Sample records for fund ethanol extraction

  1. Ethanol extraction of phytosterols from corn fiber

    DOE Patents [OSTI]

    Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IL); Binder, Thomas P. (Decatur, IL); Rammelsberg, Anne M. (Decatur, IL)

    2010-11-16T23:59:59.000Z

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  2. Ethanol Extraction Technologies Inc EETI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources JumpVermont:Extraction Technologies Inc

  3. Pacific Ethanol, Inc

    Broader source: Energy.gov (indexed) [DOE]

    facility in an existing pulp mill to demonstrate the production of cellulosic ethanol from lignocellulosic (wood) extract. CEO or Equivalent: Edward Paslawski, Chairman...

  4. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    DOE Patents [OSTI]

    Tedder, Daniel W. (Marietta, GA)

    1985-05-14T23:59:59.000Z

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  5. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells

    SciTech Connect (OSTI)

    Gao Jiayu; Morgan, Winston A.; Sanchez-Medina, Alberto; Corcoran, Olivia, E-mail: o.corcoran@uel.ac.uk

    2011-08-01T23:59:59.000Z

    Despite a lack of scientific authentication, Scutellaria baicalensis is clinically used in Chinese medicine as a traditional adjuvant to chemotherapy of lung cancer. In this study, cytotoxicity assays demonstrated that crude ethanolic extracts of S. baicalensis were selectively toxic to human lung cancer cell lines A549, SK-LU-1 and SK-MES-1 compared with normal human lung fibroblasts. The active compounds baicalin, baicalein and wogonin did not exhibit such selectivity. Following exposure to the crude extracts, cellular protein expression in the cancer cell lines was assessed using 2D gel electrophoresis coupled with MALDI-TOF-MS/Protein Fingerprinting. The altered protein expression indicated that cell growth arrest and apoptosis were potential mechanisms of cytotoxicity. These observations were supported by PI staining cell cycle analysis using flow cytometry and Annexin-V apoptotic analysis by fluorescence microscopy of cancer cells treated with the crude extract and pure active compounds. Moreover, specific immunoblotting identification showed the decreased expression of cyclin A results in the S phase arrest of A549 whereas the G{sub 0}/G{sub 1} phase arrest in SK-MES-1 cells results from the decreased expression of cyclin D1. Following treatment, increased expression in the cancer cells of key proteins related to the enhancement of apoptosis was observed for p53 and Bax. These results provide further insight into the molecular mechanisms underlying the clinical use of this herb as an adjuvant to lung cancer therapy. - Research Highlights: > Scutellaria baicalensis is a clinical adjuvant to lung cancer chemotherapy in China. > Scutellaria ethanol extracts selectively toxic to A549, SK-LU-1 and SK-MES-1. > Baicalin, baicalein and wogonin were toxic to all lung cancer cell lines. > Proteomics identified increased p53 and BAX in response to Scutellaria extracts.

  6. Ethanol Capital Funding | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulation IncentivesEshoneEstonia:

  7. Pathway engineering to improve ethanol production by thermophilic bacteria

    SciTech Connect (OSTI)

    Lynd, L.R.

    1998-12-31T23:59:59.000Z

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  8. Project Funding

    Broader source: Energy.gov [DOE]

    Federal energy projects require funding to generate results. Carefully matching available funding options with specific project needs can make the difference between a stalled, unfunded project and a successful project generating energy and cost savings.

  9. Ethanol Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  10. Determination of Extractives in Biomass: Laboratory Analytical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    steps. This procedure uses a two-step extraction process to remove water soluble and ethanol soluble material. Water soluble materials may include inorganic material,...

  11. Fermentation method producing ethanol

    DOE Patents [OSTI]

    Wang, Daniel I. C. (Belmont, MA); Dalal, Rajen (Chicago, IL)

    1986-01-01T23:59:59.000Z

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  12. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover Ling Tao, Dan Schell, Ryan...

  13. The Real Corn-Ethanol Transportation Tad W. Patzek

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    of ethanol in the US is essentially equal to the unleaded gasoline prices in Europe at http://- zfacts.com/p/60.html, see Table 1 for details. Figure 1 shows that the energy-equivalent price. But there is a fundamental difference. The gasoline taxes in Europe find their way back to the society and fund energy

  14. Requested Funding Categories

    E-Print Network [OSTI]

    Martinez, Tony R.

    Requested Funding Categories: Department's Funding Priority Request (in the event partial funding is granted): Committee recommends the following funding: Wages for adjunct or part- time faculty or admin Factors: Has unit received previous internship grant funding? _______ ifso

  15. Ethanol Myths: Under the Microscope

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    , transport to facility, convert to ethanol, and distribute Future biomass feedstocks will come primarily from

  16. Process for producing ethanol

    SciTech Connect (OSTI)

    Lantero, O.J.; Fish, J.J.

    1993-07-27T23:59:59.000Z

    A process is described for producing ethanol from raw materials containing a high dry solid mash level having fermentable sugars or constituents which can be converted into sugars, comprising the steps of: (a) liquefaction of the raw materials in the presence of an alpha amylase to obtain liquefied mash; (b) saccharification of the liquefied mash in the presence of a glucoamylase to obtain hydrolysed starch and sugars; (c) fermentation of the hydrolysed starch and sugars by yeast to obtain ethanol; and (d) recovering the obtained ethanol, wherein an acid fungal protease is introduced to the liquefied mash during the saccharification and/or to the hydrolysed starch and sugars during the fermentation, thereby increasing the rate of production of ethanol as compared to a substantially similar process conducted without the introduction of the protease.

  17. Ethanol production from lignocellulose

    DOE Patents [OSTI]

    Ingram, Lonnie O. (Gainesville, FL); Wood, Brent E. (Gainesville, FL)

    2001-01-01T23:59:59.000Z

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  18. Extraction of RNA-Trizol RNA extraction from M. tuberculosis (Mahenthiralingam 1998) is useful for RT-PCR

    E-Print Network [OSTI]

    Extraction of RNA-Trizol RNA extraction from M. tuberculosis (Mahenthiralingam 1998) is useful of isopropanol. 10. Precipitate overnight at ­20°C. Prepare cold 70% ethanol with DEPC treated water. Centrifuge DNA is present, repeat Trizol extraction. #12;

  19. Pacific Ethanol, Inc | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pacific Ethanol, Inc Pacific Ethanol, Inc Pacific Ethanol, Inc More Documents & Publications RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) Major DOE...

  20. Ethanol Myths and Facts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ethanol Myths and Facts Ethanol Myths and Facts Ethanol Myths and Facts More Documents & Publications Biofuels & Greenhouse Gas Emissions: Myths versus Facts Microsoft Word -...

  1. The Children's Milk Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Children's Milk Fund Clever accounting hid the funds needed to develop America's top secret atomic bombs. December 1, 2014 The Children's Milk Fund Milk money was critical in...

  2. Ethanol Production Tax Credit (Kentucky)

    Broader source: Energy.gov [DOE]

    Qualified ethanol producers are eligible for an income tax credit of $1 per gallon of corn- or cellulosic-based ethanol that meets ASTM standard D4806. The total credit amount available for all...

  3. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments. Abstract: A...

  4. Funding Opportunities

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAM DOE OGeeking Out on Energy910186 Funding

  5. Ethanol Waivers: Needed or Irrelevant?

    E-Print Network [OSTI]

    Boas, Harold P.

    Ethanol Waivers: Needed or Irrelevant? JAMES M. GRIFFIN & RACHAEL DAHL The Mosbacher Institute VOLUME 3 | ISSUE 2 | 2012 2012 RELAXING THE ETHANOL MANDATE The severity of the drought of 2012 affecting for ethanol production, 6.72 BB for domestic food and feed and the remainder for exports (Figure 1). The USDA

  6. Sorghum to Ethanol Research

    SciTech Connect (OSTI)

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30T23:59:59.000Z

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called �dedicated bioenergy crops� including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a major portion of the feedstocks required to produce renewable domestic transportation fuels.

  7. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01T23:59:59.000Z

    Advancing Cellulosic Ethanol for Large Scale SustainableHydrogen Batteries Nuclear By Lee Lynd, Dartmouth EthanolEthanol, ethyl alcohol, fermentation ethanol, or just “

  8. New Ethanol Ordering Process Effective March 11, 2013, Ethanol must be ordered through an Ethanol Form in the

    E-Print Network [OSTI]

    Sibille, Etienne

    New Ethanol Ordering Process Effective March 11, 2013, Ethanol must be ordered through an Ethanol Services will accept faxed orders for Ethanol. · Monday, March 11, 2013 is the first day the PantherExpress System will accept orders for Ethanol. Requirements · Your PantherExpress System account must be properly

  9. Flexible Capital Fund (Vermont)

    Broader source: Energy.gov [DOE]

    The Vermont Sustainable Jobs Fund's Flexible Capital Fund (the “Flex Fund”) is designed for companies in Vermont's rural areas that are smaller and work on a less-than global scale, offering a...

  10. Ethanol Consumption by Rat Dams During Gestation,

    E-Print Network [OSTI]

    Galef Jr., Bennett G.

    Ethanol Consumption by Rat Dams During Gestation, Lactation and Weaning Increases Ethanol examined effects of ethanol consumption in rat dams during gestation, lactation, and weaning on voluntary ethanol consumption by their adolescent young. We found that exposure to an ethanol-ingesting dam

  11. Florida Growth Fund (Florida)

    Broader source: Energy.gov [DOE]

    The Florida Growth Fund can provide investments in technology and growth-related companies through co-investments with other institutional investors. The Fund awards preference to companies...

  12. Ethanol Waivers: Needed or Irrelevant?

    E-Print Network [OSTI]

    Griffin, James M.; Dahl, Rachel

    regulatory apparatus could accommo- date a substantial ethanol reduction with no need for a waiver. Even if gasoline blenders found it both economically and technically desirable to reduce ethanol consumption, a reduction of 2.6 billion gal- lons... up the price of corn and gasoline blenders will have little choice but to pay the higher ethanol prices. OIL PRICE UNCERTAINTY ARGUES FOR A WAIVER With a 2013 waiver in place, refiners would have time to implement the planning to produce higher...

  13. BlueFire Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10|BlueFire Ethanol, Inc. Corporate

  14. Ethanol-blended Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13 DE@EnergyErnestEthanol-Blended Fuels A Study

  15. Ethanol: Producting Food, Feed, and Fuel

    Broader source: Energy.gov (indexed) [DOE]

    ethanol Ethanol blend prices are generally 10 cents lower Net Ethanol price at wholesale today is more than 1.50+gal lower than gasoline. Higher blends may emerge in the...

  16. Vehicle Technologies Office: Intermediate Ethanol Blends

    Broader source: Energy.gov [DOE]

    Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy...

  17. External Research Funding Agreements

    E-Print Network [OSTI]

    Victoria, University of

    1 External Research Funding Agreements University Policy No: RH8200 Classification: Research and university employees under Research Funding Agreements. DEFINITIONS 2.00 Research Funding Agreement means funding provided through an agreement with the university to be used for research purposes, whether

  18. Liquid-liquid equilibria for water + ethanol + 2-methylpropyl ethanoate and water + ethanol + 1,2-dibromoethane at 298. 15 K

    SciTech Connect (OSTI)

    Solimo, H.N.; Barnes de Arreguez, N.G. (Univ. Nacional de Tucuman, San Miguel de Tucuman (Argentina). Inst. de Fisica)

    1994-01-01T23:59:59.000Z

    Liquid-liquid equilibrium, distribution coefficients, and selectivities of the systems water + ethanol + 2-methylpropyl ethanoate or + 1,2-dibromoethane have been determined at 298.15 K in order to evaluate their suitability in preferentially extracting ethanol from aqueous solution. Tie-line data were satisfactorily correlated by the Othmer and Tobias method, and the plait point coordinates for the two systems were estimated. The experimental data was compared with the values calculated by the NRTL and UNIQUAC models. The water + ethanol + 2-methylpropyl ethanoate system was also compared with the values predicted by the UNIFAC model. Poor qualitative agreement was obtained with these models. From the experimental results, they can conclude that both solvents are inappropriate for ethanol extraction processes from aqueous solutions.

  19. Ethanol production in non-recombinant hosts

    DOE Patents [OSTI]

    Kim, Youngnyun; Shanmugam, Keelnatham; Ingram, Lonnie O.

    2013-06-18T23:59:59.000Z

    Non-recombinant bacteria that produce ethanol as the primary fermentation product, associated nucleic acids and polypeptides, methods for producing ethanol using the bacteria, and kits are disclosed.

  20. Corn Ethanol -April 2006 11 Cover Story

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Corn Ethanol - April 2006 11 Cover Story orn ethanol is the fuel du jour. It's domestic. It oil into gasoline or diesel fuel. Ethanol refineries also use huge amounts of water. An average dry's not oil. Ethanol's going to help promote "energy independence." Magazines trumpet it as the motor vehicle

  1. Renewable Energy Trust Fund

    Broader source: Energy.gov [DOE]

    The renewable energy fund, known as the Massachusetts Renewable Energy Trust Fund, is supported by a non-bypassable surcharge of $0.0005 per kilowatt-hour (0.5 mill/kWh), imposed on customers of...

  2. Revolving Loan Funds (RLF)

    Broader source: Energy.gov (indexed) [DOE]

    Revolving Loan Funds (RLF) Sam Booth National Renewable Energy laboratory 6 July 2009 Overview Under the American Recovery and Reinvestment Act (ARRA) funding totaling 3.1 B is...

  3. Scholarship Fund (National Forestry

    E-Print Network [OSTI]

    Botea, Adi

    Forestry Scholarship Fund (National Forestry Master's Program (NFMP) The Forestry Scholarship Fund! 2014 Scholarship Offers A degree in forestry is a way of life. Trees, people, habitats, management that you will experience when you chose forestry as a career. #12;TRUSTEE FOR FORESTRY SCHOLARSHIP FUND ABN

  4. Renewing University Base Funding

    E-Print Network [OSTI]

    Renewing University Base Funding The Priority Issues 29 February 2012 e conor funding to universities as an immediate goal. It has already put in place increases worth 3.5%. 2 undergraduate or postgraduate, be funded at the same rate. #12;3 Charles Darwin University Flinders University

  5. Relationships between circadian rhythms and ethanol intake in mice

    E-Print Network [OSTI]

    Trujillo, Jennifer L.

    2009-01-01T23:59:59.000Z

    4.2.3. Ethanol Vapor Sessions . . . . . . . . .4.2.4.scheduling a?ects subsequent voluntary ethanol 2.1.of circadian period to ethanol intake . . . . . . . . . .

  6. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    and benefits of biodiesel and ethanol biofuels. Proc. Natl.Bacteria engineered for fuel ethanol production: currentGenetic engineering of ethanol production in Escherichia

  7. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    Biofuel alternatives to ethanol: pumping the microbialproducts, pharmaceuticals, ethanol fuel and more. Even so,producing biofuel. Although ethanol currently dominates the

  8. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    SciTech Connect (OSTI)

    Donal F. Day

    2009-03-31T23:59:59.000Z

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of succinic acid production were such that it could not compete with current commercial practice. To allow recovery of commercial amounts of ethanol from bagasse fermentation, research was conducted on high solids loading fermentations (using S. cerevisiae) with commercial cellulase on pretreated material. A combination of SHF/SSF treatment with fed-batch operation allowed fermentation at 30% solids loading. Supplementation of the fermentation with a small amount of black-strap molasses had results beyond expectation. There was an enhancement of conversion as well as production of ethanol levels above 6.0% w/w, which is required both for efficient distillation as well as contaminant repression. The focus of fermentation development was only on converting the cellulose to ethanol, as this yeast is not capable of fermenting both glucose and xylose (from hemicellulose). In anticipation of the future development of such an organism, we screened the commercially available xylanases to find the optimum mix for conversion of both cellulose and hemicellulose. A different mixture than the spezyme/novozyme mix used in our fermentation research was found to be more efficient at converting both cellulose and hemicellulose. Efforts were made to select a mutant of Pichia stipitis for ability to co-ferment glucose and xylose to ethanol. New mutation technology was developed, but an appropriate mutant has not yet been isolated. The ability to convert to stillage from biomass fermentations were determined to be suitable for anaerobic degradation and methane production. An economic model of a current sugar factory was developed in order to provide a baseline for the cost/benefit analysis of adding cellulosic ethanol production.

  9. Energy Utilization in Fermentation Ethanol Production

    E-Print Network [OSTI]

    Easley, C. E.

    be fermented to ethanol. The energy usage for this design is about 20,900 Btu per gallon of ethanol produced. WATER PARTIAL CONDENSER GRAIN MEA MIX 140?F 360?F FLASH TANK COOLING STEAM MALT COOKER FIGURE 1 - OLD STYLE MASHING SYSTEM Energy savings... ethanol. The basic process for fuel ethanol. as shown in Figure 3. involves steam stripping and rectification to produce 95 volume percent ethanol which is near the ethanol-water azeotropic composition. Except for the modest heat recovery provided...

  10. Greater Ohio Ethanol LLC GO Ethanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:Ethanol LLC GO Ethanol Jump to:

  11. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24T23:59:59.000Z

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  12. Ethanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources JumpVermont:Extraction

  13. Ethanol production method and system

    DOE Patents [OSTI]

    Chen, M.J.; Rathke, J.W.

    1983-05-26T23:59:59.000Z

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  14. Comparing Scales of Environmental Effects from Gasoline and Ethanol Production

    SciTech Connect (OSTI)

    Parish, Esther S [ORNL; Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; McBride, Allen [ORNL; Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Hilliard, Michael R [ORNL; Bielicki, Dr Jeffrey M [University of Minnesota

    2013-01-01T23:59:59.000Z

    Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the scales (i.e., spatial extent and temporal duration) of ethanol and gasoline production processes and environmental effects based on a literature review, and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.

  15. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01T23:59:59.000Z

    and ferment all sugars Ethanol recovery Fuel ethanol Residuecellulosic ethanol that is competitive as a pure fuel •Fuels Ocean/ hydro Geothermal Transportation Electricity Hydrogen Batteries Nuclear By Lee Lynd, Dartmouth Ethanol

  16. Oklahoma Opportunity Fund (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Oklahoma Opportunity Fund was established to promote economic development and related infrastructure development. Eligible applicants are for-profit entities; non-profit entities; and state and...

  17. Enterprise Energy Fund Grants

    Broader source: Energy.gov [DOE]

    '''''Note: This program is fully subscribed and currently is not accepting applications. Check with the program administrator regarding the possibility of future program funding.'''''

  18. Energy Efficiency Fund

    Broader source: Energy.gov [DOE]

    Connecticut's original electric-industry restructuring legislation (Public Act 98-28), enacted in April 1998, created separate funds to support energy efficiency and renewable energy.* The...

  19. Transportation risk assessment for ethanol transport 

    E-Print Network [OSTI]

    Shelton Davis, Anecia Delaine

    2009-05-15T23:59:59.000Z

    This research is aimed at assessing the quantitative risks involved with an ethanol pipeline. Pipelines that run from the Midwest, where the vast majority of ethanol is produced, to the target areas where reformulated gasoline is required...

  20. Transportation risk assessment for ethanol transport 

    E-Print Network [OSTI]

    Shelton Davis, Anecia Delaine

    2008-10-10T23:59:59.000Z

    This research is aimed at assessing the quantitative risks involved with an ethanol pipeline. Pipelines that run from the Midwest, where the vast majority of ethanol is produced, to the target areas where reformulated gasoline is required...

  1. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

  2. Dekkera bruxellensis, a Non-conventional Ethanol Production Yeast

    E-Print Network [OSTI]

    : risks and benefits 16 2.3 Bioethanol industry 17 3 Ethanol production overview 19 3.1 Industrial ethanol

  3. Re-engineering bacteria for ethanol production

    DOE Patents [OSTI]

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06T23:59:59.000Z

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  4. Forward Funding Why is Forward Funding useful for project

    E-Print Network [OSTI]

    Mather, Patrick T.

    and administrative risks to the University. Forward funding chartstrings ordinarily will be created when: · allForward Funding - 1 - Why is Forward Funding useful for project management? Forward funding. For continuing year budget segments, forward funding helps ensure (i) the timely management of payroll or other

  5. Effects of ethanol preservation on otolith microchemistry

    E-Print Network [OSTI]

    Effects of ethanol preservation on otolith microchemistry K. J. HEDGES*, S. A. LUDSIN*§ AND B. J coupled plasma-mass spectrometry was used to examine the effects of exposure time to ethanol (0, 1, 3, 9, 27 and 81 days) and ethanol quality (ACS- v. HPLC- grade) on strontium (Sr) and barium (Ba

  6. Original article Parallel selection of ethanol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Parallel selection of ethanol and acetic-acid tolerance in Drosophila melanogaster significantly with latitude (0.036 ! 0.004 for 1° latitude; genetic divergence FST = 0.25). Patterns of ethanol of latitudinal ethanol tolerance (10 to 15%) and acetic-acid tolerance (3.7 to 13.2%) were observed in adult

  7. Production of ethanol from refinery waste gases. Phase 2, technology development, annual report

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1995-07-01T23:59:59.000Z

    Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

  8. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect (OSTI)

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01T23:59:59.000Z

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  9. ARRA FUNDED ENERGY PROGRAMS

    E-Print Network [OSTI]

    lower energy costs and fossil fuel energy use. Increasing arra funds with private and public sector. The Clean Energy Business Financing loan program is designed to leverage even more private sector funds programs (such as Clean Energy Business and Municipal Financing programs) when developing the federal

  10. AVAILABLE NOW! Biomass Funding

    E-Print Network [OSTI]

    AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

  11. Ethanol production by recombinant hosts

    DOE Patents [OSTI]

    Ingram, Lonnie O. (Gainesville, FL); Beall, David S. (Gainesville, FL); Burchhardt, Gerhard F. H. (Gainesville, FL); Guimaraes, Walter V. (Vicosa, BR); Ohta, Kazuyoshi (Miyazaki, JP); Wood, Brent E. (Gainesville, FL); Shanmugam, Keelnatham T. (Gainesville, FL)

    1995-01-01T23:59:59.000Z

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  12. Ethanol production by recombinant hosts

    DOE Patents [OSTI]

    Fowler, David E. (Gainesville, FL); Horton, Philip G. (Gainesville, FL); Ben-Bassat, Arie (Gainesville, FL)

    1996-01-01T23:59:59.000Z

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  13. Small Enterprise Growth Fund (Maine)

    Broader source: Energy.gov [DOE]

    The Small Enterprise Growth Fund is a professionally-managed venture capital fund that invests in Maine companies which demonstrate high potential for growth and public benefit. The fund has...

