Powered by Deep Web Technologies
Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS  

SciTech Connect (OSTI)

Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

2003-05-07T23:59:59.000Z

2

Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System  

SciTech Connect (OSTI)

This document presents and discusses results from Cooperative Agreement DE-FC26-06NT42778, 'Full-scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System,' which was conducted over the time-period July 24, 2006 through June 30, 2010. The objective of the project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in pulverized-coal-fired flue gas. Oxidized mercury is removed downstream in wet flue gas desulfurization (FGD) absorbers and collected with the byproducts from the FGD system. The project was co-funded by EPRI, the Lower Colorado River Authority (LCRA), who also provided the host site, Great River Energy, Johnson Matthey, Southern Company, Salt River Project (SRP), the Tennessee Valley Authority (TVA), NRG Energy, Ontario Power and Westar. URS Group was the prime contractor and also provided cofunding. The scope of this project included installing and testing a gold-based catalyst upstream of one full-scale wet FGD absorber module (about 200-MW scale) at LCRA's Fayette Power Project (FPP) Unit 3, which fires Powder River Basin coal. Installation of the catalyst involved modifying the ductwork upstream of one of three wet FGD absorbers on Unit 3, Absorber C. The FGD system uses limestone reagent, operates with forced sulfite oxidation, and normally runs with two FGD modules in service and one spare. The full-scale catalyst test was planned for 24 months to provide catalyst life data. Over the test period, data were collected on catalyst pressure drop, elemental mercury oxidation across the catalyst module, and mercury capture by the downstream wet FGD absorber. The demonstration period began on May 6, 2008 with plans for the catalyst to remain in service until May 5, 2010. However, because of continual increases in pressure drop across the catalyst and concerns that further increases would adversely affect Unit 3 operations, LCRA decided to end the demonstration early, during a planned unit outage. On October 2, 2009, Unit 3 was taken out of service for a fall outage and the catalyst upstream of Absorber C was removed. This ended the demonstration after approximately 17 months of the planned 24 months of operation. This report discusses reasons for the pressure drop increase and potential measures to mitigate such problems in any future application of this technology. Mercury oxidation and capture measurements were made on Unit 3 four times during the 17-month demonstration. Measurements were performed across the catalyst and Absorber C and 'baseline' measurements were performed across Absorber A or B, which did not have a catalyst upstream. Results are presented in the report from all four sets of measurements during the demonstration period. These results include elemental mercury oxidation across the catalyst, mercury capture across Absorber C downstream of the catalyst, baseline mercury capture across Absorber A or B, and mercury re-emissions across both absorbers in service. Also presented in the report are estimates of the average mercury control performance of the oxidation catalyst technology over the 17-month demonstration period and the resulting mercury control costs.

Gary Blythe; Jennifer Paradis

2010-06-30T23:59:59.000Z

3

Full Scale Field Trial of the Low Temperature Mercury Capture Process  

SciTech Connect (OSTI)

CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230 °F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energyâ??s R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230 °F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

James Locke; Richard Winschel

2011-09-30T23:59:59.000Z

4

Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants  

E-Print Network [OSTI]

presents a simulation model of a wind power plant based on a MW-level variable speed wind turbineAncillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants Weihao Hu with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory

Chen, Zhe

5

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect (OSTI)

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

6

Aeration control in a full-scale activated sludge wastewater treatment plant: impact on performances, energy consumption  

E-Print Network [OSTI]

for stratospheric ozone [1]. In biological wastewater treatment, microbial processes such as hydroxylamine oxidationAeration control in a full-scale activated sludge wastewater treatment plant: impact strategy on energy consumption and nitrous oxide (N2O) emission in a full-scale wastewater treatment plant

Paris-Sud XI, Université de

7

Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

2005-03-30T23:59:59.000Z

8

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-05-01T23:59:59.000Z

9

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-08-01T23:59:59.000Z

10

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-08-01T23:59:59.000Z

11

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-12-01T23:59:59.000Z

12

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

SciTech Connect (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5 acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-04-01T23:59:59.000Z

13

Mercury Effects, Sources and Control Measures  

E-Print Network [OSTI]

Mercury Effects, Sources and Control Measures Prepared by Alan B. Jones, Brooks Rand, Ltd., Seattle ................................................................................................................................1 MERCURY SOURCES....................................................................................................................................................................................8 Mercury dumping from naval vessels

14

Mercury control in 2009  

SciTech Connect (OSTI)

Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbon facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.

Sjostrom, S.; Durham, M.; Bustard, J.; Martin, C. [ADA Environmental Solutions, Littleton, CO (United States)

2009-07-15T23:59:59.000Z

15

Leaching of Phase II Mercury Control Technology By-Products  

SciTech Connect (OSTI)

The U.S. EPA has issued a final regulation for control of mercury from coal-fired power plants. An NETL research, development and demonstration program under DOE/Fossil Energy Innovations for Existing Plants is directed toward the improvement of the performance and economics of mercury control from coal-fired plants. The current Phase II of the RD&D program emphasizes the evaluation of performance and cost of control technologies through slip-stream and full scale field testing while continuing the development of novel concepts. One of the concerns of the NETL program is the fate of the captured flue gas mercury which is transferred to the condensed phase by-product stream. These adulterated by-products, both ashes and FGD material, represent the greatest challenge to the DOE goal of increased utilization of by-products. The degree of stability of capture by-products and their potential for release of mercury can have a large economic impact on material sales or the approach to disposal. One of the considerations for mercury control technology is the potential trade-off between effective but temporary mercury capture and less effective but more permanent sequestration. As part of a greater characterization effort of Phase II facility baseline and control technology sample pairs, NETL in-house laboratories have performed aqueous leaching procedures on a select subset of the available sample pairs. This report describes batch leaching results for mercury, arsenic, and selenium.

Hesbach, P.A.; Kachur, E.K.

2007-07-01T23:59:59.000Z

16

Continuous Vocalization Control Of A Full-Scale Assistive Robot Mike Chung*, Eric Rombokas*, Qi An, Yoky Matsuoka and Jeff Bilmes  

E-Print Network [OSTI]

Continuous Vocalization Control Of A Full-Scale Assistive Robot Mike Chung*, Eric Rombokas*, Qi An several approaches to help these individuals. There are robots that semi-autonomously assist the users). Stanford's DeVAR is a desktop-mounted robot that utilizes ASR to assist users' daily activities including

Noble, William Stafford

17

Discussion on 'characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption' by Lu et al.  

SciTech Connect (OSTI)

Mercury capture by coal-combustion fly ash is a function of the amount of Hg in the feed coal, the amount of carbon in the fly ash, the type of carbon in the fly ash (including variables introduced by the rank of the feed coal), and the flue gas temperature at the point of ash collection. In their discussion of fly ash and Hg adsorption, Lu et al. (Energy Fuels 2007, 21, 2112-2120) had some fundamental flaws in their techniques, which, in turn, impact the validity of analyzed parameters. First, they used mechanical sieving to segregate fly ash size fractions. Mechanical sieving does not produce representative size fractions, particularly for the finest sizes. If the study samples were not obtained correctly, the subsequent analyses of fly ash carbon and Hg cannot accurately represent the size fractions. In the analysis of carbon forms, it is not possible to accurately determine the forms with scanning electron microscopy. The complexity of the whole particles is overlooked when just examining the outer particle surface. Examination of elements such as Hg, present in very trace quantities in most fly ashes, requires careful attention to the analytical techniques. 36 refs., 3 figs., 1 tab.

James C. Hower; Bruno Valentim; Irena J. Kostova; Kevin R. Henke [University of Kentucky Center for Applied Energy Research, Lexington, KY (United States)

2008-03-15T23:59:59.000Z

18

Low-Cost Options for Moderate Levels of Mercury Control  

SciTech Connect (OSTI)

On March 15, 2005, EPA issued the Clean Air Mercury Rule, requiring phased-in reductions of mercury emissions from electric power generators. ADA-ES, Inc., with support from DOE/NETL and industry partners, is conducting evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. DOE/NETL targets for total mercury removal are {ge}55% (lignite), {ge}65% (subbituminous), and {ge}80% (bituminous). Based on work done to date at various scales, meeting the removal targets appears feasible. However, work needs to progress to more thoroughly document and test these promising technologies at full scale. This is the final site report for tests conducted at MidAmerican's Louisa Station, one of three sites evaluated in this DOE/NETL program. The other two sites in the program are MidAmerican's Council Bluff Station and Entergy's Independence Station. MidAmerican's Louisa Station burns Powder River Basin (PRB) coal and employs hot-side electrostatic precipitators with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal.

Sharon Sjostrom

2006-03-31T23:59:59.000Z

19

Amended Silicated for Mercury Control  

SciTech Connect (OSTI)

Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly ash is sold as a by-product.

James Butz; Thomas Broderick; Craig Turchi

2006-12-31T23:59:59.000Z

20

Activated carbon injection - a mercury control success story  

SciTech Connect (OSTI)

Almost 100 full-scale activated carbon injection (ACI) systems have been ordered by US electric utilities. These systems have the potential to remove over 90% of the mercury in flue, at a cost below $10,000 per pound of mercury removal. Field trials of ACI systems arm outlined. 1 fig.

NONE

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

INVESTIGATION AND DEMONSTRATION OF DRY CARBON-BASED SORBENT INJECTION FOR MERCURY CONTROL  

SciTech Connect (OSTI)

This quarterly report describes the activities that have taken place during the first full quarter of the Phase II project ''Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control''. Modifications were completed and sampling began at the 600 acfm pilot-scale particulate control module (PCM) located at the Comanche Station in Pueblo, CO. The PCM was configured as an electrostatic precipitator for these tests. A Perkin-Elmer flue gas mercury analyzer was installed on-site and operated. Initial test results using both manual sampling methodology and the mercury analyzer are presented herein. Preparations were made during this period for full-scale mercury testing of several PSCo units. A site visit was made to Arapahoe and Cherokee Generating Stations to determine sample locations and to develop a test plan.

Terry Hunt; Mark Fox; Lillian Stan; Sheila Haythornthwaite; Justin Smith; Jason Ruhl

1998-10-01T23:59:59.000Z

22

Low-Cost Options for Moderate Levels of Mercury Control  

SciTech Connect (OSTI)

This is the final technical report for a three-site project that is part of an overall program funded by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) and industry partners to obtain the necessary information to assess the feasibility and costs of controlling mercury from coal-fired utility plants. This report summarizes results from tests conducted at MidAmerican's Louisa Generating Station and Entergy's Independence Steam Electric Station (ISES) and sorbent screening at MidAmerican's Council Bluffs Energy Center (CBEC) (subsequently renamed Walter Scott Energy Center (WSEC)). Detailed results for Independence and Louisa are presented in the respective Topical Reports. As no full-scale testing was conducted at CBEC, screening updates were provided in the quarterly updates to DOE. ADA-ES, Inc., with support from DOE/NETL, EPRI, and other industry partners, has conducted evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. An overview of each plant configuration is presented: (1) MidAmerican's Louisa Generating Station burns Powder River Basin (PRB) coal in its 700-MW Unit 1 and employs hot-side electrostatic precipitators (ESPs) with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal. (2) MidAmerican's Council Bluffs Energy Center typically burns PRB coal in its 88-MW Unit 2. It employs a hot-side ESP for particulate control. Solid sorbents were screened for hot-side injection. (3) Entergy's Independence Steam Electric Station typically burns PRB coal in its 880-MW Unit 2. Various sorbent injection tests were conducted on 1/8 to 1/32 of the flue gas stream either within or in front of one of four ESP boxes (SCA = 542 ft{sup 2}/kacfm), specifically ESP B. Initial mercury control evaluations indicated that although significant mercury control could be achieved by using the TOXECON II{trademark} design, the sorbent concentration required was higher than expected, possibly due to poor sorbent distribution. Subsequently, the original injection grid design was modeled and the results revealed that the sorbent distribution pattern was determined by the grid design, fluctuations in flue gas flow rates, and the structure of the ESP box. To improve sorbent distribution, the injection grid and delivery system were redesigned and the effectiveness of the redesigned system was evaluated. This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase II project with the goal of developing mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. Results from testing at Independence indicate that the DOE goal was successfully achieved. Further improvements in the process are recommended, however. Results from testing at Louisa indicate that the DOE goal was not achievable using the tested high-temperature sorbent. Sorbent screening at Council Bluffs also indicated that traditional solid sorbents may not achieve significant mercury removal in hot-side applications.

Sharon Sjostrom

2008-02-09T23:59:59.000Z

23

Apparatus for control of mercury  

DOE Patents [OSTI]

A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH)

2001-01-01T23:59:59.000Z

24

MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control. An additional task was included in this project to evaluate mercury oxidation upstream of a dry scrubber by using mercury oxidants. This project demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries.

Ye Zhuang; Stanley J. Miller

2005-05-01T23:59:59.000Z

25

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

26

Mercury emissions control technologies for mixed waste thermal treatment  

SciTech Connect (OSTI)

EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates.

Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Roberts, D.; Broderick, T. [ADA Technologies, Englewood, CO (United States)

1997-12-31T23:59:59.000Z

27

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect (OSTI)

ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

Sharon Sjostrom

2008-06-30T23:59:59.000Z

28

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

Sharon Sjostrom

2006-04-30T23:59:59.000Z

29

Mercury Specie and Multi-Pollutant Control  

SciTech Connect (OSTI)

This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and representing the final results compared to project goals. NeuCo shouldered 61% of the total project cost; while DOE shouldered the remaining 39%. The DOE requires repayment of its investment. This repayment will result from commercial sales of the products developed under the project. NRG's Limestone power plant (formerly owned by Texas Genco) contributed the host site, human resources, and engineering support to ensure the project's success.

Rob James; Virgil Joffrion; John McDermott; Steve Piche

2010-05-31T23:59:59.000Z

30

Long-Term Column Leaching of Phase II Mercury Control Technology By-Products  

SciTech Connect (OSTI)

An NETL research, development and demonstration program under DOE/Fossil Energy Innovations for Existing Plants is directed toward the improvement of the performance and economics of mercury control from coal-fired plants. The current Phase II of the RD&D program emphasizes the evaluation of performance and cost of control technologies through slip-stream and full scale field testing while continuing the development of novel concepts. One of the concerns of the NETL program is the fate of the captured flue gas mercury which is transferred to the condensed phase by-product stream. The stability of mercury and any co-captured elements in the by-products could have a large economic impact if it reduced by-product sales or increasing their disposal costs. As part of a greater characterization effort of Phase II facility baseline and control technology sample pairs, NETL in-house laboratories have performed continuous leaching of a select subset of the available sample pairs using four leachants: water (pH=5.7), dilute sulfuric acid (pH=1.2), dilute acetic acid (pH=2.9), and sodium carbonate (pH=11.1). This report describes results obtained for mercury, arsenic, and selenium during the 5-month leaching experiments.

Schroeder, K.T.; Cardone, C.R.; White, Fredrick; Rohar, P.C.; Kim, A.G

2007-07-01T23:59:59.000Z

31

Mercury control for coal-fired power plants  

SciTech Connect (OSTI)

On 15 March 2005 the US Environmental Protection Agency issued its Clean Air Mercury Rule (CAMP) to regulate mercury emissions from coal-fired power plants. EPRI is working with the US Department of Energy and the power industry to develop mercury control technologies needed to meet the final 2018 emission limits. Some improvements can be made by modifying existing SO{sub 2} or NOx control devices. Precombustion cleaning reduces mercury content of eastern coals by about one third. Adding a little halogen is another technology being researched - this promotes oxidation improving short-term mercury capture. EPRI is developing the TOXECON{trademark} technology to address a major problem of using sorbents to control mercury emissions: contamination of fly ash. 5 figs.

Haase, P.

2005-06-30T23:59:59.000Z

32

Alkaline sorbent injection for mercury control  

DOE Patents [OSTI]

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

33

Alkaline sorbent injection for mercury control  

DOE Patents [OSTI]

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

34

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Michael D. Durham

2003-05-01T23:59:59.000Z

35

Geochemical, Genetic, and Community Controls on Mercury  

SciTech Connect (OSTI)

The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

Wall, Judy D.

2014-11-10T23:59:59.000Z

36

Mercury Emission Control Technologies for PPL Montana-Colstrip Testing  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this technique at Colstrip is not seen. All the additives injected resulted in some reduction in mercury emissions. However, the target reduction of 55% was not achieved. The primary reason for the lower removal rates is because of the lower levels of mercury in the flue gas stream and the lower capture level of fine particles by the scrubbers (relative to that for larger particles). The reaction and interaction of the SEA materials is with the finer fraction of the fly ash, because the SEA materials are vaporized during the combustion or reaction process and condense on the surfaces of entrained particles or form very small particles. Mercury will have a tendency to react and interact with the finer fraction of entrained ash and sorbent as a result of the higher surface areas of the finer particles. The ability to capture the finer fraction of fly ash is the key to controlling mercury. Cost estimates for mercury removal based on the performance of each sorbent during this project are projected to be extremely high. When viewed on a dollar-per-pound-of-mercury removed basis activated carbon was projected to cost nearly $1.2 million per pound of mercury removed. This value is roughly six times the cost of other sorbent-enhancing agents, which were projected to be closer to $200,000 per pound of mercury removed.

John P. Kay; Michael L. Jones; Steven A. Benson

2007-04-01T23:59:59.000Z

37

Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD  

SciTech Connect (OSTI)

This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

Katherine Dombrowski

2009-12-31T23:59:59.000Z

38

MERCURY CONTROL WITH THE ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addresses Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team includes the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and is now marketed as the ADVANCED HYBRID{trademark} Filter by Gore. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The AHPC appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas-solid contactor. The objective of the three-task project is to demonstrate 90% total mercury control in the AHPC at a lower cost than current mercury control estimates. The approach includes bench-scale batch testing that ties the new work to previous results and links results with larger-scale pilot testing with real flue gas on a coal-fired combustion system, pilot-scale testing on a coal-fired combustion system with both a pulse-jet baghouse and an AHPC to prove or disprove the research hypotheses, and field demonstration pilot-scale testing at a utility power plant to prove scaleup and demonstrate longer-term mercury control. This project, if successful, will demonstrate at the pilot-scale level a technology that would provide a cost-effective technique to accomplish control of mercury emissions and, at the same time, greatly enhance fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution to a large segment of the U.S. utility industry as well as other industries requiring mercury control.

Stanley J. Miller; Ye Zhuang; Michelle R. Olderbak

2002-11-01T23:59:59.000Z

39

Investigation of modified speciation for enhanced control of mercury  

SciTech Connect (OSTI)

Mercury was identified as a hazardous air pollutant in Title 3 of the 1990 Clean Air Act Amendments. It has been singled out for particular scrutiny because of its behavior in the environment (bioaccumulation) and its potential for deleterious effects on humans and wildlife. After studying the sources of mercury in the environment, the US Environmental Protection Agency has concluded that coal-fired boilers generate a significant fraction of the total anthropogenic emissions. Therefore, the agency is currently considering whether to impose mercury control requirements on coal-fired boilers in the electric utility industry. However, the costs for potential control measures (such as sorbent injection) can be extremely high. Mercury removal with chloric acid solutions was tested. The presence of NO increased Hg removal. It appeared that both gas-gas and gas-liquids reactions were operating, with the gas-phase reactions involving NO becoming increasingly important as the solute concentration was raised. From these studies, it was concluded that even higher Hg{sup 0} removals could be obtained if more of the reagent was made available for reaction in the gas phase. For this reason (and also to simulate a more real-world duct-injection process) a new series of tests was initiated in which an ultrasonic atomizer was used to inject small droplets of the oxidizing solutions into a flowing gas stream containing Hg{sup 0} vapors and other typical flue-gas components. The results of those tests are described in this paper.

Livengood, C.D.; Mendelsohn, M.H.

1998-08-01T23:59:59.000Z

40

The control of mercury vapor using biotrickling filters Ligy Philip a,b,1  

E-Print Network [OSTI]

The control of mercury vapor using biotrickling filters Ligy Philip a,b,1 , Marc A. Deshusses b August 2007 Abstract The feasibility of using biotrickling filters for the removal of mercury vapor from. In particular, the biotrickling filters with sulfur oxidizing bacteria were able to remove 100% of mercury vapor

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Control of mercury methylation in wetlands through iron addition  

E-Print Network [OSTI]

Mason, R. P. ; Flegal, A. R. , Mercury speciation in the SanP. ; Flegal, A. R. , Decadal mercury trends in San FranciscoP. G. ; Nelson, D. C. , Mercury methylation from unexpected

Sedlak, David L; Ulrich, Patrick D

2009-01-01T23:59:59.000Z

42

CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT  

SciTech Connect (OSTI)

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (both radioactive and hazardous according tohe Resource Conservation and Recovery Act) wastes. Depending on regulatory requirements, the mercury in the off-gas must be controlled with sometimes very high efficiencies. Compliance to the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Several test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include: (a) The depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests, (b) MERSORB® carbon can sorb Hg up to 19 wt% of the carbon mass, and (c) the spent carbon retained almost all (98 – 99.99%) of the Hg; but when even a small fraction of the total Hg dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high Hg concentrations. Localized areas in a carbon bed that become heated through heat of adsorption, to temperatures where oxidation occurs, are referred to as “bed hot spots.” Carbon bed hot spots must be avoided in processes that treat radioactive and mixed waste. Key to carbon bed hot spot mitigation are (a) designing for sufficient gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) monitoring and control of inlet gas flowrate, temperature, and composition, (c) monitoring and control of in-bed and bed outlet gas temperatures, and (d) most important, monitoring of bed outlet CO concentrations. An increase of CO levels in the off-gas downstream of the carbon bed to levels about 50-100 ppm higher than the inlet CO concentration indicate CO formation in the bed, caused by carbon bed hot spots. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from. Multiple high and high-high alarm levels should be used, with appropriate corrective actions for each level.

Nick Soelberg; Joe Enneking

2010-11-01T23:59:59.000Z

43

Process for combined control of mercury and nitric oxide.  

SciTech Connect (OSTI)

Continuing concern about the effects of mercury in the environment may lead to requirements for the control of mercury emissions from coal-fired power plants. If such controls are mandated, the use of existing flue-gas cleanup systems, such as wet scrubbers currently employed for flue-gas desulfurization, would be desirable, Such scrubbers have been shown to be effective for capturing oxidized forms of mercury, but cannot capture the very insoluble elemental mercury (Hg{sup 0}) that can form a significant fraction of the total emissions. At Argonne National Laboratory, we have proposed and tested a concept for enhancing removal of Hg{sup 0}, as well as nitric oxide, through introduction of an oxidizing agent into the flue gas upstream of a scrubber, which readily absorbs the soluble reaction products. Recently, we developed a new method for introducing the oxidizing agent into the flue-gas stream that dramatically improved reactant utilization. The oxidizing agent employed was NOXSORB{trademark}, which is a commercial product containing chloric acid and sodium chlorate. When a dilute solution of this agent was introduced into a gas stream containing Hg{sup 0} and other typical flue-gas species at 300 F, we found that about 100% of the mercury was removed from the gas phase and recovered in process liquids. At the same time, approximately 80% of the nitric oxide was removed. The effect of sulfur dioxide on this process was also investigated and the results showed that it slightly decreased the amount of Hg{sup 0} oxidized while appearing to increase the removal of nitric oxide from the gas phase. We are currently testing the effects of variations in NOXSORB{trademark} concentration, sulfur dioxide concentration, nitric oxide concentration, and reaction time (residence time). Preliminary economic projections based on the results to date indicate that the chemical cost for nitric oxide oxidation could be less than $5,000/ton removed, while for Hg{sup 0} oxidation it would be about $20,000/lb removed.

Livengood, C. D.; Mendelsohn, M. H.

1999-11-03T23:59:59.000Z

44

Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results  

SciTech Connect (OSTI)

This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

Gary M. Blythe

2006-03-01T23:59:59.000Z

45

Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems  

SciTech Connect (OSTI)

This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and spray dryer absorbers combined with fabric filters (SDAs-FFs). The work focused on technology commercialization by involving industry and emphasizing the communication of results to vendors and utilities throughout the project.

Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

2008-06-30T23:59:59.000Z

46

Mercury Emissions Control Technologies (released in AEO2006)  

Reports and Publications (EIA)

The Annual Energy Outlook 2006 reference case assumes that states will comply with the requirements of the Environmental Protection Agency's new Clean Air Mercury Rule (CAMR) regulation. CAMR is a two-phase program, with a Phase I cap of 38 tons of mercury emitted from all U.S. power plants in 2010 and a Phase II cap of 15 tons in 2018. Mercury emissions in the electricity generation sector in 2003 are estimated at around 50 tons. Generators have a variety of options to meet the mercury limits, such as: switching to coal with a lower mercury content, relying on flue gas desulfurization or selective catalytic reduction equipment to reduce mercury emissions, or installing conventional activated carbon injection (ACI) technology.

2006-01-01T23:59:59.000Z

47

Field Testing of a Wet FGD Additive for Enhanced Mercury Control  

SciTech Connect (OSTI)

This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.

Gary Blythe; MariJon Owens

2007-12-31T23:59:59.000Z

48

Release of Ammonium and Mercury from NOx Controlled Fly Ash  

SciTech Connect (OSTI)

One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

Schroeder, K.T.; Cardone, C.R.; Kim, A.G

2007-07-01T23:59:59.000Z

49

Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control  

SciTech Connect (OSTI)

Public Service Company of Colorado and ADA Technologies, Inc. have performed a study of the injection of activated carbon for the removal of vapor-phase mercury from coal-fired flue gas streams. The project was completed under contract to the US Department of Energy's National Energy Technology Laboratory, with contributions from EPRI and Public Service Company. The prime contractor for the project was Public Service Company, with ADA Technologies as the major subcontractor providing technical support to all aspects of the project. The research and development effort was conducted in two phases. In Phase I a pilot facility was fabricated and tests were performed using dry carbon-based sorbent injection for mercury control on a coal-fired flue gas slipstream extracted from an operating power plant. Phase II was designed to move carbon injection technology towards commercial application on coal-fired power plants by addressing key reliability and operability concerns. Phase II field work included further development work with the Phase I pilot and mercury measurements on several of PSCo's coal-fired generating units. In addition, tests were run on collected sorbent plus fly ash to evaluate the impact of the activated carbon sorbent on the disposal of fly ash. An economic analysis was performed where pilot plant test data was used to develop a model to predict estimated costs of mercury removal from plants burning western coals. Testing in the pilot plant was undertaken to quantify the effects of plant configuration, flue gas temperature, and activated carbon injection rate on mercury removal. All three variables were found to significantly impact the mercury removal efficiency in the pilot. The trends were clear: mercury removal rates increased with decreasing flue gas temperature and with increasing carbon injection rates. Mercury removal was much more efficient with reverse-gas and pulse-jet baghouse configurations than with an ESP as the particulate control device. The native fly ash of the host unit provided significant mercury removal capacity, so that the activated carbon sorbent served as an incremental mercury removal mechanism. Tests run to characterize the waste product, a combination of fly ash and activated carbon on which mercury was present, showed that mercury and other RCRA metals of interest were all below Toxic Characteristic Leaching Procedure (TCLP) regulatory limits in the leachate. The presence of activated carbon in the fly ash was shown to have an effect on the use of fly ash as an additive in the manufacture of concrete, which could limit the salability of fly ash from a plant where activated carbon was used for mercury control.

