail. In addition, preliminary work was done to identify the needs for the target holder and changing facility to be located in the tangential through-tube. Because many of the planned nuclear and fundamental physics instruments have similar needs in terms of detection apparatus, some progress was also made in defining the parameters for these detectors. 21 refs., 32 figs., 2 tabs.

  15. Fourier expansions for a logarithmic fundamental solution of the polyharmonic equation

    E-Print Network [OSTI]

    Howard S. Cohl

    2012-02-08

    In even-dimensional Euclidean space for integer powers of the Laplacian greater than or equal to the dimension divided by two, a fundamental solution for the polyharmonic equation has logarithmic behavior. We give two approaches for developing a Fourier expansion of this logarithmic fundamental solution. The first approach is algebraic and relies upon the construction of two-parameter polynomials. We describe some of the properties of these polynomials, and use them to derive the Fourier expansion for a logarithmic fundamental solution of the polyharmonic equation. The second approach depends on the computation of parameter derivatives of Fourier series for a power-law fundamental solution of the polyharmonic equation. The resulting Fourier series is given in terms of sums over associated Legendre functions of the first kind. We conclude by comparing the two approaches and giving the azimuthal Fourier series for a logarithmic fundamental solution of the polyharmonic equation in rotationally-invariant coordinate systems.

  16. Thermodynamics of Evolving Lorentzian Wormhole at Apparent and Event Horizons

    E-Print Network [OSTI]

    Ujjal Debnath; Mubasher Jamil; R. Myrzakulov; M. Akbar

    2012-04-06

    We have investigated the non-static Lorentzian Wormhole model in presence of anisotropic pressure. We have presented some exact solutions of Einstein equations for anisotropic pressure case. Introducing two EoS parameters we have shown that these solutions give very rich dynamics of the universe yielding to the different expansion history of it in the $r$ - direction and in the $T$ - direction. The corresponding explicit forms of the shape function $b(r)$ is presented.We have shown that the Einstein's field equations and unified first law are equivalent for the dynamical wormhole model. The first law of thermodynamics has been derived by using the Unified first law. The physical quantities including surface gravity and the temperature are derived for the wormhole. Here we have obtained all the results without any choice of the shape function. The validity of generalized second law (GSL) of thermodynamics has been examined at apparent and event horizons for the evolving Lorentzian wormhole.

  17. Thermodynamics of SU(3) gauge theory at fixed lattice spacing

    E-Print Network [OSTI]

    T. Umeda; S. Ejiri; S. Aoki; T. Hatsuda; K. Kanaya; Y. Maezawa; H. Ohno

    2008-10-09

    We study thermodynamics of SU(3) gauge theory at fixed scales on the lattice, where we vary temperature by changing the temporal lattice size N_t=(Ta_t)^{-1}. In the fixed scale approach, finite temperature simulations are performed on common lattice spacings and spatial volumes. Consequently, we can isolate thermal effects in observables from other uncertainties, such as lattice artifact, renormalization factor, and spatial volume effect. Furthermore, in the EOS calculations, the fixed scale approach is able to reduce computational costs for zero temperature subtraction and parameter search to find lines of constant physics, which are demanding in full QCD simulations. As a test of the approach, we study the thermodynamics of the SU(3) gauge theory on isotropic and anisotropic lattices. In addition to the equation of state, we calculate the critical temperature and the static quark free energy at a fixed scale.

  18. Validity of Thermodynamical Laws in Dark Energy Filled Universe

    E-Print Network [OSTI]

    Samarpita Bhattacharya; Ujjal Debnath

    2010-12-26

    We have considered the flat FRW model of the universe which is filled with only dark energy. The general descriptions of first and second laws of thermodynamics are investigated on the apparent horizon and event horizon of the universe. We have assumed the equation of state of three different types of dark energy models. We have examined the validity of first and second laws of thermodynamics on apparent and event horizons for these dark energies. For these dark energy models, it has been found that on the apparent horizon, first and second laws are always valid. On the event horizon, the laws are break down for dark energy models 1 and 2. For model 3, first law cannot be satisfied on the event horizon, but second law may be satisfied at the late stage of the evolution of the universe and so the validity of second law on the event horizon depends on the values of the parameters only.

  19. Generalized Second Law of Thermodynamics for Non-canonical Scalar Field Model with Corrected-Entropy

    E-Print Network [OSTI]

    Das, Sudipta; Mamon, Abdulla Al

    2015-01-01

    In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters.

  20. Stars In Other Universes: Stellar structure with different fundamental constants

    E-Print Network [OSTI]

    Fred C. Adams

    2008-07-23

    Motivated by the possible existence of other universes, with possible variations in the laws of physics, this paper explores the parameter space of fundamental constants that allows for the existence of stars. To make this problem tractable, we develop a semi-analytical stellar structure model that allows for physical understanding of these stars with unconventional parameters, as well as a means to survey the relevant parameter space. In this work, the most important quantities that determine stellar properties -- and are allowed to vary -- are the gravitational constant $G$, the fine structure constant $\\alpha$, and a composite parameter $C$ that determines nuclear reaction rates. Working within this model, we delineate the portion of parameter space that allows for the existence of stars. Our main finding is that a sizable fraction of the parameter space (roughly one fourth) provides the values necessary for stellar objects to operate through sustained nuclear fusion. As a result, the set of parameters necessary to support stars are not particularly rare. In addition, we briefly consider the possibility that unconventional stars (e.g., black holes, dark matter stars) play the role filled by stars in our universe and constrain the allowed parameter space.

  1. Fundamental mechanisms of micromachine reliability

    SciTech Connect (OSTI)

    DE BOER,MAARTEN P.; SNIEGOWSKI,JEFFRY J.; KNAPP,JAMES A.; REDMOND,JAMES M.; MICHALSKE,TERRY A.; MAYER,THOMAS K.

    2000-01-01

    Due to extreme surface to volume ratios, adhesion and friction are critical properties for reliability of Microelectromechanical Systems (MEMS), but are not well understood. In this LDRD the authors established test structures, metrology and numerical modeling to conduct studies on adhesion and friction in MEMS. They then concentrated on measuring the effect of environment on MEMS adhesion. Polycrystalline silicon (polysilicon) is the primary material of interest in MEMS because of its integrated circuit process compatibility, low stress, high strength and conformal deposition nature. A plethora of useful micromachined device concepts have been demonstrated using Sandia National Laboratories' sophisticated in-house capabilities. One drawback to polysilicon is that in air the surface oxidizes, is high energy and is hydrophilic (i.e., it wets easily). This can lead to catastrophic failure because surface forces can cause MEMS parts that are brought into contact to adhere rather than perform their intended function. A fundamental concern is how environmental constituents such as water will affect adhesion energies in MEMS. The authors first demonstrated an accurate method to measure adhesion as reported in Chapter 1. In Chapter 2 through 5, they then studied the effect of water on adhesion depending on the surface condition (hydrophilic or hydrophobic). As described in Chapter 2, they find that adhesion energy of hydrophilic MEMS surfaces is high and increases exponentially with relative humidity (RH). Surface roughness is the controlling mechanism for this relationship. Adhesion can be reduced by several orders of magnitude by silane coupling agents applied via solution processing. They decrease the surface energy and render the surface hydrophobic (i.e. does not wet easily). However, only a molecular monolayer coats the surface. In Chapters 3-5 the authors map out the extent to which the monolayer reduces adhesion versus RH. They find that adhesion is independent of RH up to a threshold value, depending on the coating chemistry. The mechanism for the adhesion increase beyond this threshold value is that the coupling agent reconfigures from a surface to a bulk phase (Chapter 3). To investigate the details of how the adhesion increase occurs, the authors developed the mechanics for adhesion hysteresis measurements. These revealed that near-crack tip compression is the underlying cause of the adhesion increase (Chapter 4). A vacuum deposition chamber for silane coupling agent deposition was constructed. Results indicate that vapor deposited coatings are less susceptible to degradation at high RH (Chapter 5). To address issues relating to surfaces in relative motion, a new test structure to measure friction was developed. In contrast to other surface micromachined friction test structures, uniform apparent pressure is applied in the frictional contact zone (Chapter 6). The test structure will enable friction studies over a large pressure and dynamic range. In this LDRD project, the authors established an infrastructure for MEMS adhesion and friction metrology. They then characterized in detail the performance of hydrophilic and hydrophobic films under humid conditions, and determined mechanisms which limit this performance. These studies contribute to a fundamental understanding for MEMS reliability design rules. They also provide valuable data for MEMS packaging requirements.

  2. Fundamental Mechanisms of Interface Roughness

    SciTech Connect (OSTI)

    Randall L. Headrick

    2009-01-06

    Publication quality results were obtained for several experiments and materials systems including: (i) Patterning and smoothening of sapphire surfaces by energetic Ar+ ions. Grazing Incidence Small Angle X-ray Scattering (GISAXS) experiments were performed in the system at the National Synchrotron Light Source (NSLS) X21 beamline. Ar+ ions in the energy range from 300 eV to 1000 eV were used to produce ripples on the surfaces of single-crystal sapphire. It was found that the ripple wavelength varies strongly with the angle of incidence of the ions, which increase significantly as the angle from normal is varied from 55° to 35°. A smooth region was found for ion incidence less than 35° away from normal incidence. In this region a strong smoothening mechanism with strength proportional to the second derivative of the height of the surface was found to be responsible for the effect. The discovery of this phase transition between stable and unstable regimes as the angle of incidence is varied has also stimulated new work by other groups in the field. (ii) Growth of Ge quantum dots on Si(100) and (111). We discovered the formation of quantum wires on 4° misoriented Si(111) using real-time GISAXS during the deposition of Ge. The results represent the first time-resolved GISAXS study of Ge quantum dot formation. (iii) Sputter deposition of amorphous thin films and multilayers composed of WSi2 and Si. Our in-situ GISAXS experiments reveal fundamental roughening and smoothing phenomena on surfaces during film deposition. The main results of this work is that the WSi2 layers actually become smoother during deposition due to the smoothening effect of energetic particles in the sputter deposition process.

  3. New Thermodynamic Paradigm of Chemical Equilibria

    E-Print Network [OSTI]

    B. Zilbergleyt

    2011-10-28

    The paper presents new thermodynamic paradigm of chemical equilibrium, setting forth comprehensive basics of Discrete Thermodynamics of Chemical Equilibria (DTd). Along with previous results by the author during the last decade, this work contains also some new developments of DTd. Based on the Onsager's constitutive equations, reformulated by the author thermodynamic affinity and reaction extent, and Le Chatelier's principle, DTd brings forward a notion of chemical equilibrium as a balance of internal and external thermodynamic forces (TdF), acting against a chemical system. Basic expression of DTd is the chemical system logistic map of thermodynamic states that ties together energetic characteristics of chemical reaction, occurring in the system, the system shift from "true" thermodynamic equilibrium (TdE), and causing that shift external thermodynamic forces. Solutions to the basic map are pitchfork bifurcation diagrams in coordinates "shift from TdE - growth factor (or TdF)"; points, corresponding to the system thermodynamic states, are dwelling on its branches. The diagrams feature three typical areas: true thermodynamic equilibrium and open equilibrium along the thermodynamic branch before the threshold of its stability, i.e. bifurcation point, and bifurcation area with bistability and chaotic oscillations after the point. The set of solutions makes up the chemical system domain of states. The new paradigm complies with the correspondence principle: in isolated chemical system external TdF vanish, and the basic map turns into traditional expression of chemical equilibrium via thermodynamic affinity. The theory binds together classical and contemporary thermodynamics of chemical equilibria on a unique conceptual basis. The paper is essentially reworked and refocused version of the earlier preprint on the DTd basics, supplemented with new results.

  4. Coherence and measurement in quantum thermodynamics

    E-Print Network [OSTI]

    Philipp Kammerlander; Janet Anders

    2015-09-18

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines and fridges to power plants and solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Here we identify information processing tasks, the so-called "projections", that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Implications are far-reaching, adding a thermodynamic dimension to measurements performed in quantum thermodynamics experiments, and providing key input for the construction of a future quantum thermodynamic framework. Repercussions are discussed for quantum work fluctuation relations and thermodynamic single-shot approaches.

  5. 5.60 Thermodynamics & Kinetics, Spring 2005

    E-Print Network [OSTI]

    Bawendi, Moungi Gabriel, 1961-

    This subject deals primarily with equilibrium properties of macroscopic systems, basic thermodynamics, chemical equilibrium of reactions in gas and solution phase, and rates of chemical reactions.

  6. Thermodynamics of Lemaitre-Tolman-Bondi Model

    E-Print Network [OSTI]

    Subenoy Chakraborty; Nairwita Mazumder; Ritabrata Biswas

    2010-06-13

    Here we consider our universe as inhomogeneous spherically symmetric Lemaitre-Tolman-Bondi Model and analyze the thermodynamics of this model of the universe. The trapping horizon is calculated and is found to coincide with the apparent horizon. The Einstein field equations are shown to be equivalent with the unified first law of thermodynamics. Finally assuming the first law of thermodynamics validity of the generalized second law of thermodynamics is examined at the apparent horizon for the perfect fluid and at the event horizon for holographic dark energy.

  7. Thermodynamic and kinetic characterization of hydroxyethylamine...

    Office of Scientific and Technical Information (OSTI)

    inhibitors in terms of their association and dissociation rate constants and thermodynamics of binding using surface plasmon resonance (SPR). Rate constants of association...

  8. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use...

  9. Thermodynamic data for uranium fluorides

    SciTech Connect (OSTI)

    Leitnaker, J.M.

    1983-03-01

    Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF/sub 4/ and UF/sub 6/, including UF/sub 4/ (solid and gas), U/sub 4/F/sub 17/ (solid), U/sub 2/F/sub 9/ (solid), UF/sub 5/ (solid and gas), U/sub 2/F/sub 10/ (gas), and UF/sub 6/ (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior.

  10. Thermodynamics of tubelike flexible polymers

    E-Print Network [OSTI]

    Thomas Vogel; Thomas Neuhaus; Michael Bachmann; Wolfhard Janke

    2009-07-17

    In this work we present the general phase behavior of short tubelike flexible polymers. The geometric thickness constraint is implemented through the concept of the global radius of curvature. We use sophisticated Monte Carlo sampling methods to simulate small bead-stick polymer models with Lennard-Jones interaction among non-bonded monomers. We analyze energetic fluctuations and structural quantities to classify conformational pseudophases. We find that the tube thickness influences the thermodynamic behavior of simple tubelike polymers significantly, i.e., for given temperature, the formation of secondary structures strongly depends on the tube thickness.

  11. Thermodynamics of discrete quantum processes

    E-Print Network [OSTI]

    Janet Anders; Vittorio Giovannetti

    2012-11-01

    We define thermodynamic configurations and identify two primitives of discrete quantum processes between configurations for which heat and work can be defined in a natural way. This allows us to uncover a general second law for any discrete trajectory that consists of a sequence of these primitives, linking both equilibrium and non-equilibrium configurations. Moreover, in the limit of a discrete trajectory that passes through an infinite number of configurations, i.e. in the reversible limit, we recover the saturation of the second law. Finally, we show that for a discrete Carnot cycle operating between four configurations one recovers Carnot's thermal efficiency.

  12. Thermodynamic Properties of Supported Catalysts

    SciTech Connect (OSTI)

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  13. Energy Literacy: Essential Principles and Fundamental Concepts...

    Office of Environmental Management (EM)

    energy, or send an email to request hard copies by mail. April 2, 2015 Conocimiento de Energia Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education...

  14. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC) Website

    "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News &...

  15. Hydrogen Embrittlement Fundamentals, Modeling, and Experiment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Embrittlement Fundamentals, Modeling, and Experiment Embrittlement, under static load could be a result of the synergistic action of the HELP and decohesion...

  16. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Teng, H. Henry PI, The George Washington University PI, The George...

  17. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states

    E-Print Network [OSTI]

    Dima Bolmatov; Dmitry Zavyalov; Mikhail Zhernenkov; Edvard T. Musaev; Yong Q. Cai

    2015-12-22

    We introduce a unified approach to states of matter (solid, liquid and gas) and describe the thermodynamics of the pressure-temperature phase diagram in terms of phonon excitations. We derive the effective Hamiltonian with low-energy cutoff in two transverse phonon polarizations (phononic band gaps) by breaking the symmetry in phonon interactions. Further, we construct the statistical mechanics of states of aggregation employing the Debye approximation. The introduced formalism covers the Debye theory of solids, the phonon theory of liquids, and thermodynamic limits such as the Dulong-Petit thermodynamic limit, the ideal gas limit and the new thermodynamic limit, dubbed here the Frenkel line thermodynamic limit. We discuss the phonon propagation and localization effects in liquids above and below the Frenkel line, and explain the "fast sound" phenomenon. As a test for our theory we calculate velocity-velocity autocorrelation and pair distribution functions within the Green-Kubo formalism. We show the consistency between dynamics of phonons and pair correlations in the framework of the unified approach. New directions towards advancements in phononic band gaps engineering, hypersound manipulation technologies and exploration of exotic behaviour of fluids relevant to geo- and planetary sciences are discussed. The presented results are equally important both for practical implications and for fundamental research.

  18. Thermodynamics of reformulated automotive fuels

    SciTech Connect (OSTI)

    Zudkevitch, D. [Columbia Univ., New York, NY (United States); Murthy, A.K.S. [BOC Gases, Murray Hill, NJ (United States); Gmehling, J. [Technische Chemie Univ. Oldenburg (Germany)

    1995-06-01

    Two methods for predicting Reid vapor pressure (Rvp) and initial vapor emissions of reformulated gasoline blends that contain one or more oxygenated compounds show excellent agreement with experimental data. In the first method, method A, D-86 distillation data for gasoline blends are used for predicting Rvp from a simulation of the mini dry vapor pressure equivalent (Dvpe) experiment. The other method, method B, relies on analytical information (PIANO analyses) of the base gasoline and uses classical thermodynamics for simulating the same Rvp equivalent (Rvpe) mini experiment. Method B also predicts composition and other properties for the fuel`s initial vapor emission. Method B, although complex, is more useful in that is can predict properties of blends without a D-86 distillation. An important aspect of method B is its capability to predict composition of initial vapor emissions from gasoline blends. Thus, it offers a powerful tool to planners of gasoline blending. Method B uses theoretically sound formulas, rigorous thermodynamic routines and uses data and correlations of physical properties that are in the public domain. Results indicate that predictions made with both methods agree very well with experimental values of Dvpe. Computer simulation methods were programmed and tested.

  19. Time as a parameter of statistical ensemble

    E-Print Network [OSTI]

    Sergei Viznyuk

    2011-11-26

    The notion of time is derived as a parameter of statistical ensemble representing the underlying system. Varying population numbers of microstates in statistical ensemble result in different expectation values corresponding to different times. We show a single parameter which equates to the notion of time is logarithm of the total number of microstates in statistical ensemble. We discuss the implications of proposed model for some topics of modern physics: Poincar\\'e recurrence theorem vs. Second Law of Thermodynamics, matter vs. anti-matter asymmetry of the universe, expansion of the universe, Big Bang.

  20. Thermodynamic characterization of new palladium alloy tritides

    SciTech Connect (OSTI)

    Hoelder, J.S.; Wermer, J.R.

    1994-08-09

    The decay of tritium in a metal tritide generates {sup 3}He in the lattice which tends to degrade the performance of the material over time. It is desired to develop a material which minimizes the tritium aging effects and may be tailored to a particular tritium processing application. Pd alloys with Ni and Co have been investigated, as Pd tritide is known to be resistant to tritium aging effects and alloying provides a means for adjusting the plateau pressure of the metal tritide. Sets of tritium desorption isotherms were acquired at temperatures between 273 and 338 K over the pressure range of 1 to 900 kPa. The thermodynamic parameters of {Delta}H and {Delta}S for the {beta}-{alpha} phase transition of the metal tritides were determined across the plateau regions of the P-C-T curves. The average values of {Delta}H (kJ/mol{center_dot}T) and {Delta}S (J/K/mol{center_dot}T) were found to be 15.8 and 50.1 for Pd(2.8 wt. %)Ni, 13.7 and 50.3 for Pd(5.2 wt. %)Ni, 15.9 and 51.3 for Pd(2.8 wt. %)Co, and 13.6 and 51.8 for Pd(5.2 wt. %)Co, respectively.

  1. Thermodynamic properties of bulk and confined water

    SciTech Connect (OSTI)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ? 225 K). The second, T{sup *} ? 315 ± 5 K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient ?{sub P}(T, P) in the P–T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  2. THERMODYNAMICS OF SOLID AND LIQUID GROUP III-V ALLOYS

    E-Print Network [OSTI]

    Anderson, T.J.

    2011-01-01

    D.A. Stevenson, J. Chern. Thermodynamics, J.V. Smith, D.J.P. Bros, J. Chern. Thermodynamics, z, R. Hultgren, P.D.J.M. Prausnitz, Molecular Thermodynamics of Fluid-Phase

  3. GIS Fundamentals SUR 6934-FALL 2013

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    GIS Fundamentals SUR 6934- FALL 2013 School of Forest Resources and ConservationGulf Coast Research _________________________________________________________________________________ GIS Fundamentals Description: This course introduces geographic information systems to Geomatics practical skills needed in many applications. Students learn basic GIS data modeling and managing concepts

  4. Negative specific heat in a thermodynamic model of multifragmentation

    E-Print Network [OSTI]

    C. B. Das; S. Das Gupta; A. Z. Mekjiani

    2003-05-02

    We consider a soluble model of multifragmentation which is similar in spirit to many models which have been used to fit intermediate energy heavy ion collision data. In this model $c_v$ is always positive but for finite nuclei $c_p$ can be negative for some temperatures and pressures. Furthermore, negative values of $c_p$ can be obtained in canonical treatment. One does not need to use the microcanonical ensemble. Negative values for $c_p$ can persist for systems as large as 200 paticles but this depends upon parameters used in the model calculation. As expected, negative specific heats are absent in the thermodynamic limit.

  5. Bimodality and Coulomb effects with a canonical thermodynamic model

    E-Print Network [OSTI]

    Chaudhuri, G; Gulminelli, F

    2008-01-01

    The effect of the Coulomb interaction on the phase diagram of finite nuclei is studied within the Canonical Thermodynamic Model. If Coulomb effects are artificially switched off, this model shows a phenomenology consistent with the liquid-gas phase transition. The inclusion of Coulomb does not significantly affect the phase diagram but it drastically modifies the nature and order parameter of the transition. A clear understanding of the phenomenon can be achieved looking at the distribution of the largest fragment produced in each fragmentation event. Possible connections with experimental observations are outlined.

  6. Thermodvnamics Thermodynamics of Wax Precipitation in

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Thermodvnamics Thermodynamics of Wax Precipitation in Petroleum Mixtures C. Lira-Galeana and A, Berkeley, CIA 94720 A thermodynamic pamework is developed for calculating wax precipitation in petroleum that precipitated wax consists of several solid phases; each solid phase is described as a pure component

  7. Loop expansion in Yang-Mills thermodynamics

    E-Print Network [OSTI]

    Ralf Hofmann

    2009-11-05

    We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.

  8. Overview of NASA supported Stirling thermodynamic loss research

    SciTech Connect (OSTI)

    Tew, R.C.; Geng, S.M.

    1994-09-01

    The National Aeronautics and Space Administration (NASA) is funding research to characterize Stirling machine thermodynamic losses. NASA`s primary goal is to improve Stirling design codes to support engine development for space and terrestrial power. However, much of the fundamental data is applicable to Stirling cooler and heat pump applications. The research results are reviewed. Much has been learned about oscillating-flow hydrodynamics, including laminar/turbulent transition, and tabulated data has been documented for further analysis. Now, with a better understanding of the oscillator-flow field, it is time to begin measuring the effects of oscillating flow and oscillating pressure level on heat transfer in heat exchanger flow passages and in cylinders. This critical phase of the work is just beginning.