  14. Membrane Extraction for Detoxification of Biomass Hydrolysates

    SciTech Connect (OSTI)

    Grzenia, D. L.; Schell, D. J.; Wickramasinghe, S. R.

    2012-05-01T23:59:59.000Z

    Membrane extraction was used for the removal of sulfuric acid, acetic acid, 5-hydroxymethyl furfural and furfural from corn stover hydrolyzed with dilute sulfuric acid. Microporous polypropylene hollow fiber membranes were used. The organic extractant consisted of 15% Alamine 336 in: octanol, a 50:50 mixture of oleyl alcohol:octanol or oleyl alcohol. Rapid removal of sulfuric acid, 5-hydroxymethyl and furfural was observed. The rate of acetic acid removal decreased as the pH of the hydrolysate increased. Regeneration of the organic extractant was achieved by back extraction into an aqueous phase containing NaOH and ethanol. A cleaning protocol consisting of flushing the hydrolysate compartment with NaOH and the organic phase compartment with pure organic phase enabled regeneration and reuse of the module. Ethanol yields from hydrolysates detoxified by membrane extraction using 15% Alamine 336 in oleyl alcohol were about 10% higher than those from hydrolysates detoxified using ammonium hydroxide treatment.

  15. Funding | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding Funding Investigators who receive support from the PARC should cite the Washington University Energy Frontier Research Center (EFRC) grant in all publications and projects....

  16. Texas Capital Fund (Texas)

    Broader source: Energy.gov [DOE]

    The Texas Capital Fund is designed to promote growth in rural non-entitlement areas, generally defined as cities with less than 50,000 residents or counties with less than 200,000 residents....

  17. Rural Innovation Fund (Kentucky)

    Broader source: Energy.gov [DOE]

    This fund provides capital to early-stage technology companies located in rural areas of Kentucky. Companies may apply for a $30,000 grant or an investment up to $100,000.

  18. Ethanol annual report FY 1990

    SciTech Connect (OSTI)

    Texeira, R.H.; Goodman, B.J. (eds.)

    1991-01-01T23:59:59.000Z

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  19. Food for fuel: The price of ethanol

    E-Print Network [OSTI]

    Albino, Dominic K; Bar-Yam, Yaneer

    2012-01-01T23:59:59.000Z

    Conversion of corn to ethanol in the US since 2005 has been a major cause of global food price increases during that time and has been shown to be ineffective in achieving US energy independence and reducing environmental impact. We make three key statements to enhance understanding and communication about ethanol production's impact on the food and fuel markets: (1) The amount of corn used to produce the ethanol in a gallon of regular gas would feed a person for a day, (2) The production of ethanol is so energy intensive that it uses only 20% less fossil fuel than gasoline, and (3) The cost of gas made with ethanol is actually higher per mile because ethanol reduces gasoline's energy per gallon.

  20. Process for producing ethanol from syngas

    DOE Patents [OSTI]

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14T23:59:59.000Z

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  1. Innovative Breakthrough Demonstrated for Biological Ethanol Production...

    Office of Environmental Management (EM)

    for Biological Ethanol Production June 30, 2015 - 11:43am Addthis Advanced Biofuels Process Demonstration Unit at Lawrence Berkeley National Laboratory. Photo credit:...

  2. Mid-Blend Ethanol Fuels ? Implementation Perspectives

    Broader source: Energy.gov (indexed) [DOE]

    Blend Ethanol Fuels - Implementation Perspectives William Woebkenberg - US Fuels Technical and Regulatory Affairs Mercedes-Benz Research & Development North America July 25, 2013...

  3. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, Lars G. (Athens, GA); Carriera, Laura H. (Athens, GA)

    1983-01-01T23:59:59.000Z

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  4. Ethanol: Producting Food, Feed, and Fuel

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Todd Sneller (Nebraska Ethanol Board) discussed the food versus fuel issue.

  5. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24T23:59:59.000Z

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  6. Mixed waste paper to ethanol fuel

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  7. Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use

    E-Print Network [OSTI]

    Mlllet, Dylan B.

    Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use Dylan B. Millet,*, Eric Apel, Daven K. Henze,§ Jason Hill, Julian D. Marshall, Hanwant B-Chem chemical transport model to constrain present-day North American ethanol sources, and gauge potential long

  8. PEMFC Power System on EthanolPEMFC Power System on Ethanol Caterpillar Inc.Caterpillar Inc.

    E-Print Network [OSTI]

    J. RichardsThomas J. Richards #12;PEM ETHANOL FUEL CELL DOE Hydrogen & Fuel Cells 2003 Annual Merit Review 21 May 2003 #12;PEM ETHANOL FUEL CELL In 2003, a 10-15 kW stationary PEM fuel cell system examines the durability of a PEM based fuel cell system while operating on ethanol - a renewable fuel

  9. Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol

    E-Print Network [OSTI]

    Mlllet, Dylan B.

    of Ethanol Fuel Use Dylan B. Millet*,1 , Eric Apel2 , Daven K. Henze3 , Jason Hill1 , Julian D. Marshall1S1 Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts INFORMATION Supporting Information contains a total of 12 pages, 1 table, and 7 figures. 1. AIRBORNE ETHANOL

  10. Ethanol 2000 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:EmminolEntergyEnvisoryInformationEthanol 2000 Jump to:

  11. Ethanol Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:EmminolEntergyEnvisoryInformationEthanol

  12. Highwater Ethanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, searchCounty, Virginia:HighlineHighwater Ethanol

  13. Northstar Ethanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence Seed LLC JumpNew Jersey:Northstar Ethanol Jump to:

  14. Alternative Fuels Data Center: Ethanol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies | BlandineNaturalEmerging FuelsEthanol

  15. Public Health Assessment Gopher State Ethanol, City of St. Paul

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Public Health Assessment Gopher State Ethanol, City of St. Paul Ramsey County, Minnesota September with the Gopher State Ethanol, St. Paul, Ramsey County, Minnesota. It is based on a formal site evaluation....................................................................................................................... 3 Ethanol Production

  16. Selective solvent extraction of cellulosic material

    DOE Patents [OSTI]

    Wang, D.I.C.; Avgerinos, G.C.

    1983-07-26T23:59:59.000Z

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15 and about 70 C and for a time period between about 2 and about 80 hours. 6 figs.

  17. Selective solvent extraction of cellulosic material

    DOE Patents [OSTI]

    Wang, Daniel I. C. (Belmont, MA); Avgerinos, George C. (Newton Center, MA)

    1983-01-01T23:59:59.000Z

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15.degree. and about 70.degree. C. and for a time period between about 2 and about 80 hours.

  18. Polymeric Assembly of Gluten Proteins in an Aqueous Ethanol Solvent

    E-Print Network [OSTI]

    Mohsen Dahesh; Amélie Banc; Agnčs Duri; Marie-Hélčne Morel; Laurence Ramos

    2014-09-02T23:59:59.000Z

    The supramolecular organization of wheat gluten proteins is largely unknown due to the intrinsic complexity of this family of proteins and their insolubility in water. We fractionate gluten in a water/ethanol (50/50 v/v) and obtain a protein extract which is depleted in gliadin, the monomeric part of wheat gluten proteins, and enriched in glutenin, the polymeric part of wheat gluten proteins. We investigate the structure of the proteins in the solvent used for extraction over a wide range of concentration, by combining X-ray scattering and multi-angle static and dynamic light scattering. Our data show that, in the ethanol/water mixture, the proteins display features characteristic of flexible polymer chains in a good solvent. In the dilute regime, the protein form very loose structures of characteristic size 150 nm, with an internal dynamics which is quantitatively similar to that of branched polymer coils. In more concentrated regimes, data highlight a hierarchical structure with one characteristic length scale of the order of a few nm, which displays the scaling with concentration expected for a semi-dilute polymer in good solvent, and a fractal arrangement at much larger length scale. This structure is strikingly similar to that of polymeric gels, thus providing some factual knowledge to rationalize the viscoelastic properties of wheat gluten proteins and their assemblies.

  19. Market penetration of biodiesel and ethanol 

    E-Print Network [OSTI]

    Szulczyk, Kenneth Ray

    2007-09-17T23:59:59.000Z

    that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production...

  20. Ethanol production using engineered mutant E. coli

    DOE Patents [OSTI]

    Ingram, Lonnie O. (Gainesville, FL); Clark, David P. (Carbondale, IL)

    1991-01-01T23:59:59.000Z

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  1. Biotech Breakthrough Produces Ethanol from Waste Glycerin

    E-Print Network [OSTI]

    Stuart, Steven J.

    . Biodiesel is one of the green alternatives and US production of this fuel is at an all-time high, with new biodiesel plants being constructed in record number. However, there is one problem, the fact. They developed a new technology that transforms glycerin into ethanol, another ecological fuel. Ethanol

  2. Funding Source Agricultural

    E-Print Network [OSTI]

    Arnold, Jonathan

    Funding Source General Research Agricultural Experiment Station Instruction Public Service,145,610$ 3,716,162DEPARTMENT OF AGRICULTURE $ 1,799,873 $ 8,322,303 $ 30,128,910 $ 0$ 85,000$ 2,127 $ 0$ 4,920,977$ 0US DEPARTMENT OF AGRICULTURE / HATCH $ 0 $ 0 $ 4,920,977 $ 15,348,823FOUNDATION

  3. SPONSORED FUNDS ADMINISTRATION

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    of and spending plan for unobligated balance 3. Assurance that all research compliance activities are approved to the sponsor. If you have any questions, please contact Research Development Services (x7-6136) or SponsoredFORM -20 SPONSORED FUNDS ADMINISTRATION DIVISION OF RESEARCH State University of New York

  4. Trinity College Annual Fund

    E-Print Network [OSTI]

    Lasenby, Joan

    Trinity College Annual Fund 2014 #12;How did Trinity influence your future? By introducing Trinity the Trinity in Cambe programme. Working together, we expect Trin and IntoUniversity to make highe education, the likelihood of getting university and attitudes to learning" Trinity has a long history of nurturing

  5. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Environmental Management (EM)

    Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009 Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

  6. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01T23:59:59.000Z

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  7. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    2007) Cellulosic ethanol: biofuel researchers prepare toBiofuel alternatives to ethanol: pumping the microbial welltechnologies that enable biofuel production. Decades of work

  8. aqueous ethanol pulping: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assisted combustion of ethanol a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate of combustion (SOC) A good...

  9. acute ethanol exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assisted combustion of ethanol a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate of combustion (SOC) A good...

  10. acute ethanol challenge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assisted combustion of ethanol a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate of combustion (SOC) A good...

  11. affects ethanolic fermentation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assisted combustion of ethanol a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate of combustion (SOC) A good...

  12. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Energy Savers [EERE]

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

  13. Report to Congress: Dedicated Ethanol Pipeline Feasability Study...

    Energy Savers [EERE]

    Report to Congress: Dedicated Ethanol Pipeline Feasability Study - Energy Independence and Security Act of 2007 Section 243 Report to Congress: Dedicated Ethanol Pipeline...

  14. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...

    Office of Environmental Management (EM)

    Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking October...

  15. Biochemical Production of Ethanol from Corn Stover: 2007 State...

    Energy Savers [EERE]

    Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model An update to...

  16. acute ethanol assessment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delaine 2008-10-10 3 Public Health Assessment Gopher State Ethanol, City of St. Paul Renewable Energy Websites Summary: Public Health Assessment Gopher State Ethanol, City of...

  17. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Desorption Kinetics of Methanol, Ethanol, and Water from Graphene. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene. Abstract: The desorption kinetics of methanol,...

  18. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B:...

  19. Ethanol mandate thrown out by appeals court

    SciTech Connect (OSTI)

    Begley, R.

    1995-05-10T23:59:59.000Z

    In a victory for the oil industry, a federal appeals court has overturned EPA`s mandate for ethanol use in reformulated gasoline (REG), saying the agency lacks authority to require 30% of the oxygenate market be reserved for ethanol. EPA says the ruling does not prevent ethanols use in RFG - {open_quotes}It only says that EPA cannot dictate the recipe.{close_quotes} Charles DiBona, president of the American Petroleum Institute (API), says {open_quotes}API and its member companies are not opposed to the use of ethanol as an oxygenate. We oppose this illegal mandate.{close_quotes} Urvan Sternfels, president of the National Petroleum Refiners Association, says, {open_quotes}Mandating market shares for any product is unsound economic policy.{close_quotes} The two trade groups led the legal battle against the ethanol requirement.

  20. Biological production of ethanol from coal. Task 4 report, Continuous reactor studies

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle was particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.

  1. Grow Missouri Loan Fund (Missouri)

    Broader source: Energy.gov [DOE]

    The Grow Missouri Loan Fund is open to private companies with fewer than 500 existing employees. One of the key advantages of the program is that the funding can be used as a prior commitment for...

  2. Energy Loan Fund for Schools

    Broader source: Energy.gov [DOE]

    The Oklahoma Department of Commerce has established a loan/lease fund for public and non-profit K-12 schools to improve energy efficiency. Two categories of funding are available for schools to...

  3. Community Development Financial Institutions Fund

    Broader source: Energy.gov [DOE]

    The U.S. Department of Treasury is accepting applications on the Community Development Financial Institutions (CDFI) Fund, which has opened the fiscal year 2015 funding round for the CDFI Program...

  4. Fund Turnover and Investment Performance 

    E-Print Network [OSTI]

    Adams, Andrew T; Lambert, E

    1997-01-01T23:59:59.000Z

    We examine the level of share dealing activity of UK long-term institutional funds and, for UK pension funds, assess the impact of this dealing activity on investment performance. The analysis is carried out using annual ...

  5. Vermont Sustainable Jobs Fund (Vermont)

    Broader source: Energy.gov [DOE]

    The Vermont Sustainable Job Fund offers grants, loans, and technical assistance. VSJF's grant-making depends on the funds it raised and its strategic market development focus. Grant proposals are...

  6. Technology Commercialization Fund - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fund The Technology Commercialization Fund (TCF) is designed to complement angel investment or early stage corporate product development. The fund totaled nearly 14.3 million in...

  7. Funding Opportunity Announcement: Solar Training and Education...

    Energy Savers [EERE]

    Training and Education for Professionals (STEP) Funding Opportunity Announcement: Solar Training and Education for Professionals (STEP) Funding Number: DE-FOA-0001329 Funding...

  8. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  9. FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT

    E-Print Network [OSTI]

    Rock, Chris

    ....................................................................................................10 G. VALUE/FUNDING FOR DOE/NNSA NATIONAL LABORATORY CONTRACTORS AND NON-DOE/NNSA FFRDC CONTRACTORS

  10. Funding collection programs

    SciTech Connect (OSTI)

    Walsh, P.; Pferdehirt, W.; O'Leary, P. (Univ. of Wisconsin, Madison, WI (United States). Solid and Hazardous Waste Education Center)

    1993-10-01T23:59:59.000Z

    In principle, paying for waste management services should be easy. Each person should be responsible for paying for his or her share of waste management costs. The price paid should be based on the most equitable, most environmentally sound, and most efficient management method. Everyone knows that life is not that simple. In the real world, decisions about how to pay for waste management services are based upon a variety of factors, including cost, equity, administrative ease, legal restrictions, legislative policies and mandates, historic precedent, and politics. Communities and service providers need to carefully consider these and other factors in developing and implementing a funding approach. This chapter will describe the issues that communities and service providers must address in developing the best strategy for funding waste and recyclable collection programs.

  11. Demonstration and implementation of ethanol as an aviation fuel. Final report

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The objectives of the program were to demonstrate the viability of ethanol as an aviation fuel at appropriate locations and audiences in the participating Biomass Energy Program Regions, and to promote implementation projects in the area. Seven demonstrations were to be performed during the Summer 1995 through December 1996 period. To maximize the cost effectiveness of the program, additional corporate co-sponsorships were sought at each demonstration site and the travel schedule was arranged to take advantage of appropriate events taking place in the vicinity of the schedule events or enroute. This way, the original funded amount was stretched to cover another year of activities increasing the number of demonstrations from seven to thirty-nine. While the Renewable Aviation Fuels Development Center (RAFDC) contract focused on ethanol as an aviation fuel, RAFDC also promoted the broader use of ethanol as a transportation fuel. The paper summarizes locations and occasions, and gives a brief description of each demonstration/exhibit/presentation held during the term of the project. Most of the demonstrations took place at regularly scheduled air shows, such as the Oshkosh, Wisconsin Air Show. The paper also reviews current and future activities in the areas of certification, emission testing, the international Clean Airports Program, air pollution monitoring with instrumented aircraft powered by renewable fuels, training operation and pilot project on ethanol, turbine fuel research, and educational programs.

  12. Environmental analysis of biomass-ethanol facilities

    SciTech Connect (OSTI)

    Corbus, D.; Putsche, V.

    1995-12-01T23:59:59.000Z

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  13. Alternative Fuels Data Center: Ethanol Vehicle Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2North CarolinaE85:EthanolEthanolEthanol

  14. Ethanol Production, Distribution, and Use: Discussions on Key Issues (Presentation)

    SciTech Connect (OSTI)

    Harrow, G.

    2008-05-14T23:59:59.000Z

    From production to the environment, presentation discusses issues surrounding ethanol as a transportation fuel.

  15. U.S. Energy Situation, Ethanol, and Energy Policy

    E-Print Network [OSTI]

    Slide 1 U.S. Energy Situation, Ethanol, and Energy Policy Wally Tyner #12;Slide 2 Breakeven Corn and Crude Prices with Ethanol Priced on Energyand PremiumBases plus Ethanol Subsidy 0.00 10.00 20.00 30 #12;Slide 3 Breakeven Corn and Crude Prices with Ethanol Priced on Energyand PremiumBases plus

  16. Alternative Fuel Tool Kit How to Implement: Ethanol (E85)

    E-Print Network [OSTI]

    1 2.4.2014 Alternative Fuel Tool Kit How to Implement: Ethanol (E85) Contents Introduction is a renewable alternative transportation fuel blend of gasoline and ethanol. Ethanol (C2H5OH, a.k.a. ethyl matter. The E85 ethanol blend is a low carbon, clean-burning, high-octane fuel, and a versatile solvent

  17. Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines

    E-Print Network [OSTI]

    Minnesota, University of

    Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines Ethanol continuedOber 2013 Catalystcts.umn.edu Nearly all corn-based ethanol produced in the United States is anhydrous processes required to remove the water from ethanol consume a great deal of energy. Researchers from

  18. Ethanol Tolerance Caused by slowpoke Induction in Drosophila

    E-Print Network [OSTI]

    Atkinson, Nigel

    Ethanol Tolerance Caused by slowpoke Induction in Drosophila Roshani B. Cowmeadow, Harish R in the ethanol response. Caenorhabditis elegans carrying mutations in this gene have altered ethanol sensitivity and Drosophila mutant for this gene are unable to acquire rapid tolerance to ethanol or anesthetics

  19. Treatment of biomass to obtain ethanol

    DOE Patents [OSTI]

    Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

    2011-08-16T23:59:59.000Z

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  20. QER- Comment of ND Ethanol Council

    Broader source: Energy.gov [DOE]

    To whom it may concern, Attached please find comments from the North Dakota Ethanol Council regarding infrastructure constraints in preparation for the OER Public Meeting, which will be held in Bismarck, N.D., on August 8. Sincerely, Deana Wies

  1. Natural Gas Ethanol Flex-Fuel

    E-Print Network [OSTI]

    Natural Gas Propane Electric Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2012 . . . . . . . . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . . . . . . . . 5 Compressed Natural Gas and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane

  2. Market penetration of biodiesel and ethanol

    E-Print Network [OSTI]

    Szulczyk, Kenneth Ray

    2007-09-17T23:59:59.000Z

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence...

