Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Modular PM Motor Drives for Automotive Traction Applications  

DOE Green Energy (OSTI)

This paper presents modular permanent magnet (PM) motor drives for automotive traction applications. A partially modularized drive system consisting of a single PM motor and multiple inverters is described. The motor has multiple three-phase stator winding sets and each winding set is driven with a separate three-phase inverter module. A truly modularized inverter and motor configuration based on an axial-gap PM motor is then introduced, in which identical PM motor modules are mounted on a common shaft and each motor module is powered by a separate inverter module. The advantages of the modular approach for both inverter and motor include: (1) power rating scalability--one design meets different power requirements by simply stacking an adequate number of modules, thus avoiding redesigning and reducing the development cost, (2) increased fault tolerance, and (3) easy repairing. A prototype was constructed by using two inverters and an axial-gap PM motor with two sets of three-phase stat or windings, and it is used to assist the diesel engine in a hybrid electric vehicle converted from a Chevrolet Suburban. The effect of different pulse-width-modulation strategies for both motoring and regenerative modes on current control is analyzed. Torque and regenerative control algorithms are implemented with a digital signal processor. Analytical and initial testing results are included in the paper.

Su, G.J.

2001-10-29T23:59:59.000Z

2

Fully Integrating the Design Process  

SciTech Connect

The basic approach to designing nuclear facilities in the United States does not currently reflect the routine consideration of proliferation resistance and international safeguards. The fully integrated design process is an approach for bringing consideration of international safeguards and proliferation resistance, together with state safeguards and security, fully into the design process from the very beginning, while integrating them sensibly and synergistically with the other project functions. In view of the recently established GNEP principles agreed to by the United States and at least eighteen other countries, this paper explores such an integrated approach, and its potential to help fulfill the new internationally driven design requirements with improved efficiencies and reduced costs.

T.A. Bjornard; R.S. Bean

2008-03-01T23:59:59.000Z

3

Traction Drive Systems Breakout  

NLE Websites -- All DOE Office Websites (Extended Search)

Traction Drive Systems Breakout Traction Drive Systems Breakout John M. Miller, PhD, PE, F.IEEE, F.SAE Oak Ridge National Laboratory Facilitator July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov EV Everywhere Traction Drive System * DOE goals for Electric Traction Drive System (TDS) innovations must be disruptive innovation focused to meet the CY2022 price target ($20,000 $25,000) for a mid-sized 5 passenger sedan having 5 year simple payback. Enhanced Efficiency Reduced Cost Traction Drive System EETT Roadmap: "Therefore, research is needed to develop technologies that are less expensive and, at the same time, smaller, lighter, more efficient, and equally reliable as conventional automotive technologies. "

4

Advanced Integrated Traction System  

DOE Green Energy (OSTI)

Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

Greg Smith; Charles Gough

2011-08-31T23:59:59.000Z

5

Improved performance alternator with fully integrated Switched-Mode Rectifier  

E-Print Network (OSTI)

The use of Power Electronic circuits has helped to advance the technology of automotive alternators. The use of a Switched-Mode Rectifier (SMR) allows the alternator to run at a load-matched condition, optimizing power and ...

Mesa, Armando

2008-01-01T23:59:59.000Z

6

Advanced Integrated Traction System  

SciTech Connect

The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

Greg Smith; Charles Gough

2011-08-31T23:59:59.000Z

7

A fully-integrated 5 Gbit/s CMOS clock and data recovery circuit  

Science Conference Proceedings (OSTI)

A fully-integrated 5 Gb/s PLL-based clock and data recovery circuit based on a linear half-rate phase detector (PD) architecture is presented. Data retiming performed by the linear PD provides practically no systematic offset for the operating frequency ... Keywords: CMOS analog integrated circuits, Clock data recovery, Half-rate CDR, Linear PD, PLL

Tan Kok-Siang; Mohd-Shahiman Sulaiman; Mamun Reaz; Chuah Hean-Teik; Manoj Sachdev

2007-05-01T23:59:59.000Z

8

CX-006974: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Fully-Integrated Automotive Traction Inverter with Real-Time Switching Optimization CX(s) Applied: B3.6 Date: 09262011 Location(s): Colorado, Massachusetts,...

9

Ac traction gets on track  

Science Conference Proceedings (OSTI)

This article describes inverter-based ac traction systems which give freight locomotives greater adhesion, pulling power, and braking capacity. In the 1940s, dc traction replaced the steam engine as a source of train propulsion, and it has ruled the freight transportation industry ever since. But now, high-performance ac-traction systems, with their unprecedented levels of pulling power and adhesion, are becoming increasingly common on America`s freight railroads. In thousands of miles of demonstration tests, today`s ac-traction systems have outperformed traditional dc-motor driven systems. Major railroad companies are convinced enough of the benefits of ac traction to have integrated it into their freight locomotives.

O`Connor, L.

1995-09-01T23:59:59.000Z

10

Reliability mathematics analysis on traction substation operation  

Science Conference Proceedings (OSTI)

In electrified railway traction power supply systems, the operational qualities and reliabilities of the main traction transformer loop is higher, but ones of bus output units is comparatively low. The traction transformer loop still works when output ... Keywords: Erlang distribution, Markov theory, life, reliability, traction substation, transformer

Hongsheng Su

2008-11-01T23:59:59.000Z

11

A fully integrated switched-capacitor DC-DC converter with dual output for low power application  

Science Conference Proceedings (OSTI)

This paper presents a fully integrated on-chip switched-capacitor (SC) DC-DC converter that supports two regulated power supply voltages of 2.2V and 3.2V from 5V input supply and delivers the maximum load currents up to 8mA at both of the outputs. The ... Keywords: dc-dc converter, dual output, switched-capacitor

Heungjun Jeon; Yong-Bin Kim

2012-05-01T23:59:59.000Z

12

Motor generator electric automotive vehicle  

SciTech Connect

A motor generator electric automotive vehicle is described comprising in combination, a traction drive motor coupled by a first drive shaft to a differential of an axle of the vehicle, a main battery bank electrically connected by wires to a small electric motor driving a large D.C. generator having a second drive shaft therebetween, an on-off switch in series with one of the wires to the small motor, a speed control unit attached to an accelerator pedal of the vehicle being coupled with a double pole-double throw reverse switch to the traction drive motor, a charger regulator electrically connected to the generator, a bank of solar cells coupled to the charge regulator, an electric extension cord from the charge regulator having a plug on its end for selective connection to an exterior electric power source, a plurality of pulleys on the second drive shaft, a belt unit driven by the pulley, one the belt unit being connected to a present alternator of the vehicle which is coupled to a present battery and present regulator of the vehicle, and other of the units being connected to power brakes and equipment including power steering and an air conditioner.

Weldin, W.

1986-07-29T23:59:59.000Z

13

Automotive electronics business  

E-Print Network (OSTI)

In the automotive industry, due to the trend to introduce active safety systems, concerns about protecting the environment, and advances in information technology, key automotive manufacturers are eager to acquire new ...

Hase, Yoshiko, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

14

FreedomCAR Advanced Traction Drive Motor Development Phase I  

DOE Green Energy (OSTI)

The overall objective of this program is to design and develop an advanced traction motor that will meet the FreedomCAR and Vehicle Technologies (FCVT) 2010 goals and the traction motor technical targets. The motor specifications are given in Section 1.3. Other goals of the program include providing a cost study to ensure the motor can be developed within the cost targets needed for the automotive industry. The program has focused on using materials that are both high performance and low costs such that the performance can be met and cost targets are achieved. In addition, the motor technologies and machine design features must be compatible with high volume manufacturing and able to provide high reliability, efficiency, and ruggedness while simultaneously reducing weight and volume. Weight and volume reduction will become a major factor in reducing cost, material cost being the most significant part of manufacturing cost at high volume. Many motor technology categories have been considered in the past and present for traction drive applications, including: brushed direct current (DC), PM (PM) brushless dc (BLDC), alternating current (AC) induction, switched reluctance and synchronous reluctance machines. Of these machine technologies, PM BLDC has consistently demonstrated an advantage in terms of power density and efficiency. As rare earth magnet cost has declined, total cost may also be reduced over the other technologies. Of the many different configurations of PM BLDC machines, those which incorporate power production utilizing both magnetic torque as well as reluctance torque appear to have the most promise for traction applications. There are many different PM BLDC machine configurations which employ both of these torque producing mechanisms; however, most would fall into one of two categories--some use weaker magnets and rely more heavily on reluctance torque (reluctance-dominant PM machines), others use strong PMs and supplement with reluctance torque (magnet-dominant PM machines). This report covers a trade study that was conducted in this phase I program to explore which type of machine best suits the FCVT requirements.

Ley, Josh (UQM Technologies, Inc.); Lutz, Jon (UQM Technologies, Inc.)

2006-09-01T23:59:59.000Z

15

AUTOMOTIVE ALLOYS: III: Castings  

Science Conference Proceedings (OSTI)

Coal fly ash, an industrial waste by-product, is produced during combustion of ... DIE CASTING FOR AUTOMOTIVE APPLICATIONS--A Status Report: Hubert ...

16

Integrity Automotive | Open Energy Information  

Open Energy Info (EERE)

Automotive Jump to: navigation, search Name Integrity Automotive Place Kentucky Product Joint venture between Kentucky businessman Randal Waldman of Integrity Manufacturing and...

17

Coda Automotive | Open Energy Information  

Open Energy Info (EERE)

Name Coda Automotive Place Santa Monica, California Zip 90403 Product California-based electric vehicle company which builds its cars in China. References Coda Automotive1...

18

A fully integrated 23.2dBm P1dB CMOS power amplifier for the IEEE 802.11a with 29% PAE  

Science Conference Proceedings (OSTI)

A two-stage fully integrated power amplifier (PA) for the 802.11a standard is presented. The PA has been fabricated using UMC 0.18@mm CMOS technology. Measurement results show a power gain of 21.1dB, a P"1"d"B of 23.2dBm and a P"S"A"T of 26.8dBm. The ... Keywords: CMOS, IEEE 802.11a, Power amplifier, Power inductor, WLAN

Héctor Solar; Roc Berenguer; Joaquín de No; Iñaki Gurutzeaga; Unai Alvarado; Jon Legarda

2009-01-01T23:59:59.000Z

19

Automotive materials usage trends  

SciTech Connect

The materials composition of US passenger cars is traced from 1960 and projected into 1990's. Sales-weighted average vehicle-weight trends are analyzed in terms of shifts in the large/small car mix, downsizing, and downweighting. The growth in the usage of lightweight materials: -high strength steels, cast/wrought aluminum, plastics and composites - are examined in detail. Usage trends in a host of other materials such as alloy steels, zinc, lead, copper, etc. are also discussed. An approximate quantitative analysis of changes in the usage of steel by the automotive industry worldwide show that about 10% of total decline in Western-World steel consumption is accounted for by the automotive industry. An assessment is presented for automotive industry use of critical materials such as chromium in alloy steels/cast irons and the platinum group metals in exhaust-gas catalysts. 10 references, 13 figures, 9 tables.

Gjostein, N.A.

1986-01-01T23:59:59.000Z

20

Automotive Lightweight Materials Assessment  

E-Print Network (OSTI)

and manufacturing energy by lower energy use and cost during the vehicle operation life cycle stage. It is estimated -1500 -1000 -500 0 500 1000 1500 2000 2500 LifeCycleEnergySavings(MJ/vehicle) Manufacturing Use Recycle's (DOE's) Office of FreedomCAR and Vehicle Technologies Program (FCVT), Automotive Lightweighting

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Progress Report for Advanced Automotive Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Energy Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 1999 FY 1999 FY 1999 FY 1999 Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Transportation Technologies Office of Transportation Technologies Office of Transportation Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies

22

Simple cost model for EV traction motors  

DOE Green Energy (OSTI)

A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

Cuenca, R.M.

1995-02-01T23:59:59.000Z

23

Electric vehicle regenerative antiskid braking and traction control system  

DOE Patents (OSTI)

An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

Cikanek, Susan R. (Wixom, MI)

1995-01-01T23:59:59.000Z

24

Electric vehicle regenerative antiskid braking and traction control system  

DOE Patents (OSTI)

An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

Cikanek, S.R.

1995-09-12T23:59:59.000Z

25

Advanced Electric Traction System Technology Development  

SciTech Connect

As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

Anderson, Iver

2011-01-14T23:59:59.000Z

26

Vehicle Technologies Office: Graduate Automotive Technology Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) to someone by E-mail Share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Facebook Tweet about Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Twitter Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Google Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Delicious Rank Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Digg Find More places to share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on AddThis.com...

27

Development of a fully-integrated PV system for residential applications: Phase I annual technical report: February 27, 1998 -- August 31, 1999  

SciTech Connect

This report describes Utility Power Group's (UPG's) technical progress for Phase 1 of a two-phase effort to focus on the design, assembly, and testing of a fully-integrated residential PV power system, including storage. In the PV Array Task, UPG significantly improved the conventional means and methods required to structurally interface PV modules to the roofs of single-family residential houses and to electrically interconnect these PV modules to a power conversion unit. UPG focused on the design and test of a PV array based on the highly efficient use of materials and labor. Design criteria included cost, structural integrity, electrical safety, reliability, conformance with applicable standards and building and seismic codes, and adaptability to a wide range of roof materials for both existing and retrofit roof applications. In the Power Unit Task, UPG designed and tested a high-efficiency, low-cost, high-reliability prototype power conversion unit that included all materials, components, equipment, and software required to perform all DC-AC/AC-DC power collection, conversion, and control functions between the output of the PV array and the interconnection to the electrical grid service of single-family residences. In the Energy Storage Unit Task, UPG designed and tested a low-cost, modular, self-contained, low-maintenance, all-weather, battery-based Energy Storage Unit designed to interface with the Power Unit to provide back-up electricity to supply critical household loads in the event of utility-grid failure. The Energy Storage Unit includes batteries and all structural, mechanical, and electrical equipment required to provide a source of stored DC energy for input of the Power Unit. UPG designed the storage unit as a ''plug and play'' option, where multiple units can be easily paralleled for additional energy storage capacity.

West, R.; Mackamul, K.; Duran, G.

2000-03-06T23:59:59.000Z

28

Development of a fully-integrated PV system for residential applications: Phase I annual technical report: February 27, 1998 -- August 31, 1999  

DOE Green Energy (OSTI)

This report describes Utility Power Group's (UPG's) technical progress for Phase 1 of a two-phase effort to focus on the design, assembly, and testing of a fully-integrated residential PV power system, including storage. In the PV Array Task, UPG significantly improved the conventional means and methods required to structurally interface PV modules to the roofs of single-family residential houses and to electrically interconnect these PV modules to a power conversion unit. UPG focused on the design and test of a PV array based on the highly efficient use of materials and labor. Design criteria included cost, structural integrity, electrical safety, reliability, conformance with applicable standards and building and seismic codes, and adaptability to a wide range of roof materials for both existing and retrofit roof applications. In the Power Unit Task, UPG designed and tested a high-efficiency, low-cost, high-reliability prototype power conversion unit that included all materials, components, equipment, and software required to perform all DC-AC/AC-DC power collection, conversion, and control functions between the output of the PV array and the interconnection to the electrical grid service of single-family residences. In the Energy Storage Unit Task, UPG designed and tested a low-cost, modular, self-contained, low-maintenance, all-weather, battery-based Energy Storage Unit designed to interface with the Power Unit to provide back-up electricity to supply critical household loads in the event of utility-grid failure. The Energy Storage Unit includes batteries and all structural, mechanical, and electrical equipment required to provide a source of stored DC energy for input of the Power Unit. UPG designed the storage unit as a ''plug and play'' option, where multiple units can be easily paralleled for additional energy storage capacity.

West, R.; Mackamul, K.; Duran, G.

2000-03-06T23:59:59.000Z

29

PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report  

DOE Green Energy (OSTI)

The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

Staunton, R.H.

2004-08-11T23:59:59.000Z

30

AUTOMOTIVE ALLOYS: I: Fundamental Studies  

Science Conference Proceedings (OSTI)

In the present work, we have analyzed the tensile behavior of a series candidate .... This analysis provides information which can be used in the die and process ... of aluminum alloys and composite materials used in the automotive market.

31

Ceramic Automotive Stirling Engine Program  

SciTech Connect

The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

Not Available

1986-08-01T23:59:59.000Z

32

Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications  

Science Conference Proceedings (OSTI)

REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today’s large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor’s motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

None

2012-01-01T23:59:59.000Z

33

Gas Mileage of 2013 Vehicles by CODA Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 CODA Automotive Vehicles EPA MPG MODEL City Comb Hwy 2013 CODA Automotive CODA Automatic (A1), Electricity Compare 2013...

34

Gas Mileage of 2012 Vehicles by CODA Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

2 CODA Automotive Vehicles EPA MPG MODEL City Comb Hwy 2012 CODA Automotive CODA Automatic (A1), Electricity Compare 2012...

35

Integrated automotive exhaust engineering : uncertainty management  

E-Print Network (OSTI)

The global automotive industry has entered a stagnating period. Automotive OEMs and their tier suppliers are struggling for business growth. One of the most important strategies is to improve the engineering efficiency in ...

Fang, Xitian, 1963-

2006-01-01T23:59:59.000Z

36

G. Uniform Engine Fuels and Automotive Lubricants ...  

Science Conference Proceedings (OSTI)

... dherence to automotive manufacturers' recommended requirements ... in Flexible Fuel Vehicles (FFV) Only ... states, “Consult Vehicle Manufacturer Fuel ...

2013-10-25T23:59:59.000Z

37

Traction sheave elevator, hoisting unit and machine space  

DOE Patents (OSTI)

Traction sheave elevator consisting of an elevator car moving along elevator guide rails, a counterweight moving along counterweight guide rails, a set of hoisting ropes (3) on which the elevator car and counterweight are suspended, and a drive machine unit (6) driving a traction sheave (7) acting on the hoisting ropes (3) and placed in the elevator shaft. The drive machine unit (6) is of a flat construction. A wall of the elevator shaft is provided with a machine space with its open side facing towards the shaft, the essential parts of the drive machine unit (6) being placed in the space. The hoisting unit (9) of the traction sheave elevator consists of a substantially discoidal drive machine unit (6) and an instrument panel (8) mounted on the frame (20) of the hoisting unit.

Hakala, Harri (Hyvinkaa, FI); Mustalahti, Jorma (Hyvinkaa, FI); Aulanko, Esko (Kerava, FI)

2000-01-01T23:59:59.000Z

38

Automotive Component Product Development Enhancement  

E-Print Network (OSTI)

Optimization In an Integrated Concurrent Engineering Framework by Massimo Usan M. S. Aeronautical Engineering of the Requirements for the Degree of Master of Science in Engineering and Management at the Massachusetts Institute Engineering Systems Division #12;Automotive Component Product Development Enhancement Through Multi

39

Automotive Powertrain Control - A Survey  

E-Print Network (OSTI)

This paper surveys recent and historical publications on automotive powertrain control. Controloriented models of gasoline and diesel engines and their aftertreatment systems are reviewed, and challenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited and advancements are highlighted. A comprehensive list of references is provided. 1

Jeffrey A. Cook; Jing Sun; Julia H. Buckl; Ilya V. Kolmanovsky; Huei Peng; Jessy W. Grizzle

2006-01-01T23:59:59.000Z

40

Graduate Automotive Technology Education (GATE) Initiative Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards September 8, 2011 - 11:46am Addthis Graduate Automotive Technology Education (GATE) Initiative Awards DOE's Graduate Automotive Technology Education (GATE) initiative will award $6.4 million over the course of five years to support seven Centers of Excellence at American colleges, universities, and university-affiliated research institutions. The awardees will focus on three critical automotive technology areas: hybrid propulsion, energy storage, and lightweight materials. By funding curriculum development and expansion as well as laboratory work, GATE allows higher education institutions to develop multidisciplinary training. As a result, GATE promotes the development of a

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Graduate Automotive Technology Education (GATE) Initiative Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards September 8, 2011 - 11:46am Addthis Graduate Automotive Technology Education (GATE) Initiative Awards DOE's Graduate Automotive Technology Education (GATE) initiative will award $6.4 million over the course of five years to support seven Centers of Excellence at American colleges, universities, and university-affiliated research institutions. The awardees will focus on three critical automotive technology areas: hybrid propulsion, energy storage, and lightweight materials. By funding curriculum development and expansion as well as laboratory work, GATE allows higher education institutions to develop multidisciplinary training. As a result, GATE promotes the development of a

42

Korean Automotive Research Instituiton | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Korean Automotive Research Instituiton Place Korea Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

43

G. Uniform Engine Fuels, Petroleum Products, and Automotive ...  

Science Conference Proceedings (OSTI)

... 1.33. Liquefied Natural Gas (LNG). ... LNG automotive fuel shall be labeled with its automotive fuel rating in accordance with 16 CFR Part 306. ...

2011-08-30T23:59:59.000Z

44

DOE Hydrogen Analysis Repository: Automotive System Cost Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive System Cost Model (ASCM) Project Summary Full Title: Automotive System Cost Model (ASCM) Project ID: 118 Principal Investigator: Sujit Das Purpose Estimate current and...

45

US Council for Automotive Research USCAR | Open Energy Information  

Open Energy Info (EERE)

US Council for Automotive Research USCAR Jump to: navigation, search Name US Council for Automotive Research (USCAR) Place Southfield, Michigan Zip 48075 - Product Umbrella...

46

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric...

47

Traction drive automatic transmission for gas turbine engine driveline  

SciTech Connect

A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

Carriere, Donald L. (Livonia, MI)

1984-01-01T23:59:59.000Z

48

A global modular framework for automotive diagnosis  

Science Conference Proceedings (OSTI)

The automotive after-sales dealers lack solutions for accurate, comprehensive and efficient fault localization. However, such services in the after-sales networks are crucial to the brand value of automotive manufacturers and for client satisfaction. ... Keywords: Causal dependency graph, Diagnosis, Diagnostic algorithm, Heuristic diagnosis, Knowledge management, Model-based diagnosis

A. Azarian; A. Siadat

2012-01-01T23:59:59.000Z

49

Architecting automotive product lines: industrial practice  

Science Conference Proceedings (OSTI)

This paper presents an in-depth view of how architects work with maintaining product line architectures in the automotive industry. The study has been performed at two internationally well-known companies, one car manufacture and one commercial vehicle ... Keywords: architecting, automotive industry, case study, process

Håkan Gustavsson; Ulrik Eklund

2010-09-01T23:59:59.000Z

50

Control of Two Permanent Magnet Machines Using a Five-Leg Inverter for Automotive Applications  

SciTech Connect

This paper presents digital control schemes for control of two permanent magnet (PM) machines in an integrated traction and air-conditioning compressor drive system for automotive applications. The integrated drive system employs a five-leg inverter to power a three-phase traction PM motor and a two-phase compressor PM motor by tying the common terminal of the two-phase motor to the neutral point of the three-phase motor. Compared to a three-phase or a standalone two-phase inverter, it eliminates one phase leg and shares the control electronics between the two drives, thus significantly reducing the component count of the compressor drive. To demonstrate that the speed and torque of the two PM motors can be controlled independently, a control strategy was implemented in a digital signal processor, which includes a rotor flux field orientation based control (RFOC) for the three-phase motor, a similar RFOC and a position sensorless control in the brushless dc (BLDC) mode for the two-phase motor. Control implementation issues unique to a two-phase PM motor are also discussed. Test results with the three-phase motor running in the ac synchronous (ACS) mode while the two-phase motor either in the ACS or the BLDC mode are included to verify the independent speed and torque control capability of the integrated drive.

Su, Gui-Jia [ORNL; Tang, Lixin [ORNL; Huang, Xianghui [GE Global Research

2006-01-01T23:59:59.000Z

51

Maintenance-free automotive battery  

SciTech Connect

Two types of maintenance-free automotive batteries were developed by Japan Storage Battery Co. to obtain a maintenance-free battery for practical use and to prevent deterioration of the battery during long storage and/or shipment. Design considerations included a special grid alloy, the separator, plate surface area, vent structure, and electrolyte. Charge characteristics, overcharge characteristics, life characteristics under various conditions, and self-discharge characteristics are presented. The characteristics of the maintenance-free battery with a Pb-Ca alloy grid are superior to those of a conventional battery. 10 figures, 1 table. (RWR)

Kano, S.; Ando, K.

1978-01-01T23:59:59.000Z

52

A frequency domain model for 3 kV dc traction dc-side resonance identification  

SciTech Connect

Frequency-dependent effects in railway traction power systems arise from the impedance of substation and locomotive line filters and the traction line. Harmonic noise from traction drives and substations can excite resonances and produce overcurrent or overvoltage conditions at critical points in the network. In this paper, the harmonic feeding impedances of a 3 kV DC traction system seen from the rectifier substation, locomotive drive converter and pantograph terminals are presented. Several substation and locomotive filters are considered with a frequency-dependent traction line. Resonances attributed to the substation filter, locomotive filter and traction line are separate and distinct, the line introducing poles and zeros in the audio frequency (AF) range which vary in frequency and magnitude with locomotive position.

Hill, R.J. [Univ. of Bath (United Kingdom). School of Electronic and Electrical Engineering; Fracchia, M.; Pozzobon, P.; Sciutto, G. [Univ. degli Studi di Genova (Italy). Dipt. di Ingegneria Elettrica

1995-08-01T23:59:59.000Z

53

Impacts of Cooling Technology on Solder Fatigue for Power Modules in Electric Traction Drive Vehicles: Preprint  

SciTech Connect

Describes three power module cooling topologies for electric traction drive vehicles: two advanced options using jet impingement cooling and one option using pin-fin liquid cooling.

O' Keefe, M.; Vlahinos, A.

2009-08-01T23:59:59.000Z

54

Vehicle Technologies Office: FY 2005 Progress Report for Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on AddThis.com...

55

Vehicle Technologies Office: FY 2003 Progress Report for Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on AddThis.com...

56

Vehicle Technologies Office: FY 2006 Progress Report for Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Progress Report 6 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on AddThis.com...

57

Autonomie Automotive Simulation Tool | Open Energy Information  

Open Energy Info (EERE)

Autonomie Automotive Simulation Tool Autonomie Automotive Simulation Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Autonomie Automotive Simulation Tool Agency/Company /Organization: Argonne National Laboratory Focus Area: Economic Development, Vehicles Phase: Create a Vision Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.transportation.anl.gov/modeling_simulation/PSAT/autonomie.html OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Autonomie[1] Rapidly evaluate new powertrain and propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Argonne has developed a new tool, called Autonomie, to accelerate the

58

Oscar Automotive Ltd | Open Energy Information  

Open Energy Info (EERE)

Oscar Automotive Ltd Oscar Automotive Ltd Jump to: navigation, search Name Oscar Automotive Ltd Place London, Greater London, United Kingdom Sector Hydro, Hydrogen Product OSCar Automotive is working towards the commercialisation of hydrogen fuel cells in the transport sector. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Strategic frameworks in automotive systems architecting  

E-Print Network (OSTI)

More often than not, large-scale engineering concepts such as those used by creative automotive manufacturing companies require the incorporation of significant capital outlays and resources for the purposes of implementation ...

Tampi, Mahesh

2012-01-01T23:59:59.000Z

60

Software Engineering for Automotive Systems: A Roadmap  

Science Conference Proceedings (OSTI)

The first pieces of software were introduced into cars in 1976. By 2010, premium class vehicles are expected to contain one gigabyte of on-board software. We present research challenges in the domain of automotive software engineering.

Alexander Pretschner; Manfred Broy; Ingolf H. Kruger; Thomas Stauner

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Detection of arcs in automotive electrical systems  

E-Print Network (OSTI)

At the present time, there is no established method for the detection of DC electric arcing. This is a concern for forthcoming advanced automotive electrical systems which consist of higher DC electric power bus voltages, ...

Mishrikey, Matthew David

2005-01-01T23:59:59.000Z

62

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions and torque ripples. Keywords- Electric Vehicle, Plug-in Hybrid Vehicle, On-board Battery Charger, H on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger

Paris-Sud XI, Université de

63

Fuzzy logic electric vehicle regenerative antiskid braking and traction control system  

DOE Patents (OSTI)

An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

Cikanek, S.R.

1994-10-25T23:59:59.000Z

64

Fuzzy logic electric vehicle regenerative antiskid braking and traction control system  

DOE Patents (OSTI)

An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

Cikanek, Susan R. (Wixom, MI)

1994-01-01T23:59:59.000Z

65

Design & optimization of automotive power electronics utilizing FITMOS MOSFET technology  

E-Print Network (OSTI)

Power electronics are essential to many automotive applications, and their importance continues to grow as more vehicle functions incorporate electronic controls. MOSFETs are key elements in automotive power electronic ...

Li, Wei, Ph. D. Massachusetts Institute of Technology. Department. of Electrical Engineering and Computer Science.

2009-01-01T23:59:59.000Z

66

Life cycle cost modeling of automotive paint systems  

E-Print Network (OSTI)

Vehicle coating is an important component of automotive manufacturing. The paint shop constitutes the plurality of initial investment in an automotive assembly plant, consumes the majority of energy used in the plant's ...

Leitz, Christopher W. (Christopher William), 1976-

2007-01-01T23:59:59.000Z

67

Aluminum Tailor-welded Blanks for High Volume Automotive ...  

Science Conference Proceedings (OSTI)

High Strength Aluminum Brazing Sheets for Condenser Fins of Automotive Heat Exchangers · High Temperature Creep Characterization of A380 Cast ...

68

greenhouse gas balance of magnesium parts for automotive ...  

Science Conference Proceedings (OSTI)

Jul 20, 2012 ... GREENHOUSE GAS BALANCE OF MAGNESIUM PARTS FOR AUTOMOTIVE APPLICATIONS by Simone Ehrenberger, Horst E. Friedrich ...