  9. A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices

    E-Print Network [OSTI]

    Ouerdane, H; Apertet, Y; Michot, A; Abbout, A

    2013-01-01

    Improvement of thermoelectric systems in terms of performance and range of applications relies on progress in materials science and optimization of device operation. In this chapter, we focuse on optimization by taking into account the interaction of the system with its environment. For this purpose, we consider the illustrative case of a thermoelectric generator coupled to two temperature baths via heat exchangers characterized by a thermal resistance, and we analyze its working conditions. Our main message is that both electrical and thermal impedance matching conditions must be met for optimal device performance. Our analysis is fundamentally based on linear nonequilibrium thermodynamics using the force-flux formalism. An outlook on mesoscopic systems is also given.

  10. Thermodynamic optimization of a Penrose process: an engineers' approach to black hole thermodynamics

    E-Print Network [OSTI]

    Bravetti, Alessandro; Lopez-Monsalvo, Cesar S

    2015-01-01

    In this work we present a new view on the thermodynamics of black holes introducing effects of irreversibility by employing thermodynamic optimization and finite-time thermodynamics. These questions are of importance both in physics and in engineering, combining standard thermodynamics with optimal control theory in order to find optimal protocols and bounds for realistic processes without assuming anything about the microphysics involved. We find general bounds on the maximum work and the efficiency of thermodynamic processes involving black holes that can be derived exclusively from the knowledge of thermodynamic relations at equilibrium. Since these new bounds consider the finite duration of the processes, they are more realistic and stringent than their reversible counterparts. To illustrate our arguments, we consider in detail the thermodynamic optimization of a Penrose process, i.e. the problem of finding the least dissipative process extracting all the angular momentum from a Kerr black hole in finite ...

  11. Will there be future deceleration? A study of particle creation mechanism in non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Supriya Pan; Subenoy Chakraborty

    2015-04-12

    The paper deals with non-equilibrium thermodynamics based on adiabatic particle creation mechanism with the motivation of considering it as an alternative choice to explain the recent observed accelerating phase of the universe. Using Friedmann equations, it is shown that the deceleration parameter ($q$) can be obtained from the knowledge of the particle production rate ($\\Gamma$). Motivated from thermodynamical point of view, cosmological solutions are evaluated for the particle creation rates in three cosmic phases, namely, inflation, matter dominated and present late time acceleration. The deceleration parameter ($q$) is expressed as a function of the redshift parameter ($z$), and its variation is presented graphically. Also, statefinder analysis has been presented graphically in three different phases of the universe. Finally, two non-interacting fluids with different particle creation rates are considered as cosmic substratum, and deceleration parameter ($q$) is evaluated. It is examined whether more than one transition of $q$ is possible or not by graphical representations.

  12. Thermodynamics of Iodide Adsorption at the Instantaneous Air...

    Office of Scientific and Technical Information (OSTI)

    Thermodynamics of Iodide Adsorption at the Instantaneous Air-Water Interface. Citation Details In-Document Search Title: Thermodynamics of Iodide Adsorption at the Instantaneous...

  13. The Thermodynamics of Gaseous, Cuprous Chloride Monomer and Trimer

    E-Print Network [OSTI]

    Brewer, Leo

    2010-01-01

    No.W-7405-eng~48B TIiE THERMODYNAMICS OF GASEOUS" CUPROUSCu(s) + HCl::= I Thermodynamics of Vaporization to Monomeric

  14. Improved Engine Design Concepts Using the Second Law of Thermodynamics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Concepts Using the Second Law of Thermodynamics Improved Engine Design Concepts Using the Second Law of Thermodynamics Presentation from the U.S. DOE Office of Vehicle...

  15. Thermodynamics Student Guide (6 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Student Guide (6 Activities) Thermodynamics Student Guide (6 Activities) Information about Thermodynamics, six student activities on energy basics for grades 5-8 and 9-12....

  16. Thermodynamic Guidelines for the Prediction of Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed Hydride Mixtures Thermodynamic Guidelines for the Prediction of...

  17. Thermodynamic Investigations of Lithium- and Manganese-Rich Transition...

    Office of Environmental Management (EM)

    Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides 2013 DOE...

  18. The Department of Energy's National Security Information Fundamental...

    Energy Savers [EERE]

    The Department of Energy's National Security Information Fundamental Classification Guidance Review The Department of Energy's National Security Information Fundamental...

  19. Thermodynamic properties of uranium dioxide

    SciTech Connect (OSTI)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the thermodynamic properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, there has been international agreement on a vapor pressure equation for the total pressure over UO/sub 2/, new methods have been suggested for the calculation of enthalpy and heat capacity, and a phase change at 2670 K has been proposed. In this report, an electronic term is used in place of the Frenkel defect term in the enthalpy and heat capacity equation and the phase transition is accepted.

  20. Thermodynamics of quantum feedback cooling

    E-Print Network [OSTI]

    Liuzzo-Scorpo, Pietro; Schmidt, Rebecca; Adesso, Gerardo

    2015-01-01

    The ability to initialize quantum registers in pure states lies at the core of many applications of quantum technologies, from sensing to quantum information processing and computation. In this paper we tackle the problem of increasing the polarization bias of an ensemble of two-level register spins by means of joint coherent manipulations, involving a second ensemble of ancillary spins, and energy dissipation into an external heat bath. We formulate this spin refrigeration protocol, akin to algorithmic cooling, in the general language of quantum feedback control, and identify the relevant thermodynamic variables involved. Our analysis is twofold: On the one hand, we assess the optimality of the protocol by means of suitable figures of merit, accounting for both its work cost and effectiveness. On the other hand, we characterise the nature of correlations built up between the register and the ancilla. In particular, we observe that neither the amount of classical correlations nor the quantum entanglement seem...

  1. Thermodynamics, Optical Properties and Coordination Modes of Np(V) with Dipicolinic Acid

    E-Print Network [OSTI]

    Tian, Guoxin

    2010-01-01

    Thermodynamics, Optical Properties and Coordination Modes ofacid, complexation, thermodynamics, coordination mode 1.

  2. DOE fundamentals handbook: Nuclear physics and reactor theory

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  3. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  4. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  5. Thermodynamics for Single-Molecule Stretching Experiments J. M. Rubi,*, D. Bedeaux, and S. Kjelstrup

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Thermodynamics for Single-Molecule Stretching Experiments J. M. Rubi,*, D. Bedeaux, and S to construct nonequilibrium thermodynamics for systems too small to be considered thermodynamically be viewed as a large thermodynamic system, we discuss the validity of nonequilibrium thermodynamics

  6. FUNDAMENTAL GROUPS AND COVERING SPACES ETHAN JERZAK

    E-Print Network [OSTI]

    May, J. Peter

    FUNDAMENTAL GROUPS AND COVERING SPACES ETHAN JERZAK Abstract. In this paper, I will briefly develop) Date: August 22, 2008. 1 #12;2 ETHAN JERZAK the structure of a group; the constant loop is the identity

  7. Some Fundamental Limitations for Cognitive Radio

    E-Print Network [OSTI]

    Sahai, Anant

    ' & $ % Some Fundamental Limitations for Cognitive Radio Anant Sahai Wireless Foundations, UCB EECS program November 1 at BWRC Cognitive Radio Workshop #12;' & $ % Outline 1. Why cognitive radios? 2 November 1 at BWRC Cognitive Radio Workshop #12;' & $ % Apparent spectrum allocations · Traditional

  8. Thermodynamic universality of quantum Carnot engines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gardas, Bart?omiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentallymore »relevant examples.« less

  9. Hessian structures, Euler vector fields, and thermodynamics

    E-Print Network [OSTI]

    M. Á. García-Ariza

    2015-06-15

    In this paper, it is shown that the underlying geometric structure of thermodynamics is formed by two elements. The first one is a degenerate Hessian structure distinguished by the fact that its potentials are extensive functions. A suitable coordinate-free definition of the latter is presented, relying on a particular vector field which is proposed to be the second ingredient of the geometric structure of thermodynamics. This vector has the form of an Euler vector in certain coordinate charts that somehow generalize those formed by internal energy or entropy and deformation coordinates in the spaces of equilibrium states of thermodynamic systems. Intensive functions and Legendre transforms are reviewed under this approach.

  10. Properties of hadronic systems according to the non-extensive self-consistent thermodynamics

    SciTech Connect (OSTI)

    Deppman, A.

    2014-11-11

    The non-extensive self-consistent theory describing the thermodynamics of hadronic systems at high temperatures is used to derive some thermodynamical quantities, as pressure, entropy, speed of sound and trace-anomaly. The calculations are free of fitting parameters, and the results are compared to lattice QCD calculations, showing a good agreement between theory and data up to temperatures around 175 MeV. Above this temperature the effects of a singularity in the partition function at T{sub o} = 192 MeV results in a divergent behaviour in respect with the lattice calculation.

  11. On the dynamics and thermodynamics of small Markov-type material systems

    E-Print Network [OSTI]

    Andrzej Trzesowski

    2015-09-07

    The collective properties of small material systems considered as semidynamical systems revealing the Markov-type irreversible evolution, are investigated. It is shown that these material systems admit their treatment as thermodynamic systems in diathermal and isothermal conditions. A kinetic equation describing statistical regularities of the Markov-type material systems and constrained by the compatibility condition with the first and second laws of thermodynamics and with the relaxation postulate, is proposed. The influence of external parameters on the Gibbs distribution of small material systems is discussed.

  12. On the dynamics and thermodynamics of small Markov-type material systems

    E-Print Network [OSTI]

    Andrzej Trzesowski

    2015-07-30

    The collective properties of small material systems considered as semidynamical systems revealing the Markov-type irreversible evolution, are investigated. It is shown that these material systems admit their treatment as thermodynamic systems in diathermal and isothermal conditions. A kinetic equation describing statistical regularities of the Markov-type material systems and constrained by the compatibility condition with the first and second laws of thermodynamics and with the relaxation postulate, is proposed. The influence of external parameters on the Gibbs distribution of small material systems is discussed.

  13. The laws of thermodynamics and information for emergent cosmology

    E-Print Network [OSTI]

    Hashemi, M; Farahani, S Vasheghani

    2015-01-01

    The aim here is to provide a set of equations for cosmology in terms of information and thermodynamical parameters. The method we implement in order to describe the universe is a development of Padmanabhan\\rq{}s approach which is based on the fact that emergence of the cosmic space is provided by the evolution of the cosmic time. In this line we obtain the Friedmann equation or its equivalent the conservation law in terms of information by the implementation of Laundauer\\rq{}s principle or in other words the information loss/production rate. Hence, a self consistent description of the universe is provided in terms of thermodynamical parameters. This is due to the fact that in this work the role of information which is the most important actor of all times, has stepped in to cosmology. We provide a picture of the emergent cosmology merely based on the information theory. In addition, we introduce a novel entropy on the horizon, which can also generalize Bekenstein-Hawking entropy for the asymptotic holographic...

  14. Finite-time thermodynamic analysis of the Stirling engine

    SciTech Connect (OSTI)

    Ibrahim, O.M.; Ladas, H.G.

    1995-12-31

    This paper presents a finite-time thermodynamic analysis of the Stirling engine cycle. A lumped-parameter thermodynamic model is used to describe the dynamic behavior of the Stirling engine. The mathematical formulation of this model is based on mass and energy balances with associated heat transfer rate equations. These governing equations are formulated into a set of ordinary differential equations, which are then solved numerically to obtain the dynamic behavior of the Stirling engine. Close inspection of the governing equations reveals that the time to complete on cycle, {tau} and the engine time constant, {tau}{sub c} always appear together in a dimensionless ratio. This ratio, {tau}/{tau}{sub c}, is defined here as the Finite-Time Parameter, FTP. The effects of FTP upon power output and efficiency, are studied. The results show that there exists an optimum power output for a given engine design, based on engine speed and heat-transfer contact time. The results also provide an engineering evaluation procedure to improve the efficiency and power output of Stirling engines.

  15. Thermodynamics of the Corn-Ethanol Biofuel Cycle

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Thermodynamics of the Corn-Ethanol Biofuel Cycle Tad W. Patzek Department of Civil Sustainability & Renewability 28 1 Introduction 28 2 Disclaimer 28 #12;ii Thermodynamics of corn-ethanol biofuel. . . Web Version 3 Preliminaries 29 4 Laws of Thermodynamics 29 5 Thermodynamics and Economics 31 6

  16. Thermodynamic assessment and experimental verification of reactive...

    Office of Scientific and Technical Information (OSTI)

    thermodynamic analysis of etch chemistries for Co, Fe, and Ni using a combination of hydrogen, oxygen, and halogen gases suggested that a single etchant does not work at 300 K;...

  17. Linear Thermodynamics of Rodlike DNA Filtration

    E-Print Network [OSTI]

    Li, Zirui

    Linear thermodynamics transportation theory is employed to study filtration of rodlike DNA molecules. Using the repeated nanoarray consisting of alternate deep and shallow regions, it is demonstrated that the complex ...

  18. QCD Thermodynamics on the Lattice: Recent Results

    E-Print Network [OSTI]

    Carleton DeTar

    2010-12-31

    I give a brief introduction to the goals, challenges, and technical difficulties of lattice QCD thermodynamics and present some recent results from the HotQCD collaboration for the crossover temperature, equation of state, and other observables.

  19. Thermodynamics in NJL-like models

    E-Print Network [OSTI]

    A. V. Friesen; Yu. L. Kalinovsky; V. D. Toneev

    2011-03-11

    Thermodynamic behavior of conventional Nambu-Jona-Lasinio and Polyakov-loop-extended Nambu-Jona-Lasinio models is compared. A particular attention is paid to the phase diagram in the ($T -\\mu$) plane.

  20. VARIOUS APPROACHES TO THERMODYNAMICS Peter Salamon

    E-Print Network [OSTI]

    Salamon, Peter

    -619-594-6746, salamon@sdsu.edu ABSTRACT The paper surveys classical and recent approaches to thermodynamic analysis as defining the mechanical engineers' topics of interest. Availability (exergy) is one such topic whose

  1. Chapter 8. Spontaneous Processes and Thermodynamic Equilibrium

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    to drive that cycle · Carnot's conclusion: There is no device that can transfer heat from a colder of Thermodynamics · The efficiency: the ratio of work accomplished by the engine in a cycle to the heat invested

  2. Classical and thermodynamic stability of black holes

    E-Print Network [OSTI]

    Ricardo Monteiro

    2010-06-28

    We consider the stability of black holes within both classical general relativity and the semiclassical thermodynamic description. In particular, we study linearised perturbations and their contribution to the gravitational partition function, addressing technical issues for charged (Reissner-Nordstrom) and rotating (Kerr-AdS) black holes. Exploring the connection between classical and thermodynamic stability, we find classical instabilities of Myers-Perry black holes and bifurcations to new black hole families.

  3. Tables of thermodynamic properties of sodium

    SciTech Connect (OSTI)

    Fink, J.K.

    1982-06-01

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

  4. Thermodynamics of (2+1)-flavor QCD

    E-Print Network [OSTI]

    C. Schmidt; T. Umeda

    2006-09-21

    We report on the status of our QCD thermodynamics project. It is performed on the QCDOC machine at Brookhaven National Laboratory and the APEnext machine at Bielefeld University. Using a 2+1 flavor formulation of QCD at almost realistic quark masses we calculated several thermodynamical quantities. In this proceeding we show the susceptibilites of the chiral condensate and the Polyakov loop, the static quark potential and the spatial string tension.

  5. Kinetic and thermodynamic study of the liquid-phase etherification of isoamylenes with methanol

    SciTech Connect (OSTI)

    Piccoli, R.L. ); Lovisi, H.R. )

    1995-02-01

    The kinetics and thermodynamics of liquid-phase etherification of isoamylenes with methanol on ion exchange catalyst (Amberlyst 15) were studied. Thermodynamic properties and rate data were obtained in a batch reactor operating under 1,013 kPa and 323--353 K. The kinetic equation was modeled following the Langmuir-Hinshelwood-Hougen-Watson formalism according to a proposed surface mechanism where the rate-controlling step is the surface reaction. According to the experimental results, methanol adsorbs very strongly on the active sites, covering them completely, and thus the reaction follows an apparent first-order behavior. The isoamylenes, according to the proposed mechanism, adsorb simultaneously on the same single active center already occupied by methanol, migrating through the liquid layer formed by the alcohol around the catalyst to react in the acidic site. From the proposed mechanism a model was suggested and the kinetic and thermodynamic parameters were obtained using nonlinear estimation methods.

  6. Thermodynamics of quantum jump trajectories in systems driven by classical fluctuations

    E-Print Network [OSTI]

    Adrian A. Budini

    2010-12-03

    The large-deviation method can be used to study the measurement trajectories of open quantum systems. For optical arrangements this formalism allows to describe the long time properties of the (non-equilibrium) photon counting statistics in the context of a (equilibrium) thermodynamic approach defined in terms of dynamical phases and transitions between them in the trajectory space [J.P. Garrahan and I. Lesanovsky, Phys. Rev. Lett. 104, 160601 (2010)]. In this paper, we study the thermodynamic approach for fluorescent systems coupled to complex reservoirs that induce stochastic fluctuations in their dynamical parameters. In a fast modulation limit the thermodynamics corresponds to that of a Markovian two-level system. In a slow modulation limit, the thermodynamic properties are equivalent to those of a finite system that in an infinite-size limit is characterized by a first-order transition. The dynamical phases correspond to different intensity regimes, while the size of the system is measured by the transition rate of the bath fluctuations. As a function of a dimensionless intensive variable, the first and second derivative of the thermodynamic potential develop an abrupt change and a narrow peak respectively. Their scaling properties are consistent with a double-Gaussian probability distribution of the associated extensive variable.

  7. Thermodynamics of effective Minkowski spacetime in self-assembled hyperbolic metamaterials

    E-Print Network [OSTI]

    Smolyaninov, Igor I

    2015-01-01

    Recent developments in gravitation theory indicate that the classic general relativity is an effective macroscopic theory which will be eventually replaced with a more fundamental theory based on thermodynamics of yet unknown microscopic degrees of freedom. Here we consider thermodynamics of an effective Minkowski spacetime which may be formed under the influence of external magnetic field in a cobalt ferrofluid. It appears that the extraordinary photons propagating inside the ferrofluid perceive thermal gradients in the ferrofluid as an effective gravitational field, which obeys the Newton law. Moreover, the effective Minkowski spacetime behaviour near the metric signature transition may mimic various cosmological Big Bang scenarios, which may be visualized directly using an optical microscope. Thus, some important features of the hypothetic microscopic theory of gravity are reproduced in the ferrofluid-based analogue model.

  8. Thermodynamics of effective Minkowski spacetime in self-assembled hyperbolic metamaterials

    E-Print Network [OSTI]

    Igor I. Smolyaninov

    2015-08-12

    Recent developments in gravitation theory indicate that the classic general relativity is an effective macroscopic theory which will be eventually replaced with a more fundamental theory based on thermodynamics of yet unknown microscopic degrees of freedom. Here we consider thermodynamics of an effective Minkowski spacetime which may be formed under the influence of external magnetic field in a cobalt ferrofluid. It appears that the extraordinary photons propagating inside the ferrofluid perceive thermal gradients in the ferrofluid as an effective gravitational field, which obeys the Newton law. Moreover, the effective Minkowski spacetime behaviour near the metric signature transition may mimic various cosmological Big Bang scenarios, which may be visualized directly using an optical microscope. Thus, some important features of the hypothetic microscopic theory of gravity are reproduced in the ferrofluid-based analogue model.

  9. Thermodynamic Free Energy Methods to Investigate Shape Transitions In Bilayer Membranes

    E-Print Network [OSTI]

    Ramakrishnan, N; Radhakrishnan, Ravi

    2015-01-01

    The conformational free energy landscape of a system is a fundamental thermodynamic quantity of importance particularly in the study of soft matter and biological systems, in which the entropic contributions play a dominant role. While computational methods to delineate the free energy landscape are routinely used to analyze the relative stability of conformational states, to determine phase boundaries, and to compute ligand-receptor binding energies its use in problems involving the cell membrane is limited. Here, we present an overview of four different free energy methods to study morphological transitions in bilayer membranes, induced either by the action of curvature remodeling proteins or due to the application of external forces. Using a triangulated surface as a model for the cell membrane and using the framework of dynamical triangulation Monte Carlo, we have focused on the methods of Widom insertion, thermodynamic integration, Bennett acceptance scheme, and umbrella sampling and weighted histogram a...

  10. DOE Fundamentals Handbook: Mathematics, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations.

  11. DOE Fundamentals Handbook: Mathematics, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations.

  12. Dark Energy: A Crisis for Fundamental Physics

    ScienceCinema (OSTI)

    Stubbs, Christopher [Harvard University, Cambridge, Massachusetts, USA

    2010-09-01

    Astrophysical observations provide robust evidence that our current picture of fundamental physics is incomplete. The discovery in 1998 that the expansion of the Universe is accelerating (apparently due to gravitational repulsion between regions of empty space!) presents us with a profound challenge, at the interface between gravity and quantum mechanics. This "Dark Energy" problem is arguably the most pressing open question in modern fundamental physics. The first talk will describe why the Dark Energy problem constitutes a crisis, with wide-reaching ramifications. One consequence is that we should probe our understanding of gravity at all accessible scales, and the second talk will present experiments and observations that are exploring this issue.

  13. DOE Fundamentals Handbook: Electrical Science, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment.

  14. A thesis submitted to Tata Institute of Fundamental Research, Mumbai

    E-Print Network [OSTI]

    of Fundamental Research, Mumbai for the degree of Doctor of Philosophy in Physics by Argha Banerjee Department of Theoretical Physics Tata Institute of Fundamental Research Mumbai November 2010 #12;2 #12;Acknowledgements I of Fundamental Research, Mumbai. Candidate: . . . . . . . . . . . . . . . . . . . . . . Date

  15. FUNDAMENTALS OF PHYSICS An Introduction to and Overview of Fundamentals of Physics 1

    E-Print Network [OSTI]

    Rosas-Ortiz, Jose Oscar

    FUNDAMENTALS OF PHYSICS CONTENTS VOLUME I An Introduction to and Overview of Fundamentals 1. Introduction 2. Review of Different Areas of Physics 2.1. Basic Concepts in Physics 2.2. Physical Forgach, Department of Physics,Universidad Nacional Autonoma de Mexico (UNAM), México 1. Introduction 2

  16. Thermodynamic Relationships for Bulk Crystalline and Liquid Phases in the Phase-Field Crystal Model

    E-Print Network [OSTI]

    Victor W. L. Chan; Nirand Pisutha-Arnond; Katsuyo Thornton

    2015-02-06

    We present thermodynamic relationships between the free energy of the phase-field crystal (PFC) model and thermodynamic state variables for bulk phases under hydrostatic pressure. This relationship is derived based on the thermodynamic formalism for crystalline solids of Larch\\'e and Cahn [Larch\\'e and Cahn, Acta Metallurgica, Vol. 21, 1051 (1973)]. We apply the relationship to examine the thermodynamic processes associated with varying the input parameters of the PFC model: temperature, lattice spacing, and the average value of the PFC order parameter, $\\bar{n}$. The equilibrium conditions between bulk crystalline solid and liquid phases are imposed on the thermodynamic relationships for the PFC model to obtain a procedure for determining solid-liquid phase coexistence. The resulting procedure is found to be in agreement with the method commonly used in the PFC community, justifying the use of the common-tangent construction to determine solid-liquid phase coexistence in the PFC model. Finally, we apply the procedure to an eighth-order-fit (EOF) PFC model that has been parameterized to body-centered-cubic ($bcc$) Fe [Jaatinen et al., Physical Review E 80, 031602 (2009)] to demonstrate the procedure as well as to develop physical intuition about the PFC input parameters. We demonstrate that the EOF-PFC model parameterization does not predict stable $bcc$ structures with positive vacancy densities. This result suggests an alternative parameterization of the PFC model, which requires the primary peak position of the two-body direct correlation function to shift as a function of $\\bar{n}$.

  17. Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys

    SciTech Connect (OSTI)

    Teter, D.F.; Thoma, D.J.

    1999-03-01

    A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts. Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.

  18. Fundamental Physical Constants: Looking from Different Angles

    E-Print Network [OSTI]

    Savely G. Karshenboim

    2005-07-28

    We consider fundamental physical constants which are among a few of the most important pieces of information we have learned about Nature after its intensive centuries-long studies. We discuss their multifunctional role in modern physics including problems related to the art of measurement, natural and practical units, origin of the constants, their possible calculability and variability etc.