  3. Commercial ethanol production and marketing on a large scale

    SciTech Connect (OSTI)

    Stuenkel, A.E.

    1983-06-01T23:59:59.000Z

    Ethanol use has advanced because of its ability to increase gasoline octane ratings. The recent oil glut, and price decline, will affect the ethanol industry. Yet the country needs the ethanol industry to complement current efforts to eliminate projected grain surpluses. State incentives must be standardized, to provide marketing consistency. At present, ethanol is the only octane enhancer not commanding its true value. Ethanol is more effective than MTBE, Toluene, or TBA, and must take its place beside these enhancers on the market.

  4. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect (OSTI)

    M. Clark Dale

    2006-10-30T23:59:59.000Z

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  5. Biological production of ethanol from coal

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Research is continuing in an attempt to increase both the ethanol concentration and product ratio using C. ljungdahlii. The purpose of this report is to present data utilizing a medium prepared especially for C. ljungdahlii. Medium development studies are presented, as well as reactor studies with the new medium in batch reactors. CSTRs and CSTRs with cell recycle. The use of this new medium has resulted in significant improvements in cell concentration, ethanol concentration and product ratio.

  6. Funding for IGPPS Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities High EnergyFunding for

  7. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes

    E-Print Network [OSTI]

    Saxena, Priyank

    2007-01-01T23:59:59.000Z

    of ethanol, isobutene and MTBE: Experiments and modeling”,of ethanol, isobutene and MTBE: Experiments and modeling”,of ethanol, isobutene and MTBE: Experiments and modeling”,

  8. Length of Stay Following Trauma is not Affected by Ethnicity When Controlled for Ethanol Intoxication

    E-Print Network [OSTI]

    Mangum, Craig; LoVecchio, Frank; Mathieson, Kathleen

    2007-01-01T23:59:59.000Z

    When Controlled for Ethanol Intoxication Craig Mangum, MD;properly controlled for ethanol and drug intoxication. Wepatients, controlling for ethanol intoxication. Methods:

  9. The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation

    E-Print Network [OSTI]

    Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

    2009-01-01T23:59:59.000Z

    key to unlocking low-cost cellulosic ethanol. 2(1):26-40.1995 19941216. Commercial ethanol production process.facility and commercial ethanol production process.

  10. Brain reward deficits accompany withdrawal (hangover) from acute ethanol in rats

    E-Print Network [OSTI]

    Schulteis, Gery; Liu, Jian

    2006-01-01T23:59:59.000Z

    stimulation reward: effects of ethanol. Alcohol Clin Exp Resstimulus produced by ethanol withdrawal. J Pharmacol Expthe "anxiogenic" response to ethanol withdrawal in the rat.

  11. PROCESS DEVELOPMENT STUDIES ON THE BIOCONVERSION OF CELLULOSE AND PRODUCTION OF ETHANOL

    E-Print Network [OSTI]

    Wilke, Charles R.

    2012-01-01T23:59:59.000Z

    13 Javier Perez I II. ETHANOL FERMENTATION STUDIES A. B.Development Studies of Ethanol Production--------------- 19of Cellulose and Production of Ethanol." (June 1979) and (b)

  12. PROCESS DEVELOPMENT STUDIES ON THE BIOCONVERSION OF CELLULOSE AND PRODUCTION OF ETHANOL

    E-Print Network [OSTI]

    Wilke, Charles R.

    2011-01-01T23:59:59.000Z

    60,700 ETHANOL RECOVERY Dist. Column CondenserF2 Steam Exchanger Ethanol Absorber 10 ft. diameter. 38Cellulose and Production of Ethanol," Progress Report, LBL-

  13. PROCESS DEVELOPMENT STUDIES ON THE BIOCONVERSION OF CELLULOSE AND PRODUCTION OF ETHANOL

    E-Print Network [OSTI]

    Wilke, C.R.

    2011-01-01T23:59:59.000Z

    BIOCONVERSION TO SUGARS AND ETHANOL BERKELEY PROGRAM--JulyXylose Fermentation to Ethanol (a) (b) Fusarium oxysporum (OF CELLULOSE AND PRODUCTION OF ETHANOL under auspices of

  14. PILOT PLANT STUDIES OF THE BIOCONVERSION OF CELLULOSE AND PRODUCTION OF ETHANOL

    E-Print Network [OSTI]

    Wilke, C.R.

    2010-01-01T23:59:59.000Z

    5 EthanolBazua, D.C. and C.R. Wilke, "Ethanol Effects on the Kineticsto the Production of Ethanol, LBL-5963. (Submitted to

  15. PROCESS DEVELOPMENT STUDIES ON THE BIOCONVERSION OF CELLULOSE AND PRODUCTION OF ETHANOL

    E-Print Network [OSTI]

    Wilke, C.R.

    2011-01-01T23:59:59.000Z

    EthanolOf Cellulose And Production Of Ethanol I Charles R. WilkeCELLULOSE AND PRODUCTION OF ETHANOL under auspices of U.S.

  16. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes

    E-Print Network [OSTI]

    Saxena, Priyank

    2007-01-01T23:59:59.000Z

    High-temperature oxidation of ethanol. Part 2. -Kineticof high-temperature ethanol ignition”, Soviet Journal ofKinetic modeling of ethanol pyrolysis and combustion”,

  17. The effects of caffeine, nicotine, ethanol, and tetrahydrocannabinol on exercise performance

    E-Print Network [OSTI]

    Pesta, Dominik H; Angadi, Siddhartha S; Burtscher, Martin; Roberts, Christian K

    2013-01-01T23:59:59.000Z

    Alvarez AI: Effect of chronic ethanol ingestion and exerciseR, Urbano-Marquez A: Acute ethanol treatment decreasesA: Comparative effects of ethanol, acetaldehyde and acetate

  18. The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation

    E-Print Network [OSTI]

    Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

    2009-01-01T23:59:59.000Z

    1982 19801205. Ethanol and fuel product production.The first generation fuel ethanol is derived from starch andfor bioconversion to fuel ethanol because it not only

  19. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes

    E-Print Network [OSTI]

    Saxena, Priyank

    2007-01-01T23:59:59.000Z

    was used to vaporize ethanol fuel. The vaporizer wasmixture of the evaporated ethanol fuel and the nitrogen gas.premixed flames of ethanol and other fuels for comparison

  20. Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell

    E-Print Network [OSTI]

    Zhao, Tianshou

    Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell S and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China a r t i c l e i n f o Article history: Received 26 carbon supported PtRh catalysts and compare their catalytic activities with that of Pt/C in alkaline

  1. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOE Patents [OSTI]

    Oulman, Charles S. [Ames, IA; Chriswell, Colin D. [Slater, IA

    1981-07-07T23:59:59.000Z

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%.

  2. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOE Patents [OSTI]

    Oulman, C.S.; Chriswell, C.D.

    1981-07-07T23:59:59.000Z

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%. 5 figs.

  3. Financial Assistance Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    Funding Opportunity Announcement (FOA) for the initial Weatherization Innovation Pilot Program grant, issued in April 2010 and closed in June 2010.

  4. Renewable Energy Resources Trust Fund

    Broader source: Energy.gov [DOE]

    Illinois's 1997 electric-industry restructuring legislation created separate public benefits funds that support renewable energy and residential [http://www.dsireusa.org/library/includes/incentive2...

  5. Clean Energy Development Fund (CEDF)

    Broader source: Energy.gov [DOE]

    NOTE: The Vermont Clean Energy Development Fund has issued its Five Year Strategic Plan. See the web site for details.

  6. Energy Efficiency Investment Fund Rebates

    Broader source: Energy.gov [DOE]

    Specific efficiency requirements for rebates are available at  the Energy Efficiency Investment Fund Website in applications for Lighting and Lighting Control Rebates, Natural Gas and Water Heati...

  7. Economic Development Fund (New York)

    Broader source: Energy.gov [DOE]

    Empire State Development operates the Economic Development Fund, which offers financial assistance to businesses that create or retain business activity and jobs. The program can provide financing...

  8. Go Green Fund (Saskatchewan, Canada)

    Broader source: Energy.gov [DOE]

    The Go Green Fund is a financial commitment from the Government of Saskatchewan to assist Saskatchewan's people, communities, non-government organizations and businesses address the province's most...

  9. Industrial Development Fund (North Carolina)

    Broader source: Energy.gov [DOE]

    The Industrial Development Fund provides financing grants and loans through designated municipalities and counties to assist in infrastructure improvements for targeted industrial projects. The...

  10. Biological production of ethanol from coal

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  11. An Indirect Route for Ethanol Production

    SciTech Connect (OSTI)

    Eggeman, T.; Verser, D.; Weber, E.

    2005-04-29T23:59:59.000Z

    The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

  12. NON-UNIVERSITY FUNDING A non-University funding request is defined as any funds requested from an organization, business,

    E-Print Network [OSTI]

    Stuart, Steven J.

    NON-UNIVERSITY FUNDING A non-University funding request is defined as any funds requested from@clemson.edu. Procedures 1. Recognized student organizations seeking non-university funding of more than $1 reflects the proper funds. All University and state spending guidelines must be followed. The Annual Giving

  13. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  14. Ethanol India | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources JumpVermont:Extraction Technologies

  15. Evaluation of sweet sorghum as a potential ethanol crop in Mississippi

    SciTech Connect (OSTI)

    Horton, David Scott

    2011-08-01T23:59:59.000Z

    Petroleum prices have made alternative fuel crops a viable option for ethanol production. Sweet sorghum [Sorghum bicolor] is a non-food crop that may produce large quantities of ethanol with minimal inputs. Eleven cultivars were planted in 2008 and 2009 as a half-season crop. Four-row plots 6.9 m by 0.5 m, were monitored bimonthly for ���°Brix, height, and sugar accumulation. Yield and extractable sap were taken at the end of season. Stalk yield was greatest for the cultivar Sugar Top (4945 kg ha-1) and lowest for Simon (1054 kg ha-1). Dale ranked highest ethanol output (807 L ha-1) while Simon (123 L ha-1) is the lowest. All cultivars peak Brix accumulation occurs in early October. Individual sugar concentrations indicated sucrose is the predominant sugar with glucose and fructose levels dependent on cultivar. Supplemental ethanol in fermented wort was the best preservative tested to halt degradation of sorghum wort.

  16. Evaluation of antioxidative/antimicrobial potential of Oriental nutraceutical herb extracts in raw and cooked goat meat and beef products

    E-Print Network [OSTI]

    Han, Jaejoon

    2001-01-01T23:59:59.000Z

    aureus, and Pseudomonas fluorescens. Oh and others (1998) reported that ethanol extracts from Coptis chinesis, Crataegus pinnatifila, Thuja orientalis, and Acorus graminens showed strong antimicrobial activities against both gram-positive and gram...

  17. Method and system for ethanol production

    DOE Patents [OSTI]

    Feder, Harold M. (Darien, IL); Chen, Michael J. (Darien, IL)

    1983-01-01T23:59:59.000Z

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

  18. Method and system for ethanol production

    DOE Patents [OSTI]

    Feder, H.M.; Chen, M.J.

    1980-05-21T23:59:59.000Z

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by-product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

  19. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    products, pharmaceuticals, ethanol fuel and more. Even so,Bacteria engineered for fuel ethanol production: currentethanol production, the advances are applicable to the production of a variety of fuel

  20. Investigation of the Photocatalytic Degradation of Ethanol and Acetone 

    E-Print Network [OSTI]

    Liu, Y.; Ding, B.; Dong, S.

    2006-01-01T23:59:59.000Z

    In-situ transmission Fourier-transform infrared spectroscopy has been used to study the photocatalytic oxidation of acetone, ethanol and the interaction between acetone and ethanol. Compared with the degradation of acetone alone, it cannot...

  1. CODED SPECTROSCOPY FOR ETHANOL DETECTION IN DIFFUSE, FLUORESCENT MEDIA

    E-Print Network [OSTI]

    ABSTRACT CODED SPECTROSCOPY FOR ETHANOL DETECTION IN DIFFUSE, FLUORESCENT MEDIA by Scott Thomas Mc FOR ETHANOL DETECTION IN DIFFUSE, FLUORESCENT MEDIA by Scott Thomas McCain Department of Electrical

  2. Renewable Fuels Association’s National Ethanol Conference

    Broader source: Energy.gov [DOE]

    Mark Elless, a BETO technology manager, will be representing BETO at the 20th anniversary of the National Ethanol Conference.

  3. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects.

  4. Research Advances Cellulosic Ethanol, NREL Leads the Way (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2007-03-01T23:59:59.000Z

    This brochure highlights NREL's recent advances in cellulosic ethanol production. Research at NREL addresses both biochemical and thermochemical processes.

  5. Clean Cities: Ethanol Basics, Fact Sheet, October 2008

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    Document answers frequently asked questions about ethanol as a transportation fuel, including those on production, environmental effects, and vehicles.

  6. The Limits of Hedge Fund Activism

    E-Print Network [OSTI]

    Thompson, Robert

    2006-01-01T23:59:59.000Z

    is the most Robert B. Thompson & Randall S. Thomas, The NewFund Activism Robert B. Thompson New York Alumni Chancellor’Fund Activism Robert B. Thompson ? Hedge funds dominate

  7. The Renewable Fuel Standard and Ethanol Pricing: A Sensitivity Analysis

    E-Print Network [OSTI]

    McNair, Robert

    2014-04-18T23:59:59.000Z

    of biofuel. The current Renewable Fuel Standard (RFS) requires 36 billion gallons of renewable fuel use by 2022. A large proportion of the mandate is to consist of corn-based ethanol. Most ethanol is consumed in the U.S. as a 10 percent blend of ethanol...

  8. Ethanol Production and Gasoline Prices: A Spurious Correlation

    E-Print Network [OSTI]

    Rothman, Daniel

    Ethanol Production and Gasoline Prices: A Spurious Correlation Christopher R. Knittel and Aaron proponents of ethanol have argued that ethanol production greatly lowers gasoline prices, with one industry group claiming it reduced gasoline prices by 89 cents in 2010 and $1.09 in 2011. The estimates have been

  9. GUV formation protocol: -Ethanol, DI water and Kimwipes for cleaning

    E-Print Network [OSTI]

    Movileanu, Liviu

    GUV formation protocol: Materials: - Ethanol, DI water and Kimwipes for cleaning - 5-10 µl glass with ethanol and DI water using Kimwipes alternating the solvents at least twice to make sure any grease-ring using a Kimwipe and ethanol. Use Que-tip or grease slide to apply a thin layer of vacuum grease to one

  10. Mouse inbred strain differences in ethanol drinking to intoxication

    E-Print Network [OSTI]

    Garland Jr., Theodore

    Mouse inbred strain differences in ethanol drinking to intoxication J. S. Rhodes*, , M. M. Ford , C described a simple procedure, Drinking in the Dark (DID), in which C57BL/6J mice self-administer ethanol to a blood ethanol concentration (BEC) above 1 mg/ml. The test consists of replacing the water with 20

  11. UNL Researchers Determine Costs of Producing Switchgrass for Ethanol

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    UNL Researchers Determine Costs of Producing Switchgrass for Ethanol By Sandi Alswager Karstens, IANR News Service On-farm cost of producing switchgrass for cellulosic ethanol averages about $60 per ethanol from switchgrass because that industry is not really born yet." Researchers offered a speculative

  12. ORIGINAL ARTICLE Utilization of diets containing graded levels of ethanol

    E-Print Network [OSTI]

    to manufacture fuel ethanol (Rosentrater and Muthukumarappan, 2006). In 2008, 174 operating ethanol plantsORIGINAL ARTICLE Utilization of diets containing graded levels of ethanol production co-Pascual, 2000), fuel-based DDGS are a co-product of dry mill pro- cessing, where primarily corn is used

  13. What is (and is not) vital to advancing cellulosic ethanol

    E-Print Network [OSTI]

    California at Riverside, University of

    to many, the uniqueness of cellu- losic ethanol as a sustainable, liquid transportation fuel, which canWhat is (and is not) vital to advancing cellulosic ethanol Charles E. Wyman Chemical of Engineering, University of California, Riverside, CA 92506, USA Ethanol made biologically from cellulosic

  14. Ethanol Can Contribute to Energy and Environmental Goals

    E-Print Network [OSTI]

    Kammen, Daniel M.

    the potential effects of increased biofuel use, we evaluated six representative analyses of fuel ethanol that large-scale use of ethanol for fuel will almost certainly require cellulosic technology. E nergy in the future because of two federal policies: a /0.51 tax credit per gallon of ethanol used as motor fuel

  15. RESEARCH Open Access Simultaneous cell growth and ethanol production

    E-Print Network [OSTI]

    Chen, Wilfred

    RESEARCH Open Access Simultaneous cell growth and ethanol production from cellulose steps to their practical usage for ethanol production. Ideally, a recombinant microorganism, possessing the capability to utilize cellulose for simultaneous growth and ethanol production, is of great interest. We have

  16. Modified Dry Grind Ethanol Process Vijay Singh1

    E-Print Network [OSTI]

    Modified Dry Grind Ethanol Process Vijay Singh1 , Kent D. Rausch1 *, Ping Yang2 , Hosein Shapouri3-265-0697). #12;Modified Dry Grind Ethanol Process ­ University of Illinois 2 Table of Contents 1. Introductory.....................................................................................................7 3.2. Dry Grind Ethanol

  17. Original article Ethanol and acetic-acid tolerances

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Ethanol and acetic-acid tolerances in Drosophila melanogaster: similar maternal) Summary - Ethanol and acetic-acid tolerances were studied in a cross between 2 geo- graphic races disappeared in the F2. Further investigations demonstrated that for ethanol tolerance, the large difference

  18. Original article Ethanol and acetic-acid tolerance

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Ethanol and acetic-acid tolerance in Indian geographical populations of Drosophila clines of ethanol toler- ance (1.5-4.2%) and acetic-acid tolerance (2.9-4.9%) were observed in adult individuals of 4 geographical populations of Drosophila immigrans. Thus, both ethanol and acetic

  19. ORIGINAL INVESTIGATION Inhibition of phosphodiesterase-4 decreases ethanol intake

    E-Print Network [OSTI]

    ORIGINAL INVESTIGATION Inhibition of phosphodiesterase-4 decreases ethanol intake in mice Wei Hu Rationale Cyclic AMP (cAMP)­protein kinase A signal- ing has been implicated in the regulation of ethanol intracellular cAMP levels in the brain. However, the role of PDE4 in ethanol consumption remains unknown

  20. LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL

    E-Print Network [OSTI]

    Boyer, Edmond

    1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 , R. Bounaceur1 , H. Le Gall1 , A. Pires da Cruz2 , A. The influence of ethanol as an oxygenated additive has been investigated for these two fuels and has been found

  1. Energy Analysis of the Corn-Ethanol Biofuel Cycle

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Energy Analysis of the Corn-Ethanol Biofuel Cycle First Draft Tad W. Patzek Department of Civil legitimately ask: Why do the various energy balances of the corn-ethanol cycle still differ so much? Why do some authors claim that the corn-ethanol cycle has a positive net energy balance (Wang et al., 1997

  2. EA-1694: Department of Energy Loan Guarantee to Highlands Ethanol, LLC, for the Cellulosic Ethanol Facility in Highlands County, Florida

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal to issue a Federal loan guarantee to Highlands Ethanol, LLC, for a cellulosic ethanol facility in Highlands County, Florida. This EA is on hold.

  3. U.S. Ethanol Policy: The Unintended

    E-Print Network [OSTI]

    Meagher, Mary

    petroleum and to cut greenhouse gas emissions. A new blend of ethanol and conventional gasoline was to cost consequences of the policy, especially those influencing world food prices, are negative and far outweigh, four intended conse- quences would result: 1) the American motorist would see low- er prices

  4. Ethanol production in gram-positive microbes

    DOE Patents [OSTI]

    Ingram, Lonnie O'Neal (Gainesville, FL); Barbosa-Alleyne, Maria D. F. (Gainesville, FL)

    1999-01-01T23:59:59.000Z

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  5. Ethanol production in Gram-positive microbes

    DOE Patents [OSTI]

    Ingram, Lonnie O'Neal (Gainesville, FL); Barbosa-Alleyne, Maria D. F. (Gainesville, FL)

    1996-01-01T23:59:59.000Z

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  6. Ethanol production in Gram-positive microbes

    DOE Patents [OSTI]

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1999-06-29T23:59:59.000Z

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  7. Identifying Decomposition Products in Extracts of Cellular Metabolites

    E-Print Network [OSTI]

    Rabinowitz, Joshua D.

    with methanol:water, cold temperature and a high methanol fraction minimizes artifacts due to metabolite the efficiency of extracting E. coli with boiling ethanol:water, cold versus hot methanol:water, and perchloric Escherichia coli with different methanol:water mixtures, we observed that 50% water gave increased yield

  8. Renewable Energy Jobs Fund (Manitoba, Canada)

    Broader source: Energy.gov [DOE]

    To maximize the economic benefits of hydro investment and other renewable energy projects, Manitoba is establishing a new Energy Jobs Fund. The fund will assist companies manufacturing equipment...