69

Automotive ethernet: in-vehicle networking and smart mobility  

Science Conference Proceedings (OSTI)

This paper discusses novel communication network topologies and components and describes an evolutionary path of bringing Ethernet into automotive applications with focus on electric mobility. For next generation in-vehicle networking, the automotive ... Keywords: EV communication architecture, automotive, domain based commuication, electric vehicle, ethernet, in-vehicle networking, smart grid, vehicle network topology

Peter Hank, Steffen Müller, Ovidiu Vermesan, Jeroen Van Den Keybus

2013-03-01T23:59:59.000Z

70

Fisker Automotive Inc | Open Energy Information  

Open Energy Info (EERE)

Fisker Automotive Inc Fisker Automotive Inc Jump to: navigation, search Name Fisker Automotive Inc Place Irvine, California Zip 92606 Product Irvine-based hybrid vehicle manufacturer. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

71

Mod I automotive Stirling engine mechanical development  

SciTech Connect

The Mod I Stirling engine was the first automotive Stirling engine designed specifically for automotive application. Testing of these engines has revealed several deficiencies in engine mechanical integrity which have been corrected by redesign or upgrade. The main deficiencies uncovered during the Mod I program lie in the combustion, auxiliary, main seal, and heater head areas. This paper will address each of the major area deficiencies in detail, and describe the corrective actions taken as they apply to the Mod I and the next Stirling-engine design, the Upgraded Mod I (a redesign to incorporate new materials for cost/weight reduction and improved performance).

Simetkosky, M.

1984-01-01T23:59:59.000Z

72

Past experiences with automotive external combustion engines  

SciTech Connect

GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

Amann, C.A.

1999-07-01T23:59:59.000Z

73

Improvements on open and traction boundary conditions for Navier-Stokes time-splitting methods  

Science Conference Proceedings (OSTI)

We present in this paper a numerical scheme for incompressible Navier-Stokes equations with open and traction boundary conditions, in the framework of pressure-correction methods. A new way to enforce this type of boundary condition is proposed and provides ... Keywords: Bifurcated tube, Fractional step methods, Navier-Stokes equations, Open boundary condition, Pressure boundary condition, Pressure-correction methods, Projection methods, Square cylinder, Traction boundary condition

A. Poux; S. Glockner; M. Azaïez

2011-05-01T23:59:59.000Z

74

Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

2: December 27, 2: December 27, 2004 Automotive Industry Material Usage to someone by E-mail Share Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Facebook Tweet about Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Twitter Bookmark Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Google Bookmark Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Delicious Rank Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Digg Find More places to share Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on AddThis.com...

75

Automotive Stirling Engine Development Program: A success  

SciTech Connect

The original 5 y Automotive Stirling Engine Development Program has been stretched to a 10 y program due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

Tabata, W.K.

1987-01-01T23:59:59.000Z

76

CarMA: towards personalized automotive tuning  

Science Conference Proceedings (OSTI)

Wireless sensing and actuation have been explored in many contexts, but the automotive setting has received relatively little attention. Automobiles have tens of onboard sensors and expose several hundred engine parameters which can be tuned (a ... Keywords: automobile, engine control unit, scanning, tuning

Tobias Flach; Nilesh Mishra; Luis Pedrosa; Christopher Riesz; Ramesh Govindan

2011-11-01T23:59:59.000Z

77

Table II: Technical Targets for Membranes: Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

II: Technical Targets for Membranes: Automotive II: Technical Targets for Membranes: Automotive All targets must be achieved simultaneously Characteristics Units Calendar year 2000 status a 2005 2010 Membrane conductivity, operating temperature Ω-cm -1 0.1 0.1 0.1 Room temperature Ω-cm -1 -20 o C Ω-cm -1 Oxygen cross-over b mA/cm 2 5 5 2 Hydrogen cross-over b mA/cm 2 5 5 2 Cost $/kW 50 5 Operating Temperature o C 80 120 120 Durability Hours 1000 d >4000 e >5000 f Survivability c o C -20 -30 -40 Thermal cyclability in presence of condensed water yes yes yes Notes: a) Status is present day 80 o C unless otherwise noted; targets are for new membranes/CCMs b) Tested in CCM c) Indicates temperature from which bootstrapping stack must be achieved

78

Ultrahigh carbon steel for automotive applications  

DOE Green Energy (OSTI)

Ultrahigh carbon steels (UHCSs), which contain 1--2.1% carbon, have remarkable structural properties for automotive application when processed to achieve fine ferrite grains with fine spheroidized carbides. When processed for high room temperature ductility, UHCS can have good tensile ductility but significantly higher strength than current automotive high strength steels. The material can also be made superplastic at intermediate temperatures and exhibits excellent die fill capability. Furthermore, they can be made hard with high compression ductility. In wire form it is projected that UHCS can exhibit extremely high strengths (5,000 MPa) for tire cord applications. Examples of structural components that have been formed from fine-grained spheroidized UHCSs are illustrated.

Lesuer, D.R.; Syn, C.K. [Lawrence Livermore National Lab., CA (United States); Sherby, O.D. [Stanford Univ., CA (United States)

1995-12-04T23:59:59.000Z

79

Lightweight Steel Solutions for Automotive Industry  

Science Conference Proceedings (OSTI)

Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho [Technical Research Laboratories, POSCO, 699, Gumho-dong, Gwangyang-si, Jeonnam, 545-090 (Korea, Republic of)

2010-06-15T23:59:59.000Z

80

Effect of automotive electrical system changes on fuel consumption using incremental efficiency methodology  

E-Print Network (OSTI)

There has been a continuous increase in automotive electric power usage. Future projections show no sign of it decreasing. Therefore, the automotive industry has a need to either improve the current 12 Volt automotive ...

Hardin, Christopher William

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...  

NLE Websites -- All DOE Office Websites (Extended Search)

09242008FCTT Review Sep2008.ppt 2008 TIAX LLC Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications Jayanti Sinha Stephen Lasher Yong Yang Peter...

82

Final report: U.S. competitive position in automotive technologies  

DOE Green Energy (OSTI)

Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

2002-09-30T23:59:59.000Z

83

Advanced Cruciform Testing in the Center for Automotive ...  

Science Conference Proceedings (OSTI)

Abstract Scope, A new high capacity cruciform machine has been recently installed and commissioned in the Center for Automotive Lightweighting at NIST.

84

Lean product development for the automotive niche vehicle marketplace.  

E-Print Network (OSTI)

??The automotive low volume niche vehicle marketplace is growing, evidenced by increasing media coverage and fierce competition between original equipment manufacturers. Development of niche vehicles… (more)

Kupczewski, Celeste D., 1974-

2005-01-01T23:59:59.000Z

85

Warm Bending Magnesium Sheet for Automotive Closure Panels  

Science Conference Proceedings (OSTI)

For automotive production, hemming equipment would be augmented with a rapid heating technology to locally heat the bend region, complete the hem and ...

86

Recycling alloy for structural applications in the automotive industry  

Science Conference Proceedings (OSTI)

High Strength Aluminum Brazing Sheets for Condenser Fins of Automotive ... predictions for the phase formation in a wide range of commercial aluminum alloys.

87

Status and Prospects of the Global Automotive Fuel Cell Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNLTM-2013222 Energy and Transportation Science Division Center for Transportation Analysis STATUS AND PROSPECTS OF THE GLOBAL AUTOMOTIVE FUEL CELL INDUSTRY AND PLANS FOR...

88

An Inverter Packaging Scheme for an Integrated Segmented Traction Drive System  

Science Conference Proceedings (OSTI)

The standard voltage source inverter (VSI), widely used in electric vehicle/hybrid electric vehicle (EV/HEV) traction drives, requires a bulky dc bus capacitor to absorb the large switching ripple currents and prevent them from shortening the battery s life. The dc bus capacitor presents a significant barrier to meeting inverter cost, volume, and weight requirements for mass production of affordable EVs/HEVs. The large ripple currents become even more problematic for the film capacitors (the capacitor technology of choice for EVs/HEVs) in high temperature environments as their ripple current handling capability decreases rapidly with rising temperatures. It is shown in previous work that segmenting the VSI based traction drive system can significantly decrease the ripple currents and thus the size of the dc bus capacitor. This paper presents an integrated packaging scheme to reduce the system cost of a segmented traction drive.

Su, Gui-Jia [ORNL; Tang, Lixin [ORNL; Ayers, Curtis William [ORNL; Wiles, Randy H [ORNL

2013-01-01T23:59:59.000Z

89

United States Automotive Materials Partnership LLC (USAMP)  

Science Conference Proceedings (OSTI)

The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities thro

United States Automotive Materials Partnership

2011-01-31T23:59:59.000Z

90

DOE Provides $4.7 Million to Support Excellence in Automotive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Automotive Technology Education (GATE) Centers of Excellence. The goal of GATE is to train a future workforce of automotive engineering professionals to overcome technology...

91

Automotive engineering curriculum development: case study for Clemson University  

Science Conference Proceedings (OSTI)

The automotive manufacturing industry has transitioned in the past 20 years from a central technical focus to an integrated and globally distributed supply chain. As car makers outsource not only a greater portion of their manufacturing, but also their ... Keywords: Automotive, Curriculum, Education, Manufacturing, OEM, Supplier

Laine Mears; Mohammed Omar; Thomas R. Kurfess

2011-10-01T23:59:59.000Z

92

Racing Ahead in Automotive Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Racing Ahead in Automotive Education Racing Ahead in Automotive Education Racing Ahead in Automotive Education February 18, 2011 - 4:52pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Helps develop the next generation of innovative auto engineers Where will the next generation of automotive innovation come from? That's a question that's driving discussion throughout the auto industry at the moment, and many hope that the answer lies in the next generation of engineers. Unfortunately, while many young engineers are eager to put their talents to work developing breakthrough transportation technologies, not many U.S. universities have multidisciplinary instructional programs that focus on cutting-edge automotive technologies.

93

Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles  

DOE Green Energy (OSTI)

A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

Ehsani, Mark

2002-10-07T23:59:59.000Z

94

The Research of Traction Motor Energy-Saving Regenerative Braking Control Technology  

Science Conference Proceedings (OSTI)

In all the motor braking control systems, regenerative braking is the only way of energy-saving braking control mode. It can convert dynamic energy which generate during braking period into electric energy, then return to the grid. In this paper, through ... Keywords: regenerative braking, traction motor, direct torque, stator flux, slip frequency

Yuhua Wang; Jianlin Miao; Yuanfang Wei

2010-05-01T23:59:59.000Z

95

Stand for testing electrical machines up to 1,500 kilowatts used in railway traction  

Science Conference Proceedings (OSTI)

The test stand for electric motors is intended to test electrical machines used in railway traction. The stand is the result of a research contract with the realization and implementation practice in SC Remarul February 16 SA-Cluj. The stand is designed ...

Gabriel Popa; Cristinel Ilie; Ion Potarnuche; Horea Galos; Valerius Stanciu; Sorin Arsene

2010-05-01T23:59:59.000Z

96

Crashworthiness simulation of composite automotive structures  

DOE Green Energy (OSTI)

In 1990 the Automotive Composites Consortium (ACC) began the investigation of crash worthiness simulation methods for composite materials. A contract was given to Livermore Software Technology Corporation (LSTC) to implement a new damage model in LS-DYNA3DTM specifically for composite structures. This model is in LS-DYNA3DTM and is in use by the ACC partners. In 1994 USCAR, a partnership of American auto companies, entered into a partnership called SCAAP (Super Computing Automotive Applications Partnership) for the express purpose of working with the National Labs on computational oriented research. A CRADA (Cooperative Research and Development Agreement) was signed with Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Argonne National Laboratory, and Los Alamos National Laboratory to work in three distinctly different technical areas, one of which was composites material modeling for crash worthiness. Each Laboratory was assigned a specific modeling task. The ACC was responsible for the technical direction of the composites project and provided all test data for code verification. All new models were to be implemented in DYNA3D and periodically distributed to all partners for testing. Several new models have been developed and implemented. Excellent agreement has been shown between tube crush simulation and experiments.

Botkin, M E; Johnson, N L; Simunovic, S; Zywicz, E

1998-06-01T23:59:59.000Z

97

Graduate Automotive Technology Education (GATE) Center  

DOE Green Energy (OSTI)

The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

Jeffrey Hodgson; David Irick

2005-09-30T23:59:59.000Z

98

Superplastic forming of stainless steel automotive components  

DOE Green Energy (OSTI)

Exhaust emission standards are governmentally controlled standards, which are increasingly stringent, forcing alternate strategies to meet these standards. One approach to improve the efficiency of the exhaust emission equipment is to decrease the time required to get the catalytic converter to optimum operating temperature. To accomplish this, automotive manufacturers are using double wall stainless steel exhaust manifolds to reduce heat loss of the exhaust gases to the converter. The current method to manufacture double wall stainless steel exhaust components is to use a low-cost alloy with good forming properties and extensively form, cut, assemble, and weld the pieces. Superplastic forming (SPF) technology along with alloy improvements has potential at making this process more cost effective. Lockheed Martin Energy Systems (LMES), Lawrence Livermore National Laboratory (LLNL) and USCAR Low Emission Partnership (LEP) worked under a Cooperative Research And Development Agreement (CRADA) to evaluate material properties, SPF behavior, and welding behavior of duplex stainless steel alloy for automotive component manufacturing. Battelle Pacific Northwest National Laboratory (PNNL) has a separate CRADA with the LEP to use SPF technology to manufacture a double wall stainless steel exhaust component. As a team these CRADAs developed and demonstrated a technical plan to accomplish making double wall stainless steel exhaust manifolds.

Bridges, B. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Elmer, J. [Lawrence Livermore National Lab., CA (United States); Carol, L. [AC Delco Systems World Headquarters, Flint, MI (United States). USCAR Low Emissions Technology Research and Development Partnership

1997-02-06T23:59:59.000Z

99

Potential automotive uses of wrought magnesium alloys  

DOE Green Energy (OSTI)

Vehicle weight reduction is one of the major means available to improve automotive fuel efficiency. High-strength steels, aluminum (Al), and polymers are already being used to reduce weight significantly, but substantial additional reductions could be achieved by greater use of low-density magnesium (Mg) and its alloys. Mg alloys are currently used in relatively small quantities for auto parts, generally limited to die castings (e.g., housings). Argonne National Laboratory`s Center for Transportation Research has performed a study for the Lightweight Materials Program within DOE`s Office of Transportation Materials to evaluate the suitability of wrought Mg and its alloys to replace steel/aluminum for automotive structural and sheet applications. Mg sheet could be used in body nonstructural and semi-structural applications, while extrusions could be used in such structural applications as spaceframes. This study identifies high cost as the major barrier to greatly increased Mg use in autos. Two technical R and D areas, novel reduction technology and better hot-forming technology, could enable major cost reductions.

Gaines, L.; Cuenca, R.; Wu, S. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., IL (United States)]|[Argonne National Lab., Washington, DC (United States)

1996-06-01T23:59:59.000Z

100

Electromagnetic interference filter for automotive electrical systems  

DOE Patents (OSTI)

A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

2013-07-02T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Building the Next Generation of Automotive Industry Leaders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders December 7, 2010 - 4:23pm Addthis Zach Heir , a recent hire in the electric vehicle field Zach Heir , a recent hire in the electric vehicle field Dennis A. Smith Director, National Clean Cities It's no secret that when it comes to advanced vehicle technologies, the Department of Energy is kicking into high gear. We're investing more than $12 billion in grants and loans for research, development and deployment of advanced technology vehicles. These investments are helping to create a clean energy workforce. If we want to continue a leadership role in the global automotive industry, it is crucial that we take the long view and invest heavily in the next generation of innovators and critical thinkers

102

10 Questions for an Automotive Engineer: Thomas Wallner | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Questions for an Automotive Engineer: Thomas Wallner 10 Questions for an Automotive Engineer: Thomas Wallner 10 Questions for an Automotive Engineer: Thomas Wallner June 17, 2011 - 3:30pm Addthis Argonne mechanical engineer Thomas Wallner adjusts Argonne's "omnivorous engine," an automobile engine that Wallner and his colleagues have tailored to efficiently run on blends of gasoline, ethanol and butanol. | Courtesy of: Argonne National Laboratory. Argonne mechanical engineer Thomas Wallner adjusts Argonne's "omnivorous engine," an automobile engine that Wallner and his colleagues have tailored to efficiently run on blends of gasoline, ethanol and butanol. | Courtesy of: Argonne National Laboratory. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Meet Thomas Wallner - automotive engineer extraordinaire, who hails from

103

Green Racing's Impact on the Automotive World | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Racing's Impact on the Automotive World Green Racing's Impact on the Automotive World Green Racing's Impact on the Automotive World April 16, 2012 - 4:52pm Addthis One of the competitors from the Michelin Green X Challenge. | Photo courtesy of Green Racing. One of the competitors from the Michelin Green X Challenge. | Photo courtesy of Green Racing. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager What does this project do? Green Racing uses motorsports competition to help educate and promote alternative fuels and advanced vehicle technologies that can be transferred from the race track to the consumer market. The automotive racing world has a long history of moving the car industry forward through the development and use of new technology. Seeing racing's tremendous promise, the Energy Department, U.S. Environmental

104

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative Summary This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the "Delphi Kokomo, IN Corporate Technology Center" (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE's Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the

105

Automotive Energy Supply Corporation AESC | Open Energy Information  

Open Energy Info (EERE)

Automotive Energy Supply Corporation AESC Automotive Energy Supply Corporation AESC Jump to: navigation, search Name Automotive Energy Supply Corporation (AESC) Place Zama, Kanagawa, Japan Product JV formed for development and marketing of advanced lithium-ion batteries for automotive applications. Coordinates 32.974049°, -89.371101° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.974049,"lon":-89.371101,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Green Racing's Impact on the Automotive World | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Racing's Impact on the Automotive World Racing's Impact on the Automotive World Green Racing's Impact on the Automotive World April 16, 2012 - 4:52pm Addthis One of the competitors from the Michelin Green X Challenge. | Photo courtesy of Green Racing. One of the competitors from the Michelin Green X Challenge. | Photo courtesy of Green Racing. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager What does this project do? Green Racing uses motorsports competition to help educate and promote alternative fuels and advanced vehicle technologies that can be transferred from the race track to the consumer market. The automotive racing world has a long history of moving the car industry forward through the development and use of new technology. Seeing racing's tremendous promise, the Energy Department, U.S. Environmental

107

Improved supplier selection and cost management for globalized automotive production  

E-Print Network (OSTI)

For many manufacturing and automotive companies, traditional sourcing decisions rely on total landed cost models to determine the cheapest supplier. Total landed cost models calculate the cost to purchase a part plus all ...

Franken, Joseph P., II (Joseph Philip)

2012-01-01T23:59:59.000Z

108

FY 2002 Progress Report for Automotive Lightweighting Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tube 7: Vertical Furnace 8: Crucible 9: Slag 10: Platform Disk 11: Insulation Brick 12: Brass Cover Plate 13 Argon Inlet 5 2 1 4 3 6 7 8 9 10 12 5 11 13 Automotive Lightweighting...

109

Green automotive supply chain for an emerging market  

E-Print Network (OSTI)

Green Supply Chain Management (GSCM) within the automotive industry is largely based on combining lean manufacturing with mandated supplier adoption of ISO 14001-compliant Environmental Management Systems (EMS). This ...

Fisch, Gene (Gene Joseph)

2008-01-01T23:59:59.000Z

110

Automotive Battery State-of-Health Monitoring Methods.  

E-Print Network (OSTI)

??Effective vehicular power management requires accurate knowledge of battery state, including state-of-charge (SOC) and state-of-health (SOH). An essential functionality of automotive batteries is delivering high… (more)

Grube, Ryan J.

2008-01-01T23:59:59.000Z

111

Automotive soiling simulation based on massive particle tracing  

Science Conference Proceedings (OSTI)

In the automotive industry Lattice-Boltzmann type flow solvers like PowerFlow from Exa Corporation are becoming increasingly important. In contrast to the traditional finite volume approach PowerFlow utilizes a hierachical cartesian grid for flow simulation. ...

Stefan Roettger; Martin Schulz; Wolf Bartelheimer; Thomas Ertl

2001-05-01T23:59:59.000Z

112

Lean product development for the automotive niche vehicle marketplace  

E-Print Network (OSTI)

The automotive low volume niche vehicle marketplace is growing, evidenced by increasing media coverage and fierce competition between original equipment manufacturers. Development of niche vehicles must be lean and therefore ...

Kupczewski, Celeste D., 1974-

2005-01-01T23:59:59.000Z

113

Modeling and torque estimation of an automotive dual mass flywheel  

Science Conference Proceedings (OSTI)

The Dual Mass Flywheel (DMF) is primarily used for dampening of oscillations in automotive powertrains and to prevent gearbox rattling. This paper explains the DMF mechanics along with its application and components. Afterwards a detailed ab-inltio model ...

Ulf Schaper; Oliver Sawodny; Tobias Mahl; Uli Blessing

2009-06-01T23:59:59.000Z

114

The dynamics of supply chains in the automotive industry  

E-Print Network (OSTI)

This thesis looks at how supply chains in the automotive industry operate from the perspective of the manufacturers. The study includes the industry structure, the top players in the industry, factors that drive the industry, ...

Braese, Niklas

2005-01-01T23:59:59.000Z

115

Enhancing the conceptual design process of automotive exterior systems  

E-Print Network (OSTI)

Product development cycles in the automotive industry are being reduced and competition is more demanding than ever before. To be successful in this environment, Original Equipment Manufacturers need a product development ...

Diaz Dominguez, David

2011-01-01T23:59:59.000Z

116

Electrical build issues in automotive product development : an analysis  

E-Print Network (OSTI)

To be competitive and successful within the automotive industry the Original Equipment Manufacturers (OEMs) have to bring new products with features fast to market. The OEMs need to reduce the Product Development cycle ...

Chacko, John

2008-01-01T23:59:59.000Z

117

Meeting the Embedded Design Needs of Automotive Applications  

E-Print Network (OSTI)

The importance of embedded systems in driving innovation in automotive applications continues to grow. Understanding the specific needs of developers targeting this market is also helping to drive innovation in RISC core design. This paper describes how a RISC instruction set architecture has evolved to better meet those needs, and the key implementation features in two very different RISC cores are used to demonstrate the challenges of designing for real-time automotive systems.

Lyons, Wayne

2011-01-01T23:59:59.000Z

118

UNIVERSITY OF WATERLOO the full spectrum of research AUTOMOTIVE RESEARCH  

E-Print Network (OSTI)

energy storage systems, enabling longer range and broader use of hybrid and pure electric vehicles-generated models that simulate vehicle behaviour in dangerous driving scenarios and advanced stability systems to help drivers maintain traction and control, » Smart chargers that allow plug-in electric vehicles

Waterloo, University of

119

Downsizing assessment of automotive Stirling engines  

SciTech Connect

A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile has been serving as the focal point for developing automotive Stirling engine technology under a current DOE/NASA R and D program. Since recent trends are towards lighter vehicles, an assessment was made of the appicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage over comparable spark ignition and diesel powered vehicles in the 1984 time period. In order to maintain the performance advantage, particular attention must be paid to the Stirling engine mechanical losses and, although evaluated in this report, the cold start penalties.

Knoll, R.H.; Tew, R.C. Jr.; Klann, J.L.

1983-09-01T23:59:59.000Z

120

Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive and MHE Automotive and MHE Fuel Cell System Cost Analysis (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Google Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Delicious Rank Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on AddThis.com...

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Asola Advanced and Automotive Solar Systems GmbH | Open Energy Information  

Open Energy Info (EERE)

Asola Advanced and Automotive Solar Systems GmbH Asola Advanced and Automotive Solar Systems GmbH Jump to: navigation, search Name Asola Advanced and Automotive Solar Systems GmbH Place Erfurt, Germany Zip D-99428 Sector Solar Product German manufacturer of PV modules and spherical solar sun roofs for the automotive industry. References Asola Advanced and Automotive Solar Systems GmbH[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Asola Advanced and Automotive Solar Systems GmbH is a company located in Erfurt, Germany . References ↑ "Asola Advanced and Automotive Solar Systems GmbH" Retrieved from "http://en.openei.org/w/index.php?title=Asola_Advanced_and_Automotive_Solar_Systems_GmbH&oldid=34237

122

U.S. Department of Energy and the Automotive X PRIZE Foundation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Automotive X PRIZE Foundation to Promote Clean, Energy-Efficient Vehicles U.S. Department of Energy and the Automotive X PRIZE Foundation to Promote Clean, Energy-Efficient...

123

APPLICATION NOTE 4393 Selecting HB LED Drivers for Automotive Lighting Applications  

E-Print Network (OSTI)

Abstract: This application note provides an overview of HB LED driver selection criteria for automotive lighting applications. It reviews HB LED driver topologies and recommends configurations for various automotive lighting applications, including interior lighting, exterior lighting, and display backlighting.

Brian Hedayati

2009-01-01T23:59:59.000Z

124

Advanced Automotive Technologies annual report to Congress, fiscal year 1996  

DOE Green Energy (OSTI)

This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

NONE

1998-03-01T23:59:59.000Z

125

Fault conditions classification of automotive generator using an adaptive neuro-fuzzy inference system  

Science Conference Proceedings (OSTI)

In this paper, an adaptive neuro-fuzzy inference system (ANFIS) was proposed for condition monitoring and fault diagnosis of an automotive generator. Conventional fault indication of an automotive generator generally uses an indicator to inform the driver ... Keywords: Adaptive neuro-fuzzy inference system, Automotive generator, Discrete wavelet transform, Fault diagnosis system

Jian-Da Wu; Jun-Ming Kuo

2010-12-01T23:59:59.000Z

126

A Consortium of the United States Council for Automotive Research Nondestructive Evaluation Steering Committee  

E-Print Network (OSTI)

Automotive Industry September 6, 2006 United States Automotive Materials Partnership, A Consortium. This material is based on work supported by the U.S. Department of Energy (DoE), National Energy Technology .....................................................................................................11 Chapter 2 The Expanding Role of NDE in the Automotive Industry.................................13

Knowles, David William

127

TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TODAY: Secretary Chu and Senator Stabenow to Announce Advanced TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer July 13, 2011 - 12:00am Addthis Washington, D.C. - Today, U.S. Energy Secretary Steven Chu will join U.S. Senators Carl Levin and Debbie Stabenow on a conference call to make an announcement regarding an advanced automotive technology loan that is expected to create jobs in Michigan, increase manufacturing, and make American automakers more competitive. WHO: Secretary of Energy Steven Chu Senator Carl Levin Senator Debbie Stabenow WHAT: Press Conference Call WHEN: Wednesday, July 13, 2011 at 11:30 AM EDT RSVP: Please contact Karissa Marcum at karissa.marcum@hq.doe.gov to receive call-in

128

Society of Automotive Engineers World Congress | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Society of Automotive Engineers World Congress Society of Automotive Engineers World Congress Society of Automotive Engineers World Congress April 6, 2006 - 10:12am Addthis Remarks Prepared for Energy Secretary Samuel Bodman Thank you, Greg. It's always a pleasure to be in a room full of engineers. As an engineer myself, I know there is nothing our profession likes better than plain talk and solving problems. So, I'm going to serve you up some plain talk and then some assignments. Our nation faces big challenges in the energy and transportation arena. The President put it plainly in the State of the Union message when he said America is addicted to oil. To start us on the path to recovery from this addiction, he set out the Advanced Energy Initiative which calls for increasing spending on clean energy programs by 22% in next year's budget.

129

Automotive Accessibility and Efficiency Meet in the Innovative MV-1 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Automotive Accessibility and Efficiency Meet in the Innovative MV-1 Automotive Accessibility and Efficiency Meet in the Innovative MV-1 Automotive Accessibility and Efficiency Meet in the Innovative MV-1 March 11, 2011 - 4:03pm Addthis The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group Daniel B. Poneman Daniel B. Poneman Deputy Secretary of Energy Yesterday, the Department of Energy announced that we've now finalized a loan for nearly $50 million to the Vehicle Production Group - or VPG. The project will support the development and manufacturing of a new wheelchair accessible, fuel-efficient car, the MV-1, that will run on compressed natural gas instead of gasoline, produce low emissions, and create 900 jobs

130

FY2001 Progress Report for Automotive Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMOTIVE PROPULSION AUTOMOTIVE PROPULSION MATERIALS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., and Oak Ridge National Laboratory, for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Propulsion Materials

131

FY2003 Progress Report for Automotive Propulsion Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR and Vehicle Technologies FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 CONTENTS 1. INTRODUCTION ........................................................................................................... 1

132

Fully Integrated Silicon Terahertz Transceivers for Sensing and Communication Applications  

E-Print Network (OSTI)

Distributed active transformer-a new power combining andA monolithic transformer coupled 5-w silicon power amplifiertap of the output transformer in the power amplifier (PA).

Park, Jungdong

2012-01-01T23:59:59.000Z

133

Fully integrated safeguards and security for reprocessing plant monitoring.  

SciTech Connect

Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.

Duran, Felicia Angelica; Ward, Rebecca; Cipiti, Benjamin B.; Middleton, Bobby D.

2011-10-01T23:59:59.000Z

134

Multidisciplinary design optimization of an automotive magnetorheological brake design  

Science Conference Proceedings (OSTI)

This paper presents the development of a new electromechanical brake system using magnetorheological (MR) fluid. The proposed brake system consists of rotating disks immersed in a MR fluid and enclosed in an electromagnet, where the yield stress of the ... Keywords: Automotive brake, Computational fluid dynamics, Electric brake actuator, Finite element analysis, Magnetorheological fluid, Multidisciplinary design optimization

Edward J. Park; Luis Falcão da Luz; Afzal Suleman

2008-02-01T23:59:59.000Z

135

Automotive Stirling Engine Mod I design review report. Volume III  

SciTech Connect

This volume, No. 3, of the Automotive Stirling Engine Mod 1 Design Review Report contains a preliminary parts list and detailed drawings of equipment for the basic Stirling engine and for the following systems: vehicular Stirling Engine System; external heat system; hot and cold engine systems; engine drive; controls and auxiliaries; and vehicle integration. (LCL)

Not Available

1982-08-01T23:59:59.000Z

136

Role of Friction in Materials Selection for Automotive Applications  

Science Conference Proceedings (OSTI)

This is an invited article for a special issue of the ASM International monthly magazine that concerns "Automotive Materials and Applications." The article itself overviews frictional considerations in material selection for automobiles. It discusses implications for energy efficiency (engine friction) and safety (brakes) among other topics.