  19. The Computational Fundamentals of Spatial Cycloidal Gearing

    E-Print Network [OSTI]

    Nawratil, Georg

    The Computational Fundamentals of Spatial Cycloidal Gearing Giorgio Figliolini, Universit`a degli 2. Reuleaux's principle of gearing in the plane 3. Reuleaux's principle of gearing in 3-space 4. Consequences for skew gearing 5. Conclusion Computational Kinematics 2009, May 6­9, Duisburg/Germany 1 #12

  20. The Computational Fundamentals of Spatial Cycloidal Gearing

    E-Print Network [OSTI]

    Nawratil, Georg

    The Computational Fundamentals of Spatial Cycloidal Gearing Giorgio Figliolini, Hellmuth Stachel and Jorge Angeles Abstract The tooth flanks of bevel gears with involute teeth are still cut using known. The modeling of the tooth flanks of gears with skew axes, however, still represents a challenge

  1. Social Media Mining: Fundamental Issues and Challenges

    E-Print Network [OSTI]

    Liu, Huan

    Social Media Mining: Fundamental Issues and Challenges Mohammad Ali Abbasi, Huan Liu, and Reza Zafarani Data Mining and Machine Learning Lab Arizona State University http://icdm2013.zafarani.net December 10, 2013 #12;2Social Media Mining Measures and Metrics 2Social Media Mining ICDM 2013 Tutorial

  2. Radio Astronomy Fundamentals I John Simonetti

    E-Print Network [OSTI]

    Ellingson, Steven W.

    Radio Astronomy Fundamentals I John Simonetti Spring 2012 Radio astronomy provides a very different view of the universe than optical astronomy. Radio astronomers and optical astronomers use different terminology to describe their work. Here I present some basic concepts and terms of radio

  3. Ultra Low Power Bioelectronics Fundamentals, Biomedical Applications,

    E-Print Network [OSTI]

    Sarpeshkar, Rahul

    Ultra Low Power Bioelectronics Fundamentals, Biomedical Applications, and Bio-inspired Systems to articulate information-based principles for ultra-low-power design that apply to biology or to electronics of ultra- low-power electronics and bioelectronics is shown in the figure below. Engineering can aid

  4. Elmasri/Navathe:Fundamentals Kemper/Eickler

    E-Print Network [OSTI]

    Brass, Stefan

    10. Updates in SQL 10­1 Teil 10: Updates in SQL Literatur: . Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999. Chap. 8, ``SQL --- The Relational Database Standard'' . Kemper/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison­Wesley , 1997. . van der Lans: SQL, Der ISO

  5. Elmasri/Navathe:Fundamentals Kemper/Eickler

    E-Print Network [OSTI]

    Brass, Stefan

    7. Updates in SQL 7­1 Teil 7: Updates in SQL Literatur: . Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999. Chap. 8, ``SQL --- The Relational Database Standard'' . Kemper/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison­Wesley , 1997. . van der Lans: SQL, Der ISO

  6. Elmasri/Navathe:Fundamentals Kemper/Eickler

    E-Print Network [OSTI]

    Brass, Stefan

    10. Updates in SQL 10­1 Teil 10: Updates in SQL Literatur: . Elmasri/Navathe:Fundamentals of Database Systems, 3rd Edition, 1999. Chap. 8, ``SQL --- The Relational Database Standard'' . Kemper/Darwen: A Guide to the SQL Standard, Fourth Edition, Addison­Wesley, 1997. . van der Lans: SQL, Der ISO

  7. Title: Ontario Fundamental Data Data Creator /

    E-Print Network [OSTI]

    Title: Ontario Fundamental Data Data Creator / Copyright Owner: Land Information Ontario, Ontario Ministry of Natural Resources Publisher: Ontario Ministry of Natural Resources Edition: N/A Versions: N/A Keywords (Place): Ontario Keywords (Subject): Boundaries, Protected Land Areas, Land Use, Buildings, Parks

  8. Preliminary Fundamentals 1.0 Introduction

    E-Print Network [OSTI]

    McCalley, James D.

    electromagnetic theory, synchronous machine construction, 2.0 Some essential electromagnetic 2.1 Self1 Preliminary Fundamentals 1.0 Introduction In all of our previous work, we assumed a very simple model of the electromagnetic torque Te (or power) that is required in the swing equation

  9. Fundamental Physics at the Intensity Frontier

    E-Print Network [OSTI]

    J. L. Hewett; H. Weerts; R. Brock; J. N. Butler; B. C. K. Casey; J. Collar; A. de Gouvea; R. Essig; Y. Grossman; W. Haxton; J. A. Jaros; C. K. Jung; Z. T. Lu; K. Pitts; Z. Ligeti; J. R. Patterson; M. Ramsey-Musolf; J. L. Ritchie; A. Roodman; K. Scholberg; C. E. M. Wagner; G. P. Zeller; S. Aefsky; A. Afanasev; K. Agashe; C. Albright; J. Alonso; C. Ankenbrandt; M. Aoki; C. A. Arguelles; N. Arkani-Hamed; J. R. Armendariz; C. Armendariz-Picon; E. Arrieta Diaz; J. Asaadi; D. M. Asner; K. S. Babu; K. Bailey; O. Baker; B. Balantekin; B. Baller; M. Bass; B. Batell; J. Beacham; J. Behr; N. Berger; M. Bergevin; E. Berman; R. Bernstein; A. J. Bevan; M. Bishai; M. Blanke; S. Blessing; A. Blondel; T. Blum; G. Bock; A. Bodek; G. Bonvicini; F. Bossi; J. Boyce; R. Breedon; M. Breidenbach; S. J. Brice; R. A. Briere; S. Brodsky; C. Bromberg; A. Bross; T. E. Browder; D. A. Bryman; M. Buckley; R. Burnstein; E. Caden; P. Campana; R. Carlini; G. Carosi; C. Castromonte; R. Cenci; I. Chakaberia; M. C. Chen; C. H. Cheng; B. Choudhary; N. H. Christ; E. Christensen; M. E. Christy; T. E. Chupp; E. Church; D. B. Cline; T. E. Coan; P. Coloma; J. Comfort; L. Coney; J. Cooper; R. J. Cooper; R. Cowan; D. F. Cowen; D. Cronin-Hennessy; A. Datta; G. S. Davies; M. Demarteau; D. P. DeMille; A. Denig; R. Dermisek; A. Deshpande; M. S. Dewey; R. Dharmapalan; J. Dhooghe; M. R. Dietrich; M. Diwan; Z. Djurcic; S. Dobbs; M. Duraisamy; B. Dutta; H. Duyang; D. A. Dwyer; M. Eads; B. Echenard; S. R. Elliott; C. Escobar; J. Fajans; S. Farooq; C. Faroughy; J. E. Fast; B. Feinberg; J. Felde; G. Feldman; P. Fierlinger; P. Fileviez Perez; B. Filippone; P. Fisher; B. T. Flemming; K. T. Flood; R. Forty; M. J. Frank; A. Freyberger; A. Friedland; R. Gandhi; K. S. Ganezer; A. Garcia; F. G. Garcia; S. Gardner; L. Garrison; A. Gasparian; S. Geer; V. M. Gehman; T. Gershon; M. Gilchriese; C. Ginsberg; I. Gogoladze; M. Gonderinger; M. Goodman; H. Gould; M. Graham; P. W. Graham; R. Gran; J. Grange; G. Gratta; J. P. Green; H. Greenlee; R. C. Group; E. Guardincerri; V. Gudkov; R. Guenette; A. Haas; A. Hahn; T. Han; T. Handler; J. C. Hardy; R. Harnik; D. A. Harris; F. A. Harris; P. G. Harris; J. Hartnett; B. He; B. R. Heckel; K. M. Heeger; S. Henderson; D. Hertzog; R. Hill; E. A Hinds; D. G. Hitlin; R. J. Holt; N. Holtkamp; G. Horton-Smith; P. Huber; W. Huelsnitz; J. Imber; I. Irastorza; J. Jaeckel; I. Jaegle; C. James; A. Jawahery; D. Jensen; C. P. Jessop; B. Jones; H. Jostlein; T. Junk; A. L. Kagan; M. Kalita; Y. Kamyshkov; D. M. Kaplan; G. Karagiorgi; A. Karle; T. Katori; B. Kayser; R. Kephart; S. Kettell; Y. K. Kim; M. Kirby; K. Kirch; J. Klein; J. Kneller; A. Kobach; M. Kohl; J. Kopp; M. Kordosky; W. Korsch; I. Kourbanis; A. D. Krisch; P. Krizan; A. S. Kronfeld; S. Kulkarni; K. S. Kumar; Y. Kuno; T. Kutter; T. Lachenmaier; M. Lamm; J. Lancaster; M. Lancaster; C. Lane; K. Lang; P. Langacker; S. Lazarevic; T. Le; K. Lee; K. T. Lesko; Y. Li; M. Lindgren; A. Lindner; J. Link; D. Lissauer; L. S. Littenberg; B. Littlejohn; C. Y. Liu; W. Loinaz; W. Lorenzon; W. C. Louis; J. Lozier; L. Ludovici; L. Lueking; C. Lunardini; D. B. MacFarlane; P. A. N. Machado; P. B. Mackenzie; J. Maloney; W. J. Marciano; W. Marsh; M. Marshak; J. W. Martin; C. Mauger; K. S. McFarland; C. McGrew; G. McLaughlin; D. McKeen; R. McKeown; B. T. Meadows; R. Mehdiyev; D. Melconian; H. Merkel; M. Messier; J. P. Miller; G. Mills; U. K. Minamisono; S. R. Mishra; I. Mocioiu; S. Moed Sher; R. N. Mohapatra; B. Monreal; C. D. Moore; J. G. Morfin; J. Mousseau; L. A. Moustakas; G. Mueller; P. Mueller; M. Muether; H. P. Mumm; C. Munger; H. Murayama; P. Nath; O. Naviliat-Cuncin; J. K. Nelson; D. Neuffer; J. S. Nico; A. Norman; D. Nygren; Y. Obayashi; T. P. O'Connor; Y. Okada; J. Olsen; L. Orozco; J. L. Orrell; J. Osta; B. Pahlka; J. Paley; V. Papadimitriou; M. Papucci; S. Parke; R. H. Parker; Z. Parsa; K. Partyka; A. Patch; J. C. Pati; R. B. Patterson; Z. Pavlovic; G. Paz; G. N. Perdue; D. Perevalov; G. Perez; R. Petti; W. Pettus; A. Piepke; M. Pivovaroff; R. Plunkett; C. C. Polly; M. Pospelov; R. Povey; A. Prakesh; M. V. Purohit; S. Raby; J. L. Raaf; R. Rajendran; S. Rajendran; G. Rameika; R. Ramsey; A. Rashed; B. N. Ratcliff; B. Rebel; J. Redondo; P. Reimer; D. Reitzner; F. Ringer; A. Ringwald; S. Riordan; B. L. Roberts; D. A. Roberts; R. Robertson; F. Robicheaux; M. Rominsky; R. Roser; J. L. Rosner; C. Rott; P. Rubin; N. Saito; M. Sanchez; S. Sarkar; H. Schellman; B. Schmidt; M. Schmitt; D. W. Schmitz; J. Schneps; A. Schopper; P. Schuster; A. J. Schwartz; M. Schwarz; J. Seeman; Y. K. Semertzidis; K. K. Seth; Q. Shafi; P. Shanahan; R. Sharma; S. R. Sharpe; M. Shiozawa; V. Shiltsev; K. Sigurdson; P. Sikivie; J. Singh; D. Sivers; T. Skwarnicki; N. Smith; J. Sobczyk; H. Sobel; M. Soderberg; Y. H. Song; A. Soni; P. Souder; A. Sousa; J. Spitz; M. Stancari; G. C. Stavenga; J. H. Steffen

    2012-05-11

    The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.

  10. Fundamental Physics at the Intensity Frontier

    E-Print Network [OSTI]

    Hewett, J L; Brock, R; Butler, J N; Casey, B C K; Collar, J; de Gouvea, A; Essig, R; Grossman, Y; Haxton, W; Jaros, J A; Jung, C K; Lu, Z T; Pitts, K; Ligeti, Z; Patterson, J R; Ramsey-Musolf, M; Ritchie, J L; Roodman, A; Scholberg, K; Wagner, C E M; Zeller, G P; Aefsky, S; Afanasev, A; Agashe, K; Albright, C; Alonso, J; Ankenbrandt, C; Aoki, M; Arguelles, C A; Arkani-Hamed, N; Armendariz, J R; Armendariz-Picon, C; Diaz, E Arrieta; Asaadi, J; Asner, D M; Babu, K S; Bailey, K; Baker, O; Balantekin, B; Baller, B; Bass, M; Batell, B; Beacham, J; Behr, J; Berger, N; Bergevin, M; Berman, E; Bernstein, R; Bevan, A J; Bishai, M; Blanke, M; Blessing, S; Blondel, A; Blum, T; Bock, G; Bodek, A; Bonvicini, G; Bossi, F; Boyce, J; Breedon, R; Breidenbach, M; Brice, S J; Briere, R A; Brodsky, S; Bromberg, C; Bross, A; Browder, T E; Bryman, D A; Buckley, M; Burnstein, R; Caden, E; Campana, P; Carlini, R; Carosi, G; Castromonte, C; Cenci, R; Chakaberia, I; Chen, M C; Cheng, C H; Choudhary, B; Christ, N H; Christensen, E; Christy, M E; Chupp, T E; Church, E; Cline, D B; Coan, T E; Coloma, P; Comfort, J; Coney, L; Cooper, J; Cooper, R J; Cowan, R; Cowen, D F; Cronin-Hennessy, D; Datta, A; Davies, G S; Demarteau, M; DeMille, D P; Denig, A; Dermisek, R; Deshpande, A; Dewey, M S; Dharmapalan, R; Dhooghe, J; Dietrich, M R; Diwan, M; Djurcic, Z; Dobbs, S; Duraisamy, M; Dutta, B; Duyang, H; Dwyer, D A; Eads, M; Echenard, B; Elliott, S R; Escobar, C; Fajans, J; Farooq, S; Faroughy, C; Fast, J E; Feinberg, B; Felde, J; Feldman, G; Fierlinger, P; Perez, P Fileviez; Filippone, B; Fisher, P; Flemming, B T; Flood, K T; Forty, R; Frank, M J; Freyberger, A; Friedland, A; Gandhi, R; Ganezer, K S; Garcia, A; Garcia, F G; Gardner, S; Garrison, L; Gasparian, A; Geer, S; Gehman, V M; Gershon, T; Gilchriese, M; Ginsberg, C; Gogoladze, I; Gonderinger, M; Goodman, M; Gould, H; Graham, M; Graham, P W; Gran, R; Grange, J; Gratta, G; Green, J P; Greenlee, H; Guardincerri, E; Gudkov, V; Guenette, R; Haas, A; Hahn, A; Han, T; Handler, T; Hardy, J C; Harnik, R; Harris, D A; Harris, F A; Harris, P G; Hartnett, J; He, B; Heckel, B R; Heeger, K M; Henderson, S; Hertzog, D; Hill, R; Hinds, E A; Hitlin, D G; Holt, R J; Holtkamp, N; Horton-Smith, G; Huber, P; Huelsnitz, W; Imber, J; Irastorza, I; Jaeckel, J; Jaegle, I; James, C; Jawahery, A; Jensen, D; Jessop, C P; Jones, B; Jostlein, H; Junk, T; Kagan, A L; Kalita, M; Kamyshkov, Y; Kaplan, D M; Karagiorgi, G; Karle, A; Katori, T; Kayser, B; Kephart, R; Kettell, S; Kim, Y K; Kirby, M; Kirch, K; Klein, J; Kneller, J; Kobach, A; Kohl, M; Kopp, J; Kordosky, M; Korsch, W; Kourbanis, I; Krisch, A D; Krizan, P; Kronfeld, A S; Kulkarni, S; Kumar, K S; Kuno, Y; Kutter, T; Lachenmaier, T; Lamm, M; Lancaster, J; Lancaster, M; Lane, C; Lang, K; Langacker, P; Lazarevic, S; Le, T; Lee, K; Lesko, K T; Li, Y; Lindgren, M; Lindner, A; Link, J; Lissauer, D; Littenberg, L S; Littlejohn, B; Liu, C Y; Loinaz, W; Lorenzon, W; Louis, W C; Lozier, J; Ludovici, L; Lueking, L; Lunardini, C; MacFarlane, D B; Machado, P A N; Mackenzie, P B; Maloney, J; Marciano, W J; Marsh, W; Marshak, M; Martin, J W; Mauger, C; McFarland, K S; McGrew, C; McLaughlin, G; McKeen, D; McKeown, R; Meadows, B T; Mehdiyev, R; Melconian, D; Merkel, H; Messier, M; Miller, J P; Mills, G; Minamisono, U K; Mishra, S R; Mocioiu, I; Sher, S Moed; Mohapatra, R N; Monreal, B; Moore, C D; Morfin, J G; Mousseau, J; Moustakas, L A; Mueller, G; Mueller, P; Muether, M; Mumm, H P; Munger, C; Murayama, H; Nath, P; Naviliat-Cuncin, O; Nelson, J K; Neuffer, D; Nico, J S; Norman, A; Nygren, D; Obayashi, Y; O'Connor, T P; Okada, Y; Olsen, J; Orozco, L; Orrell, J L; Osta, J; Pahlka, B; Paley, J; Papadimitriou, V; Papucci, M; Parke, S; Parker, R H; Parsa, Z; Partyka, K; Patch, A; Pati, J C; Patterson, R B; Pavlovic, Z; Paz, G; Perdue, G N; Perevalov, D; Perez, G; Petti, R; Pettus, W; Piepke, A; Pivovaroff, M; Plunkett, R; Polly, C C; Pospelov, M; Povey, R; Prakesh, A; Purohit, M V; Raby, S; Raaf, J L; Rajendran, R; Rajendran, S; Rameika, G; Ramsey, R; Rashed, A; Ratcliff, B N; Rebel, B; Redondo, J; Reimer, P; Reitzner, D; Ringer, F; Ringwald, A; Riordan, S; Roberts, B L; Roberts, D A; Robertson, R; Robicheaux, F; Rominsky, M; Roser, R; Rosner, J L; Rott, C; Rubin, P; Saito, N; Sanchez, M; Sarkar, S; Schellman, H; Schmidt, B; Schmitt, M; Schmitz, D W; Schneps, J; Schopper, A; Schuster, P; Schwartz, A J; Schwarz, M; Seeman, J; Semertzidis, Y K; Seth, K K; Shafi, Q; Shanahan, P; Sharma, R; Sharpe, S R; Shiozawa, M; Shiltsev, V; Sigurdson, K; Sikivie, P; Singh, J; Sivers, D; Skwarnicki, T; Smith, N; Sobczyk, J; Sobel, H; Soderberg, M; Song, Y H; Soni, A; Souder, P; Sousa, A; Spitz, J; Stancari, M; Stavenga, G C; Steffen, J H; Stepanyan, S; Stoeckinger, D; Stone, S; Strait, J; Strassler, M; Sulai, I A; Sundrum, R; Svoboda, R; Szczerbinska, B; Szelc, A; Takeuchi, T; Tanedo, P

    2012-01-01

    The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.

  11. Biharmonic Volumetric Mapping Using Fundamental Solutions

    E-Print Network [OSTI]

    Li, Xin "Shane"

    Biharmonic Volumetric Mapping Using Fundamental Solutions Huanhuan Xu, Wuyi Yu, Shiyuan Gu, and Xin Li, Member, IEEE Computer Society Abstract--We propose a biharmonic model for cross-object volumetric individually. The biharmonic volumetric mapping can be performed in each subregion separately. Unlike

  12. Ensuring Project Success - The Fundamental Art of Managing the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ensuring Project Success - The Fundamental Art of Managing the Interfaces Ensuring Project Success - The Fundamental Art of Managing the Interfaces August 2009 Presenter: Jeff...

  13. Lunar geophysics: The Moon's fundamental shape and paleomagnetism studies

    E-Print Network [OSTI]

    Perera, Viranga

    2014-01-01

    Tectonics.   Reviews  of  Geophysics  and  Space   Physics  SANTA CRUZ Lunar geophysics: The Moon’s fundamental shapeViranga Perera Lunar geophysics: The Moon’s fundamental

  14. Project Profile: Fundamental Corrosion Studies in High-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems Project Profile: Fundamental Corrosion Studies in High-Temperature Molten Salt...

  15. First Generation Advanced High-Strength Steels Deformation Fundamental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Advanced High-Strength Steels Deformation Fundamentals First Generation Advanced High-Strength Steels Deformation Fundamentals 2012 DOE Hydrogen and Fuel Cells Program...

  16. Fundamental aspects of nuclear reactor fuel elements (Technical...

    Office of Scientific and Technical Information (OSTI)

    Fundamental aspects of nuclear reactor fuel elements Citation Details In-Document Search Title: Fundamental aspects of nuclear reactor fuel elements You are accessing a document...

  17. Developments in Petroleum Science, 6 FUNDAMENTALS OF NUMERICAL

    E-Print Network [OSTI]

    Santos, Juan

    Developments in Petroleum Science, 6 FUNDAMENTALS OF NUMERICAL RESERVOIR SIMULATION DONALD WCongressCatalogingin PublicationData Peaceman, Donald W Fundamentals of numerical reservoir simulation. (develrpents in petroleum

  18. Uncovering Fundamental Ash-Formation Mechanisms and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uncovering Fundamental Ash-Formation Mechanisms and Potential Means to Control the Impact on DPF Performance and Engine Efficiency Uncovering Fundamental Ash-Formation Mechanisms...

  19. Vehicle Technologies Office Merit Review 2014: Fundamental Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fundamental Studies of Lithium-Sulfur Cell Chemistry Vehicle Technologies Office Merit Review 2014: Fundamental Studies of Lithium-Sulfur Cell Chemistry Presentation given by...

  20. Bridging the Gap between Fundamental Physics and Chemistry and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for...

  1. Vehicle Technologies Office Merit Review 2015: Fundamental Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fundamental Studies of Lithium-Sulfur Cell Chemistry Vehicle Technologies Office Merit Review 2015: Fundamental Studies of Lithium-Sulfur Cell Chemistry Presentation given by...

  2. Thermodynamic properties of a magnetically modulated graphene

    E-Print Network [OSTI]

    SK Firoz Islam; Naveen K. Singh; Tarun Kanti Ghosh

    2011-09-12

    The effect of magnetic modulation on thermodynamic properties of a graphene monolayer in presence of a constant perpendicular magnetic field is reported here. One-dimensional spatial electric or magnetic modulation lifts the degeneracy of the Landau levels and converts into bands and their band width oscillates with magnetic field leading to Weiss-type oscillation in the thermodynamic properties. The effect of magnetic modulation on thermodynamic properties of a graphene sheet is studied and then compared with electrically modulated graphene and magnetically modulated conventional two-dimensional electron gas (2DEG). We observe Weiss-type and de Haas-van Alphen (dHvA) oscillations at low and high magnetic field, respectively. There is a definite phase difference in Weiss-type oscillations in thermodynamic quantities of magnetically modulated graphene in compare to electrically modulated graphene. On the other hand, the phase remains same and amplitude of the oscillation is large when compared with the magnetically modulated 2DEG. Explicit asymptotic expressions of density of states and the Helmholtz free energy are provided to understand the phase and amplitude of the Weiss-type oscillations qualitatively. We also study thermodynamic properties when both electric and magnetic modulations are present. The Weiss-type oscillations still exist when the modulations are out-of-phase.

  3. THERMODYNAMICS OF ELECTROLYTES. X. ENTHALPY AND THE EFFECT OF TEMPERATURE ON THE ACTIVITY COEFFICIENTS.

    E-Print Network [OSTI]

    Silvester, Leonard F.