  9. Funding Opportunity Announcement: CSP: Concentrating Optics for...

    Broader source: Energy.gov (indexed) [DOE]

    the 2012 SunShot CSP Research and Development funding program, the CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS) funding program seeks to further CSP...

  10. Department of Energy Issues Funding Opportunity Announcements...

    Energy Savers [EERE]

    Funding Opportunity Announcements to Enhance Nuclear Energy Education Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education March 24,...

  11. Funding Opportunity Announcement: Recovery Act ? Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In the event funds are not obligatedcommitted within eighteen (18) months, DOE reserves the right to deobligate the funds and cancel the award. PROGRAM PRINCIPLES DOE has...

  12. City of Columbus- Green Columbus Fund

    Broader source: Energy.gov [DOE]

    The Green Columbus Fund incentivizes sustainable development and redevelopment in Columbus, Ohio. The Fund reimburses private and non-profit developers the application fee for the Green Building...

  13. Webinar: Systems Performance Advancement II Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Systems Performance Advancement II Funding Opportunity Announcement Webinar: Systems Performance Advancement II Funding Opportunity Announcement January 22, 2015 2:00PM to...

  14. Isothermal vapor-liquid equilibria for methanol + ethanol + water, methanol + water, and ethanol + water

    SciTech Connect (OSTI)

    Kurihara, Kiyofumi; Takeda, Kouichi; Kojima, Kazuo [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry; Minoura, Tsuyoshi [Mitui Engineering and Shipbuilding Co., Ltd., Tokyo (Japan)

    1995-05-01T23:59:59.000Z

    Isothermal vapor-liquid equilibria were measured for the ternary system methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. The apparatus that was used made it possible to control the measured temperature and total pressure by computer. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

  15. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOE Patents [OSTI]

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14T23:59:59.000Z

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  16. Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content on the lifespan and maximum length of benzene plumes Diego E. Gomez1 and Pedro 10 March 2009. [1] A numerical model was used to evaluate how the concentration of ethanol

  17. What Do We Know About Ethanol and Alkylates as Pollutants?

    SciTech Connect (OSTI)

    Rich, D W; Marchetti, A A; Buscheck, T; Layton, D W

    2001-05-11T23:59:59.000Z

    Gov. Davis issued Executive Order D-5-99 in March 1999 calling for removal of methyl tertiary butyl ether (MTBE) from gasoline no later than December 31, 2002. The Executive Order required the California Air Board, State Water Resources Control Board (SWRCB) and Office of Environmental Health Hazard Assessment (OEHHA) to prepare an analysis of potential impacts and health risks that may be associated with the use of ethanol as a fuel oxygenate. The SWRCB contracted with the Lawrence Livermore National Laboratory (LLNL) to lead a team of researchers, including scientists from Clarkson University, University of Iowa, and University of California, Davis, in evaluating the potential ground and surface water impacts that may occur if ethanol is used to replace MTBE. These findings are reported in the document entitled Health and Environmental Assessment of the Use of Ethanol as a Fuel Oxygenate. This document has been peer reviewed and presented to the California Environmental Policy Council and may be viewed at: http://www-erd.llnl.gov/ethanol/. Ethanol used for fuels is made primarily from grains, but any feed stock containing sugar, starch, or cellulose can be fermented to ethanol. Ethanol contains 34.7% oxygen by weight. It is less dense than water, but infinitely soluble in water. Ethanol vapors are denser than air. One and a half gallons of ethanol have the same energy as one gallon of gasoline. Pure fuel ethanol, and gasoline with ethanol, conducts electricity, while gasoline without ethanol is an insulator. Corrosion and compatibility of materials is an issue with the storage of pure ethanol and gasoline with high percentages of ethanol, but these issues are less important if gasoline with less than 10% ethanol is used.

  18. Voluntary Solar Resource Development Fund

    Broader source: Energy.gov [DOE]

    The fund will be used to provide loans for residential, commercial, or nonprofit solar energy projects. Qualifying solar energy projects cannot be acquired, installed or operating before July 1, ...

  19. Recovery Act Funds at Work

    Broader source: Energy.gov [DOE]

    Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Here are case studies from a variety of Recovery Act programs.

  20. Economic Development Loan Fund (Virginia)

    Broader source: Energy.gov [DOE]

    The Economic Development Loan Fund helps to fill the financing gap between private debt financing and private equity. Up to $1 million is available for each project and can be used for the...

  1. Big Sky Trust Fund (Montana)

    Broader source: Energy.gov [DOE]

    The Big Sky Trust Fund reimburses expenses incurred in the purchase, leasing, or relocation of real assets for direct use of the assisted business or employee training costs. A local or tribal...

  2. Final Report on Development of Thermoanaerobacterium saccharolyticum for the conversion of lignocellulose to ethanol

    SciTech Connect (OSTI)

    Herring, Christopher D.; Kenealy, William R.; Shaw, A. Joe; Raman, Babu; Tschaplinski, Timothy J.; Brown, Steven D.; Davison, Brian H.; Covalla, Sean F.; Sillers, W. Ryan; Xu, Haowen; Tsakraklides, Vasiliki; Hogsett, David A.

    2012-01-24T23:59:59.000Z

    This project addressed the need for economical technology for the conversion of lignocellulosic biomass to fuels, specifically the conversion of pretreated hardwood to ethanol. The technology developed is a set of strains of the bacterium Thermoanaerobacterium saccharolyticum and an associated fermentation process for pretreated hardwood. Tools for genetic engineering and analysis of the organism were developed, including a markerless mutation method, a complete genome sequence and a set of gene expression profiles that show the activity of its genes under a variety of conditions relevant to lignocellulose conversion. Improved strains were generated by selection and genetic engineering to be able to produce higher amounts of ethanol (up to 70 g/L) and to be able to better tolerate inhibitory compounds from pretreated hardwood. Analysis of these strains has generated useful insight into the genetic basis for desired properties of biofuel producing organisms. Fermentation conditions were tested and optimized to achieve ethanol production targets established in the original project proposal. The approach proposed was to add cellulase enzymes to the fermentation, a method called Simultaneous Saccharification and Fermentation (SSF). We had reason to think SSF would be an efficient approach because the optimal temperature and pH for the enzymes and bacterium are very close. Unfortunately, we discovered that commercially available cellulases are inactivated in thermophilic SSF by a combination of low redox potential and ethanol. Despite this, progress was made against the fermentation targets using bacterial cellulases. Thermoanaerobacterium saccharolyticum may still prove to be a commercially viable technology should cellulase enzyme issues be addressed. Moreover, the organism was demonstrated to produce ethanol at approximately theoretical yield from oligomeric hemicellulose extracts, an ability that may prove to be uniquely valuable in pretreatment configurations in which cellulose and hemicellulose are separated.

  3. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect (OSTI)

    Sun, Junming; Wang, Yong

    2014-04-30T23:59:59.000Z

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  4. NREL Proves Cellulosic Ethanol Can Be Cost Competitive (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    Ethanol from non-food sources - known as "cellulosic ethanol" - is a near-perfect transportation fuel: it is clean, domestic, abundant, and renewable, and it can potentially replace 30% of the petroleum consumed in the United States, but its relatively high cost has limited its market. That changed in 2012, when the National Renewable Energy Laboratory (NREL) demonstrated the technical advances needed to produce cellulosic ethanol at a minimum ethanol selling price of $2.15/gallon (in 2007 dollars). Through a multi-year research project involving private industry, NREL has proven that cellulosic ethanol can be cost competitive with other transportation fuels.

  5. Surface-induced anisotropic orientations of interfacial ethanol molecules at air/sapphire (1-102) and ethanol/sapphire (1-102) interfaces

    E-Print Network [OSTI]

    Sung, J.

    2013-01-01T23:59:59.000Z

    SSP-SFVS spectra of the ethanol liquid/? -Al 2 O 3 ( 1102 )In Ref. 7, ? for the first ethanol monolayer was assumed toassumptions led to results on ethanol bilayers different

  6. University of Utah PETTY CASH FUND

    E-Print Network [OSTI]

    University of Utah PETTY CASH FUND REQUEST/CHANGE FORM INSTRUCTIONS: To request a creation of a NEW-21 of the University Policy and Procedures Manual, and hereby approve issuance of a petty cash fund to the above named PETTY CASH FUND, complete sections 1, 2, & 4 below. To MAKE CHANGES to an existing petty cash fund

  7. University of Pittsburgh Residual Funds on

    E-Print Network [OSTI]

    Sibille, Etienne

    University of Pittsburgh Residual Funds on FINANCIAL GUIDELINE Subject: Sponsored Projects I by the sponsor. Funds cannot be unilaterally retained by the University. Failure to return residual funds related funds on sponsored grants and contracts on the financial accounting records of the University

  8. OLD DOMINION UNIVERSITY IJIU FACULTY CONFERENCE FUNDS

    E-Print Network [OSTI]

    OLD DOMINION UNIVERSITY IJIU FACULTY CONFERENCE FUNDS The Institute for Jewish Studies and Interfaith Understanding announces the availability of funds to assist full-time faculty in defraying and lay the foundations for possible future endowed support of faculty research endeavors. FUNDING Funds

  9. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect (OSTI)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01T23:59:59.000Z

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  10. Fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  11. Oxygenates du`jour...MTBE? Ethanol? ETBE?

    SciTech Connect (OSTI)

    Wolfe, R.

    1995-12-31T23:59:59.000Z

    There are many different liquids that contain oxygen which could be blended into gasoline. The ones that have been tried and make the most sense are in the alcohol (R-OH) and ether (R-O-R) chemical family. The alcohols considered are: methanol (MeOH), ethanol (EtOH), tertiary butyl alcohol (TBA). The ethers are: methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary amyl ethyl ether (TAEE), di-isopropyl ether (DIPE). Of the eight oxygenates listed above, the author describes the five that are still waiting for widespread marketing acceptance (methanol, TBA, TAME, TAEE, and DIPE). He then discusses the two most widely used oxygenates in the US, MTBE and ethanol, along with the up-and-coming ethanol ether, ETBE. Selected physical properties for all of these oxygenates can be found in Table 2 at the end of this paper. A figure shows a simplified alcohol/ether production flow chart for the oxygenates listed above and how they are interrelated.

  12. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome

    E-Print Network [OSTI]

    Goyal, Garima; Tsai, Shen-Long; Madan, Bhawna; DaSilva, Nancy A; Chen, Wilfred

    2011-01-01T23:59:59.000Z

    Cellulase, clostridia, and ethanol. Microbiol Mol Biol RevNext- generation cellulosic ethanol technologies and theirProduction of cellulosic ethanol in Saccharomyces cerevisiae

  13. Analysis of Metabolic Pathways and Fluxes in a Newly Discovered Thermophilic and Ethanol-Tolerant Geobacillus Strain

    E-Print Network [OSTI]

    Tang, Yinjie J.

    2009-01-01T23:59:59.000Z

    Bacteria engineered for fuel ethanol production: currentcharacterization of two novel ethanol-tolerant facultative-Lin Y, Tanaka S. 2006. Ethanol fermentation from biomass

  14. Direct Use of Wet Ethanol in a Homogeneous Charge Compression Ignition (HCCI) Engine: Experimental and Numerical Results

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L; Aceves, Salvador M; Dibble, Robert W

    2007-01-01T23:59:59.000Z

    The energy balance of corn ethanol revisited, Transaction offor autoignition. The wet ethanol modeling study [REF] usedengine running on wet ethanol. Fuel mixtures studied range

  15. Production of ethanol from refinery waste gases. Phase 3. Engineering development. Annual report, April 1, 1995--May 15, 1996

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C; Gaddy, J.L.

    1996-11-01T23:59:59.000Z

    Refineries discharge large volumes of H2, CO, and CO 2 from cracking, coking, and hydrotreating operations. This R&D program seeks to develop, demonstrate, and commercialize a biological process for converting these waste gases into ethanol for blending with gasoline. A 200,000 BPD refinery could produce up to 38 million gallons ethanol per year. The program is being conducted in 3 phases: II, technology development; III, engineering development; and IV, demonstration. Phase I, exploratory development, has been completed. The research effort has yielded two strains (Isolates O-52 and C-01) which are to be used in the pilot studies to produce ethanol from CO, CO2, and H2 in petroleum waste gas. Results from single continuous stirred tank reactor (CSTR) laboratory tests have shown that 20-25 g/L ethanol can be produced with < 5 g/L acetic acid byproduct. Laboratory studies with two CSTRs in series have yielded ethanol concentrations of 30-35 g/L with 2-4 g/L acetic acid byproduct. Water recycle from distillation back to the fermenter shows that filtration of the water before distillation eliminates the recycle of toxic materials back to the fermenter. Product recovery in the process will use direct distillation to the azeotrope, followed by adsorption to produce neat ethanol. This is less energy intensive than e.g. solvent extraction, azeotropic distillation, or pervaporation. Economic projections are quite attractive; the economics are refinery stream dependent and thus vary depending on refinery location and operation.

  16. Direct Ethanol Fuel Cells: Platinum/Rhodium Anode

    E-Print Network [OSTI]

    Petta, Jason

    Direct Ethanol Fuel Cells: Platinum/Rhodium Anode Catalysis Ken Ellis-Guardiola PCCM REU 2010 #12 EtOH+3H2O 12H+ +2CO2+ 12e- Pt C 4H+ + 4e- + O2 2H2O O2 Anode Cathode The Direct Ethanol Fuel Cell #12 Fuel Cell Test ~ 1.5 mg Pt loading. 1.0 M Ethanol flowing at 1 ml/min. O2 flowing at 100 ml/min. Cells

  17. Wet Gasification of Ethanol Residue: A Preliminary Assessment

    SciTech Connect (OSTI)

    Brown, Michael D.; Elliott, Douglas C.

    2008-09-22T23:59:59.000Z

    A preliminary technoeconomic assessment has been made of several options for the application of catalytic hydrothermal gasification (wet gasification) to ethanol processing residues.

  18. Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425...

    Energy Savers [EERE]

    merit08west.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Measurement and Characterization of Unregulated Emissions from Advanced Technologies...

  19. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    117 Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated February 2009 Prepared by Keith Knoll Brian West Wendy Clark...

  20. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    costs and benefits of biodiesel and ethanol biofuels. Proc.187 24 Fukuda, H. et al. (2001) Biodiesel fuel production by26 Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol.

  1. aqueous ethanolic leaf: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Page Last Page Topic Index 1 Polymeric Assembly of Gluten Proteins in an Aqueous Ethanol Solvent Condensed Matter (arXiv) Summary: The supramolecular organization of wheat...

  2. Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    and US06, transient accelerations plus steady state * Fuels: Gasoline and intermediate ethanol blends (E0, E10, E20) * Measurements: - Particle mass: collection on Teflon-coated...

  3. Lignocellulosic Biomass to Ethanol Process Design and Economics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * * * * June 2002 * NRELTP-510-32438 Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for...

  4. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J.L.

    2011-01-01T23:59:59.000Z

    ethanol and plant-based biodiesel ( Box 1). Although bio-acid pathway Currently, biodiesel production uses plant oilsbeen developed for use as biodiesel. However, if biodiesel

  5. Extractant composition

    DOE Patents [OSTI]

    Smith, Barbara F. (Los Alamos, NM); Jarvinen, Gordon D. (Los Alamos, NM); Ryan, Robert R. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    An organic extracting solution useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  6. Low and intermediate temperature oxidation of ethanol and ethanol-PRF blends: An experimental and modeling study

    SciTech Connect (OSTI)

    Haas, Francis M.; Chaos, Marcos; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-12-15T23:59:59.000Z

    In this brief communication, we present new experimental species profile measurements for the low and intermediate temperature oxidation of ethanol under knock-prone conditions. These experiments show that ethanol exhibits no global low temperature reactivity at these conditions, although we note the heterogeneous decomposition of ethanol to ethylene and water. Similar behavior is reported for an E85 blend in n-heptane. Kinetic modeling results are presented to complement these experiments and elucidate the interaction of ethanol and primary reference fuels undergoing cooxidation. (author)

  7. Transportation risk assessment for ethanol transport

    E-Print Network [OSTI]

    Shelton Davis, Anecia Delaine

    2008-10-10T23:59:59.000Z

    Dawson 41 12 0 Lincoln 46 21 0 Keith 24 14 0 Deuel 21 8 1 Colorado Counties Sedgwick 7 2 0 Logan 14 5 0 Washington 9 2 0 Morgan 15 4 0 Weld 115 37 10 Adams 133 31 3 Jefferson 75 15 2 Clear Creek 24 3 3 Summit 36 13 2 Eagle 34 9 3 Garfield 33 9 1 Mesa 24... emissions. One effect of blending ethanol with gasoline is increasing the nation’s energy security by reducing reliance on foreign oil. According to the Energy Information Administration, in 2005 United States gasoline consumption was about 385 million...

  8. Transportation risk assessment for ethanol transport

    E-Print Network [OSTI]

    Shelton Davis, Anecia Delaine

    2009-05-15T23:59:59.000Z

    Dawson 41 12 0 Lincoln 46 21 0 Keith 24 14 0 Deuel 21 8 1 Colorado Counties Sedgwick 7 2 0 Logan 14 5 0 Washington 9 2 0 Morgan 15 4 0 Weld 115 37 10 Adams 133 31 3 Jefferson 75 15 2 Clear Creek 24 3 3 Summit 36 13 2 Eagle 34 9 3 Garfield 33 9 1 Mesa 24... emissions. One effect of blending ethanol with gasoline is increasing the nation?s energy security by reducing reliance on foreign oil. According to the Energy Information Administration, in 2005 United States gasoline consumption was about 385 million...

  9. Ethanol enhances collective dynamics of lipid membranes

    SciTech Connect (OSTI)

    Kaye, Martin D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada); Schmalzl, Karin [Juelich Centre for Neutron Science, Forschungszentrum Juelich, Outstation at ILL, F-38042 Grenoble Cedex 9 (France); Conti Nibali, Valeria [Dipartimento di Fisica, Universita degli Studi di Messina, I-98100 Messina (Italy); Tarek, Mounir [UMR 7565, Structure et Reactivite des Systemes Moleculaires Complexes, CNRS-Nancy University, F-54506 Vandoeuvre les Nancy (France); Rheinstaedter, Maikel C. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 Canada (Canada); Canadian Neutron Beam Centre, National Research Council Canada, Chalk River, Ontario, K0J 1J0 (Canada)

    2011-05-15T23:59:59.000Z

    From inelastic neutron-scattering experiments and all atom molecular dynamics simulations we present evidence for a low-energy dynamical mode in the fluid phase of a 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine (DMPC) bilayer immersed in a 5% water/ethanol solution. In addition to the well-known phonon that shows a liquidlike dispersion with energies up to 4.5 meV, we observe an additional mode at smaller energies of 0.8 meV, which shows little or no dispersion. Both modes show transverse properties and might be related to molecular motion perpendicular to the bilayer.

  10. NMR and NQR parameters of ethanol crystal

    E-Print Network [OSTI]

    Milinkovic, M

    2012-01-01T23:59:59.000Z

    Electric field gradients and chemical shielding tensors of the stable monoclinic crystal phase of ethanol are computed. The projector-augmented wave (PAW) and gauge-including projector-augmented wave (GIPAW) models in the periodic plane-wave density functional theory are used. The crystal data from X-ray measurements, as well as the structures where either all atomic, or only hydrogen atom positions are optimized in the density functional theory are analyzed. These structural models are also studied by including the semi-empirical Van der Waals correction to the density functional theory. Infrared spectra of these five crystal models are calculated.

