National Library of Energy BETA

Sample records for full section production

  1. Measurement of the Cross Section for Prompt Isolated Diphoton Production Using the Full CDF Run II Data Sample

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy ?s=1.96??TeV using data corresponding to 9.5??fb[superscript ...

  2. Measurement of the top-quark pair-production cross section in events with two leptons and bottom-quark jets using the full CDF data set

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    We present a measurement of the top-quark pair production cross section in proton-antiproton collisions at ?s = 1.96??TeV. The data were collected at the Fermilab Tevatron by the CDF II detector and correspond to an ...

  3. Production Requirements Full-Page Ads

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Production Requirements Full-Page Ads · The final trim size for a full-page ad is 8.75" x 10.875". · Full-page ads should also include .125-inch bleed on all four sides, making the total image area 9" x if over-trimming occurs in the printing process. 1/2-Page and 1/3-Page Ads · The final trim size for a 1

  4. 2014 ELECTRICAL PRODUCTION: EPACT 2005 SECTION 242 HYDROELECTRIC...

    Energy Savers [EERE]

    2014 ELECTRICAL PRODUCTION: EPACT 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM 2014 ELECTRICAL PRODUCTION: EPACT 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM In 2015,...

  5. 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric...

    Broader source: Energy.gov (indexed) [DOE]

    generated by the facility during the incentive period. This page contains all 2013 electrical production documentation for the Hydroelectric Production Incentives under Section...

  6. Master Thesis Measurement of nuclear production cross sections of

    E-Print Network [OSTI]

    Kersting, Roland

    Master Thesis Measurement of nuclear production cross sections of b+ emitters relevant to measure medically relevant b+ emitter production cross sections with sufficient accuracy. #12; with a measurement setup installed at the Garching Tandem Accelerator Laboratory ? You will prepare and optimize

  7. Beauty and Charm Production Cross Section Measurements at the Tevatron

    E-Print Network [OSTI]

    J. Pursley; for the CDF; D0 Collaborations

    2008-05-14

    Heavy quark production probes QCD at the interface of the perturbative and non-perturbative regimes. Studying the production of heavy quarks is an important test of models in both regimes. In this article, recent results on beauty and charm production from the CDF and D0 experiments at the Tevatron are reported. These include measurements of correlated b-bbar production, the psi(2S) production cross section, and Upsilon(1S) and Upsilon(2S) polarization.

  8. CROSS SECTION MEASUREMENTS FOR CHARM PRODUCTION BY MUONS AND PHOTONS

    E-Print Network [OSTI]

    Clark, A.R.

    2013-01-01

    Production by Muons and Photons A.Rc Clark, K.J, Johnson,section for 178(100)-GeV photons is 750 _ ) nb, too small tohigh-energy rise in the photon-nucleon total cross sectiono

  9. EPAct 2005 Section 242 Hydroelectric Incentive Program- 2013 Electrical Production

    Broader source: Energy.gov [DOE]

    In 2014, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities–existing powered or non-powered...

  10. Measurement of the top quark pair production cross section in...

    Office of Scientific and Technical Information (OSTI)

    Measurement of the top quark pair production cross section in proton-proton collisions at sqrts13 TeV Citation Details In-Document Search Title: Measurement of the top quark...

  11. Measurements of the Top Quark Pair-Production Cross Section

    E-Print Network [OSTI]

    Frank-Peter Schilling

    2013-02-19

    Measurements of the inclusive and differential cross section for the production of top quark pairs in proton-(anti)proton collision at center-of-mass energies of 1.96, 7.0 and 8.0 TeV are presented and compared with the latest theory predictions and Monte-Carlo models. In addition, first measurements of the production of top quark pairs in association with additional jets or with a boson are highlighted. All measurements are in good agreement with the Standard Model.

  12. Surface runoff from full-scale coal combustion product pavements during accelerated loading

    SciTech Connect (OSTI)

    Cheng, C.M.; Taerakul, P.; Tu, W.; Zand, B.; Butalia, T.; Wolfe, W.; Walker, H.

    2008-08-15

    In this study, the release of metals and metalloids from full-scale portland cement concrete pavements containing coal combustion products (CCPs) was evaluated by laboratory leaching tests and accelerated loading of full-scale pavement sections under well-controlled conditions. An equivalent of 20 years of highway traffic loading was simulated at the OSU/OU Accelerated Pavement Load Facility (APLF). Three types of portland cement concrete driving surface layers were tested, including a control section (i.e., ordinary portland cement (PC) concrete) containing no fly ash and two sections in which fly ash was substituted for a fraction of the cement; i.e., 30% fly ash (FA30) and 50% fly ash (FA50). In general, the concentrations of minor and trace elements were higher in the toxicity characteristic leaching procedure (TCLP) leachates than in the leachates obtained from synthetic precipitation leaching procedure and ASTM leaching procedures. Importantly, none of the leachate concentrations exceeded the TCLP limits or primary drinking water standards. Surface runoff monitoring results showed the highest release rates of inorganic elements from the FA50 concrete pavement, whereas there were little differences in release rates between PC and FA30 concretes. The release of elements generally decreased with increasing pavement loading. Except for Cr, elements were released as particulates (>0.45 {mu} m) rather than dissolved constituents. The incorporation of fly ash in the PC cement concrete pavements examined in this study resulted in little or no deleterious environmental impact from the leaching of inorganic elements over the lifetime of the pavement system.

  13. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    SciTech Connect (OSTI)

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  14. Top quark pair production cross section at LHC in ATLAS

    E-Print Network [OSTI]

    John David Morris

    2014-10-24

    Measurements of the top quark production cross section in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented. The measurements require no, one or two electrons or muons in the final state (single lepton, dilepton, hadronic channel). In addition, the decay modes with tau leptons are tested (channels with tau leptons). The main focus is on measurements of differential spectra of $t\\bar{t}$ final states, in particular, measurements that are able to constrain the modelling of additional parton radiation like the jet multiplicity distribution.

  15. Low-energy exclusive cross sections and inclusive production of identified charged hadrons with Babar

    E-Print Network [OSTI]

    Heller, Barbara

    Low-energy exclusive cross sections and inclusive production of identified charged hadrons of low-energy exclusive e+e- cross sections, and recent results on the inclusive production of identified the cross sections to be measured at low energy and over an extended energy range. In addition, we present

  16. CDF note 9988 Measurement of the tt production cross section in the ET + jets channel

    E-Print Network [OSTI]

    Quigg, Chris

    CDF note 9988 Measurement of the t¯t production cross section in the ET + jets channel with 2.2 fb we describe the measurement of the t¯t production cross section in the final state characterized parameterized probabilities of b-jet identification, measured directly from data. The resulting t¯t production

  17. MATERIAL SAFETY DATA SHEET SECTION I: IDENTIFICATION OF PRODUCT

    E-Print Network [OSTI]

    Wikswo, John

    . Sweep or vacuum in a manner that does not disperse zinc powder in the air and place the zinc in a closed-use empty containers for food, clothing or products for human or animal consumption, or where skin contact

  18. Measurement of the Isolated Prompt Photon Production Cross Section in pp Collisions at

    E-Print Network [OSTI]

    Yu, Shin-Shan Eiko

    Measurement of the Isolated Prompt Photon Production Cross Section in pp Collisions at ffiffiffi production of isolated prompt photons has been measured as a function of the photon transverse energy E complements deep- inelastic scattering, Drell-Yan pair production, and jet production measurements [1

  19. CDF note 9321 Measurement of the b Jet Production Cross Section

    E-Print Network [OSTI]

    Quigg, Chris

    CDF note 9321 CDF Measurement of the b Jet Production Cross Section in Events with a W± Boson The CDF Collaboration URL http://www-cdf.fnal.gov (Dated: May 21, 2008) The b jet production cross section is measured for events with a W± boson in pp collisions at 1.96 TeV. The data were collected using

  20. Precise Measurement of Dimuon Production Cross-Sections in Fe Deep Inelastic Scattering at the Tevatron

    E-Print Network [OSTI]

    Precise Measurement of Dimuon Production Cross-Sections in #23; #22; Fe and #22; #23; #22; Fe Deep statistically precise measurement of neutrino-induced dimuon production cross-sections to date. These measure, USA Version 11.02.00 1 #12; (February 14, 2001) Abstract We present measurements of the semi

  1. Search for Resonant Top-antitop Production in the Semi-leptonic Decay Mode Using the Full CDF Data Set

    E-Print Network [OSTI]

    Aaltonen, T; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chokheli, D; Cho, K; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Deninno, M; d'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernandez Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Goldin, D; Gold, M; Golossanov, A; Gomez-Ceballos, G; Gomez, G; Goncharov, M; Gonzalez Lopez, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harrington-Taber, T; Harr, R F; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Junk, T R; Jun, S Y; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kimura, N; Kim, Y J; Kim, Y K; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lysak, R; Lys, J; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Martinez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernandez, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; Stancari, M; St. Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vazquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizan, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C, III; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-01-01

    This Letter reports a search for a narrow resonant state decaying into two $W$ bosons and a bottom-antibottom quark pair where one $W$ boson decays leptonically and the other decays into a quark-antiquark pair. The search is particularly sensitive to top-antitop resonant production. We use the full data sample of proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron, corresponding to an integrated luminosity of 9.45 fb$^{-1}$. No evidence for resonant production is found and upper limits on the production cross section times branching ratio for a narrow resonant state are extracted. Within a specific benchmark model, we exclude a $Z'$ boson with mass below 915 GeV/$c^2$ decaying into a top-antitop pair at the 95% credibility level assuming a $Z'$ boson decay width of $\\Gamma_{Z'} = 0.012 M_{Z'}$. This is the most sensitive search for a narrow $\\ensuremath{q\\bar{q}}$-initiated $\\ensuremath{t\\bar{t}}$ resonance in the mass region below 750 ...

  2. Single Top quark production cross section and properties using the ATLAS detector at the LHC

    E-Print Network [OSTI]

    ATLAS Collaboration; The ATLAS collaboration

    2015-01-01

    Measurements of single top­quark production in proton proton collisions at 7 and 8 TeV are presented. In the leading order process,?a W boson is exchanged in the t­channel. The single top­ quark and anti­top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. In addition, a measurement of the production cross section of a single top quark in association with a W boson is presented. All measurements are compared to state­-of­-the­-art theoretical calculations and the CKM matrix element |Vtb| is determined. In addition, the s­-channel production is explored and limits on exotic production in single top quark processes are discussed. This includes the search for flavor changing neutral currents and the search for additional W’ bosons or a search for monotops.

  3. Full-Scale Tests of Butt-Welded Splices in Heavy-Rolled Steel Sections Subjected to Primary Tensile Stresses

    E-Print Network [OSTI]

    Bruneau, Michel

    of the observed failure. The splice with full penetration welds exhibited satisfactory strength and ductility are to be performed. Several cases of partial or complete brittle fracture have been reported during fabrication toughness of the base material at the failed joint. The weld design and process used resulted in an initial

  4. Cross sections for pentaquark baryon production from protons in reactions induced by hadrons and photons 

    E-Print Network [OSTI]

    Liu, W.; Ko, Che Ming.

    2003-01-01

    Using hadronic Lagrangians that include the interaction of pentaquark Theta(+) baryon with K and N, we evaluate the cross sections for its production from meson-proton, proton-proton, and photon-proton reactions near threshold.,With empirical...

  5. Combination of measurements of the top-quark pair production cross section from the Tevatron Collider

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    We combine six measurements of the inclusive top-quark pair (t[bar over t]) production cross section (?[subscript tt]-) from data collected with the CDF and D0 detectors at the Fermilab Tevatron with proton-antiproton ...

  6. Upsilon production cross section in pp collisions at ?s=7??TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; et al

    2011-06-15

    The ?(1S), ?(2S), and ?(3S) production cross sections in proton-proton collisions at ?s=7 TeV are measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1±0.3 pb?¹. Integrated over the rapidity range |y|+0.61-0.42±0.81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized ?(1S) production. With themore »assumption of fully transverse or fully longitudinal production polarization, the measured cross section changes by about 20%. We also report the measurement of the ?(1S), ?(2S), and ?(3S) differential cross sections as a function of transverse momentum and rapidity.« less

  7. Production Cross Section of Neutron-Rich Calcium Isotopes in Heavy Ion Collisions

    E-Print Network [OSTI]

    Donghong Zhang; Wenjie Xie; Jun Su; Fengshou Zhang

    2015-03-27

    Based on the isospin-dependent quantum molecular dynamics model along with the GEMINI model, heavy-ion collisions at intermediate energies are studied. We calculate the production cross sections of different fragments for reactions of 112Sn+112Sn and 124Sn+124Sn at different beam energies. The species and production cross sections of neutron-rich isotopes are generally dependent on the isospin of the system and the incident energies. The nucleon 48Ca and 54Ca are more productive for the neutron-rich system at 30 to 150 MeV/nucleon.

  8. CDF/ANAL/TOP/PUB/8272 Measurement of the t t Production Cross Section in SecVtx-and Neural

    E-Print Network [OSTI]

    Quigg, Chris

    CDF/ANAL/TOP/PUB/8272 Measurement of the t #22; t Production Cross Section in SecVtx- and Neural) We present a measurement of the p#22;p ! t #22; t production cross section at p s = 1:96 Te production cross section at such energies is a basic measurement o#11;ering insight into top quark physics

  9. Measurements of the total and differential cross sections of Higgs boson production

    E-Print Network [OSTI]

    ATLAS Collaboration; The ATLAS collaboration

    2015-01-01

    We present measurements of the total and differential cross sections of Higgs boson production that were performed using 20.3 fb$^{-1}$ of $pp$ collisions produced by the Large Hadron Collider at a center-of-mass energy of $\\sqrt{s} = 8$ TeV and recorded by the ATLAS detector. Cross sections are obtained from measured $H \\to \\gamma\\gamma$ and $H \\to ZZ \\to 4 \\ell$ event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be: $\\sigma_{pp \\to H} = 33.0 \\pm 5.3 \\, (\\text{stat}) \\pm 1.6 \\, (\\text{sys})$ pb. The measurements are then compared to state-of-the-art predictions.

  10. Measurements of the W production cross sections in association with jets with the ATLAS detector

    E-Print Network [OSTI]

    ATLAS Collaboration

    2015-03-20

    This paper presents cross sections for the production of a W boson in association with jets, measured in proton--proton collisions at $\\sqrt{s}=7$ TeV with the ATLAS experiment at the Large Hadron Collider. With an integrated luminosity of $4.6 fb^{-1}$, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1 TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.

  11. Measurement of the Top Quark Pair Production Cross Section in pbarp Collisions

    E-Print Network [OSTI]

    D0 Collaboration; S. Abachi

    1997-04-25

    We present a measurement of the ttbar production cross section in ppbar collisions at root(s) = 1.8TeV by the D0 experiment at the Fermilab Tevatron. The measurement is based on data from an integrated luminosity of approximately 125 pb^-1 accumulated during the 1992-1996 collider run. We observe 39 ttbar candidate events in the dilepton and lepton+jets decay channels with an expected background of 13.7+-2.2 events. For a top quark mass of 173.3GeV/c^2, we measure the ttbar production cross section to be 5.5+-1.8 pb.

  12. Full PWA Report: An Assessment of Energy, Waste, and Productivity Improvements for North Star Steel Iowa

    SciTech Connect (OSTI)

    2010-06-25

    North Star Steel's Wilton, Iowa plant (NSSI) was awarded a subcontract through a competitive process to use Department of Energy/OIT funding to examine potential processes and technologies that could save energy, reduce waste, and increase productivity.

  13. New Statistical Techniques in the Measurement of the inclusive Top Pair Production Cross Section

    E-Print Network [OSTI]

    Ji?í Franc; Petr Bou?; Michal Št?pánek; Václav K?s

    2014-12-12

    We present several different types of multivariate statistical techniques used in the measurement of the inclusive top pair production cross section in $p \\bar{p}$-collisions at $\\sqrt{s} = 1.96 \\text{TeV}$ employing the full RunII data ($9.7\\textrm{ fb}^{-1}$) collected with the D0 detector at the Fermilab Tevatron Collider. We consider the final state of the top quark pair decays containing one electron or muon and at least two jets. We proceed various statistical homogeneity tests such as Anderson - Darling, Kolmogorov - Smirnov, and $\\varphi$-divergences tests to determine, which variables have good data-MC agreement, as well as a good separation power. We adjusted all tests for using weighted empirical distribution functions. Further we separate $t\\bar{t}$ signal from the background by the application of Generalized Linear Models, Gaussian Mixture Models, Neural Networks with Switching Units and confront them with familiar methods from ROOT TMVA package such as Boosted Decision Trees, and Multi-layer Perceptron. We compare results by area under receiver operating characteristic curve and verify the quality of the discrimination from all methods.

  14. tt Production Cross Section Measurement using Soft Electron Tagging in pp Collisions at

    E-Print Network [OSTI]

    Weitz, David

    V A thesis presented by John Paul Chou to The Department of Physics in partial fulfillment, Massachusetts September 2008 #12;c 2008 - John Paul Chou All rights reserved. #12;Thesis advisor Author Melissa Franklin John Paul Chou tt Production Cross Section Measurement using Soft Electron Tagging in pp

  15. Measurement of the B? Production Cross Section in pp Collisions at ?s=7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al

    2011-06-01

    Measurements of the differential production cross sections d?/dpBT and d?/dyB for B? mesons produced in pp collisions at ?s=7 TeV are presented. The data set used was collected by the CMS experiment at the LHC and corresponds to an integrated luminosity of 40 pb?¹. The production cross section is measured from B? meson decays reconstructed in the exclusive final state J/?K0S, with the subsequent decays J/?????? and K0S?????. The total cross section for pBT>5 GeV and |yB|<2.2 is measured to be 33.2±2.5±3.5 ?b, where the first uncertainty is statistical and the second is systematic.

  16. CDF Note 10979 Measurement of Single Top Production Cross Section in E/T plus Jets Sample with the

    E-Print Network [OSTI]

    Quigg, Chris

    CDF CDF Note 10979 Measurement of Single Top Production Cross Section in E/T plus Jets Sample a measurement of single top production cross section selecting events consistent with W+jets topology but where, this sample provides, albeit with low precision, an independent measurement of the single top production cross

  17. Measurement of the differential cross section for isolated prompt photon production in pp collisions at 7 TeV

    E-Print Network [OSTI]

    Yu, Shin-Shan Eiko

    Measurement of the differential cross section for isolated prompt photon production in pp September 2011) A measurement of the differential cross section for the inclusive production of isolated The measurement of isolated prompt photon production in proton-proton collisions provides a test of perturbative

  18. Comparison of Isoscalar Vector Meson Production Cross Sections in Proton-Proton Collisions

    E-Print Network [OSTI]

    The COSY-TOF collaboration; M. Abdel-Bary; S. Abdel-Samad; K. -Th. Brinkmann; H. Clement; J. Dietrich; E. Doroshkevich; S. Dshemuchadse; K. Ehrhardt; A. Erhardt; W. Eyrich; A. Filippi; H. Freiesleben; M. Fritsch; A. Gillitzer; D. Hesselbarth; R. Jäkel; L. Karsch; K. Kilian; E. Kuhlmann; S. Marcello; P. Michel; K. Möller; H. P. Morsch; C. Pizzolotto; Ch. Plettner; J. Ritman; E. Roderburg; P. Schönmeier; W. Schroeder; M. Schulte-Wissermann; M. Steinke; G. J. Sun; W. Ullrich; R. Wenzel; P. Wintz; M. Wagner; A. Wilms; S. Wirth; P. Zupranski

    2007-02-28

    The reaction $ pp\\to pp\\bf \\omega$ was investigated with the TOF spectrometer, which is an external experiment at the accelerator COSY (Forschungszentrum J\\"ulich, Germany). Total as well as differential cross sections were determined at an excess energy of $93 MeV$ ($p_{beam}=2950 MeV/c$). Using the total cross section of $(9.0\\pm 0.7 \\pm1.1) \\mu b$ for the reaction $ pp\\to pp\\omega$ determined here and existing data for the reaction $pp\\to pp\\bf \\phi$, the ratio $\\mathcal{R}_{\\phi/\\omega}=\\sigma_\\phi/\\sigma_\\omega$ turns out to be significantly larger than expected by the Okubo-Zweig-Iizuka (OZI) rule. The uncertainty of this ratio is considerably smaller than in previous determinations. The differential distributions show that the $\\omega$ production is still dominated by S-wave production at this excess energy, however higher partial waves clearly contribute. A comparison of the measured angular distributions for $\\omega$ production to published distributions for $\\phi$ production at $83 MeV$ shows that the data are consistent with an identical production mechanism for both vector mesons.