Blau, Peter Julian [ORNL

2013-01-01T23:59:59.000Z

137

Tools and Techniques for Ensuring Automotive EMC Performance and Reliability  

E-Print Network (OSTI)

they generate and store significant amounts of electric energy. Cars in the future ... 8 #12;9 Lighter More Systems 3 Current automotive electronics design and integration strategies are not sustainable. Cars and wireless communication Cars in the future will have ONE reliable, low-cost, lightweight network that serves

Stuart, Steven J.

138

GATE Center for Automotive Fuel Cell Systems at Virginia Tech  

SciTech Connect

The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: â?¢ Expanded and updated fuel cell and vehicle technologies education programs; â?¢ Conducted industry directed research in three thrust areas â?? development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; â?¢ Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; â?¢ Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Techâ??s comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

Nelson, Douglas

2011-05-31T23:59:59.000Z

139

The Progressive Insurance Automotive X PRIZE Education Program  

DOE Green Energy (OSTI)

The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

Robyn Ready

2011-12-31T23:59:59.000Z

140

A roadmap for parametric CAD efficiency in the automotive industry  

Science Conference Proceedings (OSTI)

3D CAD systems are used in product design for simultaneous engineering and to improve productivity. CAD tools can substantially enhance design performance. Although 3D CAD is a widely used and highly effective tool in mechanical design, mastery of CAD ... Keywords: Automotive industry, CAD training strategy, Collaboration, Knowledge integration, PLM, Parametric CAD efficiency

Yannick Bodein, Bertrand Rose, Emmanuel Caillaud

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

REQUEST BY MERIDIAN AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Considerations Statement of Considerations REQUEST BY MERIDIAN AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER A SUBTIER CONTRACT UNDER UT-BATTELLE, LLC SUBCONTRACT NO. 4000010928, UNDER DOE PRIME CONTRACT DE-AC05- 00OR22725; DOE WAIVER DOCKET W(A)-2003-037; [ORO-780] Meridian Automotive Systems, Inc. (Meridian) has made a request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under a subtier contract under UT-Battelle, LLC Subcontract No. 4000010928 with Volvo Trucks North America under Department of Energy (DOE) Contract DE-AC05-00OR22725. The scope of work of this project is for the utilization of Carbon Fiber Sheet Molding Compound (SMC) Materials for

142

Sustainability and Energy Efficiency in the Automotive Sector  

E-Print Network (OSTI)

Since this year there can be no doubt that "sustainability" has become the top issue in the automotive sector. Volkswagen's CEO Prof. Dr. Martin Winterkorn attacked incumbents like BMW Group (so far the "most sustainable car manufacturer" for the 8th consecutive year) or Toyota (producer of the famous "Prius") head-on by boldly stating to become "the most profitable and most sustainable car manufacturer worldwide by 2018" . This announcement clearly shows that "sustainability" and "profitability" no longer are considered as conflicting targets. On the contrary, to Prof. Dr. Winterkorn : "climate protection is a driver for economic growth". To prime discussions, the plenary talk will give a brief overview of the entire range of energy efficiency in the automotive sector: based on the multiple drivers behind energy efficiency, practical examples are presented along the entire life-cycle of cars (R&D, production, usage and recycling). These "cases" include big automobile producers as well as their respectiv...

CERN. Geneva

2013-01-01T23:59:59.000Z

143

Automotive Stirling Engine Development Program Mod I Stirling engine development  

SciTech Connect

The Automotive Stirling Engine (ASE) Development Program was established to enable research and development of alternate propulsion systems. The program was awarded to Mechanical Technology Incorporated (MTI) for the purpose of developing an automotive Stirling engine, and transferring Stirling-engine technology to the United States. MTI has fabricated and tested four Mod I engines that have accumulated over 1900 test hours to date. The engines evaluated in the test cell have achieved an average of 34.5% efficiency at their maximum efficiency point (2000 rpm), and have developed an average maximum output power (power available to the drive train) level of 54.4 kW (73.2 bhp). All engines are still operating, and are being used to develop components and control strategy for the Upgraded Mod I engine design (predicted to increase maximum power output and efficiency while reducing total engine system weight).

Simetkosky, M.A.

1983-08-01T23:59:59.000Z

144

DOE Provides $4.7 Million to Support Excellence in Automotive Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4.7 Million to Support Excellence in Automotive 4.7 Million to Support Excellence in Automotive Technology Education DOE Provides $4.7 Million to Support Excellence in Automotive Technology Education August 29, 2005 - 2:47pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the selection of eight universities that will receive $4.7 million to be Graduate Automotive Technology Education (GATE) Centers of Excellence. The goal of GATE is to train a future workforce of automotive engineering professionals to overcome technology barriers preventing the development and production of cost-effective, high-efficiency vehicles for the U.S. market. "GATE Centers of Excellence are an exciting opportunity to equip a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies," said Douglas L. Faulkner, Acting

145

Demonstration of dissociated methanol as an automotive fuel: system performance  

DOE Green Energy (OSTI)

The results are presented of system performance testing of an automotive system devised to provide hydrogen-rich gases to an internal combustion engine by dissociating methanol on board the vehicle. The dissociation of methanol absorbs heat from the engine exhaust and increases the lower heating value of the fuel by 22%. The engine thermal efficiency is increased by raising the compression ratio and burning with excess air.

Finegold, J. G.; Karpuk, M. E.; McKinnon, J. T.; Passamaneck, R.

1981-04-01T23:59:59.000Z

146

Present and Future Automotive Composite Materials Research Efforts at DOE  

DOE Green Energy (OSTI)

Automobiles of the future will be forced to travel fi.uther on a tank of fuel while discharging lower levels of pollutants. Currently, the United States uses in excess of 16.4 million barrels of petroleum per day. Sixty-six percent of that petroleum is used in the transportation of people and goods. Automobiles currently account for just under two-thirds of the nation's gasoline consumptio~ and about one-third of the total United States energy usage. [1] By improving transportation related fiel efficiency, the United States can lessen the impact that emissions have on our environment and provide a cleaner environment for fiture generations. In 1992, The Department of Energy's (DOE) Office of Transportation Materials completed a comprehensive program plan entitled, The Lightweight MateriaIs (LWko Multi-Year Program Plan, for the development of technologies aimed at reducing vehicle mass [2]. This plan was followed in 1997 by the more comprehensive Office of Advanced Automotive Technologies research and development plan titled, Energy Eficient Vehicles for a Cleaner Environment [3] which outlines the department's plans for developing more efficient vehicles during the next ~een years. Both plans identi~ potential applications, technology needs, and R&D priorities. The goal of the Lightweight Materials Program is to develop materials and primary processing methods for the fabrication of lighter weight components which can be incorporated into automotive systems. These technologies are intended to reduce vehicle weight, increase fuel efficiency and decrease emissions. The Lightweight Materials program is jointly managed by the Department of Energy(DOE) and the United States Automotive Materials Partnership (USAMP). Composite materiak program work is coordinated by cooperative research efforts between the DOE and the Automotive Composites Consortium (ACC).

Warren, C.D.

1999-07-03T23:59:59.000Z

147

Automotive Stirling Engine Development Program. RESD Summary report  

SciTech Connect

This is the final report compiling a summary of the information presented and discussed at the May 1983 Automotive Stirling Engine (AES) Reference Engine System Design (RESD) review held at the NASA Lewis Research Center. The design of the engine and its auxiliaries and controls is described. Manufacturing costs in production quantity are also presented. Engine system performance predictions are discussed and vehicle integration is developed, along with projected fuel economy levels.

Not Available

1984-05-01T23:59:59.000Z

148

Automotive batteries. (Bibliography from the Global Mobility database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, manufacture, and marketing of automotive batteries. Included are nickel-cadmium, nickel metal hydride, sodium sulfur, zinc-air, lead-acid, and polymer batteries. Testing includes life-cycling, performance and peak-power characteristics, and vehicle testing of near-term batteries. Also mentioned are measurement equipment, European batteries, and electric vehicle battery development. (Contains a minimum of 76 citations and includes a subject term index and title list.)

NONE

1995-03-01T23:59:59.000Z

149

Automotive batteries. (Bibliography from the Global Mobility database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, manufacture, and marketing of automotive batteries. Included are nickel-cadmium, nickel metal hydride, sodium sulfur, zinc-air, lead-acid, and polymer batteries. Testing includes life-cycling, performance and peak-power characteristics, and vehicle testing of near-term batteries. Also mentioned are measurement equipment, European batteries, and electric vehicle battery development.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-02-01T23:59:59.000Z

150

Automotive batteries. (Bibliography from the Global Mobility database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, manufacture, and marketing of automotive batteries. Included are nickel-cadmium, nickel metal hydride, sodium sulfur, zinc-air, lead-acid, and polymer batteries. Testing includes life-cycling, performance and peak-power characteristics, and vehicle testing of near-term batteries. Also mentioned are measurement equipment, European batteries, and electric vehicle battery development. (Contains a minimum of 71 citations and includes a subject term index and title list.)

Not Available

1994-06-01T23:59:59.000Z

151

The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs  

DOE Green Energy (OSTI)

This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

Richerson, D.W.

2000-02-01T23:59:59.000Z

152

Durability-based design criteria for an automotive structural composite  

DOE Green Energy (OSTI)

Before composite structures can be widely used in automotive applications, their long-term durability must be assured. The Durability of Lightweight Composite Structures Project at Oak Ridge National Laboratory was established by the US Department of Energy to help provide that assurance. The project is closely coordinated with the Automotive Composites Consortium. The experimentally-based, durability-driven design criteria described in this paper are the result of the initial project thrust. The criteria address a single reference composite, which is an SRIM (Structural Reaction Injection Molded) polyurethane, reinforced with continuous strand, swirl-mat E-glass fibers. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and roadway kickups) on strength, stiffness, and deformation. The criteria provide design analysis guidance, a multiaxial strength criterion, time-independent and time-dependent allowable stresses, rules for cyclic loading, and damage tolerance design guidance. Environmental degradation factors and the degrading effects of prior loadings are included. Efforts are currently underway to validate the criteria by application to a second random-glass-fiber composite. Carbon-fiber composites are also being addressed.

Corum, J.M.; Battiste, R.L.; Brinkman, C.R.; Ren, W.; Ruggles, M.B.; Yahr, G.T.

1998-11-01T23:59:59.000Z

153

Spot Welding of Automotive Steels and Light Metals by Friction Bit ...  

Science Conference Proceedings (OSTI)

... and light metals in automotive manufacturing is difficult, because of incompatibility of these alloys during fusion. ... Recent Trends in Cold Spray Technology.

154

ENERGY REDUCTION IN AUTOMOTIVE PAINT SHOPS A REVIEW OF HYBRID/ELECTRIC VEHICLE BATTERY MANUFACTURING.  

E-Print Network (OSTI)

??Automotive industry is facing fundamental challenges due to the rapid depletion of fossil fuels, energy saving and environmental concerns. The need of sustainable energy development… (more)

Arenas Guerrero, Claudia Patricia

2010-01-01T23:59:59.000Z

155

Requirements and concepts for future automotive electronic architectures from the view of integrated safety.  

E-Print Network (OSTI)

??In this dissertation, concepts of the electronic architecture of automotive Integrated Safety System are developed as a cooperative approach of engineering process, dependable hardware architecture… (more)

Chen, Xi

2008-01-01T23:59:59.000Z

156

The design of an automotive cockpit module for European urban electric vehicles for 2015.:.  

E-Print Network (OSTI)

??This graduation project focuses on identifying how the development of new electric vehicle (EV) archetypes could affect automotive engineering and design. Changes will occur throughout… (more)

Buskermolen, S.P.S.

2010-01-01T23:59:59.000Z

157

An Experimental Study of Power Losses of an Automotive Manual Transmission.  

E-Print Network (OSTI)

??In this study, the influence of a variety of operating conditions on the power losses and efficiency of an automotive manual transmission was investigated experimentally.… (more)

Szweda, Timothy Andrew

2008-01-01T23:59:59.000Z

158

DEVELOPMENT OF AN AIR?CYCLE ENVIRONMENTAL CONTROL SYSTEM FOR AUTOMOTIVE APPLICATIONS.  

E-Print Network (OSTI)

??An air?cycle air conditioning system, using a typical automotive turbocharger as the core of the system, was designed and tested. Effects on engine performance were… (more)

Forster, Christopher James

2009-01-01T23:59:59.000Z

159

Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University  

DOE Green Energy (OSTI)

This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

Nigle N. Clark

2006-12-31T23:59:59.000Z

160

A simulation study of the transmission case line in an automotive factory  

Science Conference Proceedings (OSTI)

A transmission is a major component of a car that transmits mechanical power from the engine to the wheels. The transmission shop of an automotive factory consists of five sub-lines. They are the machining line of gears, sleeves, shaft, case and the ... Keywords: automotive, discrete event simulation, manufacturing system design, transmission case

Dug Hee Moon; Te Xu; Seung Geun Baek; Jun Seok Lee; Woo Young Shin

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Integrated model-based control and diagnostic monitoring for automotive catalyst systems  

Science Conference Proceedings (OSTI)

An integrated model-based automotive catalyst control and diagnostic monitoring system is presented. This system incorporates a simplified dynamic catalyst model that describes oxygen storage and release in the catalyst and predicts the post-catalyst ... Keywords: automotive catalyst, model predictive control, on-board diagnostic monitoring

Kenneth R. Muske; James C. Peyton Jones

2007-11-01T23:59:59.000Z

162

Standardizing model-based in-vehicle infotainment development in the German automotive industry  

Science Conference Proceedings (OSTI)

Based on the analysis of existing HMI development processes in the automotive domain, a reference process for software engineering has been developed. This process was used to develop a domain data model and a model-based specification language in order ... Keywords: HMI, automotive, domain data model, interaction design, model-based language, specification, user interface design

Steffen Hess; Anne Gross; Andreas Maier; Marius Orfgen; Gerrit Meixner

2012-10-01T23:59:59.000Z

163

Cylindrical model of transient heat conduction in automotive fuse using conservative averaging method  

Science Conference Proceedings (OSTI)

Cylindrical mathematical model of automotive fuse is considered in this paper. Initially, partial differential equations of the transient heat conduction are given to describe heat-up process in the fuse. Conservative averaging method is used to obtain ... Keywords: analytical approximation, automotive fuse, conservative averaging, heat transfer, quasi-linear, transient process

Raimonds Vilums; Hans-Dieter Liess; Andris Buikis; Andis Rudevics

2008-12-01T23:59:59.000Z

164

Towards improving dependability of automotive systems by using the EAST-ADL architecture description language  

Science Conference Proceedings (OSTI)

The complexity of embedded automotive systems calls for a more rigorous approach to system development compared to current state of practice. A critical issue is the management of the engineering information that defines the embedded system. Development ... Keywords: architecture description language, automotive systems, systems engineering

Philippe Cuenot; DeJiu Chen; Sébastien Gérard; Henrik Lönn; Mark-Oliver Reiser; David Servat; Ramin Tavakoli Kolagari; Martin Törngren; Matthias Weber

2007-01-01T23:59:59.000Z

165

Electrohydraulic Forming of Near-Net Shape Automotive Panels  

SciTech Connect

The objective of this project was to develop the electrohydraulic forming (EHF) process as a near-net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures. Pulsed pressure is created via a shockwave generated by the discharge of high voltage capacitors through a pair of electrodes in a liquid-filled chamber. The shockwave in the liquid initiated by the expansion of the plasma channel formed between two electrodes propagates towards the blank and causes the blank to be deformed into a one-sided die cavity. The numerical model of the EHF process was validated experimentally and was successfully applied to the design of the electrode system and to a multi-electrode EHF chamber for full scale validation of the process. The numerical model was able to predict stresses in the dies during pulsed forming and was validated by the experimental study of the die insert failure mode for corner filling operations. The electrohydraulic forming process and its major subsystems, including durable electrodes, an EHF chamber, a water/air management system, a pulse generator and integrated process controls, were validated to be capable to operate in a fully automated, computer controlled mode for forming of a portion of a full-scale sheet metal component in laboratory conditions. Additionally, the novel processes of electrohydraulic trimming and electrohydraulic calibration were demonstrated at a reduced-scale component level. Furthermore, a hybrid process combining conventional stamping with EHF was demonstrated as a laboratory process for a full-scale automotive panel formed out of AHSS material. The economic feasibility of the developed EHF processes was defined by developing a cost model of the EHF process in comparison to the conventional stamping process.

Golovaschenko, Sergey F.

2013-09-26T23:59:59.000Z

166

Analysis of the potential for new automotive uses of magnesium  

DOE Green Energy (OSTI)

This paper describes the scope of a new project, just initiated, for the Lightweight Materials Program within the Office of Transportation Materials. The Center for Transportation Research and the Energy Technology Division at Argonne National Laboratory will assess the feasibility and technical potential of using magnesium and its alloys in place of steel or aluminum for automotive structural and sheet applications in order to enable more energy-efficient, lightweight passenger vehicles. The analysis will provide an information base to help guide magnesium research and development in the most promising directions.

Stodolsky, F.; Gaines, L.; Cuenca, R.; Wu, S.

1994-12-31T23:59:59.000Z

167

An Update on Fisker Automotive and the Energy Department's Loan Portfolio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Update on Fisker Automotive and the Energy Department's Loan An Update on Fisker Automotive and the Energy Department's Loan Portfolio An Update on Fisker Automotive and the Energy Department's Loan Portfolio September 17, 2013 - 5:20pm Addthis An Update on Fisker Automotive and the Energy Department’s Loan Portfolio Peter W. Davidson Peter W. Davidson Executive Director of the Loan Program Office (LPO) What are the key facts? Thanks to investments made by the Obama Administration, the U.S. auto industry has had three straight years of rapid growth after seven straight years of decline. Despite Fisker Automotive's bankruptcy setback, the DOE loan portfolio remains very strong -- and is playing a crucial role in helping America's auto industry thrive, innovate and compete. When the President took office, America's auto industry was on the brink

168

Fractional-Slot Surface Mounted PM Motors with Concentrated Windings for HEV Traction Drives  

Science Conference Proceedings (OSTI)

High-power density and efficiency resulting from elimination of rotor windings and reduced magnetic-flux losses have made the rare earth permanent magnet (PM) motor a leading candidate for the Department of Energy's Office of FreedomCAR and Vehicle Technologies (FCVTs) traction drive motor. These traction drives are generally powered by radial-gap motors, having the magnets on or embedded in a rotating cylinder separated from the inside surface of a slotted cylindrical stator by an annular gap. The two main types of radial-gap PM rotors are those with magnets mounted on the surface of a supporting back iron, called PM surface mounted (PMSM) motors, and those with magnets mounted in slots in the rotor, called interior PM (IPM) motors. Most early PM motor research was on the PMSM motor, which was thought to have an inherently low stator inductance. A low stator inductance can lead to currents dangerously exceeding rated current as the back-emf across the inductance increases with speed; consequently, part of the attempted solution has been to increase the stator inductance to reduce the rate of current rise. Although analysis suggested that there should be no problem designing sufficiently high stator inductance into PMSMs, attempts to do so were often not successful and a motor design was sought that would have a higher intrinsic inductance. Commercial research at Toyota has focused on IPM motors because they can achieve a high-saliency ratio, which helps them operate over a high constant power speed ratio (CPSR), but they are more difficult to fabricate. The Oak Ridge National Laboratory's (ORNL) position has been to continue research on brushless direct current (dc) motors (BDCMs) because of ease of fabrication and increased power output. Recently there has been a revival of interest in a fractional-slot PMSMs [15] made with concentrated windings because they possess three important features. First, they can increase the motor's inductance sufficiently to reduce the characteristic current to value of the rated current, which will enable them to operate at high CPSR. This feature also limits short-circuit fault currents. Second, their segmented structure simplifies assembly problems and is expected to reduce assembly costs. Third, the back-emf waveform is nearly sinusoidal with low cogging. To examine in depth this design ORNL entered into a collaborative agreement with the University of Wisconsin to build and test a 6 kW laboratory demonstration unit. Design, fabrication, and testing of the unit to 4000 rpm were completed during FY 2005. The motor will be sent to ORNL to explore ways to control its inverter to achieve higher efficiency during FY 2006. This paper first reviews the concept of characteristic current and what is meant by optimal flux weakening. It then discusses application of the fractional-slot concentrated winding technique to increase the d-axis inductance of a PMSM showing how this approach differs from an integral-slot motor with sinusoidal-distributed windings. This discussion is followed by a presentation of collaborative analyses and comparison with the University of Wisconsin's measured data on a 6 kW, 36-slot, 30-pole motor with concentrated windings. Finally ORNL presents a PMSM design with integral-slot windings that appears to meet the FreedomCAR Specifications, but has some disadvantages. Further collaboration with the University of Wisconsin is planned for FY 2006 to design a motor that meets FreedomCAR specifications.

Bailey, J.M.

2005-10-24T23:59:59.000Z

169

Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report  

SciTech Connect

With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the much lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150°C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.

Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.; Lambert, Christine; Muntean, George G.; Peden, Charles HF; Parks, James E.; Howden, Ken

2013-10-15T23:59:59.000Z

170

Direct Injection Compressed Ignition Diesel Automotive Technology Education GATE Program  

DOE Green Energy (OSTI)

The underlying goal of this project was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome technological barriers preventing the development and production of cost-effective high-efficiency vehicles for the US. market. Further, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive technologies. Eight objectives were defined to accomplish this goal: (1) Develop an interdisciplinary internal combustion engine curriculum emphasizing direct injected combustion ignited diesel engines. (2) Encourage and promote interdisciplinary interaction of the faculty. (3) Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary curriculum. (4) Promote strong interaction with industry, develop a sense of responsibility with industry and pursue a self sustaining program. (5) Establish collaborative arrangements and network universities active in internal combustion engine study. (6) Further Enhance a First Class educational facility. (7) Establish ''off-campus'' M.S. and Ph.D. engine programs of study at various industrial sites. (8) Extend and Enhance the Graduate Experience.

Carl L. Anderson

2006-09-25T23:59:59.000Z

171

GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications  

SciTech Connect

This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

None

2011-07-31T23:59:59.000Z

172

Can Automotive Battery recycling Help Meet Lithium Demand?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaines, Jennifer B. Dunn, and Christine James Gaines, Jennifer B. Dunn, and Christine James Center for Transportation Research Argonne National Laboratory Can Automotive Battery Recycling Help Meet Lithium Demand? ACS Meeting New Orleans, LA April 7-11, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly

173

Energy and Environmental Impacts of Lithium Production for Automotive Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Dunn and Linda Gaines B. Dunn and Linda Gaines Center for Transportation Research Argonne National Laboratory Energy and Environmental Impacts of Lithium Production for Automotive Batteries American Chemical Society New Orleans, LA April 7-11, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly

174

U.S. Department of Energy and the Automotive X PRIZE Foundation to Promote  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Automotive X PRIZE Foundation to the Automotive X PRIZE Foundation to Promote Clean, Energy-Efficient Vehicles U.S. Department of Energy and the Automotive X PRIZE Foundation to Promote Clean, Energy-Efficient Vehicles March 20, 2008 - 10:52am Addthis DOE to invest $3.5 million in public outreach effort NEW YORK, NY - In an effort to engage students and the public on the significance of increasing the use of more clean, cutting-edge and energy-efficient vehicles to help transform our nation's transportation sector, the U.S. Department of Energy (DOE) today announced plans to award nearly $3.5 million in a grant to the X PRIZE Foundation for the national education and outreach component of the Automotive X PRIZE (AXP) Education Program. The AXP, officially launched today, will award at least $10

175

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer  

Open Energy Info (EERE)

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Jump to: navigation, search Tool Summary Name: Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Agency/Company /Organization: Oak Ridge National Laboratory OpenEI Keyword(s): EERE tool, Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model, MA3T Project U.S. consumer demand for plug-in hybrid electric vehicles (PHEV) in competition among various light-duty vehicle technologies for hundreds of market segments based and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http://www.ornl.gov/sci/ees/etsd/contactus.shtml References Retrieved from

176

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program’s Multiyear Re

177

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab)

178

A design strategy applied to sulfur resistant lean NOx̳ automotive catalysts  

E-Print Network (OSTI)

Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

Tang, Hairong

2005-01-01T23:59:59.000Z

179

Managing novelty at the interfaces between concept and product : case studies for the automotive industry  

E-Print Network (OSTI)

Appearance of the product is a discerning factor for the consumers purchase decisions. Time from concept to product creation is a critical factor in the competitive automotive industry. The period to develop a product is ...

Zarewych, Lara Daniv, 1972-

2005-01-01T23:59:59.000Z

180

Battery Aging, Diagnosis, and Prognosis of Lead-Acid Batteries for Automotive Application.  

E-Print Network (OSTI)

??New battery technologies have been emerging into today’s market and frequenting headlines; however, the lead-acid battery overwhelmingly remains the most common automotive battery. Because of… (more)

Picciano, Nicholas I.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Adaptive control of time delay systems and applications to automotive control problems  

E-Print Network (OSTI)

This thesis is about the adaptive control of time delay systems with applications to automotive control problems. The stabilization of systems involving time delays is a difficult problem since the existence of a delay may ...

Yildiz, Yildiray

2009-01-01T23:59:59.000Z

182

Comparative analysis of automotive powertrain choices for the near to mid-term future  

E-Print Network (OSTI)

This thesis attempts a technological assessment of automotive powertrain technologies for the near to mid term future. The powertrain types to be assessed include naturally aspirated gasoline engines, turbocharged gasoline ...

Kasseris, Emmanuel P

2006-01-01T23:59:59.000Z

183

Investigation of Polymer Resin/Fiber Compatibility in Natural Fiber Reinforced Composite Automotive Materials  

DOE Green Energy (OSTI)

Natural fibers represent a lower density and potentially lower cost alternative to glass fibers for reinforcement of polymers in automotive composites. The high specific modulus and strength of bast fibers make them an attractive option to replace glass not only in non-structural automotive components, but also in semi-structural and structural components. Significant barriers to insertion of bast fibers in the fiber reinforced automotive composite market include the high moisture uptake of this lignocellulosic material relative to glass and the weak inherent interface between natural fibers and automotive resins. This work seeks to improve the moisture uptake and resin interfacing properties of natural fibers through improved fundamental understanding of fiber physiochemical architecture and development of tailored fiber surface modification strategies.

Fifield, Leonard S.; Huang, Cheng; Simmons, Kevin L.

2010-01-01T23:59:59.000Z

184

The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries  

E-Print Network (OSTI)

This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

Fuchs, Erica R. H. (Erica Renee H.), 1977-

2006-01-01T23:59:59.000Z

185

Lean principle application in an automotive product development process with special emphasis on peer reviews  

E-Print Network (OSTI)

Global Automotive, a large US based, global manufacturer of automobiles, has made significant gains in manufacturing competitiveness, in part through application of a lean manufacturing approach to high volume assembly. A ...

Boren, Michael S. (Michael Stuart)

2009-01-01T23:59:59.000Z

186

A survey of front end modularity as an automotive architecture and its ability to deliver value  

E-Print Network (OSTI)

The partitioning of a system can and will dictate the creative space for a designer or engineer. This thesis will analyze how using a new automotive architecture known as a Front End Module (FEM) can affect a limited ...

Mahé, Vincent R. (Vincent Robert)

2008-01-01T23:59:59.000Z

187

Predictive algorithm to determine the suitable time to change automotive engine oil  

Science Conference Proceedings (OSTI)

Recently, emerging technologies related to various sensors, product identification, and wireless communication give us new opportunities for improving the efficiency of automotive maintenance operations, in particular, implementing predictive maintenance. ... Keywords: Degradation, Engine oil, Mission profile data, Predictive maintenance, Statistical methods

Hong-Bae Jun; Dimitris Kiritsis; Mario Gambera; Paul Xirouchakis

2006-12-01T23:59:59.000Z

188

Status of Automotive Fuel Cell Development: Applicability to Stationary Fuel Cell Generators  

Science Conference Proceedings (OSTI)

Developers of polymer electrolyte membrane fuel cell (PEMFC) technology -- targeting the automotive as well as the stationary markets -- are making significant strides in performance improvements and cost reductions. In concept, PEMFC systems could either replace internal combustion engine drivetrains or power auxiliary loads that would otherwise be powered by propulsion power plants. This report describes how automotive PEMFC development and stationary power PEMFC development will complement each other.

2002-03-05T23:59:59.000Z

189

Evaluation of a Current Source Active Power Filter to Reduce the DC Bus Capacitor in a Hybrid Electric Vehicle Traction Drive  

E-Print Network (OSTI)

Science Knoxville, TN, 37996, USA tolbert@utk.edu Abstract ­ In hybrid electric vehicles (HEV), a battery-source inverter, dc bus capacitor, Electric vehicle, Harmonic current, Hybrid electric vehicle. I. INTRODUCTION Electric Vehicle Traction Drive Shengnan Li Student Member, IEEE The University of Tennessee Department

Tolbert, Leon M.

190

Fatigue behavior and recommended design rules for an automotive composite  

DOE Green Energy (OSTI)

Fatigue curves (stress vs cycles to failure) were generated under a variety of conditions (temperatures, fluid environments, mean stresses, block loadings) for a candidate automotive structural composite. The results were used to (1) develop observations regarding basic fatigue behavioral characteristics and (2) establish fatigue design rules. The composite was a structural reaction injection-molded polyurethane reinforced with continuous strand, swirl-mat E-glass fibers. Tensile fatigue tests on specimens from a single plaque at {minus}40 F, room temperature, and 250 F provided the basic behavioral characteristics. It was found that when stress was normalized by the at-temperature ultimate tensile strength, the fatigue curves at the three temperatures collapsed into a single master curve. An assessment of the individual stress-strain loops throughout each test showed a progressive loss in stiffness and an increase in permanent strain, both of which are indicative of increasing damage. Fatigue tests on specimens from several plaques were used to develop a design fatigue curve, which was established by using a reduction factor of 20 on average cycles to failure. This factor assures that the stiffness loss during the design life is no greater than 10 percent. Fatigue reduction factors were established to account for various fluids. Reversed stress fatigue tests allowed a mean stress rule to be validated, and block loading tests were used to demonstrate the adequacy of Miner`s rule for cumulative fatigue damage.

Corum, J.M.; Battiste, R.L.; Ruggles, M.B.

1998-11-01T23:59:59.000Z

191

LOW-COST COMPOSITES IN VEHICLE MANUFACTURE - Natural-fiber-reinforced polymer composites in automotive applications.  