    2011-01-01

    09 THERMODYNAMICS OFELECI'ROLYTES. X'rights. r'-" e. ct THERMODYNAMICS OF ELECTROLYTES. X.Coefficient, Electrolyte, Thermodynamics v ~p , I J ! l

  4. Thermodynamics and the role of allostery in the thrombin- thrombomodulin interaction

    E-Print Network [OSTI]

    Beach, Muneera Aina

    2008-01-01

    64 Chapter IV Using Thermodynamics to Probe the Allosteric81 Table 4.3. Thermodynamics of isotherms atOF CALIFORNIA, SAN DIEGO Thermodynamics and the Role of

  5. Thermodynamics of neptunium(V) fluoride and sulfate at elevated temperatures

    E-Print Network [OSTI]

    Rao, Linfeng; Tian, Guoxin; Xia, Yuanxian; Friese, Judah I.

    2006-01-01

    Rao, O. Tochiyama; “Chemical Thermodynamics of Compounds andUpdate on the chemical thermodynamics of uranium, neptunium,Thermodynamics of Neptunium(V) Fluoride and Sulfate at

  6. Correlating structure and thermodynamics of hydrophobicâ??hydrophilic ion pairs in water

    E-Print Network [OSTI]

    Benjamin, Ilan

    2015-01-01

    Correlating Structure and Thermodynamics of Hydrophobic-hydration structure and thermodynamics associated with thefunction) with the thermodynamics (potential of mean force

  7. THERMODYNAMICS OF LOW-TEMPERATURE (700-850oC) HOT CORROSION

    E-Print Network [OSTI]

    Misra, A.K.

    2013-01-01

    Ref. 2). J. Lumsden, Thermodynamics of molten salt mixtures,R. Defay, Chemical thermodynamics, Longmans Green and Co. ,Electrochemical Society THERMODYNAMICS OF LOW-TEMPERATURE {

  8. Thermodynamic Product Formula for Ho?ava Lifshitz Black Hole

    E-Print Network [OSTI]

    Parthapratim Pradhan

    2015-06-10

    We examine the thermodynamic properties of inner and outer horizons in the background of Ho\\v{r}ava Lifshitz black hole. We compute the \\emph{horizon radii product, the surface area product, the entropy product, the surface temperature product, the Komar energy product and the specific heat product} for both the horizons of said black hole. We show that surface area product, entropy product and irreducible mass product are \\emph{universal} quantities, whereas the surface temperature product, Komar energy product and specific heat product are \\emph{not universal} quantities because they all are depends on mass parameter. We also observe that the \\emph{First law} of black hole thermodynamics and \\emph {Smarr-Gibbs-Duhem } relations do not hold for this black hole. The underlying reason behind this failure due to the scale invariance of the coupling constant. We further derive the \\emph{Smarr mass formula} and \\emph{Christodolou-Ruffini mass formula} for such black hole spacetime. Moreover we study the stability of such black hole by computing the specific heat for both the horizons. It has been observed that under certain condition the black hole possesses second order phase transition.

  9. Cosmic acceleration without dark energy: background tests and thermodynamic analysis

    SciTech Connect (OSTI)

    Lima, J.A.S.; Graef, L.L.; Pavón, D.; Basilakos, Spyros E-mail: leilagraef@usp.br E-mail: svasil@academyofathens.gr

    2014-10-01

    A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the Gibbons–Hawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current 'quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests.

  10. The thermodynamic cost of driving quantum systems by their boundaries

    E-Print Network [OSTI]

    Felipe Barra

    2015-10-22

    The laws of thermodynamics put limits to the efficiencies of thermal machines. Analogues of these laws are now established for quantum engines weakly and passively coupled to the environment providing a framework to find improvements to their performance. Systems whose interaction with the environment is actively controlled do not fall in that framework. Here we consider systems actively and locally coupled to the environment, evolving with a so-called boundary-driven Lindblad equation. Starting from a unitary description of the system plus the environment we simultaneously obtain the Lindblad equation and the appropriate expressions for heat, work and entropy-production of the system extending the framework for the analysis of new, and some already proposed, quantum heat engines. We illustrate our findings in spin 1/2 chains and explain why an XX chain coupled in this way to a single heat bath relaxes to thermodynamic-equilibrium while and XY chain does not. Additionally, we show that an XX chain coupled to a left and a right heat baths behaves as a quantum engine, a heater or refrigerator depending on the parameters, with efficiencies bounded by Carnot efficiencies.

  11. Design of a robust superhydrophobic surface: thermodynamic and kinetic analysis

    E-Print Network [OSTI]

    Anjishnu Sarkar; Anne-Marie Kietzig

    2014-12-17

    The design of a robust superhydrophobic surface is a widely pursued topic.While many investigations are limited to applications with high impact velocities (for raindrops of the order of a few m/s), the essence of robustness is yet to be analyzed for applications involving quasi-static liquid transfer.To achieve robustness with high impact velocities, the surface parameters (geometrical details, chemistry) have to be selected from a narrow range of permissible values, which often entail additional manufacturing costs.From the dual perspectives of thermodynamics and mechanics, we analyze the significance of robustness for quasi-static drop impact, and present the range of permissible surface characteristics.For surfaces with a Youngs contact angle greater than 90{\\deg} and square micropillar geometry, we show that robustness can be enforced when an intermediate wetting state (sagged state) impedes transition to a wetted state (Wenzel state).From the standpoint of mechanics, we use available scientific data to prove that a surface with any topology must withstand a pressure of 117 Pa to be robust.Finally, permissible values of surface characteristics are determined, which ensure robustness with thermodynamics (formation of sagged state) and mechanics (withstanding 117 Pa).

  12. Gravitationally Induced Particle Production: Thermodynamics and Kinetic Theory

    E-Print Network [OSTI]

    J. A. S. Lima; I. P. Baranov

    2014-11-24

    A relativistic kinetic description for the irreversible thermodynamic process of gravitationally induced particle production is proposed in the context of an expanding Friedmann-Robertson-Walker (FRW) geometry. We show that the covariant thermodynamic treatment referred to as "adiabatic" particle production provoked by the cosmic time-varying gravitational field has a consistent kinetic counterpart. The variation of the distribution function is associated to a non-collisional kinetic term of quantum-gravitational origin which is proportional to the ratio $\\Gamma/H$, where $\\Gamma$ is the gravitational particle production rate and H is the Hubble parameter. For $\\Gamma gravitation. The resulting non-equilibrium distribution function has the same functional form of equilibrium with the evolution laws corrected by the particle production process. The macroscopic temperature evolution law is also kinetically derived for massive and massless particles. The present approach points to the possibility of an exact (semi-classical) quantum-gravitational kinetic treatment by incorporating back-reaction effects in the cosmic background.

  13. FUNDAMENTAL STRUCTURAL LIMITATIONS OF AN INDUSTRIAL ENERGY MANAGEMENT CONTROLLER ARCHITECTURE FOR HYBRID VEHICLES

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    FUNDAMENTAL STRUCTURAL LIMITATIONS OF AN INDUSTRIAL ENERGY MANAGEMENT CONTROLLER ARCHITECTURE, Michigan 48109-2125 Email: dopila@umich.edu Xiaoyong Wang Ryan McGee Ford Motor Company Dearborn, Michigan-2122 ABSTRACT Energy management controllers for hybrid electric vehicles typically contain numerous parameters

  14. Flexible CO2 laser system for fundamental research related to an extreme ultraviolet lithography source

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Flexible CO2 laser system for fundamental research related to an extreme ultraviolet lithography 2009; published online 10 December 2009 A CO2 laser system with flexible parameters was developed 1010 W/cm2 . Utilizing this CO2 MOPA laser system, high conversion efficiency from laser to in-band 2

  15. Fundamental parameters of Cepheids. V. Additional photometry and radial velocity for southern Cepheids

    E-Print Network [OSTI]

    D. Bersier

    2002-01-15

    I present photometric and radial velocity data for Galactic Cepheids, most of them being in the southern hemisphere. There are 1250 Geneva 7-color photometric measurements for 62 Cepheids, the average uncertainty per measurement is better than 0.01 mag. A total of 832 velocity measurements have been obtained with the CORAVEL radial velocity spectrograph for 46 Cepheids. The average accuracy of the radial velocity data is 0.38 km/s. There are 33 stars with both photometry and radial velocity data. I discuss the possible binarity or period change that these new data reveal. I also present reddenings for all Cepheids with photometry. The data are available electronically.

  16. Confirming Fundamental Parameters of the Exoplanet Host Star epsilon Eridani Using the Navy Optical Interferometer

    E-Print Network [OSTI]

    Baines, Ellyn K

    2011-01-01

    We measured the angular diameter of the exoplanet host star epsilon Eridani using the Navy Optical Interferometer. We determined its physical radius, effective temperature, and mass by combining our measurement with the star's parallax, photometry from the literature, and the Yonsei-Yale isochrones (Yi et al. 2001), respectively. We used the resulting stellar mass of 0.82 +/- 0.05 M_Sun plus the mass function from Benedict et al. (2006) to calculate the planet's mass, which is 1.53 +/- 0.22 M_Jupiter. Using our new effective temperature, we also estimated the extent of the habitable zone for the system.

  17. Quantum Thermodynamic Cycles and quantum heat engines

    E-Print Network [OSTI]

    H. T. Quan; Yu-xi Liu; C. P. Sun; Franco Nori

    2007-04-03

    In order to describe quantum heat engines, here we systematically study isothermal and isochoric processes for quantum thermodynamic cycles. Based on these results the quantum versions of both the Carnot heat engine and the Otto heat engine are defined without ambiguities. We also study the properties of quantum Carnot and Otto heat engines in comparison with their classical counterparts. Relations and mappings between these two quantum heat engines are also investigated by considering their respective quantum thermodynamic processes. In addition, we discuss the role of Maxwell's demon in quantum thermodynamic cycles. We find that there is no violation of the second law, even in the existence of such a demon, when the demon is included correctly as part of the working substance of the heat engine.

  18. A microscopic perspective on stochastic thermodynamics

    E-Print Network [OSTI]

    Bernhard Altaner; Jürgen Vollmer

    2015-05-18

    We consider stochastic thermodynamics as a theory of statistical inference for experimentally observed fluctuating time-series. To that end, we introduce a general framework for quantifying the knowledge about the dynamical state of the system on two scales: a fine-grained or microscopic, deterministic and a coarse-grained or mesoscopic, stochastic level of description. For a generic model dynamics, we show how the mathematical expressions for fluctuating entropy changes used in Markovian stochastic thermodynamics emerge naturally. Our ideas are conceptional approaches towards (i) connecting entropy production and its fluctuation relations in deterministic and stochastic systems and (ii) providing a complementary information-theoretic picture to notions of entropy and entropy production in stochastic thermodynamics.

  19. Thermodynamics of pairing in mesoscopic systems

    E-Print Network [OSTI]

    Tony Sumaryada; Alexander Volya

    2007-06-12

    Using numerical and analytical methods implemented for different models we conduct a systematic study of thermodynamic properties of pairing correlation in mesoscopic nuclear systems. Various quantities are calculated and analyzed using the exact solution of pairing. An in-depth comparison of canonical, grand canonical, and microcanonical ensemble is conducted. The nature of the pairing phase transition in a small system is of a particular interest. We discuss the onset of discontinuity in the thermodynamic variables, fluctuations, and evolution of zeros of the canonical and grand canonical partition functions in the complex plane. The behavior of the Invariant Correlational Entropy is also studied in the transitional region of interest. The change in the character of the phase transition due to the presence of magnetic field is discussed along with studies of superconducting thermodynamics.

  20. Towards a 'Thermodynamics' of Active Matter

    E-Print Network [OSTI]

    Sho C. Takatori; John F. Brady

    2014-11-21

    Self-propulsion allows living systems to display unusual collective behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises however as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.

  1. Mathematical Conception of "Phenomenological" Equilibrium Thermodynamics

    E-Print Network [OSTI]

    V. P. Maslov

    2012-06-29

    In the paper, the principal aspects of the mathematical theory of equilibrium thermodynamics are distinguished. It is proved that the points of degeneration of a Bose gas of fractal dimension in the momentum space coincide with critical points or real gases, whereas the jumps of critical indices and the Maxwell rule are related to the tunnel generalization of thermodynamics. Semiclassical methods are considered for the tunnel generalization of thermodynamics and also for the second and ultrasecond quantization (operators of creation and annihilation of pairs). To every pure gas there corresponds a new critical point of the limit negative pressure below which the liquid passes to a dispersed state (a foam). Relations for critical points of a homogeneous mixture of pure gases are given in dependence on the concentration of gases.

  2. Mathematical Conception of "Phenomenological" Equilibrium Thermodynamics

    E-Print Network [OSTI]

    Maslov, V P

    2011-01-01

    In the paper, the principal aspects of the mathematical theory of equilibrium thermodynamics are distinguished. It is proved that the points of degeneration of a Bose gas of fractal dimension in the momentum space coincide with critical points or real gases, whereas the jumps of critical indices and the Maxwell rule are related to the tunnel generalization of thermodynamics. Semiclassical methods are considered for the tunnel generalization of thermodynamics and also for the second and ultrasecond quantization (operators of creation and annihilation of pairs). To every pure gas there corresponds a new critical point of the limit negative pressure below which the liquid passes to a dispersed state (a foam). Relations for critical points of a homogeneous mixture of pure gases are given in dependence on the concentration of gases.

  3. Measurement of thermodynamics using gradient flow

    E-Print Network [OSTI]

    Masakiyo Kitazawa; Masayuki Asakawa; Tetsuo Hatsuda; Takumi Iritani; Etsuko Itou; Hiroshi Suzuki

    2014-12-15

    We analyze bulk thermodynamics and correlation functions of the energy-momentum tensor in pure Yang-Mills gauge theory using the energy-momentum tensor defined by the gradient flow and small flow time expansion. Our results on thermodynamic observables are consistent with those obtained by the conventional integral method. The analysis of the correlation function of total energy supports the energy conservation. It is also addressed that these analyses with gradient flow require less statistics compared with the previous methods. All these results suggest that the energy-momentum tensor can be successfully defined and observed on the lattice with moderate numerical costs with the gradient flow.

  4. Black Hole Thermodynamics and Statistical Mechanics

    E-Print Network [OSTI]

    Steven Carlip

    2008-07-28

    We have known for more than thirty years that black holes behave as thermodynamic systems, radiating as black bodies with characteristic temperatures and entropies. This behavior is not only interesting in its own right; it could also, through a statistical mechanical description, cast light on some of the deep problems of quantizing gravity. In these lectures, I review what we currently know about black hole thermodynamics and statistical mechanics, suggest a rather speculative "universal" characterization of the underlying states, and describe some key open questions.

  5. Large Transverse Momenta and Tsallis Thermodynamics

    E-Print Network [OSTI]

    Cleymans, J

    2015-01-01

    The charged particle transverse momentum ($p_T$) spectra measured by the ATLAS and CMS collaborations in proton - proton collisions at sqrt(s) = 0.9 and 7 TeV have been studied using Tsallis thermodynamics. A thermodynamically consistent form of the Tsallis distribution is used for fitting the transverse momentum spectra at mid-rapidity. It is found that the fits based on the proposed distribution provide an excellent description over 14 orders of magnitude with $p_T$ values up to 200 GeV/c.

  6. Large Transverse Momenta and Tsallis Thermodynamics

    E-Print Network [OSTI]

    J. Cleymans; M. D. Azmi

    2015-08-13

    The charged particle transverse momentum ($p_T$) spectra measured by the ATLAS and CMS collaborations in proton - proton collisions at sqrt(s) = 0.9 and 7 TeV have been studied using Tsallis thermodynamics. A thermodynamically consistent form of the Tsallis distribution is used for fitting the transverse momentum spectra at mid-rapidity. It is found that the fits based on the proposed distribution provide an excellent description over 14 orders of magnitude with $p_T$ values up to 200 GeV/c.

  7. Hard-thermal-loop QED thermodynamics

    E-Print Network [OSTI]

    Nan Su; Jens O. Andersen; Michael Strickland

    2009-11-24

    The weak-coupling expansion for thermodynamic quantities in thermal field theories is poorly convergent unless the coupling constant is tiny. We discuss the calculation of the free energy for a hot gas of electrons and photons to three-loop order using hard-thermal-loop perturbation theory (HTLpt). We show that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ~ 2. The reorganization is gauge invariant by construction, and due to the cancellations among various contributions, we obtain a completely analytic result for the resummed thermodynamic potential at three loops.

  8. Thermodynamics of Dyonic Lifshitz Black Holes

    E-Print Network [OSTI]

    Tobias Zingg

    2011-07-15

    Black holes with asymptotic anisotropic scaling are conjectured to be gravity duals of condensed matter system close to quantum critical points with non-trivial dynamical exponent z at finite temperature. A holographic renormalization procedure is presented that allows thermodynamic potentials to be defined for objects with both electric and magnetic charge in such a way that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz spacetimes can exhibit paramagnetic behavior at low temperature limit for certain values of the critical exponent z, whereas the behavior of AdS black holes is always diamagnetic.

  9. Thermodynamics of the low density excluded volume hadron gas

    E-Print Network [OSTI]

    Zalewski, Kacper

    2015-01-01

    We discuss the influence of the excluded volume of hadrons on macroscopic variables and thermal parameters of the hadron gas at finite temperature and chemical potential in the low density approximation. Based solely on elementary thermodynamics we show that when the excluded volume grows at constant temperature, pressure, and number of particles, the overall volume increases just as much as the excluded volume, while the entropy and energy remain unchanged. The growth of the chemical potentials is equal to the work needed to create the respective excluded volumes. Consequently, the bulk density functions of a gas with excluded volume are expressed by the corresponding variables in a system of point particles with the shifted chemical potentials. Our results are fully consistent with the previous findings obtained upon applications of more advanced methods of statistical physics. A validity limit for the low density approximation is derived and discussed in the context of the hadron gas created in heavy ion c...

  10. Thermodynamics of the low density excluded volume hadron gas

    E-Print Network [OSTI]

    Kacper Zalewski; Krzysztof Redlich

    2015-07-20

    We discuss the influence of the excluded volume of hadrons on macroscopic variables and thermal parameters of the hadron gas at finite temperature and chemical potential in the low density approximation. Based solely on elementary thermodynamics we show that when the excluded volume grows at constant temperature, pressure, and number of particles, the overall volume increases just as much as the excluded volume, while the entropy and energy remain unchanged. The growth of the chemical potentials is equal to the work needed to create the respective excluded volumes. Consequently, the bulk density functions of a gas with excluded volume are expressed by the corresponding variables in a system of point particles with the shifted chemical potentials. Our results are fully consistent with the previous findings obtained upon applications of more advanced methods of statistical physics. A validity limit for the low density approximation is derived and discussed in the context of the hadron gas created in heavy ion collisions.

  11. Strong laser fields as a probe for fundamental physics

    E-Print Network [OSTI]

    Gies, Holger

    2008-01-01

    Upcoming high-intensity laser systems will be able to probe the quantum-induced nonlinear regime of electrodynamics. So far unobserved QED phenomena such as the discovery of a nonlinear response of the quantum vacuum to macroscopic electromagnetic fields can become accessible. In addition, such laser systems provide for a flexible tool for investigating fundamental physics. Primary goals consist in verifying so far unobserved QED phenomena. Moreover, strong-field experiments can search for new light but weakly interacting degrees of freedom and are thus complementary to accelerator-driven experiments. I review recent developments in this field, focusing on photon experiments in strong electromagnetic fields. The interaction of particle-physics candidates with photons and external fields can be parameterized by low-energy effective actions and typically predict characteristic optical signatures. I perform first estimates of the accessible new-physics parameter space of high-intensity laser facilities such as P...

  12. Hydrogen Production: Fundamentals and Case Study Summaries (Presentation)

    SciTech Connect (OSTI)

    Harrison, K.; Remick, R.; Hoskin, A.; Martin, G.

    2010-05-19

    This presentation summarizes hydrogen production fundamentals and case studies, including hydrogen to wind case studies.

  13. Interacting holographic dark energy model and generalized second law of thermodynamics in non-flat universe

    E-Print Network [OSTI]

    M. R. Setare

    2007-01-26

    In the present paper we consider the interacting holographic model of dark energy to investigate the validity of the generalized second laws of thermodynamics in non-flat (closed) universe enclosed by the event horizon measured from the sphere of the horizon named $L$. We show that for $L$ as the system's IR cut-off the generalized second law is respected for the special range of the deceleration parameter.

  14. Fundamentals of Water Availability Modeling with WRAP 

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    2005-01-01

    with WRAP by Ralph A. Wurbs Civil Engineering Department Texas A&M University TR-283 Texas Water Resources Institute College Station, Texas April 2005 Fundamentals of Water Availability Modeling with WRAP Ralph A.... Wurbs Department of Civil Engineering Texas A&M University Technical Report No. 283 Texas Water Resources Institute The Texas A&M University System College Station, Texas 77843-2118 April 2005 Mention of a trademark or a...

  15. The factor 2 in fundamental physics

    E-Print Network [OSTI]

    Peter Rowlands

    2001-10-24

    A brief history is given of the factor 2, starting in the most elementary considerations of geometry and kinematics of uniform acceleration, and moving to relativity, quantum mechanics and particle physics. The basic argument is that in all the significant cases in which the factor 2 or 1/2 occurs in fundamental physics, whether classical, quantum or relativistic, the same physical operation is taking place.

  16. DOE fundamentals handbook: Mechanical science. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  17. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  18. 12.480 Thermodynamics for Geoscientists, Spring 2004

    E-Print Network [OSTI]

    Grove, Timothy L.

    Principles of thermodynamics are used to infer the physical conditions of formation and modification of igneous and metamorphic rocks. Includes phase equilibria of homogeneous and heterogeneous systems and thermodynamic ...

  19. Radial Flow in Non-Extensive Thermodynamics and Study of Particle Spectra at LHC in the Limit of Small $(q-1)$

    E-Print Network [OSTI]

    Trambak Bhattacharyya; Jean Cleymans; Arvind Khuntia; Pooja Pareek; Raghunath Sahoo

    2015-07-30

    We expand the Tsallis distribution in a Taylor series of powers of (q-1), where q is the Tsallis parameter, assuming q is very close to 1. This helps in studying the degree of deviation of transverse momentum spectra and other thermodynamic quantities from a thermalized Boltzmann distribution. After checking thermodynamic consistency, we provide analytical results for the Tsallis distribution in the presence of collective flow up to the first order of (q-1). The formulae are compared with the experimental data.

  20. Thermodynamic stability of actinide pyrochlore minerals in deep...

    Office of Scientific and Technical Information (OSTI)

    SCIENCE; HIGH-LEVEL RADIOACTIVE WASTES; PLUTONIUM; PYROCHLORE; STABILITY; THERMODYNAMICS; WASTE FORMS; RADIOACTIVE WASTE DISPOSAL; BACKFILLING; RADIOACTIVE WASTE...

  1. Compound hybrid geothermal-fossil power plants: thermodynamic...

    Office of Scientific and Technical Information (OSTI)

    SUPERHEATING; THERMODYNAMICS; WELL TEMPERATURE; WELLHEADS; WESTERN REGION; HEATING; HYDROGEN COMPOUNDS; NORTH AMERICA; OXYGEN COMPOUNDS; POWER PLANTS; RESERVOIR TEMPERATURE;...

  2. Physical Meteorology I: Thermodynamics (METR 3213)

    E-Print Network [OSTI]

    Fedorovich, Evgeni

    of energy and its role in the thermal regime of the atmosphere. Part II. Basic notions and equations. Gas and pressure reduction methods. Part III. First law of thermodynamics. Principle of conservation of energy, heat energy transport and transformations, interactions between different water phases

  3. INVESTIGATING THERMODYNAMICS OF VERTICAL ATMOSPHERIC ENERGY TRANSPORT

    E-Print Network [OSTI]

    's climate and on enhancing the overall entropy production of the Earth's climate system are discussed. Potential thermodynamic constraint(s) for the Earth's climate system are also explored from these simple transport are investigated by using simple one-dimensional vertical energy balance models (i.e., radiative

  4. A thermodynamic switch for chromosome colocalization

    E-Print Network [OSTI]

    M. Nicodemi; B. Panning; A. Prisco

    2008-09-27

    A general model for the early recognition and colocalization of homologous DNA sequences is proposed. We show, on a thermodynamic ground, how the distance between two homologous DNA sequences is spontaneously regulated by the concentration and affinity of diffusible mediators binding them, which act as a switch between two phases corresponding to independence or colocalization of pairing regions.