Jim Butz; Terry Hunt

2005-11-01T23:59:59.000Z

50

Mercury control challenge for industrial boiler MACT affected facilities  

SciTech Connect (OSTI)

An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

NONE

2009-09-15T23:59:59.000Z

51

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Jean Bustard

2004-04-27T23:59:59.000Z

52

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2001-10-01T23:59:59.000Z

53

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2001-07-06T23:59:59.000Z

54

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that was tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology injects a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. PG&E National Energy Group provided two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company provided a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company hosted a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the fifteenth reporting quarter, progress was made on the project in the following areas: (1) Test Sites--Final Reports for the two remaining plants are being written (Salem Harbor and Brayton Point). (2) Technology Transfer--Technical information about the project was presented to a number of organizations during the quarter including members of congress, coal companies, architect/engineering firms, National Mining Association, the North Carolina Department of Air Quality, the National Coal Council and EPA.

Jean Bustard; Richard Schlager

2004-08-03T23:59:59.000Z

55

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the eleventh reporting quarter, progress was made on the project in the following areas: (1) All Test Sites--Final reports for Gaston and Pleasant Prairie are complete and have been issued; and Ongoing data and sample analysis is nearly complete as well as work on the final reports. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. Several papers were presented at the MEGA Symposium in Washington DC.

Richard Schlager; Tom Millar

2003-07-01T23:59:59.000Z

56

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000 to 2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2001-07-31T23:59:59.000Z

57

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that was tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology injects a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. PG&E National Energy Group provided two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company provided a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company hosted a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the seventeenth reporting quarter, progress was made on the project in the following areas: Test Sites--The Topical Report for the Salem Harbor Station was issued during the quarter. The Topical Report for the Brayton Point Station testing is in preparation; and Technology Transfer--Technical information about the project was presented at PowerGen and at an A&WMA Rocky Mountain States Section meeting.

Jean Bustard; Richard Schlager

2005-01-03T23:59:59.000Z

58

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the twelfth reporting quarter, progress was made on the project in the following areas: All Test Sites--Ongoing data and sample analysis for the two remaining plants is nearly complete as well as work on the final reports. Technology Transfer--A number of technical presentations and briefings were made during the quarter. Several papers were presented at Air Quality IV in Washington D.C.

Richard Schlager; Tom Millar

2003-11-04T23:59:59.000Z

59

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Richard Schlager

2002-04-19T23:59:59.000Z

60

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2002-01-07T23:59:59.000Z

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that was tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology injects a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. PG&E National Energy Group provided two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company provided a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company hosted a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the sixteenth reporting quarter, progress was made on the project in the following areas: (1) Test Sites--The Topical Report for the Salem Harbor Station testing was completed during the quarter and will be issued early next quarter. The Topical Report for the Brayton Point Station testing is in preparation. (2) Technology Transfer--Technical information about the project was presented to a chemistry workshop during the quarter.

Jean Bustard; Richard Schlager

2004-10-25T23:59:59.000Z

62

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the thirteenth reporting quarter, progress was made on the project in the following areas: All Test Sites--Ongoing data and sample analysis for the two remaining plants is nearly complete as well as work on the final reports. Technology Transfer--A number of technical presentations and briefings were made during the quarter.

Richard Schlager; Tom Millar

2003-03-02T23:59:59.000Z

63

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the tenth reporting quarter, progress was made on the project in the following areas: (1) All Test Sites--Ongoing data and sample analysis as well as work on the final reports. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. One paper was presented at the American Coal Council Workshop and one at the EUCE Conference.

Richard Schlager; Tom Millar

2003-04-28T23:59:59.000Z

64

Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury being sorbed onto the CCB when exposed to ambient-temperature air. The environmental performance of the mercury captured on AC used as a sorbent for mercury emission control technologies indicated that current CCB management options will continue to be sufficiently protective of the environment, with the potential exception of exposure to elevated temperatures. The environmental performance of the other ATEs investigated indicated that current management options will be appropriate to the CCBs produced using AC in mercury emission controls.

David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

2007-03-31T23:59:59.000Z

65

Behavior of a full scale tieback wall in sand  

E-Print Network [OSTI]

BEHAVIOR OP A PULL SCALE TIEBACK WALL IN SAND A Thesis by MOONKYUNG CHUNG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991 Major... Subject: Civil Engineering BEHAUIOR OF A FULL SCALE TIEBACR WALL IN SAND A Thesis MOONKYUNG CHUNG Approved as to style and content by ean-Louis Briaud hair of Committee) Derek V. Morris (Member) Christo her C. Mathewson (Member) Jam T. P. ao...

Chung, Moonkyung

1991-01-01T23:59:59.000Z

66

Property:Full-Scale Test | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormat JumpNercMro JumpFull-Scale Test Jump

67

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90 MW COAL FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. WE Energies has over 3,700 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the WE Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, WE Energies (the Participant) will design, install, and operate a TOXECON{trademark} (TOXECON) system designed to clean the combined flue gases of units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON is a patented process in which a fabric filter system (baghouse) installed down stream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium based or other novel sorbents. Addition of the TOXECON baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e. mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a novel multi-pollutant control system to reduce emissions of mercury and other air pollutants, while minimizing waste, from a coal-fired power generation system.

Richard E. Johnson

2004-07-30T23:59:59.000Z

68

Full-scale tests help improve reliability of DST tools  

SciTech Connect (OSTI)

A joint-industry project set up procedures and full scale tests to determine the reliability and integrity of drill stem test (DST) tools for use in difficult high pressure, high temperature wells. These DST tool tests helped determine changes needed to address reliability in high pressure, high temperature (HPHT) conditions and has demonstrated that DST tools could maintain integrity in this type of environment. Eleven major operators and service/testing companies in the Norway/U.K. area undertook a joint industry study to address these problems and to determine methods to increase the reliability of DST operations in HPHT well testing. Emphasis was placed on the selection of the downhole equipment used for the HPHT drill stem tests and design of the full scale testing of the North-Sea-area field tools in use. Additionally, an investigation was to be made to establish methods that could be used to verify and increase equipment reliability. The project also included design parameters for contingency conditions that were not normally present during equipment operations but could exist in emergency situations. Eleven tools, including tester valves, multiple-cycle circulating valves, bypass valves, and safety/circulating valves, from different service company/suppliers were rigorously tested. The paper describes the project, the tools tested, test methods, and results.

Ringgenberg, P. [Halliburton Energy Services, Dallas, TX (United States); Self, J.C. [Statoil, Stavanger (Norway)

1996-08-05T23:59:59.000Z

69

Chemistry of Mercury Species and Their Control in Coal Combustion  

SciTech Connect (OSTI)

The objectives for this reporting period are: 1) The study of mercury capture mechanism by using titania sorbent and ultraviolet (UV) light, and the study of structural difference between titania particle generated by both thermal Oxidation at 1000EC and by reacting with water vapor at room temperature. 2) Measurement of ultra-fine particle size distribution in flue gas after burning coal.

None

1997-08-30T23:59:59.000Z

70

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the seventh reporting quarter, progress was made on the project in the following areas: (1) PG&E NEG Brayton Point Station--Sorbent injection equipment was installed at the site during the quarter; Test plans were prepared for the field testing phase of the project; Baseline testing was completed during the quarter and parametric testing was begun; and A paper summarizing the full-scale tests was written and submitted to A&WMA for presentation at the annual meeting in June 2002. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. Notable among them are papers published in the A&WMA EM journal and Pollution Engineering. Also, information was provided to the EPA MACT Working Group and a paper was presented at the annual A&WMA meeting.

Richard Schlager

2002-08-01T23:59:59.000Z

71

Techniques for Mercury Control and Measurement in Gasification Systems  

SciTech Connect (OSTI)

A major concern for power systems that use coal as an energy source is the air emissions from the plant. Although certain air emissions are currently regulated, the emergence of new regulations for other pollutants are on the horizon. Gasification is an important strategy for increasing the utilization of abundant domestic coal reserves. The Department of Energy envisions increased use of gasification in the United States during the next twenty years. As such, the DOE Gasification Technologies Program will strive to approach a near-zero emissions goal with respect to pollutants. The mercury research detailed in this proposal addresses the Gas Cleaning and Conditioning program technology area.

Granite, E.J.; King, W.P.; Pennline, H.W.

2002-09-20T23:59:59.000Z

72

FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER  

SciTech Connect (OSTI)

The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

Nelson, E; John Gladden, J

2007-03-22T23:59:59.000Z

73

Energy Department Announces $10 Million for Full-Scale Wave Energy...  

Office of Environmental Management (EM)

10 Million for Full-Scale Wave Energy Device Testing Energy Department Announces 10 Million for Full-Scale Wave Energy Device Testing October 29, 2014 - 2:55pm Addthis The Energy...

74

E-Print Network 3.0 - advanced mercury control Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Francisco Estuary Institute Collection: Environmental Sciences and Ecology 3 MERCURY POLLUTION PREVENTION IN MINNESOTA Emily Ray Moore Summary: applications Mercury in glass...

75

Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers  

SciTech Connect (OSTI)

This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

Steven Derenne; Robin Stewart

2009-09-30T23:59:59.000Z

76

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the eighth reporting quarter, progress was made on the project in the following areas: (1) PG&E NEG Salem Harbor Station--Sorbent injection equipment was installed at the site during the quarter; Test plans were prepared for the field-testing phase of the project; and Baseline testing was completed during the quarter. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. Notable among them was a paper published in the JAWMA. Also, two papers were presented at the Air Quality III Conference and one at the Pittsburgh Coal Conference.

Richard Schlager; Tom Millar

2002-10-18T23:59:59.000Z

77

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the ninth reporting quarter, progress was made on the project in the following areas: PG&E NEG Salem Harbor Station -- Long term testing and equipment decommissioning has been completed, A web cast/conference call was held to review data, and Preliminary preparation and review of data and test results for the final report. Technology Transfer -- A number of technical presentations and briefings were made during the quarter. Notable among them was a Program Status Report presented to NETL. Also, one paper was presented at Power-Gen and one at the Annual Coal Marketing Strategies Conference.

Richard Schlager; Tom Millar

2003-01-27T23:59:59.000Z

78

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

SciTech Connect (OSTI)

The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

2009-01-07T23:59:59.000Z

79

Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment  

DOE Patents [OSTI]

The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

Grossman, Mark W. (Belmont, MA)

1993-01-01T23:59:59.000Z

80

Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment  

DOE Patents [OSTI]

The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

Grossman, M.W.

1993-02-16T23:59:59.000Z

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal  

SciTech Connect (OSTI)

The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

2009-03-29T23:59:59.000Z

82

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL-ON THREE 90 MW COAL FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particle control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x} and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90 MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} (TOXECON) system designed to clean the combined flue gases of units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON is a patented process in which a fabric filter system (baghouse) installed down stream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium based or other novel sorbents. Addition of the TOXECON baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e. mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a novel multi-pollutant control system to reduce emissions of mercury while minimizing waste, from a coal-fired power generation system.

Richard E. Johnson

2004-10-26T23:59:59.000Z

83

TOXECON RETROFIT FOR MERCURY AND MULTI-POLLUTANT CONTROL ON THREE 90-MW COAL-FIRED BOILERS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing tighter controls on mercury pollutants, the U.S. Department of Energy is supporting projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by a particulate control device along with the other solid material, primarily fly ash. We Energies has over 3,200 MW of coal-fired generating capacity and supports an integrated multi-emission control strategy for SO{sub 2}, NO{sub x}, and mercury emissions while maintaining a varied fuel mix for electric supply. The primary goal of this project is to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant. Additional goals are to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter (PM) emissions, allow for reuse and sale of fly ash, demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use in the power plant environment, and demonstrate a process to recover mercury captured in the sorbent. To achieve these goals, We Energies (the Participant) will design, install, and operate a TOXECON{trademark} system designed to clean the combined flue gases of Units 7, 8, and 9 at the Presque Isle Power Plant. TOXECON{trademark} is a patented process in which a fabric filter system (baghouse) installed downstream of an existing particle control device is used in conjunction with sorbent injection for removal of pollutants from combustion flue gas. For this project, the flue gas emissions will be controlled from the three units using a single baghouse. Mercury will be controlled by injection of activated carbon or other novel sorbents, while NO{sub x} and SO{sub 2} will be controlled by injection of sodium-based or other novel sorbents. Addition of the TOXECON{trademark} baghouse will provide enhanced particulate control. Sorbents will be injected downstream of the existing particle collection device to allow for continued sale and reuse of captured fly ash from the existing particulate control device, uncontaminated by activated carbon or sodium sorbents. Methods for sorbent regeneration, i.e., mercury recovery from the sorbent, will be explored and evaluated. For mercury concentration monitoring in the flue gas streams, components available for use will be evaluated and the best available will be integrated into a mercury CEM suitable for use in the power plant environment. This project will provide for the use of a control system to reduce emissions of mercury while minimizing waste from a coal-fired power generation system.

Steven T. Derenne

2006-04-28T23:59:59.000Z

84

E-Print Network 3.0 - activated carbon full-scale Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Carbon Dioxide In Deep Summary: full-scale demonstration projects. In closing, carbon sequestration is a promising and necessary... Benson Testimony, November 7, 2007....

85

Method and apparatus for controlling the flow rate of mercury in a flow system  

DOE Patents [OSTI]

A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

1991-01-01T23:59:59.000Z

86

A Mercury orientation model including non-zero obliquity and librations  

E-Print Network [OSTI]

Long-period forcing of Mercury’s libration in longitude.M. : Resonant forcing of Mercury’s libration in longitude.A revised control network for Mercury. J. Geophys. Res. 104,

Margot, Jean-Luc

2009-01-01T23:59:59.000Z

87

Evolving desiderata for validating engineered-physics systems without full-scale testing  

SciTech Connect (OSTI)

Theory and principles of engineered-physics designs do not change over time, but the actual engineered product does evolve. Engineered components are prescient to the physics and change with time. Parts are never produced exactly as designed, assembled as designed, or remain unperturbed over time. For this reason, validation of performance may be regarded as evolving over time. Desired use of products evolves with time. These pragmatic realities require flexibility, understanding, and robustness-to-ignorance. Validation without full-scale testing involves engineering, small-scale experiments, physics theory and full-scale computer-simulation validation. We have previously published an approach to validation without full-scale testing using information integration, small-scale tests, theory and full-scale simulations [Langenbrunner et al. 2008]. This approach adds value, but also adds complexity and uncertainty due to inference. We illustrate a validation example that manages evolving desiderata without full-scale testing.

Langenbrunner, James R [Los Alamos National Laboratory; Booker, Jane M [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Ross, Timothy J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

88

Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed  

E-Print Network [OSTI]

of a microstructured prismatic window film in deep open plandaylight- redirecting window film in a full-scale officedaylight- redirecting window film in a full-scale office

Thanachareonkit, Anothai

2014-01-01T23:59:59.000Z

89

Behavior of 10 full-scale ground anchors installed in stiff clay  

E-Print Network [OSTI]

Results from load tests conducted on ten, full-scale instrumented ground anchors installed in stiff clay, illustrated that anchor performance is load-history dependent. Anchors having shorter bonded lengths performed significantly better than...

Powers, William Francis

1993-01-01T23:59:59.000Z

90

Direct Measurement of Mercury Reactions In Coal Power Plant Plumes  

SciTech Connect (OSTI)

Recent field and pilot-scale results indicate that divalent mercury emitted from power plants may rapidly transform to elemental mercury within the power plant plumes. Simulations of mercury chemistry in plumes based on measured rates to date have improved regional model fits to Mercury Deposition Network wet deposition data for particular years, while not degrading model verification fits for remaining years of the ensemble. The years with improved fit are those with simulated deposition in grid cells in the State of Pennsylvania that have matching MDN station data significantly less than the model values. This project seeks to establish a full-scale data basis for whether or not significant reduction or oxidation reactions occur to mercury emitted from coal-fired power plants, and what numerical redox rate should apply for extension to other sources and for modeling of power plant mercury plumes locally, regionally, and nationally. Although in-stack mercury (Hg) speciation measurements are essential to the development of control technologies and to provide data for input into atmospheric fate and transport models, the determination of speciation in a cooling coal combustion plume is more relevant for use in estimating Hg fate and effects through the atmosphere. It is mercury transformations that may occur in the plume that determine the eventual rate and patterns of mercury deposited to the earth's surface. A necessary first step in developing a supportable approach to modeling any such transformations is to directly measure the forms and concentrations of mercury from the stack exit downwind to full dispersion in the atmosphere. As a result, a study was sponsored by EPRI and jointly funded by EPRI, the U.S Department of Energy (DOE), and the Wisconsin Department of Administration. The study was designed to further our understanding of plume chemistry. The study was carried out at the We Energies Pleasant Prairie Power Plant, Pleasant Prairie, Wisconsin, just west of Kenosha. Aircraft and ground measurements support the occurrence of a reduction in the fraction of reactive gaseous mercury (RGM) (with a corresponding increase in elemental mercury) as part of the Total Gaseous Mercury (TGM) emitted from the Pleasant Prairie stack. This occurrence is based on comparison of the RGM concentrations in the plume (at standard conditions) compared to the RGM in the stack. There was found to be a 44% drop in the fraction of RGM between the stack exit and the first sampling arc and a 66% reduction from the stack to the 5-mile sampling arc, with no additional drop between the 5- and 10-mile arcs. Smaller-scale experiments in both test chambers and pilot-scale coal combustor exhaust streams have indicated the presence of rapid and relatively complete reduction reactions converting divalent into elemental mercury within power plant plumes prior to full dispersion in the atmosphere. These measurements, however, have been unable to identify whether the reactions occur during plume rise from physical to virtual stack height (during positive thermal buoyancy). The presence, rate, completeness, ubiquity, and dependence on source characteristics of these reactions, however, must be demonstrated in plume environments associated with fully operational power plants. That requirement, to capture either the reactions or the reaction products of chemistry that may be occurring very close to stack exits in highly turbulent environments, constrains the precision and reproducibility with which such full-scale experiments can be carried out. The work described here is one of several initial steps required to test whether, and in what direction, such rapid mercury redox reactions might be occurring in such plumes.

Leonard Levin

2005-12-31T23:59:59.000Z

91

Optimization of Preprocessing and Densification of Sorghum Stover at Full-scale Operation  

SciTech Connect (OSTI)

Transportation costs can be a prohibitive step in bringing biomass to a preprocessing location or biofuel refinery. One alternative to transporting biomass in baled or loose format to a preprocessing location, is to utilize a mobile preprocessing system that can be relocated to various locations where biomass is stored, preprocess and densify the biomass, then ship it to the refinery as needed. The Idaho National Laboratory has a full scale 'Process Demonstration Unit' PDU which includes a stage 1 grinder, hammer mill, drier, pellet mill, and cooler with the associated conveyance system components. Testing at bench and pilot scale has been conducted to determine effects of moisture on preprocessing, crop varieties on preprocessing efficiency and product quality. The INLs PDU provides an opportunity to test the conclusions made at the bench and pilot scale on full industrial scale systems. Each component of the PDU is operated from a central operating station where data is collected to determine power consumption rates for each step in the process. The power for each electrical motor in the system is monitored from the control station to monitor for problems and determine optimal conditions for the system performance. The data can then be viewed to observe how changes in biomass input parameters (moisture and crop type for example), mechanical changes (screen size, biomass drying, pellet size, grinding speed, etc.,), or other variations effect the power consumption of the system. Sorgum in four foot round bales was tested in the system using a series of 6 different screen sizes including: 3/16 in., 1 in., 2 in., 3 in., 4 in., and 6 in. The effect on power consumption, product quality, and production rate were measured to determine optimal conditions.

Neal A. Yancey; Jaya Shankar Tumuluru; Craig C. Conner; Christopher T. Wright

2011-08-01T23:59:59.000Z

92

Full-Scale Boiler Measurements Demonstrating Striated Flows during Biomass Co-Firing  

E-Print Network [OSTI]

ACERC-2008 Full-Scale Boiler Measurements Demonstrating Striated Flows during Biomass Co based measurements methods #12;Objective Minor impact of biomass cofiring with coal on boiler operation) · Experimentally demonstrate the existence of stratified flows in boilers Indication: SO2, ash composition, straw

93

A full-scale approximation of covariance functions for large spatial data sets  

E-Print Network [OSTI]

A full-scale approximation of covariance functions for large spatial data sets Huiyan Sang in spatial statistics but face tremendous computational challenges for very large data sets. The model fitting and spatial prediction of such models typically require O(n3 ) operations for a data set of size n

Huang, Jianhua

94

Bacterial community structures are unique and resilient in full-scale bioenergy systems  

E-Print Network [OSTI]

Bacterial community structures are unique and resilient in full-scale bioenergy systems Jeffrey J digestion is the most successful bioenergy technology worldwide with, at its core, undefined microbialFrac | community function | digester | sludge The production of bioenergy from wastes is an essential com- ponent

Hammerton, James

95

A FULL SCALE ROOM FOR THE EXPERIMENTAL STUDY OF INTERIOR BUILDING CONVECTIVE HEAT TRANSFER  

E-Print Network [OSTI]

air flow measurement. A water source heat pump provided chilled water to a fan-coil unit which in turn on volumetric air flow measurement and an overall room heat balance. Analysis was directed at results fromA FULL SCALE ROOM FOR THE EXPERIMENTAL STUDY OF INTERIOR BUILDING CONVECTIVE HEAT TRANSFER: DESIGN

96

Ris-R-1392(EN) Full scale testing of wind turbine blade  

E-Print Network [OSTI]

Risř-R-1392(EN) Full scale testing of wind turbine blade to failure - flapwise loading Erik R F. Sřrensen Risř National Laboratory, Roskilde June 2004 #12;Abstract A 25m wind turbine blade test of a 25m Vestas wind turbine blade. The major results of the entire project can be found

97

Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II  

SciTech Connect (OSTI)

Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

Alan Bland; Jesse Newcomer; Allen Kephart; Volker Schmidt; Gerald Butcher

2008-10-31T23:59:59.000Z

98

Full-scale demonstration Low-NO sub x Cell trademark Burner retrofit  

SciTech Connect (OSTI)

The Low-NO{sub x} Cell{trademark} Burner operates on the principle of staged combustion. The lower burner of each two-nozzle cell is modified to accommodate all the fuel input previously handled by two nozzles. Secondary air, less than theoretically required for complete combustion, is introduced to the lower burner. The remainder of secondary air is directed to the upper port'' of each cell to complete the combustion process. B W/EPRI have thoroughly tested the LNCB{trademark} at two pilot scales (6 million Btu per hour and 100 million Btu per hour), and tested a single full-scale burner in a utility boiler. Combustion tests at two scales have confirmed NO{sub x} reduction with the low-NO{sub x} cell on the order of 50% relative to the standard cell burner at optimum operating conditions. The technology is now ready for full unit, full-scale demonstration.

Not Available

1992-05-11T23:59:59.000Z

99

Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.  

SciTech Connect (OSTI)

The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.; Sorenson, Ken B.

2014-09-01T23:59:59.000Z

100

DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY  

SciTech Connect (OSTI)

The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

Tom Hrdlicka; William Swanson

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Evaluation of Control Strategies to Effectively Meet 70-90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR  

SciTech Connect (OSTI)

This is the final site report for testing conducted at Public Service of New Hampshire's (PSNH) Merrimack Unit 2 (MK2). This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase III project with the goal to develop mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. While results from testing at Merrimack indicate that the DOE goal was partially achieved, further improvements in the process are recommended. Merrimack burned a test blend of eastern bituminous and Venezuelan coals, for a target coal sulfur content of 1.2%, in its 335-MW Unit 2. The blend ratio is approximately a 50/50 split between the two coals. Various sorbent injection tests were conducted on the flue gas stream either in front of the air preheater (APH) or in between the two in-series ESPs. Initial mercury control evaluations indicated that, without SO3 control, the sorbent concentration required to achieve 50% control would not be feasible, either economically or within constraints specific to the maximum reasonable particle loading to the ESP. Subsequently, with SO{sub 3} control via trona injection upstream of the APH, economically feasible mercury removal rates could be achieved with PAC injection, excepting balance-of-plant concerns. The results are summarized along with the impacts of the dual injection process on the air heater, ESP operation, and particulate emissions.

Tom Campbell

2008-12-31T23:59:59.000Z

102

Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications  

SciTech Connect (OSTI)

Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that the parent aluminum skin must experience significant yield strains before any damage to the doubler will occur.

Roach, D.; Walkington, P.

1999-02-01T23:59:59.000Z

103

Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries  

SciTech Connect (OSTI)

The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others] [and others

1996-03-01T23:59:59.000Z

104

Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility  

SciTech Connect (OSTI)

Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactor was about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155{sup o}C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155{sup o}C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, at testing conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBR addition alone). 25 refs., 5 figs., 1 tab.

Yan Cao; Quan-Hai Wang; Jun Li; Jen-Chieh Cheng; Chia-Chun Chan; Marten Cohron; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-04-15T23:59:59.000Z

105

CLOSURE OF HLW TANKS PHASE 2 FULL SCALE COOLING COILS GROUT FILL DEMONSTATIONS  

SciTech Connect (OSTI)

This report documents the Savannah River National Laboratory (SRNL) support for the Tank Closure and Technology Development (TCTD) group's strategy for closing high level radioactive waste (HLW) tanks at the Savannah River Site (SRS). Specifically, this task addresses the ability to successfully fill intact cooling coils, presently within the HLW tanks, with grout that satisfies the fresh and cured grout requirements [1] under simulated field conditions. The overall task was divided into two phases. The first phase was the development of a grout formulation that satisfies the processing requirements for filling the HLW tank cooling coils [5]. The second phase of the task, which is documented in this report, was the filling of full scale cooling coils under simulated field conditions using the grout formulation developed in the first phase. SRS Type I tank cooling coil assembly design drawings and pressure drop calculations were provided by the Liquid Waste (LW) customer to be used as the basis for configuring the test assemblies. The current concept for closing tanks equipped with internal cooling coils is to pump grout into the coils to inhibit pathways for infiltrating water. Access to the cooling coil assemblies is through the existing supply/return manifold headers located on top of the Type I tanks. The objectives for the second phase of the testing, as stated in the Task Technical and Quality Assurance plan (TTQAP) [2], were to: (1) Perform a demonstration test to assess cooling coil grout performance in simulated field conditions, and (2) Measure relevant properties of samples prepared under simulated field conditions. SRNL led the actual work of designing, fabricating and filling two full-scale cooling coil assemblies which were performed at Clemson Engineering Technologies Laboratory (CETL) using the South Carolina University Research and Education Foundation (SCUREF) program. A statement of work (SOW) was issued to CETL [6] to perform this work.