SciTech Connect

In the last decade, natural fiber composites have experienced rapid growth in the European automotive market, and this trend appears to be global in scale, provided the cost and performance is justified against competing technologies. However, mass reduction, recyclability, and performance requirements can be met today by competing systems such as injection-molded unreinforced thermoplastics; natural fiber composites will continue to expand their role in automotive applications only if such technical challenges as moisture stability, fiber-polymer interface compatibility, and consistent, repeatable fiber sources are available to supply automotive manufacturers. Efforts underway by Tier I and II automotive suppliers to explore hybrid glass-natural fiber systems, as well as applications that exploit such capabilities as natural fiber sound dampening characteristics, could very well have far-reaching effects. In addition, the current development underway of bio-based resins such as Polyhydroxyalkanoate (PHA) biodegradable polyesters and bio-based polyols could provide fully bio-based composite options to future automotive designers. In short, the development of the natural fiber composite market would make a positive impact on farmers and small business owners on a global scale, reduce US reliance on foreign oil, improve environmental quality through the development of a sustainable resource supply chain, and achieve a better CO2 balance over the vehicle?s lifetime with near-zero net greenhouse gas emissions.

Holbery, Jim; Houston, Dan

2006-11-01T23:59:59.000Z

192

Damage tolerance design procedures for an automotive composite  

DOE Green Energy (OSTI)

Among the durability issues of concern in the use of composites in automobile structures is the damaging effects that low-energy impacts (e.g., tool drops and roadway kickups) might have on strength and stiffness. This issue was experimentally investigated, and recommended design evaluation procedures were developed for a candidate automotive structural composite--a structural reaction injection-molded polyurethane reinforced with continuous strand, swirl-mat E-glass fibers. Two test facilities were built to cover the range of impacts of interest--a pendulum device to characterize the effects of relative heavy objects at low velocities and an air gun to characterize the effects of relatively light objects at higher velocities. In all cases, the test specimen was a 9 x 9 x 1/8-in.-thick plate clamped on an 8-in.-diam circle. Sixty-five impact tests were performed. Included were tests using various impactor sizes and weights, tests at {minus}40 F, and tests on specimens that has been presoaked in water or exposed to battery acid. Damage areas were determined using ultrasonic C-scans, and the resulting areas were found to correlate with the quantity impactor mass to a power times velocity. A design curve was derived from the correlation and validated using dropped brick tests. To evaluate strength and stiffness reductions, the impacted plate specimens were cut into tensile, compressive, and fatigue test specimens that were used to determine reductions as a function of damage area. It was found that for design purposes, the strength reduction could be determined by representing the damage area by a circular hole of equivalent area.

Corum, J.M.; Battiste, R.L.

1998-11-01T23:59:59.000Z

193

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER SUBCONTRACT QZ001 UNDER COOPERATIVE AGREEMENT DE-NT0003894; W(A)-09-061 ; CH1525 Delphi Automotive Systems LLC (Delphi), requests an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subcontract. Delphi is a subcontractor to United Technologies under the referenced cooperative agreement. The purpose of the cooperative agreement is the development of solid oxide fuel (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas, (syngas). According to its response to question 2 of the petition, Delphi states that development of this technology will significantly advance the nation's

194

REQUEST BY UNITED STATES AUTOMOTIVE MATERIALS PARTNERSHIP (USAMP) FOR AN ADVANCE WAIVER OF DOMESTIC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATES AUTOMOTIVE MATERIALS STATES AUTOMOTIVE MATERIALS PARTNERSHIP (USAMP) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE PERFORMANCE OF DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT NUMBER DE-FC05-960R22363 AND FOR SUBJECT INVENTIONS MADE UNDER ITS SUBCONTRACTS WITH LARGE, FOR- PROFIT BUSINESSES; DOE WAIVER DOCKET W(A)-95-001 [ORO- 593] USAMP has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the performance of cooperative agreement DE-FC05-950R22363 and Subject Inventions made under its subcontracts with large, for-profit businesses. Background The award of this cooperative agreement has been made in response to an unsolicited proposal from USAMP entitled "Automotive Lightweight Materials Program" whose objectives are closely

195

Durability of a continuous strand mat polymeric composite for automotive structural applications  

DOE Green Energy (OSTI)

A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their durability. Major durability issues are the effects of cyclic loadings, creep, automotive environments, and low-energy impacts on dimensional stability, strength, and stiffness. The U.S. Department of Energy is sponsoring a project at Oak Ridge National Laboratory to address these issues and to develop, in cooperation with the Automotive Composites Consortium, experimentally based, durability driven, design guidelines. The initial reference material is an isocyanurate reinforced with a continuous strand, swirl glass mat. This paper describes the basic deformation and failure behavior of the reference material, and it presents test results illustrating the property degradations caused by loading, time, and environmental effects. The importance of characterizing and understanding damage and how it leads to failure is also discussed. The results presented are from the initial phases of an ongoing project. The ongoing effort and plans are briefly described.

Corum, J.M.; McCoy, H.E. Jr.; Ruggles, M.B.; Simpson, W.A. Jr.

1995-12-31T23:59:59.000Z

196

Analysis of the potential for new automotive uses of wrought magnesium  

DOE Green Energy (OSTI)

The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within the US Department of Energy`s Office of Transportation Materials to evaluate the suitability of wrought magnesium and its alloys to replace steel or aluminum for automotive structural and sheet applications. Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, Al, and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of Mg (whose density is less than one-fourth that of steel and only two-thirds that of Al). This study shows that Mg sheet could be used in automotive body nonstructural and semistructural applications, whereas extrusions could be used in such structural applications as spaceframes. The primary barrier to such uses of wrought Mg is high cost.

Gaines, L.; Cuenca, R.; Wu, S. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., IL (United States)]|[Argonne National Lab., Washington, DC (United States)

1996-02-01T23:59:59.000Z

197

Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber Automotive Composite  

Science Conference Proceedings (OSTI)

This report provides recommended durability-based design properties and criteria for a quasi-isotropic carbon-fiber composite for possible automotive structural applications. The composite, which was made by a rapid molding process suitable for high-volume automotive applications, consisted of continuous Thornel T300 fibers (6K tow) in a Baydur 420 IMR urethane matrix. The reinforcement was in the form of four {+-}45{sup o} stitch-bonded mats in the following layup: [0/90{sup o}/{+-}45{sup o}]{sub S}. This material is the second in a progression of three candidate thermoset composites to be characterized and modeled as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the industry Automotive Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for large automotive structural components. This document is in two parts. Part I provides the design criteria, and Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects on deformation, strength, and stiffness of cyclic and sustained loads, operating temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and kickups of roadway debris). Guidance is provided for design analysis, time-dependent allowable stresses, rules for cyclic loadings, and damage tolerance design guidance, including the effects of holes. Chapter 6 provides a brief summary of the design criteria.

Corum, J.M.

2002-04-17T23:59:59.000Z

198

Compatibility of alternative fuels with advanced automotive gas-turbine and Stirling engines. A literature survey  

DOE Green Energy (OSTI)

The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain research efforts is discussed. Future research efforts planned at Lewis are described. 52 references.

Cairelli, J.; Horvath, D.

1981-05-01T23:59:59.000Z

199

Aluminum R&D for Automotive Uses And the Department of Energy's Role  

NLE Websites -- All DOE Office Websites (Extended Search)

157 157 ENERGY DIVISION Aluminum R&D for Automotive Uses And the Department of Energy's Role S.W. Hadley S. Das J.W. Miller March 2000 Prepared for the Office of Advanced Automotive Technologies Office of Transportation Technologies U.S. Department of Energy Washington, D.C. Prepared by the Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6205 managed by LOCKHEED MARTIN ENERGY RESEARCH CORPORATION for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464 ii iii TABLE OF CONTENTS List of Tables................................................................................................................................... v List of Figures .................................................................................................................................

200

Case Study- Steam System Improvements at Dupont Automotive Marshall Laboratory  

E-Print Network (OSTI)

Dupont's Marshall Laboratory is an automotive paint research and development facility in Philadelphia, Pennsylvania. The campus is comprised of several buildings that are served by Trigen-Philadelphia Energy Corporation's district steam loop. In 1996 Dupont management announced that it was considering moving the facility out of Philadelphia primarily due to the high operating cost compared to where they were considering relocating. The city officials responded by bringing the local electric and gas utilities to the table to negotiate better rates for Dupont. Trigen also requested the opportunity to propose energy savings opportunities, and dedicated a team of engineers to review Dupont's steam system to determine if energy savings could be realized within the steam system infrastructure. As part of a proposal to help Dupont reduce energy costs while continuing to use Trigen's steam, Trigen recommended modifications to increase energy efficiency, reduce steam system maintenance costs and implement small scale cogeneration. These recommendations included reducing the medium pressure steam distribution to low pressure, eliminating the medium pressure to low pressure reducing stations, installing a back pressure steam turbine generator, and preheating the domestic hot water with the condensate. Dupont engineers evaluated these recommended modifications and chose to implement most of them. An analysis of Dupont's past steam consumption revealed that the steam distribution system sizing was acceptable if the steam pressure was reduced from medium to low. After a test of the system and a few modifications, Dupont reduced the steam distribution system to low pressure. Energy efficiency is improved since the heat transfer losses at the low pressure are less than at the medium pressure distribution. Additionally, steam system maintenance will be significantly reduced since 12 pressure reducing stations are eliminated. With the steam pressure reduction now occurring at one location, the opportunity existed to install a backpressure turbine generator adjacent to the primary pressure reducing station. The analysis of Dupont's steam and electric load profiles demonstrated that cost savings could be realized with the installation of 150 kW of self-generation. There were a few obstacles, including meeting the utility's parallel operation requirements, that made this installation challenging. Over two years have passed since the modifications were implemented, and although cost savings are difficult to quantify since process steam use has increased, the comparison of steam consumption to heating degree days shows a reducing trend. Dupont's willingness to tackle energy conservation projects without adversely affecting their process conditions can be an example to other industrial steam users.

Larkin, A.

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Reinventing the Industrial Heartland: Supply Chain Sustainability and the New Automotive Industry  

E-Print Network (OSTI)

for a new mobility infrastructure. In this strategy, the auto is a sustainably built, high tech component1 Report Reinventing the Industrial Heartland: Supply Chain Sustainability and the New Automotive in mobility and the auto of the future, through the German experience Background This conference for 50

Sheridan, Jennifer

202

A high-voltage low-power DC-DC buck regulator for automotive applications  

Science Conference Proceedings (OSTI)

This work presents a High-Voltage Low-Power CMOS DC-DC buck regulator for automotive applications. The overall system, including the high and low voltage analog devices, the power MOS and the low voltage digital devices, was realized in the Austriamicrosystems ... Keywords: DC-DC regulator, buck converter, current control, low quiscent current, pulse frequency modulation

G. Pasetti; L. Fanucci; R. Serventi

2010-03-01T23:59:59.000Z

203

Aero?acoustic predictions of automotive dashboard HVAC (heating, ventilating, and air?conditioning ducts).  

Science Conference Proceedings (OSTI)

The flow?induced noisegenerated by automotive climate control systems is today emerging as one of the main noisesources in a vehicle interior. Numerical simulation offers a good way to analyze these mechanisms and to identify the aerodynamic noisesources in an industrial context driven by permanent reduction in programs timing and development costs

Stephane Detry; Julien Manera; Yves Detandt; Diego d'Udekem

2010-01-01T23:59:59.000Z

204

An observer looks at the cell temperature in automotive battery packs  

E-Print Network (OSTI)

An observer looks at the cell temperature in automotive battery packs Maxime Deberta , Guillaume.bloch@univ-lorraine.fr Abstract The internal temperature of Li-ion batteries for electric or hybrid vehicles is an important measurement and a model. This paper presents the simplified modelling of heat transfers in a battery module

Paris-Sud XI, Université de

205

Hybrid and Hydrogen Vehicle Research Laboratory 21st Century Automotive Challenge April 17-19, 2009  

E-Print Network (OSTI)

electric and hybrid cars in the American consumer marketplace." Competition participants included teams vehicle technology you need to match your lifestyle ­ electric, solar electric, hybrid, pluggable hybrid the electric utility grid. Sound impossible, or eons in the future? As part of the 21st Century Automotive

Lee, Dongwon

206

Acoustic Survey of a 3/8-Scale Automotive Wind Tunnel  

Science Conference Proceedings (OSTI)

An acoustic survey that consists of insertion loss and flow noise measurements was conducted at key locations around the circuit of a 3/8-scale automotive acoustic wind tunnel. Descriptions of the test, the instrumentation, and the wind tunnel facility ...

Jr Earl R. Booth; Romberg Gary; Hansen Larry; Lutz Ron

1996-10-01T23:59:59.000Z

207

Third annual report to Congress on the automotive technology development program  

DOE Green Energy (OSTI)

The Automotive Propulsion Research and Development Act of 1978 focused on advancing the technology of automotive propulsion systems. In formulating the Act, Congress found that: (1) existing automobiles do not meet the Nation's long-term environmental and energy goals; (2) insufficient resources are being devoted to research and development (R and D) on advanced automobile propulsion systems; (3) with sufficient R and D, alternatives to existing systems could meet long-term goals at reasonable cost; and (4) expanded R and D would complement and stimulate corresponding private sector efforts. Because of the Nation's energy problems, Congress felt that advanced automobile propulsion system technology should be developed quickly. Through the Act, Congress expressed its intent for the Department of Energy (DOE) to: (1) make R and D contracts and grants for development of advanced automobile propulsion systems within five years, or within the shortest practicable time consistent with appropriate R and D techniques; (2) evaluate and disseminate information about advanced automobile propulsion system technology; (3) preserve, enhance, and facilitate competition in R and D of existing and alternative automotive propulsion systems; and (4) supplement, but neither supplant nor duplicate, private industry R and D efforts. Summaries of the status of conventional powertrain technology, automotive technology development program, and the management plan and policy transition are given. Tables on contracts and grant procurement for advanced gas turbine engine systems, advanced Stirling engine systems, and the vehicle systems project are given. (WHK)

Not Available

1982-03-01T23:59:59.000Z

208

Durability of polymer matrix composites for automotive structural applications: A state-of-the-art review  

DOE Green Energy (OSTI)

A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role that nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.

Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.; Talreja, R.; Weitsman, Y.J.

1995-07-01T23:59:59.000Z

209

Social media in the product development process of the automotive industry: a new approach  

Science Conference Proceedings (OSTI)

This paper introduces a new methodology for implementing social media monitoring into an important stage of the innovation process within the automotive industry -- the prototype stage. The information gathered on social media channels was used for project ... Keywords: electric mobility, electric vehicles, product development, social media monitoring, social networking sites

Andreas Klein, Götz Spiegel

2013-07-01T23:59:59.000Z

210

Fourth international symposium on automotive propulsion systems. Volume I. [Eighteen papers  

DOE Green Energy (OSTI)

A pre-conference draft is given (in five volumes) of the proceedings of the 4th International Symposium on Automotive Propulsion Systems, held April 18-22, 1977, in Washington, D.C. Volume I contains eighteen papers; a separate abstract was prepared for each for ERDA Energy Research Abstracts (ERA).

Not Available

1977-01-01T23:59:59.000Z

211

Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies  

DOE Green Energy (OSTI)

Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participation ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the participating students are now contributing to the advancement of automotive technology in this country.

David Holloway

2005-09-30T23:59:59.000Z

212

Automotive component product development enhancement through multi-attribute system design optimization in an integrated concurrent engineering framework  

E-Print Network (OSTI)

Automotive industry is facing a tough period. Production overcapacity and high fixed costs constrain companies' profits and challenge the very same existence of some corporations. Strangulated by the reduced cash availability ...

Usan, Massimo, 1967-

2005-01-01T23:59:59.000Z

213

Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct?hydrogen proton ex

214

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

215

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

216

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exch

217

What matters most : researching the critical factors for maximizing automotive innovation profitability, and their implications of systems-based innovations  

E-Print Network (OSTI)

It is predicted by many in the industry that over the next decade automotive OEM's will look more and more like "vehicle-brand owners," focusing efforts on branding, marketing, and building a stronger retail channel. This ...

Clark, Nathan A. (Nathan Allen), 1972-

2004-01-01T23:59:59.000Z

218

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2011 7, 2011 CX-006971: Categorical Exclusion Determination Clean Energy Coalition - Michigan Green Fleets CX(s) Applied: A7, B5.1 Date: 09/27/2011 Location(s): Detroit, Michigan Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office September 27, 2011 CX-006969: Categorical Exclusion Determination Clean Energy Coalition - Michigan Green Fleets CX(s) Applied: B5.1 Date: 09/27/2011 Location(s): Plymouth, Michigan Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office September 26, 2011 CX-006974: Categorical Exclusion Determination Fully-Integrated Automotive Traction Inverter with Real-Time Switching Optimization CX(s) Applied: B3.6 Date: 09/26/2011 Location(s): Colorado, Massachusetts, Michigan, Pennsylvania, Vermont,

219

ME EET Seminar: Real-time Predictive Control: From Automotive Systems to  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-time Predictive Control: From Automotive Systems to Real-time Predictive Control: From Automotive Systems to Energy Efficient Buildings Speaker(s): Francesco Borrelli Date: February 10, 2010 - 12:00pm Location: 90-3122 Hybrid systems are heterogeneous systems that exhibit both continuous and discrete dynamics. Over the last eight years we have focused on the development of systematic, real-time, predictive controller synthesis techniques for hybrid systems with constraints. In this talk I will first summarize our theoretical efforts starting from constrained optimal control design for hybrid systems with constraints. Then, I will show how these results can be used in order to develop a theory for distributed predictive control for large-scale systems. The second part of the talk presents a range of applications where the proposed techniques were used with great

220

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS, LLC FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UGCP-HO P.04,-07 UGCP-HO P.04,-07 * * STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS, LLC FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36- 04G014319 ENTITLED "SOLID OXIDE FUEL CELL DEVELOPMENT FOR AUXILLARY POWER IN HEAVY DUTY VEHICLE APPLICATIONS"; W(A)-04-082; CH-1261 As set out in the attached waiver petition and in subsequent discussions with DOE patent counsel, Delphi Automotive Systems, LLC (Delphi) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L.

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications R. K. Ahluwalia, T. Q. Hua, and J-K Peng Argonne National Laboratory, Argonne, IL 60439 M. Kromer, S. Lasher, K. McKenney, K. Law, and J. Sinha TIAX LLC, Lexington, MA 02421 June 21, 2011 Executive Summary In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program's Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and

222

Experimental hydrogen-fueled automotive engine design data-base project. Volume 1. Executive summary report  

DOE Green Energy (OSTI)

A preliminary hydrogen-fueled automotive piston engine design data-base now exists as a result of a research project at the University of Miami. The effort, which is overviewed here, encompassed the testing of 19 different configurations of an appropriately-modified, 1.6-liter displacement, light-duty automotive piston engine. The design data base includes engine performance and exhaust emissions over the entire load range, generally at a fixed speed (1800 rpm) and best efficiency spark timing. This range was sometimes limited by intake manifold backfiring and lean-limit restrictions; however, effective measures were demonstrated for obviating these problems. High efficiency, competitive specific power, and low emissions were conclusively demonstrated.

Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

1983-05-01T23:59:59.000Z

223

Design and development of a continuously variable ratio transmission for automotive vehicles. Final report  

DOE Green Energy (OSTI)

Work accomplished between July 1974 and October 1978 in a program directed toward the design and development of a continuously variable ratio transmission (CVT) for an automotive vehicle is reported. The following major accomplishments were achieved: the laboratory and mathematical projections establishing the viability of the program and the predicted attainment of the primary goal of fuel economy were verified; the proposed Concept Demonstration prototype hydromechanical transmission (HMT) was completed from design to operation; the HMT was thoroughly tested in the laboratory and on the road and its in-vehicle performance was verified by independent testing laboratories; and design of a second generation Pre-Production HMT has proceeded to the point of confirming the practicality of the automotive HMT size and weight; most of the necessary information has been generated which could permit its production cost/competitiveness to be evaluated. (LCL)

None

1978-09-30T23:59:59.000Z

224

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

09-33 09-33 Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

225

Laser welding of automotive aluminum alloys to achieve defect-free, structurally sound and reliable welds  

SciTech Connect

The objective of this program was to seek improved process control and weldment reliability during laser welding of automotive aluminum alloys while retaining the high speed and accuracy of the laser beam welding process. The effects of various welding variables on the loss of alloying elements and the formation of porosity and other geometric weld defects such as underfill and overfill were studied both experimentally and theoretically.

DebRoy, T.

2000-11-17T23:59:59.000Z

226

Pollution prevention assessment for a manufacturer of automotive battery separators. Environmental research brief  

SciTech Connect

The WMAC team at the University of Louisville performed an assessment at a plant that manufactures automotive battery separators. Two types of separators-polyethylene/silica sheet and vinyl rib-are produced. The team`s report, detailing findings and recommendations, indicated that waste spill absorbents are generated in large quantities and at a significant waste management cost, and that waste reduction could result from using wringable, reusable aborbents.

Fleischman, M.; Schmidt, P.; Roberts, D.; Looby, G.P.

1995-08-01T23:59:59.000Z

227

Digital Innovation and the Division of Innovative Labor: Digital Controls in the Automotive Industry  

Science Conference Proceedings (OSTI)

In this study of the U.S. automobile industry, we highlight the way the division of innovative labor across firms in the supply chain can be influenced by a particular form of digital innovation known as “digital control systems.” Digital ... Keywords: automotive industry, digital control hierarchy, digital controls, digital innovation, division of innovative labor, dual-product hierarchy, inclusionary hierarchy, mirroring hypothesis, systems integration

Jaegul Lee; Nicholas Berente

2012-09-01T23:59:59.000Z

228

The Automotive X Prize rolls into Washington, DC 09/16/10 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Automotive X Prize rolls into Washington, DC 09/16/10 The Automotive X Prize rolls into Washington, DC 09/16/10 The Automotive X Prize rolls into Washington, DC 09/16/10 Addthis ProgressiveXPrizeEvent_September_16_2010_Peraves_187mpg 1 of 39 ProgressiveXPrizeEvent_September_16_2010_Peraves_187mpg IMG_8811 2 of 39 IMG_8811 IMG_8894 3 of 39 IMG_8894 IMG_8918 4 of 39 IMG_8918 X Prize 003 5 of 39 X Prize 003 X Prize 004 6 of 39 X Prize 004 X Prize 005 7 of 39 X Prize 005 X Prize 014 8 of 39 X Prize 014 X Prize 015 9 of 39 X Prize 015 X Prize 016 10 of 39 X Prize 016 X Prize 018 11 of 39 X Prize 018 X Prize 021 12 of 39 X Prize 021 X Prize 022 13 of 39 X Prize 022 X Prize 023 14 of 39 X Prize 023 X Prize 026 15 of 39 X Prize 026 X Prize 027 16 of 39 X Prize 027 X Prize 029 17 of 39 X Prize 029 X Prize 035 18 of 39 X Prize 035 X Prize 039 19 of 39 X Prize 039

229

Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation  

SciTech Connect

The automotive industry is the largest industry in the United States in terms of the dollar value of production [1]. U.S. automakers face tremendous pressure from foreign competitors, which have an increasing manufacturing presence in this country. The Big Three North American Original Equipment Manufacturers (OEMs) General Motors, Ford, and Chrysler are reacting to declining sales figures and economic strain by working more efficiently and seeking out opportunities to reduce production costs without negatively affecting the production volume or the quality of the product. Successful, cost-effective investment and implementation of the energy efficiency technologies and practices meet the challenge of maintaining the output of high quality product with reduced production costs. Automotive stamping and assembly plants are typically large users of compressed air with annual compressed air utility bills in the range of $2M per year per plant. This paper focuses on practical methods that the authors have researched, analyzed and implemented to improve compressed air system efficiency in automobile manufacturing facilities. It describes typical compressed air systems in automotive stamping and assembly plants, and compares these systems to best practices. The paper then presents a series of examples, organized using the method of inside-out approach, which strategically identifies the energy savings in the compressed air system by first minimizing end-use demand, then minimizing distribution losses, and finally making improvements to primary energy conversion equipment, the air compressor plant.

Alkadi, Nasr E [ORNL; Kissock, Professor Kelly [University of Dayton, Ohio

2011-01-01T23:59:59.000Z

230

Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future  

DOE Green Energy (OSTI)

Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

Furey, M.J. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Kajdas, C. [Warsaw Univ. of Technology, Plock (Poland); Kaltenbach, K.W. [Triad Investors Corp., Baltimore, MD (United States)

1997-12-31T23:59:59.000Z

231

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

232

Fully Integrated Complementary Metal Oxide Semiconductor (CMOS) Bio-Assay Platform  

E-Print Network (OSTI)

Oxide Semiconductor (CMOS) Bio-Assay Platform by OctavianOxide Semiconductor (CMOS) Bio-Assay Platform by OctavianOxide Semiconductor (CMOS) Bio-Assay Platform by Octavian

Florescu, Octavian

2010-01-01T23:59:59.000Z

233

Identifying discriminating variables between teachers who fully integrate computers and teachers with limited integration  

Science Conference Proceedings (OSTI)

Given the prevalence of computers in education today, it is critical to understand teachers' perspectives regarding computer integration in their classrooms. The current study surveyed a random sample of a heterogeneous group of 185 elementary and 204 ... Keywords: Computer integration, Computer technology, Computers, Computers in classrooms, Elementary and secondary teachers, Teacher Characteristics, Teachers

Julie Mueller; Eileen Wood; Teena Willoughby; Craig Ross; Jacqueline Specht

2008-12-01T23:59:59.000Z

234

A fully-integrated multi-watt permanent-magnet turbine generator  

E-Print Network (OSTI)

The energy density available from batteries is increasingly becoming a limiting factor in the capabilities of portable electronics. As a result, there is a growing need for compact, high energy density sources. This thesis ...

Yen, Bernard Chih-Hsun, 1981-

2008-01-01T23:59:59.000Z

235

Fully integrated CMOS nano-particle assembly circuit for biological detections  

E-Print Network (OSTI)

based on silicon nanowires. Nano Letters, 4(2), 245–247. 3.Los Angeles (UCLA). His current research focuses on nano-fabrication, nano-electronic device and cir- cuit, and nano-

Zhang, Lei; Chang, Yu; Yu, Zhiping; He, Xiangqing; Chen, Yong

2010-01-01T23:59:59.000Z

236

Simulation of Thermal Energy Transport in a Fully-Integrated Surface/Subsurface Framework.  

E-Print Network (OSTI)

??Thermal stream loadings from both natural and anthropogenic sources have significant relevance with respect to ecosystem health and water resources management, particularly in the context… (more)

Brookfield, Andrea Elizabeth

2009-01-01T23:59:59.000Z

237

Fully Integrated Applications of Thin Films on Low Temperature Cofired Ceramic (LTCC)  

SciTech Connect

Thin film multilayers have previously been introduced on multilayer low temperature cofired ceramic (LTCC), as well as initial thin film capacitors on LTCC. The ruggedness of a multipurpose Ti-Cu-Pt-Au stack for connectivity and RF conductivity has continued to benefit fabrication and reliability in state of-the-art modules, while the capacitors have followed the traditional Metal-Insulator-Metal (MIM) style. The full integration of thin film passives with thin film connectivity traces is presented. Certain passives, such as capacitors, require specifically tailored and separately patterned thin film (multi-)layers, including a dielectric. Different capacitance values are achieved by variation of both the insulator layer thickness and the active area of the capacitor. Other passives, such as filters, require only the conductor - a single thin film multilayer. This can be patterned from the same connectivity thin film material (Ti-Cu-Pt-Au), or a specially tailored thin film material (e.g. Ti-Cu-Au) can be deposited. Both versions are described, including process and integration details. Examples are discussed, ranging from patterning for maximum tolerances, to space and performance-optimized designs. Cross-sectional issues associated with integration are also highlighted in the discussion.

Ambrose Wolf; Ken Peterson; Matt O'Keefe; Wayne Huebner; Bill Kuhn

2012-04-19T23:59:59.000Z

238

Fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage  

E-Print Network (OSTI)

We present a coupled Boltzmann and hydrodynamics approach to relativistic heavy ion reactions. This hybrid approach is based on the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. Event-by-event fluctuations are directly taken into account via the non-equilibrium initial conditions generated by the initial collisions and string fragmentations in the microscopic UrQMD model. After a (3+1)-dimensional ideal hydrodynamic evolution, the hydrodynamical fields are mapped to hadrons via the Cooper-Frye equation and the subsequent hadronic cascade calculation within UrQMD proceeds to incorporate the important final state effects for a realistic freeze-out. This implementation allows to compare pure microscopic transport calculations with hydrodynamic calculations using exactly the same initial conditions and freeze-out procedure. The effects of the change in the underlying dynamics - ideal fluid dynamics vs. non-equilibrium transport theory - will be explored. The freeze-out and initial state parameter dependences are investigated for different observables. Furthermore, the time evolution of the baryon density and particle yields are discussed. We find that the final pion and proton multiplicities are lower in the hybrid model calculation due to the isentropic hydrodynamic expansion while the yields for strange particles are enhanced due to the local equilibrium in the hydrodynamic evolution. The results of the different calculations for the mean transverse mass excitation function, rapidity and transverse mass spectra for different particle species at three different beam energies are discussed in the context of the available data.

Hannah Petersen; Jan Steinheimer; Gerhard Burau; Marcus Bleicher; Horst Stöcker

2008-06-10T23:59:59.000Z

239

Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)  

DOE Green Energy (OSTI)

Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

Fezzler, Raymond [BIZTEK Consulting, Inc.

2011-03-01T23:59:59.000Z

240

Evaluation of Power Line Carrier Technologies for Automotive Smart Charging Applications  

Science Conference Proceedings (OSTI)

In support of the Society of Automotive Engineers (SAE) Hybrid J2836J2847J2931 Committee, EPRI has undertaken evaluation of a set of power line carrier (PLC) technologies. This report documents Phase I activity, where vendor hardware evaluation kits were operated and tested in the EPRI lab. This initial activity lays the groundwork for in-depth PLC testing to occur in the near future. The primary focus of this report is to provide an overview of the vendor evaluation hardware and software and to report r...