  19. Measurement of the ratio of the production cross sections times branching fractions of B [superscript ±][subscript c] ? [J over ?? [superscript ±

    E-Print Network [OSTI]

    Apyan, Aram

    The ratio of the production cross sections times branching fractions (?(B[superscript ± [subscript c])B(B[superscript ±] [subscript c]?J[over ?? [superscript ±

  20. Experimental cross sections for L-shell x-ray production and ionization by protons

    SciTech Connect (OSTI)

    Miranda, Javier, E-mail: miranda@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000 (Mexico); Lapicki, Gregory [Department of Physics, East Carolina University, Greenville, NC 27858 (United States)

    2014-05-15

    Tables of compiled cross sections list data for production of individual line and total L x-rays as well as for ionization of L subshells and the total L shell. The present cumulative compilation covers some six decades of measurements on targets from {sub 10}Ne to {sub 95}Am bombarded by protons ranging from 10 keV to 1 GeV. It includes data published in the period 1954–1992 from tables published in this journal, cross sections that were not reported in those tables, and new data from works published after 1992. Existing empirical, semiempirical, and theoretical analyses based on, and relative to, the pre-1993 database are reviewed. The experimental details are summarized for pre-1993 articles that were not referenced in previous compilations and, continuing the practice of these compilations, for each new publication. Covering the period 1954–December 2012, the present tabulation collects (not counting 2519 new data for L{sub ?1,3,4}, L{sub ?2,15},L{sub ?1}, L{sub ?2,3}, and L{sub ?4,4{sup ?}} x ray production) circa 15 500 experimental cross sections and enlarges the database from the previously published tables by 94%. -- Highlights: •An updated database is presented, increasing by 94% the earlier pre-1993 database. •The update has 40% more data from the pre-1993 period, absent in prior compilations. •The growth and possible saturation in the number of data is illustrated. •Ionization cross sections are reconverted to x-ray production cross sections. •Elements and ion energies are identified where measurements are still necessary.

  1. Heavy quarkonium production at collider energies: Partonic cross section and polarization

    SciTech Connect (OSTI)

    Qiu, Jian -Wei [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States); Kang, Zhong -Bo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ma, Yan -Qing [Univ. of Maryland, College Park, MD (United States); Peking Univ., Beijing (China); Sterman, George [Stony Brook Univ., Stony Brook, NY (United States)

    2015-01-01

    We calculate the O(?³s) short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. This provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, pT, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy hadronic collisions. The consistency of QCD collinear factorization and nonrelativistic QCD factorization applied to heavy quarkonium production is also discussed.

  2. Heavy quarkonium production at collider energies: Partonic cross section and polarization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qiu, Jian -Wei; Kang, Zhong -Bo; Ma, Yan -Qing; Sterman, George

    2015-01-27

    We calculate the O(?³s) short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. Thus, this provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, pT, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high-energy hadronic collisions. The consistency of QCD collinearmore »factorization and nonrelativistic QCD factorization applied to heavy quarkonium production is also discussed.« less

  3. Measurements of the W production cross sections in association with jets with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-02-19

    This paper presents cross sections for the production of a W boson in association with jets, measured in proton–proton collisions at \\(\\sqrt{s} = 7\\) TeV with the ATLAS experiment at the large hadron collider. With an integrated luminosity of 4.6fb-1, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jetmore »observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. As a result, the measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.« less

  4. Measurement of the ttbar production cross section in the emu channel in pp collisions at 7 and 8 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-01-01

    The inclusive cross section for top quark pair production is measured in proton-proton collisions at $\\sqrt{s} = 7\\rm~TeV$ and $\\sqrt{s} = 8\\rm~TeV$ with the CMS experiment at the CERN LHC using the full data samples collected in 2011 and 2012.

  5. Measurement of Differential Production Cross Sections for Z/?* Bosons in Association with Jets in p[bar over p] Collisions at ?s = 1.96 TeV

    E-Print Network [OSTI]

    Aaltonen, T.

    Differential cross sections for the production of Z bosons or off-shell photons ?[superscript *] in association with jets are measured in proton-antiproton collisions at center-of-mass energy ?s = 1.96??TeV using the full ...

  6. Production and Validation of Isotope Production Cross Section Libraries for Neutrons and Protons to 1.7 GeV

    E-Print Network [OSTI]

    S. G. Mashnik; A. J. Sierk; K. A. Van Riper; W. B. Wilson

    1998-12-25

    For validation and development of codes and for modeling isotope production in high power accelerators and APT Materials studies, we have produced experimental, calculated, and evaluated activation libraries for interaction of nucleons with nuclides covering about a third of all natural elements. For targets considered here, our compilation of experimental data is the most complete we are aware of, since it contains all data available on the Web, in journal papers, laboratory reports, theses, and books, as well as all data included in the large compilation by Sobolevsky with co-authors (NUCLEX) published recently by Springer-Verlag in 4 volumes. Our evaluated library was produced using all available experimental cross sections together with calculations by the CEM95, LAHET, and HMS-ALICE codes and with the European Activation File EAF-97 and LANL Update II of the ECNAF Neutron Activation Cross-Section Library.

  7. Assessment of Fission Product Cross-Section Data for Burnup Credit Applications

    SciTech Connect (OSTI)

    Leal, Luiz C; Derrien, Herve; Dunn, Michael E; Mueller, Don

    2007-12-01

    Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance. Moreover, DOE, NRC, and EPRI have noted the need for additional scientific and technical data to justify expanding PWR burnup credit to include fission product (FP) nuclides and enable burnup credit implementation for boiling-water reactor (BWR) spent nuclear fuel (SNF). The criticality safety assessment needed for burnup credit applications will utilize computational analyses of packages containing SNF with FP nuclides. Over the years, significant efforts have been devoted to the nuclear data evaluation of major isotopes pertinent to reactor applications (i.e., uranium, plutonium, etc.); however, efforts to evaluate FP cross-section data in the resonance region have been less thorough relative to actinide data. In particular, resonance region cross-section measurements with corresponding R-matrix resonance analyses have not been performed for FP nuclides. Therefore, the objective of this work is to assess the status and performance of existing FP cross-section and cross-section uncertainty data in the resonance region for use in burnup credit analyses. Recommendations for new cross-section measurements and/or evaluations are made based on the data assessment. The assessment focuses on seven primary FP isotopes (103Rh, 133Cs, 143Nd, 149Sm, 151Sm, 152Sm, and 155Gd) that impact reactivity analyses of transportation packages and two FP isotopes (153Eu and 155Eu) that impact prediction of 155Gd concentrations. Much of the assessment work was completed in 2005, and the assessment focused on the latest FP cross-section evaluations available in the international nuclear data community as of March 2005. The accuracy of the cross-section data was investigated by comparing existing cross-section evaluations against available measured cross-section data. When possible, benchmark calculations were also used to assess the performance of the latest FP cross-section data. Since March 2005, the U.S. and European data projects have released newer versions of their respective data files. Although there have been updates to the international data files and to some degree FP data, much of the updates have included nuclear cross-section modeling improvements at energies above the resonance region. The one exception is improved ENDF/B-VII cross-section uncertainty data or covariance data for gadolinium isotopes. In particular, ENDF/B-VII includes improved 155Gd resonance parameter covariance data, but they are based on previously measured resonance data. Although the new covariance data are available for 155Gd, the conclusions of the FP cross-section data assessment of this report still hold in lieu of the newer international cross-section data files. Based on the FP data assessment, there is judged to be a need for new total and capture cross-section measurements and corresponding cross-section evaluations, in a prioritized manner, for the nine FPs to provide the improved information and technical rigor needed for criticality safety analyses.

  8. Characterization of radiolytically generated degradation products in the strip section of a TRUEX flowsheet

    SciTech Connect (OSTI)

    Dean R. Peterman; Lonnie G. Olson; Gary S. Groenewold; Rocklan G. McDowell; Richard D. Tillotson; Jack D. Law

    2013-08-01

    This report presents a summary of the work performed to meet the FCRD level 2 milestone M3FT-13IN0302053, “Identification of TRUEX Strip Degradation.” The INL radiolysis test loop has been used to identify radiolytically generated degradation products in the strip section of the TRUEX flowsheet. These data were used to evaluate impact of the formation of radiolytic degradation products in the strip section upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

  9. Sensitivity of Photoneutron Production to Perturbations in Cross-Section Data?

    SciTech Connect (OSTI)

    Clarke, Shaun D [ORNL; Pozzi, Sara A [ORNL; Downar, Thomas J [ORNL; Padovani, Enrico [Nuclear Engineering Department Politecnico di Milano, Milan, Italy

    2007-10-01

    The most recent release of photonuclear interaction data for Monte Carlo applications is the ENDF/B-VII library. While this current version offers several improvements over its predecessors, it does not address the observed, sometimes quite significant variance in the measured data. For instance, for 238U, the cross-section data in the ENDF/B-VII library is consistently larger than all measurements except for those by Caldwell, et al., occasionally by as much as 20%. The objective of the work performed here was to investigate the sensitivity of photoneutron production to perturbations in photonuclear cross-section data. The effect of these perturbations on common experimental observables was assessed using the MCNPX/MCNP-PoliMi code system. Since the standard MCNPX perturbation routines are not available for photonuclear reactions, we developed and implemented a new methodology to evaluate the sensitivity of commonly-measured parameters to perturbations in photonuclear cross-section data. The results of the analysis show that the maximum variance applied to the cross section (20%) results in an integral detector response change that in general varies between 4% and 8%.

  10. Estimation of charm production cross section in hadronic interactions at high energies

    E-Print Network [OSTI]

    G. M. Vereshkov; Yu. F. Novoseltsev

    2004-04-24

    Results of processing experimental data on charm production in hadron-hadron interactions are presented. The analysis is carried out within the frame of phenomenological model of diffraction production and quark statistics based on additive quark model (AQM). In low energy region sqrt s = 20 - 40GeV, the cross sections si_ {pN to c bar cX} (s), si_ {pi N to c bar cX} (s) are fitted by logarithmic function with the parameters connected by relationship of AQM. At collider energies 200, 540, 900, 1800 GeV, the values of si_{bar pp to c bar cX} (s) were obtained by a quark statistics method from the data on diffraction dissociation. It is established, that logarithmic function with universal numerical parameters describes the whole set of low-energy and high-energy data with high accuracy. The expected values of cross sections are si_{pp to c bar cX} = 250 pm 40 mu b and 355 pm 57 mu b at TEVATRON energy sqrt {s} = 1.96 TeV and LHC energy sqrt {s} = 14 TeV accordingly. Opportunities of use of the obtained results for calibration of a flux of "prompt" muons in high-energy component of cosmic rays are discussed.

  11. Measurement of the Isolated Prompt Photon Production Cross Section in pp Collisions at [square root] s=7??TeV

    E-Print Network [OSTI]

    Alver, Burak Han

    The differential cross section for the inclusive production of isolated prompt photons has been measured as a function of the photon transverse energy ET? [E subscript Tau superscript gamma] in pp collisions at ?s=7??[square ...

  12. Cross section standards for neutron-induced gamma-ray production in the MeV energy range.

    SciTech Connect (OSTI)

    Nelson, R. O. (Ronald O.); Fotiadis, N. (Nikolaos); Devlin, M. J. (Matthew J.); Becker, J. A. (John A.); Garrett, P. E. (Paul E.); Younes, W. (Walid)

    2004-01-01

    Gamma-ray cross section standards for neutron-induced reactions are important in enabling the accurate determination of absolute cross sections from relative measurements of gamma-ray production. In our work we observed a need for improvement in these standards. In particular there are large discrepancies between evaluations of the {sup nat}Fe(n,n{sub 1}'{gamma}) cross section for the 847-keV gamma ray. We have performed (1) absolute cross section measurements, (2) measurements relative to the {sup nat}Cr(n,n{sub 1}'{gamma}) 1434-keV gamma ray, and (3) comparisons using measured total and elastic scattering cross sections to refine our knowledge of the Fe cross section and the closely linked inelastic channel cross section for Fe. Calculation of integral tests of the cross section libraries may indicate that adjustment of the angular distributions of the neutron elastic and inelastic scattering may be needed.

  13. Measurement of charm production cross-section and leptons from its semileptonic decay at RHIC

    E-Print Network [OSTI]

    Yifei Zhang

    2008-09-09

    In this thesis, we present the measurements of $D^{0}\\to K\\pi$ at low $p_T$ ($p_T\\leq2$ GeV/$c$) and non-photonic electron spectra ($0.9\\leq p_T\\leq5$ GeV/$c$) from $D^0$ semi-leptonic decay. In addition, we use a newly proposed technique to identify muons from charm decays at low $p_T$. The combination of all these three measurements stringently constrains the total charm production cross-section at mid-rapidity at RHIC. They also allow the extraction of the charmed hadron spectral shape and a study of possible charm radial flow in Au+Au collisions.

  14. Measurement of the ?(1S) production cross-section in pp collisions at ?s = 7 TeV in ATLAS

    E-Print Network [OSTI]

    Taylor, Frank E.

    A measurement of the cross-section for ?(1S)??[superscript +]?[superscript ?] production in proton–proton collisions at centre of mass energy of 7 TeV is presented. The cross-section is measured as a function of the ?(1S) ...

  15. Measurements of the $ZZ$ production cross sections in the $2\\ell2\

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-10-29

    Measurements of the Z Z production cross sections in proton–proton collisions at center-of-mass energies of 7 and 8 TeV are presented. We found that candidate events for the leptonic decay mode ZZ?2l2?, where l denotes an electron or a muon, are reconstructed and selected from data corresponding to an integrated luminosity of 5.1 (19.6)fb-1 at 7 (8) TeV collected with the CMS experiment. The measured cross sections, ?(pp?ZZ)=5.1+1.5-1.4(stat)+1.4-1.1(syst)±0.1(lumi)~pb at 7 TeV, and 7.2+0.8-0.8(stat)+1.9-1.5(syst)±0.2(lumi)~pb at 8 TeV, are in good agreement with the standard model predictions with next-to-leading-order accuracy. Furthermore, the selected data are analyzed to search for anomalous triple gaugemore »couplings involving the Z Z final state. In the absence of any deviation from the standard model predictions, limits are set on the relevant parameters. These limits are then combined with the previously published CMS results for Z Z in 4l final states, yielding the most stringent constraints on the anomalous couplings.« less

  16. Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales

    SciTech Connect (OSTI)

    Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

    2011-05-01

    Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

  17. Measurement of the Inclusive Upsilon production cross section in pp collisions at sqrt(s)=7 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2011-06-01

    The Upsilon production cross section in proton-proton collisions at sqrt(s) = 7 TeV is measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1 +/- 0.3 inverse picobarns. Integrated over the rapidity range |y|<2, we find the product of the Upsilon(1S) production cross section and branching fraction to dimuons to be sigma(pp to Upsilon(1S) X) B(Upsilon(1S) to mu+ mu-) = 7.37 +/- 0.13^{+0.61}_{-0.42}\\pm 0.81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized Upsilon(1S) production. If the Upsilon(1S) production polarization is fully transverse or fully longitudinal the cross section changes by about 20%. We also report the measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections as a function of transverse momentum and rapidity.

  18. Measurement of the Inclusive Upsilon production cross section in pp collisions at sqrt(s)=7 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2010-12-26

    The Upsilon production cross section in proton-proton collisions at sqrt(s) = 7 TeV is measured using a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 3.1 +/- 0.3 inverse picobarns. Integrated over the rapidity range |y|product of the Upsilon(1S) production cross section and branching fraction to dimuons to be sigma(pp to Upsilon(1S) X) B(Upsilon(1S) to mu+ mu-) = 7.37 +/- 0.13^{+0.61}_{-0.42}\\pm 0.81 nb, where the first uncertainty is statistical, the second is systematic, and the third is associated with the estimation of the integrated luminosity of the data sample. This cross section is obtained assuming unpolarized Upsilon(1S) production. If the Upsilon(1S) production polarization is fully transverse or fully longitudinal the cross section changes by about 20%. We also report the measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) differential cross sections as a function of transverse momentum and rapidity.

  19. Top quark pair production cross section in the lepton+jets channel using b-tagging at D0

    SciTech Connect (OSTI)

    Yoo, H.D.; /Brown U.

    2008-05-01

    The top quark pair production cross section measurement in the lepton+jets channel with b-tagging algorithm is described. About 900 pb{sup -1} data collected by the D0 detector at the Fermilab Tevatron are used for this analysis. In this thesis, event selection, background estimation, and cross section calculation are discussed in detail. In addition, calibration of the Luminosity Monitor readout electronics and a new b-tagging algorithm, the SLTNN tagger, are also discussed in this thesis.

  20. Prospects for b-quark production cross section measurements in pp collisions at the LHC

    E-Print Network [OSTI]

    A. Sherstnev

    2006-09-14

    A brief review of theoretical and experimental aspects of $b$-quark production measurements at the LHC.

  1. Measurement of the top pair production cross section in the lepton+jets channel using a jet flavor discriminant

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We present a new method to measure the top quark pair production cross section and the background rates with data corresponding to an integrated luminosity of 2.7??fb[superscript -1] from pp? collisions at ?s=1.96??TeV ...

  2. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    E-Print Network [OSTI]

    Danon, Yaron

    ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia 11 Nuclear Research and Consultancy Group, P 2011) The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear

  3. Measurement of the top quark pair production cross-section with ATLAS in the single lepton channel

    E-Print Network [OSTI]

    Taylor, Frank E.

    A measurement of the production cross-section for top quark pairs (t[bar over t]) in pp collisions at ?s = 7 TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected ...

  4. Comparison of proton and helium induced M subshell X-ray production cross sections with the ECUSAR theory

    E-Print Network [OSTI]

    Bier, Martin

    Comparison of proton and helium induced M subshell X-ray production cross sections with the ECUSAR and helium ion energy range from 0.5 to 3 MeV on thin W, Au, Pb, Th and U targets. Ó 2013 Elsevier B.V. All laboratories for many years to characterise a broad range of sam- ples. Current PIXE detection systems

  5. Measurements of proton-induced radionuclide production cross sections to evaluate cosmic-ray activation of tellurium

    E-Print Network [OSTI]

    A. F. Barghouty; C. Brofferio; S. Capelli; M. Clemenza; O. Cremonesi; S. Cebrián; E. Fiorini; R. C. Haight; E. B. Norman; E. Previtali; B. J. Quiter; M. Sisti; A. R. Smith; S. A. Wender

    2012-12-11

    We have measured a large number of proton-induced radionuclide production cross sections from tellurium targets of natural isotopic composition at incident energies of 0.80, 1.4, and 23 GeV. The results of these measurements are compared to semi-empirical calculations.

  6. Inclusive b-hadron production cross section with muons in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2011-03-01

    A measurement of the b-hadron production cross section in proton-proton collisions at sqrt(s)=7 TeV is presented. The dataset, corresponding to 85 inverse nanobarns, was recorded with the CMS experiment at the LHC using a low-threshold single-muon trigger. Events are selected by the presence of a muon with transverse momentum greater than 6 GeV with respect to the beam direction and pseudorapidity less than 2.1. The transverse momentum of the muon with respect to the closest jet discriminates events containing b hadrons from background. The inclusive b-hadron production cross section is presented as a function of muon transverse momentum and pseudorapidity. The measured total cross section in the kinematic acceptance is sigma(pp to b+X to mu + X') =1.32 +/- 0.01 (stat) +/- 0.30 (syst) +/- 0.15 (lumi) microbarns.