  5. Thermodynamics Teacher and Student Guides (6 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This is a hands-on laboratory unit exploring the concepts of heat and movement. Teachers set up six laboratory stations that will introduce students to the basic concepts of thermodynamics, including atomic structure, atomic and molecular motion, states of matter, heat transfer, thermal expansion, specific heat, and heats of fusion and vaporization. It also includes a unit exam and teacher demonstrations.

  6. Cyclic thermodynamic processes and entropy production

    E-Print Network [OSTI]

    Liouvillean. We then show that the entropy production per cycle is (strictly) positive, a property that implies Carnot's formulation of the second law of thermodynamics. 1 Introduction During the past several, we make a contribution to this program by studying Carnot's for­ mulation of the second law

  7. QCD thermodynamics with dynamical overlap fermions

    E-Print Network [OSTI]

    S. Borsanyi; Y. Delgado; S. Durr; Z. Fodor; S. D. Katz; S. Krieg; T. Lippert; D. Nogradi; K. K. Szabo

    2012-08-02

    We study QCD thermodynamics using two flavors of dynamical overlap fermions with quark masses corresponding to a pion mass of 350 MeV. We determine several observables on N_t=6 and 8 lattices. All our runs are performed with fixed global topology. Our results are compared with staggered ones and a nice agreement is found.

  8. Perturbative String Thermodynamics near Black Hole Horizons

    E-Print Network [OSTI]

    Thomas G. Mertens; Henri Verschelde; Valentin I. Zakharov

    2015-07-01

    We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work JHEP 1403 (2014) 086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of $\\alpha'$-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large $k$ limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in $g_s$) to compute thermodynamical quantities in black hole spacetimes.

  9. Thermodynamics of nuclei in thermal contact

    E-Print Network [OSTI]

    Karl-Heinz Schmidt; Beatriz Jurado

    2010-10-05

    The behaviour of a di-nuclear system in the regime of strong pairing correlations is studied with the methods of statistical mechanics. It is shown that the thermal averaging is strong enough to assure the application of thermodynamical methods to the energy exchange between the two nuclei in contact. In particular, thermal averaging justifies the definition of a nuclear temperature.

  10. Thermodynamic modelling of solid solutions JIBAMITRA GANGULY

    E-Print Network [OSTI]

    Ganguly, Jibamitra

    with the phase equilibrium constraints. The latter are calculated from the internally consistent thermochemical will summarise the general concepts of thermodynamic solution theory and a number of macroscopic models that have were originally developed for polymer and liquid solutions, but are also applicable to oxide and solid

  11. Thermodynamics of the N=2* flow

    E-Print Network [OSTI]

    Buchel, A S; Buchel, Alex; Liu, James T.

    2003-01-01

    We discuss the thermodynamics of the N=2*, SU(N) gauge theory at large 't Hooft coupling. The tool we use is the non-extremal deformation of the supergravity solution of Pilch and Warner (PW) [hep-th/0004063], dual to N=4, SU(N) gauge theory softly broken to N=2. We construct the exact non-extremal solution in five-dimensional gauged supergravity and further uplift it to ten dimensions. Turning to the thermodynamics, we analytically compute the leading correction in m/T to the free energy of the non-extremal D3 branes due to the PW mass deformation, and find that it is positive. We also demonstrate that the mass deformation of the non-extremal D3 brane geometry induces a temperature dependent gaugino condensate. We find that the standard procedure of extracting the N=2* gauge theory thermodynamic quantities from the dual supergravity leads to a violation of the first law of thermodynamics. We speculate on a possible resolution of this paradox.

  12. Thermodynamics of Energy Production from Biomass

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

  13. Entanglement theory and the second law of thermodynamics

    E-Print Network [OSTI]

    Loss, Daniel

    ARTICLES Entanglement theory and the second law of thermodynamics FERNANDO G. S. L. BRAND~AO1 aim to draw from them formal analogies to the second law of thermodynamics; however, whereas relationship with thermodynamics may be established when considering all non-entangling transformations

  14. Thermodynamics and Structure of Peptide-Aggregates at Membrane Surfaces

    E-Print Network [OSTI]

    Quake, Stephen R.

    Thermodynamics and Structure of Peptide- Aggregates at Membrane Surfaces INAUGURALDISSERTATION zur. Introduction 01 1.1 ­ Thermodynamics of Protein Aggregation 01 1.2 ­ Formation of Protein Aggregates 03 1 and P-glycoprotein: Connecting Thermodynamics and Membrane Structure with Functional Activity 23 3

  15. On thermodynamics of crystal plasticity V.L. Berdichevsky

    E-Print Network [OSTI]

    Berdichevsky, Victor

    On thermodynamics of crystal plasticity V.L. Berdichevsky Mechanical Engineering, Wayne State; Plasticity theory; Dislocation theory 1. Introduction Thermodynamics is a theory of the slow variables of very complex systems. The goals of thermodynamics of crystal plasticity are to identify the slow

  16. Thermodynamics of resonances and blurred particles

    E-Print Network [OSTI]

    D. N. Voskresensky

    2008-04-10

    Exact and approximate expressions for thermodynamic characteristics of heated matter, which consists of particles with finite mass-widths, are constructed. They are expressed in terms of Fermi/Bose distributions and spectral functions, rather than in terms of more complicated combinations between real and imaginary parts of the self-energies of different particle species. Therefore thermodynamically consistent approximate treatment of systems of particles with finite mass-widths can be performed, provided spectral functions of particle species are known. Approximation of the free resonance gas at low densities is studied. Simple ansatz for the energy dependence of the spectral function is suggested that allows to fulfill thermodynamical consistency conditions. On examples it is shown that a simple description of dense systems of interacting particle species can be constructed, provided some species can be treated in the quasiparticle approximation and others as particles with widths. The interaction affects quasiparticle contributions, whereas particles with widths can be treated as free. Example is considered of a hot gas of heavy fermions strongly interacting with light bosons, both species with zero chemical potentials. The density of blurred fermions is dramatically increased for high temperatures compared to the standard Boltzmann value. The system consists of boson quasiparticles (with effective masses) interacting with fermion -- antifermion blurs. In thermodynamical values interaction terms partially compensate each other. Thereby, in case of a very strong coupling between species thermodynamical quantities of the system, like the energy, pressure and entropy, prove to be such as for the quasi-ideal gas mixture of quasi-free fermion blurs and quasi-free bosons.

  17. Folding and insertion thermodynamics of the transmembrane WALP peptide

    E-Print Network [OSTI]

    Bereau, Tristan; Pfaendtner, Jim; Deserno, Markus; Karttunen, Mikko

    2015-01-01

    The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)$_n$(L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide's insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum---in contrast to both atomistic simulations and the alternative PLUM force field. Even tho...

  18. DOE-HDBK-1012/1-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 1 of 3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY TakestoFlex Bulletin The2-92 JUNE 19921-92 JUNE

  19. DOE-HDBK-1012/2-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 2 of 3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY TakestoFlex Bulletin The2-92 JUNE 19921-92

  20. DOE-HDBK-1012/3-92; DOE Fundamentals Handbook Thermodynamics, Heat Transfer, and Fluid Flow Volume 3 of 3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY TakestoFlex Bulletin The2-92 JUNE 19921-923-92

  1. Improved Engine Design Concepts Using the Second Law of Thermodynamics

    SciTech Connect (OSTI)

    2009-09-30

    This project was aimed at developing and using numerical tools which incorporate the second law of thermodynamics to better understand engine operation and particularly the combustion process. A major activity of this project was the continual enhancement and use of an existing engine cycle simulation to investigate a wide range of engine parameters and concepts. The major motivation of these investigations was to improve engine efficiency. These improvements were examined from both the first law and second law perspective. One of the most important aspects of this work was the identification of the combustion irreversibilities as functions of engine design and operating parameters. The combustion irreversibility may be quantified in a number of ways but one especially useful way is by determining the destruction of exergy (availability) during the combustion process. This destruction is the penalty due to converting the fuel exergy to thermal energy for producing work. The engine cycle simulation was used to examine the performance of an automotive (5.7 liter), V-8 spark-ignition engine. A base case was defined for operation at 1400 rpm, stoichiometric, MBT spark timing with a bmep of 325 kPa. For this condition, the destruction of exergy during the combustion process was 21.0%. Variations of many engine parameters (including speed, load, and spark timing) did not alter the level of destruction very much (with these variations, the exergy destruction was within the range of 20.5-21.5%). Also, the use of turbocharging or the use of an over-expanded engine design did not significantly change the exergy destruction. The exergy destruction during combustion was most affected by increased inlet oxygen concentration (which reduced the destruction due to the higher combustion temperatures) and by the use of cooled EGR (which increased the destruction). This work has demonstrated that, in general, the exergy destruction for conventional engines is fairly constant ({approx}21%) for a range of operating and design parameters. Further, to achieve high efficiency engines requires that the exergy be managed and not necessarily reduced. The overall thermodynamics is the final discriminator regarding high efficiency engines.

  2. APS Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next up previous Next: Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010...

  3. Fundamental Symmetries of the Modified Anyonic Particle

    E-Print Network [OSTI]

    Nejad, Salman Abarghouei; Monemzadeh, Majid

    2015-01-01

    We try to increase the fundamental symmetries of the anyonic particle with the help of the symplectic formalism of constrained systems and gauging the model. The main idea of this approach is based on the embedding of the model in an extended phase space. After the gauging process had done, we obtain generators of gauge transformations of the model. Finally, by extracting the corresponding Poisson structure of all constraints, we compare the effect of gauging on the the phase spaces, the number of physical degrees of freedom, and canonical structures of both primary and gauged models.

  4. Fundamental measure theory of hydrated hydrocarbons

    E-Print Network [OSTI]

    Victor F. Sokolov; Gennady N. Chuev

    2006-04-13

    To calculate the solvation of hydrophobic solutes we have developed the method based on the fundamental measure treatment of the density functional theory. This method allows us to carry out calculations of density profiles and the solvation energy for various hydrophobic molecules with a high accuracy. We have applied the method to the hydration of various hydrocarbons (linear, branched and cyclic). The calculations of the entropic and the enthalpic parts are also carried out. We have examined a question about temperature dependence of the entropy convergence. Finally, we have calculated the mean force potential between two large hydrophobic nanoparticles immersed in water.

  5. Recreating Fundamental Effects in the Laboratory?

    E-Print Network [OSTI]

    Ralf Schützhold

    2010-04-14

    This article provides a brief (non-exhaustive) overview of some possibilities for recreating fundamental effects which are relevant for black holes (and other gravitational scenarios) in the laboratory. Via suitable condensed matter analogues and other laboratory systems, it might be possible to model the Penrose process (superradiant scattering), the Unruh effect, Hawking radiation, the Eardley instability, black-hole lasers, cosmological particle creation, the Gibbons-Hawking effect, and the Schwinger mechanism. Apart from an experimental verification of these yet unobserved phenomena, the study of these laboratory systems might shed light onto the underlying ideas and problems and should therefore be interesting from a (quantum) gravity point of view as well.

  6. Fundamental investigation of duct/ESP phenomena

    SciTech Connect (OSTI)

    Brown, C.A. (Radian Corp., Austin, TX (United States)); Durham, M.D. (ADA Technologies, Inc., Englewood, CO (United States)); Sowa, W.A. (California Univ., Irvine, CA (United States). Combustion Lab.); Himes, R.M. (Fossil Energy Research Corp., Laguna Hills, CA (United States)); Mahaffey, W.A. (CHAM of North America, Inc., Huntsville, AL (United States))

    1991-10-21

    Radian Corporation was contracted to investigate duct injection and ESP phenomena in a 1.7 MW pilot plant constructed for this test program. This study was an attempt to resolve problems found in previous studies and answer remaining questions for the technology using an approach which concentrates on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of an existing ESP particulate collection device to the duct injection process. Process economics are being studied by others. (VC)

  7. Sandia Energy - HCCI/SCCI Fundamentals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & Drilling Technology HomeGridHCCI/SCCI Fundamentals

  8. Statistical thermodynamics of supercapacitors and blue engines

    E-Print Network [OSTI]

    René van Roij

    2012-11-06

    We study the thermodynamics of electrode-electrolyte systems, for instance supercapacitors filled with an ionic liquid or blue-energy devices filled with river- or sea water. By a suitable mapping of thermodynamic variables, we identify a strong analogy with classical heat engines. We introduce several Legendre transformations and Maxwell relations. We argue that one should distinguish between the differential capacity at constant ion number and at constant ion chemical potential, and derive a relation between them that resembles the standard relation between heat capacity at constant volume and constant pressure. Finally, we consider the probability distribution of the electrode charge at a given electrode potential, the standard deviation of which is given by the differential capacity.

  9. Identifying Functional Thermodynamics in Autonomous Maxwellian Ratchets

    E-Print Network [OSTI]

    Boyd, A B; Crutchfield, J P

    2015-01-01

    We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. These Demons are as functional as alternative candidates, behaving either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or Landauer erasers, removing information from a sequence of binary symbols by consuming external work. In both cases, explicitly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of thermodynamics that relies on the Kolmogorov-Sinai entropy.

  10. Thermodynamic motivations of spherically symmetric static metrics

    E-Print Network [OSTI]

    H. Moradpour; S. Nasirimoghadam

    2015-06-14

    Bearing the thermodynamic arguments together with the two definitions of mass in mind, we try to find metrics with spherical symmetry. We consider the adiabatic condition along with the Gong-Wang mass, and evaluate the $g_{rr}$ element which points to a null hypersurface. In addition, we generalize the thermodynamics laws to this hypersurface to find its temperature and thus the corresponding surface gravity which enables us to get a relation for the $g_{tt}$ element. Finally, we investigate the mathematical and physical properties of the discovered metric in the Einstein relativity framework which shows that the primary mentioned null hypersurface is an event horizon. We also show that if one considers the Misner-Sharp mass in the calculations, the Schwarzschild metric will be got. The relationship between the two mass definitions in each metric is studied. The results of considering the geometrical surface gravity are also addressed.

  11. Thermodynamic motivations of spherically symmetric static metrics

    E-Print Network [OSTI]

    Moradpour, H

    2015-01-01

    Bearing the thermodynamic arguments together with the two definitions of mass in mind, we try to find metrics with spherical symmetry. We consider the adiabatic condition along with the Gong-Wang mass, and evaluate the $g_{rr}$ element which points to a null hypersurface. In addition, we generalize the thermodynamics laws to this hypersurface to find its temperature and thus the corresponding surface gravity which enables us to get a relation for the $g_{tt}$ element. Finally, we investigate the mathematical and physical properties of the discovered metric in the Einstein relativity framework which shows that the primary mentioned null hypersurface is an event horizon. We also show that if one considers the Misner-Sharp mass in the calculations, the Schwarzschild metric will be got. The relationship between the two mass definitions in each metric is studied. The results of considering the geometrical surface gravity are also addressed.

  12. Identifying Functional Thermodynamics in Autonomous Maxwellian Ratchets

    E-Print Network [OSTI]

    A. B. Boyd; D. Mandal; J. P. Crutchfield

    2015-07-28

    We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. These Demons are as functional as alternative candidates, behaving either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or Landauer erasers, removing information from a sequence of binary symbols by consuming external work. In both cases, explicitly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of thermodynamics that relies on the Kolmogorov-Sinai entropy.

  13. Lattice QCD Thermodynamics with Physical Quark Masses

    E-Print Network [OSTI]

    R. A. Soltz; C. DeTar; F. Karsch; Swagato Mukherjee; P. Vranas

    2015-02-08

    Over the past few years new physics methods and algorithms as well as the latest supercomputers have enabled the study of the QCD thermodynamic phase transition using lattice gauge theory numerical simulations with unprecedented control over systematic errors. This is largely a consequence of the ability to perform continuum extrapolations with physical quark masses. Here we review recent progress in lattice QCD thermodynamics, focussing mainly on results that benefit from the use of physical quark masses: the crossover temperature, the equation of state, and fluctuations of the quark number susceptibilities. In addition, we place a special emphasis on calculations that are directly relevant to the study of relativistic heavy ion collisions at RHIC and the LHC.

  14. Thermodynamics and geometry of strange quark matter

    E-Print Network [OSTI]

    H. Gholizade; A. Altaibayeva; R. Myrzakulov

    2014-12-21

    We study thermodynamic of strange quark matter (SQM) using the analytic expressions of free and internal energies. We investigate two regimes of the high density and low density separately. As a vital program, in the case of a massless gluon and massless quarks at finite temperature, we also present a geometry of thermodynamics for the gluon and Bosons using a Legendre invariance metric, it is so called as geometrothermodynamic (GTD) to better understanding of the phase transition. The GTD metric and its second order scalar invariant have been obtained, and we clarify the phase transition by study the singularities of the scalar curvature of this Riemannian metric. This method is ensemble dependence and to complete the phase transition. Meanwhile, we also investigate enthalpy and entropy and internal energy representations. Our work exposes new pictures of the nature of phase transitions in SQM.

  15. Work and reversibility in quantum thermodynamics

    E-Print Network [OSTI]

    Stephanie Wehner; Mark M. Wilde; Mischa P. Woods

    2015-06-26

    It is a central question in quantum thermodynamics to determine how much work can be gained by a process that transforms an initial state $\\rho$ to a final state $\\sigma$. For example, we might ask how much work can be obtained by thermalizing $\\rho$ to a thermal state $\\sigma$ at temperature $T$ of an ambient heat bath. Here, we show that for large systems, or when allowing slightly inexact catalysis, the amount of work is characterized by how reversible the process is. More specifically, the amount of work to be gained depends on how well we can return the state $\\sigma$ to its original form $\\rho$ without investing any work. We proceed to exhibit an explicit reversal operation in terms of the Petz recovery channel coming from quantum information theory. Our result establishes a quantitative link between the reversibility of thermodynamical processes and the corresponding work gain.

  16. Thermodynamics and dynamics of atomic selforganization in an optical cavity

    E-Print Network [OSTI]

    Stefan Schütz; Simon B. Jäger; Giovanna Morigi

    2015-08-26

    Pattern formation of atoms in high-finesse optical resonators results from the mechanical forces of light associated with superradiant scattering into the cavity mode. It occurs when the laser intensity exceeds a threshold value, such that the pumping processes counteract the losses. We consider atoms driven by a laser and coupling with a mode of a standing-wave cavity and describe their dynamics with a Fokker-Planck equation, in which the atomic motion is semiclassical but the cavity field is a full quantum variable. The asymptotic state of the atoms is a thermal state, whose temperature is solely controlled by the detuning between the laser and the cavity frequency and by the cavity loss rate. From this result we derive the free energy and show that in the thermodynamic limit selforganization is a second-order phase transition. The order parameter is the field inside the resonator, to which one can associate a magnetization in analogy to ferromagnetism, the control field is the laser intensity, however the steady state is intrinsically out-of-equilibrium. In the symmetry-broken phase quantum noise induces jumps of the spatial density between two ordered patterns: We characterize the statistical properties of this temporal behaviour at steady state and show that the thermodynamic properties of the system can be extracted by detecting the light at the cavity output. The results of our analysis are in full agreement with previous studies, extend them by deriving a self-consistent theory which is valid also when the cavity field is in the shot-noise limit, and elucidate the nature of the selforganization transition.

  17. The second laws of quantum thermodynamics

    E-Print Network [OSTI]

    Fernando G. S. L. Brandao; Micha? Horodecki; Nelly Huei Ying Ng; Jonathan Oppenheim; Stephanie Wehner

    2014-09-25

    The second law of thermodynamics tells us which state transformations are so statistically unlikely that they are effectively forbidden. Its original formulation, due to Clausius, states that "Heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at the same time". The second law applies to systems composed of many particles interacting; however, we are seeing that one can make sense of thermodynamics in the regime where we only have a small number of particles interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are cyclic or very close to cyclic, the second law for microscopic systems takes on a very di?erent form than it does at the macroscopic scale, imposing not just one constraint on what state transformations are possible, but an entire family of constraints. In particular, we find a family of free energies which generalise the traditional one, and show that they can never increase. We further find that there are three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are not only relevant for small systems, but also apply to individual macroscopic systems interacting via long-range interactions, which only satisfy the ordinary second law on average. By making precise the definition of thermal operations, the laws of thermodynamics take on a simple form with the first law defining the class of thermal operations, the zeroeth law emerging as a unique condition ensuring the theory is nontrivial, and the remaining laws being a monotonicity property of our generalised free energies.

  18. Heterophase liquid states: Thermodynamics, structure, dynamics

    E-Print Network [OSTI]

    A. S. Bakai

    2015-01-12

    An overview of theoretical results and experimental data on the thermodynamics, structure and dynamics of the heterophase glass-forming liquids is presented. The theoretical approach is based on the mesoscopic heterophase fluctuations model (HPFM) developed within the framework of the bounded partition function approach. The Fischer cluster phenomenon, glass transition, liquid-liquid transformations, parametric phase diagram, cooperative dynamics and fragility of the glass-forming liquids is considered.

  19. Thermodynamics of quantum systems under dynamical control

    E-Print Network [OSTI]

    D. Gelbwaser-Klimovsky; Wolfgang Niedenzu; Gershon Kurizki

    2015-03-04

    In this review the debated rapport between thermodynamics and quantum mechanics is addressed in the framework of the theory of periodically-driven/controlled quantum-thermodynamic machines. The basic model studied here is that of a two-level system (TLS), whose energy is periodically modulated while the system is coupled to thermal baths. When the modulation interval is short compared to the bath memory time, the system-bath correlations are affected, thereby causing cooling or heating of the TLS, depending on the interval. In steady state, a periodically-modulated TLS coupled to two distinct baths constitutes the simplest quantum heat machine (QHM) that may operate as either an engine or a refrigerator, depending on the modulation rate. We find their efficiency and power-output bounds and the conditions for attaining these bounds. An extension of this model to multilevel systems shows that the QHM power output can be boosted by the multilevel degeneracy. These results are used to scrutinize basic thermodynamic principles: (i) Externally-driven/modulated QHMs may attain the Carnot efficiency bound, but when the driving is done by a quantum device ("piston"), the efficiency strongly depends on its initial quantum state. Such dependence has been unknown thus far. (ii) The refrigeration rate effected by QHMs does not vanish as the temperature approaches absolute zero for certain quantized baths, e.g., magnons, thous challenging Nernst's unattainability principle. (iii) System-bath correlations allow more work extraction under periodic control than that expected from the Szilard-Landauer principle, provided the period is in the non-Markovian domain. Thus, dynamically-controlled QHMs may benefit from hitherto unexploited thermodynamic resources.

  20. Laws of thermodynamics and game theory

    E-Print Network [OSTI]

    Lev Sakhnovich

    2011-05-23

    Using a game theory approach and a new extremal problem, Gibbs formula is proved in a most simple and general way for the classical mechanics case. A corresponding conjecture on the asymptotics of the classical entropy is formulated. For the ordinary quantum mechanics case, the third law of thermodynamics is derived. Some results on the number of ground states and residual entropy are obtained rigorously.

  1. Thermodynamics of rotating solutions in Gauss-Bonnet-Maxwell gravity and the counterterm method

    SciTech Connect (OSTI)

    Dehghani, M. H.; Bordbar, G. H.; Shamirzaie, M.

    2006-09-15

    By a suitable transformation, we present the (n+1)-dimensional charged rotating solutions of Gauss-Bonnet gravity with a complete set of allowed rotation parameters which are real in the whole spacetime. We show that these charged rotating solutions present black hole solutions with two inner and outer event horizons, extreme black holes, or naked singularities provided the parameters of the solutions are chosen suitable. Using the surface terms that make the action well defined for Gauss-Bonnet gravity and the counterterm method for eliminating the divergences in action, we compute finite action of the solutions. We compute the conserved and thermodynamical quantities through the use of free energy and the counterterm method, and find that the two methods give the same results. We also find that these quantities satisfy the first law of thermodynamics. Finally, we perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable. This is commensurate with the fact that there is no Hawking-Page phase transition for black objects with zero curvature horizon.