2010-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


242

Design and development of an automotive propulsion system utilizing a Rankine cycle engine (water based fluid). Final report  

DOE Green Energy (OSTI)

Under EPA and ERDA sponsorship, SES successfully designed, fabricated and tested the first federally sponsored steam powered automobile. The automobile - referred to as the simulator - is a 1975 Dodge Monaco standard size passenger car with the SES preprototype Rankine cycle automotive propulsion system mounted in the engine compartment. In the latter half of 1975, the simulator successfully underwent test operations at the facilities of SES in Watertown, Massachusetts and demonstrated emission levels below those of the stringent federally established automotive requirements originally set for implementation by 1976. The demonstration was accomplished during testing over the Federal Driving Cycle on a Clayton chassis dynamometer. The design and performance of the vehicle are described.

Demler, R.L.

1977-09-01T23:59:59.000Z

243

Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments  

DOE Green Energy (OSTI)

Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

Ren, W.; Brinkman, C.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1998-12-31T23:59:59.000Z

244

Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2  

SciTech Connect

This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamental materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal projects concentrate on specific classes of materials and nonproprietary components and are done jointly by DOE and the Automotive Composites Consortium of U.S. Council for Automotive Research (USCAR). The third project developed a rapid tooling process that reduces tooling time, originally some 48-52 weeks, to less than 12 weeks by means of rapid generation of die-casting die inserts and development of generic holding blocks, suitable for use with large casting applications. This project was conducted by the United States Automotive Materials Partnership, another USCAR consortium.

Das, S.

2003-01-23T23:59:59.000Z

245

The role of rare-earth dopants in nanophase zirconia catalysts for automotive emission control.  

DOE Green Energy (OSTI)

Rare earth (RE) modification of automotive catalysts (e.g., ZrO{sub 2}) for exhaust gas treatment results in outstanding improvement of the structural stability, catalytic functions and resistance to sintering at high temperatures. Owing to the low redox potential of nonstoichiometric CeO{sub 2}, oxygen release and intake associated with the conversion between the 3+ and 4+ oxidation states of the Ce ions in Ce-doped ZrO{sub 2} provide the oxygen storage capacity that is essentially to effective catalytic functions under dynamic air-to-fuel ratio cycling. Doping tripositive RE ions such as La and Nd in ZrO{sub 2}, on the other hand, introduces oxygen vacancies that affect the electronic and ionic conductivity. These effects, in conjunction with the nanostructure and surface reactivity of the fine powders, present a challenging problem in the development of better ZrO{sub 2}-containing three-way catalysts. We have carried out in-situ small-to-wide angle neutron diffraction at high temperatures and under controlled atmospheres to study the structural phase transitions, sintering behavior, and Ce{sup 3+} {leftrightarrow} Ce{sup 4+} redox process. We found substantial effects due to RE doping on the nature of aggregation of nanoparticles, defect formation, crystal phase transformation, and metal-support interaction in ZrO{sub 2} catalysts for automotive emission control.

Loong, C.-K.; Ozawa, M.

1999-07-16T23:59:59.000Z

246

Electrical signature analysis applications for non-intrusive automotive alternator diagnostics  

DOE Green Energy (OSTI)

Automotive alternators are designed to supply power for automobile engine ignition systems as well as charge the storage battery. This product is used in a large market where consumers are concerned with acoustic noise and vibration that comes from the unit. as well as overall quality and dependability. Alternators and generators in general are used in industries other than automotive, such as transportation and airline industries and in military applications. Their manufacturers are interested in pursuing state-of-the-art methods to achieve higher quality and reduced costs. Preliminary investigations of non-intrusive diagnostic techniques utilizing the inherent voltage signals of alternators have been performed with promising results. These techniques are based on time and frequency domain analyses of specially conditioned signals taken from several alternators under various test conditions. This paper discusses investigations that show correlations of the alternator output voltage to airborne noise production. In addition these signals provide insight into internal magnetic characteristics that relate to design and/or assembly problems.

Ayers, C.W.

1996-03-01T23:59:59.000Z

247

Evaluation of dissociated and steam-reformed methanol as automotive engine fuels  

SciTech Connect

Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state are discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H/sub 2/ + CO and 3H/sub 2/ + CO/sub 2/ respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed methanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol. 36 references, 27 figures, 3 tables.

Lalk, T.R.; McCall, D.M.; McCanlies, J.M.

1984-05-01T23:59:59.000Z

248

Managing the Proliferation of Digital Technology in the Automotive Industry A Systems Engineering Approach to Embedded Software  

E-Print Network (OSTI)

1 Managing the Proliferation of Digital Technology in the Automotive Industry A Systems Engineering (1993) Submitted to the System Design and Management Program in Partial Fulfillment of the Requirements. Signature of Author Dawn R. Paluszny System Design and Management Program Certified by Nancy G. Leveson

de Weck, Olivier L.

249

Automotive autonomy  

Science Conference Proceedings (OSTI)

Self-driving cars are inching closer to the assembly line, thanks to promising new projects from Google and the European Union.

Alex Wright

2011-07-01T23:59:59.000Z

250

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL-10/24 ANL-10/24 Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

251

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1NT41022; W(A)-03-022; CH-1146 1NT41022; W(A)-03-022; CH-1146 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Delphi Automotive Systems, L.L.C (Delphi) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject cooperative agreement. The waiver will apply to inventions made by Delphi employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of Delphi's petition, the purpose of this agreement is the development of interconnects for solid oxide fuel cell systems. Delphi will investigate materials for the metal

252

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update March 26, 2009 v.30.2021.052209 Prepared by: Brian D. James & Jeffrey A. Kalinoski One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared for: Contract No. GS-10F-0099J to the U.S. Department of Energy Energy Efficiency and Renewable Energy Office Hydrogen, Fuel Cells & Infrastructure Technologies Program Foreword Energy security is fundamental to the mission of the U.S. Department of Energy (DOE) and hydrogen fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel cell vehicles can operate on hydrogen, which can be produced domestically, emitting less greenhouse gas and pollutants than

253

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS (DELPHII) FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DELPHII) FOR AN DELPHII) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS TO INVENTIONS MADE UNDER COOPERATIVE AGREEMENT NUMBER DE-FC04-02AL67633, DOE WAIVER NO. W(A) 01-040. The Petitioner, Delphi, a subcontractor to Electricore, Inc (Electricore), has requested a waiver of all domestic and foreign patent rights to inventions that it may conceive or first reduce to practice in the course of work under Cooperative Agreement Number DE- FC04-02L67633 entitled "Lower Cost Wide Range Oxygen Sensor" with the U S. Department of Energy (DOE). The work to be done will be the development of a robust oxygen sensor for use in direct injection light duty diesel engines. The program goal is to create a low cost, wide range oxygen sensor compatible with high volume automotive use. Such sensors would be a

254

Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

-237 -237 Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects November 2001 Prepared by Sujit Das Oak Ridge National Laboratory Jean H. Peretz The University of Tennessee Bruce Tonn Oak Ridge National Laboratory DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm

255

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2NT41246; W(A) 03-021 ; CH-1147 2NT41246; W(A) 03-021 ; CH-1147 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Delphi Automotive Systems, L.L.C (Delphi) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject cooperative agreement. The waiver will apply to inventions made by Delphi employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of Delphi's petition, the purpose of this agreement is to develop 5 kW Solid Oxide Fuel Cell (SOFC) power systems for a range of fuels and applications. These

256

Separation and recovery process R&D to enhance automotive materials recycling  

SciTech Connect

Since 1976, the sales-weighted curb-weight of cars and light trucks sold in the United States has decreased by almost 800 pounds. Vehicle weight reduction has, of course, provided for a significant increase in US fleet fuel economy, from 17 to 27 miles per gallon. However, achievement of the weight reduction and concomitant increase in fuel economy was brought about, in part, by the substitution of lighter-weight materials, such as thinner-gauge coated sheet-steels replacing heavy-gauge noncoated sheet-steels and new aluminum alloys replacing steel as well as the increased use of plastics replacing metals. Each of these new materials has created the need for new technology for materials recycling. This paper highlights some of the R&D being conducted at Argonne National Laboratory to develop technology that will enhance and minimize the cost of automotive materials recycling.

Daniels, E.J.

1994-05-01T23:59:59.000Z

257

Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application  

Science Conference Proceedings (OSTI)

Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid cars, as has previously been done for gasoline-powered vehicles, is an important area for further st

McCluskey, F. P.

2007-04-30T23:59:59.000Z

258

Integration Of The Security Sub-Modules Elements In The Automotive Industry  

Science Conference Proceedings (OSTI)

This study is addressed to obtain a design methodology for integrated security sub-modules (constituting the suspension and steering modules) in the car manufacturing industry. The sub-modules are made up of a steel structure and anchorage elements (rubber-metal or plastic-metal), which undergo separate surface treatments to prevent corrosion. Afterwards, the elements are traditionally joined by means of adhesives and screws. This process involves a great number of stages, low quality union methods and generation of corrosion areas that shorten its useful life.This methodology provides automotive suppliers an additional added value and cost reduction, allowing them to increase its competitiveness in a sector that faces the transition from the traditional supply chain to a strategic value chain.

Gallego, C.; Fernandez, M.; Caires, A. S. [CIDAUT, Research and Development in Transport and Energy (Spain); Canibano, E. [CIDAUT, Research and Development in Transport and Energy (Spain); Escuela Universitaria Politecnica de Valladolid, Dpto. de Construcciones Arquitectonicas, Ingenieria del Terreno y Mecanica de los Medios Continuos y Teoria de Estructuras (Spain)

2007-05-17T23:59:59.000Z

259

Overview of DOE'S programs on aluminum and magnesium for automotive application  

DOE Green Energy (OSTI)

The U.S. Department of Energy will present an update and review of its programs in aluminum and magnesium for automotive and heavy-duty vehicle applications. While the main programs focused on vehicle materials are in the Office of Transportation Technologies, contributing efforts will be described in the DOE Office of Industrial Technologies and the DOE Office of Energy Research. The presentation will discuss materials for body/chassis and power train, and will highlight the considerable synergy among the efforts. The bulk of the effort is on castings, sheet, and alloys with a smaller focus on metal matrix composites. Cost reduction and energy savings are the overriding themes of the programs.

Carpenter, J.; Diamond, S.; Dillich, S.; Fitzsimmons, T.; Milliken, J.; Sklad, P.

1999-02-28T23:59:59.000Z

260

AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels  

Science Conference Proceedings (OSTI)

Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

2002-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Use of infra-red thermography for automotive climate control analysis  

DOE Green Energy (OSTI)

In this paper, several automotive climate control applications for IR thermography are described. Some of these applications can be performed using conventional IR techniques. Others, such as visualizing the air temperature distribution within the cabin, at duct exits, and at heater and evaporator faces, require new experimental methods. In order to capture the temperature distribution within an airstream, a 0.25-mm-thick (0.01 inch) fiberglass screen is used. This screen can be positioned perpendicular or parallel to the flow to obtain three-dimensional spatial measurements. In many cases, the air flow pattern can be inferred from the resulting temperature distribution, allowing improved air distribution designs. In all cases, significant improvement in the speed, ease, and quantity of temperature distribution information can be realized with thermography as compared to conventional thermocouple array techniques. Comparisons are presented between IR thermography images and both thermocouple measurements and computational fluid dynamics (CFD) predictions.

Burch, S.D.; Hassani, V.; Penney, T.R.

1994-03-01T23:59:59.000Z

262

Automotive Stirling Engine Development Program. Quarterly technical progress report, October--December 1977  

DOE Green Energy (OSTI)

This report covers the first 3 months effort of the Ford/DOE Automotive Stirling Engine Development Program, specifically Task I which is Fuel Economy Assessment. At the beginning of this contract effort the projected fuel economy of the 4-215 Stirling engine was 21.16 MPG with a confidence level of 29 percent. Since that date, the fuel economy improvement projection of the 4-215 Stirling engine has been increased to 22.11 MPG, with a confidence level of 29 percent. Collection of fuel economy improvement data is directly related to engine durability. Engine durability has been limited. Since September 19, 1977 a total of 47.7 hours of engine running time has been accumulated using two engine builds. Progress is reported in sub-task studies of burners, preheaters, engine drive, blower system, power control, air-fuel ratio control, cooling system, and cycle control. (LCL)

Kitzner, E.W.

1978-01-01T23:59:59.000Z

263

Engineering-economic analyses of automotive fuel economy potential in the United States  

SciTech Connect

Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

Greene, D.L.; DeCicco, J.

2000-02-01T23:59:59.000Z

264

The influence of surface topography on the forming friction of automotive aluminum sheet  

DOE Green Energy (OSTI)

Interest in utilizing aluminum alloys in automobiles has increased in recent years as a result of the desire to lower automobile weight and, consequently, increase fuel economy. While aluminum alloy use in cast parts has increased, outer body panel applications are still being investigated. The industry is interested in improving the formability of these sheet alloys by a combination of alloy design and processing. A different avenue of improving the formability of these alloys may be through patterning of the sheet surface. Surface patterns hold the lubricant during the forming process, with a resulting decrease in the sheet-die surface contact. While it has been speculated that an optimum surface pattern would consist of discrete cavities, detailed investigation into the reduction of forming friction by utilizing discrete patterns is lacking. A series of discrete patterns were investigated to determine the dependence of the forming friction of automotive aluminum alloys on pattern lubricant carrying capacity and on material strength. Automotive aluminum alloys used in outer body panel applications were rolled on experimental rolls that had been prepared with a variety of discrete patterns. All patterns for each alloy were characterized before and after testing both optically and, to determine pattern lubricant capacity, using three dimensional laser profilometry. A draw bead simulation (DBS) friction tester was designed and fabricated to determine the forming friction of the patterned sheets. Tensile testing and frictionless DBS testing were performed to ascertain the material properties of each sheet. The most striking result of this work was the inversely linear dependence of forming friction on the lubricant carrying capacity of the discrete patterns.

Kramer, P.A. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States)

1998-05-01T23:59:59.000Z

265

Design and development of a continuously variable ratio transmission for an automotive vehicle. Phase IV. Quarterly progress report  

DOE Green Energy (OSTI)

Progress in the design and development of a continuously variable ratio transmission for an automotive vehicle is reported. The Major automotive hydromechanical transmission development problem continues to be the reduction of hydrostatic noise and the project plan, therefore, concentrated on the new hydrostatic module. The potential for achieving acceptably low noise levels in the second generation hydromechanical transmission is to be assessed by comparing the noise levels of the hydrostatic modules for the first and second generation transmissions. A set of twelve test points was selected comprising of road load steady state and wide-open-throttle acceleration at 10, 20, 30, 40, 50 and 60 mph. The module operating conditions for the two transmissions at each of these twelve points were calculated. Baseline noise data was measured on the first generation module. The results are given testing of co-axial hydrostatic module for second generation hydromechanical transmission will be emphasized. (LCL)

None

1978-05-31T23:59:59.000Z

266

Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers  

SciTech Connect

Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

Hale, Steve

2013-09-11T23:59:59.000Z

267

Fiber optic sensing technology for measuring in-cylinder pressure in automotive engines  

E-Print Network (OSTI)

A new fiber optic sensing technology for measuring in-cylinder pressure in automotive engines was investigated. The optic sensing element consists of two mirrors in an in-line single mode fiber that are separated by some distance. To withstand the harsh conditions inside an engine, the Fiber Fabry-Perot Interferometer (FFPI) element was coated with gold and copper. The metal-protected fiber sensor was embedded into a small cut in the metal casing of the spark plug. At first, the sensing element was dipped in liquid gold and cured. Then the gold-coated fiber sensor was electroplated with copper. Finally, the metal-coated fiber sensor was embedded in the spark plug. The spark-plug-embedded FFPI sensor was monitored using a signal conditioning unit. Field tests were carried out in a 3-cylinder automotive engine with a piezoelectric pressure sensor as a reference transducer up to about 3500 rpm. The fiber optic sensor data generally matched those measured by the piezoelectric reference sensor. The use of a Vertical Cavity Surface Emitting Laser (VCSEL) diode as a light source in an FFPI optic sensor system was investigated. Reflected light from the FFPI sensing element was used to measure the optical path difference. With a 1550nm VCSEL as the light source in a 12mm cavity length Fiber Fabry-Perot Interferometer, spectral characteristics were examined to determine the proper combination of dc bias current, modulation current amplitude and modulation frequency. Single VCSEL operation and regular fringe patterns were achieved. The laser tuning was -41.2 GHz/mA and was determined from measurements of the shift in the spectral peak of the VCSEL diode output as a function of dc bias current. By testing the fringe movement as the FFPI sensor was heated, the temperature tuning coefficient for the optical length was determined to be 11 x 10-6 �ºC. The results of these experiments indicate that the use of VCSEL diode as a light source for the FFPI sensor offers a viable alternative to the use of Distributed Feedback (DFB) laser diodes for monitoring at a lower bias current and modulating current amplitude.

Bae, Taehan

2006-08-01T23:59:59.000Z

268

All auto shredding: evaluation of automotive shredder residue generated by shredding only vehicles.  

SciTech Connect

A well developed infrastructure exists for the reuse and recycling of automotive parts and materials. At the end of a vehicle's useful life many parts are removed and sold for reuse and fluids are recovered for recycling or proper disposal. What remains is shredded, along with other metal bearing scrap such as home appliances, demolition debris and process equipment, and the metals are separated out and recycled. The remainder of the vehicle materials is call shredder residue which ends up in the landfill. As energy and natural resources becomes more treasured, increased effort has been afforded to find ways to reduce energy consumption and minimize the use of our limited resources. Many of the materials found in shredder residue could be recovered and help offset the use of energy and material consumption. For example, the energy content of the plastics and rubbers currently landfilled with the shredder residue is equivalent to 16 million barrels of oil per year. However, in the United States, the recovered materials, primarily polymers, cannot be recycled due to current regulatory barriers which preclude the re-introduction into commerce of certain materials because of residual contamination with substances of concern (SOCs) such as polychlorinated biphenyls (PCBs). The source of the PCBs is not well understood. Old transformers, capacitors, white goods and ballasts from lighting fixtures are likely contributing factors. The project was designed to evaluate whether vehicles of varying age and manufacturing origin contribute to the PCB content in shredder residue. Additionally, the project was designed to determine if there are any trends in material composition of the shredder residue from varied age and manufacturing groups. This information would aid in future material recovery facility strategy and design. The test utilized a newly installed shredder plant to shred four categories of automobiles. The categories were defined by vehicle age and the manufacturing company and location. Each category of vehicles was processed individually through the shredder plant and the resulting shredder residue was analyzed for its materials composition and presence of PCBs and leachable metals. The results show that shredder residue from all vehicle categories tested are not significant contributors of PCBs and leachable metals. It was evident that leachable cadmium levels have decreased in newer vehicles. The composition of the shredder residue from each of the four categories is similar to the others. In addition, these compositions are approximately equal to the composition of typical shredder residues, not limited to automotive materials.

Duranceau, C. M.; Spangenberger, J. S. (Energy Systems); (Vehicle Recycling Partnership, LLC); (American Chemistry Counsel, Plastics Division)

2011-09-26T23:59:59.000Z

269

Phase II CRADA ORNL99-0568 Report : Developing Transmission-Less Inverter Drive Systems for Axial-Gap Permanent magnet Accessory and Traction Motors and Generators  

DOE Green Energy (OSTI)

Researchers of the Oak Ridge National Laboratory's (ORNLs) Power Electronics and Electric Machine Research Center (PEEMRC) collaborated with Visual Computing Systems (VCS) to develop an electric axial-gap permanent magnet (PM) motor controlled by a self-sensing inverter for driving vehicle accessories such as power steering, air conditioning, and brakes. VCS designed an 8 kW motor based on their Segmented Electromagnetic Array (SEMA) technology. ORNL designed a 10 kW inverter to fit within the volume of a housing, which had been integrated with the motor. This modular design was pursued so that multiple modules could be used for higher power applications. ORNL built the first inverter under the cooperative research and development agreement (CRADA) ORNL 98-0514 and drove a refurbished Delta motor with no load during the Merit Review at ORNL on Monday, May 17, 1999. Inverter circuitry and instructions for assembling the inverters were sent to VCS. A report was prepared and delivered during the Future Car Congress in April 2000, at Arlington, Virginia. Collaboration continued under CRADA ORNL 99-0568 as VCS designed and built a SEMA motor with a dual coil platter to be the traction motor for an electric truck. VCS and ORNL assembled two 45 kW inverters. Each inverter drove one coil, which was designed to deliver 15 kW continuous power and 45 kW peak power for 90 s. The vehicle was road tested as part of the Future Truck Competition. A report was prepared and delivered during the PCIM in October 2000, at Boston, Massachusetts.

McKeever, J.W.

2001-08-06T23:59:59.000Z

270

Phase II CRADA ORNL99-0568 Report : Developing Transmission-Less Inverter Drive Systems for Axial-Gap Permanent magnet Accessory and Traction Motors and Generators  

SciTech Connect

Researchers of the Oak Ridge National Laboratory's (ORNLs) Power Electronics and Electric Machine Research Center (PEEMRC) collaborated with Visual Computing Systems (VCS) to develop an electric axial-gap permanent magnet (PM) motor controlled by a self-sensing inverter for driving vehicle accessories such as power steering, air conditioning, and brakes. VCS designed an 8 kW motor based on their Segmented Electromagnetic Array (SEMA) technology. ORNL designed a 10 kW inverter to fit within the volume of a housing, which had been integrated with the motor. This modular design was pursued so that multiple modules could be used for higher power applications. ORNL built the first inverter under the cooperative research and development agreement (CRADA) ORNL 98-0514 and drove a refurbished Delta motor with no load during the Merit Review at ORNL on Monday, May 17, 1999. Inverter circuitry and instructions for assembling the inverters were sent to VCS. A report was prepared and delivered during the Future Car Congress in April 2000, at Arlington, Virginia. Collaboration continued under CRADA ORNL 99-0568 as VCS designed and built a SEMA motor with a dual coil platter to be the traction motor for an electric truck. VCS and ORNL assembled two 45 kW inverters. Each inverter drove one coil, which was designed to deliver 15 kW continuous power and 45 kW peak power for 90 s. The vehicle was road tested as part of the Future Truck Competition. A report was prepared and delivered during the PCIM in October 2000, at Boston, Massachusetts.

McKeever, J.W.

2001-08-06T23:59:59.000Z

271

Automotive storage of hydrogen as a mixture of methanol and water. Final report  

SciTech Connect

The concept of steam-reforming methanol on-board an automobile was evaluated as a candidate method of storing fuel for the hydrogen engine. This method uses low-temperature, engine waste heat to evaporate a 1:1 molar water-methanol mixture at 373/sup 0/K (212/sup 0/F) and to provide endothermic reaction heat at 505/sup 0/K (450/sup 0/F) to convert this mixture to hydrogen and carbon dioxide. By using engine waste heat, a fuel combustion enrichment of 8% (LHV) or 18% (HHV) is obtained when the reactor effluents are compared with those from the tanked fuel. Defining system efficiency as the product of the generator chemical efficiency (108%) and the engine thermal efficiency (assumed to be 30%) yields a value of 32.4%. Conservative estimates indicate that an additional volume of 44 to 49 liters and an additional weight of 110 to 140 kg would be required, compared with a conventional 20 gal gasoline tank. A 500 hour endurance test of this system with a Girdler G-66B catalyst was conducted at 505/sup 0/K (450/sup 0/F), atmospheric pressure, and low space velocity--compared with automotive requirements--at wide-open-throttle conditions with laboratory-grade methanol; there was no loss of activity. However, when fuel-grade methanol containing small amounts of higher alcohols was substituted for the laboratory-grade methanol, significant catalyst deactivation occurred. (auth)

Kester, F.L.; Konopka, A.J.; Camara, E.

1975-11-01T23:59:59.000Z

272

Technology development goals for automotive fuel cell power systems. Final report  

Science Conference Proceedings (OSTI)

This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

James, B.D.; Baum, G.N.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1994-08-01T23:59:59.000Z

273

Technical assessment of compressed hydrogen storage tank systems for automotive applications.  

DOE Green Energy (OSTI)

The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. (Nuclear Engineering Division); (TIAX, LLC)

2011-02-09T23:59:59.000Z

274

Static properties and multiaxial strength criterion for design of composite automotive structures  

DOE Green Energy (OSTI)

The Durability of Lightweight Composite Structures Project was established at Oak Ridge National Laboratory (ORNL) by the US Department of Energy to provide the experimentally-based, durability-driven design guidelines necessary to assure long-term structural integrity of automotive composite components. The initial focus of the ORNL Durability Project was on one representative reference material -- an isocyanurate (polyurethane) reinforced with continuous strand, swirl-mat E-glass. The present paper describes tensile, compressive, flexure, and shear testing and results for the reference composite. Behavioral trends and proportional limit are established for both tension and compression. Damage development due to tensile loading, strain rate effects, and effects of temperature are discussed. Furthermore, effects on static properties of various fluids, including water at room and elevated temperatures, salt water, antifreeze, windshield washer fluid, used motor oil, battery acid, gasoline, and brake fluid, were investigated. Effects of prior loading were evaluated as well. Finally, the effect of multiaxial loading on strength was determined, and the maximum shear strength criterion was identified for design.

Ruggles, M.B.; Yahr, G.T.; Battiste, R.L.

1998-11-01T23:59:59.000Z

275

DOE PLANT-WIDE ENERGY ASSESSMENT RESULTS RELATED TO THE U. S. AUTOMOTIVE INDUSTRY  

SciTech Connect

Forty-nine plant-wide energy efficiency assessments have been undertaken under sponsorship of the U.S. Department of Industrial Technologies Program. Plant-wide assessments are comprehensive, systematic investigations of plant energy efficiency, including plant utility systems and process operations. Assessments in industrial facilities have highlighted opportunities for implementing best practices in industrial energy management, including the adoption of new, energy-efficient technologies and process and equipment improvements. Total annual savings opportunities of $201 million have been identified from the 40 completed assessments. Many of the participating industrial plants have implemented efficiency-improvement projects and already have realized total cost savings of more than $81 million annually. This paper provides an overview of the assessment efforts undertaken and presents a summary of the major energy and cost savings identified to date. The paper also discusses specific results from assessments conducted at four plants in the automotive manufacturing operations and supporting industries. These particular assessments were conducted at facilities that produce engine castings, plastic films used for glass laminates, forged components, and at a body spray painting plant.

Kelly Kissock, Arvind Thekdi, Len Bishop

2006-01-05T23:59:59.000Z

276

Thermally-induced microstructural changes in a three-way automotive catalyst  

DOE Green Energy (OSTI)

The use of advanced electron microscopy techniques to characterize both the bulk and near-atomic level microstructural evolution of catalyst materials during different dynamometer/vehicle aging cycles is an integral part of understanding catalyst deactivation. The study described here was undertaken to evaluate thermally-induced microstructural changes which caused the progressive loss of catalyst performance in a three-way automotive catalyst. Several different catalyst processing variables, for example changing the washcoat ceria content, were also evaluated as a function of aging cycle and thermal history. A number of thermally-induced microstructural changes were identified using high resolution electron microscopy techniques that contributed to the deactivation of the catalyst, including sintering of all washcoat constituents, {gamma}-alumina transforming to {alpha}-, {beta}-, and {delta}-alumina, precious metal redistribution, and constituent encapsulation. The data accumulated in this study have been used to correlate microstructural evolution with thermal history and catalyst performance during various aging cycles and to subsequently evaluate different washcoat formulations for increased thermal stability.

More, K.L.; Kenik, E.A.; Coffey, D.W.; Geer, T.S. [Oak Ridge National Lab., TN (United States); Theis, J.; LaBarge, W.; Beckmeyer, R. [Delphi Automotive Systems, Flint, MI (United States)

1997-12-01T23:59:59.000Z

277

Electrostatic coalescence of used automotive crankcase oil as an alternative to other separation processes  

E-Print Network (OSTI)

This thesis presents an initial investigation of using electrostatic coalescence as an alternative to conventional separation processes to purify used automotive crankcase oil. Specific emphasis of this study was the feasibility of this approach, verified by separating and analyzing a used oil emulsion. The metal removal efficiency was compared to that of a five day gravity settling. Separation experiments were performed in a 2.26 L coalescer with a flat parallel insulated electrode configuration. The used oil emulsion, composed of used oil, Isopar M, and water (no noticeable phase separation for 12 hours) followed the electrostatic coalescence characteristic of higher applied voltages or frequencies allowing higher feed rates. Metal removal efficiencies for iron, calcium and zinc were 3.57, 47.1, and 46.7 %, respectively, using Nalco 7715 at a peak a.c. voltage of 7 kV/cm and a frequency of 1000 Hz at the maximum rate of coalescence. For gravity settlement, metal removal efficiencies for iron, calcium and zinc were 11.2, 15.6, and 57.1 %, respectively. Considering the residence time of a moderate emulsion feed rate is a fraction of an hour, electrostatic coalescence offers an advantage over gravity settling. Oil phase water content varied between 0.05 and 7.2 wt %.

Dixon, John Leslie

1998-01-01T23:59:59.000Z

278

Advanced computational simulation for design and manufacturing of lightweight material components for automotive applications  

DOE Green Energy (OSTI)

Computational vehicle models for the analysis of lightweight material performance in automobiles have been developed through collaboration between Oak Ridge National Laboratory, the National Highway Transportation Safety Administration, and George Washington University. The vehicle models have been verified against experimental data obtained from vehicle collisions. The crashed vehicles were analyzed, and the main impact energy dissipation mechanisms were identified and characterized. Important structural parts were extracted and digitized and directly compared with simulation results. High-performance computing played a key role in the model development because it allowed for rapid computational simulations and model modifications. The deformation of the computational model shows a very good agreement with the experiments. This report documents the modifications made to the computational model and relates them to the observations and findings on the test vehicle. Procedural guidelines are also provided that the authors believe need to be followed to create realistic models of passenger vehicles that could be used to evaluate the performance of lightweight materials in automotive structural components.