  7. Cross section for bb¯ production via dielectrons in d + Au collisions at sNN=200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; et al

    2015-01-26

    We report a measurement of e?e? pairs from semileptonic heavy-flavor decays in d+Au collisions at ?sNN = 200 GeV. Thus, exploring the mass and transverse-momentum dependence of the yield, the bottom decay contribution can be isolated from charm, and quantified by comparison to PYTHIA and MC@NLO simulations. The resulting bb-production cross section is ?dAubb=1.37±0.28(stat)±0.46(syst) mb, which is equivalent to a nucleon-nucleon cross section of ?NNbb =3.4 ± 0.8(stat)±1.1(syst) µb.

  8. Combination of measurements of the top-quark pair production cross section from the Tevatron Collider

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Chen, G.; Clutter, Justace Randall; Sekaric, Jadranka; Wilson, Graham Wallace; Aaltonen, T.; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.

    2014-04-01

    -quark mass of mt ¼ 172.5 GeV. The contributions to the uncertainty are 0.20 pb from statistical sources, 0.29 pb from systematic sources, and 0.21 pb from the uncertainty on the integrated luminosity. The result is in good agreement with the standard model... the experimental uncertainty and thereby providing a better test of the SM prediction. The inclusive t¯t cross section has also been measured at the LHC at different center of mass energies [13,14]. In the remainder of this section, the status of the theoretical...

  9. Production cross section measurements of radioactive isotopes by BigRIPS separator at RIKEN RI Beam Factory

    E-Print Network [OSTI]

    H. Suzuki; T. Kubo; N. Fukuda; N. Inabe; D. Kameda; H. Takeda; K. Yoshida; K. Kusaka; Y. Yanagisawa; M. Ohtake; H. Sato; Y. Shimizu; H. Baba; M. Kurokawa; T. Ohnishi; K. Tanaka; O. B. Tarasov; D. Bazin; D. J. Morrissey; B. M. Sherrill; K. Ieki; D. Murai; N. Iwasa; A. Chiba; Y. Ohkoda; E. Ideguchi; S. Go; R. Yokoyama; T. Fujii; D. Nishimura; H. Nishibata; S. Momota; M. Lewitowicz; G. DeFrance; I. Celikovic; K. Steiger

    2013-10-22

    We have measured the production rates and production cross sections for a variety of radioactive isotopes which were produced from 124Xe, 48Ca, and 238U beams at an energy of 345 MeV/nucleon using the BigRIPS separator at the RIKEN Nishina Center RI Beam Factory (RIBF). Proton-rich isotopes with atomic numbers Z = 40 to 52 and neutron-rich isotopes with Z = 5 to 16 were produced by projectile fragmentation of the 124Xe and 48Ca beam on Be targets, respectively. Neutron-rich isotopes with Z = 20 to 59 were produced by in-flight fission of the 238U beam, in which both Be and Pb were used as production targets. The measured production rates and production cross sections were compared with those of the LISE++ calculations, and overall fairly good agreement has been obtained. Furthermore, in the measurements with the 124Xe beam, we have discovered four new isotopes on the proton-drip line, 85,86Ru and 81,82Mo, and obtained the clear evidence that 103Sb is particle unbound with an upper limit of 49 ns for the half-life. The measurements of projectile-fragment momentum distributions have been also performed with the 124Xe beam, in which the low-momentum tails of the distributions have been measured for the first time at the energy of 345 MeV/nucleon.

  10. Status of the top quark: Top production cross section and top properties

    SciTech Connect (OSTI)

    Boisvert, V.; /Rochester U.

    2006-08-01

    This report describes the latest cross section and property measurements associated with the top quark at the Tevatron Run II. The largest data sample used is 760 pb{sup -1} of integrated luminosity. Due to its large mass, the top quark might be involved in the process of electroweak symmetry breaking, making it a useful probe for signs of new physics.

  11. Systematics of cross sections for target K-vacancy production in heavy ion collisions 

    E-Print Network [OSTI]

    Peng, Yong

    2007-04-25

    Cross sections for K-shell ionization by heavy ions have been determined from the measurements of target K x-ray yields. The measurements were performed with Ar, Kr, and Xe ions at energies from 2.5 to 25 MeV/amu and ...

  12. Measurement of the ZZ production cross section in p p? collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Alverson, George O; Alves, Gilvan Augusto; et al

    2011-07-06

    The authors present a new measurement of the production cross section ?(pp? = ZZ) at a center-of-mass energy ?s = 1.96 TeV, obtained from the analysis of the four charged lepton final state ?+?-?`+?`- (?, ?` = e or ?). They observe ten candidate events with an expected background of 0.37 ± 0.13 events. The measured cross section ?(pp? =ZZ) = 1.26-0.37+0.47 (stat) ± 0.14 (syst) pb is in agreement with NLO QCD predictions. This result is combined with a previous result from the ZZ = ?+?- ??? channel resulting in a combined cross section of ?(pp? = ZZ) =more »1.40-0.37+0.43 (stat) ±0.14 (syst) pb.« less

  13. Measurement of the inclusive and differential tt production cross sections in lepton + jets final states at 13 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-01-01

    The total inclusive and the normalized differential cross sections for the production of top quark pairs in proton-proton collisions at 13\\,TeV are measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 42\\,pb$^{-1}$. The measurements are performed in the l+jets decay channels with an electron or a muon in the final state. The differential cross section is measured as a function of transverse momentum and rapidity of the top quarks and as a function of transverse momentum, rapidity, and invariant mass of the top quark pairs, as well as of the jet multiplicity. The measured cross sections are compared to several theoretical calculations. No significant deviation from the standard model prediction is observed.

  14. Measurement of the ZZ production cross section in p p? collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich [Dubna, JINR; Abbott, Braden Keim [Oklahoma U.; Acharya, Bannanje Sripath [Tata Inst.; Adams, Mark Raymond [Illinois U., Chicago; Adams, Todd [Florida State U.; Alexeev, Guennadi D [Dubna, JINR; Alkhazov, Georgiy D [St. Petersburg, INP; Alton, Andrew K [Michigan U.; Augustana Coll., Sioux Falls; Alverson, George O [/Northeastern U.; Alves, Gilvan Augusto [Rio de Janeiro, CBPF; Ancu, Lucian Stefan [Nijmegen U.; Fermilab

    2011-07-06

    The authors present a new measurement of the production cross section ?(pp? = ZZ) at a center-of-mass energy ?s = 1.96 TeV, obtained from the analysis of the four charged lepton final state ?+?-?`+?`- (?, ?` = e or ?). They observe ten candidate events with an expected background of 0.37 ± 0.13 events. The measured cross section ?(pp? =ZZ) = 1.26-0.37+0.47 (stat) ± 0.14 (syst) pb is in agreement with NLO QCD predictions. This result is combined with a previous result from the ZZ = ?+?- ??? channel resulting in a combined cross section of ?(pp? = ZZ) = 1.40-0.37+0.43 (stat) ±0.14 (syst) pb.

  15. Measurement of the Cross Section for Direct-Photon Production in Association with a Heavy Quark in p[¯ over p] Collisions at ?s=1.96??TeV

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    We report on a measurement of the cross section for direct-photon production in association with a heavy quark using the full data set of ?s=1.96??TeV proton-antiproton collisions corresponding to 9.1??fb[superscript -1] ...

  16. NAABB Full Final Report Section I

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin of Contamination in ManyMyriant

  17. Simultaneous measurements of the tt¯,W+W–, and Z/?*??? production cross-sections in pp collisions ats=7TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.?S.; Abramowicz, H.; et al

    2015-03-06

    Simultaneous measurements of the tt¯, W?W?, and Z/?? ? ?? production cross-sections using an integrated luminosity of 4.6??fb?¹ of pp collisions at ?s = 7??TeV collected by the ATLAS detector at the LHC are presented. Events are selected with two high transverse momentum leptons consisting of an oppositely charged electron and muon pair. The three processes are separated using the distributions of the missing transverse momentum of events with zero and greater than zero jet multiplicities. Measurements of the fiducial cross-section are presented along with results that quantify for the first time the underlying correlations in the predicted and measuredmore »cross-sections due to proton parton distribution functions. These results indicate that the correlated next-to-leading-order predictions for tt¯ and Z/?? ? ?? underestimate the data, while those at next-to-next-to-leading-order generally describe the data well. The full cross-sections are measured to be ?(tt¯) = 181.2 ± 2.8????????? ± 3.3 ± 3.3??pb, ?(W?W?) = 53.3 ± 2.7???³???? ± 1.0 ± 0.5??pb, and ?(Z/?? ? ??) = 1174 ± 24??²??? ± 21 ± 9??pb, where the cited uncertainties are due to statistics, systematic effects, luminosity and the LHC beam energy measurement, respectively. The W?W? measurement includes the small contribution from Higgs boson decays, H ? W?W?.« less

  18. Measurement of the top quark pair production cross section in the all-jets decay channel

    E-Print Network [OSTI]

    Baringer, Philip S.; Coppage, Don; Hebert, C.

    1999-09-01

    We present a measurement of production in collisions at root s = 1.8 TeV from 110 pb(-1) of data collected in the all-jets decay channel with the D0 detector at Fermilab. A neural network ...

  19. Spectrum and vibrational predissociation of the HF dimer. II. Photodissociation cross sections and product state distributions

    E-Print Network [OSTI]

    and dimer geared-bending modes. We find that dissociation is sufficiently slow for the Fermi golden rule approximate them as bound states. This was the approach taken in the preceding paper1 hereafter called Paper I­DF complex using a time- dependent golden rule approach. In this paper we present the results of full

  20. Measurement of the Top Pair Production Cross Section in the Lepton + Jets Channel Using a Jet Flavor Discriminant

    SciTech Connect (OSTI)

    Aaltonen, T; Aaltonen, T; Alvarez Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A

    2011-08-01

    We present a new method to measure the top quark pair production cross section and the background rates with data corresponding to an integrated luminosity of 2.7 fb-1 from p p? collisions at ?s = 1.96 TeV collected with the CDF II Detector. We select events with a single electron or muon candidate, missing transverse energy, and at least one b-tagged jet. We perform a simultaneous fit to a jet flavor discriminant across nine samples defined by the number of jets and b-tags. An advantage of this approach is that many systematic uncertainties are measured in situ and inversely scale with integrated luminosity. We measure a top cross section of ?tt? = 7.64 ± 0.57 (stat + syst) ± 0.45 (luminosity) pb.

  1. Measurement of the Top Pair Production Cross Section in the Lepton + Jets Channel Using a Jet Flavor Discriminant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T; Aaltonen, T; Alvarez Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; et al

    2011-08-01

    We present a new method to measure the top quark pair production cross section and the background rates with data corresponding to an integrated luminosity of 2.7 fb-1 from p p? collisions at ?s = 1.96 TeV collected with the CDF II Detector. We select events with a single electron or muon candidate, missing transverse energy, and at least one b-tagged jet. We perform a simultaneous fit to a jet flavor discriminant across nine samples defined by the number of jets and b-tags. An advantage of this approach is that many systematic uncertainties are measured in situ and inversely scalemore »with integrated luminosity. We measure a top cross section of ?tt? = 7.64 ± 0.57 (stat + syst) ± 0.45 (luminosity) pb.« less

  2. Measurement of the Isolated Prompt Photon Production Cross Section in pp Collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2011-02-01

    The differential cross section for the inclusive production of isolated prompt photons has been measured as a function of the photon transverse energy E_T-gamma in pp collisions at sqrt(s)=7 TeV using data recorded by the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.9 inverse picobarns. Photons are required to have a pseudorapidity |eta_gamma|<1.45 and E_T-gamma > 21 GeV, covering the kinematic region 0.006 < x_T < 0.086. The measured cross section is found to be in agreement with next-to-leading-order perturbative QCD calculations.

  3. Measurement of the Top Pair Production Cross Section in the Lepton + Jets Channel Using a Jet Flavor Discriminant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.

    2011-08-01

    We present a new method to measure the top quark pair production cross section and the background rates with data corresponding to an integrated luminosity of 2.7 fb-1 from p p? collisions at ?s = 1.96 TeV collected with the CDF II Detector. We select events with a single electron or muon candidate, missing transverse energy, and at least one b-tagged jet. We perform a simultaneous fit to a jet flavor discriminant across nine samples defined by the number of jets and b-tags. An advantage of this approach is that many systematic uncertainties are measured in situ and inversely scale with integrated luminosity. We measure a top cross section of ?tt? = 7.64 ± 0.57 (stat + syst) ± 0.45 (luminosity) pb.

  4. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    SciTech Connect (OSTI)

    G. Palmiotti

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 418 nuclides; (2) Covariance uncertainty data for 185 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions at higher energies for isotopes of F, Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new Decay Data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range of MCNP simulations of criticality benchmarks, with improved performance coming from new structural material evaluations, especially for Ti, Mn, Cr, Zr and W. For Be we see some improvements although the fast assembly data appear to be mutually inconsistent. Actinide cross section updates are also assessed through comparisons of fission and capture reaction rate measurements in critical assemblies and fast reactors. We describe the cross section evaluations that have been updated for ENDF/B-VII.1 and the measured data and calculations that motivated the changes, and therefore this paper augments the ENDF/B-VII.0 publication [1].

  5. Energy Dependence of exotic nuclei production cross sections by photofission reaction in GDR range

    E-Print Network [OSTI]

    Bhowmick, Debasis; Atta, Debasis; Basu, D N; Chakrabarti, Alok

    2015-01-01

    Photofission of actinides is studied in the region of nuclear excitation energies that covers the entire giant dipole resonance (GDR) region. The mass distributions of $^{238}$U photofission fragments have been explored theoretically for eight different endpoint bremsstrahlung energies from 11.5 MeV to 67.7 MeV which correspond to average photon energy of 9.09 MeV to 15.90 MeV. Among these energies, the 29.1 MeV corresponds to the average photon energy of 13.7$\\pm$0.3 MeV which coincides with GDR peak for $^{238}$U photofission. The integrated yield of $^{238}$U photofission as well as charge distribution of photofission products are calculated and its role in producing nuclei and their neutron-richness is investigated.

  6. Search for production of an ?(1S) meson in association with a W or Z boson using the full 1.96 TeV proton anti-proton collision data set at CDF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; et al

    2015-03-17

    Production of the ?(1S) meson in association with a vector boson is a rare process in the standard model with a cross section predicted to be below the sensitivity of the Tevatron. Observation of this process could signify contributions not described by the standard model or reveal limitations with the current non-relativistic quantum-chromodynamic models used to calculate the cross section. We perform a search for this process using the full Run II data set collected by the CDF II detector corresponding to an integrated luminosity of 9.4/fb?¹. The search considers the ? ? ?? decay and the decay of themore »W and Z bosons into muons and electrons. In these purely leptonic decay channels, we observe one ?W candidate with an expected background of 1.2 ± 0.5 events, and one ?Z candidate with an expected background of 0.1 ± 0.1 events. Both observations are consistent with the predicted background contributions. The resulting upper limits on the cross section for ?+W/Z production are the most sensitive reported from a single experiment and place restrictions on potential contributions from non-standard-model physics.« less

  7. Search for production of an ?(1S) meson in association with a W or Z boson using the full 1.96 TeV proton anti-proton collision data set at CDF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T. [Univ. of Helsinki, Helsinki (Finland); Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V.? E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K.? R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H.? S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C.? A.; Cox, D.? J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D’Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J.? R.; Donati, S.; D’Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J.? P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J.? C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A.? F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C.? M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A.? T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R.? C.; Guimaraes da Costa, J.; Hahn, S.? R.; Han, J.? Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R.? F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R.? E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.? J.; Jindariani, S.; Jones, M.; Joo, K.? K.; Jun, S.? Y.; Junk, T.? R.; Kambeitz, M.; Kamon, T.; Karchin, P.? E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D.? H.; Kim, H.? S.; Kim, J. E.; Kim, M.? J.; Kim, S.? H.; Kim, S.? B.; Kim, Y.? J.; Kim, Y.? K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D.? J.; Konigsberg, J.; Kotwal, A.? V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A.? T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H.? S.; Lee, J.? S.; Leo, S.; Leone, S.; Lewis, J.? D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M.? E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C.? S.; Moore, R.; Morello, M.? J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S.? Y.; Norniella, O.; Oakes, L.; Oh, S.? H.; Oh, Y.? D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T.? J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J.? L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W.? K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E.? E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S.? Z.; Shears, T.; Shepard, P.? F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J.? R.; Snider, F.? D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P.? K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.

    2015-03-01

    Production of the ?(1S) meson in association with a vector boson is a rare process in the standard model with a cross section predicted to be below the sensitivity of the Tevatron. Observation of this process could signify contributions not described by the standard model or reveal limitations with the current non-relativistic quantum-chromodynamic models used to calculate the cross section. We perform a search for this process using the full Run II data set collected by the CDF II detector corresponding to an integrated luminosity of 9.4/fb?¹. The search considers the ? ? ?? decay and the decay of the W and Z bosons into muons and electrons. In these purely leptonic decay channels, we observe one ?W candidate with an expected background of 1.2 ± 0.5 events, and one ?Z candidate with an expected background of 0.1 ± 0.1 events. Both observations are consistent with the predicted background contributions. The resulting upper limits on the cross section for ?+W/Z production are the most sensitive reported from a single experiment and place restrictions on potential contributions from non-standard-model physics.

  8. Measurement of the $t\\bar{t}$ production cross section using dilepton events in $p\\bar{p}$ collisions

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Alves, Gilvan Augusto; Ancu, Lucian Stefan; /Nijmegen U. /Fermilab

    2011-05-01

    We present a measurement of the t{bar t} production cross section {sigma}{sub t{bar t}} in p{bar p} collisions at {radical}s = 1.96 TeV using 5.4 fb{sup -1} of integrated luminosity collected with the D0 detector. We consider final states with at least two jets and two leptons (ee, e{mu}, {mu}{mu}), and events with one jet for the the e{mu} final state as well. The measured cross section is {sigma}{sub t{bar t}} = 7.36{sub -0.79}{sup +0.90} (stat + syst) pb. This result combined with the cross section measurement in the lepton + jets final state yields {sigma}{sub t{bar t}} = 7.56{sub -0.56}{sup +0.63}(stat + syst) pb, which agrees with the standard model expectation. The relative precision of 8% of this measurement is comparable to the latest theoretical calculations.

  9. Designing an upgrade of the Medley setup for light-ion production and fission cross-section measurements

    E-Print Network [OSTI]

    Kaj Jansson; Cecilia Gustavsson; Ali Al-Adili; Anders Hjalmarsson; Erik Andersson-Sundén; Alexander V. Prokofiev; Diego Tarrío; Stephan Pomp

    2015-06-23

    Measurements of neutron-induced fission cross sections and light-ion production are planned in the energy range 1-40 MeV at the upcoming Neutrons For Science (NFS) facility. In order to prepare our detector setup for the neutron beam with continuous energy spectrum, a simulation software was written using the Geant4 toolkit for both measurement situations. The neutron energy range around 20 MeV is troublesome when it comes to the cross sections used by Geant4 since data-driven cross sections are only available below 20 MeV but not above, where they are based on semi-empirical models. Several customisations were made to the standard classes in Geant4 in order to produce consistent results over the whole simulated energy range. Expected uncertainties are reported for both types of measurements. The simulations have shown that a simultaneous precision measurement of the three standard cross sections H(n,n), $^{235}$U(n,f) and $^{238}$U(n,f) relative to each other is feasible using a triple layered target. As high resolution timing detectors for fission fragments we plan to use Parallel Plate Avalanche Counters (PPACs). The simulation results have put some restrictions on the design of these detectors as well as on the target design. This study suggests a fissile target no thicker than 2 micrometers (1.7 mg/cm$^2$) and a PPAC foil thickness preferably less than 1 micrometer. We also comment on the usability of Geant4 for simulation studies of neutron reactions in this energy range.