  2. Standard Model thermodynamics across the electroweak crossover

    E-Print Network [OSTI]

    Laine, M

    2015-01-01

    Even though the Standard Model with a Higgs mass mH = 125 GeV possesses no bulk phase transition, its thermodynamics still experiences a "soft point" at temperatures around T = 160 GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial "structure" visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of perce...

  3. Standard Model thermodynamics across the electroweak crossover

    E-Print Network [OSTI]

    M. Laine; M. Meyer

    2015-07-23

    Even though the Standard Model with a Higgs mass mH = 125 GeV possesses no bulk phase transition, its thermodynamics still experiences a "soft point" at temperatures around T = 160 GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial "structure" visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T > 160 GeV.

  4. ZINC MITIGATION INTERIM REPORT - THERMODYNAMIC STUDY

    SciTech Connect (OSTI)

    Korinko, P.

    2010-12-17

    An experimental program was initiated in order to develop and validate conditions that will effectively trap Zn vapors that are released during extraction. The proposed work is broken down into three tasks. The first task is to determine the effectiveness of various pore sizes of filter elements. The second task is to determine the effect of filter temperature on zinc vapor deposition. The final task is to determine whether the zinc vapors can be chemically bound. The approach for chemically binding the zinc vapors has two subtasks, the first is a review of literature and thermodynamic calculations and the second is an experimental approach using the best candidates. This report details the results of the thermodynamic calculations to determine feasibility of chemically binding the zinc vapors within the furnace module, specifically the lithium trap (1). A review of phase diagrams, literature, and thermodynamic calculations was conducted to determine if there are suitable materials to capture zinc vapor within the lithium trap of the extraction basket. While numerous elements exist that form compounds with zinc, many of these also form compounds with hydrogen or the water that is present in the TPBARs. This relatively comprehensive review of available data indicates that elemental cobalt and copper and molybdenum trioxide (MoO3) may have the requisite properties to capture zinc and yet not be adversely affected by the extraction gases and should be considered for testing.

  5. Ris-R-1336(EN) Fundamentals for Remote Structural

    E-Print Network [OSTI]

    Risø-R-1336(EN) Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades) Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades - a Preproject Bent F. Sørensen

  6. Towards Understanding Fine-Tuning in Fundamental Physics

    E-Print Network [OSTI]

    Larsen, Grant Edward

    2014-01-01

    Fundamental Forces Nobel Lecture 1979; S. Wein- berg, Conceptual Foundations of the Unified Theory of Weak and Electromagnetic

  7. Fundamentals of fluidized bed chemical processes

    SciTech Connect (OSTI)

    Yates, J.G.

    1983-01-01

    Chemical processes based on the use of fluidized solids, although widely used on an industrial scale for some four decades, are currently increasing in importance as industry looks for improved methods for handling and reacting solid materials. This book provides background necessary for an understanding of the technique of gas-solid fluidization. Contents: Some Fundamental Aspects of Fluidization-General Features of Gas-Solid Fluidization; Minimum Fluidization Velocity; Inter-particle forces; Liquid-Solid Fluidization; Bubbles; Slugging; Entrainment and Elutriation; Particle Movement; Bed Viscosity; Fluidization Under Pressure. Fluidized-Bed Reactor Models-ome Individual Models; Model Comparisons; Multiple Region Models. Catalytic Cracking-Process Developments Riser Cracking; Catalysis; Process Chemistry; Kinetics; Process Models. Combustion and Gasification-Plant Developments; Oil and Gas Combustion; Desulphurization; No/sub x/ Emissions; Coal Gassification. Miscellaneous Processes-Phthalic Anhydride (1,3-isobezofurandione); Acrylonitrile (prop-3-enenitrile); Vinyl Chloride (chloroethene); Titanium Dioxide; Uranium Processing; Sulphide Roasting; Indexes.

  8. Torsion-balance probes of fundamental physics

    E-Print Network [OSTI]

    E. G. Adelberger

    2013-08-14

    This white paper is submitted as part of Snowmass2013 (subgroup CF2). The extraordinary sensitivity of torsion-balances can be used to search for the ultra-feeble forces suggested by attempts to unify gravity with the other fundamental interactions. The motivation, the results and their implications as well as the future prospects of this work are summarized. The experiments include tests of the universality of free fall (weak equivalence principle), probes of the short-distance behavior of gravity (inverse-square law tests for extra dimensions and exchange forces from new meV scale bosons), and Planck-scale tests of Lorentz invariance (preferred-frame effects, non-commutative geometries).

  9. GIS Fundamentals Lesson 10: Terrain Analysis Lesson 10: Terrain Analyses

    E-Print Network [OSTI]

    Butler, Christopher J.

    GIS Fundamentals Lesson 10: Terrain Analysis Lesson 10: Terrain Analyses What You'll Learn: Basic if needed. You should read chapter 11 in the GIS Fundamentals textbook before starting. Data are located processing, using the ArcGIS Hydrology tools. 1 #12;GIS Fundamentals Lesson 10: Terrain Analysis Project1

  10. Is G a conversion factor or a fundamental unit?

    E-Print Network [OSTI]

    Fiorentini, G; Vysotsky, M I

    2001-01-01

    By using fundamental units c, h, G as conversion factors one can easily transform the dimensions of all observables. In particular one can make them all ``geometrical'', or dimensionless. However this has no impact on the fact that there are three fundamental units, G being one of them. Only experiment can tell us whether G is basically fundamental.

  11. Is G a conversion factor or a fundamental unit?

    E-Print Network [OSTI]

    G. Fiorentini; L. Okun; M. Vysotsky

    2001-12-04

    By using fundamental units c, h, G as conversion factors one can easily transform the dimensions of all observables. In particular one can make them all ``geometrical'', or dimensionless. However this has no impact on the fact that there are three fundamental units, G being one of them. Only experiment can tell us whether G is basically fundamental.

  12. Thermodynamic Branch in the Chemical System Response to External Impact

    E-Print Network [OSTI]

    B. Zilbergleyt

    2012-03-20

    The paper gives an account of a detailed investigation of the thermodynamic branch as a path of the chemical system deviation from its isolated thermodynamic equilibrium under an external impact. For a combination of direct and reverse reactions in the same chemical system, full thermodynamic branch is presented by an S-shaped curve, whose ends asymptotically achieve appropriate initial states, which, in turn, are logistic ends of the opposite reactions. The slope tangents of the steepest parts of the curves, the areas of the maximum rate of the shift growth vs. the external thermodynamic force, occurred to be directly proportional to the force and, simultaneously, linearly proportional to the thermodynamic equivalent of chemical reaction, which is the ratio between the amount in moles of any reaction participant, transformed in an isolated system, along the reaction way from its initial state to thermodynamic equilibrium, to its stoichiometric coefficient. The found linearity is valid for arbitrary combination of the stoichiometric coefficients in a reaction of compound synthesis from chemical elements like aA+bB=AaBb, and confirms the exclusive role of the thermodynamic equivalent of transformation as the chemical system characteristic of robustness and irreversibility. Results of this work allow for quantitative evaluation of the chemical system shift from thermodynamic equilibrium along thermodynamic branch and its rate vs. the shifting force. Such an investigation became possible due to the development of discrete thermodynamics of chemical equilibria.

  13. Molecular-level Thermodynamic and Kinetic Parameters for the Self-assembly of Apoferritin

    E-Print Network [OSTI]

    Vekilov, Peter

    in solution and released upon crystallization. Furthermore, monitoring the incorporation of indi- vidual system for studies of crystallization and related phenomena of bio- logical macromolecules. Despite on the diffrac- tion of X-rays, electrons, or neutrons by protein crystals are still widely used for protein

  14. Thermodynamics of black holes in (n+1)-dimensional Einstein-Born-Infeld-dilaton gravity

    SciTech Connect (OSTI)

    Sheykhi, A.; Riazi, N.

    2007-01-15

    We construct a new class of (n+1)-dimensional (n{>=}3) black hole solutions in Einstein-Born-Infeld-dilaton gravity with Liouville-type potential for the dilaton field and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can represent black holes, with inner and outer event horizons, an extreme black hole, or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the thermodynamic quantities of the black hole solutions and find that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis and investigate the effect of dilaton on the stability of the solutions.

  15. Thermodynamics of charged rotating black branes in Brans-Dicke theory with quadratic scalar field potential

    SciTech Connect (OSTI)

    Dehghani, M. H.; Pakravan, J.; Hendi, S. H.

    2006-11-15

    We construct a class of charged rotating solutions in (n+1)-dimensional Maxwell-Brans-Dicke theory with flat horizon in the presence of a quadratic potential and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can present black brane, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the finite Euclidean action through the use of counterterm method, and obtain the conserved and thermodynamic quantities by using the relation between the action and free energy in grand-canonical ensemble. We find that these quantities satisfy the first law of thermodynamics, and the entropy does not follow the area law.

  16. Thermodynamics of asymptotically flat charged black holes in third order Lovelock gravity

    SciTech Connect (OSTI)

    Dehghani, M.H.; Shamirzaie, M.

    2005-12-15

    We present a new class of asymptotically flat charge static solutions in third order Lovelock gravity. These solutions present black hole solutions with two inner and outer event horizons, extreme black holes, or naked singularities provided the parameters of the solutions are chosen suitable. We find that the uncharged asymptotically flat solutions can present black holes with two inner and outer horizons. This kind of solution does not exist in Einstein or Gauss-Bonnet gravity, and it is a special effect in third order Lovelock gravity. We compute temperature, entropy, charge, electric potential, and mass of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the determinant of the Hessian matrix of the mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that there exists only an intermediate stable phase.

  17. Thermodynamics of FRW universe in Einstein and Quasi-Topological Cosmology

    E-Print Network [OSTI]

    Moradpour, H

    2015-01-01

    By applying the unified first law of thermodynamics on the apparent horizon of FRW universe, we get the entropy relations for the apparent horizon in both Einstein and quasi-topological gravity theories.Throughout the paper, the results of considering the Hayward-Kodama and Cai-Kim temperatures are also addressed. Our study shows that a dark energy candidate and its interaction with other parts of cosmos in a FRW universe with arbitrary curvature parameter affect the horizon entropy and thus the Bekenstein term in the Einstein theory. Whenever, there is no energy exchange between the material and other parts of cosmos, we get an expression for the apparent horizon entropy in quasi-topological gravity, which is in agreement with other attempts followed different approaches. The effects of a mutual interaction between the material and geometrical parts of cosmos on the apparent horizon entropy and the validity of second law of thermodynamics in quasi-topological gravity are also perused.

  18. Numerical prediction of the thermodynamic properties of ternary Al-Ni-Hf alloys

    SciTech Connect (OSTI)

    Romanowska, Jolanta; Kotowski, S?awomir; Zagula-Yavorska, Maryana

    2014-10-06

    Thermodynamic properties of ternary Al-Hf-Ni system, such as {sup ex}G, ?{sub Al}, ?{sub Ni} and ?{sub Zr} at 1373K were predicted on the basis of thermodynamic properties of binary systems included in the investigated ternary system. The idea of predicting {sup ex}G values was regarded as the calculation of excess Gibbs energy values inside a certain area (a Gibbs triangle) unless all boundary conditions, that is values of {sup ex}G on all legs of the triangle are known. {sup ex}G and L{sub ijk} ternary interaction parameters in the Muggianu extension of the Redlich-Kister formalism are calculated numerically using Wolfram Mathematica 9 software.

  19. Chiral Thermodynamic Model of QCD and its Critical Behavior in the Closed-Time-Path Green Function Approach

    E-Print Network [OSTI]

    Da Huang; Yue-Liang Wu

    2012-02-29

    By applying the closed-time-path Green function formalism to the chiral dynamical model based on an effective Lagrangian of chiral quarks with the nonlinear-realized meson fields as bosonized auxiliary fields, we then arrive at a chiral thermodynamic model for the meson fields with finite temperature. Particular attention is paid to the spontaneous chiral symmetry breaking and restoration from the dynamically generated effective composite Higgs potential of meson fields at finite temperature. It is shown that the minimal condition of the effective composite Higgs potential of meson fields leads to the thermodynamic gap equation at finite temperature, which enables us to investigate the critical behavior of the effective chiral thermodynamical model and to explore the QCD phase transition. After fixing the free parameters in the effective chiral Lagrangian at low energies with zero temperature, we determine the critical temperature of the chiral symmetry restoration and present a consistent prediction for the thermodynamical behavior of several physically interesting quantities, which include the vacuum expectation value $v_o(T)$, quark condensate $(T)$, pion decay constant $f_\\pi(T)$ and pion meson mass $m_{\\pi}(T)$. In particular, it is also shown that the thermodynamic scaling behavior of these quantities becomes the same near the critical point of phase transition.

  20. Generalized second law of thermodynamics on the apparent horizon in modified Gauss-Bonnet gravity

    E-Print Network [OSTI]

    Abdolmaleki, A

    2015-01-01

    Modified gravity and generalized second law (GSL) of thermodynamics are interesting topics in the modern cosmology. In this regard, we investigate the GSL of gravitational thermodynamics in the framework of modified Gauss-Bonnet gravity or f(G)-gravity. We consider a spatially FRW universe filled with the matter and radiation enclosed by the dynamical apparent horizon with the Hawking temperature. For two viable f(G) models, we first numerically solve the set of differential equations governing the dynamics of f(G)-gravity. Then, we obtain the evolutions of the Hubble parameter, the Gauss-Bonnet curvature invariant term, the density and equation of state parameters as well as the deceleration parameter. In addition, we check the energy conditions for both models and finally examine the validity of the GSL. For the selected f(G) models, we conclude that both models have a stable de Sitter attractor. The equation of state parameters behave quite similar to those of the LCDM model in the radiation/matter dominat...

  1. Thermodynamic Branch in the Chemical System Response to External Impact

    E-Print Network [OSTI]

    Zilbergleyt, B

    2012-01-01

    The paper gives an account of a detailed investigation of the thermodynamic branch as a path of the chemical system deviation from its isolated thermodynamic equilibrium under an external impact. For a combination of direct and reverse reactions in the same chemical system, full thermodynamic branch is presented by an S-shaped curve, whose ends asymptotically achieve appropriate initial states, which, in turn, are logistic ends of the opposite reactions. The slope tangents of the steepest parts of the curves, the areas of the maximum rate of the shift growth vs. the external thermodynamic force, occurred to be directly proportional to the force and, simultaneously, linearly proportional to the thermodynamic equivalent of chemical reaction, which is the ratio between the amount in moles of any reaction participant, transformed in an isolated system, along the reaction way from its initial state to thermodynamic equilibrium, to its stoichiometric coefficient. The found linearity is valid for arbitrary combinati...

  2. Continuum Thermodynamics of the SU(N) Gauge Theory

    E-Print Network [OSTI]

    Saumen Datta; Sourendu Gupta

    2010-12-30

    The thermodynamics of the deconfined phase of the SU(N) gauge theory is studied. Careful study is made of the approach to the continuum limit. The latent heat of the deconfinement transition is studied, for the theories with 3, 4 and 6 colors. Continuum estimates of various thermodynamic quantities are studied, and the approach to conformality investigated. The bulk thermodynamic quantities at different N are compared, to investigate the validity of 't Hooft scaling at these values of N.

  3. Thermodynamics and evaporation of the noncommutative black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2007-01-21

    We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.

  4. Thermodynamics of Protein Folding Erik Sandelin

    E-Print Network [OSTI]

    Lunds Universitet,

    studeras med hjälp av dynamisk­parameter Monte Carlo­metoden. Vi utvecklar en Monte Carlo­algoritm för

  5. A complete cosmic scenario from inflation to late time acceleration: Non-equilibrium thermodynamics in the context of particle creation

    E-Print Network [OSTI]

    Subenoy Chakraborty; Subhajit Saha

    2015-07-06

    The paper deals with the mechanism of particle creation in the framework of irreversible thermodynamics. The second order non-equilibrium thermodynamical prescription of Israel and Stewart has been presented with particle creation rate, treated as the dissipative effect. In the background of a flat FRW model, we assume the non-equilibrium thermodynamical process to be isentropic so that the entropy per particle does not change and consequently the dissipative pressure can be expressed linearly in terms of the particle creation rate. Here the dissipative pressure behaves as a dynamical variable having a non-linear inhomogeneous evolution equation and the entropy flow vector satisfies the second law of thermodynamics. Further, using the Friedmann equations and by proper choice of the particle creation rate as a function of the Hubble parameter, it is possible to show (separately) a transition from the inflationary phase to the radiation era and also from matter dominated era to late time acceleration. Also, in analogy to analytic continuation, it is possible to show a continuous cosmic evolution from inflation to late time acceleration by adjusting the parameters. It is found that in the de Sitter phase, the comoving entropy increases exponentially with time, keeping entropy per particle unchanged. Subsequently, the above cosmological scenarios has been described from field theoretic point of view by introducing a scalar field having self interacting potential. Finally, we make an attempt to show the cosmological phenomenon of particle creation as Hawking radiation, particularly during the inflationary era.

  6. Which Fundamental Constants for CMB and BAO?

    E-Print Network [OSTI]

    Rich, James

    2015-01-01

    We study the Cosmic Microwave Background using the three-scale framework of Hu et al. to derive the dependence of the CMB temperature anisotropy spectrum on the fundamental constants. We show that, as expected, the observed spectrum depends only on \\emph{dimensionless} combinations of the constants, and we emphasize the points that make this generally true for cosmological observations. Our analysis suggests that the CMB spectrum shape is mostly determined by $\\alpha^2m_e/m_p$ and the proton-CDM-particle mass ratio, $m_p/\\mchi$, with a sub-dominant dependence on $(G\\mchi m_e/\\hbar c)\\alpha^\\beta$ with $\\beta\\sim -7$. The distance to the last-scattering surface depends on $Gm_p\\mchi/\\hbar c$, so published CMB observational limits on time variations of the constants, besides making assumptions about the form of the dark-energy, implicitly assume the time-independence of this quantity. On the other hand, low-redshift $H_0$, BAO and large-scale structure data can be combined with the \\emph{shape} of the CMB spect...

  7. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Warming Potential Refrigerants - 2013 Peer Review Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies Project for...

  8. Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global-Warming-Potential Refrigerants Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Lead Performer: National Institute of Standards and Technology -...

  9. Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Tier 2 Bin 2 Diesel Engines Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines Discusses engine technology enablers that help achieve overall system integration...

  10. Stability of black holes based on horizon thermodynamics

    E-Print Network [OSTI]

    Ma, Meng-Sen

    2015-01-01

    On the basis of horizon thermodynamics we study the thermodynamic stability of black holes constructed in general relativity and Gauss-Bonnet gravity. In the framework of horizon thermodynamics there are only five thermodynamic variables $E,P,V,T,S$. It is not necessary to consider concrete matter fields, which may contribute to the pressure of black hole thermodynamic system. In non-vacuum cases, we can derive the equation of state, $P=P(V,T)$. According to the requirements of stable equilibrium in conventional thermodynamics, we start from these thermodynamic variables to calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of black holes. It is shown that $P>0$ is the necessary condition for black holes in general relativity to be thermodynamically stable, however this condition cannot be satisfied by many black holes in general relativity. For black hole in Gauss-Bonnet gravity negative pressure can be feasible, but only local stab...

  11. Major Effects in the Thermodynamics of Detonation Products: Phase...

    Office of Scientific and Technical Information (OSTI)

    Major Effects in the Thermodynamics of Detonation Products: Phase Segregation versus Ionic Dissociation Citation Details In-Document Search Title: Major Effects in the...

  12. Stability of black holes based on horizon thermodynamics

    E-Print Network [OSTI]

    Meng-Sen Ma; Ren Zhao

    2015-11-11

    On the basis of horizon thermodynamics we study the thermodynamic stability of black holes constructed in general relativity and Gauss-Bonnet gravity. In the framework of horizon thermodynamics there are only five thermodynamic variables $E,P,V,T,S$. It is not necessary to consider concrete matter fields, which may contribute to the pressure of black hole thermodynamic system. In non-vacuum cases, we can derive the equation of state, $P=P(V,T)$. According to the requirements of stable equilibrium in conventional thermodynamics, we start from these thermodynamic variables to calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of black holes. It is shown that $P>0$ is the necessary condition for black holes in general relativity to be thermodynamically stable, however this condition cannot be satisfied by many black holes in general relativity. For black hole in Gauss-Bonnet gravity negative pressure can be feasible, but only local stable black hole exists in this case.

  13. Sandia Energy - Phase Field model elucidates competing thermodynamic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A detail understanding of this proposed mechanism requires detangling the thermodynamics of the coupled bulk and interfacial regions of the metal. We have developed a...

  14. BE.011J Statistical Thermodynamics of Biomolecular Systems, Spring 2004

    E-Print Network [OSTI]

    Hamad-Schifferli, Kimberly

    This course provides an introduction to the physical chemistry of biological systems. Topics include: connection of macroscopic thermodynamic properties to microscopic molecular properties using statistical mechanics, ...

  15. Entropy bounds in terms of the w parameter

    E-Print Network [OSTI]

    Abreu, Gabriel; Visser, Matt

    2011-01-01

    In a pair of recent articles [PRL 105 (2010) 041302 - arXiv:1005.1132; JHEP 1103 (2011) 056 - arXiv:1012.2867] two of the current authors have developed an entropy bound for equilibrium uncollapsed matter using only classical general relativity, basic thermodynamics, and the Unruh effect. An odd feature of that bound, S parameter to be <= 1. When equality holds, the entropy bound saturates at the value expected based on black hole thermodynamics. We also add some clarifying comments regarding the (net) positivity of the chemical potential. Overall, we find that even in the absence of any black hole region, we can nevertheless get arbitrarily close to the Bekenstein entropy.

  16. Thermodynamics of weakly measured quantum systems

    E-Print Network [OSTI]

    Jose Joaquin Alonso; Eric Lutz; Alessandro Romito

    2015-08-03

    We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superpositions of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.

  17. Thermodynamics of Few-Particle Systems

    E-Print Network [OSTI]

    Vasily E. Tarasov

    2007-06-23

    We consider the wide class of few-particle systems that have some analog of the thermodynamic laws. These systems are characterized by the distributions that are determined by the Hamiltonian and satisfy the Liouville equation. Few-particle systems of this class are described by a non-holonomic constraint: the power of non-potential forces is directly proportional to the velocity of the elementary phase volume change. The coefficient of this proportionality is determined by the Hamiltonian. In the general case, the examples of the few-particle systems of this class are the constant temperature systems, canonical-dissipative systems, and Fermi-Bose classical systems.

  18. Some remarks on black hole thermodynamics

    E-Print Network [OSTI]

    R. Y. Chiao

    2011-02-04

    Two thermodynamic "paradoxes" of black hole physics are re-examined. The first is that there is a thermal instability involving two coupled blackbody cavities containing two black holes, and second is that a classical black hole can swallow up entropy in the form of ambient blackbody photons without increasing its mass. The resolution of the second paradox by Bekenstein and by Hawking is re-visited. The link between Hawking radiation and Wigner's superluminal tunneling time is discussed using two equivalent Feynman diagrams, and Feynman's re-interpretation principle.

  19. Quark mass thresholds in QCD thermodynamics

    E-Print Network [OSTI]

    M. Laine; Y. Schroder

    2006-05-05

    We discuss radiative corrections to how quark mass thresholds are crossed, as a function of the temperature, in basic thermodynamic observables such as the pressure, the energy and entropy densities, and the heat capacity of high temperature QCD. The indication from leading order that the charm quark plays a visible role at surprisingly low temperatures, is confirmed. We also sketch a way to obtain phenomenological estimates relevant for generic expansion rate computations at temperatures between the QCD and electroweak scales, pointing out where improvements over the current knowledge are particularly welcome.

  20. Recent Progress in Lattice QCD Thermodynamics

    E-Print Network [OSTI]

    Carleton DeTar

    2008-11-14

    This review gives a critical assessment of the current state of lattice simulations of QCD thermodynamics and what it teaches us about hot hadronic matter. It outlines briefly lattice methods for studying QCD at nonzero temperature and zero baryon number density with particular emphasis on assessing and reducing cutoff effects. It discusses a variety of difficulties with methods for determining the transition temperature. It uses results reported recently in the literature and at this conference for illustration, especially those from a major study carried out by the HotQCD collaboration.