Simunovic, S.; Aramayo, G.A.; Zacharia, T. [Oak Ridge National Lab., TN (United States); Toridis, T.G. [George Washington Univ., Washington, DC (United States); Bandak, F.; Ragland, C.L. [Dept. of Transportation, Washington, DC (United States)

1997-04-01T23:59:59.000Z

279

Feasibility test on compounding the internal combustion engine for automotive vehicles, Task II. Final report  

DOE Green Energy (OSTI)

The organic Rankine bottoming cycle can be considered for various automobile and truck applications. The most attractive use, however, is in large, heavy-duty diesel trucks for long distance hauling. Here, the engine load and speed requirements are nearly constant over a large portion of the operating hours, and high mileages are accumulated. Thus, the potential fuel savings are sufficient to justify the added cost of a bottoming cycle system. A conceptual design study of compounding the diesel truck engine with an ORCS was made and the results of the study are presented. Based on the results of the conceptual design study which showed a 15 percent fuel economy improvement potential over the duty cycle, an early feasibility demonstration test of the system was initiated. The demonstration system uses a Mack ENDT 676 diesel engine with existing but nonoptimum ORCS hardware made available from an earlier automotive Rankine-cycle program. The results of these feasibility demonstration tests, both steady-state and transient, over the operating range of the diesel engine, are presented.

Not Available

1976-01-01T23:59:59.000Z

280

Automotive stirling engine development program. Quarterly technical progress report, April 1978--June 1978  

DOE Green Energy (OSTI)

The report covers the third quarter (April--June, 1978) effort of the Ford/DOE Automotive Stirling Engine Development Program, specifically Task I of that effort which is Fuel Economy Assessment. At the end of the previous quarter (March 31, 1978) the total fourth generation fuel economy projection was 23.7 mpg with a confidence level of 40%. At the end of this quarter (June 30, 1978) the total fourth generation fuel economy projection was 26.12 mpg with a confidence level of 44%. This represents an improvement of 66.4% over the baseline M-H fuel economy of 15.7 mpg. The confidence level for the original 20.6 mpg goal has been increased from 53 to 57%. Engine 3X17 has now accumulated a total of 213 h of variable speed running. A summary of the individual sub-tasks of Task I is presented. The sub-tasks are grouped into two categories: Category 1 consists of those sub-tasks which are directly related to fuel economy and Category 2 consists of those sub-tasks which are not directly related to fuel economy but are an integral part of the Task I effort.

Not Available

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Technical assessment of compressed hydrogen storage tank systems for automotive applications.  

Science Conference Proceedings (OSTI)

The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%.

Hua, T.; Ahluwalia, R.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. (Nuclear Engineering Division); (TIAX LLC)

2011-02-01T23:59:59.000Z

282

Survey Evidence on the Willingness of U.S. Consumers to Pay for Automotive Fuel Economy  

Science Conference Proceedings (OSTI)

Prospect theory, which was awarded the Nobel Prize in Economics in 2002, holds that human beings faced with a risky bet will tend to value potential losses about twice as much as potential gains. Previous research has demonstrated that prospect theory could be sufficient to explain an energy paradox in the market for automotive fuel economy. This paper analyzes data from four random sample surveys of 1,000 U.S. households each in 2004, 2011, 2012 and 2013. Households were asked about willingness to pay for future fuel savings as well as the annual fuel savings necessary to justify a given upfront payment. Payback periods inferred from household responses are consistent over time and across different formulations of questions. Mean calculated payback periods are short, about 3 years, but there is substantial dispersion among individual responses. Calculated payback periods do not appear to be correlated with the attributes of respondents. Respondents were able to quantitatively describe their uncertainty about both vehicle fuel economy and future fuel prices. Simulation of loss averse behavior based on this stated uncertainty illustrate how loss aversion could lead consumers to substantially undervalue future fuel savings relative to their expected value.

Greene, David L [ORNL; Evans, David H [Sewanee, The University of the South; Hiestand, John [Indiana University

2013-01-01T23:59:59.000Z

283

Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.  

Science Conference Proceedings (OSTI)

On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2-4 and 1.6-2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

Ahluwalia, R.; Hua, T.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Gardiner, M.; Nuclear Engineering Division; TIAX LLC; U.S. DOE

2010-05-01T23:59:59.000Z

284

The California greenhouse gas initiative and its implications to the automotive industry  

SciTech Connect

CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to incorporate new powertrain technologies, materials and/or design (e.g. the General Motors EV1 or the Toyota Prius). These five actions represent the gamut from the least complicated solution to the most complex. They also generally represent the least expensive response to the most expensive. It is possible that the least expensive responses may be least likely to meet market demands while achieving required GHG emission limits. At the same time, the most expensive option may produce a vehicle that satisfies the GHG reduction requirements and meets some consumer requirements, but is far too costly to manufacture and sell profitably. The response of a manufacturer would certainly have to take market size, consumer acceptance, technology implication and cost, as well as internal capacities and constraints, into consideration. It is important to understand that individual companies may respond differently in the short term. However, it is probable that there would be a more consistent industry-wide response in the longer term. Options 1 and 2 present the simplest responses. A company may reach into its global portfolio to deliver vehicles that are more fuel-efficient. These vehicles are usually much smaller and significantly less powerful than current U.S. offerings. Industry respondents indicated that such a strategy may be possible but would likely be met with less than positive reaction from the buying public. A general estimate for the cost to homologize a vehicle--that is, to prepare an existing vehicle for entry into the United States provided all business conditions were met (reasonable product, capacity availability, etc.), would be approximately $50 million. Assuming an estimated cost for homologation to meet U.S. standards of $50 million and a 20,000 vehicle per year sales volume in California, the company would then incur a $2,500 per-vehicle cost to bring them into the market. A manufacturer may also choose to incorporate a more efficient powertrain into a vehicle already sold in the market. The costs associated with such a strategy would include reengineering

Smith, B. C.; Miller, R. T.; Center for Automotive Research

2006-05-31T23:59:59.000Z

285

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. (Oak Ridge National Lab., TN (United States)); Duleep, K.G. (Energy and Environmental Analysis, Inc., Arlington, VA (United States))

1992-03-01T23:59:59.000Z

286

Automotive storage of hydrogen using modified magnesium hydrides. Final report, March 1976-March 1978  

DOE Green Energy (OSTI)

Metal hydrides can store more hydrogen per unit volume than normal high pressure or cryogenic techniques. Little energy is required to store the hydrogen in the hydride, and high stability at room temperature ensures low losses over long storage periods. Safety features of metal hydride storage are favorable. Because of its low weight and high hydrogen storage densities, modified magnesium hydride offers the greatest potential for automotive storage of hydrogen. Experimental and analytical work in this program has been directed toward the optimization of this storage system. Due to the relative stability of MgH/sub 2/, modifications of the MgMH/sub x/ (M = metal ion) have been made to decrease the dissociation temperature while retaining high hydrogen capacity. This parameter is crucial since vehicle exhaust will supply the thermal energy to dissociate the hydride in an automobile. System studies indicate that hydride dissociation temperature (T/sub D/) should be 200/sup 0/C to ensure uninterrupted fuel flow at all driving and idle conditions. From experimental data developed in this four task study, we conclude that alloys comprised of Mg, Cu and Ni have come closest to meeting the dissociation temperature goal. Small additions of rare-earth elements to the basic alloy also contribute to a reduction of T/sub D/. The best alloy developed in this program exhibits a T/sub D/ = 223/sup 0/C and a hydrogen capacity near four weight percent compared to a theoretical 7.65 percent for MgH/sub 2/. That alloy has been characterized for dissociation temperature, hydrogen capacity, kinetics, and P-C-T relationships. Dissociation temperature, hydrogen capacity and material cost are reported for each alloy tested in this program.

Rohy, D. A.; Nachman, J. F.; Hammer, A. N.; Duffy, T. E.

1979-01-01T23:59:59.000Z

287

Materials review for improved automotive gas-turbine engine. Final report  

DOE Green Energy (OSTI)

Advanced materials are the key to achieving the performance and fuel economy goals of improved automotive gas turbine engines. The potential role of superalloys, refractory alloys, and ceramics in the hottest sections of future engines that may be required to operate with turbine inlet temperatures as high as 1370/sup 0/C (2500/sup 0/F) is examined. These high temperature materials are reviewed. The characteristics of the best modern conventional superalloys, directionally solidified eutectics, oxide dispersion strengthened alloys, and tungsten fiber reinforced superalloys are reviewed; and the most promising alloys in each system are compared on the basis of maximum turbine blade temperature capability. The requirements for improved high temperature protective coatings and special fabrication techniques for these advanced alloys are discussed. Chromium, columbium, molybdenum, tantalum, and tungsten alloys are reviewed. On the basis of properties, cost, availability, and strategic importance, molybdenum alloys are found to be the most suitable refractory material for turbine wheels for mass produced engines. Ceramic material candidates are reviewed and ranked according to their probability of success in particular applications. Various forms of, and fabrication processes for both silicon nitride and silicon carbide, along with SiAlON's are investigated for use in high-stress and medium-stress high temperature environments. Low-stress glass-ceramic regenerator materials are also investigated. Treatment is given to processing requirements, such as coatings for oxidation/corrosion protection, joining methods, and machining technology. Economics of ceramic raw materials, and of various processing methods are discussed. Conclusions are drawn, and recommendations for areas of further research are proposed for consideration and/or adoption.

Belleau, C.; Ehlers, W.L.; Hagen, F.A.

1978-04-01T23:59:59.000Z

288

Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.  

DOE Green Energy (OSTI)

On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

2010-03-03T23:59:59.000Z

289

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Duleep, K.G. [Energy and Environmental Analysis, Inc., Arlington, VA (United States)

1992-03-01T23:59:59.000Z

290

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. (Oak Ridge National Lab., TN (United States)); Duleep, K.G. (Energy and Environmental Analysis, Inc., Arlington, VA (United States))

1992-03-01T23:59:59.000Z

291

Oxidation of automotive primary reference fuels in a high pressure flow reactor  

DOE Green Energy (OSTI)

Automotive engine knock limits the maximum operating compression ratio and ultimate thermodynamic efficiency of spark-ignition (SI) engines. In compression-ignition (CI) or diesel cycle engines the premixed urn phase, which occurs shortly after injection, determines the time it takes for autoignition to occur. In order to improve engine efficiency and to recommend more efficient, cleaner-burning alternative fuels, we must understand the chemical kinetic processes which lead to autoignition in both SI and CI engines. These engines burn large molecular-weight blended fuels, a class to which the primary reference fuels (PRF), n-heptane and isooctane belong. In this study, experiments were performed under engine-like conditions in a high pressure flow reactor using both the pure PRF fuels and their mixtures in the temperature range 550-880 K and at 12.5 atm pressure. These experiments not only provide information on the reactivity of each fuel but also identify the major intermediate products formed during the oxidation process. A detailed chemical kinetic mechanism is used to simulate these experiments and comparisons of experimentally measures and model predicted profiles for O{sub 2}, CO, CO{sub 2}, H{sub 2}O and temperature rise are presented. Intermediates identified in the flow reactor are compared with those present in the computations, and the kinetic pathways leading to their formation are discussed. In addition, autoignition delay times measured in a shock tube over the temperature range 690- 1220 K and at 40 atm pressure were simulated. Good agreement between experiment and simulation was obtained for both the pure fuels and their mixtures. Finally, quantitative values of major intermediates measured in the exhaust gas of a cooperative fuels research engine operating under motored engine conditions are presented together with those predicted by the detailed method.

Curran, H.J.; Pitz, W.J.; Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States); Callahan, C.V.; Dryer, F.L. [Princeton Univ., Areospace Engineering. NJ (United States)

1998-01-01T23:59:59.000Z

292

Use of microPCM fluids as enhanced liquid coolants in automotive EV and HEV vehicles. Final report  

DOE Green Energy (OSTI)

Proof-of-concept experiments using a specific microPCM fluid that potentially can have an impact on the thermal management of automotive EV and HEV systems have been conducted. Samples of nominally 20-micron diameter microencapsulated octacosane and glycol/water coolant were prepared for testing. The melting/freezing characteristics of the fluid, as well as the viscosity, were determined. A bench scale pumped-loop thermal system was used to determine heat transfer coefficients and wall temperatures in the source heat exchanged. Comparisons were made which illustrate the enhancements of thermal performance, reductions of pumping power, and increases of heat transfer which occur with the microPCM fluid.

Mulligan, James C.; Gould, Richard D.

2001-10-31T23:59:59.000Z

293

High-Performance Control of Two Three-Phase Permanent-Magnet Synchronous Machines in an Integrated Drive for Automotive Applications  

SciTech Connect

The closed-loop control of an integrated dual AC drive system is presented to control two three-phase permanent-magnet motors. A five-leg inverter is employed in the drive system; three of the inverter legs are for a main traction motor, but only two are needed for a three-phase auxiliary motor by utilizing the neutral point of the traction motor. An integrated drive with reduced component count is therefore achieved by eliminating one inverter leg and its gate drivers. A modified current control scheme based on the rotor flux orientation principle is presented. Simulation and experimental results are included to verify the independent control capability of the integrated drive.

Tang, Lixin [ORNL; Su, Gui-Jia [ORNL

2008-01-01T23:59:59.000Z

294

Traction Drive Systems Breakout Group  

NLE Websites -- All DOE Office Websites (Extended Search)

cost floor to meet the 4kW (AER300) & 15kW (AER100)? * 2 - Consolidation of power module technologies will help meet cost targets * 3 - Don't overlook profit motive in...

295

Air Cooled Traction Drive Inverter  

Energy & Transportation Science Division Licensing Contact SIMS, DAVID L UT-Battelle, LLC Oak Ridge National Laboratory Rm 124C, Bldg 4500N, MS: ...

296

Development of A Fully Integrated PV System for Residential Applications: PVMaT5a Final Report, 18 December 2001  

DOE Green Energy (OSTI)

This report describes both the Utility Power Group (UPG), a wholly owned subsidiary of Kyocera Solar, Inc., and Xantrex Technology Inc., have designed, assembled, and tested a new photovoltaic (PV) power system for residential rooftops to meet the goal of a readily manufacturable product that will increase US domestic PV power system production and installed capacity, by reducing the total installed cost and increasing the reliability of residential rooftop mounted PV power systems. A new factory pre-fabricated PV array system was developed, and 80 have been installed on the residential rooftops using standard metal parts. The direct material and labor cost of the array installation has been reduced to $3.79 per square foot for a 2400W installation. A modular, maintenance free, battery-based Power Unit and Energy Storage Unit (power conditioning and control) have also been developed. The design, fabrication, and testing have been completed for two prototypes of this system. These products have been evaluated for their structural integrity, electrical performance, reliability, cost, and manufacturability. The direct material and labor cost of the Power Unit has been reduced to $0.34 per watt. The 13 kW-hr Energy Storage Unit (ESU) has been UL listed.

Oatman, J.; West, R.

2002-10-01T23:59:59.000Z

297

Design for implementation : fully integrated charging & docking infrastructure used in Mobility-on-Demand electric vehicle fleets  

E-Print Network (OSTI)

As the technology used in electric vehicles continues to advance, there is an increased demand for urban-appropriate electric charging stations emphasizing a modern user interface, robust design, and reliable functionality. ...

Martin, Jean Mario Nations

2012-01-01T23:59:59.000Z

298

A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells  

SciTech Connect

Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

Brown, L.F.

1996-03-01T23:59:59.000Z

299

Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite  

DOE Green Energy (OSTI)

This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

Naus, Dan J [ORNL; Corum, James [ORNL; Klett, Lynn B [ORNL; Davenport, Mike [ORNL; Battiste, Rick [ORNL; Simpson, Jr., William A [ORNL

2006-04-01T23:59:59.000Z

300

Full length article: Comparative analysis of single-channel direction finding algorithms for automotive applications at 2400 MHz in a complex reflecting environment  

Science Conference Proceedings (OSTI)

This paper presents an amplitude-based single-channel direction finding system for automotive applications and compares its performance against two different phase-based single-channel direction finding algorithms in a complex reflecting environment ... Keywords: Angle of arrival, Antenna array, Direction finding, Pseudo-Doppler, Signal propagation

Daniel N. Aloi; Mohammad S. Sharawi

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Science Conference Proceedings (OSTI)

We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

Gregory Meisner

2011-08-31T23:59:59.000Z

302

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update September 30, 2010 Prepared by: Brian D. James, Jeffrey A. Kalinoski & Kevin N. Baum One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared under: Subcontract No. AGB-0-40628-01 to the National Renewable Energy Laboratory (NREL) under Prime Contract No. DE-AC36-08GO28308 to the U.S. Department of Energy Foreword Energy security is fundamental to the mission of the U.S. Department of Energy (DOE) and hydrogen fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel cell vehicles can operate on hydrogen, which can be produced domestically, emitting less greenhouse gasses and pollutants than

303

Retrofitting an automotive air conditioner with HFC-134a, additive, and mineral oil. Final report, October 1992-May 1994  

Science Conference Proceedings (OSTI)

The paper gives results of an evaluation of a lubricant additive developed for use in retrofitting motor vehicle air conditioners. The additive was designed to enable HFC-134a to be used as a retrofit refrigerant with the existing mineral oil in CFC-12 systems. The goal of the project was to provide preliminary feasibility testing of the additive. The cooling effect of the test system retrofitted with HFC-134a and the oil additive was nearly the same as that of the original system with CFC 12 refrigerant. If lubricant additives prove to be successful, miscible lubricants may not be needed for retrofitting some automotive systems. The retrofitting procedure might be simplified and the cost to consumers might be reduced. It has not been determined if retrofitting systems with HFC-134a and oil additives is feasible for a wider range of operating conditions and types of equipment, including the applicability of orifice tube/suction accumulator systems.

Jetter, J.J.; Delafield, F.R.

1994-05-01T23:59:59.000Z

304

Experimental Approach of a High Performance Control of Two PermanentMagnet Synchronous Machines in an Integrated Drive for Automotive Applications  

SciTech Connect

The close-loop digital signal processor (DSP) control of an integrated-dual inverter, which is able to drive two permanent magnet (PM) motors independently, is presented and evaluated experimentally. By utilizing the neutral point of the main traction motor, only two inverter poles are needed for the two-phase auxiliary motor. The modified field-oriented control scheme for this integrated inverter was introduced and employed in real-time control. The experimental results show the inverter is able to control two drives independently. An integrated, component count reduced drive is achieved.

Tang, Lixin [ORNL; Su, Gui-Jia [ORNL

2006-01-01T23:59:59.000Z

305

DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 4: Low Temperature Fuel Cell System BOP & FUEL Processors For Stationary and Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

BREAKOUT GROUP 4: LOW TEMPERATURE FUEL CELL SYSTEM BOP & FUEL PROCESSORS FOR STATIONARY AND AUTOMOTIVE BREAKOUT GROUP 4: LOW TEMPERATURE FUEL CELL SYSTEM BOP & FUEL PROCESSORS FOR STATIONARY AND AUTOMOTIVE PARTICIPANTS O NAME RGANIZATION Shabbir Ahmed Argonne National Laboratory Chris Ainscough NUVERA Rod Borup Los Alamos National Laboratory Vince Contini Battelle Rick Cutright PlugPower LLC David Frank Hydrogenics Jamie Holladay Pacific Northwest National Laboratory Terry Johnson Sandia National Laboratory Sridhas Kanuri UTC Power Ted Krause Argonne National Laboratory Michael McCarthy Protonex Technology Corporation Pinakin Patel FuelCell Energy Inc. Dennis Rapodios Argonne National Laboratory Eric Simpkins IdaTech LLC Anna Stefanopoulou University of Michigan Ken Stroh Los Alamos National Laboratory Olivier Verdu HELION Doug Wheeler National Renewable Energy Laboratory

306

Process demonstration and cost analysis of a mass production forging technique for automotive turbine wheels: Phase II. Final report, January 1975--March 1977  

SciTech Connect

Low cost fabrication of integrally-bladed automotive turbine wheels utilizing the GATORIZING forging process was demonstrated. The capability of the forging process was characterized as to blade shape, and the effect of the blade shape on Chrysler baseline engine turbine efficiency was analytically defined. Actual baseline engine turbine wheels were fabricated from IN100 and AF2-1DA for evaluation. A mass production cost estimate was generated for manufacturing large production quantities.

Allen, M.M.; Larson, K.J.; Walker, B.H.

1977-07-01T23:59:59.000Z

307

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

DOE Green Energy (OSTI)

Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reduce costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.

Greene, David L [ORNL; Duleep, K. G. [ICF International; Upreti, Girish [ORNL

2011-06-01T23:59:59.000Z

308

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOA-0000239 FOA-0000239 Prime: Azure Dynamics, Subs: Multi. EE DE-EE0005408 PMC/PVT 2011 Ron Harp 10/1/2011 - 9/30/2014 Multiple sites - PA, MI, MA, VT,WI, CO Fully-Integrated Automotive Traction Inverter with Real-Time Switching Optimization (SUMMARY CX) The objective of this project is to conduct power inverter research, development, and demonstration capable of achieving inverter efficiency targets. 09 19 2011 Rondle E Harp Digitally signed by Rondle E Harp DN: cn=Rondle E Harp, o=PMC, ou=PVTD, email=rondle.harp@netl.doe.gov, c=US Date: 2011.09.19 12:57:41 -04'00' 9 26 2011 john ganz Digitally signed by john ganz DN: cn=john ganz, o=netl, ou=environmental compliance division, email=john.ganz@netl.doe.gov, c=US Date: 2011.09.26 15:23:43 -04'00' Comprehensive list of subcontractors and six locations covered by this Summary CX has been provided to

309

Low Emission AMTEC Automotive Power System. Final report for Department of Energy Contract DE-FG02-94ER81696  

DOE Green Energy (OSTI)

This program investigated the potential for Alkali Metal Thermal to Electric Converter (AMTEC) technology to be useful in automotive power system applications. AMTEC, a thermally regenerative electrochemical energy conversion system, converts heat into electricity from a heat source at 750 C to 850 C and a radiator at 200 C to 350 C. AMTEC uses external combustion with correspondingly low emission of NO{sub x} and hydrocarbons, and can tolerate essentially any hydrocarbon fuel. Efficiencies of 20% to 30% are projected to be feasible for systems of 25 kWe to 40 kWe peak output. The research program has shown that there are significant advantages to be achieved if AMTEC systems can be made cost effective for vehicle applications. Among these are (1) higher efficiency at part load than IC engines can yield, (2) omnifuel capability, and (3) low noise and low emission of pollutants. Demonstrated lifetimes already above 12,000 hours should be adequate for most vehicle applications. In major production, AMTEC costs are projected to reach $1/Watt, a value still too high for widespread automotive main power application. AMTEC's unique capabilities for low emissions, all-fuel operation, and insensitivity to ambient temperature, however, do make it a potential option for specialized vehicle applications needing these properties.

Hunt, Thomas K.

2001-04-17T23:59:59.000Z

310

Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling  

SciTech Connect

The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of work in section F.

Pannala, S.; D'Azevedo, E.; Zacharia, T.

2002-02-26T23:59:59.000Z

311

Recycling Automotive Scrap  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for reuse, but the remaining materials, called shredder residue, is creating new challenges for the vehicle recycling industry. Argonne National Laboratory is meeting these challenges head-on with innovative, award-winning solutions. With its on-site recycling pilot plant, Argonne is able to test actual materials, benchmark technologies, and demonstrate working

312

Automotive turbine engine  

SciTech Connect

Gas flow through a turbine is divided, with part of the flow directed to the compressor for the combusion chamber and part directed to the primary power turbine. Division of the gas flow is accomplished by a mixing wheel of novel design. Before passing to the primary power turbine the gas flow passes through a secondary power turbine that drives the compressor for the combustion chamber. Both the secondary power turbine and the compressor rotate independently of the main turbine rotor shaft. The power input to the secondary power turbine is varied in accordance with the pressure differential between the gas pressure at the outlet of the compressor for the combustion chamber and the outlet from the mixing wheel. If the speed of the main turbine shaft slows down more power is put into the secondary power turbine and the combustion chamber compressor is speeded up so as to produce a higher gas pressure than would otherwise be the case.

Wirth, R.E.; Wirth, M.N.

1978-12-26T23:59:59.000Z

313

Automotive Alloys 1999  

Science Conference Proceedings (OSTI)

ice, provided that the base fee of $7.00 per copy is paid directly to Copyright Clearance. Center, 27 Congress Street, Salem, Massachu- setts 01970. For those ...

314

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Repurposing lithium-ion batteries at the end of useful life Repurposing lithium-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications. Increasing the number of plug-in electric drive vehicles (PEVs) is one major strategy for reduc- ing the nation's oil imports and greenhouse gas emissions. However, the high up-front cost and end-of-service disposal concerns of their lithium-ion (Li-ion) batteries could impede the proliferation of such vehicles. Re-using Li-ion batteries after their useful automotive life has been proposed as a way to remedy both matters. In response, the National Renewable Energy Laboratory (NREL) and its partners are conducting research to identify, assess, and verify profitable

315

Mass-Production Cost Estimation for Automotive Fuel Cell Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Kevin Baum, Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington VA 22203 Phone: (703) 778-7114 Email: bjames@sainc.com DOE Managers HQ: Jason Marcinkoski, Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-EE0005236 Project Start Date: September 30, 2011 Project End Date: September 30, 2016 Fiscal Year (FY) 2012 Objectives Update 2011 automotive fuel cell cost model to include * latest performance data and system design information. Examine costs of fuel cell systems (FCSs) for light-duty * vehicle and bus applications.

316

Al{sub 2}O{sub 3}/CeO{sub 2} Washcoats for three-way automotive emission catalysts  

DOE Green Energy (OSTI)

Pt-Rh based three-way catalysts are the primary catalytic system for control of hydrocarbon, CO, and NO{sub x} automotive emissions. Mixed Al{sub 2}O{sub 3}/CeO{sub 2} oxides are often dispersed on a cordierite honeycomb monolith as a washcoat and act as a high-surface-area carrier for the heavy metal catalyst clusters. Conversion efficiency and lifetime of a converter is determined by the microstructure of the washcoat/monolith and its evolution during high-temperature exposure to the exhaust gas. SEM, electron microprobe analysis, and analytical electron microscopy were used to study these catalysts before and after engine dynamometer tests, with max monolith temperatures of 1000 and 1150 C.

Kenik, E.A.; More, K.L. [Oak Ridge National Lab., TN (United States); LaBarge, W.; Beckmeyer, R. [General Motors, Flint, MI (United States)

1995-06-01T23:59:59.000Z

317

Quantifying cellular traction forces in three dimensions  

E-Print Network (OSTI)

of the gels. Analysis of the normal displacement profiles suggests that normal forces play important roles-dimensional (2-D) analysis and interpretation of cell-matrix interactions. Furthermore, these approaches cal allows a more complete analysis of cellular forces than does consideration of only in-plane (2-D

Stein, Derek

318

Electric vehicle regenerative antiskid braking and traction ...  

Patent Number: 5,450,324: Issued: September 12, 1995: Official Filing: View the Complete Patent at the US Patent & Trademark Office: Lab: Idaho ...

319

The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models  

E-Print Network (OSTI)

as differential equation models or agent-based models.Agent-based models or cellular automata models of the immunechallenges remain with agent-based models, including the

2013-01-01T23:59:59.000Z

320

AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications  

SciTech Connect

A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

Brenda Yan; Dennis Urban

2003-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Design and development of an automotive organic Rankine-cycle powerplant with a reciprocating expander. Final report. Volume II. Detailed discussion  

DOE Green Energy (OSTI)

Work performed for the design and development of an organic Rankine-cycle engine for automobile propulsion is reported. An automotive power plant using an organic Rankine-cycle system with a reciprocating expander has been designed, built, and tested on an engine dynamometer in a preprototype configuration. The system is designed to provide performance approximately equivalent to that of a 351-CID internal combustion engine in the reference car, a 1972 Ford Galaxie 500. A description of the preprototype system, major components, and results from component and system testing are presented. The fuel economy based on steady-state measurements is estimated to be 10.2 mpg over the federal driving cycle with a maximum of 16 mpg at 30 mph. Projections of steady-state emission measurements show compliance with the 1970 Clean Air Act standards for 1978 vehicle emissions. The levels for unburned hydrocarbons, carbon monoxide, and oxides of nitrogen were 41 percent, 6 percent, and 69 percent of the standards, respectively. At the conclusion of the preprototype phase of the program, a prototype design effort was initiated to upgrade and improve the performance of the preprototype system. The reference vehicle for this prototype design is a compact car in the weight class of a 1974 Ford Pinto. The results of this design study, including performance projections, are also presented.

Not Available

1977-09-01T23:59:59.000Z

322

Hydrogen storage via metal hydrides for utility and automotive energy storage applications. [HCl electrolysis for H/sub 2/--Cl/sub 2/ fuel cells  

DOE Green Energy (OSTI)

Brookhaven National Laboratory is currently supported by ERDA to develop the technology and techniques for storing hydrogen via metal hydrides. Hydrogen is able to react with a wide variety of metal and metal alloy materials to form hydride compounds of hydrogen and metals. These compounds differ in stability--some are relatively unstable and can be readily formed and decomposed at low temperatures. The use of these systems for hydrogen storage involves the design of heat exchanger and mass transfer systems, i.e., removal of heat during the charging reaction and addition of heat during the discharge reaction. The most notable example of a metal hydride material is iron titanium which shows promise of being economical for a number of near term hydrogen storage applications. Recent work and progress on the development of metal hydrides for hydrogen storage connected with utility energy storage applications and natural gas supplementation are discussed and electric-to-electric storage system is described in some detail. A system of energy storage involving the electrolysis of hydrochloric acid is described which would utilize metal hydrides to store the hydrogen. In addition, the use of metal hydrides for hydrogen storage in automotive systems is described.