  10. Full Comments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServicesAmesFourFromFuel CellFull Comments Full

  11. Measurement of the inclusive isolated prompt photon production cross section at the Tevatron using the CDF detector

    SciTech Connect (OSTI)

    Deluca Silberberg, Carolina; /Barcelona, IFAE

    2009-04-01

    In this thesis we present the measurement of the inclusive isolated prompt photon cross section with a total integrated luminosity of 2.5 fb{sup -1} of data collected with the CDF Run II detector at the Fermilab Tevatron Collider. The prompt photon cross section is a classic measurement to test perturbative QCD (pQCD) with potential to provide information on the parton distribution function (PDF), and sensitive to the presence of new physics at large photon transverse momentum. Prompt photons also constitute an irreducible background for important searches such as H {yields} {gamma}{gamma}, or SUSY and extra-dimensions with energetic photons in the final state. The Tevatron at Fermilab (Batavia, U.S.A.) is currently the hadron collider that operates at the highest energies in the world. It collides protons and antiprotons with a center-of-mass energy of 1.96 TeV. The CDF and the D0 experiments are located in two of its four interaction regions. In Run I at the Tevatron, the direct photon production cross section was measured by both CDF and DO, and first results in Run II have been presented by the DO Collaboration based on 380 pb{sup -1}. Both Run I and Run II results show agreement with the theoretical predictions except for the low p{sub T}{sup {gamma}} region, where the observed and predicted shapes are different. Prompt photon production has been also extensively measured at fixed-target experiments in lower p{sub T}{sup {gamma}} ranges, showing excess of data compared to the theory, particularly at high x{sub T}. From an experimental point of view, the study of the direct photon production has several advantages compared to QCD studies using jets. Electromagnetic calorimeters have better energy resolution than hadronic calorimeters, and the systematic uncertainty on the photon absolute energy scale is smaller. Furthermore, the determination of the photon kinematics does not require the use of jet algorithms. However, the measurements using photons require a good understanding of the background, mainly dominated by light mesons ({pi}{sup 0} and {eta}) which decay into two very collinear photons. Since these photons are produced within a jet, they tend to be non-isolated in most of the cases, and can be suppressed by requiring the photon candidates to be isolated in the calorimeter. In the case the hard scattered parton hadronizes leaving most of its energy to the meson, the photon produced in the decay will not be surrounded by large energy depositions. To further reduce this remaining isolated background, we present a new technique based on the isolation distribution in the calorimeter. The measured cross section is compared to next-to-leading order (NLO) pQCD calculations, which have been corrected for non-perturbative contributions. This thesis is organized as follows: we start with a brief review of QCD theory and the formalism to calculate cross sections in Chapter 2, where we also introduce the physics of prompt photon production and summarize the current status of the prompt photon phenomenology. Chapter 3 contains a description of the Tevatron and the CDF detector. The experimental measurement is described in Chapter 4, where we provide details on the different datasets used in the measurement, the trigger, and the event selection requirements. Most of this Chapter is devoted to the explanation of the background subtraction method and the determination of the photon signal fraction. The systematic uncertainties on the measurement are evaluated in Chapter 5, while Chapter 6 discusses the final results and the comparison to the theoretical predictions. Finally, the conclusions are presented in Chapter 7.

  12. Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at ?s = 8 TeV with ATLAS

    E-Print Network [OSTI]

    Taylor, Frank E.

    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of ?s = 8 TeV. The analysis is performed in the H ? ?? decay channel ...

  13. Measurement of the tt? production cross section in pp collisions at ?s=7??TeV in dilepton final states containing a ?

    E-Print Network [OSTI]

    Bauer, Gerry P.

    The top quark pair production cross section is measured in dilepton events with one electron or muon, and one hadronically decaying ? lepton from the decay tt? ?(??[subscript ?])(?[subscript h]?[subscript ?])bb? , (?=e,?). ...

  14. Measurement of the t[bar over t] production cross section in pp collisions at ?s = 8 TeV in dilepton final states containing one ? lepton

    E-Print Network [OSTI]

    Zhukova, Victoria

    The top-quark pair production cross section is measured in final states with one electron or muon and one hadronically decaying ? lepton from the process t[bar over t] ? (??[subscript ?])(??[subscript ?])b[bar over b], ...

  15. Measurement of the WW+WZ Production Cross Section Using the Lepton+Jets Final State at CDF II

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2009-11-01

    We report two complementary measurements of the diboson (WW + WZ) cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using p{bar p} collision data at {radical}s = 1.96 TeV collected by the Collider Detector at Fermilab. The first method uses the dijet invariant mass distribution while the second method uses more of the kinematic information in the event through matrix-element calculations of the signal and background processes and has a higher sensitivity. The result from the second method has a signal significance of 5.4{sigma} and is the first observation of WW + WZ production using this signature. Combining the results from both methods gives {sigma}{sub WW+WZ} = 16.0 {+-} 3.3 pb, in agreement with the standard model prediction.

  16. Measurement of the electroweak top quark production cross section and the CKM matrix element Vtb with the D0 experiment

    SciTech Connect (OSTI)

    Kirsch, Matthias; /Aachen, Tech. Hochsch.

    2009-06-01

    At particle accelerators the Standard Model has been tested and will be tested further to a great precision. The data analyzed in this thesis have been collected at the world's highest energetic-collider, the Tevatron, located at the Fermi National Accelerator Laboratory (FNAL) in the vicinity of Chicago, IL, USA. There, protons and antiprotons are collided at a center-of-mass energy of {radical}s = 1.96 TeV. The discovery of the top quark was one of the remarkable results not only for the CDF and D0 experiments at the Tevatron collider, but also for the Standard Model, which had predicted the existence of the top quark because of symmetry arguments long before already. Still, the Tevatron is the only facility able to produce top quarks. The predominant production mechanism of top quarks is the production of a top-antitop quark pair via the strong force. However, the Standard Model also allows the production of single top quarks via the electroweak interaction. This process features the unique opportunity to measure the |V{sub tb}| matrix element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix directly, without assuming unitarity of the matrix or assuming that the number of quark generations is three. Hence, the measurement of the cross section of electroweak top quark production is more than the technical challenge to extract a physics process that only occurs one out of ten billion collisions. It is also an important test of the V-A structure of the electroweak interaction and a potential window to physics beyond the Standard Model in the case where the measurement of |V{sub tb}| would result in a value significantly different from 1, the value predicted by the Standard Model. At the Tevatron two production processes contribute significantly to the production of single top quarks: the production via the t-channel, also called W-gluon fusion, and the production via the s-channel, known as well as W* process. This analysis searches for the combined s+t channel production cross section, assuming the ratio of s-channel production over t-channel production is realized in nature as predicted by the Standard Model. A data set of approximately 1 fb{sup -1} is analyzed, the data set used by the D0 collaboration to claim evidence for single top quark production. Events with two, three, and four jets are used in the analysis if they contain one or two jets that were tagged as originating from the decay of a b hadron, an isolated muon or electron, and a significant amount of missing transverse energy. This selection of events follows the signature that the single top quark events are expected to show in the detector. In the meantime, both collaborations D0 and CDF have analyzed a larger data set and have celebrated the joint observation of single top quark production. The novelty of the analysis presented here is the way discriminating observables are determined. A so-called Multi-Process Factory evaluates each event under several hypotheses. A common analysis technique for example in top quark properties studies is to reconstruct the intermediate particles in the decay chain of the signal process from the final state objects measured in the various subdetectors. An essential part of such a method is to resolve the ambiguities that arise in the assignment of the final state objects to the partons of the decay chain. In a Multi-Process Factory this approach is extended and not only the decay chain of the signal process is reconstructed, but also the decay chains of the most important background processes. From the numerous possible event configurations for each of the signal and background decay chains the most probable configuration is selected based on a likelihood measure. Properties of this configuration, such as mass of the reconstructed top quark, are then used in a multivariate analysis technique to separate the expected signal contribution from the background processes. The technique which is used is called Boosted Decision Trees and has only recently been introduced in high energy physics analyses. A Bayesian approach is use

  17. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-05-27

    Double-differential three-jet production cross-sections are measured in proton–proton collisions at a centre-of-mass energy of ?s=7TeV using the ATLAS detector at the large hadron collider. The measurements are presented as a function of the three-jet mass (mjjj), in bins of the sum of the absolute rapidity separations between the three leading jets (|Y*|). Invariant masses extending up to 5 TeV are reached for 8*|11. Jets are identified using the anti-kt algorithm with two different jet radius parameters, R=0.4more »and R=0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.« less

  18. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    E-Print Network [OSTI]

    ATLAS Collaboration

    2015-05-26

    Double-differential three-jet production cross-sections are measured in proton-proton collisions at a centre-of-mass energy of $\\sqrt{s} = 7$ TeV using the ATLAS detector at the Large Hadron Collider. The measurements are presented as a function of the three-jet mass $(m_{jjj})$, in bins of the sum of the absolute rapidity separations between the three leading jets $(|Y^\\ast|)$. Invariant masses extending up to 5 TeV are reached for $8integrated luminosity of 4.51 fb$^{-1}$. Jets are identified using the anti-$k_t$ algorithm with two different jet radius parameters, R=0.4 and R=0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.

  19. Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; et al

    2015-05-01

    Double-differential three-jet production cross-sections are measured in proton–proton collisions at a centre-of-mass energy of ?s = 7TeV using the ATLAS detector at the large hadron collider. The measurements are presented as a function of the three-jet mass (mjjj), in bins of the sum of the absolute rapidity separations between the three leading jets (|Y*|). Invariant masses extending up to 5 TeV are reached for 8*|–1. Jets are identified using the anti-kt algorithm with two different jet radiusmore »parameters, R = 0.4 and R = 0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.« less

  20. Measurement of the single top production cross section in proton-antiproton collisions at 1.96 TeV

    SciTech Connect (OSTI)

    Tanasijczuk, Andres Jorge; /Buenos Aires U.

    2010-05-01

    This thesis describes a search for singly produced top quarks via an electroweak vertex in head-on proton-antiproton collisions at a center of mass energy of {radical}s = 1.96 TeV. The analysis uses a total of 2.3 fb{sup -1} of data collected with the D0 detector at Fermilab, corresponding to two different run periods of the Tevatron collider. Two channels contribute to single top quark production at the Tevatron, the s-channel and the t-channel. In the s-channel, a virtual W boson is produced from the aniquilation of a quark and an antiquark and a top and a bottom quarks are produced from the W decay. The top quark decays almost exclusively into a W boson and a bottom quark. Final states are considered in which the W boson decays leptonically into an electron or a muon plus a neutrino. Thus, at the detector level, the final state characterizing the s-channel contains one lepton, missing energy accounting for the neutrino, and two jets from the two bottom quarks. In the t-channel, the final state has an additional jet coming from a light quark. Clearly, a precise reconstruction of the events requires a precise measurement of the energy of the jets. A multivariate technique, Bayesian neural networks, is used to extract the single top signal from the overwhelming background still left after event selection. A Bayesian likelihood probability is then computed to measure the single top cross section. Assuming the observed excess is due to single top events, the measured single top quark production cross section is {sigma}(p{bar p} {yields} tb + X, tqb + X) = 4.70{sub -0.93}{sup +1.18} pb. The observed excess is associated with a p-value of (3.2 {+-} 2.3) x 10{sup -8}, assuming the background-only hypothesis. This p-value corresponds to an excess over background of 5.4 standard deviations for a Gaussian density. The p-value computed using the standard model signal cross section of 3.46 pb is (22.7 {+-} 0.6) x 10{sup -6}, corresponding to an expected significance of 4.08 standard deviations.

  1. Cross Section and Double Helicity Asymmetry for Eta Mesons and Their Comparison to Neutral Pion Production in p+p Collisions at s = 200 GeV

    SciTech Connect (OSTI)

    Adare, A. [University of Colorado, Boulder; Awes, Terry C [ORNL; Cianciolo, Vince [ORNL; Efremenko, Yuri [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Enokizono, Akitomo [Oak Ridge National Laboratory (ORNL); Read Jr, Kenneth F [ORNL; Silvermyr, David O [ORNL; Sorensen, Soren P [University of Tennessee, Knoxville (UTK); Stankus, Paul W [ORNL; PHENIX, Collaboration [The

    2011-01-01

    Measurements of double-helicity asymmetries in inclusive hadron production in polarized p+p collisions are sensitive to helicity-dependent parton distribution functions, in particular to the gluon helicity distribution, {Delta}g. This study focuses on the extraction of hte double-helicity asymmetry in {eta} production (p+p{yields}{eta}+X), the {eta} cross section, and the {eta}/{pi}{sup 0} cross section ratio. The cross section and ratio measurements provide essential input for the extraction of fragmentation functions that are needed to acess the helicity-dependent parton distribution functions.

  2. Measurement of ??-induced charged-current neutral pion production cross sections on mineral oil at Ev?0.5–2.0 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2011-03-01

    Using a custom 3-Cerenkov ring fitter, we report cross sections for ??-induced charged-current single ?? production on mineral oil (CH?) from a sample of 5810 candidate events with 57% signal purity over an energy range of 0.5–2.0 GeV. This includes measurements of the absolute total cross section as a function of neutrino energy, and flux-averaged differential cross sections measured in terms of Q², ?? kinematics, and ?? kinematics. The sample yields a flux-averaged total cross section of (9.2±0.3stat±1.5syst)×10?³? cm²/CH² at mean neutrino energy of 0.965 GeV.

  3. Measurement of ??-induced charged-current neutral pion production cross sections on mineral oil at Ev?0.5–2.0 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; et al

    2011-03-23

    Using a custom 3-Cerenkov ring fitter, we report cross sections for ??-induced charged-current single ?? production on mineral oil (CH?) from a sample of 5810 candidate events with 57% signal purity over an energy range of 0.5–2.0 GeV. This includes measurements of the absolute total cross section as a function of neutrino energy, and flux-averaged differential cross sections measured in terms of Q², ?? kinematics, and ?? kinematics. The sample yields a flux-averaged total cross section of (9.2±0.3stat±1.5syst)×10?³? cm²/CH² at mean neutrino energy of 0.965 GeV.

  4. Measurement of the HD,,v 2,J 3... product differential cross section for the H D2 exchange reaction at 1.55 0.05eV

    E-Print Network [OSTI]

    Measurement of the HD,,v 2,J 3... product differential cross section for the H D2 exchange reaction, and Gentry,55 and Con- tinetti, Balko, and Lee56 measured product differential cross sections, but owing nascent product laboratory velocity distributions from which differential cross sections may be deduced

  5. Search for production of an ?(1S) meson in association with a W or Z boson using the full 1.96 TeV p[bar over p] collision data set at CDF

    E-Print Network [OSTI]

    Aaltonen, T.

    Production of the ?(1S) meson in association with a vector boson is a rare process in the standard model with a cross section predicted to be below the sensitivity of the Tevatron. Observation of this process could signify ...

  6. Measurement of the production and differential cross sections of W?W? bosons in association with jets in pp¯ collisions at s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.?A.; Arisawa, T.; Artikov, A.; et al

    2015-06-23

    We present a measurement of the W-boson-pair production cross section in pp¯ collisions at 1.96 TeV center-of-mass energy and the first measurement of the differential cross section as a function of jet multiplicity and leading-jet energy. The W?W? cross section is measured in the final state comprising two charged leptons and neutrinos, where either charged lepton can be an electron or a muon. Using data collected by the CDF experiment corresponding to 9.7 fb?¹ of integrated luminosity, a total of 3027 collision events consistent with W?W? production are observed with an estimated background contribution of 1790 ± 190 events. Themore »measured total cross section is ?(pp¯? W?W?) = 14.0 ± 0.6(stat)?1.2?1.0(syst) ± 0.8(lumi) pb, consistent with the standard model prediction.« less

  7. Measurement of differential $J/?$ production cross-sections and forward-backward ratio in p+Pb collisions with the ATLAS detector

    E-Print Network [OSTI]

    ATLAS Collaboration

    2015-05-29

    Measurements of differential cross-sections for $J/\\psi$ production in p+Pb collisions at $\\sqrt{s_{NN}}$ = 5.02 TeV at the LHC with the ATLAS detector are presented. The data set used corresponds to an integrated luminosity of 28.1 nb$^{-1}$. The $J/\\psi$ mesons are reconstructed in the dimuon decay channel over the transverse momentum range $8differential cross-section for production of nonprompt $J/\\psi$ is compared to a FONLL calculation that does not include nuclear effects. Forward-backward production ratios are presented and compared to theoretical predictions. These results constrain the kinematic dependence of nuclear modifications of charmonium and $b$-quark production in p+Pb collisions.

  8. Widening the envelope of UK HLW vitrification - Experimental studies with high waste loadings and new product formulations on a full scale non-active vitrification plant

    SciTech Connect (OSTI)

    Short, R.; Gribble, N. [Nexia Solutions, Sellafield, Cumbria, CA20 1PG (United Kingdom); Riley, A. [Sellafield Ltd, Sellafield, Seascale, Cumbria, CA20 1PG, UK (United Kingdom)

    2008-07-01

    The Vitrification Test Rig is a full scale waste vitrification plant that processes non-radioactive liquid HLW simulants based on the active waste streams produced by the reprocessing plants in the UK. Previous work on the rig has primarily concerned increasing the operational envelopes for the active waste vitrification plants at Sellafield to accommodate higher throughputs of Blended waste streams, higher waste oxide incorporation rates in the vitrified products, and the incorporation of legacy waste streams from early reactor commissioning and reprocessing operations at Sellafield. Recent operations have focussed on four main areas; dilute liquid feeds, very high Magnox waste stream incorporation levels, alternative base glass formulations and providing an operational envelope for 28 %w/w Magnox waste vitrification. This paper details the work performed and the major findings of that work. In summary: The VTR has been successfully used to determine operational envelopes and product quality for several HLW feed variations that will allow WVP to increase overall plant throughput via increased waste loading in canisters, increased HLW feed rates or a combination of both. The VTR has also demonstrated the ability to go to waste incorporations, feed rates and glass compositions that are currently beyond WVP specified limits, but that are feasible for future vitrification regimes. In addition, the VTR has trialled dilute feeds similar to those that are likely to be received by WVP in the future and the data obtained from these experiments will allow WVP to prepare adequately for the high throughput challenge of such feeds. Furthermore, new equipment has been trialled on the VTR in water feed mode to determine its suitability and operational limitations for WVP. Future operations will, in the short term, be concerned with increasing the throughput of WVP and are likely to focus on HLW decommissioning operations waste streams in the longer term. (authors)

  9. Measurement of the top quark pair production cross section in pp collisions at ?s = 7 in Dilepton Final States with ATLAS

    E-Print Network [OSTI]

    ATLAS Collaboration

    A measurement of the production cross section of top quark pairs (View the MathML sourcett¯) in proton–proton collisions at a center-of-mass energy of 7 TeV recorded with the ATLAS detector at the Large Hadron Collider is ...

  10. Measurement of the t-channel single top-quark production cross section in pp collisions at ?s = 7 TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    We report a measurement of the cross section of single top-quark production in the t -channel using 1.04 fb[superscript ?1] of pp collision data at ?s = 7 TeV recorded with the ATLAS detector at the LHC. Selected events ...

  11. Measurement of the Cross Section for Prompt Isolated Diphoton Production in pp[over-bar] Collisions at [sqrt]s=1.96??TeV

    E-Print Network [OSTI]

    Bauer, Gerry P.

    This Letter reports a measurement of the cross section of prompt isolated photon pair production in pp[over-bar] collisions at a total energy [sqrt]s=1.96??TeV using data of 5.36??fb-1 integrated luminosity collected with ...