Hansen, E; Alex Cozzi, A

2008-06-19T23:59:59.000Z

106

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect (OSTI)

This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

2010-12-31T23:59:59.000Z

107

Performance of copper chloride-impregnated sorbents on mercury vapor control in an entrained-flow reactor system  

SciTech Connect (OSTI)

An entrained-flow system has been designed and constructed to simulate in-flight mercury (Hg) capture by sorbent injection in ducts of coal-fired utility plants. The test conditions of 1.2-sec residence time, 140{degree}C gas temperature, 6.7 m/sec (22 ft/sec) gas velocity, and 0-0.24 g/m{sup 3} (0-15 lbs of sorbent per 1 million actual cubic feet of flue gas sorbent injection rates were chosen to simulate conditions in the ducts. Four kinds of sorbents were used in this study. Darco Hg-LH (lignite-based) served as a benchmark sorbent with which Hg control capability of other sorbents could be compared. Also, Darco-FGD (lignite-based) was used as a representative raw activated carbon sorbent. Two different copper chloride-impregnated sorbents were developed in the laboratory and tested in the entrained-flow system to examine the possibility of using these sorbents at coal-fired power plants. The test results showed that one of the copper chloride sorbents has remarkable elemental mercury (Hg{sup 0}) oxidation capability, and the other sorbent demonstrated a better performance in Hg removal than Darco Hg-LH. 13 refs., 4 figs., 3 tabs.

Sang-Sup Lee; Joo-Youp Lee; Tim C. Keener [University of Cincinnati, Cincinnati, OH (United States). Department of Civil and Environmental Engineering

2008-11-15T23:59:59.000Z

108

Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254  

SciTech Connect (OSTI)

Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National Laboratories, the 1980's regulatory and demonstration testing of MAGNOX fuel flasks in the United Kingdom (the CEGB 'Operation Smash Hit' tests), and the 1980's regulatory drop and fire tests conducted on the TRUPACT II containers used for transuranic waste shipments to the Waste Isolation Pilot Plant in New Mexico. The primary focus of the paper is a detailed evaluation of the cask testing programs proposed by the NRC in its decision implementing staff recommendations based on the Package Performance Study, and by the State of Nevada recommendations based on previous work by Audin, Resnikoff, Dilger, Halstead, and Greiner. The NRC approach is based on demonstration impact testing (locomotive strike) of a large rail cask, either the TAD cask proposed by DOE for spent fuel shipments to Yucca Mountain, or a similar currently licensed dual-purpose cask. The NRC program might also be expanded to include fire testing of a legal-weight truck cask. The Nevada approach calls for a minimum of two tests: regulatory testing (impact, fire, puncture, immersion) of a rail cask, and extra-regulatory fire testing of a legal-weight truck cask, based on the cask performance modeling work by Greiner. The paper concludes with a discussion of key procedural elements - test costs and funding sources, development of testing protocols, selection of testing facilities, and test peer review - and various methods of communicating the test results to a broad range of stakeholder audiences. (authors)

Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge Northridge, CA 91330 (United States)

2012-07-01T23:59:59.000Z

109

LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL  

SciTech Connect (OSTI)

Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

2011-05-27T23:59:59.000Z

110

Evaluation of defense-waste glass produced by full-scale vitrification equipment  

SciTech Connect (OSTI)

Three full-scale vitrification processes at the Pacific Northwest Laboratory produced over 67,000 kg of simulated nuclear-waste glass from March 1979 to August 1980. Samples were analyzed to monitor process operation and evaluate the resulting glass product. These processes are: Spray Calciner/In-Can Melter (SC/ICM); Spray Calciner/Calcine-Fed Ceramic Melter (SC/CFCM); and Liquid-Fed Ceramic Melter (LFCM). Waste components in the process feed varied less than +- 10%. The SC/ICM and SC/CFCM which use separate waste and frit feed systems showed larger glass compositional variation than the LFCM, which processed only premixed feed during this period. The SC/ICM and SC/CFCM product contained significant amounts of acmite crystals, while the LFCM product was largely amorphous. In addition, the lower portion of all SC/ICM-filled canisters contained a zone rich in waste components. A product chemical durability as determined by pH4 and soxhlet leach tests varied considerably. Aside from increased durability under pH4 conditions with decreasing waste content, glass composition, microstructure and melting process did not correlate with glass durability. For all samples analyzed, the weight loss under pH4 conditions ranged from 17.7 to 85.2 wt %. Soxhlet conditions produced weight losses from 1.78 to 3.56 wt %.

Lukacs, J.M.; Petkus, L.L.; Mellinger, G.B.

1981-09-01T23:59:59.000Z

111

Full-scale turbine-missile-casing tests. Final report. [PWR; BWR  

SciTech Connect (OSTI)

Results are presented of two full-scale tests simulating the impact of turbine disk fragments on simple ring and shell structures that represent the internal stator blade ring and the outer housing of an 1800-rpm steam turbine casing. The objective was to provide benchmark data on both the energy-absorbing mechanisms of the impact process and, if breakthrough occured, the exit conditions of the turbine missile. A rocket sled was used to accelerate a 1527-kg (3366-lb) segment of a turbine disk, which impacted a steel ring 12.7 cm (5 in.) thick and a steel shell 3.2 cm (1.25 in.) thick. The impact velocity of about 150 m/s (492 ft/s) gave a missile kinetic energy corresponding to the energy of a fragment from a postulated failure at the design overspeed (120% of operating speed). Depending on the orientation of the missile at impact, the steel test structure either slowed the missile to 60% of its initial translational velocity or brought it almost to rest (an energy reduction of 65 and 100%, respectively). The report includes structural and finite element analysis and data interpretation, estimates of energy during impact, missile displacement and velocity histories, and selected strain gage data.

Yoshimura, H.R.; Schamaun, J.T.

1983-01-01T23:59:59.000Z

112

Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD  

SciTech Connect (OSTI)

Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

2007-03-31T23:59:59.000Z

113

Solar Compartment Design Methods, Performance Analysis and Thermal Data for Solar Composting Latrines: A Full Scale Experimental Study  

E-Print Network [OSTI]

. Pathogen resistance to disinfection or inactivation in latrines is multifaceted. The full-scale solar composting compartment studies at the University of Kansas have advanced the knowledge about feces composting in solar compartments based on climate...

Rendall, Joseph D.

2012-12-31T23:59:59.000Z

114

Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment  

SciTech Connect (OSTI)

Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of high injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.

Zhou, Q.; Birkholzer, J.T.; Mehnert, E.; Lin, Y.-F.; Zhang, K.

2009-08-15T23:59:59.000Z

115

The Full Scale Seal Experiment - A Seal Industrial Prototype for Cigeo - 13106  

SciTech Connect (OSTI)

The Full Scale Seal (FSS) Experiment is one of various experiments implemented by Andra, within the frame of the Cigeo (the French Deep Geological Repository) Project development, to demonstrate the technical construction feasibility and performance of seals to be constructed, at time of Repository components (shafts, ramps, drifts, disposal vaults) progressive closure. FSS is built inside a drift model fabricated on surface for the purpose. Prior to the scale 1:1 seal construction test, various design tasks are scheduled. They include the engineering work on the drift model to make it fit with the experimental needs, on the various work sequences anticipated for the swelling clay core emplacement and the concrete containment plugs construction, on the specialized handling tools (and installation equipment) manufactured and delivered for the purpose, and of course on the various swelling clay materials and low pH (below 11) concrete formulations developed for the application. The engineering of the 'seal-as-built' commissioning means (tools and methodology) must also be dealt with. The FSS construction experiment is a technological demonstrator, thus it is not focused on the phenomenological survey (and by consequence, on the performance and behaviour forecast). As such, no hydration (forced or natural) is planned. However, the FSS implementation (in particular via the construction and commissioning activities carried out) is a key milestone in view of comforting phenomenological extrapolation in time and scale. The FSS experiment also allows for qualifying the commissioning methods of a real sealing system in the Repository, as built, at time of industrial operations. (authors)

Lebon, P.; Bosgiraud, J.M.; Foin, R.; Armand, G. [Andra, 1 rue Jean-Monnet, 92 298 Chatenay-Malabry Cedex (France)] [Andra, 1 rue Jean-Monnet, 92 298 Chatenay-Malabry Cedex (France)

2013-07-01T23:59:59.000Z

116

FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125  

SciTech Connect (OSTI)

Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

2012-01-26T23:59:59.000Z

117

E-Print Network 3.0 - applying mercury control Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with source type and emissions control technology. Emission controls for other pollutants... from fossil fuel energy sources and implementation of efficient control...

118

Characterization of ash deposition and heat transfer behavior of coals during combustion in a pilot-scale facility and full-scale utility  

SciTech Connect (OSTI)

Experimental measurements as well as theoretical models were used to investigate the impact of mineral matter of three coals on ash deposition and heat transfer for pulverized coal fired boilers. The ash deposition experiments were conducted in a pulverized fuel combustion pilot-scale facility and a full-scale unit. A mathematical model with input from computer-controlled scanning electron microscopy analysis of coal minerals was used to predict the effect of ash deposition on heat transfer. The predicted deposit thickness and heat flux from the model are shown to be consistent with the measurements in the test facility. The model differentiates the coals according to the deposits they form and their effect on heat transfer. The heat transfer predictions in the full-scale unit were found to be most suitable for the water wall under the furnace nose. The study demonstrates that the measurements in a full-scale unit can differ significantly from those in pilot-scale furnaces due to soot-blowing operations. 9 refs., 12 figs., 3 tabs.

Sushil Gupta; Rajender Gupta; Gary Bryant; Terry Wall; Shinji Watanabe; Takashi Kiga; Kimihito Narukawa [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research & Technology

2009-05-15T23:59:59.000Z

119

Mercury emissions from municipal solid waste combustors  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

120

Mercury Thermometer Replacement Alternatives Thermometer Description Non-Mercury Non-Mercury Non-Mercury  

E-Print Network [OSTI]

Mercury Thermometer Replacement Alternatives Length Thermometer Description Non-Mercury Non-Mercury Non-Mercury Range / Division VWR-Enviro-Safe® Fisherbrand® Brooklyn Thermometer Company Inc. Total/A #12;Mercury Thermometer Replacement Alternatives Length Thermometer Description Non-Mercury Non

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Design and performance of a full-scale spray calciner for nonradioactive high-level-waste-vitrification studies  

SciTech Connect (OSTI)

In the spray calcination process, liquid waste is spray-dried in a heated-wall spray dryer (termed a spray calciner), and then it may be combined in solid form with a glass-forming frit. This mixture is then melted in a continuous ceramic melter or in an in-can melter. Several sizes of spray calciners have been tested at PNL- laboratory scale, pilot scale and full scale. Summarized here is the experience gained during the operation of PNL's full-scale spray calciner, which has solidified approx. 38,000 L of simulated acid wastes and approx. 352,000 L of simulated neutralized wastes in 1830 h of processing time. Operating principles, operating experience, design aspects, and system descriptions of a full-scale spray calciner are discussed. Individual test run summaries are given in Appendix A. Appendices B and C are studies made by Bechtel Inc., under contract by PNL. These studies concern, respectively, feed systems for the spray calciner process and a spray calciner vibration analysis. Appendix D is a detailed structural analysis made at PNL of the spray calciner. These appendices are included in the report to provide a complete description of the spray calciner and to include all major studies made concerning PNL's full-scale spray calciner.

Miller, F.A.

1981-06-01T23:59:59.000Z

122

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-01-29T23:59:59.000Z

123

Emissions Resulting from the Full-Scale Cofiring of Pelletized Refuse-Derived Fuel and Coal  

E-Print Network [OSTI]

grab and fly ash) 8 (combustion MM5 chamber) 9 & 10 (flue gases) MM5 11 Continuous dRDF/coal blend Ultimate analysis Proximate analysis Heating value Bulk density 13 trace metals Organics (PCBs, polyaromatic hydrocarbons, dioxins, furans... Opacity Feedstock flow rate Steam flow rate, temperature, and pressure Ambient temperature Pollution control equipment temperature and pressure Gases (CO, CO 2 O 2 , NO SOx) x TABLE 4 EP Tozicity Test Analysis of Bottom Ash and Fly Ash...

Ohlsson, O. O.; Daugherty, K.; Venables, B.

124

MERCURY REMOVAL IN A NON-THERMAL, PLASMA-BASED MULTI-POLLUTANT CONTROL TECHNOLOGY FOR UTILITY BOILERS  

SciTech Connect (OSTI)

Powerspan has conducted pilot scale testing of a multi-pollutant control technology at FirstEnergy's Burger Power Plant under a cooperative agreement with the U.S. Department of Energy. The technology, Electro-Catalytic Oxidation (ECO), simultaneously removes sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), fine particulate matter (PM{sub 2.5}) and mercury (Hg) from the flue gas of coal-fired power plants. Powerspan's ECO{reg_sign} pilot test program focused on optimization of Hg removal in a 1-MWe slipstream pilot while maintaining greater than 90% removal of NO{sub x} and 98% removal of SO{sub 2}. This Final Technical Report discusses pilot operations, installation and maintenance of the Hg SCEMS instrumentation, and performance results including component and overall removal efficiencies of SO{sub 2}, NO{sub x}, PM and Hg from the flue gas and removal of captured Hg from the co-product fertilizer stream.

Christopher R. McLaron

2004-12-01T23:59:59.000Z

125

Development of impregnated sorbents for the control of elemental mercury emissions from coal-fired power plants  

SciTech Connect (OSTI)

Sulfur-impregnated activated carbon developed in the laboratory showed superior performance for mercury uptake in comparison to other potential sorbents. The objective of this study was to evaluate whether a different sulfur impregnation protocol using hydrogen sulfide as a sulfur source can produce an equally effective mercury sorbent. In addition, several other impregnates (copper chloride, anthraquinone, picolyl amine, and thiol) were evaluated for their ability to enhance adsorptive capacity of virgin activated carbon for elemental mercury. The effect of sulfur impregnation method on mercury removal efficiency was examined using impregnation with elemental sulfur (BPLS) at high temperature and hydrogen sulfide oxidation (BPLH-series) at low impregnation temperature. The performance of both BPLS and BPLH-series increased significantly over the virgin BPL carbon. BPL impregnated for 0.25 hr (BPLH-0.25) showed best performance for mercury adsorption. Although BPLS and BPLH-0.25 had similar sulfur content, BPLS showed much better performance. The dynamic adsorption capacity of BPL carbon impregnated with copper chloride (BPLC) was found to increase with an increase in empty bed contact time and chloride content and to decrease with an increase in process temperature. All chloride impregnated activated carbons exhibited appreciable initial mercury breakthrough due to slow kinetics of mercury uptake, while substantial concentrations of oxidized mercury species were detected in the effluent from a fixed-bed adsorber. The BPL impregnated with anthraquinone and thiol exhibited high dynamic adsorption capacities at 25 C, but had much lower dynamic adsorption capacities at 140 C. BPL impregnated with picolyl amine (BPLP) exhibited very poor dynamic adsorption capacities at both 25 and 140 C. The chelating agent-impregnated carbons exhibited lower dynamic adsorption capacities than BPLS.

Vidic, R.D.; Kwon, S.J.; Siler, D.P.

1999-07-01T23:59:59.000Z

126

A life cycle approach to the management of household food waste - A Swedish full-scale case study  

SciTech Connect (OSTI)

Research Highlights: > The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in relation to global warming potential, acidification and ozone depilation compared to incineration and composting of food waste. Use of produced biogas as car fuel provides larger environmental benefits compared to a use of biogas for heat and power production. > The use of produced digestate from the anaerobic digestion as substitution for chemical fertilizer on farmland provides avoidance of environmental burdens in the same ratio as the substitution of fossil fuels with produced biogas. > Sensitivity analyses show that results are highly sensitive to assumptions regarding the environmental burdens connected to heat and energy supposedly substituted by the waste treatment. - Abstract: Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6 kg CO{sub 2}-eq/household and year if incineration is utilised, to an avoidance of 5.6 kg CO{sub 2}-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.

Bernstad, A., E-mail: anna.bernstad@chemeng.lth.se [Department of Chemical Engineering, Box 124, Faculty of Engineering (LTH), Lund University, S-221 00 Lund (Sweden); Cour Jansen, J. la [Department of Chemical Engineering, Box 124, Faculty of Engineering (LTH), Lund University, S-221 00 Lund (Sweden)

2011-08-15T23:59:59.000Z

127

Fate of Mercury in Synthetic Gypsum Used for Wallboard Production  

SciTech Connect (OSTI)

This report presents and discusses results from the project 'Fate of Mercury in Synthetic Gypsum Used for Wallboard Production', performed at five different full-scale commercial wallboard plants. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies involve the capture of mercury in FGD systems. The objective of this study has been to determine whether any mercury is released into the atmosphere at wallboard manufacturing plants when the synthetic gypsum material is used as a feedstock for wallboard production. The project has been co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope included seven discrete tasks, each including a test conducted at various USG wallboard plants using synthetic gypsum from different wet FGD systems. The project was originally composed of five tasks, which were to include (1) a base-case test, then variations representing differing power plant: (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5,could not be conducted as planned and instead was conducted at conditions similar to Task 3. Subsequently an opportunity arose to test gypsum produced from the Task 5 FGD system, but with an additive expected to impact the stability of mercury, so Task 6 was added to the project. Finally, Task 7 was added to evaluate synthetic gypsum produced at a power plant from an additional coal type. In the project, process stacks in the wallboard plant were sampled using the Ontario Hydro method. In every task, the stack locations sampled included a gypsum dryer and a gypsum calciner. In Tasks 1 and 4 through 7, the stack of the dryer for the wet wallboard product was also tested. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. These results and process data were used to construct mercury mass balances across the wallboard plants. The results from the project showed a wide range of percentage mercury losses from the synthetic gypsum feedstocks as measured by the Ontario Hydro method at the process stacks, ranging from 2% to 55% of the mercury in the gypsum feedstock. For the tasks exceeding 10% mercury loss across the wallboard plant, most of the loss occurred across the gypsum calciner. When total wallboard emissions remained below 10%, the primary emission location varied with a much less pronounced difference in emission between the gypsum dryer, calciner and board dryer. For all seven tasks, the majority of the mercury emissions were measured to be in the elemental form (Hg{sup 0}). Overall, the measured mercury loss mass rates ranged from 0.01 to 0.17 grams of mercury per dry ton of synthetic gypsum processed, or 0.01 to 0.4 pounds of mercury released per million square feet of wallboard produced from synthetic gypsum. The Coal Combustion Product Production and Use Survey from the American Coal Ash Association (ACAA) indicate that 7,579,187 short tons of synthetic gypsum were used for wallboard production in 2006. Extrapolating the results of this study to the ACAA industry usage rate, we estimate that mercury releases from wallboard production plants in 2006 ranged between 150 to 3000 pounds for the entire U.S. wallboard industry. With only seven sets of wallboard plant measurements, it is difficult to draw firm conclusions about what variables impact the mercury loss percentages across the wallboard plants. One significant o

Jessica Sanderson

2007-12-31T23:59:59.000Z

128

Summary report on close-coupled subsurface barrier technology: Initial field trials to full-scale demonstration  

SciTech Connect (OSTI)

The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained.

Heiser, J.H. [Brookhaven National Lab., Upton, NY (United States). Environmental and Waste Technology Center; Dwyer, B. [Sandia National Lab., Albuquerque, NM (United States)

1997-09-01T23:59:59.000Z

129

MERCURY REMOVAL IN A NON-THERMAL, PLASMA-BASED MULTI-POLLUTANT CONTROL TECHNOLOGY FOR UTILITY BOILERS  

SciTech Connect (OSTI)

This technical report describes the results from Task 1 of the Cooperative Agreement. Powerspan has installed, tested, and validated Hg SCEMS systems for measuring oxidized and elemental mercury at the pilot facility at R.E. Burger Generating Station in Shadyside, Ohio. When operating properly, these systems are capable of providing near real-time monitoring of inlet and outlet gas flow streams and are capable of extracting samples from different locations to characterize mercury removal at these different ECO process stages. This report discusses the final configuration of the Hg CEM systems and the operating protocols that increase the reliability of the HG SCEM measurements. Documentation on the testing done to verify the operating protocols is also provided. In addition the report provides details on the protocols developed and used for measurement of mercury in process liquid streams and in captured ash.

Matthew B. Loomis

2004-05-01T23:59:59.000Z

130

Evaluating Mercury Concentrations in Midwest Fish in Relationship to Mercury Emission Sources  

E-Print Network [OSTI]

International Energy Outlook estimates that world usage of coal will grow from 132 quadrillion British Thermal Units (BTU) in 2008 to over 202 quadrillion BTU in 2030 (USDOE, 2008). Even with improved mercury controls on power plants, this increase..., it is worthwhile to further examine the relationships between local sources of mercury and elevated concentrations of mercury in fish since these relationships may better inform control strategies, siting concerns, and overall energy policies. The author...

Robichaud, Jeffery

2008-12-19T23:59:59.000Z

131

Mercury Information Clearinghouse  

SciTech Connect (OSTI)

The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through analysis and quality assurance programs; and (4) Create and maintain an information clearinghouse to ensure that all parties can keep informed on global mercury research and development activities.

Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

2006-03-31T23:59:59.000Z

132

Full-scale tests of sulfur polymer cement and non-radioactive waste in heated and unheated prototypical containers  

SciTech Connect (OSTI)

Sulfur polymer cement has been demonstrated to be superior to portland cement in the stabilization of numerous troublesome low- level radioactive wastes, notably mixed waste fly ash, which contains heavy metals. EG G Idaho, Inc. conducted full-scale, waste-stabilization tests with a mixture of sulfur polymer cement and nonradioactive incinerator ash poured over simulated steel and ash wastes. The container used to contain the simulated waste for the pour was a thin-walled, rectangular, steel container with no appendages. The variable in the tests was that one container and its contents were at 65{degree}F (18{degree}C) at the beginning of the pour, while the other was preheated to 275{degree}F (135{degree}C) and was insulated before the pour. The primary goal was to determine the procedures and equipment deemed operationally acceptable and capable of providing the best probability of passing the only remaining governmental test for sulfur polymer cement, the Nuclear Regulatory Commission's full-scale test. The secondary goal was to analyze the ability of the molten cement and ash mixture to fill different size pipes and thus eliminate voids in the resultant 24 ft{sup 3} monolith.

Darnell, G.R.; Aldrich, W.C.; Logan, J.A.

1992-02-01T23:59:59.000Z

133

Full-scale tests of sulfur polymer cement and non-radioactive waste in heated and unheated prototypical containers  

SciTech Connect (OSTI)

Sulfur polymer cement has been demonstrated to be superior to portland cement in the stabilization of numerous troublesome low- level radioactive wastes, notably mixed waste fly ash, which contains heavy metals. EG&G Idaho, Inc. conducted full-scale, waste-stabilization tests with a mixture of sulfur polymer cement and nonradioactive incinerator ash poured over simulated steel and ash wastes. The container used to contain the simulated waste for the pour was a thin-walled, rectangular, steel container with no appendages. The variable in the tests was that one container and its contents were at 65{degree}F (18{degree}C) at the beginning of the pour, while the other was preheated to 275{degree}F (135{degree}C) and was insulated before the pour. The primary goal was to determine the procedures and equipment deemed operationally acceptable and capable of providing the best probability of passing the only remaining governmental test for sulfur polymer cement, the Nuclear Regulatory Commission`s full-scale test. The secondary goal was to analyze the ability of the molten cement and ash mixture to fill different size pipes and thus eliminate voids in the resultant 24 ft{sup 3} monolith.

Darnell, G.R.; Aldrich, W.C.; Logan, J.A.

1992-02-01T23:59:59.000Z

134

FULL-SCALE, WIND TUNNEL AND CFD WIND ENGINEERING STUDIES A variety of methods can be used to obtain wind engineering design information. These include  

E-Print Network [OSTI]

FULL-SCALE, WIND TUNNEL AND CFD WIND ENGINEERING STUDIES A variety of methods can be used to obtain wind engineering design information. These include codes of practice, full-scale, wind tunnel are listed in the table below: Table 1. Relative advantages and disadvantages of wind engineering techniques

Savory, Eric

135

Mercury contamination extraction  

DOE Patents [OSTI]

Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

Fuhrmann, Mark (Silver Spring, MD); Heiser, John (Bayport, NY); Kalb, Paul (Wading River, NY)

2009-09-15T23:59:59.000Z

136

Fate of Mercury in Synthetic Gypsum Used for Wallboard Production  

SciTech Connect (OSTI)

This report presents and discusses results from Task 5 of the study ''Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,'' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. The FGD process is used to control the sulfur dioxide emissions which would result in acid rain if not controlled. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies developed for power plants involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope includes five discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The five tasks were to include (1) a baseline test, then variations representing differing power plant (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to evaluate gypsum produced from an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to a previous task, Task 3, although with gypsum from an alternate FGD system. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. The stack locations sampled for each task include a dryer for the wet gypsum as it enters the plant and a gypsum calciner. The stack of the dryer for the wet wallboard product was also tested as part of this task, and was tested as part of Tasks 1 and 4. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 5 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, but the SCR was bypassed during the time period the gypsum tested was produced. The power plant has a single-loop, open spray tower, limestone reagent FGD system, with forced oxidation conducted in a reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. Gypsum fines blow down is believed to be an important variable that impacts the amount of mercury in the gypsum byproduct and possibly its stability during the wallboard process. The results of the Task 5 stack testing, as measured by the Ontario Hydro method, detected that an average of 51% of the incoming mercury in the FGD gypsum was emitted during wallboard production. These losses were distributed as 2% or less each across the wet gypsum dryer and product wallboard dryer, and about 50% across the gypsum calciner. Emissions were similar to what Task 3 results showed, on both a percentage and a mass basis, for gypsum produced by a power plant firing bituminous coal and also having gypsum fines blow down as part of the FGD dewatering scheme. As was seen in the Task 1 through 4 results, most of the mercury detected in the stack testing on the wet gypsum dryer and kettle calciner was in the form of elemental mercury. In the wallboard dryer kiln, a more signific

Jessica Marshall Sanderson

2006-06-01T23:59:59.000Z

137

Sorbents for the oxidation and removal of mercury  

DOE Patents [OSTI]

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

2014-09-02T23:59:59.000Z

138

Sorbents for the oxidation and removal of mercury  

DOE Patents [OSTI]

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2008-10-14T23:59:59.000Z

139

Sorbents for the oxidation and removal of mercury  

DOE Patents [OSTI]

A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

2012-05-01T23:59:59.000Z

140

An example of remediation of mercury impacted soil using high vacuum low temperature thermal desorption  

SciTech Connect (OSTI)

The purpose of this paper is to describe a high vacuum, low temperature thermal desorption (LTTD) technology which has been used to remediate soil impacted with elemental mercury and to present the results of pre-treatment and post-treatment soil sampling. The general operating principles of this high vacuum LTTD technology, the IRHV-200, are: (a) depression of the boiling points of the target compounds by lowering the ambient pressure within the treatment chamber using a vacuum pump; (b) use of infrared radiation to generate a thermal gradient in the top several inches of non-liquid material contained within the treatment chamber and use of a carrier gas to transport the desorbed contaminants from the treatment chamber to a pollution control system. The overall effect of these parameters is a batch treatment system capable of desorbing target contaminants from soil under anaerobic conditions and low temperature such that the desorbed contaminants do not degrade and generate thermal or oxidative by-products. Essentially, the desorbed contaminants undergo a reversible phase change from liquid to vapor in the treatment chamber and are condensed back to liquid in the pollution control system. Results of bench top testing are compared to full scale remediations of significant volumes of soil to demonstrate remediation of mercury impacted soil. This technology is also applicable for soils impacted with other higher boiling point organics, such as, PCP, PCBs, PAHs, PNAs, pesticides and herbicides.