Salzano, F J; Braun, C; Beaufrere, A; Srinivasan, S; Strickland, G; Reilly, J J; Waide, C

1976-08-01T23:59:59.000Z

323

Synthetic liquid fuels development: assessment of critical factors. Volume IV. Energy/economic comparison of coal-based automotive energy supply systems  

DOE Green Energy (OSTI)

Considerable debate has occurred in recent years about the relative merits of energy analysis versus traditional economic analysis. Some economists assert that energy analysis adds no new information to that in economic analysis; energy analysts claim that the explicit consideration of energy flows is necessary for a complete understanding of the implications of energy supply and use. In comparing the cost and energy consumption figures for the various automotive energy options, certain parallels are evident. Those system components that have the highest costs also require high levels of energy consumption. This is generally due to the severity of the processing conditions required to convert one energy form (e.g., coal) to another (e.g., methanol). These conditions require the use of capital-intensive equipment as well as the consumption of large amounts of energy. For some components that have relatively high costs but low energy requirements (e.g., fuel distribution), the costs are due to the many handling and transfer requirements. Overall, the capital- and energy-intensive energy conversion processes dominate the systems we have examined. Therefore, a comparison of cost with energy consumption for all the fuels considered shows a definite trend - increasing costs imply increasing energy consumption. Thus, decision makers concerned with promoting energy conservative supply options need not worry that their choices will be unduly costly. Rather, they will tend to be the least costly for the types of systems considered here. We caution against extrapolating these results to other systems, however, because systems that do not have the same kinds of capital- and energy-intensive components as those considered here may exhibit different trends.

Steele, R.V.; Sharma, K.J.; Dickson, E.M.

1977-02-01T23:59:59.000Z

324

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 3, MARCH 2007 403 Special Issue on Control  

E-Print Network (OSTI)

, traction control, and active safety systems that have the potential to decrease the number and severity powerplants (such as fuel cells), to issues in transmission, driveline, and integrated pow- ertrain control researched alternative powerplant technology for automotive vehicles, which holds promise for positive

Brennan, Sean

325

NREL: Education Programs - Wind for Schools Project Gains Traction...  

NLE Websites -- All DOE Office Websites (Extended Search)

January 29, 2013 Pennsylvania is one area where the U.S. Department of Energy Wind Powering America Wind for Schools project is seeing big impact thanks to several projects...

326

Vehicle Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Adsorption: The adhesion of the molecules of gases, dissolved substances, or liquids in more or less concentrated form to the surface of solids or liquids with which they are in contact. Commercial adsorbent materials have enormous internal surfaces. AEMD (Automotive Electric Drive Motor): A U.S. Department of Energy program to develop low-cost traction drive motors for automotive applications. Aerosol: A cloud consisting of particles dispersed in a gas or gases. AIPM (Automotive Integrated Power Module) A U.S. Department of Energy program to integrate the power devices, control electronics, and thermal management of a vehicle into a single low-cost package that will meet all requirements for automotive motor control applications.

327

FreedomCAR Automotive Lightweighting Materials  

Science Conference Proceedings (OSTI)

Apr 1, 2007... probable peaking of conventional petroleum production capacity in the ... SOURCE: Carpenter, Joseph A., Edward Daniels, Philip Sklad, ...

328

Ethanol Production for Automotive Fuel Usage  

SciTech Connect

The conceptual design of the 20 million gallon per year anhydrous ethanol facility a t Raft River has been completed. The corresponding geothermal gathering, extraction and reinjection systems to supply the process heating requirement were also completed. The ethanol facility operating on sugar beets, potatoes and wheat will share common fermentation and product recovery equipment. The geothermal fluid requirement will be approximately 6,000 gpm. It is anticipated that this flow will be supplied by 9 supply wells spaced at no closer than 1/4 mile in order to prevent mutual interferences. The geothermal fluid will be flashed in three stages to supply process steam at 250 F, 225 F and 205 F for various process needs. Steam condensate plus liquid remaining after the third flash will all be reinjected through 9 reinjection wells. The capital cost estimated for this ethanol plant employing all three feedstocks is $64 million. If only a single feedstock were used (for the same 20 mm gal/yr plant) the capital costs are estimated at $51.6 million, $43.1 million and $40. 5 million for sugar beets, potatoes and wheat respectively. The estimated capital cost for the geothermal system is $18 million.

Lindemuth, T.E.; Stenzel, R.A.; Yim, Y.J.; Yu, J.

1980-01-31T23:59:59.000Z

329

Automotive Fuel Cell Research and Development Needs  

NLE Websites -- All DOE Office Websites (Extended Search)

decay. - GDL properties can have an impact on membrane and electrode life (membrane cracking & shorting, electrode cracking). * Interface optimization is important - PlateGDL:...

330

Computing Tools for the Automotive Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

easy way to estimate the impact of future transportation technologies and scenarios on oil use and greenhouse gas (GHG) emissions. For example, VISION can calculate what the oil...

331

Lighweight Materials for the Automotive: Environmental Impact ...  

Science Conference Proceedings (OSTI)

An extensive life cycle analysis for a reference car design was conducted to study ... Materialization of Manganese by Selective Precipitation from Used Battery.

332

Double layer capacitors : automotive applications and modeling  

E-Print Network (OSTI)

This thesis documents the work on the modeling of double layer capacitors (DLCs) and the validation of the modeling procedure. Several experiments were conducted to subject the device under test to a variety of ...

New, David Allen, 1976-

2004-01-01T23:59:59.000Z

333

Measurements and Modeling of Advanced Automotive and ...  

Science Conference Proceedings (OSTI)

... this range occurs in the gap between the lower limit of Split Hopkinson Pressure Bar, or Kolsky Bar test methods, and the upper limit of servo-hydraulic testing.

334

Analysis of automotive telematics industry in Japan  

E-Print Network (OSTI)

A major element of mobile multimedia, telematics is the convergence of telecommunication and information technology which provides various services to and from the vehicle or mobile communication devices. Telematics is ...

Shimizu, Norihito, 1971-

2004-01-01T23:59:59.000Z

335

Automotive features : mass impact and deployment characterization  

E-Print Network (OSTI)

Passenger car use is a major driver of greenhouse gas (GHG) emissions and fossil fuel consumption in the United States. Vehicles continue to incorporate increasing levels of technology, these advances do not translate ...

Zoepf, Stephen M

2011-01-01T23:59:59.000Z

336

Analysis of Sealed, Integrated, Automotive Wheel Bearings  

Science Conference Proceedings (OSTI)

... microstructure, both surface and subsurface, and the statistics of bearing life. ... and Manufacturing Selection for the New AP1000 Nuclear Power Plant Design.

337

LPG fuel supply system. [Patent for automotive  

SciTech Connect

A fuel supply system for an internal combustion engine operated on gaseous fuels, for example, liquid petroleum gas (Lpg). The system includes a housing having a chamber for vaporizing liquid gas, including means for heating the vaporizing chamber. Also included in the housing is a mixing chamber for mixing the vaporized gas with incoming air for delivery to the intake manifold of an internal combustion engine through a standard carburetor. The fuel supply system includes means for mounting the system on the carburetor, including means for supporting an air filter circumjacent the mixing chamber.

Pierson, W.V.

1982-09-07T23:59:59.000Z

338

G. Uniform Engine Fuels and Automotive Lubricants ...  

Science Conference Proceedings (OSTI)

... 3.6. Fuel Oils. 3.6.1. Labeling of Grade Required. – Fuel Oil shall be identified by the grades of No. ... 3.10. Liquefied Petroleum Gas (LPG). ...

2013-10-25T23:59:59.000Z

339

Automotive System Cost Modeling Tool (ASCM)  

E-Print Network (OSTI)

technology vehicles (i.e., diesel, hybrid, and fuel cell) developed for improved fuel economy remains either be done through Argonne National laboratory's hybrid vehicle cost model algorithm (adapted the Tool Can Help Answer · What is the life cycle cost of today's midsize hybrid vehicle? · How does

340

An Alternative Refrigeration System For Automotive Applications.  

E-Print Network (OSTI)

??The air conditioning systems currently utilized in automobiles are the vapor compression systems. This type of system has many disadvantages: the refrigerant used is not… (more)

McLaughlin, Shannon

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

PDF: Automotive Magnesium Applications and Life Cycle ...  

Science Conference Proceedings (OSTI)

Feb 11, 2007 ... This presentation includes images of a die cast magnesium steering wheel, AZ91D cam cover, AZ91D transmission housing, AM50 door inner, ...

342

AUTOMOTIVE INDUSTRY ANALYSIS Submitted by Team A  

E-Print Network (OSTI)

and compared; the chosen companies and selection criteria follow. General Motors, Ford, and Toyota were chosen: Honda, Hyundai, Nissan, and Toyota. Toyota stands out as being best positioned for success in the near

343

Automotive Propulsion Materials 2006 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

heater embedded in a copper rod that was insulated in a low-conductivity glass-wool-filled PTFE housing. The heat was transferred axially along the copper rod and measured...

344

Automotive Magnesium Applications and Life Cycle Environmental ...  

Science Conference Proceedings (OSTI)

Jan 22, 2008 ... Life cycle energies and emissions are compared for steel, aluminum and ... 3rd International Conference on SF6 and the Environment, 2004.

345

Market Acceptance of Advanced Automotive Technologies Model ...  

Open Energy Info (EERE)

of market segments based and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http:www.ornl.govscieesetsd...

346

Automotive Propulsion Materials 2005 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop, Monterey CA, 2003. 3. John B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, 1988. 4. G. Cochrac and S.Q.A. Rizvi, "Oxidation of Lubricants and...

347

Energy Recovery from Automotive Shredder Residue  

E-Print Network (OSTI)

would be expected at substitution levels of less than 1O%? Unfortunately, neither of these studies co-fired objectives, it was essential to clearly identify the impact of co-firing ASR on routine MSW combustion trials as well as the ASR/MSW co-firing trials. Industrial wastes, which tend to be very non

Columbia University

348

G. Uniform Engine Fuels and Automotive Lubricants ...  

Science Conference Proceedings (OSTI)

... is intended for use in light- to heavy-duty vehicles including ... 2.9. Compressed Natural Gas (CNG). ... Vans, Sport Utility Vehicles, and Light-Duty Trucks ...

2012-11-02T23:59:59.000Z

349

PNNL: Available Technologies: Automotive & Transportation Industry  

Smart Grid Devices. Grid Friendly™ Charger Controller; SOFC. Gas-Tight Sealing Method; Glass Fiber Mesh Method of Joining; Glass-Ceramic Seal for ...

350

Axiomatic design of customizable automotive suspension systems  

E-Print Network (OSTI)

The design of existing suspension systems typically involves a compromise solution for the conflicting requirements of comfort and handling. For instance, cars need a soft suspension for better comfort, whereas a stiff ...

Deo, Hrishikesh V

2007-01-01T23:59:59.000Z

351

Automotive Australia 2020 The Automotive Australia 2020 project would like to thank the following workshop participants.  

E-Print Network (OSTI)

, compressed natural gas (CNG), criteria emissions, demographic, E85, Energy Commission, environmental justice Category: Natural Gas for School Fleets, CNG Station, LNG or L/CNG Station · Bear Valley Unified School to the wholesale or retail distribution and sales stations. The projects will be assessed in two separate rounds

352

Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save Energy Now Assessment (Revised)  

Science Conference Proceedings (OSTI)

This DOE Save Energy Now case study describes how the Goodyear Tire Plant saves approx. 93,000 MMBtu and $875,000 annually after increasing steam system energy efficiency in the Union City, TN, plant.

Not Available

2008-04-01T23:59:59.000Z

353

Storage device sizing for a hybrid railway traction system by means of bicausal bond graphs  

E-Print Network (OSTI)

(a supercapacitor) included in this system is then discussed. Keywords: bond graph, bicausality In the paper, the example of a supercapacitor process consists of choosing the system structure dimensioning

Paris-Sud XI, Université de

354

Advanced Control Strategies for Voltage Source Converters in Microgrids and Traction Networks.  

E-Print Network (OSTI)

??Increasing concerns regarding global warming caused by greenhouse gases, which are mainly generated by conventional energy resources, e.g., fossil fuels, have created significant interest for… (more)

Bahrani, Behrooz

2012-01-01T23:59:59.000Z

355

Multi-Stage Converters: A New Technology for Traction Drive Juan W. Dixon  

E-Print Network (OSTI)

of this drive is that the switching frequency of the Main converter is at the fundamental frequency, reducing will be the Slaves. The Main Converter works at the lower switching frequency (fundamental frequency), which, and A. Tahri, "Multilevel Converters and VAR Compensation", Chapter 25, Power Electronics Handbook

Rudnick, Hugh

356

Prospects for Non-Rare Earth Permanent Magnets for Traction Motors and Generators  

Science Conference Proceedings (OSTI)

With the advent of high-flux density permanent magnets based on rare earth elements such as neodymium (Nd) in the 1980s, permanent magnet-based electric machines had a clear performance and cost advantage over induction machines when weight and size were factors such as in hybrid electric vehicles and wind turbines. However, the advantages of the permanent magnet-based electric machines may be overshadowed by supply constraints and high prices of their key constituents, rare earth elements, which have seen nearly a 10-fold increase in price in the last 5 years and the imposition of export limits by the major producing country, China, since 2010. We outline the challenges, prospects, and pitfalls for several potential alloys that could replace Nd-based permanent magnets with more abundant and less strategically important elements.

Kramer, Matthew; McCallum, Kendall; Anderson, Iver; Constantinides, Steven

2012-06-29T23:59:59.000Z

357

MODELING AND OPTIMIZATION OF INDIVIDUAL WHEEL ELECTRIC DRIVE ABS AND TRACTION CONTROL.  

E-Print Network (OSTI)

??With the advent of new technology in the field of automobiles and battery technology, the opportunity of using electric and hybrid vehicles has increased. Developments… (more)

Malhotra, Guntas

2010-01-01T23:59:59.000Z

358

Design of Electric Vehicles DC Traction Motor Drive System Based on Optimal Control  

Science Conference Proceedings (OSTI)

The traditional electric vehicle DC motor drive system can not automatically weaken magnetic field. This paper designs DC motor drive system which control optimally the motor to meet the requirement. The study results show that: the drive system can ... Keywords: electric vehicles, DC motor, controller, optimal control

Yan Jun

2012-12-01T23:59:59.000Z

359

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

Science Conference Proceedings (OSTI)

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

360

Hybrid Electric Vehicle with Permanent Magnet Traction Motor: A Simulation Model  

E-Print Network (OSTI)

A simulation model for a hybrid electric vehicle is developed. Permanent magnet synchronous motor is considered for the drive part of the hybrid electric vehicle which comprises three energy sources: (i) a fuel cell, (ii) a battery bank, and (iii) a super capacitor. Rotor-oriented speed controller is designed, and also verified by simulation results, to achieve trajectory tracking requirements of the hybrid electric vehicle within the inverter voltage and current limits.

Levent U. Gökdere; Khalid Benlyazid; Enrico; Enrico Santi; Charles W. Brice; Roger A. Dougal

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Library of SIMULINK Blocks for Real-Time Control of HEV Traction John Chiasson1  

E-Print Network (OSTI)

, researchers have considered several motor types including the DC motor, induction motor, permanent magnet (PM algorithms for the various types of motor drives considered for hybrid electric vehicles (HEVs, and permanent magnet synchronous machines. This eliminates the need for specialized programming in C or assembly

Tolbert, Leon M.

362

EV3 : Traction drives and generators A: Electric machine design and optimization 1  

E-Print Network (OSTI)

of Rotor Structure and Number of Phases on First and Second Order Characteristics of TOYOTA PRIUS torque, torque-speed characteristics. I. STUDIED PRIUS MACHINE A. The average torque Taverage (first of PRIUS machine. A methodology consists of coupling between an optimization program of Matlab and the FEM

Paris-Sud XI, Université de

363

A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2  

E-Print Network (OSTI)

= Vehicle base speed; Vcr = Vehicle cruising speed; = Grade angle; Pv = Vehicle driving power; Fw = Road for the most appropriate electric propulsion system. In this case, key features are efficiency, reliability manuscript, published in "International Review on Modelling and Simulations 6, 1 (2013) 29-32" #12;motor type

Brest, Université de

364

Cell-ECM traction force modulates endogenous tension at cellcell contacts  

E-Print Network (OSTI)

and resisting ex- ternal forces, it is becoming increasingly evident that cell-ECM and cell­cell adhesions are also sites of transmission of active, cell-generated forces (4). The nature of force balance across regulate cell shape and migration (1, 4, 5). In turn, force-mediated integrin signaling also controls cell

Schwarz, Ulrich

365

High-Temperature High-Power Packaging Techniques for HEV Traction Applications  

DOE Green Energy (OSTI)

A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond geometry can play a key role in mitigating this stress. An alternative solution would be to eliminate the wire bonds completely through a fundamentally different method of forming a reliable top side interconnect. Similarly, the solders used in most power modules exhibit too low of a liquidus to be viable solutions for maximum junction temperatures of 200 C. Commonly used encapsulation materials, such as silicone gels, also suffer from an inability to operate at 200 C for extended periods of time. Possible solutions to these problems exist in most cases but require changes to the traditional manufacturing process used in these modules. In addition, a number of emerging technologies such as Si nitride, flip-chip assembly methods, and the elimination of base-plates would allow reliable module development for operation of HEV and PHEV inverters at elevated junction temperatures.

Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

2006-11-01T23:59:59.000Z

366

Automotive and MHE Fuel Cell System Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Vince Contini, Kathya Mahadevan, Fritz Eubanks, Vince Contini, Kathya Mahadevan, Fritz Eubanks, Jennifer Smith, Gabe Stout and Mike Jansen Battelle April 16, 2013 Manufacturing Cost Analysis of Fuel Cells for Material Handling Applications 2 Presentation Outline * Background * Approach * System Design * Fuel Cell Stack Design * Stack, BOP and System Cost Models * System Cost Summary * Results Summary 3 * 10 and 25 kW PEM Fuel Cells for Material Handling Equipment (MHE) applications Background 5-year program to provide feedback to DOE on evaluating fuel cell systems for stationary and emerging markets by developing independent models and cost estimates * Applications - Primary (including CHP) power, backup power, APU, and material handling * Fuel Cell Types - 80°C PEM, 180°C PEM, SOFC technologies

367

On behalf of the United States Council for Automotive ...  

Science Conference Proceedings (OSTI)

... DOE), Tesla Motors, five energy companies and ... suggests any and all of the above would be ... Would planning grants provide sufficient incentive for ...

2011-12-07T23:59:59.000Z

368

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

history of home refueling for automobiles also includes compressed natural gas (CNG) vehicles, battery

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

369

2173333115 Modeling of an Automotive Air Conditioning Compressor  

E-Print Network (OSTI)

Center was founded in 1988 with a grant from the estate of Richard W. Kritzer, the founder of Peerless of America Inc. A State of Illinois Technology Challenge Grant helped build the laboratory facilities. The ACRC receives continuing support from the Richard W. Kritzer Endowment and the National Science Foundation. Thefollowing organizations have also become sponsors of the Center. Acustar Division of Chrysler

J. H. Darr; R. R. Crawford; Air Conditioning; R. R. Crawford; Principal Investigator; The Air Conditioning; Joseph Hale Darr

1992-01-01T23:59:59.000Z

370

A mixed-signal embedded platform for automotive sensor conditioning  

Science Conference Proceedings (OSTI)

A mixed-signal embedded system called Intelligent Sensor InterFace (ISIF) suited to fast identify, trim, and verify an architecture to interface a given sensor is presented. This system has been developed according to a platform-based design approach, ...

Emilio Volpi; Luca Fanucci; Adolfo Giambastiani; Alessandro Rocchi; Francesco D'Ascoli; Marco Tonarelli; Massimiliano Melani; Corrado Marino

2010-01-01T23:59:59.000Z

371

Lightweight Aluminum/Nano composites for Automotive Drive Train Applications  

Science Conference Proceedings (OSTI)

During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

372

Development of ICME Tools for the Prediction of Automotive ...  

Science Conference Proceedings (OSTI)

First Principles Modeling of Shape Memory Alloy Magnetic Refrigeration Materials ... Different Generations of Gamma Prime Precipitates in a Commercial Nickel ...

373

Research and Development Programs in HTSE for Automotive ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Recent national R+D programs open up new possibilities for ... targeting synergic objectives and building up long-term, strategic partnership for joint .... Half-loop Model for Equilibrium Strain in Tensile and Compressive Layers on InP ... Nanothermites: Unconventional Nanomaterials with High Energy Output .

374

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

case of compressed natural gas (CNG) vehicles in Californiacompressed natural gas (CNG) vehicles, battery electricwas a push for the use of CNG vehicles in North America due

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

375

NREL: Vehicle Systems Analysis - Future Automotive Systems Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

rolling resistance) Powertrain components (engine, motor, battery, and auxiliary loads) Regenerative braking Energy management strategies Battery life estimates Cost estimates...

376

Oil-whirl instability in an automotive turbocharger.  

E-Print Network (OSTI)

??This thesis is concerned with a theoretical investigation into the nonlinear dynamic behaviour of a turbocharger. Specifically the instabilities due to oil-whirl are examined. These… (more)

Kamesh, P.

2011-01-01T23:59:59.000Z

377

FY2004 Progress Report for Automotive Propulsion Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

develop a carbon foam-based heat sink for cooling the power electronics of Ford's H2RV (hydro- gen hybrid research vehicle). * Produced designs that showed potential for foam...

378

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

impact on competition as there are a variety of competing technologies in the domestic SOFC market. This advance waiver of the Government's rights in inventions is subject to...

379

Fault-Tolerant Platforms for Automotive Safety-Critical Applications  

E-Print Network (OSTI)

, or spell checker program, please take the time to proofread your dissertation or thesis carefully. After .............................................................................................................................41 2.5 Electric Power Measurement of Frequency of Pango Responses on the Training Task (Exp. Group 1

Sangiovanni-Vincentelli, Alberto

380

FY2001 Progress Report for Automotive Lightweighting Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary lab-scale evaluation of textile fiber samples irradiated with either gamma or E-beam sources indicated a reduction in heat evolution and the initiation of...

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

convenience and security similar to home refueling. Theconvenience and security similar to home refueling. This canfreedom, and security of refueling at home to early vehicle

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

382

Automotive Geolocation Using Wireless Infrastructure in a GPS Denied Environment  

SciTech Connect

The article proposes a vehicle lane positioning technique based on joint frequency difference of arrival (FDOA) and time difference of arrival (TDOA) principle by measuring Doppler frequency, and derives possible solutions. The vehicle sensor measures the incoming RF signals from a reference emitter at time delayed locations and utilizes the characteristics of this downlink communications to accurately determine the frequency offset as well as time stamp of the packet. The article also addresses the limitations of the technique such as velocity vector estimations at measurement locations and offers possible solutions including Bayesian and triangulation estimation.

Vallance, Phillip J [ORNL; Howlader, Mostofa [ORNL

2011-01-01T23:59:59.000Z

383

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

connected to the home’s natural gas supply, and dispensingvehicles A compressor, natural gas supply, and dispensing

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

384

Advanced Gas Turbine (AGT) powertrain system development for automotive applications  

SciTech Connect

Topics covered include the AGT 101 engine test compressor design modification cold air turbine testing Mod 1 alloy turbine rotor fabrication combustion aspects regenerator development and thermal screening tests for ceramic materials. The foil gas bearings, rotor dynamics, and AGT controls and accessories are also considered.

1982-12-01T23:59:59.000Z

385

Next Generation Bipolar Plates for Automotive PEM Fuel Cells  

DOE Green Energy (OSTI)

The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL? resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into bipolar plates by GrafTech. Stack testing was done on a 10-cell full-sized stack under a simulated drive cycle protocol by Ballard Power Systems. Freeze-thaw performance was conducted by Ballard on a separate 5-cell stack and shown to be within specification. A third stack was assembled and shipped to Argonne National Laboratory for independent performance verification. Manufacturing cost estimate for the production of the new bipolar plate composite at current and high volume production scenarios was performed by Directed Technologies Inc. (DTI). The production cost estimates were consistent with previous DoE cost estimates performed by DTI for the DoE on metal plates. The final result of DTI’s analysis for the high volume manufacturing scenario ($6.85 /kW) came in slightly above the DoE target of $3 to $5/kW. This estimate was derived using a “Best Case Scenario” for many of the production process steps and raw material costs with projections to high volumes. Some of the process improvements assumed in this “Best Case Scenario” including high speed high impact forming and solvent-less resins, have not yet been implemented, but have a high probability of potential success.

Orest Adrianowycz; Julian Norley; David J. Stuart; David Flaherty; Ryan Wayne; Warren Williams; Roger Tietze; Yen-Loan H. Nguyen; Tom Zawodzinski; Patrick Pietrasz

2010-04-15T23:59:59.000Z

386

REQUEST BY UNITED STATES AUTOMOTIVE MATERIALS PARTNERSHIP (USAMP...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

needs of the domestic industry. These needs include improved fuel economy through vehicle weight reduction, improved reliability, reduced emissions, improved safety and...

387

INTELLIGENT ALTERNATOR CONTROL STRATEGY DEVELOPMENT FOR HYBRID AUTOMOTIVE APPLICATIONS.  

E-Print Network (OSTI)

??Stringent government mandates for the fuel economy and emissions of light-duty consumer vehicles have forced manufacturers to focus on improvements in these areas. Increased consumer… (more)

Phillips, Stephen Gordon

2008-01-01T23:59:59.000Z

388

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

Battery, Hybrid and Fuel Cell Electric Vehicle SymposiumC.A.R.B. , Battery Electric Vehicles Refueling, Energy UsePlug-in Hybrid Electric Vehicle Charging Infrastructure

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

389

Similarity Matching Techniques for Fault Diagnosis in Automotive Infotainment Electronics  

E-Print Network (OSTI)

Fault diagnosis has become a very important area of research during the last decade due to the advancement of mechanical and electrical systems in industries. The automobile is a crucial field where fault diagnosis is given a special attention. Due to the increasing complexity and newly added features in vehicles, a comprehensive study has to be performed in order to achieve an appropriate diagnosis model. A diagnosis system is capable of identifying the faults of a system by investigating the observable effects (or symptoms). The system categorizes the fault into a diagnosis class and identifies a probable cause based on the supplied fault symptoms. Fault categorization and identification are done using similarity matching techniques. The development of diagnosis classes is done by making use of previous experience, knowledge or information within an application area. The necessary information used may come from several sources of knowledge, such as from system analysis. In this paper similarity matching tec...

Kabir, Mashud

2009-01-01T23:59:59.000Z

390

New constructive algorithms for leather nesting in the automotive industry  

Science Conference Proceedings (OSTI)

In this paper, we address one of the hardest two-dimensional cutting stock problems that can be found in industry. The problem is called the Leather Nesting Problem, and it consists in finding the best layouts for a set of irregular shapes within large ... Keywords: Computational study, Constructive heuristics, Leather nesting problem

Cláudio Alves; Pedro Brás; José Valério de Carvalho; Telmo Pinto

2012-07-01T23:59:59.000Z

391

Three way conversion catalysts for automotive pollution abatement  

Science Conference Proceedings (OSTI)

The revisions to the Clean Air Act of 1990 and recent regulatory actions taken by the California Air Resources Board mandate the development of automobiles with much lower tailpipe emissions. For the original equipment manufacturers (OEM`s) to meet the target fleet emissions numbers for automobiles defined in California`s Low Emission Vehicle program, the OEM`s must qualify each model into one of the emissions categories defined in Table 1. The emissions are calculated using the Federal Test Procedure (FTP) protocol wherein a test vehicle fitted with a catalytic converter is driven on a chassis rolls over a tightly defined driving cycle. A key feature of the evaluation is that the FTP is conducted after the catalyst has dealt with 50,000 - 100,000 miles of raw engine exhaust. During the FTP, 50 - 90% of the total pollutants emitted to the atmosphere by the vehicle occurs immediately following the startup of the engine when the engine block and manifold am cold, and the catalytic converter has not reached high conversion efficiencies, and are known as {open_quotes}cold start{close_quotes} emissions. The stringency of the regulations becomes evident when to qualify for either Low Emission Vehicle (LEV) or Ultra Low Emission Vehicle (ULEV) status, the hydrocarbon engine out emissions of 2.0 g/mile, typical for a six cylinder vehicle, must be reduced over the entire FTP by 970/9 and 99%, respectively. These regulations spurred a variety of new technology thrusts aimed at attacking the cold start hydrocarbons including electrically heated catalysts, hydrocarbon traps, exhaust gas burners, and close coupled catalysts. This report describes the performance of palladium catalysts for the air pollution control of nitrogen oxides.

Burk, P.L.; Zhicheng Hu; Rabinowitz, H.N.; Tauster, S.J.; Chen, Shau-Lin F. [Engelhard Corp., Iselin, NJ (United States)

1996-12-31T23:59:59.000Z

392

Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems  

DOE Green Energy (OSTI)

The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

Nuvera Fuel Cells

2005-04-15T23:59:59.000Z

393

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumvehicles, and plug-in hybrid vehicles demonstrate itsSymposium plug-in hybrid vehicles (PHEV), and hydrogen fuel

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

394

Formability Prediction Of Aluminum Sheet In Automotive Applications  

Science Conference Proceedings (OSTI)

In the following paper, a full mechanical characterization of the AA6016 T4 aluminum alloy car body sheet DR100 is presented. A comprehensive experimental program was performed to identify and model the orthotopic elasto-plastic deformation behavior of the material and its fracture characteristics including criteria for localized necking, ductile fracture and shear fracture. The commercial software package MF GenYld + CrachFEM in combination with the explicit finite element code Ls-Dyna is used to validate the quality of the material model with experiments, namely, prediction of the FLD, deep drawing with a cross-shaped punch and finally, analysis of a simplified hemming process using a solid discretization of the problem. The focus is on the correct prediction of the limits of the material in such processes.