  1. On QCD Thermodynamics with Improved Actions

    E-Print Network [OSTI]

    Karsch, Frithjof

    1998-01-01

    We discuss recent advances in the calculation of thermodynamic observables using improved actions. In particular, we discuss the calculation of the equation of state of the SU(3) gauge theory, the critical temperature in units of the string tension, the surface tension and the latent heat at the deconfinement transition. We also present first results from a calculation of the equation of state for four-flavour QCD using an O(a^2) improved staggered fermion action and discuss possible further improvements of the staggered fermion action.

  2. Liu UCD Phy9B 07 1 Ch 19. The First Law of Thermodynamics

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Liu UCD Phy9B 07 1 Ch 19. The First Law of Thermodynamics #12;Liu UCD Phy9B 07 2 19-1. Thermodynamic Systems Thermodynamic system: A system that can interact (and exchange energy) with its surroundings Thermodynamic process: A process in which there are changes in the state of a thermodynamic system

  3. Thermodynamics of the Complexation of Uranium(VI) by oxalate in aqueous solution at 10-70oC

    E-Print Network [OSTI]

    Di Bernardo, Plinio

    2009-01-01

    O. Tochiyama in Chemical Thermodynamics of Compounds andUpdate on the Chemical Thermodynamics of Uranium, Neptunium,Thermodynamics of the Complexation of Uranium(VI) with

  4. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn Lighty; Geoffrey Silcox; Constance Senior; Joseph Helble; Balaji Krishnakumar

    2008-07-31

    The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed early in this research program. Previous data showed oxidation above 10% and up to 100%. However, the previous data are suspect due to apparent oxidation occurring within the sampling system where hypochlorite ion forms in the KCl impinger, which in turn oxidized mercury. Initial tests with entrained iron oxide particles injected into a flame reactor suggest that iron present on fly ash particle surfaces can promote heterogeneous oxidation of mercury in the presence of HCl under entrained flow conditions. Using the data generated above, with homogeneous reactions accounting for less than 10% of the oxidation, comparisons were made to pilot- and full-scale data. The results suggest that heterogeneous reactions, as with the case of iron oxide, and adsorption on solid carbon must be taking place in the full-scale system. Modeling of mercury oxidation using parameters from the literature was conducted to further study the contribution of homogeneous pathways to Hg oxidation in coal combustion systems. Calculations from the literature used rate parameters developed in different studies, in some cases using transition state theory with a range of approaches and basis sets, and in other cases using empirical approaches. To address this, rate constants for the entire 8-step homogeneous Hg oxidation sequence were developed using an internally consistent transition state approach. These rate constants when combined with the appropriate sub-mechanisms produced lower estimates of the overall extent of homogeneous oxidation, further suggesting that heterogeneous pathways play an important role in Hg oxidation in coal-fired systems.

  5. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Joseph Helble; Balaji Krishnakumar

    2006-07-31

    The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 3 results for the experimental and modeling tasks. Experiments have been completed on the effects of chlorine. However, the experiments with sulfur dioxide and NO, in the presence of water, suggest that the wet-chemistry analysis system, namely the impingers, is possibly giving erroneous results. Future work will investigate this further and determine the role of reactions in the impingers on the oxidation results. The solid-phase experiments have not been completed and it is anticipated that only preliminary work will be accomplished during this study.

  6. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble; Balaji Krishnakumar

    2005-08-01

    The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 2 results for the experimental and modeling tasks. Experiments in the mercury reactor are underway and interesting results suggested that a more comprehensive look at catalyzed surface reactions was needed. Therefore, much of the work has focused on the heterogeneous reactions. In addition, various chemical kinetic models have been explored in an attempt to explain some discrepancies between this modeling effort and others.

  7. Conservation-dissipation formalism of irreversible thermodynamics

    E-Print Network [OSTI]

    Yi Zhu; Liu Hong; Zaibao Yang; Wen-An Yong

    2014-07-21

    We propose a conservation-dissipation formalism (CDF) for coarse-grained descriptions of irreversible processes. This formalism is based on a stability criterion for non-equilibrium thermodynamics. The criterion ensures that non-equilibrium states tend to equilibrium in long time. As a systematic methodology, CDF provides a feasible procedure in choosing non-equilibrium state variables and determining their evolution equations. The equations derived in CDF have a unified elegant form. They are globally hyperbolic, allow a convenient definition of weak solutions, and are amenable to existing numerics. More importantly, CDF is a genuinely nonlinear formalism and works for systems far away from equilibrium. With this formalism, we formulate novel thermodynamics theories for heat conduction in rigid bodies and non-isothermal compressible Maxwell fluid flows as two typical examples. In these examples, the non-equilibrium variables are exactly the conjugate variables of the heat fluxes or stress tensors. The new theory generalizes Cattaneo's law or Maxwell's law in a regularized and nonlinear fashion.

  8. A general theory for irreversible thermodynamics

    E-Print Network [OSTI]

    Arias-Gonzalez, J Ricardo

    2015-01-01

    We demonstrate that irreversibility arises from the principle of microscopic reversibility and the presence of memory in the time evolution of a single copy of a system driven by a protocol. We introduce microscopic reversibility by using the concept of protocol- and pathway-dependent thermodynamic function, as defined in J.R. Arias-Gonzalez, arXiv:1511.08017 [cond-mat.stat-mech], and memory by using the concept of non-Markovianity, as in J.R. Arias-Gonzalez, arXiv:1511.06139 [cond-mat.stat-mech]. We define work as the change in free energy and heat as the change in entropy for micoscopic, individual pathways of a system subject to a protocol. We find that all non-equilibrium statistics emerge naturally. In particular, we derive most known fluctuation theorems and formulate two others. While the conservation of energy is invoked both at the level of the individual pathway and in ensemble-average processes, the second law of thermodynamics and the time arrow, which are only fulfilled in ensemble-average proces...

  9. A Lagrangian formalism for nonequilibrium thermodynamics

    E-Print Network [OSTI]

    François Gay-Balmaz; Hiroaki Yoshimura

    2015-10-03

    In this paper, we present a Lagrangian formalism for nonequilibrium thermodynamics. This formalism is an extension of the Hamilton principle in classical mechanics that allows the inclusion of irreversible phenomena in both discrete and continuum systems (i.e., systems with finite and infinite degrees of freedom). The irreversibility is encoded into a nonlinear nonholonomic constraint given by the expression of entropy production associated to all the irreversible processes involved. Hence from a mathematical point of view, our variational formalism may be regarded as a generalization of the Lagrange-d'Alembert principle used in nonholonomic mechanics. In order to formulate the nonholonomic constraint, we associate to each irreversible process a variable called the thermodynamic displacement. This allows the definition of a corresponding variational constraint. Our theory is illustrated with various examples of discrete systems such as mechanical systems with friction, matter transfer, electric circuits, chemical reactions, and diffusion across membranes. For the continuum case, the variational formalism is naturally extended to the setting of infinite dimensional nonholonomic Lagrangian systems and is expressed in material representation, while its spatial version is obtained via a nonholonomic Lagrangian reduction by symmetry. In the continuum case, our theory is systematically illustrated by the example of a multicomponent viscous heat conducting fluid with chemical reactions and mass transfer.

  10. Identifying Functional Thermodynamics in Autonomous Maxwellian Ratchets

    E-Print Network [OSTI]

    A. B. Boyd; D. Mandal; J. P. Crutchfield

    2015-09-13

    We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external work to remove information from a sequence of binary symbols by decreasing their individual uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the new erasure regime, exactly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of Thermodynamics that relies on the Kolmogorov-Sinai entropy for dynamical processes and not on changes purely in system configurational entropy, as previously employed. We rigorously derive the new Second Law under minimal assumptions and so it applies quite broadly---for Demons with and without memory and input sequences that are correlated or not. We note that general Maxwellian Demons readily violate previously proposed, alternative such "laws", while ours still holds.

  11. Identifying Functional Thermodynamics in Autonomous Maxwellian Ratchets

    E-Print Network [OSTI]

    A. B. Boyd; D. Mandal; J. P. Crutchfield

    2015-12-22

    We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external work to remove information from a sequence of binary symbols by decreasing their individual uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the new erasure regime, exactly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of Thermodynamics that relies on the Kolmogorov-Sinai entropy for dynamical processes and not on changes purely in system configurational entropy, as previously employed. We rigorously derive the refined Second Law under minimal assumptions and so it applies quite broadly---for Demons with and without memory and input sequences that are correlated or not. We note that general Maxwellian Demons readily violate previously proposed, alternative such bounds, while the current bound still holds.

  12. Stochastic thermodynamics, fluctuation theorems, and molecular machines

    E-Print Network [OSTI]

    Udo Seifert

    2012-05-18

    Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics like work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power, can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones like molecular motors, and heat engines like thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.

  13. EK424 THERMODYNAMICS AND STATISTICAL MECHANICS (Spring 2015) Thermodynamics is the study of processes (e.g., expansion of a gas, boiling of water, or diffusion

    E-Print Network [OSTI]

    Vajda, Sandor

    EK424 THERMODYNAMICS AND STATISTICAL MECHANICS (Spring 2015) Thermodynamics is the study in order to take place? We will study the thermodynamics of two types of processes: mechanical, or the chemical conversion of glucose into useful work), and a good understanding of thermodynamics is essential

  14. Thermodynamical Structure of AdS Black Holes in Massive Gravity with Stringy Gauge-Gravity Corrections

    E-Print Network [OSTI]

    Hendi, S H; Panahiyan, S

    2015-01-01

    Motivated by gauge/gravity group in the low energy effective theory of the heterotic string theory, the minimal coupling of Gauss-Bonnet-massive gravity with Born-Infeld electrodynamics is considered. At first the metric function is calculated and then the geometrical properties of the solutions are investigated. It is found that there is an essential singularity at the origin and the intrinsic curvature is regular elsewhere. In addition, the effects of massive parameters on the horizons of black holes are studied and the conserved and thermodynamic quantities are calculated. Also, it is shown that the solutions satisfy the first law of thermodynamics. Furthermore using heat capacity of these black holes, thermal stability and phase transitions are investigated. The variation of different parameters and related modifications on the (number of) phase transition are examined. Next, the critical behavior of the Gauss-Bonnet-Born-Infeld-massive black holes in context of extended phase space is studied. It is show...

  15. On the Thermodynamic Geometry and Critical Phenomena of AdS Black Holes

    E-Print Network [OSTI]

    Anurag Sahay; Tapobrata Sarkar; Gautam Sengupta

    2010-04-21

    In this paper, we study various aspects of the equilibrium thermodynamic state space geometry of AdS black holes. We first examine the Reissner-Nordstrom-AdS (RN-AdS) and the Kerr-AdS black holes. In this context, the state space scalar curvature of these black holes is analysed in various regions of their thermodynamic parameter space. This provides important new insights into the structure and significance of the scalar curvature. We further investigate critical phenomena, and the behaviour of the scalar curvature near criticality, for KN-AdS black holes in two mixed ensembles, introduced and elucidated in our earlier work arXiv:1002.2538 [hep-th]. The critical exponents are identical to those in the RN-AdS and Kerr-AdS cases in the canonical ensemble. This suggests an universality in the scaling behaviour near critical points of AdS black holes. Our results further highlight qualitative differences in the thermodynamic state space geometry for electric charge and angular momentum fluctuations of these.

  16. Thermodynamics of Apparent Horizon and Friedmann Equations in Big Bounce Universe

    E-Print Network [OSTI]

    Molin Liu; Yuling Yang; Jianbo Lv; Lixin Xu

    2014-12-08

    In this paper, the thermodynamics of apparent horizon and Friedmann equations are studied in a big bounce universe typified by a non-singular big bounce, as opposed to a singular big bang. This cosmological model can describe radiation dominated early universe and matter dominated late universe in FRW model. Our calculational results show that Einstein gravitational field equations could be derived by the first law of thermodynamics and the fluid's continuity equation. The connections between thermodynamics and gravity are observed in big bounce universe. In the late stages of cold and hot universes, the apparent horizons are convergent and the time when apparent horizons begin to bounce essentially in agreement with that of universe's scalar factor. In the early stage of both cold and hot universes, we find there is only one geometry containing a 4D de Sitter universe with general state parameter. Furthermore, we also find the form of apparent horizon in early universe is strongly dependent on the extra dimension which suggests that the effect of extra dimension could be found in early universe.

  17. Thermodynamics of finite magnetic two-isomer systems Peter Borrmann, Heinrich Stamerjohanns,a)

    E-Print Network [OSTI]

    Tománek, David

    Thermodynamics of finite magnetic two-isomer systems Peter Borrmann, Heinrich Stamerjohanns Carlo simulations to investigate the thermodynamical behavior of aggregates consisting of few thermodynamically the nature of the transition between the ring and the chain ``phase.'' © 1999 American Institute

  18. Fundamental Research on Percussion Drilling: Improved rock mechanics...

    Office of Scientific and Technical Information (OSTI)

    Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations Citation Details In-Document...

  19. Angelica Garcia Gutierrez, Peter Baumann Modeling Fundamental Geo-Raster

    E-Print Network [OSTI]

    Baumann, Peter

    Angelica Garcia Gutierrez, Peter Baumann Modeling Fundamental Geo-Raster Operations with Array Angelica Garcia Gutierrez Peter Baumann School of Engineering and Science Jacobs University Bremen g

  20. The fundamental solution of the unidirectional pulse propagation equation

    SciTech Connect (OSTI)

    Babushkin, I.; Bergé, L.

    2014-03-15

    The fundamental solution of a variant of the three-dimensional wave equation known as “unidirectional pulse propagation equation” (UPPE) and its paraxial approximation is obtained. It is shown that the fundamental solution can be presented as a projection of a fundamental solution of the wave equation to some functional subspace. We discuss the degree of equivalence of the UPPE and the wave equation in this respect. In particular, we show that the UPPE, in contrast to the common belief, describes wave propagation in both longitudinal and temporal directions, and, thereby, its fundamental solution possesses a non-causal character.

  1. Thermodynamics and the naked singularity in the Gamma-metric

    E-Print Network [OSTI]

    K. Lochan; D. Malafarina; T. P. Singh

    2010-09-23

    We investigate a possible way of establishing a parallel between the third law of black hole mechanics, and the strong version of the third law of thermodynamics. We calculate the surface gravity and area for a naked singular null surface in the Gamma-metric and explain in what sense this behaviour violates thermodynamics.

  2. Notes on the Generalised Second Law of Thermodynamics

    E-Print Network [OSTI]

    S. -T. Sung

    1997-03-22

    Several comments are given to previous proofs of the generalised second law of thermodynamics: black hole entropy plus ordinary matter entropy never decreases for a thermally closed system. Arguments in favour of its truism are given in the spirit of conventional thermodynamics.

  3. Thermodynamic Analysis of a single chamber Microbial Eric A. Zielke

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 #12;Microbial Fuel Cell Zielke 1 1 Introduction Renewable energy (RE) applications are becomingThermodynamic Analysis of a single chamber Microbial Fuel Cell Eric A. Zielke May 5, 2006 #12;Microbial Fuel Cell Zielke ii List of Tables 1 First Law Thermodynamic Efficiencies from Experimental Data

  4. VAPORIZATION THERMODYNAMICS OF KCl. COMBINING VAPOR PRESSURE AND GRAVIMETRIC DATA

    E-Print Network [OSTI]

    Rudnyi, Evgenii B.

    1 VAPORIZATION THERMODYNAMICS OF KCl. COMBINING VAPOR PRESSURE AND GRAVIMETRIC DATA Rudnyi E of thermodynamic properties of the vapor and the vaporization process, coupling pressure measurements. INTRODUCTION The vapor pressure of a substance is an important system property in many applications. Its value

  5. Thermodynamics and Finite size scaling in Scalar Field Theory

    E-Print Network [OSTI]

    Debasish Banerjee; Saumen Datta; Sourendu Gupta

    2008-12-05

    In this work we consider the 1-component real scalar $\\phi^4$ theory in 4 space-time dimensions on the lattice and investigate the finite size scaling of thermodynamic quantities to study whether the thermodynamic limit is attained. The results are obtained for the symmetric phase of the theory.

  6. 23.10.2012 1 Level 2 thermodynamics

    E-Print Network [OSTI]

    Zevenhoven, Ron

    23.10.2012 1 Toolbox Level 2 thermodynamics Maria Zevenhoven #12;23.10.2012 2/37 First Grade: Thermodynamics Simple phase diagrams #12;23.10.2012 4/37 Calculating the melting behaviour of KCl-K2CO3 mixtures

  7. Thermodynamic properties of nuclear matter at finite temperature

    E-Print Network [OSTI]

    V. Soma; P. Bozek

    2006-09-17

    A self-consistent approach based on finite temperature Green's functions is used to investigate thermodynamic properties of nuclear matter. The internal energy is derived from the diagrams associated to the interaction energy. Pressure and entropy up to T=20 MeV are obtained from the generating functional form of the thermodynamic potential.

  8. ''Averaged'' statistical thermodynamics, energy equipartition and the third law

    E-Print Network [OSTI]

    Vesselin I. Dimitrov

    1997-07-03

    Arguments are presented that the assumption, implicit to traditional statistical thermodynamics, that at zero temperature all erratic motions cease, should be dispensed with. Assuming instead a random ultrarelativistic unobservable motion, similar to zitterbewegung, it is demonstrated that in an ideal gas of classical particles the energy equipartition fails in a way that complies with the third law of thermodynamics.

  9. The Frenkel Line: a direct experimental evidence for the new thermodynamic boundary

    E-Print Network [OSTI]

    Bolmatov, Dima; Zav'yalov, D; Tkachev, S N; Cunsolo, A; Cai, Y Q

    2015-01-01

    Supercritical fluids play a significant role in elucidating fundamental aspects of liquid matter under extreme conditions. They have been extensively studied at pressures and temperatures relevant to various industrial applications. However, much less is known about the structural behaviour of supercritical fluids and no structural crossovers have been observed in static compression experiments in any temperature and pressure ranges beyond the critical point. The structure of supercritical state is currently perceived to be uniform everywhere on the phase diagram, and to change only in a monotonic way while moving along any pressure and temperature path beyond the critical point and its neighborhood. Conversely, we observe structural crossovers in a deeply supercritical sample through diffraction measurements in a diamond anvil cell and discover a new thermodynamic boundary on the pressure-temperature diagram. We explain the existence of these crossovers in the framework of the phonon theory of liquids using ...

  10. Water under the Cover: Structures and Thermodynamics of Water Encapsulated by Graphene

    E-Print Network [OSTI]

    Shuping Jiao; Zhiping Xu

    2015-09-24

    Understanding the phase behaviors of nanoconfined water has driven notable research interests recently. In this work, we examine the structures and thermodynamics of water encapsulated under a graphene cover. We find layered water structures up to ~1000 molecules, which is stabilized by the spatial confinement and pressure induced by the adhesion between graphene cover and substrate. For monolayer encapsulations, we identify both crystalline lattices and defects. Free energy analysis shows that these low- entropy orders are compensated by high formation energies. There exists an order- disorder transition for this condensed phase at ~480-490 K, with a sharp reduction in the number of hydrogen bonds and increase in the entropy. These findings offer fundamental understandings of the encapsulated water, and provide guidance for practical applications with its presence, for example, in the design of nanoelectronic devices.

  11. Parameter Estimation Through Ignorance

    E-Print Network [OSTI]

    Hailiang Du; Leonard A. Smith

    2012-06-06

    Dynamical modelling lies at the heart of our understanding of physical systems. Its role in science is deeper than mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our models. Despite the importance of model parameters, there is no general method of parameter estimation outside linear systems. A new relatively simple method of parameter estimation for nonlinear systems is presented, based on variations in the accuracy of probability forecasts. It is illustrated on the Logistic Map, the Henon Map and the 12-D Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions are non-Gaussian. The new method selects parameter values by minimizing a proper, local skill score for continuous probability forecasts as a function of the parameter values. This new approach is easier to implement in practice than alternative nonlinear methods based on the geometry of attractors or the ability of the model to shadow the observations. New direct measures of inadequacy in the model, the "Implied Ignorance" and the information deficit are introduced.

  12. Thermodynamics of Charged Lovelock - AdS Black Holes

    E-Print Network [OSTI]

    Prasobh C. B.; Jishnu Suresh; V. C. Kuriakose

    2015-10-16

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.

  13. Thermodynamics in f(R,T) Theory of Gravity

    E-Print Network [OSTI]

    M. Sharif; M. Zubair

    2012-04-11

    A non-equilibrium picture of thermodynamics is discussed at the apparent horizon of FRW universe in $f(R,T)$ gravity, where $R$ is the Ricci scalar and $T$ is the trace of the energy-momentum tensor. We take two forms of the energy-momentum tensor of dark components and demonstrate that equilibrium description of thermodynamics is not achievable in both cases. We check the validity of the first and second law of thermodynamics in this scenario. It is shown that the Friedmann equations can be expressed in the form of first law of thermodynamics $T_hdS'_h+T_hd_{\\jmath}S'=-dE'+W'dV$, where $d_{\\jmath}S'$ is the entropy production term. Finally, we conclude that the second law of thermodynamics holds both in phantom and non-phantom phases.

  14. The thermodynamics for a hadronic gas of fireballs with internal color structures and chiral fields

    E-Print Network [OSTI]

    Ismail Zakout; Carsten Greiner

    2008-08-11

    The thermodynamical partition function for a gas of color-singlet bags consisting of fundamental and adjoint particles in both $U(N_c)$ and $SU(N_c)$ group representations is reviewed in detail. The constituent particle species are assumed to satisfy various thermodynamical statistics. The gas of bags is probed to study the phase transition for a nuclear matter in the extreme conditions. These bags are interpreted as the Hagedorn states and they are the highly excited hadronic states which are produced below the phase transition point to the quark-gluon plasma. The hadronic density of states has the Gross-Witten critical point and exhibits a third order phase transition from a hadronic phase dominated by the discrete low-lying hadronic mass spectrum particles to another hadronic phase dominated by the continuous Hagedorn states. The Hagedorn threshold production is found just above the highest known experimental discrete low-lying hadronic mass spectrum. The subsequent Hagedorn phase undergoes a first order deconfinement phase transition to an explosive quark-gluon plasma. The role of the chiral phase transition in the phases of the discrete low-lying mass spectrum and the continuous Hagedorn mass spectrum is also considered. It is found crucial in the phase transition diagram. Alternate scenarios are briefly discussed for the Hagedorn gas undergoes a higher order phase transition through multi-processes of internal color-flavor structure modification.

  15. A definition of thermodynamic entropy valid for non-equilibrium states and few-particle systems

    E-Print Network [OSTI]

    Gian Paolo Beretta; Enzo Zanchini

    2014-11-19

    From a new rigorous formulation of the general axiomatic foundations of thermodynamics we derive an operational definition of entropy that responds to the emergent need in many technological frameworks to understand and deploy thermodynamic entropy well beyond the traditional realm of equilibrium states of macroscopic systems. The new definition is achieved by avoiding to resort to the traditional concepts of "heat" (which restricts $a$ $priori$ the traditional definitions of entropy to the equilibrium domain) and of "thermal reservoir" (which restricts $in$ $practice$ our previous definitions of non-equilibrium entropy to the many-particle domain). The measurement procedure that defines entropy is free from intrinsic limitations and can be applied, $in$ $principle$, even to non-equilibrium states of few-particle systems, provided they are separable and uncorrelated. The construction starts from a previously developed set of carefully worded operational definitions for all the basic concepts. Then, through a new set of fully spelled-out fundamental hypotheses (four postulates and five assumptions) we derive the definitions of energy and entropy of any state, and of temperature of any stable equilibrium state. Finally, we prove the principle of entropy non-decrease, the additivity of entropy differences, the maximum entropy principle, and the impossibility of existence of a thermal reservoir.