  12. Measurement of the Z? production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings

    E-Print Network [OSTI]

    Apyan, Aram

    The cross section for the production of Z? in proton-proton collisions at 8 TeV is measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.5 fb[superscript ?1]. ...

  13. Measurement of the production cross section ratio ? ([subscript ?b2](1P))/? ([subscript ?b1](1P)) in pp collisions at ?s = 8 TeV

    E-Print Network [OSTI]

    Apyan, Aram

    A measurement of the production cross section ratio ?([subscript ?b2](1P))/?([subscript ?b1](1P)) is presented. The [subscript ?b1](1P) and [subscript ?b2](1P) bottomonium states, promptly produced in pp collisions at ?s ...

  14. Measurement of the differential cross-sections of inclusive, prompt and non-prompt [J over ?] production in proton–proton collisions at ?s = 7 TeV

    E-Print Network [OSTI]

    Taylor, Frank E.

    The inclusive J/?J/? production cross-section and fraction of J/?J/? mesons produced in B -hadron decays are measured in proton–proton collisions at ?s = 7 TeV with the ATLAS detector at the LHC, as a function of the ...

  15. Measurement of the tt-bar production cross section in pp-bar collisions at s?=1.96??TeV using secondary vertex b tagging

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Coppage, Don; Gardner, J.; Moulik, Tania; Wilson, Graham Wallace; Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.

    2006-12-26

    We report a new measurement of the tt-bar production cross section in pp-bar collisions at a center-of-mass energy of 1.96 TeV using events with one charged lepton (electron or muon), missing transverse energy, and jets. Using 425??pb(?1) of data...

  16. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV

    E-Print Network [OSTI]

    J. W. Weidner; S. G. Mashnik; K. D. John; F. Hemez; B. Ballard; H. Bach; E. R. Birnbaum; L. J. Bitteker; A. Couture; D. Dry; M. E. Fassbender; M. S. Gulley; K. R. Jackman; J. L. Ullmann; L. E. Wolfsberg; F. M. Nortier

    2012-05-15

    Cross sections for 223,225Ra, 225Ac and 227Th production by the proton bombardment of natural thorium targets were measured at proton energies below 200 MeV. Our measurements are in good agreement with previously published data and offer a complete excitation function for 223,225Ra in the energy range above 90 MeV. Comparison of theoretical predictions with the experimental data shows reasonable-to-good agreement. Results indicate that accelerator-based production of 225Ac and 223Ra below 200 MeV is a viable production method.

  17. Measurement of the $t\\bar{t}$ Production Cross Section with an in situ Calibration of $b$-jet Identification Efficiency

    SciTech Connect (OSTI)

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2010-07-01

    A measurement of the top-quark pair-production cross section in p{bar p} collisions at {radical}s = 1.96 TeV using data corresponding to an integrated luminosity of 1.12 fb{sup -1} collected with the Collider Detector at Fermilab is presented. Decays of top-quark pairs into the final states e{nu} + jets and {mu}{nu} + jets are selected, and the cross section and the b-jet identification efficiency are determined using a new measurement technique which requires that the measured cross sections with exactly one and multiple identified b-quarks from the top-quark decays agree. Assuming a top-quark mass of 175 GeV/c{sup 2}, a cross section of 8.5 {+-} 0.6(stat.) {+-} 0.7(syst.) pb is measured.

  18. Syngas production by plasma treatments of alcohols, bio-oils and wood This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Syngas production by plasma treatments of alcohols, bio-oils and wood This article has been Contact us My IOPscience #12;Syngas production by plasma treatments of alcohols, bio-oils and wood K conversion of biomass provide a great variety of products: oils, alcohols and gases. After treatment

  19. Neutron-induced gamma-ray production cross sections for the first excited-state transitions in Ne-20 and Ne-22

    E-Print Network [OSTI]

    S. MacMullin; M. Boswell; M. Devlin; S. R. Elliott; N. Fotiades; V. E. Guiseppe; R. Henning; T. Kawano; B. H. LaRoque; R. O. Nelson; J. M. O'Donnell

    2012-10-03

    Background: Neutron-induced reactions are a significant concern for experiments that require extremely low levels of radioactive backgrounds. Measurements of gamma-ray production cross sections over a wide energy range will help to predict and identify neutron backgrounds in these experiments. Purpose: Determine partial gamma-ray production cross sections for neutron-induced reactions in natural neon. Methods: The broad-spectrum neutron beam at the Los Alamos Neutron Science Center (LANSCE) was used for the measurement. Gamma rays from neutron-induced reactions were detected using the GErmanium Array for Neutron Induced Excitations (GEANIE). Results: Partial gamma-ray cross sections were measured for the first excited-state transitions in Ne-20 and Ne-22. The measured cross sections were compared to the TALYS and CoH3 nuclear reaction codes. Conclusions: These are the first experimental data for (n,n') reactions in neon. In addition to providing data to aid in the prediction and identification of neutron backgrounds in low-background experiments, these new measurements will help refine cross-section predictions in a mass region where models are not well constrained.

  20. Measurement of forward $J/\\psi$ production cross-sections in $pp$ collisions at $\\sqrt{s}=13$ TeV

    E-Print Network [OSTI]

    Aaij, R; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Cartelle, P Alvarez; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Gutierrez, O Aquines; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Buchanan, E; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Gomez, M Calvo; Campana, P; Perez, D Campora; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Akiba, K Carvalho; Casse, G; Cassina, L; Garcia, L Castillo; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S -F; Chiapolini, N; Chrzaszcz, M; Vidal, X Cid; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Torres, M Cruz; Cunliffe, S; Currie, R; D'Ambrosio, C; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Dean, C -T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Suárez, A Dosil; Dossett, D; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Rifai, I El; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Albor, V Fernandez; Ferrari, F; Rodrigues, F Ferreira; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fohl, K; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Torreira, A Gallas; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Pardiñas, J García; Tico, J Garra; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Gándara, M Grabalosa; Diaz, R Graciani; Cardoso, L A Granado; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Gac, R Le; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Cid, E Lemos; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Martinez, M Lucio; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F

    2015-01-01

    The production of $J/\\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\\sqrt{s}=13$ TeV is studied with the LHCb detector. Cross-section measurements are performed as a function of the transverse momentum $p_\\mathrm{T}$ and the rapidity $y$ of the $J/\\psi$ meson in the region $p_\\mathrm{T}production cross-sections integrated over the kinematic coverage are $15.30\\pm 0.03\\pm 0.86$ $\\mu$b for prompt $J/\\psi$ and $2.34\\pm 0.01\\pm 0.13$ $\\mu$b for $J/\\psi$ from $b$-hadron decays, assuming zero polarization of the $J/\\psi$ meson. The first uncertainties are statistical and the second systematic. The cross-section reported for $J/\\psi$ mesons from $b$-hadron decays is used to extrapolate to a total $b\\bar{b}$ cross-section. The ratios of the cross-sections with respect to $\\sqrt{s}=8$ TeV are also determined.

  1. Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at ?s = 8 TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    Measurements of fiducial and differential cross sections of Higgs boson production in the H?ZZ*?4? decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection ...

  2. Measurement of the B0s. Production Cross Section withB0s?J/?? Decays in pp Collisions at ?s=7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al

    2011-09-01

    The B0s differential production cross section is measured as functions of the transverse momentum and rapidity in pp collisions at ?s=7 TeV, using the B0s?J/?? decay, and compared with predictions based on perturbative QCD calculations at next-to-leading order. The data sample, collected by the CMS experiment at the LHC, corresponds to an integrated luminosity of 40 pb?¹. The B0s is reconstructed from the decays J/?????? and ??K?K?. The integrated B0s cross section times B0s?J/?? branching fraction in the range 8BT more »systematic.« less

  3. Absolute L-shell ionization and X-ray production cross sections of Lead and Thorium by 16-45 keV electron impact

    E-Print Network [OSTI]

    Rahangdale, H V; De, S; Santos, J P; Mitra, D; Guerra, M; Saha, S

    2015-01-01

    The absolute L subshell specific electron impact ionization cross sections near the ionization threshold (16 Thorium are obtained from the measured L X-ray production cross sections. Monte Carlo simulation is done to account for the effect of the backscattered electrons and the final experimental results are compared with calculations performed using distorted wave Born approximation and the modified relativistic binary encounter Bethe model.The sensitivity of the results on the atomic parameters is explored. Observed agreements and discrepancies between the experimental results and theoretical estimates, and their dependence on the specific atomic parameters are reported.

  4. Cross section for bb?bar production via dielectrons in d+Au collisions at ?sNN=200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.

    2015-01-26

    We report a measurement of e?e? pairs from semileptonic heavy-flavor decays in d+Au collisions at ?sNN = 200 GeV. Exploring the mass and transverse-momentum dependence of the yield, the bottom decay contribution can be isolated from charm, and quantified by comparison to PYTHIA and MC@NLO simulations. The resulting bb-production cross section is ?dAubb=1.37±0.28(stat)±0.46(syst) mb, which is equivalent to a nucleon-nucleon cross section of ?NNbb =3.4 ± 0.8(stat)±1.1(syst) µb.

  5. Measurement of the tt¯ production cross section in pp collisions at ?s=7 TeV in dilepton final states containing a ?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al

    2012-06-19

    The top quark pair production cross section is measured in dilepton events with one electron or muon, and one hadronically decaying ? lepton from the decay tt¯?(l?l)(?h??)bb¯, (l=e,?). The data sample corresponds to an integrated luminosity of 2.0 fb?¹ for the electron channel and 2.2 fb?¹ for the muon channel, collected by the CMS detector at the LHC. This is the first measurement of the tt¯ cross section explicitly including ? leptons in proton-proton collisions at ?s=7 TeV. The measured value ?tt¯=143±14(stat)±22(syst)±3(lumi) pb is consistent with the standard model predictions.

  6. Measurement of the top quark pair production cross-section in dimuon final states in proton-antiproton collisions at 1.96 TeV

    SciTech Connect (OSTI)

    Konrath, Jens Peter; /Freiburg U.

    2008-09-01

    Particle physics deals with the fundamental building blocks of matter and their interactions. The vast number of subatomic particles can be reduced to twelve fundamental fermions, which interact by the exchange of spin-1 particles as described in the Standard Model (SM) of particle physics. The SM provides the best description of the subatomic world to date, despite the fact it does not include gravitation. Following the relation {lambda} = h/p, where h is Planck's constant, for the examination of physics at subatomic scales with size {lambda} probes with high momenta p are necessary. These high energies are accessible through particle colliders. Here, particles are accelerated and brought to collision at interaction points at which detectors are installed to record these particle collisions. Until the anticipated start-up of the Large Hadron Collider at CERN, the Tevatron collider at Fermilab near Chicago is the highest energy collider operating in the world, colliding protons and anti-protons at a center-of-mass energy of {radical}s = 1.96 TeV. Its two interaction points are covered by the multi purpose particle detectors D0 and CDF. During the first data-taking period, known as Run I, the Tevatron operated at a center-of-mass energy of 1.8 TeV. This run period lasted from 1992 to 1996. During this period, the long-predicted top quark was discovered. From 1996 and 2001, the accelerator was upgraded to deliver higher instantaneous luminosities at its current center-of-mass energy. At the same time, the experiments were upgraded to take full advantage of the upgraded accelerator complex. The Tevatron is currently the only accelerator in the world with a sufficient energy to produce top quarks. Studying top quark production, decay and properties is an important part of the D0 and CDF physics programs. Because of its large mass, the top quark is a unique probe of the Standard Model, and an interesting environment to search for new physics. In this thesis, a measurement of the production cross-section of top quark pairs decaying to two muons is presented. In addition, a Monte Carlo study of the top quark spin correlation measurement was carried out. This thesis is laid out as follows: chapter two gives a short overview over the Standard Model of particle physics and the theoretical aspects of unpolarized and polarized top quark production and decay, chapter three describes the accelerator complex and the D0 experiment whose data is used in this analysis. The Reconstruction of events recorded with the D0 detector is explained in chapter four and the data and Monte Carlo samples used are presented in chapter five. Finally, the cross-section measurement is described in chapter six and the Monte Carlo study of top quark spin correlations in chapter seven.

  7. Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD

    E-Print Network [OSTI]

    Caola, Fabrizio; Schulze, Markus

    2015-01-01

    We extend the recent computation of Higgs boson production in association with a jet through next-to-next-to-leading order in perturbative QCD by including decays of the Higgs boson to electroweak vector bosons. This allows us to compute fiducial cross sections and kinematic distributions including realistic selection criteria for the Higgs boson decay products. As an illustration, we present results for $pp \\to H + j \\to \\gamma \\gamma + j$ closely following the ATLAS 8 TeV analysis and for $pp \\to H+ j \\to W W + j \\to e^+ \\mu^- \

  8. Measurements of single top quark production cross sections and |Vtb| in pp? collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Alverson, George O; Alves, Gilvan Augusto; et al

    2011-12-05

    We present measurements of production cross sections of single top quarks in pp? collisions at ?s = 1.96 TeV in a data sample corresponding to an integrated luminosity of 5.4 fb-1 collected by the D0 detector at the Fermilab Tevatron Collider. We select events with an isolated electron or muon, an imbalance in transverse energy, and two, three, or four jets, with one or two of them containing a bottom hadron. We obtain an inclusive cross section of ?(pp? ? tb + X, tqb + X) = 3.43-0.74+0.73 pb and use it to extract the CKM matrix element 0.79 more »|Vtb| {le} 1 at the 95% C.L. We also measure ?(pp? ? tb + X) = 0.68-0.35+0.38pb and ?(pp? ? tqb + X) = 2.86-0.63+0.69pb when assuming, respectively, tqb and tb production rates as predicted by the standard model.« less

  9. First Measurement of the Cross Section for Top-Quark Pair Production in Proton-Proton Collisions at $\\sqrt{s}=7$ TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan; et al.

    2011-01-01

    The first measurement of the cross section for top-quark pair production in pp collisions at the LHC at center-of-mass energy sqrt(s)= 7 TeV has been performed using 3.1 {\\pm} 0.3 inverse pb of data recorded by the CMS detector. This result utilizes the final state with two isolated, highly energetic charged leptons, large missing transverse energy, and two or more jets. Backgrounds from Drell-Yan and non-W/Z boson production are estimated from data. Eleven events are observed in the data with 2.1 {\\pm} 1.0 events expected from background. The measured cross section is 194 {\\pm} 72 (stat.) {\\pm} 24 (syst.) {\\pm} 21 (lumi.) pb, consistent with next-to-leading order predictions.

  10. Measurement of the W+ W- production cross section in p anti-p collisions at s**(1/2) =1.96-TeV using dilepton events

    SciTech Connect (OSTI)

    Acosta, D.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; Antos, J.; Aoki, M.; Apollinari, G.; Arisawa, T.; Arguin, J.-F.; Artikov, A.; Ashmanskas, W.; Attal, A.; Azfar, F.; Azzi-Bacchetta, P.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria Inst. of Phys. /Carnegie Mellon U. /Chicago U., EFI /Dubna, JINR /Duke U. /Fermilab /Florida U. /Frascati /Geneva U. /Glasgow U. /Harvard U.

    2005-01-01

    We present a measurement of the W{sup +}W{sup -} production cross section using 184 pb{sup -1} of p{bar p} collisions at a center-of-mass energy of 1.96 TeV collected with the Collider Detector at Fermilab. Using the dilepton decay channel W{sup +}W{sup -} {yields} {ell}{sup +}{nu}{ell}{sup -}{ovr {nu}}, where the charged leptons can be either electrons or muons, we find 17 candidate events compared to an expected background of 5.0{sub -0.8}{sup +2.2} events. The resulting W{sup +}W{sup -} production cross section measurement of {sigma}(p{bar p} {yields} W{sup +}W{sup -}) = 14.6{sub -5.1}{sup +5.8}(stat){sub -3.0}{sup +1.8}(syst) {+-} 0.9(lum) pb agrees well with the Standard Model expectation.

  11. Measurements of single top quark production cross sections and |Vtb| in pp? collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich [Dubna, JINR; Abbott, Braden Keim [Oklahoma U.; Acharya, Bannanje Sripath [Tata Inst.; Adams, Mark Raymond [Illinois U., Chicago; Adams, Todd [Florida State U.; Alexeev, Guennadi D [Dubna, JINR; Alkhazov, Georgiy D [St. Petersburg, INP; Alton, Andrew K [Michigan U., Augustana College, Sioux Falls; Alverson, George O [Northeastern U.; Alves, Gilvan Augusto [Rio de Janeiro, CBPF; Aoki, Masato [Fermilab; Louisiana Tech U.

    2011-12-05

    We present measurements of production cross sections of single top quarks in pp? collisions at ?s = 1.96 TeV in a data sample corresponding to an integrated luminosity of 5.4 fb-1 collected by the D0 detector at the Fermilab Tevatron Collider. We select events with an isolated electron or muon, an imbalance in transverse energy, and two, three, or four jets, with one or two of them containing a bottom hadron. We obtain an inclusive cross section of ?(pp? ? tb + X, tqb + X) = 3.43-0.74+0.73 pb and use it to extract the CKM matrix element 0.79 tb| {le} 1 at the 95% C.L. We also measure ?(pp? ? tb + X) = 0.68-0.35+0.38pb and ?(pp? ? tqb + X) = 2.86-0.63+0.69pb when assuming, respectively, tqb and tb production rates as predicted by the standard model.

  12. Measurement of the WW plus WZ Production Cross Section Using the lepton plus jets Final State at CDF II

    E-Print Network [OSTI]

    Paus, Christoph M. E.

    We report two complementary measurements of the WW+WZ cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using pp[over-bar] collision data at [sqrt]s=1.96??TeV ...

  13. Measurement of ?_?and \\bar?_?induced neutral current single $?^0$ production cross sections on mineral oil at E_?O(1 GeV)

    E-Print Network [OSTI]

    The MiniBooNE Collaboration; A. A. Aguilar-Arevalo; C. E. Anderson; A. O. Bazarko; S. J. Brice; B. C. Brown; L. Bugel; J. Cao; L. Coney; J. M. Conrad; D. C. Cox; A. Curioni; Z. Djurcic; D. A. Finley; B. T. Fleming; R. Ford; F. G. Garcia; G. T. Garvey; J. Gonzales; J. Grange; C. Green; J. A. Green; T. L. Hart; E. Hawker; R. Imlay; R. A. Johnson; G. Karagiorgi; P. Kasper; T. Katori; T. Kobilarcik; I. Kourbanis; S. Koutsoliotas; E. M. Laird; S. K. Linden; J. M. Link; Y. Liu; Y. Liu; W. C. Louis; K. B. M. Mahn; W. Marsh; C. Mauger; V. T. McGary; G. McGregor; W. Metcalf; P. D. Meyers; F. Mills; G. B. Mills; J. Monroe; C. D. Moore; J. Mousseau; R. H. Nelson; P. Nienaber; J. A. Nowak; B. Osmanov; S. Ouedraogo; R. B. Patterson; Z. Pavlovic; D. Perevalov; C. C. Polly; E. Prebys; J. L. Raaf; H. Ray; B. P. Roe; A. D. Russell; V. Sandberg; R. Schirato; D. Schmitz; M. H. Shaevitz; F. C. Shoemaker; D. Smith; M. Soderberg; M. Sorel; P. Spentzouris; J. Spitz; I. Stancu; R. J. Stefanski; M. Sung; H. A. Tanaka; R. Tayloe; M. Tzanov; R. G. Van de Water; M. O. Wascko; D. H. White; M. J. Wilking; H. J. Yang; G. P. Zeller; E. D. Zimmerman

    2010-01-27

    MiniBooNE reports the first absolute cross sections for neutral current single \\pi^0 production on CH_2 induced by neutrino and antineutrino interactions measured from the largest sets of NC \\pi^0 events collected to date. The principal result consists of differential cross sections measured as functions of \\pi^0 momentum and \\pi^0 angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76+/-0.05_{stat}+/-0.76_{sys})*10^{-40} cm^2/nucleon at a mean energy of =808 MeV and (1.48+/-0.05_{stat}+/-0.23_{sys})*10^{-40} cm^2/nucleon at a mean energy of =664 MeV for \

  14. Measurement of the Z? production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, V.

    2015-04-29

    The cross section for the production of Z? in proton-proton collisions at 8 TeV is measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.5 fb?¹. Events with an oppositely-charged pair of muons or electrons together with an isolated photon are selected. The differential cross section as a function of the photon transverse momentum is measured inclusively and exclusively, where the exclusive selection applies a veto on central jets. The observed cross sections are compatible with the expectations of next-to-next-to-leading-order quantum chromodynamics. Limits on anomalous triple gauge couplings of ZZ? andmore »Z?? are set that improve on previous experimental results obtained with the charged lepton decay modes of the Z boson.« less

  15. Measurement of the WZ and ZZ production cross sections using leptonic final states in 8.6 fb?¹ of pp? collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; et al

    2012-06-12

    We study the processes pp??WZ?l±?l?l? and pp??ZZ?l?l???¯, where l=e or ?. Using 8.6 fb?¹ of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron collider, we measure the WZ production cross section to be 4.50+0.63–0.66 pb which is consistent with, but slightly larger than, the prediction of the standard model. The ZZ cross section is measured to be 1.64±0.46 pb, in agreement with a prediction of the standard model. Combination with an earlier analysis of the ZZ?l?l?l?l? channel yields a ZZ cross section of 1.44+0.35–0.34 pb.