Dagdigian, J.V. [McLaren/Hart, Irvine, CA (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales  

SciTech Connect (OSTI)

Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

2011-05-01T23:59:59.000Z

142

Rutting Performance of Airport Hot-Mix Asphalt Characterized by Laboratory Performance Testing, Full-Scale Accelerated Pavement Testing, and Finite Element Modeling  

E-Print Network [OSTI]

potential laboratory tests, (b) comparisons of laboratory tests results to full-scale accelerated pavement test results, and (c) analyses of results from finite element simulations. The laboratory study evaluated of the repeated load test, the static creep...

Rushing, John Ford

2014-04-25T23:59:59.000Z

143

Analysis of Halogen-Mercury Reactions in Flue Gas  

SciTech Connect (OSTI)

Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

2010-01-01T23:59:59.000Z

144

High vacuum indirectly-heated rotary kiln for the removal and recovery of mercury from air pollution control scrubber waste  

SciTech Connect (OSTI)

SepraDyne corporation (Denton, TX, US) has conducted pilot-scale treatability studies of dewatered acid plant blowdown sludge generated by a copper smelter using its recently patented high temperature and high vacuum indirectly-heated rotary retort technology. This unique rotary kiln is capable of operating at internal temperatures up to 850 C with an internal pressure of 50 torr and eliminates the use of sweep gas to transport volatile substances out of the retort. By removing non-condensables such as oxygen and nitrogen at relatively low temperatures and coupling the process with a temperature ramp-up program and low temperature condensation, virtually all of the retort off-gases produced during processing can be condensed for recovery. The combination of rotation, heat and vacuum produce the ideal environment for the rapid volatilization of virtually all organic compounds, water and low-to-moderate boiling point metals such as arsenic, cadmium and mercury.

Hawk, G.G.; Aulbaugh, R.A. [Scientific Consulting Labs., Inc., Farmers Branch, TX (United States)] [Scientific Consulting Labs., Inc., Farmers Branch, TX (United States)

1998-12-31T23:59:59.000Z

145

Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed  

SciTech Connect (OSTI)

Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the redirected light spreading it within a small range of outgoing angles. This solution was found to reduce glare to imperceptible levels while retaining for the most part the illuminance levels achieved solely by the daylighting film.

Thanachareonkit, Anothai; Lee, Eleanor S.; McNeil, Andrew

2013-08-31T23:59:59.000Z

146

Development of an electromagnetically actuated mercury microvalve  

SciTech Connect (OSTI)

The development of microscale fluid handling components has been recognized as a crucial element in the design of microscale chemical detection systems. Recently, work has been undertaken at Sandia National Laboratories to construct a valve that uses a small mercury droplet to control the flow of gas through capillary passages. Electromagnetic forces that are provided by small permanent magnets and a current supply are used to drive the mercury into position. Driving the mercury droplet into a tapered passage halts gas flow through a capillary, while surface tension forces prevent the mercury from passing through the passage. Models have been developed to describe the movement of the mercury droplet and the sealing of the gas passage, and millimeter-scale units have been tested to explore design options. Predictions from the model show that a valve with 10 micron sized features can seal against pressures up to 1.5 atmospheres. Experiments have highlighted the promise of mercury valves and demonstrated problems that can arise from contamination of the mercury.

Adkins, D.R.; Wong, C.C.

1998-08-01T23:59:59.000Z

147

Bioaccumulation of Mercury in Sharks  

E-Print Network [OSTI]

Bioaccumulation of Mercury in Sharks Part 1 b After you finish the video and the above questions Resources: EPA General Info on Mercury - http://www.epa.gov/mercury/about.htm FDA Mercury Levels in Seafood.htm World Health Organization Key Facts on Mercury - http://www.who.int/mediacentre/factsheets/fs361

Miami, University of

148

MERCURY SPECIATION SAMPLING AT NEW CENTURY ENERGY'S VALMONT STATION  

SciTech Connect (OSTI)

The 1990 Clean Air Act Amendments required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the ''Mercury Study Report to Congress'' and ''Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units''. The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam electric generating units. Although these reports did not state that mercury controls on coal-fired electric power stations would be required given the current state of the art, they did indicate that the EPA views mercury as a potential threat to human health. Therefore, it was concluded that mercury controls at some point may be necessary. EPA also indicated that additional research/information was necessary before any definitive statement could be made. In an effort to determine the amount and types of mercury being emitted into the atmosphere by coal-fired power plants, EPA in late 1998 issued an information collection request (ICR) that required all coal-fired power plants to analyze their coal and submit the results to EPA on a quarterly basis. In addition, about 85 power stations were required to measure the speciated mercury concentration in the flue gas. These plants were selected on the basis of plant configuration and coal type. The Valmont Station owned and operated by New Century Energy in Boulder, Colorado, was selected for detailed mercury speciation of the flue gas as part of the ICR process. New Century Energy, in a tailored collaboration with EPRI and the U.S. Department of Energy, contracted with the Energy & Environmental Research Center (EERC) to do a study evaluating the behavior of mercury at the Valmont Station. The activities conducted at the Valmont Station by the EERC not only included the sampling needed to meet the requirements of the ICR, but involved a much more extensive mercury research program. The following objectives for the sampling at New Century Energy's Valmont Station were accomplished: (1) Successfully complete all of the mercury sampling and reporting requirements of the ICR. (2) Determine the variability in mercury concentrations at the stack using mercury continuous emission monitors (CEMs). (3) Calculate mercury mass balances and emission rates. (4) Determine the mercury concentration in the fly ash as a function of particle size. (5) Determine the impact of a fabric filter on mercury emissions for a western bituminous coal.

Dennis L. Laudal

2000-04-01T23:59:59.000Z

149

Source-attribution for atmospheric mercury deposition: Where does the mercury in mercury deposition come from?  

E-Print Network [OSTI]

1 Source-attribution for atmospheric mercury deposition: Where does the mercury in mercury of the Mercury Working Group, Office of Air Quality, Indiana Department of Environmental Management (IDEM) April 21, 2005 #12;2 For mercury, how important is atmospheric deposition relative to other loading

150

Influences on Mercury Bioaccumulation Factors for the Savannah River  

SciTech Connect (OSTI)

Mercury TMDLs (Total Maximum Daily Loads) are a regulatory instrument designed to reduce the amount of mercury entering a water body and ultimately to control the bioaccumulation of mercury in fish. TMDLs are based on a BAF (bioaccumulation factor), which is the ratio of methyl mercury in fish to dissolved methyl mercury in water. Analysis of fish tissue and aqueous methyl mercury samples collected at a number of locations and over several seasons in a 118 km reach of the Savannah River demonstrated that species specific BAFs varied by factors of three to eight. Factors contributing to BAF variability were location, habitat and season related differences in fish muscle tissue mercury levels and seasonal differences in dissolved methyl mercury levels. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 106 for largemouth bass, 1.4 x 106 for sunfishes, and 2.5 x 106 for white catfish. Inaccurate and imprecise BAFs can result in unnecessary economic impact or insufficient protection of human health. Determination of representative and precise BAFs for mercury in fish from large rivers necessitates collecting large and approximately equal numbers of fish and aqueous methyl mercury samples over a seasonal cycle from the entire area and all habitats to be represented by the TMDL.

Paller, M.H.

2003-05-06T23:59:59.000Z

151

Phytoremediation of Ionic and Methyl Mercury P  

SciTech Connect (OSTI)

Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants as an environmentally friendly alternative to physical remediation methods. We have focused this phytoremediation research on soil and water-borne ionic and methylmercury. Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. Methylmercury, produced by native bacteria at mercury-contaminated wetland sites, is a particularly serious problem due to its extreme toxicity and efficient biomagnification in the food chain. We engineered several plant species (e.g., Arabidopsis, tobacco, canola, yellow poplar, rice) to express the bacterial genes, merB and/or merA, under the control of plant regulatory sequences. These transgenic plants acquired remarkable properties for mercury remediation. (1) Transgenic plants expressing merB (organomercury lyase) extract methylmercury from their growth substrate and degrade it to less toxic ionic mercury. They grow on concentrations of methylmercury that kill normal plants and accumulate low levels of ionic mercury. (2) Transgenic plants expressing merA (mercuric ion reductase) extract and electrochemically reduce toxic, reactive ionic mercury to much less toxic and volatile metallic mercury. This metal transformation is driven by the powerful photosynthetic reducing capacity of higher plants that generates excess NADPH using solar energy. MerA plants grow vigorously on levels of ionic mercury that kill control plants. Plants expressing both merB and merA degrade high levels of methylmercury and volatilize metallic mercury. These properties were shown to be genetically stable for several generations in the two plant species examined. Our work demonstrates that native trees, shrubs, and grasses can be engineered to remediate the most abundant toxic mercury pollutants. Building on these data our working hypothesis for the next grant period is that transgenic plants expressing the bacterial merB and merA genes will (a) remove mercury from polluted soil and water and (b) prevent methylmercury from entering the food chain. Our specific aims center on understanding the mechanisms by which plants process the various forms of mercury and volatilize or transpire mercury vapor. This information will allow us to improve the design of our current phytoremediation strategies. As an alternative to volatilizing mercury, we are using several new genes to construct plants that will hyperaccumulate mercury in above-ground tissues for later harvest. The Department of Energy's Oak Ridge National Laboratory and Brookhaven National Laboratory have sites with significant levels of mercury contamination that could be cleaned by applying the scientific discoveries and new phytoremediation technologies described in this proposal. The knowledge and expertise gained by engineering plants to hyperaccumulate mercury can be applied to the remediation of other heavy metals pollutants (e.g., arsenic, cesium, cadmium, chromium, lead, strontium, technetium, uranium) found at several DOE facilities.

Meagher, Richard B.

1999-06-01T23:59:59.000Z

152

Mercury Calibration System  

SciTech Connect (OSTI)

U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on actual capabilities of the current calibration technology. As part of the current effort, WRI worked with Thermo Fisher elemental mercury calibrator units to conduct qualification experiments to demonstrate their performance characteristics under a variety of conditions and to demonstrate that they qualify for use in the CEM calibration program. Monitoring of speciated mercury is another concern of this research. The mercury emissions from coal-fired power plants are comprised of both elemental and oxidized mercury. Current CEM analyzers are designed to measure elemental mercury only. Oxidized mercury must first be converted to elemental mercury prior to entering the analyzer inlet in order to be measured. CEM systems must demonstrate the ability to measure both elemental and oxidized mercury. This requires the use of oxidized mercury generators with an efficient conversion of the oxidized mercury to elemental mercury. There are currently two basic types of mercuric chloride (HgCl{sub 2}) generators used for this purpose. One is an evaporative HgCl{sub 2} generator, which produces gas standards of known concentration by vaporization of aqueous HgCl{sub 2} solutions and quantitative mixing with a diluent carrier gas. The other is a device that converts the output from an elemental Hg generator to HgCl{sub 2} by means of a chemical reaction with chlorine gas. The Thermo Fisher oxidizer system involves reaction of elemental mercury vapor with chlorine gas at an elevated temperature. The draft interim protocol for oxidized mercury units involving reaction with chlorine gas requires the vendors to demonstrate high efficiency of oxidation of an elemental mercury stream from an elemental mercury vapor generator. The Thermo Fisher oxidizer unit is designed to operate at the power plant stack at the probe outlet. Following oxidation of elemental mercury from reaction with chlorine gas, a high temperature module reduces the mercuric chloride back to elemental mercury. WRI conducted work with a custom laboratory configured stand-alone oxidized mercury generator unit prov

John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

2009-03-11T23:59:59.000Z

153

Process for low mercury coal  

DOE Patents [OSTI]

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01T23:59:59.000Z

154

Process for low mercury coal  

DOE Patents [OSTI]

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04T23:59:59.000Z

155

Mercury Detection with Gold Nanoparticles  

E-Print Network [OSTI]

R. J. Warmack, “Detection of mercury vapor using resonatingA surface acoustic wave mercury vapor sensor,” Ieee Trans.N. E. Selin, “Integrating mercury science and policy in the

Crosby, Jeffrey

2013-01-01T23:59:59.000Z

156

Methylation of Mercury by Bacteria Exposed to Dissolved, Nanoparticulate, and Microparticulate Mercuric Sulfides  

E-Print Network [OSTI]

Methylation of Mercury by Bacteria Exposed to Dissolved, Nanoparticulate, and Microparticulate in the environment is partly controlled by the bioavailability of inorganic divalent mercury (Hg(II)) to anaerobic matter to form chemical species that include organic-coated mercury sulfide nanoparticles as reaction

157

Atmospheric Mercury in the Great Lakes Region An Evaluation of the Community Multiscale Air Quality  

E-Print Network [OSTI]

Atmospheric Mercury in the Great Lakes Region An Evaluation of the Community Multiscale Air Quality Tracey Holloway #12;i Abstract Atmospheric mercury is a significant source for methylmercury (Me. In order to control MeHg exposures, policy-makers need a clear understanding of the atmospheric mercury

Wisconsin at Madison, University of

158

Mercury Chamber Considerations  

E-Print Network [OSTI]

Mercury Chamber Considerations V. Graves IDS-NF Target Studies July 2011 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Mercury Chamber Considerations, July 2011 Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment

McDonald, Kirk

159

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect (OSTI)

The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-12-31T23:59:59.000Z

160

Detection of concealed mercury with thermal neutrons  

SciTech Connect (OSTI)

In the United States today, governments at all levels and the citizenry are paying increasing attention to the effects, both real and hypothetical, of industrial activity on the environment. Responsible modem industries, reflecting this heightened public and regulatory awareness, are either substituting benign materials for hazardous ones, or using hazardous materials only under carefully controlled conditions. In addition, present-day environmental consciousness dictates that we deal responsibly with legacy wastes. The decontamination and decommissioning (D&D) of facilities at which mercury was used or processed presents a variety of challenges. Elemental mercury is a liquid at room temperature and readily evaporates in air. In large mercury-laden buildings, droplets may evaporate from one area only to recondense in other cooler areas. The rate of evaporation is a function of humidity and temperature; consequently, different parts of a building may be sources or sinks of mercury at different times of the day or even the year. Additionally, although mercury oxidizes in air, the oxides decompose upon heating. Hence, oxides contained within pipes or equipment, may be decomposed when those pipes and equipment are cut with saws or torches. Furthermore, mercury seeps through the pores and cracks in concrete blocks and pads, and collects as puddles and blobs in void spaces within and under them.

Bell, Z.W.

1994-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot-Scale Studies  

E-Print Network [OSTI]

power plant exhaust gases using conventional air pollution control devices (APCDs) is significantly Act list of sources of hazardous air pollutants. Both the reversal and the CAMR were vacated by the UMercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot

Li, Ying

162

Oxidation of Mercury in Products of Coal Combustion  

SciTech Connect (OSTI)

Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot scale, burning bituminous coals (Gale, 2006) and blends of bituminous coals with Powder River Basin coal (Gale, 2005). The removal of mercury by fly ash and unburned carbon in the flue gas from combustion of the bituminous coals and blends was reproduced with satisfactory accuracy by the model. The enhancement of mercury capture in the presence of calcium (Gale, 2005) explained a synergistic effect of blending on mercury removal across the baghouse. The extent of mercury oxidation, on the other hand, was not so well described by the simulation, because of oversensitivity of the oxidation process in the model to the concentration of unburned carbon. Combined catalysts and sorbents for oxidation and removal of mercury from flue gas at low temperature were based on surfactant-templated silicas containing a transition metal and an organic functional group. The presence of both metal ions and organic groups within the pore structure of the materials is expected to impart to them the ability to simultaneously oxidize elemental mercury and adsorb the resulting oxidized mercury. Twelve mesoporous organosilicate catalysts/sorbents were synthesized, with and without metals (manganese, titanium, vanadium) and organic functional groups (aminopropyl, chloropropyl, mercaptopropyl). Measurement of mercury oxidation and adsorption by the candidate materials remains for future work.

Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

2009-09-14T23:59:59.000Z

163

Neutrino Factory Mercury Vessel  

E-Print Network [OSTI]

Neutrino Factory Mercury Vessel: Initial Cooling Calculations V. Graves Target Studies Nov 15, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Cooling Calculations 15 Nov 2012 Target · Separates functionality, provides double mercury containment, simplifies design and remote handling · Each

McDonald, Kirk

164

Mercury in the environment  

ScienceCinema (OSTI)

Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

Idaho National Laboratory - Mike Abbott

2010-01-08T23:59:59.000Z

165

Full-scale demonstration Low-NO{sub x} Cell{trademark} Burner retrofit. Quarterly report No. 6, January 1, 1992--March 31, 1992  

SciTech Connect (OSTI)

The Low-NO{sub x} Cell{trademark} Burner operates on the principle of staged combustion. The lower burner of each two-nozzle cell is modified to accommodate all the fuel input previously handled by two nozzles. Secondary air, less than theoretically required for complete combustion, is introduced to the lower burner. The remainder of secondary air is directed to the upper ``port`` of each cell to complete the combustion process. B&W/EPRI have thoroughly tested the LNCB{trademark} at two pilot scales (6 million Btu per hour and 100 million Btu per hour), and tested a single full-scale burner in a utility boiler. Combustion tests at two scales have confirmed NO{sub x} reduction with the low-NO{sub x} cell on the order of 50% relative to the standard cell burner at optimum operating conditions. The technology is now ready for full unit, full-scale demonstration.

Not Available

1992-05-11T23:59:59.000Z

166

Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

SciTech Connect (OSTI)

Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-01-31T23:59:59.000Z

167

Mercury Jet Studies Tristan Davenne  

E-Print Network [OSTI]

Mercury Jet Studies Tristan Davenne Rutherford Appleton Laboratory Joint UKNF, INO, UKIERI meeting mercury target and reported a radial velocity at surface of mercury jet due to proton beam is 36m/s #12;Numerical simulation of Sievers & Pugnat Result Click on image above to watch video of 2cm mercury target

McDonald, Kirk

168

INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE  

SciTech Connect (OSTI)

Mercury (Hg) has been identified as a 'persistent, bioaccumulative and toxic' pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water quality criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., < 0.3 {mu}g/g fillet) is considered to be a more consistent indicator of exposure and risk (EPA, 2001). Effective mercury remediation at point-source contaminated sites requires an understanding of the nature and magnitude of mercury inputs, and also knowledge of how these inputs must be controlled in order to achieve the desired reduction of mercury contamination in biota necessary for compliance with AWQC targets. One of the challenges to remediation is that mercury body burdens in fish are more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper trophic level fish and other biota; this is a key environmental endpoint since reducing mercury concen

Looney, B.; Bryan, L.; Mathews, T.

2012-03-30T23:59:59.000Z

169

Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions  

SciTech Connect (OSTI)

We present results from the grant entitled, ���¢��������Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions.���¢������� The research significantly advanced the understanding of basic high-energy density science (HEDS) on ultra intense laser and particle beam plasma interactions. This advancement in understanding was then used to to aid in the quest to make 1 GeV to 500 GeV plasma based accelerator stages. The work blended basic research with three-dimensions fully nonlinear and fully kinetic simulations including full-scale modeling of ongoing or planned experiments. The primary tool was three-dimensional particle-in-cell simulations. The simulations provided a test bed for theoretical ideas and models as well as a method to guide experiments. The research also included careful benchmarking of codes against experiment. High-fidelity full-scale modeling provided a means to extrapolate parameters into regimes that were not accessible to current or near term experiments, thereby allowing concepts to be tested with confidence before tens to hundreds of millions of dollars were spent building facilities. The research allowed the development of a hierarchy of PIC codes and diagnostics that is one of the most advanced in the world.

Mori, Warren, B.

2012-12-01T23:59:59.000Z

170

Mercury Sensing with Optically Responsive Gold Nanoparticles  

E-Print Network [OSTI]

We assume that the mass of mercury adsorbed at saturation istactics, nanoparticle based mercury sensing should advancemost sensitive method for mercury sensing. References "1!

James, Jay Zachary

2012-01-01T23:59:59.000Z

171

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1989-01-01T23:59:59.000Z

172

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

Grossman, M.W.; George, W.A.

1991-06-18T23:59:59.000Z

173

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1988-01-01T23:59:59.000Z

174

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

175

Recovery of mercury from mercury compounds via electrolytic methods  

DOE Patents [OSTI]

A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

Grossman, M.W.; George, W.A.

1989-11-07T23:59:59.000Z

176

Environmental and health aspects of lighting: Mercury  

SciTech Connect (OSTI)

Most discharge lamps, including fluorescent lamps, metal halide lamps, and high pressure sodium lamps, contain Mercury, a toxic chemical. Lighting professionals need to be able to respond to questions about the direct hazards of Mercury from accidentally breaking lamps, and the potential environmental hazards of lamp operation and disposal. We calculated the exposures that could occur from an accidental breakage of lamps. Acute poisoning appears almost impossible. Under some circumstances a sealed environment, such as a space station, could be contaminated enough to make it unhealthy for long-term occupation. Mercury becomes a potential environmental hazard after it becomes methylated. Mercury is methylated in aquatic environments, where it may accumulate in fish, eventually rendering them toxic to people and other animals. Lighting causes Mercury to enter the environment directly from lamp disposal, and indirectly from power plant emissions. The environmental tradeoffs between incandescent and discharge lamps depend upon the amounts released by these two sources, their local concentrations, and their probabilities of being methylated. Indirect environmental effects of lighting also include the release of other heavy metals (Cadmium, Lead and Arsenic), and other air pollutants and carbon dioxide that are emitted by fossil fuel power plants. For a given light output, the level of power plant emissions depends upon the efficacy of the light source, and is thus much larger for incandescent lamps than for fluorescent or discharge lamps. As disposal and control technologies change the relative direct and indirect emissions from discharge and incandescent lamps will change.

Clear, R.; Berman, S.

1993-07-01T23:59:59.000Z

177

Engineering Study for a Full Scale Demonstration of Steam Reforming Black Liquor Gasification at Georgia-Pacific's Mill in Big Island, Virginia  

SciTech Connect (OSTI)

Georgia-Pacific Corporation performed an engineering study to determine the feasibility of installing a full-scale demonstration project of steam reforming black liquor chemical recovery at Georgia-Pacific's mill in Big Island, Virginia. The technology considered was the Pulse Enhanced Steam Reforming technology that was developed and patented by Manufacturing and Technology Conversion, International (MTCI) and is currently licensed to StoneChem, Inc., for use in North America. Pilot studies of steam reforming have been carried out on a 25-ton per day reformer at Inland Container's Ontario, California mill and on a 50-ton per day unit at Weyerhaeuser's New Bern, North Carolina mill.

Robert De Carrera; Mike Ohl

2002-03-19T23:59:59.000Z

178

Method and apparatus for monitoring mercury emissions  

DOE Patents [OSTI]

A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

1997-10-21T23:59:59.000Z

179

Method and apparatus for monitoring mercury emissions  

DOE Patents [OSTI]

A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

Durham, Michael D. (Castle Rock, CO); Schlager, Richard J. (Aurora, CO); Sappey, Andrew D. (Golden, CO); Sagan, Francis J. (Lakewood, CO); Marmaro, Roger W. (Littleton, CO); Wilson, Kevin G. (Littleton, CO)

1997-01-01T23:59:59.000Z

180

Mercury CEM Calibration  

SciTech Connect (OSTI)

The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

John F. Schabron; Joseph F. Rovani; Susan S. Sorini

2007-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mercury CEM Calibration  

SciTech Connect (OSTI)

Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The outputs of mercury generators are compared to one another using a nesting procedure which allows direct comparison of one generator with another and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define generator performance as affected by variables such as pressure, temperature, line voltage, and shipping. WRI is focusing efforts to determine actual generator performance related to the variables defined in the qualification portion of the interim protocol. The protocol will then be further revised by EPA based on what can actually be achieved with the generators. Another focus of the study is to evaluate approaches for field verification of generator performance. Upcoming work includes evaluation of oxidized mercury calibration generators, for which a separate protocol will be prepared by EPA. In addition, the variability of the spectrometers/analyzers under various environmental conditions needs to be defined and understood better. A main objective of the current work is to provide data on the performance and capabilities of elemental mercury generator/calibration systems for the development of realistic NIST traceability protocols for mercury vapor standards for continuous emission CEM calibration. This work is providing a direct contribution to the enablement of continuous emissions monitoring at coal-fired power plants in conformance with the CAMR. EPA Specification 12 states that mercury CEMs must be calibrated with NIST-traceable standards (Federal Register 2005). The initial draft of an elemental mercury generator traceability protocol was circulated by EPA in May 2007 for comment, and an interim protocol was issued in August 2007 (EPA 2007). Initially it was assumed that the calibration and implementation of mercury CEMs would be relatively simple, and implementation would follow the implementation of the Clean Air Interstate Rule (CAIR) SO{sub 2} and NO{sub x} monitoring, and sulfur emissions cap and trade. However, mercury has proven to be significantly more difficult

John Schabron; Joseph Rovani; Mark Sanderson

2008-02-29T23:59:59.000Z

182

Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device  

SciTech Connect (OSTI)

Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the application of this technology for removing elemental mercury from flue gas streams generated by utility boilers. On an absolute basis, the quantity of reagent required to accomplish the oxidation was small. For example, complete oxidation of mercury was accomplished using a 1% volume fraction of oxygen in a nitrogen stream. Overall, the tests with mercury validated the most useful aspect of the CR&E technology: Providing a method for elemental mercury removal from a gas phase by employing a specific plasma reagent to either increase reaction kinetics or promote reactions that would not have occurred under normal circumstances.

Charles Mones

2006-12-01T23:59:59.000Z

183

Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater  

SciTech Connect (OSTI)

This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

2013-07-10T23:59:59.000Z

184

Mercury-Related Materials Studies  

E-Print Network [OSTI]

. Pawel, "Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for Mercury of Cavitation Resistant Modifications to Type 316LN Stainless Steel in a Mercury Thermal Convection Loop," OakMercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010

McDonald, Kirk

185

Mercury-Related Materials Studies  

E-Print Network [OSTI]

Mercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 #12 Evaluation of Cavitation Resistance of Type 316LN Stainless Steel in Mercury Using a Vibratory Horn," J. Nucl Pump Impeller Materials for Mercury Service at the Spallation Neutron Source," Oak Ridge National

McDonald, Kirk

186

Bioaccumulation of Mercury in Sharks  

E-Print Network [OSTI]

Bioaccumulation of Mercury in Sharks Part 2 a Using a subset of data collected on RJD shark research trips, you will analyze the mercury levels found in the Florida Sharks we catch. Based on your analysis, you will be able to conclude which species have the highest levels of mercury contamination

Miami, University of

187

Detonation-wave technique for on-load deposit removal from surfaces exposed to fouling; Part 2: Full-scale application  

SciTech Connect (OSTI)

The paper reports on the full-scale application and testing of the detonation-wave technique in two boilers, fired with pulverized coal, of total thermal power of 600 MW. Continuous monitoring over a period of several years confirmed earlier laboratory findings, reported in the companion Part 1 of the paper. The testing proved that the technique is efficient and reliable, with a number of advantages in comparison with various conventional cleaning methods. In spite of the fact that the lining of one of the boilers is made of classic refractory material, careful records and inspection over several years of daily application of the detonation wave technique showed no signs of any undesirable effects. The method was officially adopted as a routine deposits removal technique in the Power Plant Kakanj'' in Bosnia.