Leppin, Christian [Alcan Technology and Management, Bad. Bahnhofstr. 16, CH 8212 Neuhausen (Switzerland); Daniel, Dominique [Alcan - Centre de Recherches de Voreppe, Centr'Alp - BP 27 - 38341 Voreppe cedex (France); Shahani, Ravi [Alcan - Neuf-Brisach, ZIP Rhenane Nord - RD 52 - 68600 Biesheim (France); Gese, Helmut; Dell, Harry [Matfem Partnerschaft Dr. Gese and Oberhofer, Nederlingerstr. 1, 80638 Munich (Germany)

2007-05-17T23:59:59.000Z

395

Application of High Performance Computing for Automotive Design and Manufacturing  

DOE Green Energy (OSTI)

This project developed new computer simulation tools which can be used in DOE internal combustion engine and weapons simulation programs currently being developed. Entirely new massively parallel computer modeling codes for chemically reactive and incompressible fluid mechanics with interactive physics sub-models were developed. Chemically reactive and aerodynamic flows are central parts in many DOE systems. Advanced computer modeling codes with new chemistry and physics capabilities can be used on massively parallel computers to handle more complex problems associated with chemically reactive propulsion systems, energy efficiency, enhanced performance and durability, multi-fuel capability and reduced pollutant emissions. The work for this project is also relevant to the design, development and application of advanced user-friendly computer codes for new high-performance computing platforms for manufacturing and which will also impact and interact with the U.S.'s advanced communications program. Finite element method (FEM) formulations were developed that are directly usable in simulating rapid deformation resulting from collision, impact, projectiles, etc. This simulation capability is applicable to both DOE (e.g., surety and penetration) and DoD (e.g., armor) applications. The models of plate and shell composite structures were developed for simulation of glass continuous strand mat and braided composite in thermoset polymer matrix. The developed numerical tools based upon the fundamental mechanisms responsible for damage evolution in continuous-fiber organic-matrix composites. This class of materials is especially relevant because of their high strength to mass ratio, anisotropic behavior, and general application in most transportation and weapon delivery systems. The high-performance computational tools developed are generally applicable to a broad spectrum of materials with similar fiber structures.

Zacharia, T.

1999-04-01T23:59:59.000Z

396

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The work to be done will be the development of a robust oxygen sensor for use in direct injection light duty diesel engines. The program goal is to create a low cost, wide...

397

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

course of their work under Cooperative Agreement Number DE- FC04-01AL67634 entitled "Direct Injection Engine Sensors, NOx Sensor for Direct Injection Emission Control" with the...

398

REQUEST BY MERIDIAN AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contract DE-AC05-00OR22725. The scope of work of this project is for the utilization of Carbon Fiber Sheet Molding Compound (SMC) Materials for Class 8 truck hood structures. It...

399

Vehicle Technologies Office: FY 2004 Progress Report for Automotive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Next-Generation Programmable Preforming Process (PDF 385 KB) 5. Low-Cost Carbon Fiber 5a. Low-Cost Carbon Fibers from Renewable Resources (PDF 376 KB) 5b. Low-Cost...

400

California constitutes a significant automotive market -a place here  

E-Print Network (OSTI)

-147D UCLA Los Angeles, CA 90049 210.267.4892 info@smartgrid.ucla.edu U Speakers Scott Backhaus Staff

California at Los Angeles, University of

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Knowledge management practices in automotive safety attribute development  

E-Print Network (OSTI)

Organizations strive continuously to become efficient. Over the years many of them have tried to attain this through streamlining or reengineering their product development practices. 'While some of them succeed others are ...

Krishnaswami, Ram N. (Ram Narian)

2006-01-01T23:59:59.000Z

402

Lightweight Aluminum/Nano composites for Automotive Drive Train Applications  

SciTech Connect

During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

2012-12-14T23:59:59.000Z

403

NEW INSIGHTS ON THE USE OF ETHANOL IN AUTOMOTIVE ...  

Science Conference Proceedings (OSTI)

... Atmospheric ethanol has been receiving increased attention due to its use as a biofuel or fuel additive and because of the alcohol's potential impact ...

404

Automotive Powertrain Control: A Survey Jeffrey A. Cook, Jing Sun  

E-Print Network (OSTI)

. Typically, NOx reduction is accomplished by reducing combustion temperature through exhaust gas the HEGO sensor upstream of the catalyst. This control-point shift causes a dramatic reduction in NOx reduction require improved fuel economy. Customers demand performance and efficiency. All

Grizzle, Jessy W.

405

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

vehicles : the case of compressed natural gas (CNG) vehicleshome refueling for compressed natural gas vehicles, batteryalso includes compressed natural gas (CNG) vehicles, battery

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

406

A methodology to assess cost implications of automotive customization  

E-Print Network (OSTI)

This thesis focuses on determining the cost of customization for different components or groups of components of a car. It offers a methodology to estimate the manufacturing cost of a complex system such as a car. This ...

Fournier, Laëtitia

2005-01-01T23:59:59.000Z

407

FY 2002 Progress Report for Automotive Propulsion Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

need to improve the ohmic contacts to the anode and cathode layers. We used copper wool to provide contacts in this apparatus. However, copper wool easily oxidizes in contact...

408

Enhancement of automotive exhaust heat recovery by thermoelectric devices  

SciTech Connect

In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas) and a cold (coolant liquid) side rectangular ducts enclosing the thermoelectric elements has been built. Measurements of thermoelectric voltage output and flow and surface temperatures were acquired and analyzed to investigate the power generation and heat transfer properties of the apparatus. Effects of inserting aluminum wool packing material inside the hot side duct on augmentation of heat transfer from the gas stream to duct walls were studied. Data were collected for both the unpacked and packed cases to allow for detection of packing influence on flow and surface temperatures. Effects of gas and coolant inlet temperatures as well as gas flow rate on the thermoelectric power output were examined. The results indicate that thermoelectric power production is increased at higher gas inlet temperature or flow rate. However, thermoelectric power generation decreases with a higher coolant temperature as a consequence of the reduced hot-cold side temperature differential. For the hot-side duct, a large temperature gradient exists between the gas and solid surface temperature due to poor heat transfer through the gaseous medium. Adding the packing material inside the exhaust duct enhanced heat transfer and hence raised hot-side duct surface temperatures and thermoelectric power compared to the unpacked duct, particularly where the gas-to-surface temperature differential is highest. Therefore it is recommended that packing of exhaust duct becomes common practice in thermoelectric waste energy harvesting applications.

Ibrahim, Essam [Alabama A& M University, Normal; Szybist, James P [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

409

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with PACCAR and Volvo Truck North America to develop a 3-5kw Solid Oxide Fuel Cell (SOFC) auxiliary power unit capable of operating on diesel fuel for the heavy-duty trucking...

410

Experimental Validation of Models Used in Automotive Sheet Metal ...  

Science Conference Proceedings (OSTI)

Investigation of Interactions between Lithium Iron Phosphate Nanoparticles Using 6Li and 7Li Isotopes · Investigation of Nucleation Mechanisms for ...

411

Market Model Simulation: The Impact of Increased Automotive ...  

Science Conference Proceedings (OSTI)

In order to reduce energy consumption of gasoline, the U.S. Congress passed the ... from information in a Solomon Smith Barney report on Australian Magnesium, United States .... The market model was used to analyze three scenarios. First ...

412

Dissolution of Platinum from Scrap Automotive Catalytic Converters ...  

Science Conference Proceedings (OSTI)

A Study on the Stress Test of Truck Frames for Freight Trains · A Study on the ... Defect Energetics and Fission Product Transport in ZrC · Deformation Field and ...

413

Partial oxidation fuel reforming for automotive power systems.  

DOE Green Energy (OSTI)

For widespread use of fuel cells to power automobiles in the near future, it is necessary to convert gasoline or other transportation fuels to hydrogen on-board the vehicle. Partial oxidation reforming is particularly suited to this application as it eliminates the need for heat exchange at high temperatures. Such reformers offer rapid start and good dynamic performance. Lowering the temperature of the partial oxidation process, which requires the development of a suitable catalyst, can increase the reforming efficiency. Catalytic partial oxidation (or autothermal) reformers and non-catalytic partial oxidation reformers developed by various organizations are presently undergoing testing and demonstration. This paper summarizes the process chemistries as well as recent test data from several different reformers operating on gasoline, methanol, and other fuels.

Ahmed, S.; Chalk, S.; Krumpelt, M.; Kumar, R.; Milliken, J.

1999-09-07T23:59:59.000Z

414

Predictive Process Optimization for Fracture Ductility in Automotive ...  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

415

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

history of home refueling for automobiles also includes compressed natural gas (CNG) vehicles, battery electric vehicles (BEV), EVS24 International Battery, Hybrid and

Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

416

10 Questions for an Automotive Engineer: Thomas Wallner | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wallner and his colleagues have tailored to efficiently run on blends of gasoline, ethanol and butanol. | Courtesy of: Argonne National Laboratory. Argonne mechanical engineer...

417

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network (OSTI)

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

418

Trends and new developments in automotive fuel economy  

Science Conference Proceedings (OSTI)

The significant improvements in passenger car fuel economy that have been achieved up to the present time are identified, and the changes that have produced these improvements are examined in detail. Included are several comparisons of domestic versus foreign vehicles. The potential for further increases in fuel economy is then reviewed by examining the technological, marketing/economic, and other significant factors that will affect future fuel economy levels. Special attention is given to the effect that changing market mix has on corporate average fuel economy and to the future benefits that may be realized through the use of continuously variable transmissions, adiabatic diesel engines, and improved lubricants.

Simpson, B.H.

1985-01-01T23:59:59.000Z

419

Safety Criteria for Isolated Direct Current Systems in Electric Vehicles: Traction Motor and Control Circuitry Under Charging and Driving Conditions  

Science Conference Proceedings (OSTI)

This report explains some of the background of the requirements for isolated DC systems covered by the standard for personnel protection devices for electric vehicle charging circuits (UL2231). The report provides insight that is intended to help achieve better designs of electric vehicles and chargers.

1999-12-01T23:59:59.000Z

420

Paper FSRs and latex/fabric traction sensors: methods for the development of home-made touch sensors  

Science Conference Proceedings (OSTI)

This paper presents the development of novel "home-made" touch sensors using conductive pigments and various substrate materials. We show that it is possible to build one's own position, pressure and bend sensors with various electrical characteristics, ... Keywords: conductive pigments, interface design, piezoresistive technology, sensitive materials, touch sensors

Rodolphe Koehly; Denis Curtil; Marcelo M. Wanderley

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for

Olszewski, Mitchell [ORNL

2011-10-01T23:59:59.000Z

422

FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for

Olszewski, Mitchell [ORNL

2011-10-01T23:59:59.000Z

423

Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes speci

Olszewski, M.

2006-10-31T23:59:59.000Z

424

FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following

Olszewski, M

2005-11-22T23:59:59.000Z

425

FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program  

SciTech Connect

The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technolo

Olszewski, M

2005-11-22T23:59:59.000Z

426

Partnering Today: Technology Transfer Highlights  

... California, develops, manufactures, and markets fully-integrated genetic analysis systems for the clinical assessment, biothreat, and life sciences markets.

427

SG Review Draft  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Goals Dynamically optimize grid operations and resources Fully integrate demand response and consumer participation into grid resource planning and operations...

428

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS (DELPHI) FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DELPHI) FOR AN DELPHI) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS TO INVENTIONS MADE UNDER COOPERATIVE AGREEMENT NUMBER DE-FC04-01AL67634, DOE WAIVER NO. W(A) 01-041. The Petitioner, Delphi, a subcontractor to Electricorc, Inc. (Electricore), has requested a waiver of all domestic and foreign patent rights to inventions that it may conceive or first reduce to practice in the course of their work under Cooperative Agreement Number DE- FC04-01AL67634 entitled "Direct Injection Engine Sensors, NOx Sensor for Direct Injection Emission Control" with the U.S. Department of Energy (DOE). The work to be done will be the development of a robust NOx sensor for use in direct injection light duty diesel engines. The program goal is to create a low cost, wide range

429

Plenary lecture VIII: a survey of some automotive integrated-starter-generators and their control  

Science Conference Proceedings (OSTI)

Integrated starter generator (ISG) uses one machine to replace conventional starter and alternator onboard vehicles and provides greater electrical generation capacity and improves the fuel economy and emissions. The main requirements of the ISG control ...

Dorin Dumitru Lucache

2008-06-01T23:59:59.000Z

430

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

alternative energies: solar photovoltaic, wind and fuelof solar photovoltaic devices is the energy conversiongenerated electric energy by the photovoltaic devices. The

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

431

Strategies of developing road transport by controlling automotives' emissions to reduce local and global environment impacts  

Science Conference Proceedings (OSTI)

This research paper presents an overview of policies and methods of controlling the emissions caused by motor vehicles and road traffic to reduce local and global pollution. The main reason is the fact that individual mobility and modern freight transport ... Keywords: emission, engine, environment, modelling, noise, optimisation, pollution, traffic flows

Corneliu Cofaru

2011-02-01T23:59:59.000Z

432

Experiments and modelling of surge in small centrifugal compressor for automotive engines  

SciTech Connect

In this paper the surge phenomenon in small centrifugal compressors used for turbocharging internal combustion engines is analyzed. The experimental work was focused on the measurement of compressor behaviour within the surge zone by means of a specifically designed facility. The presented model is based on the introduction of a fluid inertia term that accounts for the non quasi steady effects and the use of a compressor map extended to the surge and negative flows zone obtained from experimental tests. The compressor model was implemented in a one-dimensional gas-dynamic model. The comparison of the modelled and measured evolution of instantaneous pressure during deep surge operation shows good agreement. Furthermore, the model is also able to predict the amplitude and frequency of pressure pulses when the compressor operates in surge with different outlet duct lengths. (author)

Galindo, J.; Serrano, J.R.; Climent, H.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia, P.O. Box 22012, E 46071 Valencia (Spain)

2008-01-15T23:59:59.000Z

433

On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines  

Science Conference Proceedings (OSTI)

Surge is becoming a limiting factor in the design of boosting systems of downsized diesel engines. Although standard compressor flowcharts are used for the selection of those machines for a given application, on-engine conditions widely differ from steady flow conditions, thus affecting compressor behaviour and consequently surge phenomenon. In this paper the effect of pulsating flow is investigated by means of a steady gas-stand that has been modified to produce engine-like pulsating flow. The effect of pressure pulses' amplitude and frequency on the compressor surge line location has been checked. Results show that pulsating flow in the 40-67 Hz range (corresponding to characteristic pulsation when boosting an internal combustion engine) increases surge margin. This increased margin is similar for all the tested frequencies but depends on pulsation amplitude. In a further step, a non-steady compressor model is used for modelling the tests, thus allowing a deeper analysis of the involved phenomena. Model results widely agree with experimental results. (author)

Galindo, J.; Climent, H.; Guardiola, C.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Camino de Vera s/n, E 46022, Valencia (Spain)

2009-11-15T23:59:59.000Z

434

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet)  

SciTech Connect

Repurposing Li-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications.

Not Available

2014-01-01T23:59:59.000Z

435

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application  

NLE Websites -- All DOE Office Websites (Extended Search)

presentation presentation does not contain any proprietary, confidential, or otherwise restricted information page 1 Overview * Base Period: - 100% complete * Manufacturing costs * Materials costs (particularly precious Timeline Barriers - Feb 17, 2006 to Feb. 16, 2008 * Option year 1 of 3: - 65% complete - Started Feb 16, 2008 metal catalysts) Characteristic Units 2008 2010 2015 Stack Cost $/kW e (net) - $25 $15 - $325K (2 year base period) - $182k (opt. yr. 1) - Contractor share: $0 * Funding for FY 2008 * Extensive interaction with Collaborations System Cost $/kW e (net) - $45 $30 * Funding for FY 2008 - $182k industry/researchers to solicit design & manufacturing metrics as input to cost analysis. page 2 Started Feb 16, 2008 Budget * Total project funding DOE Cost Targets

436

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS, LLC (DELPHI) FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SYSTEMS, LLC (DELPHI) FOR AN ADVANCE SYSTEMS, LLC (DELPHI) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE AWARD NO. DE-EE0005342; W(A) 2011-064 DELPHI has requested a waiver of domestic and foreign patent rights of the United States of America in all subject inventions arising from its pm1icipation under the above referenced cooperative agreement entitled "Cascaded Micro Inverter System for Reduced Costs." ·1 he cooperative agreement was made under the Solar Energy Grid Integration Systems- Adv

437

A Fuzzy Diagnostic Model and Its Application in Automotive Engineering Diagnosis  

Science Conference Proceedings (OSTI)

This paper describes a fuzzy diagnostic model that contains a fast fuzzy rule generation algorithm and a priority rule based inference engine. The fuzzy diagnostic model has been implemented in a fuzzy diagnostic system for the End-of-Line test at ... Keywords: fault diagnosis, fuzzy logic, machine learning

Yi Lu; Tie Qi Chen; Brennan Hamilton

1998-11-01T23:59:59.000Z

438

WABCO Automotive UK Ltd is part of American Standard Companies Inc. One  

E-Print Network (OSTI)

and passenger car industry. The company entered into this KTP research scheme for long-term benefits to sales by developing piezo ceramic expertise that did not exist within the company. ABOUT THE PROJECT Three prototypes AND THE PHYSICAL SCIENCES. The Company FAST FACTS Prototype development of piezo ceramic actuated valve to control

Berzins, M.

439

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

fall in between. The clean energy incentives provided by theafter incentives, is the most economical clean energy source

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

440

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

where W: actual output of the solar power plant, in kw ?:actual output of the 1 Mw solar power plant based on the GEthe actual output of the solar power plant corresponds to

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications  

DOE Green Energy (OSTI)

Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90[degree] shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45[degree] angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

McMurtry, C.H.; Ten Eyck, M.O.

1992-10-01T23:59:59.000Z

442

Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications  

DOE Green Energy (OSTI)

Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90{degree} shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45{degree} angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

McMurtry, C.H.; Ten Eyck, M.O.

1992-10-01T23:59:59.000Z

443

Running out of steam. Part III. Development blues. [Alternatives to automotive internal combustion engines  

SciTech Connect

The history is given of systems that have been looked upon alternately as either strong competitors or engineering curiosities in the revived search to replace the Otto-cycle power plant with a cleaner, more efficient, and equally reliable passenger car engine. These recent efforts are largely attempts to polish up old technologies that were around long before a single model-T rolled off Henry Ford's first assembly line. The first steam vehicle, for example, hit the road more than 200 years ago and over the years has undergone considerable refinement. But, in spite of this long history and with the exception of short bursts of enthusiasm, the development of a steam-powered passenger car has never been high on the automobile industry's list of priorities. Some clues are given as to why this is true and why a number of ''think tank'' reports published over the past few years on the future role of steam-driven cars have ranged from mildly optimistic to forthrightly pessimistic. Electric vehicles have had a somewhat parallel history. They were early competitors with the Otto engine, but, unlike the steam cars, they have never completely disappeared. Indeed, for some special uses, they have outperformed all varieties of internal combustion engines (I.C.E.). Further inroads into the Otto-cycle car market, however, depend upon improved car design and the advancement of battery technology, an area of research that has been painfully slow in yielding results. Were it not for the wide public interest in environmental and resource issues that has been translated into new laws dealing with air pollution and resource management, the auto industry would have been content to sit on its I.C.E. for some time to come.

Reitze, A.W. Jr.

1977-01-01T23:59:59.000Z

444

Fuel-flexible partial oxidation reforming of hydrocarbons for automotive applications.  

DOE Green Energy (OSTI)

Micro-reactor tests indicate that our partial oxidation catalyst is fuel-flexible and can reform conventional (gasoline and diesel) and alternative (ethanol, methanol, natural gas) fuels to hydrogen rich product gases with high hydrogen selectivity. Alcohols are reformed at lower temperatures (< 600 C) while alkanes and unsaturated hydrocarbons require slightly higher temperatures. Cyclic hydrocarbons and aromatics have also been reformed at relatively low temperatures, however, a different mechanism appears to be responsible for their reforming. Complex fuels like gasoline and diesel, which are mixtures of a broad range of hydrocarbons, require temperatures of > 700 C for maximum hydrogen production.

Ahmed, S.; Carter, J. D.; Kopasz, J. P.; Krumpelt, M.; Wilkenhoener, R.

1999-06-07T23:59:59.000Z

445

Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine  

E-Print Network (OSTI)

materials for lithium ion battery Prof. Hua Kun Liu, Dr. Zaiping Guo Mrs. Nurul Idris Nanomaterials for lithium rechargeable batteries Prof. Hua Kun Liu, Dr. Jiazhao Wang Mr. Mohammad Ismail Hydrogen storage. Rong Zeng Mr. Hao Liu Nanostructured materials for lithium ion batteries Dr. Guoxiu Wang, Prof. Chao

Levi, Anthony F. J.

446

High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage  

SciTech Connect

HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

None

2011-11-15T23:59:59.000Z

447

Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications  

Science Conference Proceedings (OSTI)

Innovations in the area of vehicle electronics, sensing technologies and wireless communication (including both vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2X)) are resulting in a rapid change of the driving context. Over the last few years, a ...

Jacques Terken

2013-10-01T23:59:59.000Z

448

Safety-Driven Design for Software-Intensive Aerospace and Automotive Systems  

E-Print Network (OSTI)

Too often, systems are designed and then an attempt is made to add safety features or to prove that the design is safe after the fact. Safety has to be designed into a system from the start-it cannot be effectively added ...

Stringfellow, Margaret V.

449

Experimental hydrogen-fueled automotive engine design data-base project. Volume 2. Main technical report  

DOE Green Energy (OSTI)

Operational performance and emissions characteristics of hydrogen-fueled engines are reviewed. The project activities are reviewed including descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained. Analyses of other hydrogen engine project data are also presented and compared with the results of the present effort.

Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

1983-05-01T23:59:59.000Z

450

The Market Acceptance of Advanced Automotive Technologies (MA3T) Model  

E-Print Network (OSTI)

to be learned about how consumers will evaluate novel vehicle technologies, such as plug-in hybrid electric vehicles (PHEV), extended-range electric vehicle (EREV), battery electric vehicles (BEV) and fuel cell-- passenger cars and light-duty trucks. MA3 T considers the U.S. household users of light- duty vehicles (LDV

451

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

Energy) (2006). “Fossil energy. ” http://fossil.energy.gov/.through reduction of fossil fuel energy consumption, andWith 85% of U.S. energy supplied by fossil fuels (US DOE

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

452

Managing the implementation of automotive emission control technologies using systems engineering principles  

E-Print Network (OSTI)

In the 1940s and 1950s poor air quality in major metropolitan areas throughout the United States started to negatively influence the health of citizens throughout the country. After numerous studies the government concluded ...

Penney, John, 1974-

2004-01-01T23:59:59.000Z

453

Exploring an open-loop RFID implementation in the automotive industry  

Science Conference Proceedings (OSTI)

This paper explores and describes the impact of radio frequency identification (RFID) technology on inventory accuracy within a production and assembly plant, and proposes a model for assessing the impact of the technology on inventory accuracy. The ...

Daniel Hellström; Mathias Wiberg

2009-09-01T23:59:59.000Z

454

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

E-Print Network (OSTI)

(TIAX) report summarizes the results of this assessment. These results should be considered only- ethylcarbazole (C14H19N) and validated the model against APCI's test data. We also developed a model for the on at a temperature (>200o C) higher than the temperature at which the waste heat is available. Radiator Figure 1

455

The Market Acceptance of Advanced Automotive Technologies (MA3T) Model  

E-Print Network (OSTI)

on campus pedestrian walkways. 3. DEFINITIONS Motorized vehicle: Electric or gas powered cars, trucks.15 AREA: Risk Management SUBJECT: Pedestrian Safety May 25, 2011 Page 1 of 3 1. PURPOSE This document between motorized vehicles and pedestrians. This policy applies to all System employees, students

456

AUTOMOTIVE POWERTRAIN CONTROL A SURVEY Jeffrey A. Cook, Jing Sun, Julia H. Buckland, Ilya V. Kolmanovsky,  

E-Print Network (OSTI)

all necessary requirements for disconnecting means. Section 690-14(C) is added in a separate proposal lead-acid battery (VRLA) or any other types of sealed batteries that may require steel cases for proper reasons. This proposal does not apply to any type of valve regulated lead-acid battery (VRLA) or any other

Peng, Huei

457

Market Concepts, Competing Technologies and Cost Challenges for Automotive and Stationary Applications  

E-Print Network (OSTI)

2000). 13. Allied Business Intelligence, ‘Stationary Fuelthis market. Allied Business Intelligence has forecast that

Lipman, Todd; Sperling, Daniel

2003-01-01T23:59:59.000Z

458

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

A new metric for energy technology. ” Proc. of 15ththree alternative energy technologies, including solarselect the alternative energy technologies mainly based on

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

459

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

natural gas supplied to the fuel cell power plant is only involved in a chemical oxidation process, instead of burning, in the electricity generation

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

460

Unknown input estimation for a class of nonlinear systems and its application to automotive engine controls  

Science Conference Proceedings (OSTI)

System unmodeled dynamics and uncertainties are common issues in the design of model based controllers and observers. One way to deal with this is to design an unknown input observer to estimate those unknown variables. However it is not feasible, if ...

Chia-Shang Liu; Pingan He

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fully-integrated automotive traction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

in urban areas like the Detroit region. In such a situation,energy supply based on in Detroit, MI, region in the Unitedsupply figures for the Detroit region where much of the U.S.

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

462

Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)  

DOE Green Energy (OSTI)

Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVs under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.

Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

2011-11-01T23:59:59.000Z

463

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

MANUFACTURING THROUGH AN ALTERNATIVE ENERGY SUPPLY Chris Y.Footprint, Alternative Energy, Cost of Ownership ABSTRACTmanufacturing is to use alternative energies to partially

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

464

Analysis, Simulation and Prediction of Cosmetic Defects on Automotive External Panel  

Science Conference Proceedings (OSTI)

The first feeling of quality for a vehicle is linked to its perfect appearance. This has a major impact on the reputation of a car manufacturer. Cosmetic defects are thus more and more taken into account in the process design. Qualifying a part as good or bad from the cosmetic point of view is mainly subjective: the part aspect is considered acceptable if no defect is visible on the vehicle by the final customer. Cosmetic defects that appear during sheet metal forming are checked by visual inspection in light inspection rooms

A. Le Port; S. Thuillier; C. Borot; J. Charbonneaux; Aethra Automotive Systems

2011-01-01T23:59:59.000Z

465

Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications  

DOE Green Energy (OSTI)

In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

McTaggart, Paul

2004-12-31T23:59:59.000Z

466

New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink  

DOE Green Energy (OSTI)

Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.

Kiss, T.; Chaney, L.; Meyer, J.

2013-07-01T23:59:59.000Z

467

HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS  

DOE Green Energy (OSTI)

Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

2003-08-24T23:59:59.000Z

468

Ethanol production for automotive fuel usage. Final technical report, July 1979-August 1980  

DOE Green Energy (OSTI)

Production of ethanol from potatoes, sugar beets, and wheat using geothermal resources in the Raft River area of Idaho was evaluated. The south-central region of Idaho produces approximately 18 million bushels of wheat, 1.3 million tons of sugar beets, and 27 million cwt potatoes annually. A 20-million-gallon-per-year ethanol facility has been selected as the largest scale plant that can be supported with the current agricultural resources. The conceptual plant was designed to operate on each of these three feedstocks for a portion of the year, but could operate year-round on any of them. The processing facility uses conventional alcohol technology and uses geothermal energy for all process heating. There are three feedstock preparation sections, although the liquefaction and saccharification steps for potatoes and wheat involve common equipment. The fermentation, distillation, and by-product handling sections are common to all three feedstocks. Maximum geothermal fluid requirements are approximately 6000 gpm. It is anticipated that this flow will be supplied by nine production wells located on private and BLM lands in the Raft River KGRA. The geothermal fluid will be flashed from 280/sup 0/F in three stages to supply process steam at 250/sup 0/F, 225/sup 0/F, and 205/sup 0/F for various process needs. Steam condensate plus liquid remaining after the third flash will be returned to receiving strata through six injection wells.

Stenzel, R.A.; Yu, J.; Lindemuth, T.E.; Soo-Hoo, R.; May, S.C.; Yim, Y.J.; Houle, E.H.

1980-08-01T23:59:59.000Z

469

Pre-CAD-Frication: Re-establishing Automotive Paradigms to a Manufactured Architecture.  

E-Print Network (OSTI)

??Through the late Twentieth Century, leading vehicle manufacturers increasingly eschewed the drive from mass production and instead focused upon lean production, where output has been… (more)

Anderson, Shaun Anthony

2010-01-01T23:59:59.000Z

470

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

fuel cell power plants use natural gas as their fuel tothe natural gas supplied to the fuel cell power plant is

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

471

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

energy supply pattern. On the other hand, wind electricity, with an ownership costcost. ENVIRONMENTAL SAVINGS ANALYSIS Solar, wind, and fuel cells are all considered as clean and renewable energy

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

472

Driving change : evaluating strategies to control automotive energy demand growth in China  

E-Print Network (OSTI)

As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with these vehicles have kept pace. This thesis presents a model to project ...

Bonde Åkerlind, Ingrid Gudrun

2013-01-01T23:59:59.000Z

473

The impact of government policies on industrial evolution : the case of China's automotive industry  

E-Print Network (OSTI)

Governmental industrial policies have great influence on industrial performances and development trajectories. The infant industry theory has been the dominating theoretical foundation of the industrial policies in developing ...

Luo, Jianxi

2006-01-01T23:59:59.000Z

474

Theoretical analysis of the steam pressure exchange ejector for an automotive air conditioning application.  

E-Print Network (OSTI)

?? The project conducted at The George Washington University is a computer simulation and theoretical analysis of the steam pressure exchange ejector air conditioning system… (more)

Gould, David

2009-01-01T23:59:59.000Z

475

ESTIMATING THE IMPACT OF DEMOGRAPHICS AND AUTOMOTIVE TECHNOLOGIES ON GREENHOUSE GAS  

E-Print Network (OSTI)

). The Toyota Prius has a reported EPA fuel consumption rate of #12;R. McNally and B. Hellinga 2 4.5L/100km (Toyota Prius and Honda Insignt) are lower than similarly sized cars, powered by conventional gasoline

Hellinga, Bruce

476

A comprehensive approach to complex system product development : operations management tools applied to automotive design  

E-Print Network (OSTI)

The research is based on observations made over a two-year period with the Closures Systems Integrators or CSIs (supervisory engineers who coordinate attribute balance and system decisions for conflicting door attributes) ...

Noor, Muhammad Jehanzeb, 1982-

2007-01-01T23:59:59.000Z

477

Working towards a future on alternative fuels : the role of the automotive industry  

E-Print Network (OSTI)

Complementarity of vehicles and fuels has posed significant barrier for increasing the use of alternative fuels in place of traditional ones. An initial positive number of either alternative fuel vehicle (AFV) users or ...

Chen, Cuicui

2012-01-01T23:59:59.000Z

478