  16. Storage Ring Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveAprilPhoton Source Parameters Storage Ring Parameters

  17. Hessian structures, Euler vector fields, and thermodynamics

    E-Print Network [OSTI]

    M. Á. García-Ariza

    2015-11-19

    This paper studies the underlying geometric structure of thermodynamics from a coordinate-free standpoint in the context of Hessian structures. The contribution of this work is the translation of the concept of "extensivity" to geometric terms by means of a vector field and an affine connection. It is shown that entropy's being extensive is equivalent to the vector's being a null direction of the Hessian structure. The latter induces a metric tensor-a generalized version of Ruppeiner's metrics-on the Riemannian Hessian submanifolds of a system's space of equilibrium states. These are embedded, and locally described as level sets of extensive functions. Under this approach, total Legendre transforms and intensive functions are given a straightforward geometrical meaning. The invariance of the metrics under total Legendre transforms is readily observed.

  18. Thermodynamics of pairing transition in hot nuclei

    E-Print Network [OSTI]

    Lang Liu; Zhen-Hua Zhang; Peng-Wei Zhao

    2014-12-16

    The pairing correlations in hot nuclei $^{162}$Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities $C_V$ are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.

  19. The thermodynamics of quantum spacetime histories

    E-Print Network [OSTI]

    Smolin, Lee

    2015-01-01

    We show that the simplicity constraints, which define the dynamics of spin foam models, imply, and are implied by, the first law of thermodynamics, when the latter is applied to causal diamonds in the quantum spacetime. This result reveals an intimate connection between the holographic nature of gravity, as reflected by the Bekenstein entropy, and the fact that general relativity and other gravitational theories can be understood as constrained topological field theories. To state and derive this correspondence we describe causal diamonds in the causal structure of spin foam histories and generalize arguments given for the near horizon region of black holes by Frodden, Gosh and Perez and Bianchi. This allows us to apply a recent argument of Jacobson to show that if a spin foam history has a semiclassical limit described in terms of a smooth metric geometry, that geometry satisfies the Einstein equations. These results suggest also a proposal for a quantum equivalence principle.

  20. Thermodynamics in variable speed of light theories

    SciTech Connect (OSTI)

    Racker, Juan [CONICET, Centro Atomico Bariloche, Avenida Bustillo 9500 (8400), San Carlos De Bariloche (Argentina); Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N (1900), La Plata (Argentina); Sisterna, Pablo [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350 (7600), Mar del Plata (Argentina); Vucetich, Hector [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N (1900), La Plata (Argentina)

    2009-10-15

    The perfect fluid in the context of a covariant variable speed of light theory proposed by J. Magueijo is studied. On the one hand the modified first law of thermodynamics together with a recipe to obtain equations of state are obtained. On the other hand the Newtonian limit is performed to obtain the nonrelativistic hydrostatic equilibrium equation for the theory. The results obtained are used to determine the time variation of the radius of Mercury induced by the variability of the speed of light (c), and the scalar contribution to the luminosity of white dwarfs. Using a bound for the change of that radius and combining it with an upper limit for the variation of the fine structure constant, a bound on the time variation of c is set. An independent bound is obtained from luminosity estimates for Stein 2015B.

  1. Thermodynamics in variable speed of light theories

    E-Print Network [OSTI]

    Juan Racker; Pablo Sisterna; Hector Vucetich

    2009-11-30

    The perfect fluid in the context of a covariant variable speed of light theory proposed by J. Magueijo is studied. On the one hand the modified first law of thermodynamics together with a recipe to obtain equations of state are obtained. On the other hand the Newtonian limit is performed to obtain the nonrelativistic hydrostatic equilibrium equation for the theory. The results obtained are used to determine the time variation of the radius of Mercury induced by the variability of the speed of light ($c$), and the scalar contribution to the luminosity of white dwarfs. Using a bound for the change of that radius and combining it with an upper limit for the variation of the fine structure constant, a bound on the time variation of $c$ is set. An independent bound is obtained from luminosity estimates for Stein 2015B.

  2. Thermodynamics of pairing transition in hot nuclei

    E-Print Network [OSTI]

    Lang Liu; Zhen-Hua Zhang; Peng-Wei Zhao

    2015-10-09

    The pairing correlations in hot nuclei $^{162}$Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities $C_V$ are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.

  3. Stochastic thermodynamics of chemical reaction networks

    E-Print Network [OSTI]

    Tim Schmiedl; Udo Seifert

    2006-12-19

    For chemical reaction networks described by a master equation, we define energy and entropy on a stochastic trajectory and develop a consistent nonequilibrium thermodynamic description along a single stochastic trajectory of reaction events. A first-law like energy balance relates internal energy, applied (chemical) work and dissipated heat for every single reaction. Entropy production along a single trajectory involves a sum over changes in the entropy of the network itself and the entropy of the medium. The latter is given by the exchanged heat identified through the first law. Total entropy production is constrained by an integral fluctuation theorem for networks arbitrarily driven by time-dependent rates and a detailed fluctuation theorem for networks in the steady state. Further exact relations like a generalized Jarzynski relation and a generalized Clausius inequality are discussed. We illustrate these results for a three-species cyclic reaction network which exhibits nonequilibrium steady states as well as transitions between different steady states.

  4. Maxwell's equal area law for Lovelock Thermodynamics

    E-Print Network [OSTI]

    Xu, Hao

    2015-01-01

    We present the construction of Maxwell's equal area law for the Guass-Bonnet AdS black holes in $d=5,6$ and third order Lovelock AdS black holes in $d=7,8$. The equal area law can be used to find the number and location of the points of intersection in the plots of Gibbs free energy, so that we can get the thermodynamically preferred solution which corresponds to the first order phase transition. We have the radius of the small and larger black holes in the phase transition which share the same Gibbs free energy. The latent heat can also be calculated. For the third order Lovelock AdS black holes in $d=8$, the first order phase transition can be found in $T_t

  5. Thermodynamics of Cosmic Defect Network Evolution

    E-Print Network [OSTI]

    Avelino, P P

    2015-01-01

    We show that simple thermodynamic conditions determine, to a great extent, the equation of state and dynamics of cosmic defects of arbitrary dimensionality. We use these conditions to provide a more direct derivation of the Velocity-dependent One-Scale (VOS) model for the macroscopic dynamics of topological defects of arbitrary dimensionality in a $N+1$-dimensional homogeneous and isotropic universe. We parameterize the modifications to the VOS model associated to the interaction of the topological defects with other fields, including, in particular, a new dynamical degree of freedom associated to the variation of the mass per unit $p$-area of the defects, and compute the corresponding scaling solutions. The observational impact of this new dynamical degree of freedom is also briefly discussed.

  6. Maxwell's equal area law for Lovelock Thermodynamics

    E-Print Network [OSTI]

    Hao Xu; Zhen-Ming Xu

    2015-10-22

    We present the construction of Maxwell's equal area law for the Guass-Bonnet AdS black holes in $d=5,6$ and third order Lovelock AdS black holes in $d=7,8$. The equal area law can be used to find the number and location of the points of intersection in the plots of Gibbs free energy, so that we can get the thermodynamically preferred solution which corresponds to the first order phase transition. We have the radius of the small and larger black holes in the phase transition which share the same Gibbs free energy. The latent heat can also be calculated. For the third order Lovelock AdS black holes in $d=8$, the first order phase transition can be found in $T_t

  7. Entanglement Production in Non-Equilibrium Thermodynamics

    E-Print Network [OSTI]

    V. Vedral

    2007-06-21

    We define and analyse the concept of entanglement production during the evolution of a general quantum mechanical dissipative system. While it is important to minimise entropy production in order to achieve thermodynamical efficiency, maximising the rate of change of entanglement is important in quantum information processing. Quantitative relations are obtained between entropy and entanglement productions, under specific assumptions detailed in the text. We apply these to the processes of dephasing and decay of correlations between two initially entangled qubits. Both the Master equation treatment as well as the higher Hilbert space analysis are presented. Our formalism is very general and contains as special cases many reported individual instance of entanglement dynamics, such as, for example, the recently discovered notion of the sudden death of entanglement.

  8. 8.2.2015bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/32 Irreversible thermodynamics,

    E-Print Network [OSTI]

    Zevenhoven, Ron

    /32 Irreversible thermodynamics, a.k.a. Non-equilibrium thermodynamics (an introduction) Ron Zevenhoven Åbo Akademi

  9. Research Scientist: Advanced Media Fundamentals San Jose Research Center

    E-Print Network [OSTI]

    Siegel, Paul H.

    Research Scientist: Advanced Media Fundamentals San Jose Research Center Req. 7983 Job Description the use of conventional techniques and the development of novel capabilities to uncover fundamental media for future media. Working as part of a team to develop new concepts and test them. Generating publications

  10. Ris-R-1342(EN) Fundamentals for Remote Structural

    E-Print Network [OSTI]

    Risø-R-1342(EN) Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades Structural Health Monitoring of Wind Turbine Blades ­ a Preproject Annex C - Fibre Transducer for Damage-F). The title of the summary report is: "Fundamentals for remote structural health monitoring of wind turbine

  11. DATA STEWARDSHIP--A FUNDAMENTAL PART OF THE SCIENTIFIC METHOD

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    DATA STEWARDSHIP--A FUNDAMENTAL PART OF THE SCIENTIFIC METHOD Clinton Foster, Jonathon Ross, Lesley Wyborn #12;Key points ·! Data stewardship-- a fundamental of science, and essential for community acceptance ·! Science outcomes are being contested - outcomes and data must be accessible ·! Stewardship

  12. EE 815.3 (3L) Fundamentals of Wireless Communications

    E-Print Network [OSTI]

    Saskatchewan, University of

    EE 815.3 (3L) Fundamentals of Wireless Communications Department of Electrical and Computer Engineering Fall 2014 Description: The goal of this course is to study the fundamentals of wireless background in probability and random processes. Examples from existing wireless communications standards

  13. Selective coupling of optical energy into the fundamental diffusion mode of a scattering medium

    E-Print Network [OSTI]

    Ojambati, Oluwafemi S; Lagendijk, Ad; Mosk, Allard P; Vos, Willem L

    2015-01-01

    We demonstrate experimentally that optical wavefront shaping selectively couples light into the fundamental diffusion mode of a scattering medium. The total energy density inside a scattering medium of zinc oxide (ZnO) nanoparticles was probed by measuring the emitted fluorescent power of spheres that were randomly positioned inside the medium. The fluorescent power of an optimized incident wave front is observed to be enhanced compared to a non-optimized incident front. The observed enhancement increases with sample thickness. Based on diffusion theory, we derive a model wherein the distribution of energy density of wavefront-shaped light is described by the fundamental diffusion mode. The agreement between our model and the data is striking not in the least since there are no adjustable parameters. Enhanced total energy density is crucial to increase the efficiency of white LEDs, solar cells, and of random lasers, as well as to realize controlled illumination in biomedical optics.

  14. A Synergy of Novel Experiments, Materials Science, Fundamental Physics, and Superconducting Magnets

    E-Print Network [OSTI]

    Godeke, Arno

    2007-01-01

    Fundamental Physics Superconducting Magnets Yields: Accuraterecord setting superconducting magnet systems ITER, NMRScience, Fundamental Physics, and Superconducting Magnets

  15. Parameterizing the Deceleration Parameter

    E-Print Network [OSTI]

    Diego Pavón; Ivan Duran; Sergio del Campo; Ramón Herrera

    2012-12-31

    We propose and constrain with the latest observational data three parameterizations of the deceleration parameter, valid from the matter era to the far future. They are well behaved and do not diverge at any redshift. On the other hand, they are model independent in the sense that in constructing them the only assumption made was that the Universe is homogeneous and isotropic at large scales.

  16. A new approach toward geometrical concept of black hole thermodynamics

    E-Print Network [OSTI]

    Hendi, S H; Panah, B Elam; Momennia, M

    2015-01-01

    Motivated by the energy representation of Riemannian metric, in this paper we will study different approaches toward the geometrical concept of black hole thermodynamics. We investigate thermodynamical Ricci scalar of Weinhold, Ruppeiner and Quevedo metrics and show that their number and location of divergences do not coincide with phase transition points arisen from heat capacity. Next, we introduce a new metric to solving these problems. The denominator of the this thermodynamical metric whose Ricci scalar only contains terms that match to the phase transition of heat capacity.

  17. A Study of Universal Thermodynamics in Brane World Scenario

    E-Print Network [OSTI]

    Saugata Mitra; Subhajit Saha; Subenoy Chakraborty

    2015-03-25

    A study of Universal thermodynamics is done in the frame work of RSII brane model and DGP brane scenario. The Universe is chosen as FRW model bounded by apparent or event horizon. Assuming extended Hawking temperature on the horizon, the unified first law is examined for perfect fluid (with constant equation of state) and modified Chaplygin gas model. As a result there is a modification of Bekenstein entropy on the horizons. Further the validity of the generalized second law of thermodynamics and thermodynamical equilibrium are also investigated.

  18. The role of quantum information in thermodynamics --- a topical review

    E-Print Network [OSTI]

    John Goold; Marcus Huber; Arnau Riera; Lídia del Rio; Paul Skrzypczyk

    2015-06-23

    This topical review article gives an overview of the interplay between quantum information theory and thermodynamics of quantum systems. We focus on several trending topics including the foundations of statistical mechanics, resource theories, entanglement in thermodynamic settings, fluctuation theorems and thermal machines. This is not a comprehensive review of the diverse field of quantum thermodynamics; rather, it is a convenient entry point for the thermo-curious information theorist. Furthermore this review should facilitate the unification and understanding of different interdisciplinary approaches emerging in research groups around the world.

  19. Lovelock black hole thermodynamics in a string cloud model

    E-Print Network [OSTI]

    Lee, Tae-Hun; Maharaj, Sunil D; Baboolal, Dharmanand

    2015-01-01

    The Lovelock theory is an extension of general relativity to higher dimensions. We study the Lovelock black hole for a string cloud model in arbitrary dimensional spacetime, and in turn also analyze its thermodynamical properties. Indeed, we compute the mass, temperature and entropy of the black hole and also perform a thermodynamical stability analysis. The phase structure suggests that the Hawking-Page phase transition is achievable. It turns out that the presence of the Lovelock terms and/or background string cloud completely changes the black hole thermodynamics. Interestingly, the entropy of a black hole is unaffected due to a background string cloud, but has a correction term due to Lovelock gravity.

  20. Thermodynamics of strong-interaction matter from Lattice QCD

    E-Print Network [OSTI]

    Heng-Tong Ding; Frithjof Karsch; Swagato Mukherjee

    2015-04-21

    We review results from lattice QCD calculations on the thermodynamics of strong-interaction matter with emphasis on input these calculations can provide to the exploration of the phase diagram and properties of hot and dense matter created in heavy ion experiments. This review is organized as follows: 1) Introduction, 2) QCD thermodynamics on the lattice, 3) QCD phase diagram at high temperature, 4) Bulk thermodynamics, 5) Fluctuations of conserved charges, 6) Transport properties, 7) Open heavy flavors and heavy quarkonia, 8) QCD in external magnetic fields, 9) Summary.

  1. Thermodynamics on the apparent horizon in generalized gravity theories

    E-Print Network [OSTI]

    Shao-Feng Wu; Bin Wang; Guo-Hong Yang

    2008-01-17

    We present a general procedure to construct the first law of thermodynamics on the apparent horizon and illustrate its validity by examining it in some extended gravity theories. Applying this procedure, we can describe the thermodynamics on the apparent horizon in Randall-Sundrum braneworld imbedded in a nontrivial bulk. We discuss the mass-like function which was used to link Friedmann equation to the first law of thermodynamics and obtain its special case which gives the generalized Misner-Sharp mass in Lovelock gravity.

  2. Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity

    SciTech Connect (OSTI)

    Dehghani, M. H.; Sedehi, H. R. Rastegar

    2006-12-15

    We construct a new class of charged rotating solutions of (n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass of the system with infinite boundary with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space. Also, we find that there exists an unstable phase when the finite size effect is taken into account.

  3. Thermodynamics of rotating charged black branes in third order lovelock gravity and the counterterm method

    SciTech Connect (OSTI)

    Dehghani, M.H.; Mann, R.B.

    2006-05-15

    We generalize the quasilocal definition of the stress-energy tensor of Einstein gravity to the case of third order Lovelock gravity, by introducing the surface terms that make the action well-defined. We also introduce the boundary counterterm that removes the divergences of the action and the conserved quantities of the solutions of third order Lovelock gravity with zero curvature boundary at constant t and r. Then, we compute the charged rotating solutions of this theory in n+1 dimensions with a complete set of allowed rotation parameters. These charged rotating solutions present black hole solutions with two inner and outer event horizons, extreme black holes or naked singularities provided the parameters of the solutions are suitably chosen. We compute temperature, entropy, charge, electric potential, mass and angular momenta of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We find a Smarr-type formula and perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable. This is commensurate with the fact that there is no Hawking-Page phase transition for black objects with zero curvature horizon.

  4. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk; Keith Wisecarver

    2004-09-26

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

  5. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk; Keith Wisecarver

    2003-09-26

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

  6. Chern--Simons--Yang--Mills system in presence of Gribov horizon with fundamental Higgs matter

    E-Print Network [OSTI]

    Arturo J. Gomez; Sebastian Gonzalez; Silvio P. Sorella

    2015-09-29

    In this work we study the behaviour of Yang--Mills--Chern--Simons theory coupled to a Higgs field in the fundamental representation by taking into account the effects of the presence of the Gribov horizon. By analyzing the infrared structure of the gauge field propagator, both confined and de-confined regions can be detected. The confined region corresponds to the appearance of complex poles in the propagators, while the de-confined one to the presence of real poles. One can move from one region to another by changing the parameters of the theory.

  7. Collective modes and thermodynamics of the liquid state

    E-Print Network [OSTI]

    K. Trachenko; V. V. Brazhkin

    2015-12-21

    Strongly interacting, dynamically disordered and with no small parameter, liquids took a theoretical status between gases and solids. We review different approaches to liquids and propose that liquids do not need classifying in terms of their proximity to gases and solids. Instead, they are a unique system in their own class with a notably mixed dynamical state in contrast to pure dynamical states of solids and gases. We start with explaining how the first-principles approach to liquids is an intractable, exponentially complex problem of coupled non-linear oscillators with bifurcations. This is followed by a reduction of the problem based on liquid relaxation time $\\tau$ representing non-perturbative treatment of strong interactions. On the basis of $\\tau$, solid-like high-frequency modes are predicted and we review related recent experiments. We demonstrate how these modes can be derived by generalizing either hydrodynamic or elasticity equations. We comment on the historical trend to approach liquids using hydrodynamics and compare it to an alternative solid-like approach. We subsequently discuss how collective modes evolve with temperature and how this affects liquid energy and other properties such as fast sound. Here, our emphasis is on real, rather than model, liquids. Highlighting the dominant role of high-frequency modes for liquid energy, we review a wide range of liquids: subcritical low-viscous liquids, supercritical state with two different dynamical and thermodynamic regimes separated by the Frenkel line, highly-viscous liquids and liquid-glass transition. We also discuss liquid-liquid phase transitions where the solid-like properties of liquids have become further apparent. We then discuss gas-like and solid-like approaches to quantum liquids and persisting theoretical problems. We list areas where interesting insights may appear and continue the extraordinary liquid story.

  8. On the Relation Between Reaction Dynamics and Thermodynamics in Closed Systems

    E-Print Network [OSTI]

    ) , D : RN RR . #12;Thermodynamic conditions · Adopting Dalton's law for this reactive mixture, which

  9. M. Bahrami ENSC 388 (F09) 2nd Law of Thermodynamics 1

    E-Print Network [OSTI]

    Bahrami, Majid

    M. Bahrami ENSC 388 (F09) 2nd Law of Thermodynamics 1 The Second Law of Thermodynamics The second law of thermodynamics asserts that processes occur it satisfies both the first and the second laws of thermodynamics. The second law also asserts that energy

  10. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk Jr; Keith Wisecarver

    2005-10-01

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking. The following deliverables are scheduled from the two projects of the three-year JIP: (1) A novel method for enhancing liquid yields from delayed cokers and data that provide insight as to the optimum temperature to remove hydrogen sulfide from furnace gases. (2) An understanding of what causes foaming in c

  11. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermodynamic Evaluation of Low-GWP Refrigerants Mark O. McLinden National Institute of Standards and Technology markm@boulder.nist.gov; 303-497-3580 April 3, 2013 Optimization...

  12. Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalize...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalized Metal-Organic Frameworks Previous Next List D. Wu, T. M. McDonald, Z. Quan, S. V. Ushakov, P. Zhang, J. R....

  13. Specific heat at constant volume in the thermodynamic model

    E-Print Network [OSTI]

    C. B. Das; S. Das Gupta; A. Z. Mekjian

    2003-07-04

    A thermodynamic model for multifragmentation which is frequently used appears to give very different values for specific heat at constant volume depending upon whether canonical or grand canonical ensemble is used. The cause for this discrepancy is analysed.

  14. Thermodynamic behavior of particular f(R,T)-gravity models

    SciTech Connect (OSTI)

    Sharif, M. Zubair, M.

    2013-08-15

    We investigate the thermodynamics at the apparent horizon of the FRW universe in f(R, T) theory in the nonequilibrium description. The laws of thermodynamics are discussed for two particular models of the f(R, T) theory. The first law of thermodynamics is expressed in the form of the Clausius relation T{sub h} dS-circumflex{sub h} = {delta} Q , where {delta}Q is the energy flux across the horizon and dS-circumflex is the entropy production term. Furthermore, the conditions for the generalized second law of thermodynamics to be preserved are established with the constraints of positive temperature and attractive gravity. We illustrate our results for some concrete models in this theory.

  15. Thermodynamics, Entropy, Information and the Efficiency of Solar Cells

    E-Print Network [OSTI]

    Abrams, Zeev R.

    2012-01-01

    a photovoltaic solar cell is one which produces electricitythe current of the solar cell is one of the main themes ofsingle junction solar cell is one that is thermodynamically

  16. Dynamics And Thermodynamics Of Blackholes And Naked Singularities II

    E-Print Network [OSTI]

    Lorenzo Fatibene; Mauro Francaviglia; Roberto Giambò; Giulio Magli

    2012-05-20

    Proceedings of the second edition of the international Workshop "Dynamics and Thermodynamics of Blackholes and Naked Singularities" (Department of Mathematics of the Politecnico of Milano from May 10-12, 2007.

  17. Lithium-ion battery modeling using non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Ferguson, Todd R. (Todd Richard)

    2014-01-01

    The focus of this thesis work is the application of non-equilibrium thermodynamics in lithium-ion battery modeling. As the demand for higher power and longer lasting batteries increases, the search for materials suitable ...

  18. Applications of the thermodynamics of elastic, crystalline materials 

    E-Print Network [OSTI]

    Si, Xiuhua

    2006-10-30

    The thermodynamic behaviors of multicomponent, elastic, crystalline solids under stress and electro-magnetic fields are developed, including the extension of Euler�s equation, Gibbs equation, Gibbs-Duhem equation, the conditions to be expected...

  19. Physics 112 Thermodynamics and Statistical Physics Winter 2000 COURSE OUTLINE

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Physics 112 Thermodynamics and Statistical Physics Winter 2000 COURSE OUTLINE TOPIC READINGS 1 and probability theory can be found in Chapter 16 of Mathematical Methods in the Physical Sciences, by Mary L

  20. Beyond heat baths II: Framework for generalized thermodynamic resource theories

    E-Print Network [OSTI]

    Nicole Yunger Halpern

    2015-06-17

    Thermodynamics, which describes vast systems, has been reconciled with small scales, relevant to single-molecule experiments, in resource theories. Resource theories have been used to model exchanges of energy and information. Recently, particle exchanges were modeled; and an umbrella family of thermodynamic resource theories was proposed to model diverse baths, interactions, and free energies. This paper motivates and details the family's structure and prospective applications. How to model electrochemical, gravitational, magnetic, and other thermodynamic systems is explained. Szilard's engine and Landauer's Principle are generalized, as resourcefulness is shown to be convertible not only between information and gravitational energy, but also among diverse degrees of freedom. Extensive variables are associated with quantum operators that might fail to commute, introducing extra nonclassicality into thermodynamic resource theories. This generalization expands the theories' potential for modeling realistic systems with which small-scale statistical mechanics might be tested experimentally.