Hanjalic, K. (Univ. of Erlangen-Nuernberg (Germany)); Smajevic, I. (Univ. of Sarajevo, Bosnia (Yugoslavia))

1994-01-01T23:59:59.000Z

188

Advanced Utility Mercury-Sorbent Field-Testing Program  

SciTech Connect (OSTI)

This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was purchased used and all of the equipment has nearly reached the end of its useful service.

Ronald Landreth

2007-12-31T23:59:59.000Z

189

Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers  

E-Print Network [OSTI]

matter and char, and cold-end air pollution control devices. There is also evidence that boiler is equipped with hot and cold precipitators and a tubular air preheater. A strategy for mercury control designated hazardous air pollutants by the US Environmental Protection Agency (EPA), mercury (Hg) has

Li, Ying

190

Water displacement mercury pump  

DOE Patents [OSTI]

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, Marshall G. (Woodside, CA)

1985-01-01T23:59:59.000Z

191

Water displacement mercury pump  

DOE Patents [OSTI]

A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

Nielsen, M.G.

1984-04-20T23:59:59.000Z

192

Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor  

SciTech Connect (OSTI)

This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300- W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150oC. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and intraparticle diffusion. The Freundlich isotherm more accurately described in-flight mercury capture. Using these parameters, very little intraparticle diffusion was evident. Consistent with other data, smaller particles resulted in higher mercury uptake due to available surface area. Therefore, it is important to capture the particle size distribution in the model. At typical full-scale sorbent feed rates, the calculations underpredicted adsorption, suggesting that wall effects can account for as much as 50 percent of the removal, making it an important factor in entrained-mercury adsorption models.

Paula A. Buitrago, Mike Morrill, JoAnn S. Lighty, Geoffrey D.; Silcox,

2009-06-15T23:59:59.000Z

193

Biosequence Similarity Search on the Mercury System  

E-Print Network [OSTI]

Biosequence Similarity Search on the Mercury System Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang, and Joseph Lancaster, "Biosequence Similarity Search on the Mercury on the Mercury System Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang

Chamberlain, Roger

194

Recovery of mercury from acid waste residues  

DOE Patents [OSTI]

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

Greenhalgh, W.O.

1987-02-27T23:59:59.000Z

195

Recovery of mercury from acid waste residues  

DOE Patents [OSTI]

Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

Greenhalgh, Wilbur O. (Richland, WA)

1989-01-01T23:59:59.000Z

196

Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511  

SciTech Connect (OSTI)

The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)

Behrouzi, Aria [Savannah River Remediation, LLC (United States); Zamecnik, Jack [Savannah River National Laboratory, Aiken, South Carolina, 29808 (United States)

2012-07-01T23:59:59.000Z

197

Environmental chamber measurements of mercury flux from coal utilization by-products  

SciTech Connect (OSTI)

An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m2 h for the fly ash samples and -5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.

Pekney, N.J.; Martello, D.V.; Schroeder, K.T.; Granite, E.J.

2009-05-01T23:59:59.000Z

198

Treatability study for removal of leachable mercury in crushed fluorescent lamps  

SciTech Connect (OSTI)

Nonserviceable fluorescent lamps removed from radiological control areas at the Oak Ridge Department of Energy facilities have been crushed and are currently managed as mixed waste (hazardous and radiologically contaminated). We present proposed treatment flowsheets and supporting treatability study data for conditioning this solid waste residue so that it can qualify for disposal in a sanitary landfill. Mercury in spent fluorescent lamps occurs primarily as condensate on high-surface-area phosphor material. It can be solubilized with excess oxidants (e.g., hypochlorite solution) and stabilized by complexation with halide ions. Soluble mercury in dechlorinated saline solution is effectively removed by cementation with zero-valent iron in the form of steel wool. In packed column dynamic flow testing, soluble mercury was reduced to mercury metal and insoluble calomel, loading > 1.2 g of mercury per grain of steel wool before an appreciable breakthrough of soluble mercury in the effluent.

Bostick, W.D.; Beck, D.E.; Bowser, K.T. [and others

1996-02-01T23:59:59.000Z

199

Mercury Strategic Plan Outfall 200 Mercury Treatment Facility  

Office of Environmental Management (EM)

Partial LMR * Alpha-5 LMR & Bldg Characterization * S&M mercury removal * Hg waterfishsediment studies * Technology Development Plan * Debris treatability study * Fate and...

200

FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report  

SciTech Connect (OSTI)

Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agents to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.

Searcy, K; Bltyhe, G M; Steen, W A

2012-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Innovative Mercury Treatment Benefits Stream, Fish | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mercury Treatment Benefits Stream, Fish Innovative Mercury Treatment Benefits Stream, Fish October 1, 2012 - 12:00pm Addthis Oak Ridge scientists Kelly Roy, left, and Trent Jett...

202

Neutrino Factory Mercury Flow Loop  

E-Print Network [OSTI]

Neutrino Factory Mercury Flow Loop V. GravesV. Graves C. Caldwell IDS-NF Videoconference March 9, 2010 #12;Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94 2 liter/min 24 9 gpm)mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment showed that a pump

McDonald, Kirk

203

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal-to-stack basis, was 53%. The average Hg concentration in the stack flue gas was 4.09 {micro}g/m{sup 3}. The average stack mercury emission was 3.47 Ib/TBtu. The mercury material balance closures ranged from 87% to 108%, with an average of 97%. A sampling program similar to this one was performed on a similar unit (at the same plant) that was equipped with an SCR for NOx control. Comparison of the results from the two units show that the SCR increases the percentage of mercury that is in the oxidized form, which, in turn, lends to more of the total mercury being removed in the wet scrubber. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NOx, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal.

J.A. Withum; S.C. Tseng; J.E. Locke

2005-11-01T23:59:59.000Z

204

Mercury Detection with Gold Nanoparticles  

E-Print Network [OSTI]

samples by cold vapor-atomic absorption spectrometry,” J.S. Gucer, “Direct atomic absorption determination of mercuryL. A. Vasilieva, “Direct atomic absorption determination of

Crosby, Jeffrey

2013-01-01T23:59:59.000Z

205

Apparatus for mercury refinement  

DOE Patents [OSTI]

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-07-16T23:59:59.000Z

206

Method for mercury refinement  

DOE Patents [OSTI]

The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

Grossman, M.W.; Speer, R.; George, W.A.

1991-04-09T23:59:59.000Z

207

Method for mercury refinement  

DOE Patents [OSTI]

The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

208

Apparatus for mercury refinement  

DOE Patents [OSTI]

The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA); George, William A. (Rockport, MA)

1991-01-01T23:59:59.000Z

209

Method for scavenging mercury  

DOE Patents [OSTI]

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

2009-01-20T23:59:59.000Z

210

Method for scavenging mercury  

DOE Patents [OSTI]

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-Ger (El Cerrito, CA); Liu, Shou-Heng (Kaohsiung, TW); Liu, Zhao-Rong (Beijing, CN); Yan, Naiqiang (Berkeley, CA)

2011-08-30T23:59:59.000Z

211

Method for scavenging mercury  

DOE Patents [OSTI]

Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

Chang, Shih-ger (El Cerrito, CA); Liu, Shou-heng (Kaohsiung, TW); Liu, Zhao-rong (Bejing, CN); Yan, Naiqiang (Burkeley, CA)

2010-07-13T23:59:59.000Z

212

Treatment of Mercury Contaminated Oil from the Mound Site  

SciTech Connect (OSTI)

Over one thousand gallons of tritiated oil, at various contamination levels, are stored in the Main Hill Tritium Facility at the Miamisburg Environmental Management Project (MEMP), commonly referred to as Mound Site. This tritiated oil is to be characterized for hazardous materials and radioactive contamination. Most of the hazardous materials are expected to be in the form of heavy metals, i.e., mercury, silver, lead, chromium, etc, but transuranic materials and PCBs could also be in some oils. Waste oils, found to contain heavy metals as well as being radioactively contaminated, are considered as mixed wastes and are controlled by Resource Conservation and Recovery Act (RCRA) regulations. The SAMMS (Self-Assembled Mercaptan on Mesoporous Silica) technology was developed by the Pacific Northwest National Laboratory (PNNL) for removal and stabilization of RCRA metals (i.e., lead, mercury, cadmium, silver, etc.) and for removal of mercury from organic solvents. The SAMMS material is based on self-assembly of functionalized monolayers on mesoporous oxide surfaces. The unique mesoporous oxide supports provide a high surface area, thereby enhancing the metal-loading capacity. SAMMS material has high flexibility in that it binds with different forms of mercury, including metallic, inorganic, organic, charged, and neutral compounds. The material removes mercury from both organic wastes, such as pump oils, and from aqueous wastes. Mercury-loaded SAMMS not only passes TCLP tests, but also has good long-term durability as a waste form because: (1) the covalent binding between mercury and SAMMS has good resistance in ion-exchange, oxidation, and hydrolysis over a wide pH range and (2) the uniform and small pore size of the mesoporous silica prevents bacteria from solubilizing the bound mercury.

Klasson, KT

2000-11-09T23:59:59.000Z

213

REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION  

SciTech Connect (OSTI)

Mercury emission compliance presents one of the major potential challenges raised by the 1990 Clean Air Act Amendments. Simple ways of controlling emissions have not been identified. The variability in the field data suggest that inherent mercury emissions may be reduced if the source of this inherent capture can be identified and controlled. The key mechanisms appear to involve the oxidation of mercury to Hg{sup 2}, generally producing the more reactive HgCl{sub 2}, followed by its capture by certain components of the fly ash or char, or in the air pollution control equipment. This research focuses on identifying the rate-limiting steps associated with the oxidation step. Work in this reporting period focused on the refinement of the rate constants used in the kinetic mechanism for mercury oxidation. The possible reactions leading to mercury oxidation are reviewed. Rate constants for these reactions are discussed, using both literature sources and detailed estimates. The resulting mechanism represents the best present picture of the overall chlorine homogeneous oxidation chemistry. Application of this mechanism to the data will be explored in the subsequent reporting period. Work conducted under the present grant has been the subject of two meeting papers presented during the reporting period (Sliger et al., 1998a,b).

John C. Kramlich; Rebecca N. Sliger; David J. Going

1999-08-06T23:59:59.000Z

214

RMP Mercury Strategy 06-03-09.doc Page 1 of 5 RMP MERCURY STRATEGY  

E-Print Network [OSTI]

RMP Mercury Strategy 06-03-09.doc Page 1 of 5 RMP MERCURY STRATEGY Mercury is a pollutant of high the information most urgently needed by managers to find remedies to the Bay's mercury problem. The focus of total mercury in the Bay are expected to slowly decline over coming decades. The premise

215

Stanford University Mercury Thermometer Replacement  

E-Print Network [OSTI]

Stanford University Mercury Thermometer Replacement Program Instructions for Reuniting Separated Fluid Column of Non-Mercury Thermometer Heating Method Heat the thermometers bulb in an upright position of the thermometer. Note that over filling the expansion chamber will break the thermometer. Tap the thermometer

216

Atmospheric Mercury: Emissions, Transport/Fate,  

E-Print Network [OSTI]

, global...) Is "emissions trading" workable and ethical? Is the recently promulgated Clean Air Mercury

217

Mercury Speciation in the Presence of Polysulfides  

E-Print Network [OSTI]

Mercury Speciation in the Presence of Polysulfides J E N N Y A Y L A J A Y , * , F R A N C¸ O I Environmental mercury methylation appears modulated by sulfide concentrations, possibly via changes in mercury, there has been much recent interest in quantifying the chemical speciation and lipid solubility of mercury

Morel, François M. M.

218

Methods for dispensing mercury into devices  

DOE Patents [OSTI]

A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1987-04-28T23:59:59.000Z

219

Mercury and the Gold Country Angler Survey  

E-Print Network [OSTI]

#12;#12;Mercury and the Gold Rush #12;#12;#12;#12;#12;#12;#12;#12;#12;Gold Country Angler Survey A Pilot Study to Assess Mercury Exposure from Sport Fish Consumption in the Sierra Nevada Carrie Monohan, Ph.D. #12;Mercury and the Gold Rush Deer Creek 1908 Greenhorn Creek 2011 Mercury was used during

220

Mercury Pollution in the Marine Environment  

E-Print Network [OSTI]

Mercury Pollution in the Marine Environment The Coastal and Marine Mercury Ecosystem Research stakeholders to form C-MERC, the Coastal and Marine Mercury Ecosystem Research Collaborative. The goal was to review current knowledge--and knowledge gaps--relating to a global environmental health problem, mercury

Shepherd, Simon

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Methods for dispensing mercury into devices  

DOE Patents [OSTI]

A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

Grossman, M.W.; George, W.A.

1987-04-28T23:59:59.000Z

222

Mercury Spill Information and Response Guidance  

E-Print Network [OSTI]

Mercury Spill Information and Response Guidance Background Information Mercury can be found, plumbing traps and vacuum pumps. When mercury is spilled, it forms beads or droplets that can accumulate mercury vapors can be very dangerous, depending on the amount inhaled and the length of exposure

Holland, Jeffrey

223

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network [OSTI]

measurements of atomic mercury. Applied Physics B, 87(2),M. & Covelli, S. , 2000. Mercury speciation in sedimentsarea of the Idrija mercury mine, Slovenia. Environmental

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

224

LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young Unit 2 and TXU Monticello Unit 3. The work involves establishing Hg oxidation levels upstream of air pollution control devices (APCDs) and removal rates across existing ESP and FGD units, determining costs associated with those removal rates, investigating the possibility of the APCD acting as a multipollutant control device, quantifying the balance of plant impacts of the control technologies, and facilitating technology commercialization.

Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

2004-03-01T23:59:59.000Z

225

Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349  

SciTech Connect (OSTI)

In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude below a target industrial groundwater concentration beneath the source and would not influence concentrations in surface water at Station 17. This analysis addressed only shallow concentrations in soil and the shallow groundwater flow path in soil and unconsolidated sediments to UEFPC. Other mercury sources may occur in bedrock and transport though bedrock to UEFPC may contribute to the mercury flux at Station 17. Generally mercury in the source areas adjacent to the stream and in sediment that is eroding can contribute to the flux of mercury in surface water. Because colloidally adsorbed mercury can be transported in surface water, actions that trap colloids and or hydrologically isolate surface water runoff from source areas would reduce the flux of mercury in surface water. Mercury in soil is highly adsorbed and transport in the groundwater system is very limited under porous media conditions. (authors)

Bostick, Kent; Daniel, Anamary [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States)] [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States); Malek-Mohammadi, Siamak [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)] [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)

2013-07-01T23:59:59.000Z

226

Fluorescent sensor for mercury  

DOE Patents [OSTI]

The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

Wang, Zidong (Urbana, IL); Lee, Jung Heon (Evanston, IL); Lu, Yi (Champaign, IL)

2011-11-22T23:59:59.000Z

227

Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor  

SciTech Connect (OSTI)

This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150oC. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150?C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and intraparticle diffusion. The Freundlich isotherm more accurately described in-flight mercury capture. Using these parameters, very little intraparticle diffusion was evident. Consistent with other data, smaller particles resulted in higher mercury uptake due to available surface area. Therefore, it is important to capture the particle size distribution in the model. At typical full-scale sorbent feed rates, the calculations underpredicted adsorption, suggesting that wall effects can account for as much as 50 percent of the removal, making it an important factor in entrained-mercury adsorption models.

Buitrago, Paula A; Morrill, Mike; Lighty, JoAnn S; Silcox, Geoffrey D

2014-08-20T23:59:59.000Z

228

REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION  

SciTech Connect (OSTI)

Oxidized mercury has been shown to be more easily removed from power plant flue gas by existing air pollution control equipment (e.g., wet scrubbers) than elemental mercury. The factors that determine how mercury is converted to the oxidized form in practical systems are, however, unknown. The present research focuses on developing an elementary, homogeneous mechanism that describes the oxidation of mercury by chlorine species as it occurs in practical furnaces. The goal is to use this mechanism (1) as a component in an overall homogeneous/heterogeneous mechanism that describes mercury behavior, and (2) to suggest low cost/low impact means of promoting mercury oxidation in furnaces. The results suggest an important role for Hg+Cl {r_arrow} HgCl and HgCl + Cl {r_arrow} HgCl{sub 2}. Here, the Cl is derived by radical attack on HCl in the high-temperature environment. The results suggest that the oxidation occurs during the time that the gases cool to room temperature. The high Cl concentrations from the flame persist into the quench region and provide for the oxidation of Hg to HgCl{sub 2} under lower temperatures where the products are stable. Under this mechanism, no significant HgCl{sub 2} is actually present at the higher temperatures where oxidized mercury is often reported in the literature (e.g., 900 C). Instead, all oxidation occurs as these gases are quenched. The results suggest that means of promoting Cl concentrations in the furnace will increase oxidation.

John C. Kramlich; Rebecca N. Sliger

2000-08-26T23:59:59.000Z

229

REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION  

SciTech Connect (OSTI)

Mercury emission compliance presents one of the major potential challenges raised by the 1990 Clean Air Act Amendments. Simple ways of controlling emissions have not been identified. The variability in the field data suggest that inherent mercury emissions may be reduced if the source of this inherent capture can be identified and controlled. The key mechanisms appear to involve the oxidation of mercury to Hg{sup 2}, generally producing the more reactive HgCl{sub 2}, followed by its capture by certain components of the fly ash or char, or in the air pollution control equipment. This research focuses on identifying the rate-limiting steps associated with the oxidation step. Work in this reporting period focused on testing of the kinetic mechanism reported in the previous semiannual report, and the interpretation of data (both ours and literature). This model yields good qualitative agreement with the data and indicates that mercury oxidation occurs during the thermal quench of the combustion gases. The model also suggests that atomic chlorine is the key oxidizing species. The oxidation is limited to a temperature window between 700-400 C that is defined by the overlap of (1) a region of significant superequilibrium Cl concentration, and (2) a region where oxidized mercury is favored by equilibrium. Above 700 C reverse reactions effectively limit oxidized mercury concentrations. Below 400 C, atomic chlorine concentrations are too low to support further oxidation. The implication of these results are that homogeneous oxidation is governed primarily by (1) HCl concentration, (2) quench rate, and (3) background gas composition. Work conducted under the present grant has been the subject of one journal paper that was accepted for publication during the reporting period (Sliger et al., 1999).

John C. Kramlich; Rebecca N. Sliger; David J. Going

1999-08-06T23:59:59.000Z

230

Mercury's moment of inertia from spin and gravity data  

E-Print Network [OSTI]

2006), Evolution of Mercury’s obliquity, Icarus, 181, 327–longitude librations of Mercury, Icarus, 207, 11 of 11The free librations of Mercury and the size of its inner

2012-01-01T23:59:59.000Z

231

Mercury Oxidation via Catalytic Barrier Filters Phase II  

SciTech Connect (OSTI)

In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

2007-09-30T23:59:59.000Z

232

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Four sampling tests were performed in August 2004 during ozone season with the SCR operating; flue gas mercury speciation and concentrations were determined at the SCR inlet, SCR outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Three sampling tests were also performed in November 2004 during non-ozone season with the SCR bypassed; flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet). Process samples for material balances were collected during the flue gas measurements. The results show that, at the point where the flue gas enters the FGD, a greater percentage of the mercury was in the oxidized form when the SCR was operating compared to when the SCR was bypassed (97% vs 91%). This higher level of oxidation resulted in higher mercury removals in the FGD because the FGD removed 90-94% of the oxidized mercury in both cases. Total coal-to-stack mercury removal was 86% with the SCR operating, and 73% with the SCR bypassed. The average mercury mass balance closure was 81% during the ozone season tests and 87% during the non-ozone season tests.

J. A. Withum; S. C. Tseng; J. E. Locke

2006-01-31T23:59:59.000Z

233

Clean Air Mercury Rule (released in AEO2009)  

Reports and Publications (EIA)

On February 8, 2008, a three-judge panel on the D.C. Circuit of the U.S. Court of Appeals issued a decision to vacate the Clean Air Mercury Rule (CAMR). In its ruling, the panel cited the history of hazardous air pollutant regulation under Section 112 of the Clean Air Act (CAA). Section 112, as written by Congress, listed emitted mercury as a hazardous air pollutant that must be subject to regulation unless it can be proved harmless to public welfare and the environment. In 2000, the Environmental Protection Agency ruled that mercury was indeed hazardous and must be regulated under Section 112 and, therefore, subjected to the best available control technology for mitigation.

2009-01-01T23:59:59.000Z

234

Spatial assessment of net mercury emissions from the use of fluorescent bulbs  

SciTech Connect (OSTI)

While fluorescent lighting is an important technology for reducing electrical energy demand, mercury used in the bulbs is an ongoing concern. Using state and country level data, net emissions of mercury from the marginal use of fluorescent lightbulbs are examined for a base year of 2004 for each of the 50 United States and 130 countries. Combustion of coal for electric power generation is generally the largest source of atmospheric mercury pollution; reduction in electricity demand from the substitution of incandescent bulbs with fluorescents leads to reduced mercury emissions during the use of the bulb. This analysis considers the local mix of power sources, coal quality, thermal conversion efficiencies, distribution losses, and any mercury control technologies that might be in place. Emissions of mercury from production and end-of-life treatment of the bulbs are also considered, providing a life-cycle perspective. Net reductions in mercury over the entire life cycle range from -1.2 to 97 mg per bulb depending on the country. The consequences for atmospheric mercury emissions of several policy scenarios are also discussed. 46 refs., 4 figs., 3 tabs.

Matthew J. Eckelman; Paul T. Anastas; Julie B. Zimmerman [Yale University, New Haven, CT (United States). Department of Chemical Engineering

2008-11-15T23:59:59.000Z

235

Mercury in the Anthropocene Ocean  

E-Print Network [OSTI]

The toxic metal mercury is present only at trace levels in the ocean, but it accumulates in fish at concentrations high enough to pose a threat to human and environmental health. Human activity has dramatically altered the ...

Lamborg, Carl

236

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Unit 1 is similar to Unit 2, except that Unit 1 has no SCR for NOx control. Four sampling tests were performed on both units in January 2005; flue gas mercury speciation and concentrations were determined at the economizer outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process samples for material balances were collected with the flue gas measurements. The results show that the SCR increased the oxidation of the mercury at the air heater outlet. At the exit of the air heater, a greater percentage of the mercury was in the oxidized and particulate forms on the unit equipped with an SCR compared to the unit without an SCR (97.4% vs 91%). This higher level of oxidation resulted in higher mercury removals in the scrubber. Total mercury removal averaged 97% on the unit with the SCR, and 87% on the unit without the SCR. The average mercury mass balance closure was 84% on Unit 1 and 103% on Unit 2.

J. A. Withum; J. E. Locke

2006-02-01T23:59:59.000Z

237

Regulating mercury with the Clear Skies Act : the resulting impacts on innovation, human health, and the global community  

E-Print Network [OSTI]

The 1990 Clean Air Act Amendments require the U.S. EPA to control mercury emission outputs from coal-burning power plants through implementation of MACT, Maximum Achievable Control Technology, standards. However, in 2003 ...

Sweeney, Meghan (Meghan Kathleen)

2006-01-01T23:59:59.000Z

238

In situ mercury stabilization  

SciTech Connect (OSTI)

BNL Royalty Project Internal Status Report. The funds from the allotment of royalty income were used to experimentally explore feasibility of related, potential new techniques based on the Environmental Sciences Department successful technology licensed for the ex situ treatment of mercury. Specifically, this work is exploring the concept of using Sulfur Polymer Cement (SPC) in an in situ application to stabilize and/or remove mercury (Hg) from surficial soil. Patent disclosure forms have been filed for this process. Soil was artificially spiked with 500 ppm Hg and a series of experiments were set up in which SPC rods were placed in the center of a mass of this soil. Some experiments were conducted at 20 C and others at 50 C. After times ranging from 11 to 24 days, these experiments were opened, photographed and the soil was sampled from discrete locations in the containers. The soil and SPC samples were analyzed for Fe and Hg by x-ray fluorescence. The Hg profile in the soil was significantly altered, with concentrations along the outer edge of the soil reduced by as much as 80% from the starting concentration. Conversely, closer to the treatment rod containing SPC, concentrations of Hg were significantly increased over the original concentration. Preliminary results for elevated temperature sample are shown graphically in Figure 2. Apparently the Hg had migrated toward the SPC and reacted with sulfur to form Hg S. This appears to be a reaction between gaseous phases of both S and Hg, with Hg having a greater vapor pressure. The concentration of low solubility HgS (i.e., low leaching properties) developed within 11 days at 50 C and 21 days at 20 C, confirming the potential of this concept.

Fuhrmann, M.; Kalb, P.; Adams, J.

2004-09-01T23:59:59.000Z

239

IntroductionIntroduction Mercury: Monitoring Patients with ParkinsonMercury: Monitoring Patients with Parkinson''s Diseases Disease  

E-Print Network [OSTI]

IntroductionIntroduction Mercury: Monitoring Patients with ParkinsonMercury: Monitoring Patients's Disease EvaluationEvaluation Mercury ArchitectureMercury Architecture Mercury is a wireless sensor network and disconnections Node Behavior Hardware PlatformHardware Platform Usage Scenario InternetInternet http://fiji.eecs.harvard.edu/Mercury

Chen, Yiling

240

Mercury-Mercury Tunneling Junctions. 1. Electron Tunneling Across Symmetric and Asymmetric Alkanethiolate Bilayers  

E-Print Network [OSTI]

Mercury-Mercury Tunneling Junctions. 1. Electron Tunneling Across Symmetric and Asymmetric by bringing in contact two small (3 Ă? 10-3 cm2) mercury drop electrodes in a 5-20% (v/v) hexadecane solution incorporating alkanethiolate-type monolayer films. The results reported below convince us that the mercury

Majda, Marcin

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mercury switch with non-wettable electrodes  

DOE Patents [OSTI]

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, Maurice M. (Albulquerque, NM); Yost, Frederick G. (Carlsbad, NM)

1987-01-01T23:59:59.000Z

242

Method for the removal and recovery of mercury  

DOE Patents [OSTI]

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

1997-01-28T23:59:59.000Z

243

Method for the removal and recovery of mercury  

DOE Patents [OSTI]

The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

Easterly, Clay E. (Knoxville, TN); Vass, Arpad A. (Oak Ridge, TN); Tyndall, Richard L. (Clinton, TN)

1997-01-01T23:59:59.000Z

244

Mercury bioaccumulation in Lavaca Bay, Texas  

E-Print Network [OSTI]

(waves), and human activities (dredging and shrimping) can potentially release mercury to the overlying water (LINDBERG and HARRISS, 1977; CRANSTON, 1976). The solubility, reactivity, and toxicity of mercury is dependent on its form. Divalent mercury... MERCURY BIOACCUMULATION IN LAVACA BAY, TEXAS A Thesis by SALLY JO PALMER Submitted to the Office of Graduate Studies of Texas ABM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1992 Major...