  16. Measurement of the production cross-sections of $?^\\pm$ in p-C and $?^\\pm$-C interactions at 12 GeV/c

    E-Print Network [OSTI]

    HARP Collaboration

    2008-02-05

    The results of the measurements of the double-differential production cross-sections of pions in p-C and $\\pi^\\pm$-C interactions using the forward spectrometer of the HARP experiment are presented. The incident particles are 12 GeV/c protons and charged pions directed onto a carbon target with a thickness of 5% of a nuclear interaction length. For p-C interactions the analysis is performed using 100035 reconstructed secondary tracks, while the corresponding numbers of tracks for $\\pi^-$-C and $\\pi^+$-C analyses are 106534 and 10122 respectively. Cross-section results are presented in the kinematic range 0.5 GeV/c $\\leq p_{\\pi} measured cross-sections have a direct impact on the precise calculation of atmospheric neutrino fluxes and on the improved reliability of extensive air shower simulations by reducing the uncertainties of hadronic interaction models in the low energy range.

  17. Measurement of the production cross-section of positive pions in the collision of 8.9 GeV/c protons on beryllium

    E-Print Network [OSTI]

    HARP Collaboration

    2007-10-30

    The double-differential production cross-section of positive pions, $d^2\\sigma^{\\pi^{+}}/dpd\\Omega$, measured in the HARP experiment is presented. The incident particles are 8.9 GeV/c protons directed onto a beryllium target with a nominal thickness of 5% of a nuclear interaction length. The measured cross-section has a direct impact on the prediction of neutrino fluxes for the MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons on target produced about 96,000 reconstructed secondary tracks which were used in this analysis. Cross-section results are presented in the kinematic range 0.75 GeV/c < $p_{\\pi}$ < 6.5 GeV/c and 30 mrad < $\\theta_{\\pi}$ < 210 mrad in the laboratory frame.

  18. Measurement of the t anti-t production cross section in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Rappoccio, Salvatore Rocco

    2005-08-01

    We present the measurement of the t{bar t} cross section in the lepton plus jets channel with {ge} 1 and {ge} 2 secondary vertex tags. We use the scalar sum of transverse energies of the event (H{sub T}) to discriminate t{bar t} from the other backgrounds. We also use the transverse mass of the leptonic W-boson (M{sub T}{sup W}) to further reduce the Non-W backgrounds. We use a combination of data and Monte Carlo to estimate the backgrounds from electroweak processes, single top, fake leptons, W+ Light Flavor fake tags, and real W+ Heavy Flavor production. We obtain a value of {sigma} {sub {ge}1} = 8.7{sub -0.9}{sup +0.9}(stat){sub -0.9}{sup +1.2}(sys) pb for the {ge}1 tag cross section, and {sigma}{sub {ge}2} = 8.7{sub -1.6}{sup +1.8}(stat){sub -1.3}{sup +1.9}(sys) pb for the {ge}2 tag cross section. The authors also present a measurement of the t{bar t} cross section by fitting the N{sub jet} spectrum. They combine the =1 and {ge}2 tag cross sections to obtain {sigma}{sub t{bar t}} = 8.9{sub -0.9}{sup +0.9}(stat){sub -1.3}{sup +1.4}(syst)pb.

  19. Measurement of the production cross section for Z/?* in association with jets in pp collisions at ?s=7??TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    Results are presented on the production of jets of particles in association with a Z/?* boson, in proton-proton collisions at ?s=7??TeV with the ATLAS detector. The analysis includes the full 2010 data set, collected with ...

  20. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    E-Print Network [OSTI]

    The SciBooNE Collaboration; G. Cheng; C. Mariani; J. L. Alcaraz-Aunion; S. J. Brice; L. Bugel; J. Catala-Perez; J. M. Conrad; Z. Djurcic; U. Dore; D. A. Finley; A. J. Franke; C. Giganti; a J. J. Gomez-Cadenas; P. Guzowski; A. Hanson; Y. Hayato; K. Hiraide; G. Jover-Manas; G. Karagiorgi; T. Katori; Y. K. Kobayashi; T. Kobilarcik; H. Kubo; Y. Kurimoto; W. C. Louis; P. F. Loverre; L. Ludovici; K. B. M. Mahn; S. Masuike; K. Matsuoka; V. T. McGary; W. Metcalf; G. B. Mills; G. Mitsuka; Y. Miyachi; S. Mizugashira; C. D. Moore; Y. Nakajima; T. Nakaya; R. Napora; P. Nienaber; D. Orme; M. Otani; A. D. Russell; F. Sanchez; M. H. Shaevitz; T. -A. Shibata; M. Sorel; R. J. Stefanski; H. Takei; H. -K. Tanaka; M. Tanaka; R. Tayloe; I. J. Taylor; R. J. Tesarek; Y. Uchida; R. Van de Water; J. J. Walding; M. O. Wascko; H. B. White; M. Yokoyama; G. P. Zeller; E. D. Zimmerman

    2011-07-29

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2{\\sigma}/dpd{\\Omega} = (5.34 \\times 0.76) mb/(GeV/c \\times sr) for p + Be -> K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85\\times0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  1. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2?/dpd? = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore »Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  2. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G [Columbia U.; Mariani, C [Columbia U.; Alcaraz-Aunion, J L [Barcelona, IFAE; Brice, S J [Fermilab; Bugel, L [MIT; Catala-Perez, J [Valencia U.; Conrad, J M [MIT; Djurcic, Z [Columbia U.; Dore, U [Banca di Roma; INFN, Rome; Finley, D A [Fermilab; Franke, A J [Columbia U.; Banca di Roma; INFN, Rome

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2?/dpd? = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  3. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize: RaceEnergyFuelPRODUCTION

  4. Partial gamma-ray production cross sections for (n,xng) reactions in natural argon from 1 - 30 MeV

    E-Print Network [OSTI]

    S. MacMullin; M. Boswell; M. Devlin; S. R. Elliott; N. Fotiades; V. E. Guiseppe; R. Henning; T. Kawano; B. H. LaRoque; R. O. Nelson; J. M. O'Donnell

    2012-07-10

    Background: Neutron-induced backgrounds are a significant concern for experiments that require extremely low levels of radioactive backgrounds such as direct dark matter searches and neutrinoless double-beta decay experiments. Unmeasured neutron scattering cross sections are often accounted for incorrectly in Monte Carlo simulations. Purpose: Determine partial gamma-ray production cross sections for (n,xng) reactions in natural argon for incident neutron energies between 1 and 30 MeV. Methods: The broad spectrum neutron beam at the Los Alamos Neutron Science Center (LANSCE) was used used for the measurement. Neutron energies were determined using time-of-flight and resulting gamma rays from neutron-induced reactions were detected using the GErmanium Array for Neutron Induced Excitations (GEANIE). Results: Partial gamma-ray cross sections were measured for six excited states in Ar-40 and two excited states in Ar-39. Measured (n,xng) cross sections were compared to the TALYS and CoH3 nuclear reaction codes. Conclusions: These new measurements will help to identify potential backgrounds in neutrinoless double-beta decay and dark matter experiments that use argon as a detection medium or shielding. The measurements will also aid in the identification of neutron interactions in these experiments through the detection of gamma rays produced by (n,xng) reactions.

  5. Measurement of the inclusive W and Z production cross sections in pp collisions at $ \\sqrt {s} = 7 $ TeV with the CMS experiment

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2011-10-01

    A measurement of inclusive W and Z production cross sections in pp collisions at sqrt(s)=7 TeV is presented. The electron and muon decay channels are analyzed in a data sample collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 36 inverse picobarns. The measured inclusive cross sections are sigma(pp-> WX) B(W-> l nu) = 10.30 +/- 0.02 (stat.) +/- 0.10 (syst.) +/- 0.10 (th.) +/- 0.41 (lumi.) nb and sigma(pp -> ZX) B(Z-> l^+l^-) = 0.974 +/- 0.007 (stat.) +/- 0.007 (syst.) +/- 0.018 (th.) +/- 0.039 (lumi.) nb, limited to the dilepton invariant mass range 60 to 120 GeV. The luminosity-independent cross section ratios are [sigma(pp->WX) B(W-> l nu)]/[sigma(pp-> ZX) B(Z->l^+l^-)] = 10.54 +/- 0.07 (stat.) +/- 0.08 (syst.) +/- 0.16 (th.) and [sigma(pp->W^+X) B(W^+ -> l^+nu)] / [sigma(pp->W^- X) B(W^- -> l^- nu)] = 1.421 +/- 0.006 (stat.) +/- 0.014 (syst.) +/- 0.029 (th.). The measured values agree with next-to-next-to-leading order QCD cross section calculations based on recent parton distribution functions.

  6. A measurement of the ratio of the production cross sections for W and Z bosons in association with jets with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2014-12-02

    In this study, the ratio of the production cross sections for W and Z bosons in association with jets has been measured in proton–proton collisions at ?s = 7TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is based on the entire 2011 dataset, corresponding to an integrated luminosity of 4.6fb–1. Inclusive and differential cross-section ratios for massive vector bosons decaying to electrons and muons are measured in association with jets with transverse momentum pT > 30GeV and jet rapidity |y| more »Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.« less

  7. Measurement of the cross section for prompt isolated diphoton production in pp? collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Bucciantonio, M.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; De Cecco, S.; De Lorenzo, G.; Dell’Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirby, M.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N. S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.

    2011-09-01

    This article reports a measurement of the production cross section of prompt isolated photon pairs in proton-antiproton collisions at ?s=1.96 TeV using the CDF II detector at the Fermilab Tevatron collider. The data correspond to an integrated luminosity of 5.36 fb?¹. The cross section is presented as a function of kinematic variables sensitive to the reaction mechanisms. The results are compared with three perturbative QCD calculations: (1) a leading-order parton shower Monte Carlo, (2) a fixed next-to-leading-order calculation and (3) a next-to-leading-order/next-to-next-to-leading-log resummed calculation. The comparisons show that, within their known limitations, all calculations predict the main features of the data, but no calculation adequately describes all aspects of the data.

  8. Measurement of the cross section for prompt isolated diphoton production in pp? collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; et al

    2011-09-01

    This article reports a measurement of the production cross section of prompt isolated photon pairs in proton-antiproton collisions at ?s=1.96 TeV using the CDF II detector at the Fermilab Tevatron collider. The data correspond to an integrated luminosity of 5.36 fb?¹. The cross section is presented as a function of kinematic variables sensitive to the reaction mechanisms. The results are compared with three perturbative QCD calculations: (1) a leading-order parton shower Monte Carlo, (2) a fixed next-to-leading-order calculation and (3) a next-to-leading-order/next-to-next-to-leading-log resummed calculation. The comparisons show that, within their known limitations, all calculations predict the main features of themore »data, but no calculation adequately describes all aspects of the data.« less

  9. Measurement of the production cross section ratio ?(?b2(1P)) / ?(?b1(1P)) in pp collisions at ?s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan [Yerevan Physics Inst. (Armenia)

    2015-04-01

    A measurement of the production cross section ratio ?(?b2(1P)) / ?(?b1(1P)) is presented. The ?b1 (1P) and ?b2(1P) bottomonium states, promptly produced in pp collisions at ?s=8 TeV , are detected by the CMS experiment at the CERN LHC through their radiative decays ?b1,2(1P) ? ?(1S) + ? . The emitted photons are measured through their conversion to e?e? pairs, whose reconstruction allows the two states to be resolved. The ?(1S) is measured through its decay to two muons. An event sample corresponding to an integrated luminosity of 20.7 fb?¹ is used to measure the cross section ratio in a phase-space region defined by the photon pseudorapidity, |??| ?| T? ?b branching fractions.

  10. Measurement of the tt? production cross section in pp? collisions at ?s=1.96 TeV using events with large Missing ET and jets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.

    2011-08-09

    In this paper we report a measurement of the t{anti t} production cross section in pp? collisions at ?s = 1.96 TeV using data corresponding to an integrated luminosity of 2.2 fb-1 collected with the CDF II detector at the Tevatron accelerator. We select events with significant missing transverse energy and high jet multiplicity. This measurement vetoes the presence of explicitly identified electrons and muons, thus enhancing the tau contribution of ttMs; decays. Signal events are discriminated from the background using a neural network and heavy flavor jets are identified by a secondary-vertex tagging algorithm. We measure a tt? productionmore »cross section of 7.99 ± 0.55(stat) ± 0.76(syst) ± 0.46(lumi) pb, assuming a top mass mtop = 172.5 GeV/c2, in agreement with previous measurements and standard model predictions.« less

  11. Measurement of the production cross section ratio ?(?b2(1P)) / ?(?b1(1P)) in pp collisions at ?s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-04-09

    A measurement of the production cross section ratio ?(?b2(1P)) / ?(?b1(1P)) is presented. The ?b1 (1P) and ?b2(1P) bottomonium states, promptly produced in pp collisions at ?s=8 TeV , are detected by the CMS experiment at the CERN LHC through their radiative decays ?b1,2(1P) ? ?(1S) + ? . The emitted photons are measured through their conversion to e?e? pairs, whose reconstruction allows the two states to be resolved. The ?(1S) is measured through its decay to two muons. An event sample corresponding to an integrated luminosity of 20.7 fb?¹ is used to measure the cross section ratio in amore »phase-space region defined by the photon pseudorapidity, |??| ?| T? ?b branching fractions.« less

  12. A measurement of the ratio of the production cross sections for W and Z bosons in association with jets with the ATLAS detector

    E-Print Network [OSTI]

    ATLAS Collaboration

    2015-02-09

    The ratio of the production cross sections for W and Z bosons in association with jets has been measured in proton-proton collisions at $\\sqrt{s}$ = 7 TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is based on the entire 2011 dataset, corresponding to an integrated luminosity of 4.6 fb$^{-1}$. Inclusive and differential cross-section ratios for massive vector bosons decaying to electrons and muons are measured in association with jets with transverse momentum $p_T$ > 30 GeV and jet rapidity $|y|$ calculations and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.

  13. Cross section for bb?bar production via dielectrons in d+Au collisions at ?sNN=200 GeV

    SciTech Connect (OSTI)

    Adare, A. [Univ. of Colorado, Boulder, CO (United States)

    2015-01-01

    We report a measurement of e?e? pairs from semileptonic heavy-flavor decays in d+Au collisions at ?sNN = 200 GeV. Exploring the mass and transverse-momentum dependence of the yield, the bottom decay contribution can be isolated from charm, and quantified by comparison to PYTHIA and MC@NLO simulations. The resulting bb-production cross section is ?dAubb=1.37±0.28(stat)±0.46(syst) mb, which is equivalent to a nucleon-nucleon cross section of ?NNbb =3.4 ± 0.8(stat)±1.1(syst) µb.

  14. Measurements of jet multiplicity and differential production cross sections of Z + jets events in proton-proton collisions at sqrt(s) = 7 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-03-16

    Measurements of differential cross sections are presented for the production of a Z boson and at least one hadronic jet in proton-proton collisions at sqrt(s) = 7 TeV, recorded by the CMS detector, using a data sample corresponding to an integrated luminosity of 4.9 inverse femtobarns. The jet multiplicity distribution is measured for up to six jets. The differential cross sections are measured as a function of jet transverse momentum and pseudorapidity for the four highest transverse momentum jets. The distribution of the scalar sum of jet transverse momenta is also measured as a function of the jet multiplicity. The measurements are compared with theoretical predictions at leading and next-to-leading order in perturbative QCD.

  15. Updated Measurement of the Single Top Quark Production Cross Section and $V{tb}$ in the Missing Transverse Energy Plus Jets Topology in $p\\bar{p}$ Collisions at $\\sqrt{s} = 1.96$ TeV

    E-Print Network [OSTI]