  11. Ethanol Grain Processors LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:EmminolEntergyEnvisoryInformationEthanol 2000 Jump

  12. Ethanol Management Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:EmminolEntergyEnvisoryInformationEthanol 2000

  13. Western Ethanol Company LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, NewWestbrook, Minnesota:Western Ethanol Company LLC

  14. Prairie Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power Rental MarketEthanol LLC Jump to:

  15. Iowa Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:IESIntervalIosil EnergyIowaIowa Ethanol

  16. Kaapa Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACO GeraetetechnikKaapa Ethanol LLC

  17. Kansas Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida:KaneEthanol LLC Place: Lyons,

  18. Platte Valley Fuel Ethanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S APlataforma Itaipu deValley Fuel Ethanol

  19. Show Me Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPower Partners WindSherbinoShirleyMe Ethanol

  20. Sioux River Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPowerSilcioEthanol LLC Place: Hudson, South

  1. Center Ethanol Company LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang CorporationCenter Ethanol Company LLC Jump

  2. Gulf Ethanol Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy InformationGettopGuilford, Maine:AmbujaCounty,Ethanol

  3. Tharaldson Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to: navigation, search Name: Tharaldson

  4. Standard Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop,Lanka-DLRStandard Ethanol LLC Jump to:

  5. Sterling Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop,Lanka-DLRStandardStaxeraEthanol LLC Jump to:

  6. Alternative Fuels Data Center: Ethanol Blends

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean Cities ReflectsElectricityEthanol Blends to

  7. Alternative Fuels Data Center: Ethanol Feedstocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean Cities ReflectsElectricityEthanol Blends

  8. Alternative Fuels Data Center: Ethanol Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean CitiesStation Locations to someone byEthanol

  9. Atlantic Ethanol Capital | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation, search Name:Ethanol Capital Jump to:

  10. Alternative Fuels Data Center: Ethanol Fuel Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2North CarolinaE85:Ethanol Benefits

  11. Alternative Fuels Data Center: Ethanol Fueling Stations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2North CarolinaE85:Ethanol

  12. Blue Flint Ethanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |Bleckley County,Minnesota:OpenFlint Ethanol Place:

  13. High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells

    E-Print Network [OSTI]

    Zhao, Tianshou

    -oxidation in anion-exchange membrane direct ethanol fuel cells Shuiyun Shen, T. S. Zhao,* Jianbo Xu and Yinshi Li-exchange membrane direct ethanol fuel cells (AEM DEFCs). We demonstrate that the use of the ternary PdIrNi catalyst for the ethanol oxidation reaction (EOR) in anion-exchange membrane direct ethanol fuel cells (AEM DEFCs) offers

  14. FERMENTATION OF PENTOSE SUGARS TO ETHANOL AND OTHER NEUTRAL PRODUCTS BY MICROORGANISMS

    E-Print Network [OSTI]

    Rosenberg, S.L.

    2013-01-01T23:59:59.000Z

    the Fermentation of Xylose to Ethanol by Fusarium oxysporum,OF PENTOSE SUGARS TO ETHANOL AND OTHER NEUTRAL PRODUCTS BYPYRUVATE V~ P a-ACETOLACTATE ETHANOL CoA AC ETA LDE HYDE V

  15. RAW MATERIALS EVALUATION AND PROCESS DEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL

    E-Print Network [OSTI]

    Wilke, C.R.

    2011-01-01T23:59:59.000Z

    OF BIOMASS TO SUGARS AND ETHANOL C. R. Wilke, R. D. Yang,of Cellulose Conversion on Ethanol Cost. References Wilke,of Hydrolyzate to Ethanol and Single Cell Protein,"

  16. PROCESS DEVELOPMENT STUDIES ON THE BIOCONVERSION OF CELLULOSE AND PRODUCTION OF ETHANOL

    E-Print Network [OSTI]

    Wilke, C.R.

    2011-01-01T23:59:59.000Z

    OF CELLULOSE AND PRODUCTION OF ETHANOL under auspices of22 Mohammad Riaz ETHANOL FERMENTATION STUDIES II I. A. B.Hydrolyzates to Ethanol J2 Ren-Der Yang

  17. Divergence in Cactophilic Drosophila: The Evolutionary Significance of Adult Ethanol Metabolism

    E-Print Network [OSTI]

    Etges, William J.

    Divergence in Cactophilic Drosophila: The Evolutionary Significance of Adult Ethanol Metabolism IN CACTOPHILIC DROSOPHILA: THE EVOLUTIONARY SIGNIFICANCE OF ADULT ETHANOL METABOLISM WILLIAMJ. ETGES~ Department of volatile com- pounds, particularly ethanol, than Opuntia or other Sonoran Desert columnar cacti, because

  18. What’s the Issue? Changing Frames of Ethanol Policy in Congress and the Media

    E-Print Network [OSTI]

    Weiner, Sarah

    2012-01-01T23:59:59.000Z

    our use of fossil fuels” and “Ethanol does not help reduce2011 Note: Ethanol production data from the Renewable Fuelsand fuel mandate programs to a growing suite of ethanol

  19. honeys were classified higher and were pre-ferred. Honeys with an ethanol content

    E-Print Network [OSTI]

    Boyer, Edmond

    honeys were classified higher and were pre- ferred. Honeys with an ethanol content higher than 100 with an ethanol con- tent higher than 1000 mg·kg-1 were classi- fied as 'extremely fermented'. Ethanol

  20. Public Project Revolving Fund (PPRF) (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Finance Authority’s Public Project Revolving Fund (PPRF) funds infrastructure and capital equipment projects with low-cost and low-interest rate loans.  The key characteristics of...

  1. One North Carolina Fund (North Carolina)

    Broader source: Energy.gov [DOE]

    The One North Carolina Fund, directed by the Commerce Finance Center, helps recruit and expand jobs in high-value industries deemed vital to the state. State appropriations replenish the Fund and...

  2. Recovery Act-Funded Working Fluid Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into working fluid technologies and applications. Projects funded by the...

  3. Recovery Act-Funded Water Heating Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into water heating technologies and applications. Projects funded by the...

  4. Funding Opportunities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Funding Opportunities Bioimaging Technology Bioimaging Technology Home About Research Funding Opportunities Contact BER Home Funding Opportunities Print Text Size: A A A...

  5. Getting Started Advanced Search for Funding Opportunities

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    Getting Started Advanced Search for Funding Opportunities For Assistance Delete Criteria to Update Search Funding ­ Finding Additional Sources Saving and Printing SPIN Search Results Past funding opportunities can be searched in InfoEd to: · find opportunities that were added prior to your account set

  6. Sustainable Energy Revolving Loan Fund CLOSEOUT FORM

    E-Print Network [OSTI]

    Escher, Christine

    Sustainable Energy Revolving Loan Fund CLOSEOUT FORM I. Project Information 1. Project Title 2. By signing Section V below, the OSU Student Sustainability Initiative accepts the Applicant's assertion No Other funding sources. Provide source name, fund, or index number. Exclude possible Energy Trust

  7. QUEEN'S UNIVERSITY BELFAST Student Support Fund Framework

    E-Print Network [OSTI]

    Paxton, Anthony T.

    that it continues to comply with best practice and the Department for Employment and Learning (NI) Support Funds of awards made will be dependent upon a number of factors including demand made on the fund each year shortfall, being claimed, is unexpected. 3. Roles and Responsibilities 3.1 There is a Student Support Fund

  8. DOROTHY EVANS LYNE FUND REQUEST FOR PROPOSALS

    E-Print Network [OSTI]

    Niebur, Ernst

    designed to improve patient care and outcomes, providing evidence to validate clinical practice and/or examine effectiveness of clinical care delivery systems. The fund will be administered by The Johns of Nursing. Goals: · To provide funding for teams of nurses to explore clinical questions · To fund pilot

  9. Program development fund: FY 1987

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    It is the objective of the Fund to encourage innovative research to maintain the Laboratory's position at the forefront of science. Funds are used to explore new ideas and concepts that may potentially develop into new directions of research for the Laboratory and that are consistent with the major needs, overall goals, and mission of the Laboratory and the DOE. The types of projects eligible for support from PDF include: work in forefront areas of science and technology for the primary purpose of enriching Laboratory research and development capabilities; advanced study of new hypotheses, new experimental concepts, or innovative approaches to energy problems; experiments directed toward ''proof of principle'' or early determination of the utility of a new concept; and conception, design analyses, and development of experimental devices, instruments, or components. This report is a review of these research programs.

  10. Impact of ethanol expansion on the cattle feeding industry

    E-Print Network [OSTI]

    Daley, Erin

    2007-09-17T23:59:59.000Z

    feedlots are located more than 200 miles from an ethanol plant, Dried Distiller�s Grains with Solubles (DDGS) can be fed to lower the cost of gain; therefore, ethanol co-products can be fed to help offset potential increases in corn prices. The partial...

  11. Greenhouse gases in the corn-to-fuel ethanol pathway.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-06-18T23:59:59.000Z

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  12. External Quality Assurance Services (EQAS) Ethanol/Ammonia Program

    E-Print Network [OSTI]

    Rodriguez, Carlos

    External Quality Assurance Services (EQAS) Ethanol/Ammonia Program BC35 12 x 3 mL 2 Analytes QC35 12 x 3 mL Specimen Only ENGLISH INTENDED USE Bio-Rad EQAS Ethanol/Ammonia Program is designed

  13. Metal extraction

    SciTech Connect (OSTI)

    Covington, J.W.; Whittemore, R.G.

    1980-10-21T23:59:59.000Z

    In a process according to the present invention uranium is extracted into solution from its ore by leaching with an aqueous solution containing peroxomonosulphuric acid, the peroxoacid oxidizing the uranium through to its hexavalent state. Preferably the leaching is carried out at a temperature in the range of 50* to 100* C. The leach liquor can initially contain additional amounts of sulphuric acid or merely that present by virtue of the method of making the peroxomonosulphuric acid. In a preferred method of operation, the peroxoacid is introduced progressively into the leach liquor during the course of the leaching so as to maintain an electrochemical potential in the range of 450 to 650 mV. By use of the process, uranium is cleanly extracted into solution.

  14. Softwood Biomass to Ethanol Feasibility Study; Final Report: June 14, 1999

    SciTech Connect (OSTI)

    Not Available

    2004-08-01T23:59:59.000Z

    Results of design and project evaluation work studying various aspects of ethanol related projects including a conceptual ethanol plant located in Martell California.

  15. Red wine but not ethanol at low doses can protect against the toxicity of methamphetamine

    E-Print Network [OSTI]

    Bondy, Stephen Bondy C

    2010-01-01T23:59:59.000Z

    C.F. , Chen, C. , 2002. Melatonin in concentrated ethanoland ethanol alone attenuate methamphetamine-induced dopaminewine polyphenol, attenuates ethanol-induced oxidative stress

  16. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...

    Broader source: Energy.gov (indexed) [DOE]

    Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007...

  17. Making Better Use of Ethanol as a Transportation Fuel With "Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Breakout...

  18. Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...

    Broader source: Energy.gov (indexed) [DOE]

    Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain...

  19. A Pre-Treatment Model for Ethanol Production Using a Colorimetric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Pre-Treatment Model for Ethanol Production Using a Colorimetric Analysis of Starch Solutions (1 Activity) A Pre-Treatment Model for Ethanol Production Using a Colorimetric...

  20. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Presented at the 2007...

  1. SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014 OBJECTIVES: The SUNY Technology Accelerator Fund ("TAF") provides funding to support the advancement of SUNY technologies from the lab to the marketplace. In many cases, SUNY technology developed

  2. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect (OSTI)

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01T23:59:59.000Z

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

  3. Engineers' concept for cheaper, better titanium made in U.S. earns federal funding

    E-Print Network [OSTI]

    Rollins, Andrew M.

    to extract the strategic metal titanium from ore was selected by the U.S. Department of Energy's Advanced to refine titanium from ore is extremely energy-intensive, making titanium expensive, thus limiting itsEngineers' concept for cheaper, better titanium made in U.S. earns federal funding Rohan Akolkar

  4. 106 2010 USDA Research Forum on Invasive Species GTR-NRS-P-75 ETHANOL AND ()--PINENE FOR DETECTING AND

    E-Print Network [OSTI]

    106 2010 USDA Research Forum on Invasive Species GTR-NRS-P-75 ETHANOL AND (­)--PINENE FOR DETECTING traps baited with ethanol or ethanol and (-)--pinene for bark and ambrosia beetles in pine stands control; (2) ethanol; (3) (-)--pinene; and (4) ethanol + (-)--pinene. The release rates for ethanol

  5. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum

    SciTech Connect (OSTI)

    Biswas, Ranjita [ORNL] [ORNL; Prabhu, Sandeep [ORNL] [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth] [Thayer School of Engineering at Dartmouth; Guss, Adam M [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP) is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but low yield, low titer, and ethanol sensitivity remain barriers to industrial production. Here, we deleted the hypoxanthine phosphoribosyltransferase gene in ethanol tolerant strain of C. thermocellum adhE*(EA) in order to allow use of previously developed gene deletion tools, then deleted lactate dehydrogenase (ldh) to redirect carbon flux towards ethanol. Upon deletion of ldh, the adhE*(EA) ldh strain produced 30% more ethanol than wild type on minimal medium. The adhE*(EA) ldh strain retained tolerance to 5% v/v ethanol, resulting in an ethanol tolerant platform strain of C. thermocellum for future metabolic engineering efforts.

  6. Upcoming Funding Opportunity for Marine and Hydrokinetic Development...

    Energy Savers [EERE]

    Upcoming Funding Opportunity for Marine and Hydrokinetic Development University Consortium Upcoming Funding Opportunity for Marine and Hydrokinetic Development University...

  7. Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR

    DOE Patents [OSTI]

    Kass, Michael Delos (Oak Ridge, TN); Graves, Ronald Lee (Knoxville, TN); Storey, John Morse Elliot (Oak Ridge, TN); Lewis, Sr., Samuel Arthur (Andersonville, TN); Sluder, Charles Scott (Knoxville, TN); Thomas, John Foster (Powell, TN)

    2007-08-21T23:59:59.000Z

    A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

  8. MTBE, ethanol rules come under fire

    SciTech Connect (OSTI)

    Begley, R.

    1995-03-01T23:59:59.000Z

    EPA is facing stiff challenges to the mandates for methyl tert-butyl ether (MTBE) and ethanol in its reformulated gasoline (RFG) program. Wisconsin officials are receiving hundreds of complaints about the alleged health effects and other problems with MTBE added to gasoline, and Gov. Tommy Thompson is demanding that EPA suspend the RFG program until April 1. Rep. James Sensenbrenner (R., WI) is threatening to introduce a bill to repeal the program in Wisconsin if EPA does not comply. However, EPA administrator Carol Browner says the agency will {open_quotes}defer any decision{close_quotes} on the request. EPA has sent technical experts to Milwaukee to respond to and monitor citizens` complaints.

  9. Experimental investigation of burning rates of pure ethanol and ethanol blended fuels

    SciTech Connect (OSTI)

    Parag, Shintre; Raghavan, Vasudevan [Thermodynamics and Combustion Engineering Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu, 600036 (India)

    2009-05-15T23:59:59.000Z

    A fundamental experimental study to determine the burning rates of ethanol and ethanol-blended fossil fuels is presented. Pure liquid ethanol or its blends with liquid fossil fuels such as gasoline or diesel, has been transpired to the surface a porous sphere using an infusion pump. Burning of the fuel takes place on the surface of the porous sphere, which is placed in an air stream blowing upwards with a uniform velocity at atmospheric pressure and temperature under normal gravity conditions. At low air velocities, when ignited, a flame envelopes the sphere. For each sphere size, air stream velocity and fuel type, the fuel feed rate will vary and the same is recorded as the burning rate for that configuration. The flame stand-off distances from the sphere surface are measured by post-processing the digital image of the flame photograph using suitable imaging software. The transition velocity at which the flame moves and establishes itself at the wake region of the sphere has been determined for different diameters and fuel types. Correlations of these parameters are also presented. (author)

  10. University of Florida Change, Petty Cash, and Research Stipend Funds

    E-Print Network [OSTI]

    Watson, Craig A.

    University of Florida Change, Petty Cash, and Research Stipend Funds Change to Existing Fund EXISTING FUND INFORMATION CHANGES TO FUND Complete all areas that are applicable for your fund request. CHANGE IN FUND LOCATION CHANGE IN CUSTODIANSHIP New Custodian InformationExisting Custodian Information

  11. Recombinant host cells and media for ethanol production

    DOE Patents [OSTI]

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18T23:59:59.000Z

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  12. Certification of an agricultural spray aircraft on ethanol fuel

    SciTech Connect (OSTI)

    Shauck, M.E.; Zanin, M.G. [Baylor Univ., Waco, TX (United States)

    1994-12-31T23:59:59.000Z

    A Piper Pawnee, one of the most common agricultural spray aircraft, is currently undergoing Federal Aviation Administration (FAA) certification to allow the use of denatured ethanol as its fuel. This certification is part of a broader effort to introduce ethanol as a replacement for aviation gasoline. Various reasons brought about the choice of an agricultural spray aircraft to be certified on ethanol. One is the minimization of initial fuel distribution problems. Agricultural aviation often requires only single fuel storage since most of the flying is local. Additionally, corn-produced ethanol is the natural fuel of choice for farming operations. The increased power developed on ethanol compared to aviation gasoline (avgas) is very important when operating heavily loaded spray aircraft at very low altitudes. The power-plant, a Lycoming IO-540, is already certified. The aircraft is currently flying on ethanol in order to satisfy the airframe requirements. The effort is being supported by a consortium of organizations of corn-producing states. Upon completion of certification, the aircraft will be demonstrated around the mid-western states. Certification will allow the use of the aircraft in the commercial arena. Many mid-western agricultural spray operations and ag-pilots have already expressed interest in converting their aircraft to ethanol fuel.

  13. WINDExchange: Funding School Wind Projects

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 m 01-APR-2011 2.1.1Funding

  14. Interactions Between Energy Efficiecy Programs Funded Under Recover Act and Utility Customer-funded Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Interactions Between Energy Efficiecy Programs Funded Under Recover Act and Utility Customer-funded Energy Efficiency Programs Webinar.

  15. Implications of ethanol-based fuels for greenhouse gas emissions

    SciTech Connect (OSTI)

    Marland, G. [Oak Ridge National Lab., TN (United States); DeLuchi, M.A. [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies; Wyman, C. [National Renewable Energy Lab., Golden, CO (United States)

    1994-02-14T23:59:59.000Z

    The US Environmental Protection Agency has proposed a rule which would mandate that 30% of the oxygen content of reformulated gasoline be provided by renewable oxygenates. The rule would essentially require that biomass-based ethanol, or ETBE derived from ethanol, be used to supply 30% of the oxygen in reformulated gasoline. This short statement addresses the very narrow question, ``Would this rule result in a net decrease in greenhouse gas emissions?`` The challenge then is to determine how much greenhouse gas is emitted during the ethanol fuel cycle, a fuel cycle that is much less mature and less well documented than the petroleum fuel cycle. In the petroleum fuel cycle, most of the greenhouse gas emissions come from fuel combustion. In the ethanol fuel cycle most of the greenhouse gas emissions come from the fuel production processes. Details of corn productivity, fertilizer use, process efficiency, fuel source, etc. become very important. It is also important that the ethanol fuel cycle produces additional products and the greenhouse gas emissions have somehow to be allocated among the respective products. With so many variables in the ethanol fuel cycle, the concern is actually with ethanol-based additives which will be produced in response to the proposed rule, and not necessarily with the average of ethanol which is being produced now. A first important observation is that the difference between standard gasoline and reformulated gasoline is very small so that when differences are drawn against alternative fuels, it makes little difference whether the contrast is against standard or reformulated gasoline. A second observation is that for this base case comparison, emissions of CO{sub 2} alone are roughly 13% less for the ethanol fuel cycle than for the reformulated gasoline cycle.

  16. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOE Patents [OSTI]

    Gaddy, J.L.; Clausen, E.C.

    1992-12-22T23:59:59.000Z

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H[sub 2]O and/or CO[sub 2] and H[sub 2] in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate. 3 figs.

  17. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR); Clausen, Edgar C. (Fayetteville, AR)

    1992-01-01T23:59:59.000Z

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H.sub.2 O and/or CO.sub.2 and H.sub.2 in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate.

  18. What is the Viability of Cellulosic Ethanol as an Alternative to Fossil Fuels in today's Economy?

    E-Print Network [OSTI]

    Iglesia, Enrique

    mandates for cellulosic ethanol production, spurring an increase in bioethanol companies looking to profit

  19. Introduction The use of ethanol as a gasoline additive is likely to

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Introduction The use of ethanol as a gasoline additive is likely to increase in the near future will also lead to additional ethanol use. There- fore, it is important to understand how ethanol affects that the presence of ethanol could have undesirable effects on the biodegradation of BTEX (i.e., benzene, toluene

  20. Research Report Long lasting effects of rearing by an ethanol-consuming dam

    E-Print Network [OSTI]

    Galef Jr., Bennett G.

    Research Report Long lasting effects of rearing by an ethanol-consuming dam on voluntary ethanol rats as subjects, we examined effects of exposure during weaning to a dam consuming ethanol on adolescents' later affinity for ethanol. In a preliminary experiment, we offered rat pups a choice between 8

  1. O P I N I O N Ethanol from sugarcane in Brazil: a `midway' strategy for

    E-Print Network [OSTI]

    DeLucia, Evan H.