Palmer, Sally Jo

1992-01-01T23:59:59.000Z

245

2003 Mercury Computer Systems, Inc. Data Reorganization  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Data Reorganization Interface (DRI) Data Reorganization Interface (DRI) Kenneth Cain Jr. Mercury Computer Systems, Inc. High Performance Embedded Computing (HPEC Mercury Computer Systems, Inc. Status update for the DRI-1.0 standard since Sep. 2002 publication Outline

Kepner, Jeremy

246

3, 35253541, 2003 Modelling of Mercury  

E-Print Network [OSTI]

ACPD 3, 3525­3541, 2003 Modelling of Mercury with the Danish Eulerian Hemispheric Model J. H and Physics Discussions Modelling of mercury with the Danish Eulerian Hemispheric Model J. H. Christensen, J Correspondence to: J. H. Christensen (jc@dmu.dk) 3525 #12;ACPD 3, 3525­3541, 2003 Modelling of Mercury

Paris-Sud XI, Université de

247

Constraining Mercury Oxidation Using Wet Deposition  

E-Print Network [OSTI]

Constraining Mercury Oxidation Using Wet Deposition Noelle E. Selin and Christopher D. Holmes mercury oxidation [Selin & Jacob, Atmos. Env. 2008] 30 60 90 120 150 30 60 90 120 150 30 60 90 120 150 30 Influences on Mercury Wet Deposition · Hg wet dep = f(precipitation, [Hg(II)+Hg(P)]) Correlation (r2) between

Selin, Noelle Eckley

248

Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury  

E-Print Network [OSTI]

Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury Noelle Eckley Selin *Reprinted from Mercury in the Environment: Pattern and Process (Chapter 5) pp. 73-80 Copyright © 2012 with kind, and Biogeochemistry of Mercury NOELLE ECKLEY SELIN and their distribution in the atmosphere. This includes

249

Mercury: Recovering Forgotten Passwords Using Personal Devices  

E-Print Network [OSTI]

Mercury: Recovering Forgotten Passwords Using Personal Devices Mohammad Mannan1 , David Barrera2, and to allow forgotten passwords to be securely restored, we present a scheme called Mercury. Its primary mode and revealed to the user. A prototype implementation of Mercury is available as an Android application. 1

Van Oorschot, Paul

250

2003 Mercury Computer Systems, Inc. Delivered Performance  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Delivered Performance Predictions and Trends for RISC Applications Luke Cico (lcico@mc.com) Mark Merritt (mmerritt@mc.com) Mercury Computer Systems, Inc. Chelmsford, MA 01824 #12;© 2003 Mercury Computer Systems, Inc. Goals of PresentationGoals of Presentation

Kepner, Jeremy

251

REPLACE YOUR MERCURY THERMOMETERS BEFORE THEY BREAK!  

E-Print Network [OSTI]

REPLACE YOUR MERCURY THERMOMETERS BEFORE THEY BREAK! Did you know, mercury from broken thermometers to the local environment, if broken thermometers in sinks eventually end at the sanitary sewer plant. Broken mercury thermometers create hazardous waste that is costly to clean up and costly to dispose of. Other

252

Mercury Continuous Emmission Monitor Calibration  

SciTech Connect (OSTI)

Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry (ID/ICP/MS) performed by NIST in Gaithersburg, MD. The outputs of mercury calibrators are compared to one another using a nesting procedure which allows direct comparison of one calibrator with another at specific concentrations and eliminates analyzer variability effects. The qualification portion of the EPA interim traceability protocol requires the vendors to define calibrator performance as affected by variables such as pressure, temperature, line voltage, and shipping. In 2007 WRI developed and conducted a series of simplified qualification experiments to determine actual calibrator performance related to the variables defined in the qualification portion of the interim protocol.

John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

2009-03-12T23:59:59.000Z

253

Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2  

SciTech Connect (OSTI)

Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

Not Available

2011-01-01T23:59:59.000Z

254

Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1  

SciTech Connect (OSTI)

Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

Not Available

2011-01-01T23:59:59.000Z

255

Research and Development Needs for Wind Systems Utilizing Controllable...  

Energy Savers [EERE]

Research and Development Needs for Wind Systems Utilizing Controllable Grid Simulators and Full Scale Hardware in the Loop Testing Research and Development Needs for Wind Systems...

256

OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS  

SciTech Connect (OSTI)

Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-10-01T23:59:59.000Z

257

MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM  

SciTech Connect (OSTI)

In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

V.K. Mathur

2003-02-01T23:59:59.000Z

258

Research and Development with Full Scale Research  

E-Print Network [OSTI]

One of the research programs of the Energy research Centre of the Netherlands (ECN) concerns the built environment. Several facilities to conduct the research activities are at ECN's disposal. One of these facilities, are five research dwellings...

Sijpheer, N.; Bakker, E.J.; Opstelten, I.

2010-01-01T23:59:59.000Z

259

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our environment from heavy  

E-Print Network [OSTI]

All mercury lamps contain small amounts of mercury. An electric current passes through the lamp and vaporizes the mercury to generate light. Recycling mercury containing lamps protects human health and our the environment by recycling universal wastes, contact EH&S at (949) 824-6200 or visit: www.ehs.uci.edu Mercury

George, Steven C.

260

An assessment of methyl mercury and volatile mercury in land-applied sewage sludge  

SciTech Connect (OSTI)

In 1993, the US Environmental Protection Agency issued regulations covering the land-application of municipal sewage sludge. These regulations established maximum pollutant concentrations and were based upon a risk assessment of human exposure. Mercury, assumed to be inorganic and non-volatile, was one pollutant evaluated. From April, 1995 through February, 1996, the authors studied the species of mercury contaminating municipal sludge applied to land, and the potential for volatilization of mercury from land-applied sludge. Methyl mercury was found at 0.1% of total mercury concentrations and was emitted from land-applied sludge to the atmosphere. Elemental mercury (Hg) was formed in land-applied sludge via the reduction of oxidized mercury and was also emitted to the atmosphere. Hg emission from land-applied sludge was significantly elevated over background soil emission. Methyl mercury is more toxic and more highly bioaccumulated than inorganic mercury, and warrants assessment considering these special criteria. Additionally, mercury emission from sludge-amended soil may lead to the contamination of other environmental media with significant concentrations of the metal. Although these pathways were not evaluated in the regulatory risk assessment, they are an important consideration for evaluating the risks from mercury in land-applied sludge. This presentation will summarize the results of a re-assessment of US EPA regulations regarding the land-application of municipal sewage sludge using data on methyl mercury toxicity and mercury transport in the atmosphere.

Carpi, A. [Cornell Univ., Ithaca, NY (United States); Lindberg, S.E. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Kinetics of Mercury(II) Adsorption and Desorption on Soil  

E-Print Network [OSTI]

Kinetics of Mercury(II) Adsorption and Desorption on Soil Y U J U N Y I N , H E R B E R T E . A L L of Delaware, Newark, Delaware 19716 D O N A L D L . S P A R K S Department of Plant and Soil Sciences kinetics of Hg(II) on four soils at pH 6 were investigated to discern the mechanisms controlling

Sparks, Donald L.

262

Atmospheric Mercury Deposition during the Last 270 Years: A  

E-Print Network [OSTI]

Atmospheric Mercury Deposition during the Last 270 Years: A Glacial Ice Core Record of Natural, and U.S. Geological Survey, Wisconsin District Mercury Research Laboratory, Middleton, Wisconsin 53562 Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation

263

Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay  

E-Print Network [OSTI]

S, and Flegal AR 2008. Mercury in the San Francisco Estuary.may 2010 Mercury-Contaminated Hydraulic Mining Debris in Sancontaminants such as ele- mental mercury and cyanide used in

Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

2010-01-01T23:59:59.000Z

264

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a coal-to-stack basis, was 87%. The mercury material balance closures for the four tests conducted at the plant ranged from 89% to 114%, with an average of 100%. These results appear to show that the SCR had a positive effect on mercury removal. In earlier programs, CONSOL sampled mercury at six plants with wet FGDs for SO{sub 2} control without SCR catalysts. At those plants, an average of 61 {+-} 15% of the mercury was in the oxidized form at the air heater outlet. The principal purpose of this work is to develop a better understanding of the potential Hg removal ''co-benefits'' achieved by NOx, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of Hg chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize Hg removal.

J. A. Withum; S.C. Tseng; J. E. Locke

2004-10-31T23:59:59.000Z

265

Sulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury uptake  

E-Print Network [OSTI]

promote the formation of organic sulfur and the presence of H2S during the cooling process increased in the presence of H2S was very effective towards Hg uptake in nitrogen. Corre- lation of mercury uptake capacitySulfurization of a carbon surface for vapor phase mercury removal ­ II: Sulfur forms and mercury

Borguet, Eric

266

Choked-Flow Inlet Orifice Bubbler for Creating Small Bubbles in Mercury  

SciTech Connect (OSTI)

Pressure waves created in liquid mercury pulsed spallation targets like the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, induce cavitation damage on the target container. The cavitation damage is thought to limit the lifetime of the target for power levels at and above 1 MW. One way to mitigate the damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, creating a bubble size distribution that is sufficiently large and disperse in mercury is challenging due to the high surface tension. Also, measuring the population is complicated by the opacity and the high level of turbulent mixing. Recent advances in bubble diagnostics by batch sampling the mercury made it possible to compare bubble populations for different techniques in a SNS-1/20th scale test loop. More than 10 bubblers were tested and the most productive bubblers were taken for in-beam testing at the Los Alamos Neutron Science Center (LANSCE) WNR user facility. One bubbler design, referred to as the inlet-orifice bubbler, that showed moderate success in creating populations also has an added advantage that it could easily be included in the existing SNS full-scale mercury target configuration. Improvements to the bubbler were planned including a reduction of the nozzle size to choke the gas injection, thus steadying the injected mass flow and allowing multiple nozzles to work off of a common plenum. For the first time, reliable bubble population data are available in the prototypical target geometry and can be compared with populations that mitigated cavitation damage. This paper presents those experimental results.

Wendel, Mark W [ORNL] [ORNL; Abdou, Ashraf A [ORNL] [ORNL; Riemer, Bernie [ORNL] [ORNL

2013-01-01T23:59:59.000Z

267

Remediation of Mercury and Industrial Contaminants Applied Field...  

Office of Environmental Management (EM)

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

268

Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations  

E-Print Network [OSTI]

Mercury/Waterfilling: Optimum Power Allocation with Arbitrary Input Constellations Angel Lozano gives the power allocation policy, referred to as mercury/waterfilling, that maximizes the sum mutual

VerdĂş, Sergio

269

Process for removing mercury from aqueous solutions  

DOE Patents [OSTI]

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

1985-03-04T23:59:59.000Z

270

Process for removing mercury from aqueous solutions  

DOE Patents [OSTI]

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, John M. (Oak Ridge, TN); Napier, John M. (Oak Ridge, TN); Makarewicz, Mark A. (Knoxville, TN); Meredith, Paul F. (Knoxville, TN)

1986-01-01T23:59:59.000Z

271

Mercury Geochemical, Groundwater Geochemical, And Radiometric...  

Open Energy Info (EERE)

Prospects In Northern Nevada Abstract Ground water sampling, desorbed mercury soil geochemical surveys and a radiometric geophysical survey was conducted in conjunction...

272

Mercury Sensing with Optically Responsive Gold Nanoparticles  

E-Print Network [OSTI]

1.1.5 Mercury detection Atomic absorption 19 and atomicsacrifices in simplicity. Atomic absorption or fluorescencedown to low nanogram masses. Atomic absorption/fluorescence

James, Jay Zachary

2012-01-01T23:59:59.000Z

273

Apparatus for isotopic alteration of mercury vapor  

DOE Patents [OSTI]

An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

1988-01-01T23:59:59.000Z

274

Mercury concentrations in Maine sport fishes  

SciTech Connect (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States)] [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)] [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

275

Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum  

SciTech Connect (OSTI)

Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

Hensman, Carl, E., P.h.D; Baker, Trevor

2008-06-16T23:59:59.000Z

276

Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor  

SciTech Connect (OSTI)

Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (USA). Institute for Combustion Science and Environmental Technology (ICSET)

2008-12-15T23:59:59.000Z

277

Increased Mercury Bioaccumulation Follows Water Quality Improvement  

SciTech Connect (OSTI)

Changes in physical and chemical characteristics of aquatic habitats made to reduce or eliminate ecological risks can sometimes have unforeseen consequences. Environmental management activities on the U.S. Dept. of Energy reservation in Oak Ridge, Tennessee,have succeeded in improving water quality in streams impacted by discharges fi-om industrial facilities and waste disposal sites. The diversity and abundance of pollution-sensitive components of the benthic macroinvertebrate communities of three streams improved after new waste treatment systems or remedial actions reduced inputs of various toxic chemicals. Two of the streams were known to be mercury-contaminated from historical spills and waste disposal practices. Waterborne mercury concentrations in the third were typical of uncontaminated systems. In each case, concentrations of mercury in fish, or the apparent biological availability of mercury increased over the period during which ecological metrics indicated improved water quality. In the system where waterborne mercury concentrations were at background levels, increased mercury bioaccumulation was probably a result of reduced aqueous selenium concentrations; however, the mechanisms for increased mercury accumulation in the other two streams remain under investigation. In each of the three systems, reduced inputs of metals and inorganic anions was followed by improvements in the health of aquatic invertebrate communities. However, this reduction in risk to aquatic invertebrates was accompanied by increased risk to humans and piscivorous wildlife related to increased mercury concentrations in fish.

Bogle, M.A.; Peterson, M.J.; Smith, J.G.; Southworth, G.R.

1999-09-15T23:59:59.000Z

278

Mercury Chamber NF-IDS Meeting  

E-Print Network [OSTI]

-Battelle for the U.S. Department of Energy Mercury Chamber Update Oct 2011 Starting Point: Coil and Shielding Concept IDS120H #12;3 Managed by UT-Battelle for the U.S. Department of Energy Mercury Chamber Update Oct 2011 · Penetrations (ports) into chamber ­ Nozzle ­ Hg drains (overflow and maintenance) ­ Vents (in and out) ­ Beam

McDonald, Kirk

279

Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Summary and Guide for Stakeholders  

SciTech Connect (OSTI)

Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

Not Available

2011-01-01T23:59:59.000Z

280

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 Factory is a free-stream mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton

McDonald, Kirk

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thursday, March 15, 2007 POSTER SESSION II: MERCURY  

E-Print Network [OSTI]

Thursday, March 15, 2007 POSTER SESSION II: MERCURY 6:30 p.m. Fitness Center Dombard A. J. Hauck S. A. II Despinning Plus Global Contraction and the Orientation of Lobate Scarps on Mercury [#2026] We thermal models of Mercury. King S. D. A Possible Connection Between Convection in Mercury's Mantle

Rathbun, Julie A.

282

2003 Mercury Computer Systems, Inc. Optimizing System Compute  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Optimizing System Compute Density for Deployed HPEC Electronics Engineering Mercury Computer Systems, Inc. rbanton@mc.com Richard Jaenicke, Director, Product Marketing Mercury Computer Systems, Inc. rjaenicke@mc.com #12;2 © 2002 Mercury Computer Systems, Inc.© 2003

Kepner, Jeremy

283

Laser Altimeter Observations from MESSENGER's First Mercury Flyby  

E-Print Network [OSTI]

REPORT Laser Altimeter Observations from MESSENGER's First Mercury Flyby Maria T. Zuber,1 * David E Barnouin-Jha,8 John K. Harmon10 A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part

Hauck II, Steven A.

284

Mercury capture by aerosol transformation in combustion environments. Appendix 5  

SciTech Connect (OSTI)

Aerosol transformation of elemental mercury by oxidizing mercury in the air is investigated in this study by varying temperature and residence time. The experimental results show that mercury oxidation is not important at the temperature range and time scale studied. The rate of mercury oxidation is too slow that the capture of mercury vapor by transforming it into mercury oxide in aerosol phase is not practical in real systems. Studies are needed for alternative approaches to capture mercury vapor such as the use of sorbent materials.

NONE

1997-02-01T23:59:59.000Z

285

Figure 2: The mercury jet target geometry. The proton beam and mercury jet cross at z=-37.5 cm.  

E-Print Network [OSTI]

Figure 2: The mercury jet target geometry. The proton beam and mercury jet cross at z=-37.5 cm. Figure 3: The layout of multiple proton beam entry directions relative to mercury jet at z=-75 cm. A PION of a free liquid mercury jet with an intense proton beam. We study the variation of meson production

McDonald, Kirk

286

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and  

E-Print Network [OSTI]

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and HID (high-intensity discharge) lamps and all other mercury containing labeled for shipment to a recycling plant for mercury, glass and aluminum recovery. The beneficial re

Baker, Chris I.

287

Stimulation of erythrocyte phosphatidylserine exposure by mercury ions  

SciTech Connect (OSTI)

The sequelae of mercury intoxication include induction of apoptosis. In nucleated cells, Hg{sup 2+}-induced apoptosis involves mitochondrial damage. The present study has been performed to elucidate effects of Hg{sup 2+} in erythrocytes which lack mitochondria but are able to undergo apoptosis-like alterations of the cell membrane. Previous studies have documented that activation of a Ca{sup 2+}-sensitive erythrocyte scramblase leads to exposure of phosphatidylserine at the erythrocyte surface, a typical feature of apoptotic cells. The erythrocyte scramblase is activated by osmotic shock, oxidative stress and/or energy depletion which increase cytosolic Ca{sup 2+} activity and/or activate a sphingomyelinase leading to formation of ceramide. Ceramide sensitizes the scramblase to Ca{sup 2+}. The present experiments explored the effect of Hg{sup 2+} ions on erythrocytes. Phosphatidylserine exposure after mercury treatment was estimated from annexin binding as determined in FACS analysis. Exposure to Hg{sup 2+} (1 {mu}M) indeed significantly increased annexin binding from 2.3 {+-} 0.5% (control condition) to 23 {+-} 6% (n = 6). This effect was paralleled by activation of a clotrimazole-sensitive K{sup +}-selective conductance as measured by patch-clamp recordings and by transient cell shrinkage. Further experiments revealed also an increase of ceramide formation by {approx}66% (n = 7) after challenge with mercury (1 {mu}M). In conclusion, mercury ions activate a clotrimazole-sensitive K{sup +}-selective conductance leading to transient cell shrinkage. Moreover, Hg{sup 2+} increases ceramide formation. The observed mechanisms could similarly participate in the triggering of apoptosis in nucleated cells by Hg{sup 2+}.

Eisele, Kerstin [Department of Physiology, University of Tuebingen (Germany); Lang, Philipp A. [Department of Physiology, University of Tuebingen (Germany); Kempe, Daniela S. [Department of Physiology, University of Tuebingen (Germany); Klarl, Barbara A. [Department of Physiology, University of Tuebingen (Germany); Niemoeller, Olivier [Department of Physiology, University of Tuebingen (Germany); Wieder, Thomas [Department of Physiology, University of Tuebingen (Germany); Huber, Stephan M. [Department of Physiology, University of Tuebingen (Germany); Duranton, Christophe [Department of Physiology, University of Tuebingen (Germany); Lang, Florian [Department of Physiology, University of Tuebingen (Germany)]. E-mail: florian.lang@uni-tuebingen.de

2006-01-15T23:59:59.000Z

288

Treatment of mercury containing waste  

DOE Patents [OSTI]

A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

2002-01-01T23:59:59.000Z

289

DFJ Mercury | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings AnalysisDCDFJ Mercury Jump to:

290

Fish mercury distribution in Massachusetts, USA lakes  

SciTech Connect (OSTI)

The sediment, water, and three species of fish from 24 of Massachusetts' (relatively) least-impacted water bodies were sampled to determine the patterns of variation in edible tissue mercury concentrations and the relationships of these patterns to characteristics of the water, sediment, and water bodies (lake, wetland, and watershed areas). Sampling was apportioned among three different ecological subregions and among lakes of differing trophic status. The authors sought to partition the variance to discover if these broadly defined concepts are suitable predictors of mercury levels in fish. Average muscle mercury concentrations were 0.15 mg/kg wet weight in the bottom-feeding brown bullheads (Ameriurus nebulosus); 0.31 mg/kg in the omnivorous yellow perch (Perca flavescens); and 0.39 mg/kg in the predaceous largemouth bass (Micropterus salmoides). Statistically significant differences in fish mercury concentrations between ecological subregions in Massachusetts, USA, existed only in yellow perch. The productivity level of the lakes (as deduced from Carlson's Trophic Status Index) was not a strong predictor of tissue mercury concentrations in any species. pH was a highly (inversely) correlated environmental variable with yellow perch and brown bullhead tissue mercury. Largemouth bass tissue mercury concentrations were most highly correlated with the weight of the fish (+), lake size (+), and source area sizes (+). Properties of individual lakes appear more important for determining fish tissue mercury concentrations than do small-scale ecoregional differences. Species that show major mercury variation with size or trophic level may not be good choices for use in evaluating the importance of environmental variables.

Rose, J.; Hutcheson, M.S.; West, C.R.; Pancorbo, O.; Hulme, K.; Cooperman, A.; DeCesare, G.; Isaac, R.; Screpetis, A.

1999-07-01T23:59:59.000Z

291

10.1177/0270467603259787ARTICLEBULLETIN OF SCIENCE, TECHNOLOGY & SOCIETY / October 2003Roe / FISHING FOR IDENTITY Fishing for Identity: Mercury Contamination  

E-Print Network [OSTI]

of mercury in the United States. During 1999, total mercury emis- sions from power plant emissions exceeded (HG0 ), inorganic mercury (HG2+ ), and methyl mercury (MeHg), methyl mercury poses the greatest threat

Delaware, University of

292

CHARACTERIZATION OF COAL COMBUSTION BY-PRODUCTS FOR THE RE-EVOLUTION OF MERCURY INTO ECOSYSTEMS  

SciTech Connect (OSTI)

There is concern that mercury (Hg) in coal combustion by-products might be emitted into the environment during processing to other products or after the disposal/landfill of these by-products. This perception may limit the opportunities to use coal combustion by-products in recycle/reuse applications and may result in additional, costly disposal regulations. In this program, CONSOL conducted a comprehensive sampling and analytical program to include ash, flue gas desulfurization (FGD) sludge, and coal combustion by-products. This work is necessary to help identify potential problems and solutions important to energy production from fossil fuels. The program objective was to evaluate the potential for mercury emissions by leaching or volatilization, to determine if mercury enters the water surrounding an active FGD disposal site and an active fly ash slurry impoundment site, and to provide data that will allow a scientific assessment of the issue. Toxicity Characteristic Leaching Procedure (TCLP) test results showed that mercury did not leach from coal, bottom ash, fly ash, spray dryer/fabric filter ash or forced oxidation gypsum (FOG) in amounts leading to concentrations greater than the detection limit of the TCLP method (1.0 ng/mL). Mercury was detected at very low concentrations in acidic leachates from all of the fixated and more than half of the unfixated FGD sludge samples, and one of the synthetic aggregate samples. Mercury was not detected in leachates from any sample when deionized water (DI water) was the leaching solution. Mercury did not leach from electrostatic precipitator (ESP) fly ash samples collected during activated carbon injection for mercury control in amounts greater than the detection limit of the TCLP method (1.0 ng/mL). Volatilization tests could not detect mercury loss from fly ash, spray dryer/fabric filter ash, unfixated FGD sludge, or forced oxidation gypsum; the mercury concentration of these samples all increased, possibly due to absorption from ambient surroundings. Mercury loss of 18-26% was detected after 3 and 6 months at 100 F and 140 F from samples of the fixated FGD sludge. Water samples were collected from existing ground water monitoring wells around an active FGD disposal site (8 wells) and an active fly ash slurry impoundment (14 wells). These were wells that the plants have installed to comply with ground water monitoring requirements of their permits. Mercury was not detected in any of the water samples collected from monitoring wells at either site. A literature review concluded that coal combustion byproducts can be disposed of in properly designed landfills that minimize the potentially negative impacts of water intrusion that carries dissolved organic matter (DOM). Dissolved organic matter and sulfate-reducing bacteria can promote the transformation of elemental or oxidized mercury into methyl mercury. The landfill should be properly designed and capped with clays or similar materials to minimize the wet-dry cycles that promote the release of methylmercury.

J.A. Withum; J.E. Locke; S.C. Tseng

2005-03-01T23:59:59.000Z

293

Advanced Materials for Mercury 50 Gas Turbine Combustion System  

SciTech Connect (OSTI)

Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

Price, Jeffrey

2008-09-30T23:59:59.000Z

294

Mechanistic Investigation of Mercury Sorption by Brazilian Pepper Biochars of Different Pyrolytic Temperatures Based on Xray  

E-Print Network [OSTI]

to the environment by various industries, including coal combustion, chlorakali, paint, pulp and paper, and oil, Gainesville, Florida 32611, United States State Key Laboratory of Pollution Control and Resource Reuse system in humans, especially for the developing nervous system of young children.2 Mercury is released

Ma, Lena

295

Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility  

SciTech Connect (OSTI)

Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

Ashworth, Samuel Clay; Wood, R. A.; Taylor, D. D.; Sieme, D. D.

2000-03-01T23:59:59.000Z

296

Future trends in environmental mercury concentrations: implications  

E-Print Network [OSTI]

Future trends in environmental mercury concentrations: implications for prevention strategies interactions among natural and human climate system components; objectively assess uncertainty in economic, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended

297

Filter for isotopic alteration of mercury vapor  

DOE Patents [OSTI]

A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucestor, MA)

1989-01-01T23:59:59.000Z

298

Filter for isotopic alteration of mercury vapor  

DOE Patents [OSTI]

A filter is described for enriching the [sup 196]Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The [sup 196]Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is, less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter. 9 figs.

Grossman, M.W.; George, W.A.

1989-06-13T23:59:59.000Z

299

Mercury sorbent delivery system for flue gas  

DOE Patents [OSTI]

The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

Klunder; ,Edgar B. (Bethel Park, PA)

2009-02-24T23:59:59.000Z

300

Symplectic Integrator Mercury: Bug Report  

E-Print Network [OSTI]

We report on a problem found in MERCURY, a hybrid symplectic integrator used for dynamical problems in Astronomy. The variable that keeps track of bodies' statuses is uninitialised, which can result in bodies disappearing from simulations in a non-physical manner. Some FORTRAN compilers implicitly initialise variables, preventing simulations from having this problem. With other compilers, simulations with a suitably large maximum number of bodies parameter value are also unaffected. Otherwise, the problem manifests at the first event after the integrator is started, whether from scratch or continuing a previously stopped simulation. Although the problem does not manifest in some conditions, explicitly initialising the variable solves the problem in a permanent and unconditional manner.

K. de Souza Torres; D. R. Anderson

2008-08-04T23:59:59.000Z

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mercury contaminated sediment sites—An evaluation of remedial options  

SciTech Connect (OSTI)

Mercury (Hg) is a naturally-occurring element that is ubiquitous in the aquatic environment. Though efforts have been made in recent years to decrease Hg emissions, historically-emitted Hg can be retained in the sediments of aquatic bodies where they may be slowly converted to methylmercury (MeHg). Consequently, Hg in historically-contaminated sediments can result in high levels of significant exposure for aquatic species, wildlife and human populations consuming fish. Even if source control of contaminated wastewater is achievable, it may take a very long time, perhaps decades, for Hg-contaminated aquatic systems to reach relatively safe Hg levels in both water and surface sediment naturally. It may take even longer if Hg is present at higher concentration levels in deep sediment. Hg contaminated sediment results from previous releases or ongoing contributions from sources that are difficult to identify. Due to human activities or physical, chemical, or biological processes (e.g. hydrodynamic flows, bioturbation, molecular diffusion, and chemical transformation), the buried Hg can be remobilized into the overlying water. Hg speciation in the water column and sediments critically affect the reactivity (i.e. conversion of inorganic Hg(II) to MeHg), transport, and its exposure to living organisms. Also, geochemical conditions affect the activity of methylating bacteria and its availability for methylation. This review paper discusses remedial considerations (e.g. key chemical factors in fate and transport of Hg, source characterization and control, environmental management procedures, remediation options, modeling tools) and includes practical case studies for cleaning up Hg-contaminated sediment sites. -- Highlights: ? Managing mercury-contaminated sediment sites are challenging to remediate. ? Remediation technologies are making a difference in managing these sites. ? Partitioning plays a dominant role in the distribution of mercury species. ? Mathematical models can be used to help us understand the chemistry and processes.

Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Chattopadhyay, Sandip, E-mail: Sandip.Chattopadhyay@tetratech.com [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)] [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)

2013-08-15T23:59:59.000Z

302

VEE-0020- In the Matter of Mercury Fuel Service, Inc.  

Broader source: Energy.gov [DOE]

On April 9, 1996, Mercury Fuel Service, Inc. (Mercury) of Waterbury, Connecticut, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE)....

303

Seismic effects of the Caloris basin impact, Mercury  

E-Print Network [OSTI]

Striking geological features on Mercury's surface have been linked to tectonic disruption associated with the Caloris impact and have the potential to provide information on the interior structure of Mercury. The unusual ...

Lü, Jiangning

2011-01-01T23:59:59.000Z

304

Nested-grid simulation of mercury over North America  

E-Print Network [OSTI]

Chemistry and Physics Nested-grid simulation of mercury overY. Zhang et al. : Nested-grid simulation of mercury overand Chen, S. -Y. : Plume-in-grid modeling of atmospheric

2012-01-01T23:59:59.000Z

305

Removal of mercury from coal via a microbial pretreatment process  

SciTech Connect (OSTI)

A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

2011-08-16T23:59:59.000Z

306

DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage  

Broader source: Energy.gov [DOE]

WASHINGTON – The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations

307

Optical frequency standards based on mercury and aluminum ions  

E-Print Network [OSTI]

Optical frequency standards based on mercury and aluminum ions W. M. Itano, J. C. Bergquist, A-16 . Keywords: aluminum, atomic clocks, frequency standards, ion traps, mercury 1. INTRODUCTION Optical frequency standards based on the mercury ion and, more recently, the aluminum ion are under devel- opment

308

Mercury: Supporting Scalable Multi-Attribute Range Queries  

E-Print Network [OSTI]

Mercury: Supporting Scalable Multi-Attribute Range Queries Ashwin R. Bharambe Mukesh Agrawal 15213 Abstract This paper presents the design of Mercury, a scalable protocol for supporting multi-attribute range- based searches. Mercury differs from previous range-based query systems in that it supports mul

Keinan, Alon

309

Mercury/Waterfilling for Fixed Wireless OFDM Angel Lozano  

E-Print Network [OSTI]

Mercury/Waterfilling for Fixed Wireless OFDM Systems Angel Lozano Bell Labs (Lucent Technologies- mation is then given by the more general mercury/waterfilling policy. This paper illustrates the usance of mercury/waterfilling on frequency-selective OFDM channels with QAM constellations and it quantifies

VerdĂş, Sergio

310

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER (IPAC12, WEPPD038) The target station a 15-20 T superconducting magnet. The target itself is a free mercury jet, moving at 20 m/s at an small angle to the magnetic axis, so as later to be collected in a mercury pool/beam dump. The replaceable

McDonald, Kirk

311

Powering Mercury's dynamo J.-P. Williams,1  

E-Print Network [OSTI]

Powering Mercury's dynamo J.-P. Williams,1 O. Aharonson,1 and F. Nimmo2 Received 6 July 2007 magnetic field of Mercury has implications for the interior structure of the planet and its thermal (2007), Powering Mercury's dynamo, Geophys. Res. Lett., 34, L21201, doi:10.1029/ 2007GL031164. 1

Nimmo, Francis

312

2003 Mercury Computer Systems, Inc. Session 5: Current &  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Session 5: Current & Emerging Standards Session 5: Current & Emerging Standards Craig Lund, Chief Technology Officer Mercury Computer Systems, Inc. High Performance Embedded Computing (HPEC) Conference September 2003 #12;© 2003 Mercury Computer Systems, Inc. Agenda

Kepner, Jeremy

313

Wednesday, March 25, 2009 SPECIAL SESSION: MESSENGER AT MERCURY  

E-Print Network [OSTI]

Wednesday, March 25, 2009 SPECIAL SESSION: MESSENGER AT MERCURY: A GLOBAL PERSPECTIVE. T. MESSENGER's Newly Global Perspective on Mercury: Some Implications for Interior Evolution [#1750] MESSENGER's first two flybys of Mercury have revealed a planet with a richer history of magmatism

Rathbun, Julie A.

314

Exploring Mercury: Scientific Results from the MESSENGER Mission  

E-Print Network [OSTI]

#12;Exploring Mercury: Scientific Results from the MESSENGER Mission Larry R. Nittler Carnegie-Cahill · MESSENGER Science Team, Engineers, Mission Operations (APL) #12;Mars Mercury · Naked-eye planet, but very difficult to observe due to proximity to Sun May 12, 2011, from NZ (M. White, Flickr) Mercury Venus Jupiter

Rhoads, James

315

2003 Mercury Computer Systems, Inc. Beamforming for Radar  

E-Print Network [OSTI]

© 2003 Mercury Computer Systems, Inc. Beamforming for Radar Systems on COTS Heterogeneous ComputingHeterogeneous Computing PlatformsPlatforms Jeffrey A. Rudin Mercury Computer Systems, Inc. High Performance Embedded Computing (HPEC) Conference September 23, 2003 #12;2© 2003 Mercury Computer Systems, Inc. Outline

Kepner, Jeremy

316

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE  

E-Print Network [OSTI]

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE: Insights from a global 3D land.S. National Science Foundation Atmospheric Chemistry Program #12;FROM ATMOSPHERE TO FISH: MERCURY RISING Ice core from Wyoming [Schuster et al., ES&T 2002] Mercury deposition has increased by 300% since

Selin, Noelle Eckley

317

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta  

E-Print Network [OSTI]

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta STFC Rutherford Appleton Laboratory, UK 2nd Princeton-Oxford High Power Target Meeting 6-7 November-2008 #12;Mercury beam dump design from NUFACT Feasibility Study #12;Peter Loveridge, November-2008 Mercury beam dump design from NUFACT

McDonald, Kirk

318

Mercury Concentrations in Fish from the San Francisco Bay Area  

E-Print Network [OSTI]

Mercury Concentrations in Fish from the San Francisco Bay Area San Francisco Bay Regional Water on composite samples · Some mercury analysis on individual largemouth bass · Size targets #12;Tomales Bay Study chemical analyses (Hg and organics) conducted on composite samples · Some mercury analysis on individual

319

Mercury's thermo-chemical evolution from numerical models constrained  

E-Print Network [OSTI]

Mercury's thermo-chemical evolution from numerical models constrained by MESSENGER observations Globe de Paris, France #12;Basics facts about Mercury · Semi-major axis: 0.39 AU · 3:2 spin Earth!) · Black body temperature: 440 K #12;Exploration of Mercury Mariner10 ·First spacecraft to use

Cerveny, Vlastislav

320

Mercury exosphere I. Global circulation model of its sodium component  

E-Print Network [OSTI]

Mercury exosphere I. Global circulation model of its sodium component Francois Leblanc a,*, R 2010 Accepted 27 April 2010 Available online 5 May 2010 Keywords: Mercury, Atmosphere Aeronomy a b s t r a c t Our understanding of Mercury's sodium exosphere has improved considerably in the last 5

Johnson, Robert E.

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Mercury warning given to north state anglers By Ryan Sabalow  

E-Print Network [OSTI]

Mercury warning given to north state anglers By Ryan Sabalow Monday, June 7, 2010 A new study the highest levels of mercury contamination in the state. Although anglers arent being warned to wean,905 fish in 272 of Californias popular lakes and reservoirs for mercury, PCBs, DDT and other contaminants

322

Mercury reuses several external software tools developed by ORNL  

E-Print Network [OSTI]

Mercury reuses several external software tools developed by ORNL DAAC and other organizations-on,canopychemistryaccpclimatecollectionseoslandvalidationFIFEFIFEfollow-on fluxnethydroclimatologycollectionsmodelarchivenetprimaryproductivityNPPNBIIMAST- DCUSANPNIABINDataONEWENDI Mercury's architecture includes 1) a harvesting engine was packaged in such a way that all the Mercury projects will use the same harvester scripts, but each project

323

Mercury and Freon: Temperature Emulation and Management for Server Systems  

E-Print Network [OSTI]

Mercury and Freon: Temperature Emulation and Management for Server Systems Taliver Heath Dept by simulators and real measurements. In this paper, we introduce Mercury, a soft- ware suite that avoids data. Most importantly, Mercury runs the entire software stack natively, enables repeatable experiments

Bianchini, Ricardo

324

Thursday, March 26, 2009 POSTER SESSION II: MERCURY  

E-Print Network [OSTI]

Thursday, March 26, 2009 POSTER SESSION II: MERCURY 6:30 p.m. Town Center Exhibit Area GĂłmez-Perez N. Wicht J. Magnetic Field at Mercury: Effects of External Sources on Planetary Dynamos [#1634] In Mercury, magnetospheric currents induce a magnetic field at the top of the core. We study dynamo

Rathbun, Julie A.

325

Mercury: Supporting Scalable Multi-Attribute Range Ashwin R. Bharambe  

E-Print Network [OSTI]

Mercury: Supporting Scalable Multi-Attribute Range Queries Ashwin R. Bharambe ashu Carnegie Mellon University Pittsburgh, PA 15213 ABSTRACT This paper presents the design of Mercury, a scalable pro- tocol for supporting multi-attribute range-based searches. Mercury differs from previous

Krishnamurthy, Arvind

326

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta Chris Densham  

E-Print Network [OSTI]

Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta Chris Densham STFC Rutherford Appleton Laboratory, UK 1st joint meeting of EUROnu WP2 (Superbeam) and NF-IDS target 15-17 December-2008 #12;Mercury beam dump design from NUFACT Feasibility Study #12;Peter Loveridge, November-2008 Mercury beam dump

McDonald, Kirk

327

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE  

E-Print Network [OSTI]

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE: Insights from global modeling Noelle Atmospheric Chemistry Program #12;FROM ATMOSPHERE TO FISH: MERCURY RISING Ice core from Wyoming [Schuster et al., ES&T 2002] Mercury deposition has increased by 300% since industrialization Major anthropogenic

Selin, Noelle Eckley

328

Tuesday, March 14, 2006 POSTER SESSION I: MERCURY  

E-Print Network [OSTI]

Tuesday, March 14, 2006 POSTER SESSION I: MERCURY 7:00 p.m. Fitness Center Helbert J. Moroz L. V for the MERTIS Instrument on the ESA BepiColombo Mission to Mercury [#1662] The MERTIS instrument on BepiColombo will study the surface of Mercury in the TIR. We will present a list of analog material compiled to support

Rathbun, Julie A.

329

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE  

E-Print Network [OSTI]

MERCURY IN THE ATMOSPHERE, BIOSPHERE, AND POLICY SPHERE: Insights from Global Modeling Noelle #12;MERCURY IN THE ENVIRONMENT: OUTLINE 1. Deposition to the United States results from a mix of local and global sources, depending on the location 2. Historical and present releases of mercury will continue

Selin, Noelle Eckley

330

MESSENGER observations of magnetopause structure and dynamics at Mercury  

E-Print Network [OSTI]

MESSENGER observations of magnetopause structure and dynamics at Mercury Gina A. DiBraccio,1 James December 2012; accepted 10 January 2013; published 1 March 2013. [1] On 18 March 2011, MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) became the first spacecraft to orbit Mercury

Salzman, Daniel

331

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect (OSTI)

On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new particulate filtration technologies. Major tasks during this period of the funded project's timeframe included: (1) Conducting pretests on a laboratory-scale simulated FBC system; (2) Completing detailed design of the bench-scale CFBC system; (3) Contracting potential bidders to fabricate of the component parts of CFBC system; (4) Assembling CFBC parts and integrating system; (5) Resolving problems identified during pretests; (6) Testing with available Powder River Basin (PRB) coal and co-firing of PRB coal with first wood pallet and then chicken wastes; and (7) Tuning of CFBC load. Following construction system and start-up of this 0.6 MW CFBC system, a variety of combustion tests using a wide range of fuels (high-sulfur coals, low-rank coals, MSW, agricultural waste, and RDF) under varying conditions were performed to analyze and monitor air pollutant emissions. Data for atmospheric pollutants and the methodologies required to reduce pollutant emissions were provided. Integration with a selective catalytic reduction (SCR) slipstream unit did mimic the effect of flue gas composition, including trace metals, on the performance of the SCR catalyst to be investigated. In addition, the following activities were also conducted: (1) Developed advanced mercury oxidant and adsorption additives; (2) Performed laboratory-scale tests on oxygen-fuel combustion and chemical looping combustion; and (3) Conducted statistical analysis of mercury emissions in a full-scale CFBC system.

Wei-Ping Pan; Yan Cao; John Smith

2008-05-31T23:59:59.000Z

332

Mercury Absorption in Aqueous Oxidants Catalyzed by Mercury(II) Lynn L. Zhao and Gary T. Rochelle*  

E-Print Network [OSTI]

Mercury Absorption in Aqueous Oxidants Catalyzed by Mercury(II) Lynn L. Zhao and Gary T. Rochelle-1062 The absorption of elemental Hg vapor into aqueous solution containing Hg(II) was measured in a stirred cell at 25 °C. For mercury absorption in Hg(II) obtained by HgCl2 injection, the presence of HNO3 greatly

Rochelle, Gary T.

333

The Homogeneus Forcing of Mercury Oxidation to provide Low-Cost Capture  

SciTech Connect (OSTI)

Trace amounts of mercury are found in all coals. During combustion, or during thermal treatment in advanced coal processes, this mercury is vaporized and can be released to the atmosphere with the ultimate combustion products. This has been a cause for concern for a number of years, and has resulted in a determination by the EPA to regulate and control these emissions. Present technology does not, however, provide inexpensive ways to capture or remove mercury. Mercury that exits the furnace in the oxidized form (HgCl{sub 2}) is known to much more easily captured in existing pollution control equipment (e.g., wet scrubbers for SO{sub 2}), principally due to its high solubility in water. Work funded by DOE has helped understand the chemical kinetic processes that lead to mercury oxidation in furnaces. The scenario is as follows. In the flame the mercury is quantitatively vaporized as elemental mercury. Also, the chlorine in the fuel is released as HCl. The direct reaction Hg+HCl is, however, far too slow to be of practical consequence in oxidation. The high temperature region does supports a small concentration of atomic chlorine. As the gases cool (either in the furnace convective passes, in the quench prior to cold gas cleanup, or within a sample probe), the decay in Cl atom is constrained by the slowness of the principal recombination reaction, Cl+Cl+M{yields}Cl{sub 2}+M. This allows chlorine atom to hold a temporary, local superequilibrium concentration . Once the gases drop below about 550 C, the mercury equilibrium shifts to favor HgCl{sub 2} over Hg, and this superequilibrium chlorine atom promotes oxidation via the fast reactions Hg+Cl+M{yields}HgCl+M, HgCl+Cl+M{yields}HgCl{sub 2}+M, and HgCl+Cl{sub 2}{yields}HgCl{sub 2}+Cl. Thus, the high temperature region provides the Cl needed for the reaction, while the quench region allows the Cl to persist and oxidize the mercury in the absence of decomposition reactions that would destroy the HgCl{sub 2}. Promoting mercury oxidation is one means of getting moderate-efficiency, 'free' mercury capture when wet gas cleanup systems are already in place. The chemical kinetic model we developed to describe the oxidation process suggests that in fuel lean gases, the introduction of trace amounts of H{sub 2} within the quench region leads to higher Cl concentrations via chain branching. The amount of additive, and the temperature at the addition point are critical. We investigated this process in a high-temperature quartz flow reactor. The results do indicate a substantial amount of promotion of oxidation with the introduction of relatively small amounts of hydrogen at around 1000 K ({approx}100 ppm relative to the furnace gas). In practical systems the source of this hydrogen is likely to be a small natural gas steam reformer. This would also produce CO, so co-injection of CO was also tested. The CO did not provide any additional promotion, and in some cases led to a reduction in oxidation. We also examined the influence of NO and SO{sub 2} on the promotion process. We did not see any influence under the conditions examined. The present results were for a 0.5 s, isothermal plug flow environment. The next step should be to determine the appropriate injection point for the hydrogen and the performance under realistic temperature quench conditions. This could be accomplished first by chemical kinetic modeling, and then by tunnel flow experiment.

John Kramlich; Linda Castiglone

2007-06-30T23:59:59.000Z

334

Method for high temperature mercury capture from gas streams  

DOE Patents [OSTI]

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

335

JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas  

SciTech Connect (OSTI)

This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

Ye Zhuang; Christopher Martin; John Pavlish

2009-03-31T23:59:59.000Z

336

FY09 assessment of mercury reduction at SNL/NM.  

SciTech Connect (OSTI)

This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

McCord, Samuel Adam

2010-02-01T23:59:59.000Z

337

Global change and mercury cycling: Challenges for implementing a global mercury treaty  

E-Print Network [OSTI]

The Minamata Convention aims to protect human health and the environment from anthropogenic emissions and releases of mercury. In the present study, the provisions of the Minamata Convention are examined to assess their ...

Selin, Noelle Eckley

338

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect (OSTI)

This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon-based catalyst began with almost 98% elemental mercury oxidation across the catalyst, but declined to 79% oxidation after nearly 13 months in service. The other two catalysts, an SCR-type catalyst (titanium/vanadium) and an experimental fly-ash-based catalyst, were significantly less active. The palladium-based and SCR-type catalysts were effectively regenerated at the end of the long-term test by flowing heated air through the catalyst overnight. The carbon-based catalyst was not observed to regenerate, and no regeneration tests were conducted on the fourth, fly-ash-based catalyst. Preliminary process economics were developed for the palladium and carbon-based catalysts for a scrubbed, North Dakota lignite application. As described above, the pilot-scale results showed the catalysts could not sustain 90% or greater oxidation of elemental mercury in the flue gas for a period of two years. Consequently, the economics were based on performance criteria in a later DOE NETL solicitation, which required candidate mercury control technologies to achieve at least a 55% increase in mercury capture for plants that fire lignite. These economics show that if the catalysts must be replaced every two years, the catalytic oxidation process can be 30 to 40% less costly than conventional (not chemically treated) activated carbon injection if the plant currently sells their fly ash and would lose those sales with carbon injection. If the plant does not sell their fly ash, activated carbon injection was estimated to be slightly less costly. There was little difference in the estimated cost for palladium versus the carbon-based catalysts. If the palladium-based catalyst can be regenerated to double its life to four years, catalytic oxidation process economics are greatly improved. With regeneration, the catalytic oxidation process shows over a 50% reduction in mercury control cost compared to conventional activated carbon injection for a case where the plant sells its fly ash. At Spruce Plant, mercury oxidation catalyst testing began in September 2003 and continued through the end of April 2005, interrupted only by a

Richard Rhudy

2006-06-30T23:59:59.000Z

339

DOI: 10.1002/chem.200701895 A Highly Selective Colorimetric Aqueous Sensor for Mercury  

E-Print Network [OSTI]

to methyl mercury, adding this potent neuro- toxin to the food chain.[4­6] Mercury poisoning causes serious Mercury poisoning remains a significant threat to human health, yet global mercury emissions continue of mercury poisoning requires new methods of detection that are sen- sitive and selective. Here we report

Tew, Gregory N.

340

MERCURY IN TUNAS: A REVIEW C. L. PETERSON, W. L. KLAWE, AND G. D. SHARp!  

E-Print Network [OSTI]

MERCURY IN TUNAS: A REVIEW C. L. PETERSON, W. L. KLAWE, AND G. D. SHARp! ABSTRACT Mercury not significantly altered the mercury content of the high seas where most tunas are captured. Mercury compounds importance of these pathways in tunas is unknown. Mercury occurs in tuna principally in the form

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mercury Exchange Program Summary: The Office of Research Safety (ORS) proudly presents  

E-Print Network [OSTI]

Mercury Exchange Program Summary: The Office of Research Safety (ORS) proudly presents the Mercury Exchange Program. This is a great program that enables laboratories to exchange their intact mercury thermometers, manometers, and other mercury-containing devices for non-mercury devices at no cost. The key

Duchowski, Andrew T.

342

Mercury Monitoring in California Sport Fish: A Historical Review and Recommendations for the Future  

E-Print Network [OSTI]

Mercury Monitoring in California Sport Fish: A Historical Review and Recommendations for the Future with unusually severe and widespread mercury contamination due to extensive mercury and gold mining in the 1800s. Mercury monitoring in California sport sh began in 1969. Since that time, a substantial amount of mercury

343

Waste Coal Fines Reburn for NOx and Mercury Emission Reduction  

SciTech Connect (OSTI)

Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury capture. During July, August, and September 2007, BES designed, procured, installed, and tested the slurry injection system at Beaver Valley. Slurry production was performed by Penn State University using equipment that was moved from campus to the Beaver Valley site. Waste coal fines were procured from Headwaters Inc. and transported to the site in Super Sacks. In addition, bituminous coal was pulverized at Penn State and trucked to the site in 55-gallon drums. This system was operated for three weeks during August and September 2007. NO{sub x} emission data were obtained using the plant CEM system. Hg measurements were taken using EPA Method 30B (Sorbent Trap method) both downstream of the electrostatic precipitator and in the stack. Ohio Lumex Company was on site to provide rapid Hg analysis on the sorbent traps during the tests. Key results from these tests are: (1) Coal Fines reburn alone reduced NO{sub x} emissions by 0-10% with up to 4% heat input from the CWS. However, the NO{sub x} reduction was accompanied by higher CO emissions. The higher CO limited our ability to try higher reburn rates for further NO{sub x} reduction. (2) Coal Fines reburn with Urea (Carbon enhanced SNCR) decreased NO{sub x} emissions by an additional 30% compared to Urea injection only. (3) Coal slurry injection did not change Hg capture across the ESP at full load with an inlet temperature of 400-430 F. The Hg capture in the ESP averaged 40%, with or without slurry injection; low mercury particulate capture is normally expected across a higher temperature ESP because any oxidized mercury is thought to desorb from the particulate at ESP temperatures above 250 F. (4) Coal slurry injection with halogen salts added to the mixing tank increased the Hg capture in the ESP to 60%. This significant incremental mercury reduction is important to improved mercury capture with hot-side ESP operation and wherever hindrance from sulfur oxides limit mercury reduction, because the higher temperature is above sulfur oxide dew point interference.

Stephen Johnson; Chetan Chothani; Bernard Breen

2008-04-30T23:59:59.000Z

344

Status of R&D on Mitigating the Effects of Pressure Waves for the Spallation Neutron Source Mercury Target  

SciTech Connect (OSTI)

The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory has been conducting R&D on mitigating the effects of pressure waves in mercury spallation targets since 2001. More precisely, cavitation damage of the target vessel caused by the short beam pulse threatens to limit its lifetime more severely than radiation damage as well as limit its ultimate power capacity and hence its neutron intensity performance. The R&D program has moved from verification of the beam-induced damage phenomena to study of material and surface treatments for damage resistance to the current emphasis on gas injection techniques for damage mitigation. Two techniques are being worked on: injection of small dispersed gas bubbles that mitigate the pressure waves volumetrically; and protective gas walls that isolate the vessel from the damaging effects of collapsing cavitation bubbles. The latter has demonstrated good damage mitigation during in-beam testing with limited pulses, and adequate gas wall coverage at the beam entrance window has been demonstrated with the SNS mercury target flow configuration using a full scale mercury test loop. A question on the required area coverage remains which depends on results from SNS target post irradiation examination. The small gas bubble technique has been less effective during past in-beam tests but those results were with un-optimized and un-verified bubble populations. Another round of in-beam tests with small gas bubbles is planned for 2011. The first SNS target was removed from service in mid 2009 and samples were cut from two locations at the target s beam entrance window. Through-wall damage was observed at the innermost mercury vessel wall (not a containment wall). The damage pattern suggested correlation with the local mercury flow condition which is nearly stagnant at the peak damage location. Detailed post irradiation examination of the samples is under way that will assess the erosion and measure irradiation-induced changes in mechanical properties. Similar samples were cut from the second SNS target after it was removed from service in mid 2010. More extensive damage was observed on the target inner wall but damage to the containment wall was minimal.

Riemer, Bernie [ORNL] [ORNL; Wendel, Mark W [ORNL] [ORNL; Felde, David K [ORNL] [ORNL; Abdou, Ashraf A [ORNL] [ORNL; McClintock, David A [ORNL] [ORNL

2012-01-01T23:59:59.000Z

345

Experimental Automatic Lateral Control System For An Automobile  

E-Print Network [OSTI]

Control System for an Automobile Huei Peng, Wei-Bin Zhang,system for a full scaled automobile. Previous PATH programsystem for steering on an automobile. Due to their mutual

1992-01-01T23:59:59.000Z

346

A NASA Discovery Mission Mercury Orbit Insertion  

E-Print Network [OSTI]

major systems provide critical backup. Passive thermal design utilizing ceramic-cloth sunshade requires. Custom solar arrays produce power at safe operating temperatures near Mercury. MESSENGER is designedMercuryandextendedfrom before the end of heavy bombardment to the second half of solar system history

347

Mercury Nozzle Status V.B. Graves  

E-Print Network [OSTI]

. DEPARTMENT OF ENERGY Hg Jet Design Meeting ­ 15 Nov 2004 Flow Issues · High flow in small diameter thin-wall ­ 15 Nov 2004 Design Issues · Desire mechanically attached nozzle for changeout during cold testingMercury Nozzle Status V.B. Graves Hg Jet Design Meeting Princeton University Nov 15, 2004 #12;OAK

McDonald, Kirk

348

Catalytic Reactor For Oxidizing Mercury Vapor  

DOE Patents [OSTI]

A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

Helfritch, Dennis J. (Baltimore, MD)

1998-07-28T23:59:59.000Z

349

Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria  

SciTech Connect (OSTI)

Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations of elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.