    CDF Collaboration; T. Aaltonen; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; G. Apollinari; J. A. Appel; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; B. Auerbach; A. Aurisano; F. Azfar; W. Badgett; T. Bae; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; P. Barria; P. Bartos; M. Bauce; F. Bedeschi; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; A. Bhatti; K. R. Bland; B. Blumenfeld; A. Bocci; A. Bodek; D. Bortoletto; J. Boudreau; A. Boveia; L. Brigliadori; C. Bromberg; E. Brucken; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; P. Bussey; P. Butti; A. Buzatu; A. Calamba; S. Camarda; M. Campanelli; F. Canelli; B. Carls; D. Carlsmith; R. Carosi; S. Carrillo; B. Casal; M. Casarsa; A. Castro; P. Catastini; D. Cauz; V. Cavaliere; A. Cerri; L. Cerrito; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; K. Cho; D. Chokheli; A. Clark; C. Clarke; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; M. Cremonesi; D. Cruz; J. Cuevas; R. Culbertson; N. d'Ascenzo; M. Datta; P. de Barbaro; L. Demortier; L. Marchese; M. Deninno; F. Devoto; M. D'Errico; A. Di Canto; B. Di Ruzza; J. R. Dittmann; M. D'Onofrio; S. Donati; M. Dorigo; A. Driutti; K. Ebina; R. Edgar; A. Elagin; R. Erbacher; S. Errede; B. Esham; S. Farrington; J. P. Fernández Ramos; R. Field; G. Flanagan; R. Forrest; M. Franklin; J. C. Freeman; H. Frisch; Y. Funakoshi; C. Galloni; A. F. Garfinkel; P. Garosi; H. Gerberich; E. Gerchtein; S. Giagu; V. Giakoumopoulou; K. Gibson; C. M. Ginsburg; N. Giokaris; P. Giromini; V. Glagolev; D. Glenzinski; M. Gold; D. Goldin; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. González López; I. Gorelov; A. T. Goshaw; K. Goulianos; E. Gramellini; C. Grosso-Pilcher; R. C. Group; J. Guimaraes da Costa; S. R. Hahn; J. Y. Han; F. Happacher; K. Hara; M. Hare; R. F. Harr; T. Harrington-Taber; K. Hatakeyama; C. Hays; J. Heinrich; M. Herndon; A. Hocker; Z. Hong; W. Hopkins; S. Hou; R. E. Hughes; U. Husemann; M. Hussein; J. Huston; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; S. Jindariani; M. Jones; K. K. Joo; S. Y. Jun; T. R. Junk; M. Kambeitz; T. Kamon; P. E. Karchin; A. Kasmi; Y. Kato; W. Ketchum; J. Keung; B. Kilminster; D. H. Kim; H. S. Kim; J. E. Kim; M. J. Kim; S. B. Kim; S. H. Kim; Y. K. Kim; Y. J. Kim; N. Kimura; M. Kirby; K. Knoepfel; K. Kondo; D. J. Kong; J. Konigsberg; A. V. Kotwal; M. Kreps; J. Kroll; M. Kruse; T. Kuhr; M. Kurata; A. T. Laasanen; S. Lammel; M. Lancaster; K. Lannon; G. Latino; H. S. Lee; J. S. Lee; S. Leo; S. Leone; J. D. Lewis; A. Limosani; E. Lipeles; A. Lister; H. Liu; Q. Liu; T. Liu; S. Lockwitz; A. Loginov; A. Lucà; D. Lucchesi; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; R. Madrak; P. Maestro; S. Malik; G. Manca; A. Manousakis-Katsikakis; F. Margaroli; P. Marino; K. Matera; M. E. Mattson; A. Mazzacane; P. Mazzanti; R. McNulty; A. Mehta; P. Mehtala; C. Mesropian; T. Miao; D. Mietlicki; A. Mitra; H. Miyake; S. Moed; N. Moggi; C. S. Moon; R. Moore; M. J. Morello; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; I. Nakano; A. Napier; J. Nett; C. Neu; T. Nigmanov; L. Nodulman; S. Y. Noh; O. Norniella; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; L. Ortolan; C. Pagliarone; E. Palencia; P. Palni; V. Papadimitriou; W. Parker; G. Pauletta; M. Paulini; C. Paus; T. J. Phillips; E. Pianori; J. Pilot; K. Pitts; C. Plager; L. Pondrom; S. Poprocki; K. Potamianos; F. Prokoshin; A. Pranko; F. Ptohos; G. Punzi; I. Redondo Fernández; P. Renton; M. Rescigno; F. Rimondi; L. Ristori; A. Robson; T. Rodriguez; S. Rolli; M. Ronzani; R. Roser; J. L. Rosner; F. Ruffini; A. Ruiz; J. Russ; V. Rusu; W. K. Sakumoto; Y. Sakurai; L. Santi; K. Sato; V. Saveliev; A. Savoy-Navarro; P. Schlabach; E. E. Schmidt; T. Schwarz; L. Scodellaro; F. Scuri; S. Seidel; Y. Seiya; A. Semenov; F. Sforza; S. Z. Shalhout; T. Shears; P. F. Shepard; M. Shimojima; M. Shochet; I. Shreyber-Tecker; A. Simonenko; K. Sliwa; J. R. Smith; F. D. Snider; V. Sorin; H. Song; M. Stancari; R. St. Denis; D. Stentz; J. Strologas; Y. Sudo; A. Sukhanov; I. Suslov; K. Takemasa; Y. Takeuchi; J. Tang; M. Tecchio; P. K. Teng; J. Thom; E. Thomson; V. Thukral; D. Toback; S. Tokar; K. Tollefson; T. Tomura; D. Tonelli; S. Torre; D. Torretta; P. Totaro; M. Trovato; F. Ukegawa; S. Uozumi; F. Vázquez; G. Velev; C. Vellidis; C. Vernieri; M. Vidal; R. Vilar; J. Vizán; M. Vogel; G. Volpi; P. Wagner; R. Wallny; S. M. Wang; D. Waters; W. C. Wester III; D. Whiteson; A. B. Wicklund; S. Wilbur; H. H. Williams; J. S. Wilson; P. Wilson; B. L. Winer; P. Wittich; S. Wolbers; H. Wolfe; T. Wright; X. Wu; Z. Wu; K. Yamamoto; D. Yamato; T. Yang; U. K. Yang; Y. C. Yang; W. -M. Yao; G. P. Yeh; K. Yi; J. Yoh; K. Yorita; T. Yoshida; G. B. Yu; I. Yu; A. M. Zanetti; Y. Zeng; C. Zhou; S. Zucchelli

    2014-10-21

    An updated measurement of the single top quark production cross section is presented using the full data set collected by the Collider Detector at Fermilab (CDF) and corresponding to 9.5 fb${}^{-1}$ of integrated luminosity from proton-antiproton collisions at 1.96 TeV center-of-mass energy. The events selected contain an imbalance in the total transverse energy, jets identified as originating from $b$ quarks, and no identified leptons. The sum of the $s$- and $t$-channel single top quark cross sections is measured to be $3.53_{-1.16}^{+1.25}$ pb and a lower limit on $V_{tb}$ of 0.63 is obtained at the 95% credibility level. These measurements are combined with previously reported CDF results obtained from events with an imbalance in total transverse energy, jets identified as originating from $b$ quarks, and exactly one identified lepton. The combined cross section is measured to be $3.02_{-0.48}^{+0.49}$ pb and a lower limit on $V{tb}$ of 0.84 is obtained at the 95% credibility level.

  16. First measurement of the differential cross section for ttbar production in the dilepton final state at sqrts = 13 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-01-01

    Normalized differential top quark pair ($\\mathrm{t \\bar t}$) production cross sections are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the CERN LHC. The data were recorded in 2015 with the CMS detector and correspond to an integrated luminosity of 42 $\\mathrm{pb^{-1}}$. The measurements are performed in the dilepton decay channels ($\\mathrm{e^+e^-}$, $\\mu^+\\mu^-$, and $\\mu^{\\pm} \\mathrm{e^{\\mp}}$). The $\\mathrm{t \\bar t}$ production cross section is measured as a function of kinematic properties of the top quarks and the $\\mathrm{t \\bar t}$ system, as well as of the jet multiplicity in the event. Several predictions from perturbative QCD calculations are confronted with the data and are found to describe them well within large statistical uncertainties.%The data are compared with several predictions from perturbative QCD calculations. No significant deviations from the standard model are observed.

  17. Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at $\\sqrt{s}$=8 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-09-01

    We presented a measurement of differential cross sections for the Higgs boson (H) production in pp collisions at ?s = 8 TeV. The analysis exploits the H ??? decay in data corresponding to an integrated luminosity of 19.7 fb-1 collected by the CMS experiment at the LHC. The cross section is measured as a function of the kinematic properties of the diphoton system and of the associated jets. Results corrected for detector effects are compared with predictions at next-to-leading order and nextto-next-to-leading order in perturbative quantum chromodynamics, as well as with predictions beyond the standard model. Furthermore, for isolated photons with pseudorapidities |?| < 2.5, and with the photon of largest and next-to-largest transverse momentum (p?T) divided by the diphoton mass mgg satisfying the respective conditions of p?T/m?? > 1/3 and >1/4, the total fiducial cross section is 32 ±10 fb.

  18. Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at $\\sqrt{s}= $ 8 TeV

    E-Print Network [OSTI]

    Khachatryan, Vardan; CMS Collaboration; Tumasyan, Armen; Adam, Wolfgang; A??lar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dobur, Didar; Fasanella, Giuseppe; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav

    2015-01-01

    A measurement is presented of differential cross sections for the Higgs boson (H) production in pp collisions at $\\sqrt{s}=$ 8 TeV. The analysis exploits the $\\mathrm{H} \\to \\gamma \\gamma $ decay in data corresponding to an integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS experiment at the LHC. The cross section is measured as a function of the kinematic properties of the diphoton system and of the associated jets. Results corrected for detector effects are compared with predictions at next-to-leading order and next-to-next-to-leading order in perturbative quantum chromodynamics, as well as with predictions beyond the standard model.For isolated photons with pseudorapidities $ | \\eta | $ lower than 2.5, and with the photon of largest and next-to-largest transverse momentum ($p_{\\mathrm{T}}^{\\gamma}$) divided by the diphoton mass $m_{\\gamma\\gamma}$ satisfying the respective conditions of $p_{\\mathrm{T}}^{\\gamma}/m_{\\gamma\\gamma}$ larger than 1/3 and 1/4, the total fiducial cross section is 32 $\\p...

  19. Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at ?s=7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-02-01

    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb?¹. The measuredmore »cross sections are compared to predictions from Monte Carlo generators, MADGRAPH + PYTHIA and SHERPA , and to next-to-leading-order calculations from BLACKHAT+ SHERPA . The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high- HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.« less

  20. Measurement of the tanti-t Production Cross Section in p anti-ptnipbar Collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara

    2006-06-01

    The authors present a measurement of the top quark pair production cross section in p{bar p} collisions at {radical}s = 1.96 TeV using 318 pb{sup -1} of data collected with the Collider Detector at Fermilab. They select t{bar t} decays into the final states e{nu} + jets and {mu}{nu} + jets, in which at least one b quark from the t-quark decays is identified using a secondary vertex-finding algorithm. Assuming a top quark mass of 178 GeV/c{sup 2}, they measure a cross section of 8.7 {+-} 0.9(stat.){sub -0.9}{sup +1.1}(syst.) pb. They also report the first observation of t{bar t} with significance greater than 5{sigma} in the subsample in which both b quarks are identified, corresponding to a cross section of 10.1{sub -1.4}{sup +1.6}(stat.){sub -1.3}{sup +2.0}(syst.) pb.

  1. Differential cross section measurements for the production of a W boson in association with jets in proton-proton collisions at sqrt(s) = 7 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-01-07

    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pt) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 inverse femtobarns. The measured cross sections are compared to predictions from Monte Carlo generators, MADGRAPH + PYTHIA and SHERPA, and to next-to-leading-order calculations from BLACKHAT + SHERPA. The differential cross sections are found to be in agreement with the predictions, apart from the pt distributions of the leading jets at high pt values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.

  2. Measurement of the differential ttbar production cross section for high-pt top quarks in e/mu+jets final states at 8 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-01-01

    The differential top-antitop quark production cross section is measured for top quarks with high transverse momentum in $\\mathrm{pp}$ collisions at a center-of-mass energy of 8 TeV. The data sample was collected with the CMS detector during 2012 and corresponds to an integrated luminosity of $19.7 \\pm 0.5$ fb$^{-1}$. The measurement is performed for events in e/$\\mu$+jets final states where the hadronically decaying top quark is reconstructed as a single large-radius jet and identified as a top candidate using jet substructure techniques. The integrated cross section is measured at particle-level within a fiducial region resembling the detector-level selection as well as at parton-level. At particle-level, the cross section is measured to be $\\sigma_{\\rm t\\bar{t}} = 1.28 \\pm 0.09 ~({\\rm stat+syst}) \\pm 0.10 ~({\\rm PDF}) \\pm 0.09 ~({\\rm Q^2}) \\pm 0.03 ~({\\rm lumi)~pb}$ for $p_{\\rm T} > 400~{\\rm GeV}$. At parton-level, it is measured to be $\\sigma_{\\rm t\\bar{t}} = 1.44 \\pm 0.10 ~({\\rm stat+syst}) \\pm 0.13 ~({\\r...

  3. Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at ?s=7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan [Yerevan Physics Institute (Armenia)

    2015-02-01

    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb?¹. The measured cross sections are compared to predictions from Monte Carlo generators, MADGRAPH + PYTHIA and SHERPA , and to next-to-leading-order calculations from BLACKHAT+ SHERPA . The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high- HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.

  4. Activation cross sections of $?$-particle induced nuclear reactions on hafnium and deuteron induced nuclear reaction on tantalum: production of $^{178}$W/$^{178m}$Ta generator

    E-Print Network [OSTI]

    F. Tárk'anyi; S. Tak'acs; F. Ditrói; A. Hermanne; A. V. Ignatyuk; M. S. Uddin

    2014-12-01

    In the frame of a systematic study of charged particle production routes of medically relevant radionuclei, the excitation function for indirect production of $^{178m}$Ta through $^{nat}$Hf($\\alpha$,xn)$^{178}$W-$^{178m}$Ta nuclear reaction was measured for the first time up to 40 MeV. In parallel, the side reactions $^{nat}$Hf($\\alpha$,x)$^{179,177,176,175}$W, $^{183,182,178g,177,176,175}$Ta, $^{179m,177m,175}$Hf were also assessed. Stacked foil irradiation technique and $\\gamma$-ray spectrometry were used. New experimental cross section data for the $^{nat}$Ta(d,xn)$^{178}$W reaction are also reported up to 40 MeV. The measured excitation functions are compared with the results of the ALICE-IPPE, and EMPIRE nuclear reaction model codes and with the TALYS 1.4 based data in the TENDL-2013 library. The thick target yields were deduced and compared with yields of other charged particle ((p,4n), (d,5n) and ($^3$He,x)) production routes for $^{178}$W.

  5. Simultaneous measurements of the t[bar over t], W[superscript +]W[superscript -], and Z/ ?[superscript *] ? ?? production cross-sections in pp collisions at ?s = 7 TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    Simultaneous measurements of the t[bar over t], W[superscript +]W[superscript ?], and Z/?[superscript ?] ? ?? production cross-sections using an integrated luminosity of 4.6??fb[superscript ?1] of pp collisions at ?s = ...

  6. Measurement of the W+W- Production Cross Section and Search for Anomalous WW? and WWZ Couplings in pp[over-bar] Collisions at [sqrt]s=1.96??TeV

    E-Print Network [OSTI]

    Paus, Christoph M. E.

    This Letter describes the current most precise measurement of the W boson pair production cross section and most sensitive test of anomalous WW? and WWZ couplings in pp[over-bar] collisions at a center-of-mass energy of ...

  7. Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at ?s = 7 TeV

    E-Print Network [OSTI]

    Alver, B.

    The inclusive production cross sections for forward jets, as well for jets in dijet events with at least one jet emitted at central and the other at forward pseudorapidities, are measured in the range of transverse momenta ...

  8. Measurement of W and Z boson production cross sections in pp-bar collisions at s?=1.8 TeV

    E-Print Network [OSTI]

    Baringer, Philip S.; Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Alves, G. A.; Amos, N.

    1999-08-02

    PHYSICAL REVIEW D, VOLUME 60, 052003Measurement of W and Z boson production cross sections in pp¯ collisions at As51.8 TeV B. Abbott,40 M. Abolins,37 V. Abramov,15 B. S. Acharya,8 I. Adam,39 D. L. Adams,49 M. Adams,24 S. Ahn,23 G. A. Alves,2 N. Amos...,36 E. W. Anderson,30 M. M. Baarmand,42 V. V. Babintsev,15 L. Babukhadia,16 A. Baden,33 B. Baldin,23 S. Banerjee,8 J. Bantly,46 E. Barberis,17 P. Baringer,31 J. F. Bartlett,23 A. Belyaev,14 S. B. Beri,6 I. Bertram,26 V. A. Bezzubov,15 P. C. Bhat,23 V...

  9. Measurement of the production and differential cross sections of W[superscript +]W[superscript -] bosons in association with jets in p[bar over p] collisions at ?s = 1.96??TeV

    E-Print Network [OSTI]

    Aaltonen, T.

    We present a measurement of the W-boson-pair production cross section in p[bar over p] collisions at 1.96 TeV center-of-mass energy and the first measurement of the differential cross section as a function of jet multiplicity ...

  10. Measurement of ww + wz production cross section and study of the dijet mass spectrum in the lnu + jets final state at CDF

    SciTech Connect (OSTI)

    Cavaliere, Viviana; /Siena U.

    2010-12-01

    We present the measurement of the WW and WZ production cross section in p{bar p} collisions at {radical}s = 1.96 TeV, in a final state consisting of an electron or muon, neutrino and jets. The data analyzed were collected by the CDF II detector at the Tevatron collider and correspond to 4.3 fb{sup -1} of integrated luminosity. The analysis uses a fit to the dijet mass distribution to extract the diboson contribution. We observe 1582 {+-} 275(stat.) {+-} 107(syst.) diboson candidate events and measure a cross section of {sigma}{sub WW/WZ} = 18.1 {+-} 3.3(stat.) {+-} 2.5(syst.) pb, consistent with the Standard Model prediction of 15.9 {+-} 0.9 pb. The best fit to the dijet mass of the known components shows a good agreement with the data except for the [120, 160] GeV/c{sup 2} mass range, where an excess is observed. We perform detailed checks of our background model and study the significance of the excess, assuming an additional gaussian component with a width compatible with the expected dijet mass resolution. A standard {Delta}{sub {chi}}{sup 2} test of the presence of the additional component, returns a p-value of 4.2 x 10{sup -4} when standard sources of systematics are considered, corresponding to a significance of 3.3{sigma}.

  11. $ttW$ and $ttZ$ production cross section in leptonic final states at 8 TeV with ATLAS

    E-Print Network [OSTI]

    Suster, Carl Joseph Edmund; The ATLAS collaboration

    2015-01-01

    A measurement of the production cross section of a pair of top quarks in association with a $W$ or $Z$ boson is presented, using $20.3 \\,\\mathrm{fb}^{-1}$ of $pp$ collision data collected by the ATLAS detector at $\\sqrt{s} = 8 \\,\\mathrm{TeV}$. The measurement combines four separate analyses which consider final states with two opposite sign, two same sign, three and four leptons. A simultaneous fit to data of the $t\\bar{t}W$ and $t\\bar{t}Z$ signals measures their cross sections to be $\\sigma_{t\\bar{t}Z} = 176^{+58}_{-52} \\;\\mathrm{fb}$ and $\\sigma_{t\\bar{t}W} = 369^{+100}_{-91}\\;\\mathrm{fb}$, consistent with next-to-leading order theoretical calculations. Tested against the background-only hypothesis, these correspond to an observed (expected) significance of $4.2\\sigma$ ($4.5\\sigma$) for $t\\bar{t}Z$ and $5.0\\sigma$ ($3.2\\sigma$) for $t\\bar{t}W$.