    O P I N I O N Ethanol from sugarcane in Brazil: a `midway' strategy for increasing ethanol of Illinois, Urbana, IL 61801, USA Abstract This article reviews the history and current state of ethanol. We propose that it is possible to produce ethanol from sugarcane while maintaining or even recovering

  2. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates

    E-Print Network [OSTI]

    Angenent, Lars T.

    in 2011 and mandated another $60 billion liters of ethanol or ethanol-equivalent fuel by 2020 from distillation for corn and cellulosic ethanol.2,3 To circumvent fossil- fuel consumption for distillation-caproic acid. This chemical has twice the value of ethanol per carbon atom and is not only a fuel precursor

  3. TOLERANT ETHANOL ESTIMATION IN FLEX-FUEL VEHICLES DURING MAF SENSOR DRIFTS

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    TOLERANT ETHANOL ESTIMATION IN FLEX-FUEL VEHICLES DURING MAF SENSOR DRIFTS Kyung-ho Ahn, Anna G Engineering Dearborn, Michigan 48121 ABSTRACT Flexible fuel vehicles (FFVs) can operate on a blend of ethanol on ethanol sensor installed in the vehicle fueling system, or on the ethanol- dependent air-to-fuel ratio

  4. Stabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation

    E-Print Network [OSTI]

    Zhao, Tianshou

    Keywords: Fuel cell Alkaline direct ethanol fuel cell Electrocatalyst Stabilization Palladiumegold alloy oxidation reaction, especially for the ethanol oxidation reaction (EOR) in alkaline direct ethanol fuelStabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation J.B. Xu, T

  5. Catalytic Conversion of Ethanol to Hydrogen Using Combinatorial Shici Duan and Selim Senkan*

    E-Print Network [OSTI]

    Senkan, Selim M.

    in this area focused on steam reforming of ethanol at relatively high temperatures (T > 500 °C), where carbon 0.5-5 wt %. Ethanol steam reforming activities and H2 selectivities of these 840 distinct materials-4 In contrast, ethanol steam reforming has been studied to a much more limited extent. Ethanol has several

  6. MOLECULAR PHYSICS, 1999, VOL. 97, NO. 7, 897 905 Dynamics and hydrogen bonding in liquid ethanol

    E-Print Network [OSTI]

    Saiz, Leonor

    MOLECULAR PHYSICS, 1999, VOL. 97, NO. 7, 897± 905 Dynamics and hydrogen bonding in liquid ethanol L of liquid ethanol at three temperatures have been carried out. The hydrogen bonding states of ethanol measurements of the frequency-dependent dielectric permittivity of liquid ethanol. 1. Introduction A detailed

  7. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    SciTech Connect (OSTI)

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu

    2012-11-01T23:59:59.000Z

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup ?}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup ?} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup ?} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup ?} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup ?} deer mouse model. Analysis of NMR data of ADH{sup ?} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were also mildly increased in ADH{sup ?} deer mice fed 1 or 2% ethanol. Only small increases were observed for allylic and diallylic protons, FAMEs and unsaturations in ADH{sup +} deer mice fed 3.5% ethanol vs. pair-fed controls. PCA of NMR data showed increased clustering by gradual separation of ethanol-fed ADH{sup ?} deer mice groups from their respective pair-fed control groups and corresponding ethanol-fed ADH{sup +} deer mice groups. Our data indicate that dose of ethanol and hepatic ADH deficiency are two key factors involved in initiation and progression of alcoholic fatty liver disease. Further studies on characterization of individual lipid entities and associated metabolic pathways altered in our deer mouse model after different durations of ethanol feeding could be important to delineate mechanism(s) and identify potential biomarker candidate(s) of early stage ALD. -- Highlights: ? Dose-dependent ethanol-induced fatty liver was studied in deer mouse model. ? A NMR-based lipidomic approach with histology and dry lipid weights was used. ? We used principal component analysis (PCA) to analyze the NMR lipidomic data. ? Dose-dependent clustering patterns by PCA were compared among the groups.

  8. Remedial extraction and catalytic hydrodehalogenation for treatment of soils contaminated by halogenated hydrophobic organic compounds

    E-Print Network [OSTI]

    Wee, Hun Young

    2009-05-15T23:59:59.000Z

    for the extraction of 1,2,4,5-tetrachlorobenzne (TeCB) or pentachlorophenol (PCP) from contaminated soil. Palladium-catalyzed hydrodehalogenation (HDH) was applied for destroying TeCB or PCP in mixtures of water and ethanol in a batch mode. The experimental results...

  9. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22T23:59:59.000Z

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  10. Finance 101 Student Organization Funding Workshop

    E-Print Network [OSTI]

    Finance 101 Student Organization Funding Workshop #12;Finance Committee Mission Statement successful events Finance Committee Goals 2012-2013 2 #12;ASI Budget Allowance 5% Business & Administration

  11. Energy Revolving Loan Fund- Public Entities

    Broader source: Energy.gov [DOE]

    '''''Note: Michigan Economic Development Corporation is not currently accepting applications for this loan fund. Check the program web site for future solicitations. '''''

  12. Renewable Energy Facilities Revolving Loan Fund (Delaware)

    Broader source: Energy.gov [DOE]

    Renewable Energy Facilities Revolving Loan Fund provides loans at market to below-market interest rates to businesses that cannot otherwise obtain capital, provided that those businesses will...

  13. DEMEC - Green Energy Fund | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Delaware Department of Natural Resources and Environmental Control '''''Note: The Green Energy Fund regulations are currently under revision to improve program function and...

  14. The Limits of Hedge Fund Activism

    E-Print Network [OSTI]

    Thompson, Robert

    2006-01-01T23:59:59.000Z

    extent that there economic incentives, as distinguished fromface different economic incentives than do traditionalthis backdrop, the economic incentives of hedge funds as

  15. Missouri Agribusiness Revolving Loan Fund (Missouri)

    Broader source: Energy.gov [DOE]

    The Missouri Agricultural and Small Business Development Authority’s (MASBDA) Missouri Agribusiness Revolving Loan Fund offers financing to value-added agriculture enterprises, agriculture support...

  16. Nova Scotia Jobs Fund (Nova Scotia, Canada)

    Broader source: Energy.gov [DOE]

    The Nova Scotia Jobs Fund pursues investment opportunities for assisting communities in transition, supporting industry sectors, offering regional support, assisting small businesses programs, and...

  17. High Penetration Solar Deployment Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed...

  18. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Broader source: Energy.gov (indexed) [DOE]

    Frequently asked questions about the Smart Grid Demonstration and Energy Storage Funding Opportunity Announcement released as part of the American Recovery and Reinvestment Act,...

  19. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Environmental Management (EM)

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  20. Understanding the Growth of the Cellulosic Ethanol Industry

    SciTech Connect (OSTI)

    Sandor, D.; Wallace, R.; Peterson, S.

    2008-04-01T23:59:59.000Z

    This report identifies, outlines, and documents a set of plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017. These scenarios can provide guidance for setting government policy and targeting government investment to the areas with greatest potential impact.

  1. Biomass to ethanol : potential production and environmental impacts

    E-Print Network [OSTI]

    Groode, Tiffany Amber, 1979-

    2008-01-01T23:59:59.000Z

    This study models and assesses the current and future fossil fuel consumption and greenhouse gas impacts of ethanol produced from three feedstocks; corn grain, corn stover, and switchgrass. A life-cycle assessment approach ...

  2. aqueous ethanol termodinamicheskie: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with 2-carbon distillation for corn and cellulosic ethanol.2,3 To circumvent fossil- fuel consumption for distillation Angenent, Lars T. 166 An Analysis of the Effects of...

  3. anaerobic ethanol producer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    attractive to both male and female M. sutor beetles Hanks, Lawrence M. 4 Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest...

  4. acute ethanol effects: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of the Effects of Government Subsidies and the Renewable Fuels Standard on the Fuel Ethanol Industry: A Fossil Fuels Websites Summary: of the future evolution of the fuel...

  5. acute ethanol intoxication: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with 2-carbon distillation for corn and cellulosic ethanol.2,3 To circumvent fossil- fuel consumption for distillation Angenent, Lars T. 182 An Analysis of the Effects of...

  6. Evaluation of Ethanol Blends for PHEVs using Simulation and Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Ethanol Blends for PHEVs using Simulation and Engine-in-the-Loop 2011 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 10, 2011 Neeraj Shidore (PI) - Vehicle...

  7. Continuous production of ethanol by use of flocculent zymomonas mobilis

    DOE Patents [OSTI]

    Arcuri, Edward J. (Del Mar, CA); Donaldson, Terrence L. (Lenoir City, TN)

    1983-01-01T23:59:59.000Z

    Ethanol is produced by means of a floc-forming strain of Zymomonas mobilis bacteria. Gas is vented along the length of a column containing the flocculent bacteria to preclude disruption of liquid flow.

  8. Methods for increasing the production of ethanol from microbial fermentation

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR); Arora, Dinesh K. (Fayetteville, AR); Ko, Ching-Whan (Fayetteville, AR); Phillips, John Randall (Fayetteville, AR); Basu, Rahul (Bethlehem, PA); Wikstrom, Carl V. (Fayetteville, AR); Clausen, Edgar C. (Fayetteville, AR)

    2007-10-23T23:59:59.000Z

    A stable continuous method for producing ethanol from the anaerobic bacterial fermentation of a gaseous substrate containing at least one reducing gas involves culturing a fermentation bioreactor anaerobic, acetogenic bacteria in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor; and manipulating the bacteria in the bioreactor by reducing the redox potential, or increasing the NAD(P)H TO NAD(P) ratio, in the fermentation broth after the bacteria achieves a steady state and stable cell concentration in the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.

  9. Ethanol supply chain and industry overview : more harm than good?

    E-Print Network [OSTI]

    Bruce, Sarah L

    2013-01-01T23:59:59.000Z

    This thesis is a comprehensive study that aggregates the key aspects of ethanol including its supply chain, government legislation that impacts the use of, and the inherent material characteristics of the fuel as well as ...

  10. Impact of ethanol expansion on the cattle feeding industry 

    E-Print Network [OSTI]

    Daley, Erin

    2007-09-17T23:59:59.000Z

    The U.S. has a history of producing surplus corn, but the current and projected growth in ethanol production combined with strong feed and export demand is causing an overall increase in corn utilization. Although livestock ...

  11. Biofuel alternatives to ethanol: pumping the microbial well

    E-Print Network [OSTI]

    Fortman, J. L.

    2010-01-01T23:59:59.000Z

    of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U.S. (2006) Bonkers about biofuels. Nat. Biotechnol. 24, 755–Schubert, C. (2006) Can biofuels finally take center stage?

  12. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01T23:59:59.000Z

    improve technology and reduce costs • In response to recentuses and to advance technologies to reduce costs Basis of MyEthanol • Operating costs are low • Technology is ready to

  13. Life cycle analysis of hybrid poplar trees for cellulosic ethanol

    E-Print Network [OSTI]

    Huang, Jessica J

    2007-01-01T23:59:59.000Z

    The main purpose of this paper is to assess the energy and environmental benefits of cultivating hybrid poplars as a biomass crop for cellulosic ethanol. A "Life Cycle Assessment" (LCA) methodology is used to systematically ...

  14. Economic feasibility of ethanol production from sweet sorghum juice in Texas

    E-Print Network [OSTI]

    Morris, Brittany Danielle

    2009-05-15T23:59:59.000Z

    or Sweet Sorghum and Corn to Produce Ethanol in Each Study Area............................. 73 12. Sweet Sorghum Processing Coefficients for an Ethanol Refinery.................... 74 13. Corn Processing Assumptions for Each Study Area... 22. Variable Costs to Operate a Sweet Sorghum Ethanol Refinery, 2008............. 83 23. Variable Costs to Operate a Corn Ethanol Refinery, 2008 .............................. 84 24. Land Cost and Acreage for the Ethanol Refinery in Each Study...

  15. The Latest Unanticipated Consequence in the Ethanol Fiasco 

    E-Print Network [OSTI]

    Griffin, James M.

    2013-01-01T23:59:59.000Z

    Mandated Ethanol Production E10 Blend Wall Source: U.S. Department of E ergy. En rgy I formation Administration. 2007. Annual Energy Outlook 2007. Washington, D.C.: Department of Energy. The 2007 ethanol mandates were based upon faulty gasoline... Blend Wall Source: U.S. Department of Energy. Energy Information Administration. 2013. Annual Energy Outlook 2013. Washington, D.C.: Department of Energy. ABOUT THE MOSBACHER INSTITUTE The Mosbacher Institute was founded in 2009 to honor Robert A...

  16. MBI Biorefinery: Corn to Biomass, Ethanol to Biochemicals and Biomaterials

    SciTech Connect (OSTI)

    None

    2006-02-17T23:59:59.000Z

    The project is a continuation of DOE-funded work (FY02 and FY03) that has focused on the development of the ammonia fiber explosion (AFEX) pretreatment technology, fermentation production of succinic acid and new processes and products to enhance dry mill profitability. The primary objective for work beginning in April 2004 and ending in November 2005 is focus on the key issues related to the: (1) design, costing and construction plan for a pilot AFEX pretreatment system, formation of a stakeholder development team to assist in the planning and design of a biorefinery pilot plant, continued evaluation of corn fractionation technologies, corn oil extraction, AFEX treatment of corn fiber/DDGs; (2) development of a process to fractionate AFEX-treated corn fiber and corn stover--cellulose and hemicellulose fractionation and sugar recovery; and (3) development of a scalable batch succinic acid production process at 500 L at or below $.42/lb, a laboratory scale fed-batch process for succinic acid production at or below $.40/lb, a recovery process for succinic acid that reduces the cost of succinic acid by $.02/lb and the development of an acid tolerant succinic acid production strain at lab scale (last objective not to be completed during this project time period).

  17. Conversion of bagasse cellulose into ethanol

    SciTech Connect (OSTI)

    Cuzens, J.E.

    1997-11-19T23:59:59.000Z

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  18. Role of ethanol in sodalite crystallization in an ethanolNa2OAl2O3SiO2 Yi Huang,ab

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Role of ethanol in sodalite crystallization in an ethanol­Na2O­Al2O3­SiO2­ H2O system Yi Huang 2011 DOI: 10.1039/c1ce05194f Crystallization of sodalite was studied in an ethanol­Na2O­Al2O3­SiO2­H2O system. The addition of ethanol was observed to significantly affect the crystallization process

  19. Decreased Funding Reduces Orders Timeline Citing the impact of reduced funding, Navy

    E-Print Network [OSTI]

    Decreased Funding Reduces Orders Timeline Citing the impact of reduced funding, Navy announced Feb that allows for continuous normal operations while a final budget is approved. Navy Personnel Command the orders are released. Navy has utilized this prioritization strategy in previous PCS funding

  20. Green Fund Proposal Guidelines March 15, 2010 UNBC GREEN FUND PROPOSAL GUIDELINES

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Green Fund Proposal Guidelines March 15, 2010 UNBC GREEN FUND PROPOSAL GUIDELINES In order to advance the overall sustainability of UNBC as an institution a "UNBC Green Fund" has been created from UNBC parking revenues. Green research and project proposals will be accepted by the Green University

  1. Green Fund Proposal Guidelines September 15, 2010 UNBC GREEN FUND PROPOSAL GUIDELINES

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Green Fund Proposal Guidelines September 15, 2010 UNBC GREEN FUND PROPOSAL GUIDELINES In order to advance the overall sustainability of UNBC as an institution a "UNBC Green Fund" has been created from UNBC parking revenues. Green research and project proposals will be accepted by the Green University

  2. Green Fund Proposal Guidelines August 10, 2012 UNBC GREEN FUND PROPOSAL GUIDELINES

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Green Fund Proposal Guidelines August 10, 2012 UNBC GREEN FUND PROPOSAL GUIDELINES In order to advance the overall sustainability of UNBC as an institution a "UNBC Green Fund" has been created from UNBC parking revenues. Green research and project proposals are accepted by the Green University

  3. Guidelines for Student Projects Fund Application What is the Student Projects Fund?

    E-Print Network [OSTI]

    Banaji,. Murad

    /departments/faculties/schools around the University and in Kent Union, for funding to support student focussed projects and activities that meet the following criteria will be considered for funding: Support one or more of the University is funded by donations from alumni and friends of the University

  4. PARTNERSHIP PROFILE: THE GLOBAL FUND | 1 About the Global Fund to Fight AIDS,

    E-Print Network [OSTI]

    Klein, Ophir

    largest source of funding for malaria control, accounting for an estimated 50% of total international model. A key element of this process is its strategy for 2012­2016, called Investing for Impact, adopted a Consolidated Transformation Plan which sought to move the Global Fund from a past focus on emergency funding

  5. What Factors Affect the Decision to Invest in a Fuel Ethanol Plant? A Structural Model of the Ethanol Investment Timing Game1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    1 What Factors Affect the Decision to Invest in a Fuel Ethanol Plant? A Structural Model of the Ethanol Investment Timing Game1 C.-Y. Cynthia Lin and Fujin Yi Abstract The decision to invest in building an ethanol plant that uses a particular feedstock is a dynamic decision that may be affected by economic

  6. Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson

    E-Print Network [OSTI]

    Minnesota, University of

    Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson Department of Mechanical a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate

  7. Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol This article has been downloaded from IOPscience. Please scroll for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis

  8. Application pack for funding commencing in 2012

    E-Print Network [OSTI]

    Kheifets, Anatoli

    Application pack for funding commencing in 2012 GROUP OF EIGHT AUSTRALIA­GERMANY JOINT RESEARCH COOPERATION SCHEME #12;PAGE 2 OF 9GROUP OF EIGHT AUSTRALIA­GERMANY JOINT RESEARCH COOPERATION SCHEME © GROUP OF EIGHT Application pack for funding commencing in 2012 ABOUT THE GROUP OF EIGHT AUSTRALIA­GERMANY JOINT

  9. The Connaught Fund Terms of Reference

    E-Print Network [OSTI]

    Sun, Yu

    website or other means, on the following: the capital value of the Fund, the income earned by the Fund expertise and resources of the University to matters of public interest in all research fields. Management Laboratories and sold to the Metropolitan Toronto and Region Conservation Authority. 4. The interest earnings

  10. Apparatus for hydrocarbon extraction

    DOE Patents [OSTI]

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19T23:59:59.000Z

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  11. Ethanol seeking triggered by environmental context is attenuated by blocking dopamine D1 receptors in the nucleus accumbens core and shell in rats

    E-Print Network [OSTI]

    Chaudhri, Nadia; Sahuque, Lacey L.; Janak, Patricia H.

    2009-01-01T23:59:59.000Z

    ment into the prior ethanol self-administration context. SCHreinstatement of responding for ethanol cues triggered byplacement into an ethanol-associated context. Keywords

  12. Impacts of Ethanol on Anaerobic Production of Tert-Butyl Alcohol (TBA) from Methyl Tert-Butyl Ether (MTBE) in Groundwater

    E-Print Network [OSTI]

    Scow, K M; MacKay, Douglas

    2008-01-01T23:59:59.000Z

    Project title: Impacts of Ethanol on Anaerobic Production oftert-butanol (TBA). As ethanol is being promoted as ainvestigate the effect of ethanol release on existing MTBE

  13. University of Florida Change, Petty Cash, and Research Stipend Funds

    E-Print Network [OSTI]

    Watson, Craig A.

    University of Florida Change, Petty Cash, and Research Stipend Funds New Fund Information for the stewardship of the University's cash and investments, including research stipend funds. We need assurance - Research Stipend Fund Department Name Fund Amount ($) Note to Custodian: Treasury Management is responsible

  14. University of Florida Change, Petty Cash, and Research Stipend Funds

    E-Print Network [OSTI]

    Watson, Craig A.

    University of Florida Change, Petty Cash, and Research Stipend Funds New Fund Information - Petty for the stewardship of the University's cash and investments, including petty cash funds. We need assurance Cash Fund Department Name Fund Amount ($) Note to Custodian: Treasury Management is responsible

  15. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments

    SciTech Connect (OSTI)

    Mohanty, Santosh R.; Kollah, Bharati; Hedrick, David B.; Peacock, Aaron D.; Kukkadapu, Ravi K.; Roden, Eric E.

    2008-06-15T23:59:59.000Z

    A laboratory incubation experiment was conducted with uranium contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A classical sequence of TEAPs was observed in ethanol-amended slurries, with NO3- reduction, Fe(III) reduction, SO4 2- reduction, and CH4 production proceeding in sequence until all of the added 13C-ethanol (9 mM) was consumed. Approximately 60% of the U(VI) content of the sediment was reduced during the period of Fe(III) reduction. No additional U(VI) reduction took place during the sulfate-reducing and methanogenic phases of the experiment. Only gradual reduction of NO3 -, and no reduction of U(VI), took place in ethanol-free slurries. Stimulation of additional Fe(III) or SO4 2- reduction in the ethanol-amended slurries failed to promote further U(VI) reduction. Reverse transcribed 16S rRNA clone libraries revealed major increases in the abundance of organisms related to Dechloromonas, Geobacter, and Oxalobacter in the ethanolamended slurries. PLFAs indicative of Geobacter showed a distinct increase in the amended slurries, and analysis of PLFA 13C/12C ratios confirmed the incorporation of ethanol into these PLFAs. A increase in the abundance of 13C-labeled PLFAs indicative of Desulfobacter, Desulfotomaculum, and Desulfovibrio took place during the brief period of sulfate reduction which followed the Fe(III) reduction phase. Our results show that major redox processes in ethanol-amended sediments can be reliably interpreted in terms of standard conceptual models of TEAPs in sediments. However, the redox speciation of uranium is complex and cannot be explained based on simplified thermodynamic considerations.