Hu, Haiyan [ORNL] [ORNL; Lin, Hui [ORNL] [ORNL; Zheng, Wang [ORNL] [ORNL; Tomanicek, Stephen J [ORNL] [ORNL; Johs, Alexander [ORNL] [ORNL; Feng, Xinbin [ORNL] [ORNL; Elias, Dwayne A [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Liang, Liyuan [ORNL] [ORNL; Gu, Baohua [ORNL] [ORNL

2013-01-01T23:59:59.000Z

350

Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor  

SciTech Connect (OSTI)

Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

2010-08-31T23:59:59.000Z

351

Total Mercury, Methylmercury, Methylmercury Production Potential, and Ancillary Streambed-Sediment and Pore-  

E-Print Network [OSTI]

Total Mercury, Methylmercury, Methylmercury Production Potential, and Ancillary Streambed Oak Creek, Wisconsin (center). (All photographs by the authors.) #12;Total Mercury, Methylmercury.E., 2008, Total mercury, methylmercury, methylmercury production potential, and ancillary streambed

352

ROTATION OF MERCURY: THEORETICAL ANALYSIS OF THE DYNAMICS OF A RIGID ELLIPSOIDAL PLANET  

E-Print Network [OSTI]

Laboratory ROTATION OF MERCURY: THEDRETICAL ANALYSIS OF THEW -7405-eng-48 ROTATION OF MERCURY: THEORETICAL ANALYSIS OFfor the rotation of Mercury is sho'ln to imply locked-in

Laslett, L. Jackson

2008-01-01T23:59:59.000Z

353

Mercury and Methylmercury in the San Francisco Bay area: land-use impact and indicators  

E-Print Network [OSTI]

R.P. , and Flegal A. R. 2003, Mercury speciation in the SanAbdrashitova S. A. , 2001, Mercury in Aquatic Environment: A222 Hydrology for Planner Mercury and Methylmercury in the

Kim, Hyojin

2008-01-01T23:59:59.000Z

354

MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT  

E-Print Network [OSTI]

M. and Chang, B. , 1974; Mercury Monitor for Ambient Air,E. Poulson INTRODUCTION Mercury emissions from fossil-fuelHarley, R. A. , 1973; Mercury Balance on a Large Pulverized

Fox, J. P.

2012-01-01T23:59:59.000Z

355

Characteristics of mercury desorption from sorbents at elevated temperatures  

SciTech Connect (OSTI)

This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. Elemental mercury and mercuric chloride were tested with activated carbon and bauxite. The experimental results indicated that mercury desorption from sorbents was strongly affected by the desorption temperature and the mercury-sorbent pair. Elemental mercury was observed to desorb faster than mercuric chloride and activated carbon appeared to have higher desorption limits than bauxite at low temperatures. A kinetic model considering the mechanisms of surface equilibrium, pore diffusion and external mass transfer was proposed to simulate the observed desorption profiles. The model was found to describe reasonably well the experimental results.

Ho, T.C.; Yang, P.; Kuo, T.H.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering

1998-12-31T23:59:59.000Z

356

E-Print Network 3.0 - aquatic mercury assessment Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sea Grant Institute in consultation with the panel chairs. Summary: the assessment of fish-mercury responses to changes in mercury loadings. High net methylation rates in...

357

E-Print Network 3.0 - air pollution mercury Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mercury Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution mercury Page: << < 1 2 3 4 5 > >> 1 Environment, Health and Safety...

358

Thief carbon catalyst for oxidation of mercury in effluent stream  

SciTech Connect (OSTI)

A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2011-12-06T23:59:59.000Z

359

The development and field testing of a passive mercury dosimeter  

E-Print Network [OSTI]

there is a need for me- (1) th d o s for monicoring mercury exposutes, and a number of methods have been devised. These sampling methods may be divided into two classifi- cations, active and passive, based upon the system used to move the air..., and a suitable means of analysis is used to determine the amount of mercury collected. From this information the mercury in air concentration is readily calculated. Collection media used include glass tubes packed with hopcalite, ( activated charcoal...

Zahray, Robert Karl

1982-01-01T23:59:59.000Z

360

EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS  

SciTech Connect (OSTI)

Tests were performed in simulated flue gas streams using two fly ash samples from the electrostatic precipitators of two full-scale utility boilers. One fly ash was derived from a Powder River Basin (PRB) coal, while the other was derived from Blacksville coal (Pittsburgh No. 8 seam). The tests were performed at temperatures of 120 and 180 C under different gas compositions. Elemental mercury (Hg) streams were injected into the simulated flue gas and passed over filters (housed in a convection oven) loaded with fly ash. The Ontario Hydro method was used to determine the total amount of Hg passing through the filter as well as the percentages of elemental and oxidized Hg collected. Results indicated that substantial amounts of Hg oxidation did not occur with either fly ash, regardless of the temperature used for testing. When oxidation was observed, the magnitude of the oxidation was comparable between the two fly ashes. These results suggest that the gas matrix may be more important than the ash components with respect to the distribution of Hg species observed in gaseous effluents at coal-fired power plants.

Glenn A. Norton

1999-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ORNL research reveals new challenges for mercury cleanup | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jennifer Brouner Communications 865.241.0709 ORNL research reveals new challenges for mercury cleanup ORNL researchers are learning more about the microbial processes that convert...

362

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Exploration...

363

EIS-0423: Storage and Management of Elemental Mercury | Department...  

Energy Savers [EERE]

for managing and storing elemental mercury at seven candidate locations (i.e., Colorado, Idaho, Missouri, Nevada, South Carolina, Texas, and Washington). The U.S....

364

anthropogenic mercury emissions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

marine boundary layer Palmer, Paul 25 MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT University of California eScholarship Repository Summary: Effluents for...

365

An evaluation of elemental mercury vapor exposure to children due to silver-mercury dental amalgam restorations  

E-Print Network [OSTI]

AN EVALUATION OF ELEMENTAL MERCURY VAPOR EXPOSURE TO CHILDREN DUE TO SILVER-MERCURY DENTAL AMALGAM RESTORATIONS A Thesis By RONALD DALE TAYLOR Submitted to the Office of Graduate Studies College Texas A&M University in partial fulfillment.... . . . . 1X LIST OF FIGURES. I. INTRODUCTION. II ' LITERATURE REVIEW Dental Mercury Toxicology Body Burden. Inhalation Exposure. Childhood Exposure III. METHODOLOGY. . . . 3 5 . . . 8 . . . 10 . . . 14 . 16 Human Research Committee...

Taylor, Ronald Dale

1989-01-01T23:59:59.000Z

366

Langmuir Films of Polycyclic Molecules on Mercury  

SciTech Connect (OSTI)

Langmuir films (LFs) of biphenyl and anthracene derivatives on the surface of liquid mercury were studied by surface-specific X-ray and surface tension measurements. Phases of lying-down, side-lying and standing-up molecules were found, some of which exhibit long-range lateral order. The molecular symmetry and the position and nature of the side-, end-, and headgroups are shown to dominate the structural evolution of the LFs with surface coverage.

Tamam,L.; Kraack, H.; Sloutskin, E.; Ocko, B.; Pershan, P.; Deutsch, M.

2007-01-01T23:59:59.000Z

367

Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal  

SciTech Connect (OSTI)

One of the cost-effective mercury control technologies in coal-fired power plants is the enhanced oxidation of elemental mercury in selective catalytic reduction (SCR) followed by the capture of the oxidized mercury in the wet scrubber. This paper is the first in a series of two in which the validation of the SCR slipstream test and Hg speciation variation in runs with or without SCR catalysts inside the SCR slipstream reactor under special gas additions (HCl, Cl{sub 2}, SO{sub 2}, and SO{sub 3}) are presented. Tests indicate that the use of a catalyst in a SCR slipstream reactor can achieve greater than 90% NO reduction efficiency with a NH{sub 3}/NO ratio of about 1. There is no evidence to show that the reactor material affects mercury speciation. Both SCR catalysts used in this study exhibited a catalytic effect on the elemental mercury oxidation but had no apparent adsorption effect. SCR catalyst 2 seemed more sensitive to the operational temperature. The spike gas tests indicated that HCl can promote Hg{sup 0} oxidation but not Cl{sub 2}. The effect of Cl{sub 2} on mercury oxidation may be inhibited by higher concentrations of SO{sub 2}, NO, or H{sub 2}O in real flue-gas atmospheres within the typical SCR temperature range (300-350{sup o}C). SO{sub 2} seemed to inhibit mercury oxidation; however, SO{sub 3} may have some effect on the promotion of mercury oxidation in runs with or without SCR catalysts. 25 refs., 9 figs., 2 tabs.

Yan Cao; Bobby Chen; Jiang Wu; Hong Cui; John Smith; Chi-Kuan Chen; Paul Chu; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

2007-01-15T23:59:59.000Z

368

Tenth annual coal preparation, utilization, and environmental control contractors conference: Proceedings. Volume 1  

SciTech Connect (OSTI)

Volume I contains papers presented at the following sessions: high efficiency preparation; advanced physical coal cleaning; superclean emission systems; air toxics and mercury measurement and control workshop; and mercury measurement and control workshop. Selected papers have been processed for inclusion in the Energy Science and Technology Database.

Not Available

1994-08-01T23:59:59.000Z

369

The free precession and libration of Mercury  

E-Print Network [OSTI]

An analysis based on the direct torque equations including tidal dissipation and a viscous core-mantle coupling is used to determine the damping time scales of O(10^5) years for free precession of the spin about the Cassini state and free libration in longitude for Mercury. The core-mantle coupling dominates the damping over the tides by one to two orders of magnitude for the plausible parameters chosen. The short damping times compared with the age of the solar system means we must find recent or on-going excitation mechanisms if such free motions are found by the current radar experiments or the future measurement by the MESSENGER and BepiColombo spacecraft that will orbit Mercury. We also show that the average precession rate is increased by about 30% over that obtained from the traditional precession constant because of a spin-orbit resonance induced contribution by the C_{22} term in the expansion of the gravitational field. The C_{22} contribution also causes the path of the spin during the precession to be slightly elliptical with a variation in the precession rate that is a maximum when the obliquity is a minimum. An observable free precession will compromise the determination of obliquity of the Cassini state and hence of C/MR^2 for Mercury, but a detected free libration will not compromise the determination of the forced libration amplitude and thus the verification of a liquid core

S. J. Peale

2005-07-06T23:59:59.000Z

370

Gravitomagnetism and the Earth-Mercury range  

E-Print Network [OSTI]

We numerically work out the impact of the general relativistic Lense-Thirring effect on the Earth-Mercury range caused by the gravitomagnetic field of the rotating Sun. The peak-to peak nominal amplitude of the resulting time-varying signal amounts to 1.75 10^1 m over a temporal interval 2 yr. Future interplanetary laser ranging facilities should reach a cm-level in ranging to Mercury over comparable timescales; for example, the BepiColombo mission, to be launched in 2014, should reach a 4.5 - 10 cm level over 1 - 8 yr. We looked also at other Newtonian (solar quadrupole mass moment, ring of the minor asteroids, Ceres, Pallas, Vesta, Trans-Neptunian Objects) and post-Newtonian (gravitoelectric Schwarzschild solar field) dynamical effects on the Earth-Mercury range. They act as sources of systematic errors for the Lense-Thirring signal which, in turn, if not properly modeled, may bias the recovery of some key parameters of such other dynamical features of motion. Their nominal peak-to-peak amplitudes are as large as 4 10^5 m (Schwarzschild), 3 10^2 m (Sun's quadrupole), 8 10^1 m (Ceres, Pallas, Vesta), 4 m (ring of minor asteroids), 8 10^-1 m (Trans-Neptunian Objects). Their temporal patterns are different with respect to that of the gravitomagnetic signal.

Lorenzo Iorio

2011-08-29T23:59:59.000Z

371

Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development  

SciTech Connect (OSTI)

The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

Radisav Vidic; Joseph Flora; Eric Borguet

2008-12-31T23:59:59.000Z

372

Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces  

SciTech Connect (OSTI)

This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

Aiken, George

2014-10-02T23:59:59.000Z

373

The dynamics of mercury flow in a curved pipe  

E-Print Network [OSTI]

The dynamics of mercury flow in a curved pipe Yan Zhan Foluso LadeindeFoluso Ladeinde 11 of the problem Pi t ff t· Pipe curvature effect · Laminar flow in the mercury supply pipe l i· Conclusion #12 Project. · Target delivery systems involves pipe curvature, axially- d d t di l di t d l l th tdependent

McDonald, Kirk

374

Method for removal of mercury from various gas streams  

DOE Patents [OSTI]

The invention provides for a method for removing elemental mercury from a fluid, the method comprising irradiating the mercury with light having a wavelength of approximately 254 nm. The method is implemented in situ at various fuel combustion locations such as power plants and municipal incinerators.

Granite, E.J.; Pennline, H.W.

2003-06-10T23:59:59.000Z

375

SNS Experimental Facilities Oak Ridge SNS Mercury Target Issues and  

E-Print Network [OSTI]

SNS Experimental Facilities Oak Ridge SNS Mercury Target Issues and Development Program J. R. Haines October 30, 2000 #12;SNS Experimental Facilities Oak Ridge2 Outline · SNS Target Requirements;SNS Experimental Facilities Oak Ridge3 Mercury Target Requirements · 2 MW average proton beam power

McDonald, Kirk

376

Mercury removal in utility wet scrubber using a chelating agent  

DOE Patents [OSTI]

A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

Amrhein, Gerald T. (Louisville, OH)

2001-01-01T23:59:59.000Z

377

Atmospheric Mercury Deposition Impacts of Future Electric Power Generation  

E-Print Network [OSTI]

Atmospheric Mercury Deposition Impacts of Future Electric Power Generation Mark D. Cohen Physical fish consumption, and significant portions of the general population are believed to be consuming toxicologically significant levels of mercury (e.g., National Research Council, 2000). Historical discharges ­ e

378

Strategies for the Engineered Phytoremediation of Mercury and Arsenic Pollution  

SciTech Connect (OSTI)

Phytoremediation is the use of plants to extract, transport, detoxify and/or sequester pollutants of the land, water or air. Mercury and arsenic are among the worst environmental pollutants, adversely affecting the health of hundreds of millions of people worldwide. We have demonstrated that plants can be engineered to take up and tolerate several times the levels of mercury and arsenic that would kill most plant species. Starting with methylmercury and/or ionic mercury contamination, mercury is detoxified, stored below or above ground, and even volatilized as part of the transpiration process and keeping it out of the food chain. Initial efforts with arsenate demonstrate that it can be taken up, transported aboveground, electrochemically reduced to arsenite in leaves and sequestered in thiol-rich peptide complexes. The transgenic mercury remediation strategies also worked in cultivated and wild plant species like canola, rice and cottonwood.

Dhankher, Om Parkash; Meagher, Richard B.

2003-03-26T23:59:59.000Z

379

E-Print Network 3.0 - acute mercury inhalation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OF Summary: ECONOMIC COMMISSION FOR EUROPE Geneva HEMISPHERIC TRANSPORT OF AIR POLLUTION 2010 PART B: MERCURY... ......

380

E-Print Network 3.0 - abandoned halkoy mercury Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OF Summary: ECONOMIC COMMISSION FOR EUROPE Geneva HEMISPHERIC TRANSPORT OF AIR POLLUTION 2010 PART B: MERCURY... ......

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mercury Free UCI Environmental Health and Safety (EH&S) is sponsoring a  

E-Print Network [OSTI]

Thermometer Exchange Program to: · Reduce the health and environmental risks of mercury pollution, · ReduceMercury Free UCI Environmental Health and Safety (EH&S) is sponsoring a Laboratory Mercury. Principal Investigator Name: Lab Contact Name: Phone: Building: Room: 1. Number of Intact Mercury

George, Steven C.

382

Appendix: Mercury Emissions used in CAM-Chem/Hg model. 1. Anthropogenic emissions  

E-Print Network [OSTI]

Appendix: Mercury Emissions used in CAM-Chem/Hg model. 1. Anthropogenic emissions The anthropogenic emission of mercury is directly adopted from global mercury emission inventory [Pacyna et al., 2005]. The anthropogenic emissions are shown in annual averaged total mercury emissions. (Unit: µg/m2 /day) 2. Land

Meskhidze, Nicholas

383

Lifestyle and Mercury Contamination of Amerindian Populations along the Beni River  

E-Print Network [OSTI]

1 Lifestyle and Mercury Contamination of Amerindian Populations along the Beni River (Lowland (Corresponding author), M.D., Ph.D. Abstract The objective of this paper was to document mercury contamination at the foothills of the Andes. Hair mercury content (H-Hg) served as a bioindicator of mercury contamination

Paris-Sud XI, Université de

384

Apparatus and method for removing mercury vapor from a gas stream  

DOE Patents [OSTI]

A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

Ganesan, Kumar (Butte, MT)

2008-01-01T23:59:59.000Z

385

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET  

E-Print Network [OSTI]

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET V.B. Graves , Oak is a free mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. Modifications

McDonald, Kirk

386

Wavelengths, Energy Level Classifications, and Energy Levels for the Spectrum of Neutral Mercury  

E-Print Network [OSTI]

Wavelengths, Energy Level Classifications, and Energy Levels for the Spectrum of Neutral Mercury E of neutral mercury Hg I for both the single isotope 198 Hg and for mercury in its natural isotopic abundance of neutral mercury for both 198 Hg and the natural isotopic mixture. Tabular data for 105 classified lines

Magee, Joseph W.

387

Mercury Trends in Multiple Fish Species in the Everglades Protection Area  

E-Print Network [OSTI]

Mercury Trends in Multiple Fish Species in the Everglades Protection Area Major Paper Nicole M. Howard Spring 2011 Soil and Water Science Department #12;2 Introduction Mercury in the South Florida-alkali facilities. When mercury-containing materials are burned or incinerated, mercury is released in gaseous

Ma, Lena

388

Investigation of soil damping on full-scale test piles  

E-Print Network [OSTI]

per foot. This value of friction damping is obtained using the mathematical model with impact velocity exponent equal to 1. 0. The point damping parameter required for piles all in clay is 0. 15 seconds per foot with the velocity exponent equal..., but the pile tips were embedded in sand. Using the mathematical model with a velocity exponent of 1. 0 and a point damping value of 0. 15 seconds per foot, extremely high values of friction damping are needed to achieve agreement between predicted and actual...

Van Reenen, Dirk Andries

1971-01-01T23:59:59.000Z

389

Clean Energy Manufacturing Resources - Technology Full-Scale Production |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & Power Deployment » CHPCalendar17:5:Aboutof

390

A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR  

SciTech Connect (OSTI)

Previous work on the detection of mercury using the cavity ring-down (CRD) technique has concentrated on the detection and characterization of the desired mercury transition. Interferent species present in flue gas emissions have been tested as well as a simulated flue gas stream. Additionally, work has been done on different mercury species such as the elemental and oxidized forms. The next phase of the effort deals with the actual sampling system. This sampling system will be responsible for acquiring a sample stream from the flue gas stack, taking it to the CRD cavity where it will be analyzed and returning the gas stream to the stack. In the process of transporting the sample gas stream every effort must be taken to minimize any losses of mercury to the walls of the sampling system as well as maintaining the mercury in its specific state (i.e. elemental, oxidized, or other mercury compounds). SRD first evaluated a number of commercially available sampling systems. These systems ranged from a complete sampling system to a number of individual components for specific tasks. SRD engineers used some commercially available components and designed a sampling system suited to the needs of the CRD instrument. This included components such as a pyrolysis oven to convert all forms of mercury to elemental mercury, a calibration air source to ensure mirror alignment and quality of the mirror surfaces, and a pumping system to maintain the CRD cavity pressure from atmospheric pressure (760 torr) down to about 50 torr. SRD also began evaluating methods for the CRD instrument to automatically find the center of a mercury transition. This procedure is necessary as the instrument must periodically measure the baseline losses of the cavity off of the mercury resonance and then return to the center of the transition to accurately measure the mercury concentration. This procedure is somewhat complicated due to the isotopic structure of the 254 nm mercury transition. As a result of 6 isotopes and hyperfine splittings there are 5 individual peaks that can be resolved by the CRD instrument. SRD tested a derivative method with both simulated data and actual data taken with the CRD apparatus. Initial tests indicate that this method is successful in automatically finding the center of the mercury transitions.

Christopher C. Carter, Ph.D.

2003-06-30T23:59:59.000Z

391

Fundamentals of Mercury Oxidation in Flue Gas  

SciTech Connect (OSTI)

The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 2 results for the experimental and modeling tasks. Experiments in the mercury reactor are underway and interesting results suggested that a more comprehensive look at catalyzed surface reactions was needed. Therefore, much of the work has focused on the heterogeneous reactions. In addition, various chemical kinetic models have been explored in an attempt to explain some discrepancies between this modeling effort and others.

JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble; Balaji Krishnakumar

2005-08-01T23:59:59.000Z

392

Proton induced activation in mercury: Comparison of measurements and calculations  

SciTech Connect (OSTI)

Measurements and simulations of the proton beam interaction with the mercury target were performed to support Spallation Neutron Source design. Due to the abundance of isotopes produced in mercury, the long delay between the irradiation and the measurements, and the self-shielding of the mercury sample, the measurements were difficult to perform and the activities of several isotopes have large uncertainties. Calculations predicted the activities of the most reliably measured isotopes within 20%/40%; however, some large discrepancies were observed for some isotopes for which the measurements were considered less reliable. Predicted dose rates were in very good agreement with the measurements.

Remec, Igor [ORNL; Glasgow, David C [ORNL; Haines, John R [ORNL; Johnson, Jeffrey O [ORNL

2008-01-01T23:59:59.000Z

393

Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE`s needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities.

Hulet, G.A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Conley, T.B.; Morris, M.I. [Oak Ridge National Lab., TN (United States)

1998-07-01T23:59:59.000Z

394

CX-007120: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Full-Scale Mercury Control Demonstrations: Information Collection Request Sampling with Mercury ControlCX(s) Applied: A9, B3.1Date: 10/04/2011Location(s): Aurora, Saint Louis County, MissouriOffice(s): Fossil Energy, National Energy Technology Laboratory

395

CX-007121: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Full-Scale Mercury Control Demonstrations: Information Collection Request Sampling with Mercury Control ElementsCX(s) Applied: A9, B3.6Date: 10/04/2011Location(s): Grand Forks, North DakotaOffice(s): Fossil Energy, National Energy Technology Laboratory

396

BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING  

SciTech Connect (OSTI)

The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower retention of mercury in the slurry. Both recovery of mercury in the offgas system and removal (segregation + recovery) from the slurry correlate with slurry consistency. Higher slurry consistency results in better retention of Hg in the slurry (less segregation) and better recovery in the offgas system, but the relationships of recovery and retention with consistency are sludge dependent. Some correlation with slurry yield stress and acid stoichiometry was also found. Better retention of mercury in the slurry results in better recovery in the offgas system because the mercury in the slurry is stripped more easily than the segregated mercury at the bottom of the vessel. Although better retention gives better recovery, the time to reach a particular slurry mercury content (wt%) is longer than if the retention is poorer because the segregation is faster. The segregation of mercury is generally a faster process than stripping. The stripping factor (mass of water evaporated per mass of mercury stripped) of mercury at the start of boiling were found to be less than 1000 compared to the assumed design basis value of 750 (the theoretical factor is 250). However, within two hours, this value increased to at least 2000 lb water per lb Hg. For runs with higher mercury recovery in the offgas system, the stripping factor remained around 2000, but runs with low recovery had stripping factors of 4000 to 40,000. DWPF data shows similar trends with the stripping factor value increasing during boiling. These high values correspond to high segregation and low retention of mercury in the sludge. The stripping factor for a pure Hg metal bead in water was found to be about 10,000 lb/lb. About 10-36% of the total Hg evaporated in a SRAT cycle was refluxed back to the SRAT during formic acid addition and boiling. Mercury is dissolved as a result of nitric acid formation from absorption of NO{sub x}. The actual solubility of dissolved mercury in the acidic condensate is about 100 times higher than the actual concentrations measured. Mercury metal present in the MWWT from previous batch

Zamecnik, J.; Koopman, D.

2012-04-09T23:59:59.000Z

397

Assessing the Risk of Mercury in Drinking Water after UV Lamp Breaks Page 1 Assessing the Risk of Mercury in Drinking Water after UV Lamp Breaks  

E-Print Network [OSTI]

Assessing the Risk of Mercury in Drinking Water after UV Lamp Breaks Page 1 Assessing the Risk of Mercury in Drinking Water after UV Lamp Breaks Heidi Borchers University of New Hampshire, Environmental Ultraviolet (UV) lamps generate ultraviolet light through the vaporization of elemental mercury, by using

398

Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River  

E-Print Network [OSTI]

Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River (NE Spain) Luis Carrasco a , Carlos Barata a , Emili Received in revised form 4 May 2011 Accepted 6 May 2011 Available online 12 June 2011 Keywords: Mercury

GarcĂ­a-Berthou, Emili

399

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

SciTech Connect (OSTI)

This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection when inlet loading and mercury removal were low. The resulting mercury removal varied between 50 and 98%, with an overall average of 85.6%, showing that the process was successful at removing high percentages of vapor-phase mercury even with a widely varying mass loading. In an effort to improve baghouse performance, high-permeability bags were tested. The new bags made a significant difference in the cleaning frequency of the baghouse. Before changing the bags, the baghouse was often in a continuous clean of 4.4 p/b/h, but with the new bags the cleaning frequency was very low, at less than 1 p/b/h. Alternative sorbent tests were also performed using these high-permeability bags. The results of these tests showed that most standard, high-quality activated carbon performed similarly at this site; low-cost sorbent and ash-based sorbents were not very effective at removing mercury; and chemically enhanced sorbents did not appear to offer any benefits over standard activated carbons at this site.

C. Jean Bustard; Charles Lindsey; Paul Brignac

2006-05-01T23:59:59.000Z

400

Probability of initiation and extinction in the Mercury Monte Carlo code  

SciTech Connect (OSTI)

A Monte Carlo method for computing the probability of initiation has previously been implemented in Mercury. Recently, a new method based on the probability of extinction has been implemented as well. The methods have similarities from counting progeny to cycling in time, but they also have differences such as population control and statistical uncertainty reporting. The two methods agree very well for several test problems. Since each method has advantages and disadvantages, we currently recommend that both methods are used to compute the probability of criticality. (authors)

McKinley, M. S.; Brantley, P. S. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94551 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "full-scale mercury control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants  

SciTech Connect (OSTI)

The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital cost technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be significant shortages in supply if response to new demand is not well-timed.

Robin Stewart

2008-03-12T23:59:59.000Z

402

Evaluation of Background Mercury Concentrations in the SRS Groundwater System  

SciTech Connect (OSTI)

Mercury analyses associated with the A-01 Outfall have highlighted the importance of developing an understanding of mercury in the Savannah River Site groundwater system and associated surface water streams. This activity is critical based upon the fact that the EPA Ambient Water Quality Criteria (AWQC) for this constituent is 0.012mg/L, a level that is well below conventional detection limits of 0.1 to 0.2 mg/L. A first step in this process is obtained by utilizing the existing investment in groundwater mercury concentrations (20,242 records) maintained in the SRS geographical information management system (GIMS) database. Careful use of these data provides a technically defensible initial estimate for total recoverable mercury in background and contaminated SRS wells.

Looney, B.B.

1999-03-03T23:59:59.000Z

403

Long-Term Management and Storage of Elemental Mercury | Department...  

Office of Environmental Management (EM)

Mercury Export Ban Act of 2008 (MEBA) (Public Law No. 110-414) requires the Department of Energy (DOE) to establish a facility for the long-term management and storage of elemental...

404

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network [OSTI]

measuring Hg 0 that permeated PVC tubing and matching this26 Chapter 3 Elemental Mercury Diffusion in a PVC29 Figure 3.2 The setup for diffusion in PVC

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

405

Transformations of mercury in the marine water column  

E-Print Network [OSTI]

Methylation of mercury (Hg) in the marine water column has been hypothesized to serve as the primary source of the bioaccumulating chemical species monomethylmercury (MMHg) to marine food webs. Despite decades of research ...

Munson, Kathleen M. (Kathleen May)

2014-01-01T23:59:59.000Z