  16. Imaging the condensation and evaporation of molecularly thin ethanol films with surface forces apparatus

    SciTech Connect (OSTI)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Zhang, Di; Ni, Zhonghua, E-mail: nzh2003@seu.edu.cn, E-mail: yunfeichen@seu.edu.cn; Yi, Hong; Chen, Yunfei, E-mail: nzh2003@seu.edu.cn, E-mail: yunfeichen@seu.edu.cn [Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189 (China)] [Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189 (China)

    2014-01-15T23:59:59.000Z

    A new method for imaging condensation and evaporation of molecularly thin ethanol films is reported. It is found that the first adsorbed layer of ethanol film on mica surface behaves as solid like structure that cannot flow freely. With the increase of exposure time, more ethanol molecules condense over the mica surface in the saturated ethanol vapor condition. The first layer of adsorbed ethanol film is about 3.8 Ĺ thick measured from the surface forces apparatus, which is believed to be the average diameter of ethanol molecules while they are confined in between two atomically smooth mica surfaces.

  17. How Active is Your Real Estate Fund Manager?

    E-Print Network [OSTI]

    Cremers, Martijn; Lizieri, Colin

    2015-01-01T23:59:59.000Z

    . These funds do not seem to take increased risk and their outperformance cannot be explained by fund size alone, though on average they are smaller funds. This paper was sponsored by Aberdeen Asset Management PLC and was independently written...

  18. Biological production of ethanol from coal. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  19. Revolving Loan Funds (RLF) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFund Webinars Revolving Loan FundFunds

  20. REPLACEMENT OF FISH MEAL WITH ETHANOL YEAST IN THE DIETS OF SUNSHINE BASS: EFFECTS ON PRODUCTION PERFORMANCE AND

    E-Print Network [OSTI]

    be investigated. Ethanol yeast (EY), a co-product of bio-ethanol production may be a novel protein source. The increasing capacity of the bio-ethanol industries has made EY an increasingly available commodity. However

  1. Direct Use of Wet Ethanol in a Homogeneous Charge Compression Ignition (HCCI) Engine: Experimental and Numerical Results

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L; Aceves, Salvador M; Dibble, Robert W

    2007-01-01T23:59:59.000Z

    for 4 different water-in-ethanol fuel blends at a variety ofmotivation for using wet ethanol fuel is that significantengine running on wet ethanol. Fuel mixtures studied range

  2. Illiquidity Premia in Asset Returns: An Empirical Analysis of Hedge Funds, Mutual Funds, and US Equity Portfolios

    E-Print Network [OSTI]

    Lo, Andrew W.

    We establish a link between illiquidity and positive autocorrelation in asset returns among a sample of hedge funds, mutual funds, and various equity portfolios. For hedge funds, this link can be confirmed by comparing the ...

  3. Recovery Act, Office of the Biomass Program,Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special...

  4. Energy Efficiency Fund (Electric)- Home Energy Solutions and Performance Programs

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Fund, funded by Connecticut's public benefits charge, provides home energy efficiency rebate programs to customers of The Connecticut Light and Power Company, The United...

  5. Energy Secretary Chu Announces $384 Million in Recovery Act Funding...

    Energy Savers [EERE]

    384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico Energy Secretary Chu Announces 384 Million in Recovery Act Funding for Environmental Cleanup in New...

  6. Request for Information Regarding a Proposed Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regarding a Proposed Funding Opportunity for Administration of the Wave Energy Converter Prize Request for Information Regarding a Proposed Funding Opportunity for Administration...

  7. aises scholarship fund: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can do Glasgow, University of 7 Dan Dipert Family Fund Scholarship for Honors Nursing Students Engineering Websites Summary: Dan Dipert Family Fund Scholarship for Honors...

  8. averts agency funds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space-robotic systems, next-generation life support and autonomous landing, the Johnson Innovation Fund 437 Scientific Productivity, Research Funding, Race and Ethnicity...

  9. Vehicle Technologies Office Announces $14 M in Funding for Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces 14 M in Funding for Innovative Technologies Vehicle Technologies Office Announces 14 M in Funding for Innovative Technologies January 16, 2015 - 4:26pm Addthis The...

  10. Data Collection Requirements for the Federal Funding Accounting...

    Office of Environmental Management (EM)

    Data Collection Requirements for the Federal Funding Accounting and Transparency Act (FFATA) of 2006 Data Collection Requirements for the Federal Funding Accounting and...

  11. Apply: Funding Opportunity - Advancing Solutions to Improve Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency...

  12. Funding Opportunity Announcement: Solar Bankability Data to Advance...

    Energy Savers [EERE]

    Data to Advance Transactions and Access (SB-DATA) Funding Opportunity Announcement: Solar Bankability Data to Advance Transactions and Access (SB-DATA) Funding Number:...

  13. Robust Investment Management with Uncertainty in Fund Managers ...

    E-Print Network [OSTI]

    2014-12-12T23:59:59.000Z

    set of fund managers, whose asset class allocations are not precisely known to the ... Institutional investors, such as pension funds, university endowments and ...

  14. President Obama Announces Over $467 Million in Recovery Act Funding...

    Office of Environmental Management (EM)

    Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar...

  15. President Obama Announces Over $467 Million in Recovery Act Funding...

    Energy Savers [EERE]

    President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for...

  16. Solar Powering America by Recognizing Communities Funding Opportunity...

    Energy Savers [EERE]

    Solar Powering America by Recognizing Communities Funding Opportunity Solar Powering America by Recognizing Communities Funding Opportunity March 5, 2015 5:00PM EST U.S. Department...

  17. Credit Enhancements and Capital Markets to Fund Solar Deployment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Credit Enhancements and Capital Markets to Fund Solar Deployment: Leveraging Public Funds to Open Private Sector Investment Michael Mendelsohn and Marley Urdanick National...

  18. Amendment to Funding Opportunity Announcement, DE-FOA-0000522...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amendment to Funding Opportunity Announcement, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Amendment to Funding Opportunity...

  19. Energy Department Announces Funding to Provide Better Visibility...

    Office of Environmental Management (EM)

    Announces Funding to Provide Better Visibility into the Health of the Nation's Electric Grid Energy Department Announces Funding to Provide Better Visibility into the Health of the...

  20. SBIR/STTR Release 2 Funding Opportunity Deadline December 15...

    Office of Environmental Management (EM)

    Funding Opportunity Deadline December 15-Includes Hydrogen and Fuel Cells SBIRSTTR Release 2 Funding Opportunity Deadline December 15-Includes Hydrogen and Fuel Cells December 8,...

  1. DOE Issues Funding Opportunity for Innovations to Increase Cybersecuri...

    Office of Environmental Management (EM)

    Funding Opportunity for Innovations to Increase Cybersecurity for Energy Delivery Systems DOE Issues Funding Opportunity for Innovations to Increase Cybersecurity for Energy...

  2. Enhanced Ethanol Production from De-Ashed Paper Sludge by Simultaneous Saccharification and Fermentation and Simultaneous Saccharification and Co-Fermentation

    SciTech Connect (OSTI)

    Kang, L.; Wang, W.; Pallapolu, V. R.; Lee, Y. Y.

    2011-11-01T23:59:59.000Z

    A previous study demonstrated that paper sludges with high ash contents can be converted to ethanol by simultaneous saccharification and fermentation (SSF) or simultaneous saccharification and co-fermentation (SSCF). High ash content in the sludge, however, limited solid loading in the bioreactor, causing low product concentration. To overcome this problem, sludges were de-ashed before SSF and SSCF. Low ash content in sludges also increased the ethanol yield to the extent that the enzyme dosage required to achieve 70% yield in the fermentation process was reduced by 30%. High solid loading in SSF and SSCF decreased the ethanol yield. High agitation and de-ashing of the sludges were able to restore the part of the yield loss caused by high solid loading. Substitution of the laboratory fermentation medium (peptone and yeast extract) with corn steep liquor did not bring about any adverse effects in the fermentation. Fed-batch operation of the SSCF and SSF using low-ash content sludges was effective in raising the ethanol concentration, achieving 47.8 g/L and 60.0 g/L, respectively.

  3. The Williams Parents Fund Committee thanks these

    E-Print Network [OSTI]

    Stoiciu, Mihai

    indicate Parents Fund Committee members PURPLE MOUNTAIN ASSOCIATION David Bartsch & Joan Haffenreffer Bartsch Dr. & Mrs. Richard Berk Mr. & Mrs. Paul C. Bishop Mr. & Mrs. L. Price Blackford Mr. Thomas Bliska

  4. Can hedge funds time market liquidity?

    E-Print Network [OSTI]

    Cao, Charles

    We explore a new dimension of fund managers' timing ability by examining whether they can time market liquidity through adjusting their portfolios' market exposure as aggregate liquidity conditions change. Using a large ...

  5. Spent Fuel Disposal Trust Fund (Maine)

    Broader source: Energy.gov [DOE]

    Any licensee operating a nuclear power plant in this State shall establish a segregated Spent Nuclear Fuel Disposal Trust Fund in accordance with this subchapter for the eventual disposal of spent...

  6. The Ohio Enterprise Bond Fund (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Enterprise Bond Fund (OEBF) was created in 1988 to promote economic development, create and retain quality jobs and assist governmental operations. The program enables non-profit and for...

  7. Now Accepting Applications: BUILD Funding Opportunity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 14, 2014 5:00PM EST to December 19, 2014 5:00PM EST Through its annual Buildings University Innovators and Leaders Development (BUILD) funding opportunity, the Energy...

  8. Tribal DERA Grant Funding Opportunity Review Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Prosper Sustainably is hosting a free webinar on July 16, 2014 at 1pm PST that reviews the EPA’s Tribal Diesel Emissions Reduction Act (DERA) funding opportunity. During the webinar Josh Simmons,...

  9. New Jersey Business Growth Fund (New Jersey)

    Broader source: Energy.gov [DOE]

    Creditworthy small or mid-sized companies that are creating or retaining jobs in New Jersey can apply for financing through the New Jersey Business Growth Fund, a joint program of the EDA and PNC...

  10. Recovery Act-Funded HVAC projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into heating, ventilation, and air conditioning (HVAC) technologies and...

  11. Regional Revolving Loan Trust Fund (New York)

    Broader source: Energy.gov [DOE]

    The Regional Revolving Loan Trust Fund Program, coordinated by the Empire State Development program, is operated in six regions by nonprofit organizations and provides working capital loans (up to ...

  12. Saudi arabia to inject funds into ITFC

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    "Saudi Arabian will infuse the Islamic Trade Financing Corporation (ITFC) with SR112.5 million ($30 million). The money will come from the General Investment fund." (1 page)

  13. Recycled Unbound Base Pooled Fund Study

    E-Print Network [OSTI]

    Minnesota, University of

    Recycled Unbound Base Pooled Fund Study Tuncer B. Edil Recycled Materials Resource Center Geological Engineering Program University of Wisconsin-Madison #12;·! Recycled Concrete Aggregate (RCA absorption ­! Un-Hydrated cement increases strength and durability ·! Recycled asphalt pavement (RAP

  14. Energy Revolving Loan Fund- Passive Solar

    Broader source: Energy.gov [DOE]

    In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Passive Solar Systems portion of the loan...

  15. Energy Revolving Loan Fund- Farm Energy

    Broader source: Energy.gov [DOE]

    In January 2010, Michigan enacted the Public Act 242 of 2009, which established the Energy Efficiency and Renewable Energy Revolving Loan Fund Program. The Farm Energy Audit/Assessment portion of...

  16. ANNOUNCEMENT OF FEDERAL FUNDING OPPORTUNITY EXECUTIVE SUMMARY

    E-Print Network [OSTI]

    , and candidate or proposed species, as well as post-delisting monitoring of recovered species. Funded activities or endangered species, species proposed for listing, de-listed species, or candidate species. Recovery efforts

  17. Certification of the Cessna 152 on 100% ethanol

    SciTech Connect (OSTI)

    Shauck, M.E.; Zanin, M.G.

    1997-12-31T23:59:59.000Z

    In June 1996, the Renewable Aviation Fuels Development Center (RAFDC) at Baylor University in Waco, Texas, received a Supplemental Type Certificate (STC) for the use of 100% ethanol as a fuel for the Cessna 152, the most popular training aircraft in the world. This is the first certification granted by the Federal Aviation Administration (FAA) for a non-petroleum fuel. Certification of an aircraft on a new fuel requires a certification of the engine followed by a certification of the airframe/engine combination. This paper will describe the FAA airframe certification procedure, the tests required and their outcome using ethanol as an aviation fuel in a Cessna 152.

  18. Ethanol reforming in non-equilibrium plasma of glow discharge

    E-Print Network [OSTI]

    Levko, D

    2012-01-01T23:59:59.000Z

    The results of a detailed kinetic study of the main plasma chemical processes in non-equilibrium ethanol/argon plasma are presented. It is shown that at the beginning of the discharge the molecular hydrogen is mainly generated in the reaction of ethanol H-abstraction. Later hydrogen is formed from active H, CH2OH and CH3CHOH and formaldehyde. Comparison with experimental data has shown that the used kinetic mechanism predicts well the concentrations of main species at the reactor outlet.

  19. Alternative Fuels Data Center: Ethanol Laws and Incentives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2North CarolinaE85:EthanolEthanol

  20. The effects of ethanol on strychnine sensitive glycine receptors in the rat basolateral amygdala

    E-Print Network [OSTI]

    Botting, Shaleen Kaye

    2000-01-01T23:59:59.000Z

    The major relationship between ethanol and the behavioral response to environmental stressors indicates that ethanol functions to reduce the effects of stress. The most classical presentation of the anxiety-reduction hypothesis of alcoholism...

  1. Direct Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz Mixed Oxides with Balanced Acid–Base Sites. Direct Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz...

  2. A study of ZnxZryOz mixed oxides for direct conversion of ethanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene. A study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene. Abstract: ZnxZryOz...

  3. EA-1848: Fulcrum Sierra Waste-to-Ethanol Facility in McCarran...

    Broader source: Energy.gov (indexed) [DOE]

    8: Fulcrum Sierra Waste-to-Ethanol Facility in McCarran, Storey County, NV EA-1848: Fulcrum Sierra Waste-to-Ethanol Facility in McCarran, Storey County, NV June 1, 2011 EA-1848:...

  4. Impact of ethanol and butanol as oxygenates on SIDI engine efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of ethanol and butanol as oxygenates on SIDI engine efficiency and emissions using steady-state and transient test procedures Impact of ethanol and butanol as oxygenates on...

  5. Catalytic roles of Co0 and Co2+ during steam reforming of ethanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Abstract:...

  6. Author's personal copy Distributed hydrogen production from ethanol in a microfuel processor

    E-Print Network [OSTI]

    Khandekar, Sameer

    -reactors? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526 5. Integrated reactor system for steam reforming of ethanol and CO cleanup/microchannels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 5.2. Steam reforming of ethanol (SRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 2.1.1. Steam reforming (SR

  7. ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol...

  8. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5...

    Energy Savers [EERE]

    Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the...

  9. one was tested, all reaction mixtures were supple-mented with an appropriate amount of ethanol

    E-Print Network [OSTI]

    Moorcroft, Paul R.

    one was tested, all reaction mixtures were supple- mented with an appropriate amount of ethanol (5% v/v), because the menadione was dissolved in ethanol as a stock solution. The reaction was ini

  10. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    E-Print Network [OSTI]

    Goldman, Charles A.

    2011-01-01T23:59:59.000Z

    3. SEP funding for building energy efficiency by marketSEP funding for building energy efficiency by market sectoroverall budget for buildings energy efficiency, while some

  11. Ethanol Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for ethanol.

  12. Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems

    SciTech Connect (OSTI)

    Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

    1993-07-01T23:59:59.000Z

    Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

  13. Response to "Ethanol Production and Gasoline Prices: A Spurious Correlation" by Knittel and Smith

    E-Print Network [OSTI]

    Rothman, Daniel

    Response to "Ethanol Production and Gasoline Prices: A Spurious Correlation" by Knittel and Smith Beardshear Hall, (515) 294-7612." #12;1 Response to "Ethanol Production and Gasoline Prices: A Spurious Relating Ethanol Production to Gasoline Prices" written by myself and Xiadong Du, and published in 2009

  14. Dielectric properties of liquid ethanol. A computer simulation study Leonor Saiz

    E-Print Network [OSTI]

    Saiz, Leonor

    Dielectric properties of liquid ethanol. A computer simulation study Leonor Saiz Departament de Fi Static and dynamic dielectric properties of liquid ethanol have been studied as a function of the wave, but in the case of ethanol, the latter are restricted to the microwave region of the spectra6 and to the infrared

  15. Cobalt Ultrathin Film Catalyzed Ethanol Chemical Vapor Deposition of Single-Walled Carbon Nanotubes

    E-Print Network [OSTI]

    Hone, James

    Cobalt Ultrathin Film Catalyzed Ethanol Chemical Vapor Deposition of Single-Walled Carbon Nanotubes (SWNTs) using a cobalt ultrathin film (1 nm) as the catalyst and ethanol as carbon feedstock flow during the growth. The trace amount of self-contained water (0.2-5 wt %) in ethanol may act

  16. Impact of Ethanol on Benzene Plume Lengths: Microbial and Modeling Studies

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Impact of Ethanol on Benzene Plume Lengths: Microbial and Modeling Studies Rula A. Deeb1 ; Jonathan with Federal Clean Air Act requirements for carbon monoxide and ozone attainment, ethanol is being considered as a replacement for MTBE. The objective of this study is to evaluate the potential impact of ethanol on benzene

  17. Proceedings of the Sudden Oak Death Fifth Science Symposium Ethanol Attracts Scolytid Beetles to

    E-Print Network [OSTI]

    Standiford, Richard B.

    Proceedings of the Sudden Oak Death Fifth Science Symposium 147 Ethanol Attracts Scolytid Beetles. These attacks accelerate tree mortality. Ethanol concentrations were analyzed in sapwood samples collected from. Trees with large basal cankers contained 4.3 times more sapwood ethanol than trees with spot cankers

  18. 2-Undecyloxy-1-ethanol in combination with other semiochemicals attracts three

    E-Print Network [OSTI]

    Hanks, Lawrence M.

    2-Undecyloxy-1-ethanol in combination with other semiochemicals attracts three Monochamus species: Lamiinae) have recently been shown to have the same male-produced sex pheromone, 2-undecyloxy-1-ethanol volatiles ethanol and a-pinene, in southern British Columbia, Canada. We captured 603 Monochamus clamator

  19. Research Report Effects of ethanol consumption by adult female rats on subsequent

    E-Print Network [OSTI]

    Galef Jr., Bennett G.

    Research Report Effects of ethanol consumption by adult female rats on subsequent consumption January 2004 Abstract We used a two-bottle choice test to measure voluntary ethanol consumption by adolescent rats that had lived with ethanol-consuming or water-consuming adult conspecifics. We found

  20. Global Indirect Effects of U.S. Corn Ethanol Production: A Review of the Evidence

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Global Indirect Effects of U.S. Corn Ethanol Production: A Review of the Evidence Energy security) requires 36 billion gallons of ethanol by 2022 to replace about 20 percent of U.S. gasoline consumption. Since 2001 ethanol produc- tion, mainly from corn, has increased dramatically at an annual average

  1. Increasing atmospheric burden of ethanol in the United States J. A. de Gouw,1,2

    E-Print Network [OSTI]

    Goldstein, Allen

    Increasing atmospheric burden of ethanol in the United States J. A. de Gouw,1,2 J. B. Gilman,1,2 A; revised 25 June 2012; accepted 1 July 2012; published 4 August 2012. [1] The use of ethanol 10% ethanol. In accordance with this increased use, atmospheric measurements of volatile organic

  2. Study of the Enzymatic Hydrolysis of Cellulose for Production of Fuel Ethanol

    E-Print Network [OSTI]

    California at Riverside, University of

    Study of the Enzymatic Hydrolysis of Cellulose for Production of Fuel Ethanol by the Simultaneous to ethanol, a promising alternative fuel, can be carried out efficiently and economically using are presented in light of the impact of enzymatic hydrolysis on fuel ethanol production. Key words: enzymatic

  3. 2010-01-0166 Ethanol Content Estimation in Flex Fuel Direct Injection

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    2010-01-0166 Ethanol Content Estimation in Flex Fuel Direct Injection Engines Using In to estimate the ethanol content, which exploits the difference in stoi- chiometric air-to-fuel ratio (SAFR to large errors with mass air flow sensor bias and/or fuel injector shift. In this paper, an ethanol

  4. MU FAPRI reports economic impact of extending ethanol tax credit, tariff Contact:Duane Dailey

    E-Print Network [OSTI]

    Noble, James S.

    . ­ Extending the current ethanol tax credit and tariff would boost corn-based fuel production -- and corn for corn as an ethanol fuel source would expand corn acreage by 1.7 million acres, said Seth Meyer, MU for blended fuel at the pump. "At the same time, blenders can pay more to ethanol plants that in turn pay

  5. Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex-Fuel flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

  6. Author's personal copy Performance of an alkaline-acid direct ethanol fuel cell

    E-Print Network [OSTI]

    Zhao, Tianshou

    Author's personal copy Performance of an alkaline-acid direct ethanol fuel cell L. An, T.S. Zhao ethanol fuel cell Alkaline-acid Species concentrations Membrane thickness Power density a b s t r a c t This paper reports on the performance of an alkaline-acid direct ethanol fuel cell (AA-DEFC) that is composed

  7. Water Research 36 (2002) 37393746 Effect of ethanol on BTEX biodegradation kinetics: aerobic

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    November 2001; received in revised form 1 February 2002 Abstract The use of ethanol as an automotive fuel the use of ethanol as a gasoline oxygenate to reduce air pollution, and as a supplemental renewable fuelWater Research 36 (2002) 3739­3746 Effect of ethanol on BTEX biodegradation kinetics: aerobic

  8. Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we- ration, air-to-fuel ratio control, gasoline-ethanol blend, flex-fuel vehicles I. INTRODUCTION Currently

  9. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    SciTech Connect (OSTI)

    Mangmeechai, Aweewan, E-mail: aweewan.m@nida.ac.th [National Institute of Development Administration, International College (Major in Public Policy and Management) (Thailand)] [National Institute of Development Administration, International College (Major in Public Policy and Management) (Thailand); Pavasant, Prasert [Chulalongkorn University, Department of Chemical Engineering, Faculty of Engineering (Thailand)] [Chulalongkorn University, Department of Chemical Engineering, Faculty of Engineering (Thailand)

    2013-12-15T23:59:59.000Z

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510-1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300-2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs.

  10. BEHAVIORAL SENSITIZATION TO ETHANOL IS MODULATED BY ENVIRONMENTAL CONDITIONS, BUT IS NOT ASSOCIATED WITH

    E-Print Network [OSTI]

    Das, Soma

    BEHAVIORAL SENSITIZATION TO ETHANOL IS MODULATED BY ENVIRONMENTAL CONDITIONS, BUT IS NOT ASSOCIATED, OR 97239, USA Abstract--Rationale: The ability of ethanol to facilitate GABAA receptor-mediated transmission may result in GABAA receptor alterations during repeated ethanol administration, and lead

  11. LES/probability density function approach for the simulation of an ethanol spray flame

    E-Print Network [OSTI]

    Raman, Venkat

    LES/probability density function approach for the simulation of an ethanol spray flame Colin Heye a an experimental pilot-stabilized ethanol spray flame. In this particular flame, droplet evaporation occurs away: Large-eddy simulation; Probability density function; Flamelet/progress variable approach; Ethanol

  12. Effect of Ethanol, Acetate, and Phenol on Toluene Degradation Activity and todlux

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Effect of Ethanol, Acetate, and Phenol on Toluene Degradation Activity and tod­lux Expression with increasing influent concentrations of ethanol, acetate, or phenol. Three inhibitory mechanisms were) by acetate and ethanol, which was quantified by a decrease in specific bioluminescence; (2) competitive

  13. Genome-Scale Analysis of Saccharomyces cerevisiae Metabolism and Ethanol Production

    E-Print Network [OSTI]

    Mountziaris, T. J.

    ARTICLE Genome-Scale Analysis of Saccharomyces cerevisiae Metabolism and Ethanol Production in Fed cerevisiae metabolism and ethanol production in fed-batch culture. Metabolic engineering strategies previously identified for their enhanced steady-state biomass and/or ethanol yields are evaluated for fed

  14. WSU Program for TBI Research Summer School Neuroprotection & Mechanism of Ethanol

    E-Print Network [OSTI]

    VandeVord, Pamela

    6/12/2013 1 WSU Program for TBI Research Summer School Neuroprotection & Mechanism of Ethanol Surgery June 7, 2013 Department of Neurological Surgery Wayne State University History of Alcohol (Ethanol) ·The earliest evidence of alcohol (ethanol) use is the discovery of beer jugs from the Neolithic age

  15. Decomposition of Ethanol and Dimethyl Ether During Chemical Vapour deposition Synthesis

    E-Print Network [OSTI]

    Maruyama, Shigeo

    1 Decomposition of Ethanol and Dimethyl Ether During Chemical Vapour deposition Synthesis of Single-phase thermal decomposition of ethanol and dimethyl ether (DME) at typical SWNT growth conditions using to the predicted decomposition mechanism. Signature peak intensities indicated concentrations of both ethanol

  16. Vesicle Formation of a 1:1 Catanionic Surfactant Mixture in Ethanol Solution

    E-Print Network [OSTI]

    Huang, Jianbin

    Vesicle Formation of a 1:1 Catanionic Surfactant Mixture in Ethanol Solution J.-B. Huang,* B on the liposome of natural phospho- lipids.10,11 As for the situation in ethanol solution, early studies showed that ethanol addition deteriorates the molecular order in lipid bilayers,12-16 although a small amount

  17. Prevention of calcification of glutaraldehyde-crosslinked porcine aortic cusps by ethanol preincubation

    E-Print Network [OSTI]

    Zand, Robert

    Prevention of calcification of glutaraldehyde-crosslinked porcine aortic cusps by ethanol efficacious ethanol pre- treatment of BPHVs for the prevention of cuspal calcifica- tion. The aim of the present study is to extend our under- standing of the material changes brought about by ethanol

  18. Ethanol Assay, UV-method (R-Biopharm, Cat. No. 10 176 290 035)

    E-Print Network [OSTI]

    Dunham, Maitreya

    Ethanol Assay, UV-method (R-Biopharm, Cat. No. 10 176 290 035) modified by Maitreya Dunham the assay since ethanol is volatile. Use the following chart to add the appropriate amount of reagents your samples at all times during the assay since ethanol is volatile. According to the kit, _A must

  19. Self-Limiting Chemical Vapor Deposition Growth of Monolayer Graphene from Ethanol

    E-Print Network [OSTI]

    Maruyama, Shigeo

    1 Self-Limiting Chemical Vapor Deposition Growth of Monolayer Graphene from Ethanol Pei Zhao, and systematically investigate the growth of graphene from ethanol and compare its self-limiting behavior over copper facets with different identities. Results show that the growth of graphene from ethanol in the LPCVD

  20. DEVELOPMENTAL ALTERATIONS IN OLIVARY CLIMBING FIBER DISTRIBUTION FOLLOWING POSTNATAL ETHANOL EXPOSURE IN

    E-Print Network [OSTI]

    Hayar, Abdallah

    DEVELOPMENTAL ALTERATIONS IN OLIVARY CLIMBING FIBER DISTRIBUTION FOLLOWING POSTNATAL ETHANOL 72205-7199, USA Abstract--Ethanol exposure during postnatal days (PN) 4­6 in rats alters cerebellar happens to the neurons that survive. In this study, rat pups were treated with a daily dose of ethanol

  1. The effect of CO regulations on the cost of corn ethanol production

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The effect of CO 2 regulations on the cost of corn ethanol production This article has been) 024003 (9pp) doi:10.1088/1748-9326/3/2/024003 The effect of CO2 regulations on the cost of corn ethanol the effect of CO2 price on the effective cost of ethanol production we have developed a model that integrates

  2. Expression of Ethanol-Induced Behavioral Sensitization Is Associated with Alteration of Chromatin Remodeling in

    E-Print Network [OSTI]

    Boyer, Edmond

    Expression of Ethanol-Induced Behavioral Sensitization Is Associated with Alteration of Chromatin), Amiens, France Abstract Background: Ethanol-induced behavioral sensitization (EIBS) is proposed to play in the development and the persistence of ethanol-related behaviors, we explored the involvement of epigenetic

  3. TECHNICAL ADVANCE The ethanol switch: a tool for tissue-specic gene induction

    E-Print Network [OSTI]

    Murray, J.A.H.

    TECHNICAL ADVANCE The ethanol switch: a tool for tissue-speci®c gene induction during plant is a powerful tool for the analysis of gene function during plant development. Here, we report ethanol inducible of an ethanol-regulated transcription factor, ALCR, is restricted to precise domains using speci®c promoters

  4. Wang et al. 1 Ethanol-Mediated Facilitation of AMPA Receptor Function in the Dorsomedial Striatum

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Wang et al. 1 Ethanol-Mediated Facilitation of AMPA Receptor Function in the Dorsomedial Striatum, California 94608 Running Title: Ethanol and AMPA receptors in the dorsomedial striatum # To whom as well as repeated cycles of in vivo ethanol exposure and withdrawal, including excessive voluntary

  5. Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of

    E-Print Network [OSTI]

    Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B (received for review September 1, 2004) Chronic ethanol abuse causes up-regulation of NMDA receptors, which underlies seizures and brain damage upon ethanol with- drawal (EW). Here we show that tissue

  6. An Update on Ethanol Production and Utilization in Thailand—2014

    SciTech Connect (OSTI)

    Bloyd, Cary N.; Foster, Nikolas AF

    2014-09-01T23:59:59.000Z

    In spite of the recent political turmoil, Thailand has continued to develop its ethanol based alternative fuel supply and demand infrastructure. Its support of production and sales of ethanol contributed to more than doubling the production over the past five years alone. In April 2014, average consumption stood at 3.18 million liter per day- more than a third on its way to its domestic consumption goal of 9 million liters per day by 2021. Strong government incentives and the phasing out of non-blended gasoline contributed substantially. Concurrently, exports dropped significantly to their lowest level since 2011, increasing the pressure on Thai policy makers to best balance energy independency goals with other priorities, such as Thailand’s trade balance and environmental aspirations. Utilization of second generation biofuels might have the potential to further expand Thailand’s growing ethanol market. Thailand has also dramatically increased its higher ethanol blend vehicle fleet, with all new vehicles sold in the Thai market now being E20 capable and the number of E85 vehicles increasing three fold in the last year from 100,000 in 2013 to 300,000 in 2014.

  7. Solar Ethanol Distillation Oara Neumann,1,3

    E-Print Network [OSTI]

    O-9 Solar Ethanol Distillation Oara Neumann,1,3 Albert D. Neumann,2 Julius Müller,1 of separation, particularly distillation. The 40,000 commercial distillation columns in use in the U. S. consume or product purity. Distillation is the critical energy-consuming step accounting for 70-85% of the energy

  8. THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY)

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    .S. Department of Energy, Center for Transportation Research, Energy Systems Division, Argonne National per gallon for the industry. The study results suggest that corn ethanol is energy efficient on the latest data on corn production and corn yield, (2) improving the quality of estimates for energy used

  9. MTBE still facing pressure from ethanol under latest fuel proposal

    SciTech Connect (OSTI)

    Lucas, A.

    1994-01-26T23:59:59.000Z

    The US EPA's finalized reformulated gasoline rule, part of Phase II of the 1990 Clean Air Act, signals a possible turnaround for the sluggish methyl tert-butyl ether (MTBE) market. But if a 30% renewable fuels proposal favoring ethanol passes, pressure could continue for MTBE.

  10. Ethanol production in fermentation of mixed sugars containing xylose

    DOE Patents [OSTI]

    Viitanen, Paul V. (West Chester, PA); Mc Cutchen, Carol M. (Wilmington, DE); Li; Xu (Newark, DE); Emptage, Mark (Wilmington, DE); Caimi, Perry G. (Kennett Square, PA); Zhang, Min (Lakewood, CO); Chou, Yat-Chen (Lakewood, CO); Franden, Mary Ann (Centennial, CO)

    2009-12-08T23:59:59.000Z

    Xylose-utilizing Z. mobilis strains were found to have improved ethanol production when grown in medium containing mixed sugars including xylose if sorbitol or mannitol was included in the medium. The effect was seen in concentrations of mixed sugars where no growth lag period occurs, as well as in higher sugars concentrations.

  11. Thermodynamics of the Corn-Ethanol Biofuel Cycle

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    into Corn Production . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11 Solar Energy Input into Corn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.5 Overall Energy Balance of the Corn-Ethanol Process . . . . . . . . . . . . . . . . . . 25 II.1 The Earth is an Open System to Heat Flow . . . . . . . . . . . . . . . . . . . . . . . 38 10.2 Conclusions

  12. alkaline direct ethanol: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alkaline direct ethanol First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Author's personal copy...

  13. acute ethanol withdrawal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acute ethanol withdrawal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Quantitative trait loci...

  14. acute ethanol ingestion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acute ethanol ingestion First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 GENDER DIFFERENCES IN THE...

  15. aqueous ethanol solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ethanol solutions First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A swollen phase observed between the...

  16. accumbens stimulate ethanol: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accumbens stimulate ethanol First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Suppression of...

  17. adolescent ethanol exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adolescent ethanol exposure First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Impulsivity and trauma...

  18. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOE Patents [OSTI]

    Nguyen, Quang A. (Chesterfield, MO); Keller, Fred A. (Lakewood, CO); Tucker, Melvin P. (Lakewood, CO)

    2003-12-09T23:59:59.000Z

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  19. aqueous ethanol solution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ethanol solution First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A swollen phase observed between the...

  20. Crop Production Variability and U.S. Ethanol Mandates

    E-Print Network [OSTI]

    Jones, Jason P.

    2014-07-08T23:59:59.000Z

    the blending amount, including new requirements and ending with a 36 billion gallon obligation by 2022 (U.S. Congress 2007). The RFS2 mandates include specific targets for feedstock based ethanol, advanced biofuels, and biodiesel. Effects of RFS2 Mandates...

  1. Biofuel derived from Microalgae Corn-based Ethanol

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    ) Comparing both Energy Sources (1) 0 500 1000 1500 2000 Corn Microalgae Land Area Needed (M ha) 0 20000 40000 60000 80000 100000 Corn Microalgae Oil Yield (L/ha) #12;Comparing both Energy Sources (2) BackgroundBiofuel derived from Microalgae Corn-based Ethanol #12;Outline · Production processes for each

  2. Optimization of Energy and Water Consumption in Cornbased Ethanol Plants

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimization of Energy and Water Consumption in Corn­based Ethanol Plants Elvis Ahmetovi). First, we review the major alternatives in the optimization of energy consumption and its impact for the water streams. We show that minimizing energy consumption leads to process water networks with minimum

  3. Quantitative selection of hedge funds using data envelopment analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Quantitative selection of hedge funds using data envelopment analysis Huyen Nguyen-Thi-Thanh First Envelopment Analysis (DEA) could be a good tool to evaluate fund performance, especially the performance of hedge funds as it can incorporate multiple risk-return attributes characterizing hedge fund's non normal

  4. University of Florida Change, Petty Cash, and Research Stipend Funds

    E-Print Network [OSTI]

    Watson, Craig A.

    University of Florida Change, Petty Cash, and Research Stipend Funds Request for New Fund DEPARTMENT INFORMATION FUND INFORMATION CHARTFIELD INFORMATION CONTACT INFORMATION Custodian Prepared by (if College name Amount requested ($) Type of fund Research stipendPetty cashChange What is the primary

  5. National Institutes of Health Funding in Radiation Oncology: A Snapshot

    SciTech Connect (OSTI)

    Steinberg, Michael; McBride, William H.; Vlashi, Erina [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)] [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Pajonk, Frank, E-mail: fpajonk@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)] [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2013-06-01T23:59:59.000Z

    Currently, pay lines for National Institutes of Health (NIH) grants are at a historical low. In this climate of fierce competition, knowledge about the funding situation in a small field like radiation oncology becomes very important for career planning and recruitment of faculty. Unfortunately, these data cannot be easily extracted from the NIH's database because it does not discriminate between radiology and radiation oncology departments. At the start of fiscal year 2013 we extracted records for 952 individual grants, which were active at the time of analysis from the NIH database. Proposals originating from radiation oncology departments were identified manually. Descriptive statistics were generated using the JMP statistical software package. Our analysis identified 197 grants in radiation oncology. These proposals came from 134 individual investigators in 43 academic institutions. The majority of the grants (118) were awarded to principal investigators at the full professor level, and 122 principal investigators held a PhD degree. In 79% of the grants, the research topic fell into the field of biology, 13% in the field of medical physics. Only 7.6% of the proposals were clinical investigations. Our data suggest that the field of radiation oncology is underfunded by the NIH and that the current level of support does not match the relevance of radiation oncology for cancer patients or the potential of its academic work force.

  6. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    SciTech Connect (OSTI)

    Andrew Wold; Robert Divers

    2011-06-23T23:59:59.000Z

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

  7. Information extraction system

    DOE Patents [OSTI]

    Lemmond, Tracy D; Hanley, William G; Guensche, Joseph Wendell; Perry, Nathan C; Nitao, John J; Kidwell, Paul Brandon; Boakye, Kofi Agyeman; Glaser, Ron E; Prenger, Ryan James

    2014-05-13T23:59:59.000Z

    An information extraction system and methods of operating the system are provided. In particular, an information extraction system for performing meta-extraction of named entities of people, organizations, and locations as well as relationships and events from text documents are described herein.

  8. Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve Timing

    E-Print Network [OSTI]

    Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve engine efficiency. Fuel-flexible engines permit the increased use of ethanol-gasoline blends. Ethanol points across the engine operating range for four blends of gasoline and ethanol. I. INTRODUCTION Fuel

  9. Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    #12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol% of total domestic ethanol production. That is, while the model still covers all alternative fuels and five

  10. Revolving Loan Fund Webinars | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFund Webinars Revolving Loan Fund

  11. Environmental Technologies Fund | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMission Ltd JumpFundEnvironmentaldo:Fund

  12. Funding available for New Mexico businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity from NOAA's Office ofFunding

  13. The Clean Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to: navigation, searchLookThe

  14. Money Related Decommissioning and Funding Decision Making

    SciTech Connect (OSTI)

    Goodman, Lynne S. [Detroit Edison Company, 6400 N. Dixie Highway, Newport, Michigan 48162 (United States)

    2008-01-15T23:59:59.000Z

    'Money makes the world go round', as the song says. It definitely influences decommissioning decision-making and financial assurance for future decommissioning. This paper will address two money-related decommissioning topics. The first is the evaluation of whether to continue or to halt decommissioning activities at Fermi 1. The second is maintaining adequacy of financial assurance for future decommissioning of operating plants. Decommissioning costs considerable money and costs are often higher than originally estimated. If costs increase significantly and decommissioning is not well funded, decommissioning activities may be deferred. Several decommissioning projects have been deferred when decision-makers determined future spending is preferable than current spending, or when costs have risen significantly. Decommissioning activity timing is being reevaluated for the Fermi 1 project. Assumptions for waste cost-escalation significantly impact the decision being made this year on the Fermi 1 decommissioning project. They also have a major impact on the estimated costs for decommissioning currently operating plants. Adequately funding full decommissioning during plant operation will ensure that the users who receive the benefit pay the full price of the nuclear-generated electricity. Funding throughout operation also will better ensure that money is available following shutdown to allow decommissioning to be conducted without need for additional funds.

  15. Undergraduate Internship Funding Sources Summer 2012

    E-Print Network [OSTI]

    Snider, Barry B.

    Undergraduate Internship Funding Sources Summer 2012 Sorensen Fellowship Eli Segal Citizen Foundation Internship Grant Internship focus Issues of ethics, broadly defined Civic engagement placements weeks/ full-time Summer ­ no minimum 8 weeks/ 8 weeks/ 200 hrs 200 hrs 200 hrs Unpaid internship? Yes

  16. IRO INTERNAL MANAGEMENT Funded by the

    E-Print Network [OSTI]

    Management · OGPI approach · Information and Management Systems #12;· The analysis will be focus "tools" that improve the quality of the costs management: The Economic Management Tool (IntranetIRO INTERNAL MANAGEMENT - UA - Funded by the European Union 3rd Workshop: IROs Models Tunisia, 30

  17. Sustainable Energy Revolving Loan Fund PROJECT APPLICATION

    E-Print Network [OSTI]

    Escher, Christine

    1 Sustainable Energy Revolving Loan Fund PROJECT APPLICATION I. Project Administration 1. Project;2 III. Estimated Annual Energy Savings SHOW CALCULATIONS, RATIONALE AND/OR METHODOLOGY Attach additional documentation if needed Estimated Energy Savings Estimated Financial Savings ELECTRICAL ­ Kilowatt hour and

  18. Gerardo Chowell Director's Funded Postdoctoral Fellow

    E-Print Network [OSTI]

    Chowell, Gerardo

    Postdoctoral Fellowship (2005-2006) Los Alamos National Laboratory, Los Alamos, New Mexico. National PrizeGerardo Chowell Director's Funded Postdoctoral Fellow Los Alamos National Laboratory Mathematical Modeling and Analysis, MS B284 Los Alamos National Laboratory Los Alamos, NM 87545 Email: chowell

  19. Revolving Loan Funds and Loan Loss Reserves

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) State Energy Program (SEP) guidance to states, Indian tribes, and overseas U.S. territories receiving SEP grants under the 209 Recovery Act dealing with loan loss reserves for revolving loan funds.

  20. AGREEMENT FOR DOE-FUNDED TECHNOLOGY ASSISTANCE

    E-Print Network [OSTI]

    National Laboratory, agrees to provide the Technology services described below at no cost to the REQUESTERAGREEMENT FOR DOE-FUNDED TECHNOLOGY ASSISTANCE Date: Agreement: TO: FROM: Battelle Memorial Title: Field of Use: The activities to be performed under this Technology assistance will be: BATTELLE