  12. Measurement of the tt¯ production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-01-08

    The tt¯ production cross-section dependence on jet multiplicity and jet transverse momentum is reported for proton-proton collisions at a centre-of-mass energy of 7 TeV in the single-lepton channel. This data was collected with the ATLAS detector at the CERN Large Hadron Collider and comprise the full 2011 data sample corresponding to an integrated luminosity of 4.6 fb–1. Differential cross-sections are presented as a function of the jet multiplicity for up to eight jets using jet transverse momentum thresholds of 25, 40, 60, and 80 GeV, and as a function of jet transverse momentum up to themore »fifth jet. The results are shown after background subtraction and corrections for all known detector effects, within a kinematic range closely matched to the experimental acceptance. Several QCD-based Monte Carlo models are compared with the results. Sensitivity to the parton shower modelling is found at the higher jet multiplicities, at high transverse momentum of the leading jet and in the transverse momentum spectrum of the fifth leading jet. The MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities.« less

  13. Measurement of Azimuthal Modulations in the Cross-Section of Di-Pion Pairs in Di-Jet Production from Electron-Positron Annihilation

    E-Print Network [OSTI]

    A. Abdesselam; I. Adachi; K. Adamczyk; H. Aihara; S. Al Said; K. Arinstein; Y. Arita; D. M. Asner; T. Aso; V. Aulchenko; T. Aushev; R. Ayad; T. Aziz; V. Babu; I. Badhrees; S. Bahinipati; A. M. Bakich; A. Bala; Y. Ban; V. Bansal; E. Barberio; M. Barrett; W. Bartel; A. Bay; I. Bedny; P. Behera; M. Belhorn; K. Belous; V. Bhardwaj; B. Bhuyan; M. Bischofberger; J. Biswal; T. Bloomfield; S. Blyth; A. Bobrov; A. Bondar; G. Bonvicini; C. Bookwalter; A. Bozek; M. Bra?ko; F. Breibeck; J. Brodzicka; T. E. Browder; D. ?ervenkov; M. -C. Chang; P. Chang; Y. Chao; V. Chekelian; A. Chen; K. -F. Chen; P. Chen; B. G. Cheon; K. Chilikin; R. Chistov; K. Cho; V. Chobanova; S. -K. Choi; Y. Choi; D. Cinabro; J. Crnkovic; J. Dalseno; M. Danilov; S. Di Carlo; J. Dingfelder; Z. Doležal; Z. Drásal; A. Drutskoy; S. Dubey; D. Dutta; K. Dutta; S. Eidelman; D. Epifanov; S. Esen; H. Farhat; J. E. Fast; M. Feindt; T. Ferber; A. Frey; O. Frost; M. Fujikawa; B. G. Fulsom; V. Gaur; N. Gabyshev; S. Ganguly; A. Garmash; D. Getzkow; R. Gillard; F. Giordano; R. Glattauer; Y. M. Goh; B. Golob; M. Grosse Perdekamp; J. Grygier; O. Grzymkowska; H. Guo; J. Haba; P. Hamer; Y. L. Han; K. Hara; T. Hara; Y. Hasegawa; J. Hasenbusch; K. Hayasaka; H. Hayashii; X. H. He; M. Heck; M. Hedges; D. Heffernan; M. Heider; A. Heller; T. Higuchi; S. Himori; T. Horiguchi; Y. Hoshi; K. Hoshina; W. -S. Hou; Y. B. Hsiung; C. -L. Hsu; M. Huschle; H. J. Hyun; Y. Igarashi; T. Iijima; M. Imamura; K. Inami; G. Inguglia; A. Ishikawa; K. Itagaki; R. Itoh; M. Iwabuchi; M. Iwasaki; Y. Iwasaki; T. Iwashita; S. Iwata; W. W. Jacobs; I. Jaegle; M. Jones; K. K. Joo; T. Julius; D. H. Kah; H. Kakuno; J. H. Kang; K. H. Kang; P. Kapusta; S. U. Kataoka; N. Katayama; E. Kato; Y. Kato; P. Katrenko; H. Kawai; T. Kawasaki; H. Kichimi; C. Kiesling; B. H. Kim; D. Y. Kim; H. J. Kim; J. B. Kim; J. H. Kim; K. T. Kim; M. J. Kim; S. H. Kim; S. K. Kim; Y. J. Kim; K. Kinoshita; C. Kleinwort; J. Klucar; B. R. Ko; N. Kobayashi; S. Koblitz; P. Kodyš; Y. Koga; S. Korpar; R. T. Kouzes; P. Križan; P. Krokovny; B. Kronenbitter; T. Kuhr; R. Kumar; T. Kumita; E. Kurihara; Y. Kuroki; A. Kuzmin; P. Kvasni?ka; Y. -J. Kwon; Y. -T. Lai; J. S. Lange; D. H. Lee; I. S. Lee; S. -H. Lee; M. Leitgab; R. Leitner; P. Lewis; H. Li; J. Li; X. Li; Y. Li; L. Li Gioi; J. Libby; A. Limosani; C. Liu; Y. Liu; Z. Q. Liu; D. Liventsev; A. Loos; R. Louvot; P. Lukin; J. MacNaughton; M. Masuda; D. Matvienko; A. Matyja; S. McOnie; Y. Mikami; K. Miyabayashi; Y. Miyachi; H. Miyake; H. Miyata; Y. Miyazaki; R. Mizuk; G. B. Mohanty; S. Mohanty; D. Mohapatra; A. Moll; H. K. Moon; T. Mori; H. -G. Moser; T. Müller; N. Muramatsu; R. Mussa; T. Nagamine; Y. Nagasaka; Y. Nakahama; I. Nakamura; K. Nakamura; E. Nakano; H. Nakano; T. Nakano; M. Nakao; H. Nakayama; H. Nakazawa; T. Nanut; Z. Natkaniec; M. Nayak; E. Nedelkovska; K. Negishi; K. Neichi; C. Ng; C. Niebuhr; M. Niiyama; N. K. Nisar; S. Nishida; K. Nishimura; O. Nitoh; T. Nozaki; A. Ogawa; S. Ogawa; T. Ohshima; S. Okuno; S. L. Olsen; Y. Ono; Y. Onuki; W. Ostrowicz; C. Oswald; H. Ozaki; P. Pakhlov; G. Pakhlova; B. Pal; H. Palka; E. Panzenböck; C. -S. Park; C. W. Park; H. Park; H. K. Park; K. S. Park; L. S. Peak; T. K. Pedlar; T. Peng; L. Pesantez; R. Pestotnik; M. Peters; M. Petri?; L. E. Piilonen; A. Poluektov; K. Prasanth; M. Prim; K. Prothmann; C. Pulvermacher; M. Purohit; B. Reisert; E. Ribežl; M. Ritter; M. Röhrken; J. Rorie; A. Rostomyan; M. Rozanska; S. Ryu; H. Sahoo; T. Saito; K. Sakai; Y. Sakai; S. Sandilya; D. Santel; L. Santelj; T. Sanuki; N. Sasao; Y. Sato; V. Savinov; O. Schneider; G. Schnell; P. Schönmeier; M. Schram; C. Schwanda; A. J. Schwartz; B. Schwenker; R. Seidl; A. Sekiya; D. Semmler; K. Senyo; O. Seon; I. S. Seong; M. E. Sevior; L. Shang; M. Shapkin; V. Shebalin; C. P. Shen; T. -A. Shibata; H. Shibuya; S. Shinomiya; J. -G. Shiu; B. Shwartz; A. Sibidanov; F. Simon; J. B. Singh; R. Sinha; P. Smerkol; Y. -S. Sohn; A. Sokolov; Y. Soloviev; E. Solovieva; S. Stani?; M. Stari?; M. Steder; J. Stypula; S. Sugihara; A. Sugiyama; M. Sumihama; K. Sumisawa; T. Sumiyoshi; K. Suzuki; S. Suzuki; S. Y. Suzuki; Z. Suzuki; H. Takeichi; U. Tamponi; M. Tanaka; S. Tanaka; K. Tanida; N. Taniguchi; G. Tatishvili; G. N. Taylor; Y. Teramoto; I. Tikhomirov; K. Trabelsi; V. Trusov; Y. F. Tse; T. Tsuboyama; M. Uchida; T. Uchida; Y. Uchida; S. Uehara; K. Ueno; T. Uglov; Y. Unno; S. Uno; P. Urquijo; Y. Ushiroda; Y. Usov; S. E. Vahsen; C. Van Hulse; P. Vanhoefer; G. Varner; K. E. Varvell; K. Vervink; A. Vinokurova; V. Vorobyev; A. Vossen; M. N. Wagner; C. H. Wang; J. Wang; M. -Z. Wang; P. Wang; X. L. Wang; M. Watanabe; Y. Watanabe; R. Wedd; S. Wehle; E. White; J. Wiechczynski; K. M. Williams; E. Won; B. D. Yabsley; S. Yamada; H. Yamamoto; J. Yamaoka; Y. Yamashita; M. Yamauchi; S. Yashchenko; H. Ye; J. Yelton; Y. Yook; C. Z. Yuan; Y. Yusa; C. C. Zhang; L. M. Zhang; Z. P. Zhang; L. Zhao; V. Zhilich; V. Zhulanov

    2015-05-29

    We present an extraction of azimuthal correlations between two pairs of charged pions detected in opposite jets from electron-positron annihilation. These correlations may arise from the dependence of the di-pion fragmentation on the polarization of the parent quark in the process $e^+e^- \\rightarrow q \\bar{q}$. Due to the correlation of the quark polarizations, the cross-section of di-pion pair production, in which the pion pairs are detected in opposite jets in a dijet event, exhibits a modulation in the azimuthal angles of the planes containing the hadron pairs with respect to the production plane. The measurement of this modulation allows access to combinations of fragmentation functions that are sensitive to the quark's transverse polarization and helicity. Within our uncertainties we do not observe a significant signal from the previously unmeasured helicity dependent fragmentation function $G_1^\\perp$. This measurement uses a dataset of 938~fb$^{-1}$ collected by the Belle experiment at or near $\\sqrt{s}\\approx10.58$ GeV.

  14. Measurement of the cross section for the production of a W boson in association with b-jets in pp collisions at ?s = 7 TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    A measurement is presented of the cross section for the production of a W boson with one or two jets, of which at least one must be a b-jet, in pp collisions at ?s = 7 TeV. Production via top decay is not included in the ...

  15. Cross-sections of large-angle hadron production in proton- and pion-nucleus interactions II: beryllium nuclei and beam momenta from +/- 3 GeV/c to +/-15 GeV/c

    E-Print Network [OSTI]

    The HARP-CDP group; :; A. Bolshakova

    2009-06-23

    We report on double-differential inclusive cross-sections of the production of secondary protons and charged pions, in the interactions with a 5% interaction length thick stationary beryllium target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees.

  16. Measurement of the Differential Cross Section d?/d(cos??[subscript t]) for Top-Quark Pair Production in p[bar over p] Collisions at ?s = 1.96??TeV

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    We report a measurement of the differential cross section d?/d(cos?[subscript t]) for top-quark pair production as a function of the top-quark production angle in proton-antiproton collisions at s? = 1.96??TeV. This ...

  17. Measurement of the top quark pair production cross section in proton-antiproton collisions at a center of mass energy of 1.96 TeV, hadronic top decays with the D0 detector

    SciTech Connect (OSTI)

    Hegeman, Jeroen Guido; /Twente U. Tech., Enschede

    2009-01-16

    Of the six quarks in the standard model the top quark is by far the heaviest: 35 times more massive than its partner the bottom quark and more than 130 times heavier than the average of the other five quarks. Its correspondingly small decay width means it tends to decay before forming a bound state. Of all quarks, therefore, the top is the least affected by quark confinement, behaving almost as a free quark. Its large mass also makes the top quark a key player in the realm of the postulated Higgs boson, whose coupling strengths to particles are proportional to their masses. Precision measurements of particle masses for e.g. the top quark and the W boson can hereby provide indirect constraints on the Higgs boson mass. Since in the standard model top quarks couple almost exclusively to bottom quarks (t {yields} Wb), top quark decays provide a window on the standard model through the direct measurement of the Cabibbo-Kobayashi-Maskawa quark mixing matrix element V{sub tb}. In the same way any lack of top quark decays into W bosons could imply the existence of decay channels beyond the standard model, for example charged Higgs bosons as expected in two-doublet Higgs models: t {yields} H{sup +}b. Within the standard model top quark decays can be classified by the (lepton or quark) W boson decay products. Depending on the decay of each of the W bosons, t{bar t} pair decays can involve either no leptons at all, or one or two isolated leptons from direct W {yields} e{bar {nu}}{sub e} and W {yields} {mu}{bar {nu}}{sub {mu}} decays. Cascade decays like b {yields} Wc {yields} e{bar {nu}}{sub e}c can lead to additional non-isolated leptons. The fully hadronic decay channel, in which both Ws decay into a quark-antiquark pair, has the largest branching fraction of all t{bar t} decay channels and is the only kinematically complete (i.e. neutrino-less) channel. It lacks, however, the clear isolated lepton signature and is therefore hard to distinguish from the multi-jet QCD background. It is important to measure the cross section (or branching fraction) in each channel independently to fully verify the standard model. Top quark pair production proceeds through the strong interaction, placing the scene for top quark physics at hadron colliders. This adds an additional challenge: the huge background from multi-jet QCD processes. At the Tevatron, for example, t{bar t} production is completely hidden in light q{bar q} pair production. The light (i.e. not bottom or top) quark pair production cross section is six orders of magnitude larger than that for t{bar t} production. Even including the full signature of hadronic t{bar t} decays, two b-jets and four additional jets, the QCD cross section for processes with similar signature is more than five times larger than for t{bar t} production. The presence of isolated leptons in the (semi)leptonic t{bar t} decay channels provides a clear characteristic to distinguish the t{bar t} signal from QCD background but introduces a multitude of W- and Z-related backgrounds.

  18. SECTION I

    National Nuclear Security Administration (NNSA)

    Section I, Page 53 (1) An unmanufactured construction material mined or produced in the United States; (2) A construction material manufactured in the United States, if- (i) The...

  19. Section B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    124 B-i PART I - THE SCHEDULE SECTION B - SUPPLIES OR SERVICES AND PRICESCOSTS TABLE OF CONTENTS B.1 TYPE OF CONTRACT - ITEMS BEING ACQUIRED ......

  20. Measurements of the total and differential Higgs boson production cross sections combining the H ? ?? and H ? ZZ* ? 4? decay channels at ?s = 8 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-08-27

    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb-1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of ?s = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H ? ?? and H ? ZZ* ? 4? event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. Themore »total production cross section is determined to be ?pp?H = 33.0 ± 5.3 (stat) ± 1.6 (syst) pb. The measurements are compared to state-of-the-art predictions.« less

  1. Section CC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID GFSI GFSI Due Contract Section GF0028 DOE-RL will approve and execute all real estate actions to acquire, utilize, and dispose of real property assets. As required...

  2. Section J

    Energy Savers [EERE]

    M-1 Section J Appendix M Key Design, Licensing and Site Management M&O Milestone Chart Activity Planned Date Develop and Submit CD-2 (25%-30%) 082009 Submission of Construction...

  3. SECTION I

    National Nuclear Security Administration (NNSA)

    ... 58 I-47 FAR 52.223-15 ENERGY EFFICIENCY IN ENERGY-CONSUMING PRODUCTS (DEC 2007) ..... 58 I-48 FAR 52.223-17 AFFIRMATIVE...

  4. Section J

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1ResearchUniversityPreparedAwardsAchievementSectionSectionL-1

  5. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the delta m**2 about equals 1-eV**2 region

    SciTech Connect (OSTI)

    Schmitz, David W.; /Columbia U.

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the {Delta}m{sup 2} {approx} 1 eV{sup 2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  6. Cross-Sections of Large-Angle Hadron Production in Proton- and Pion-Nucleus Interactions I: Beryllium Nuclei and Beam Momenta of +8.9 Gev/c and -8.0 Gev/c

    E-Print Network [OSTI]

    The HARP-CDP group; :; A. Bolshakova; I. Boyko; G. Chelkov; D. Dedovitch; A. Elagin; M. Gostkin; S. Grishin; A. Guskov; Z. Kroumchtein; Yu. Nefedov; K. Nikolaev; A. Zhemchugov; F. Dydak; J. Wotschack A. De Min; V. Ammosov; V. Gapienko; V. Koreshev; A. Semak; Yu. Sviridov; E. Usenko; V. Zaets

    2009-06-23

    We report on double-differential inclusive cross-sections of the production of secondary protons, deuterons, and charged pions and kaons, in the interactions with a 5% nuclear interaction length thick stationary beryllium target, of a +8.9 GeV/c proton and pion beam, and a -8.0 GeV/c pion beam. Results are given for secondary particles with production angles between 20 and 125 degrees.

  7. Measurement of the ratios of the Z/gamma* + >= n jet production cross sections to the total inclusive Z/gamma* cross section in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota

    2006-08-01

    We present a study of events with Z bosons and jets produced at the Fermilab Tevatron Collider in p{bar p} collisions at a center of mass energy of 1.96 TeV. The data sample consists of nearly 14,000 Z/{gamma}* {yields} e{sup +}e{sup -} candidates corresponding to the integrated luminosity of 340 pb{sup -1} collected using the D0 detector. Ratios of the Z/{gamma}* + {ge} n jet cross sections to the total inclusive Z/{gamma}* cross section have been measured for n = 1 to 4 jet events. Our measurements are found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization.

  8. SECTION I

    National Nuclear Security Administration (NNSA)

    52.223-12 Refrigeration Equipment and Air Conditioners May 1995 52.223-15 Energy Efficiency in Energy-Consuming Products Dec 2007 52.223-16 Acquisition of EPEAT -Registered...

  9. Measurement of the b-hadron production cross section using decays to D*[superscript +]?[superscript ?]X final states in pp collisions at ?s = 7 TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    The b-hadron production cross section is measured with the ATLAS detector in pp collisions at ?s = 7 TeV, using 3.3 pb[superscript ?1] of integrated luminosity, collected during the 2010 LHC run. The b-hadrons are selected ...

  10. Measurement of inclusive and differential fiducial cross sections for Higgs boson production in the H-to-4l decay channel in p-p collisions at 7~TeV and 8~TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-01-01

    Measurements of the inclusive and differential fiducial cross sections for Higgs boson production in p-p collisions at center-of-mass energies of $\\sqrt{s}=7$~TeV and $\\sqrt{s}=8$~TeV using H$\\rightarrow 4\\ell$ decays ($\\ell = e, \\mu$) are presented.

  11. The Safety Data Sheet, or SDS, is written or printed material used to convey the hazards of a hazardous chemical product. It contains 16 sections of important chemical information, including

    E-Print Network [OSTI]

    The Safety Data Sheet, or SDS, is written or printed material used to convey the hazards of a hazardous chemical product. It contains 16 sections of important chemical information, including: Chemical characteristics; Physical and health hazards, including relevant exposure limits; Precautions for safe handling

  12. Measurement of the inclusive 3-jet production differential cross section in proton–proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    E-Print Network [OSTI]

    Apyan, Aram

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton–proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb[superscript ?1] ...

  13. Measurement of the ZZ Production Cross Section and Limits on Anomalous Neutral Triple Gauge Couplings in Proton-Proton Collisions at ?s=7??TeV with the ATLAS Detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    A measurement of the ZZ production cross section in proton-proton collisions at ?s=7??TeV using data corresponding to an integrated luminosity of 1.02??fb-1 recorded by the ATLAS experiment at the LHC is presented. Twelve ...

  14. Measurement of the hadronic activity in events with a Z and two jets and extraction of the cross section for the electroweak production of a Z with two jets in pp collisions at ?s =7 TeV

    E-Print Network [OSTI]

    Apyan, Aram

    The first measurement of the electroweak production cross section of a Z boson with two jets (Zjj) in pp collisions at ?s = 7 TeV is presented, based on a data sample recorded by the CMS experiment at the LHC with an ...

  15. Measurement of the production cross section for W-bosons in association with jets in pp collisions at ?s = 7 TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    This Letter reports on a first measurement of the inclusive W+jets cross section in proton–proton collisions at a centre-of-mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and ...

  16. Measurement of the Higgs boson production cross section at 7, 8 and 13 TeV center-of-mass energies in the $H\\rightarrow\\gamma\\gamma$ channel with the ATLAS detector

    E-Print Network [OSTI]

    The ATLAS collaboration

    2015-01-01

    Measurements of the fiducial cross section performed in the $H\\rightarrow\\gamma\\gamma$ decay channel are presented for Higgs boson production in proton-proton collisions at center-of-mass energies of 7, 8 and 13 TeV at the ATLAS experiment. Values for the measured total production cross section for a Standard Model Higgs boson are also given. The signal is extracted using a fit to the diphoton invariant-mass spectrum assuming that the natural width of the resonance is much smaller than the experimental resolution. The signal yield is corrected for the effects of detector efficiency and resolution. The measured cross sections, statistically limited, are in agreement with Standard Model expectation.

  17. SECTION J

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION J APPENDIX A ADVANCE UNDERSTANDING ON HUMAN

  18. SECTION J

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION J APPENDIX A ADVANCE UNDERSTANDING ON HUMAND-1

  19. SECTION J

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION J APPENDIX A ADVANCE UNDERSTANDING ON HUMAND-1

  20. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  1. Section Number:

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant to the contract clause entitled, "Laws,

  2. SECTION J

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION J APPENDIX A ADVANCE UNDERSTANDING ON HUMAND-1 J-F-1

  3. SECTION J

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION J APPENDIX A ADVANCE UNDERSTANDING ON HUMAND-1J-1

  4. SECTION J

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION J APPENDIX A ADVANCE UNDERSTANDING ON HUMAND-1J-1K-1

  5. Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at $$\\sqrt{s}=7\\,\\text {TeV} $$ s = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei

    2014-11-12

    A measurement of differential cross sections for the production of a pair of isolated photons in proton–proton collisions at $\\sqrt{s}=7\\,\\text {TeV} $ is presented. The data sample corresponds to an integrated luminosity of 5.0 $\\,\\text {fb}^{-1}$ collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 $\\,\\text {GeV}$ respectively, in the pseudorapidity range $|\\eta |<2.5$ , $|\\eta |\

  6. Measurement of the differential cross-sections of inclusive, prompt and non-prompt $J/\\psi$ production in proton-proton collisions at $\\sqrt{s}$ = 7 TeV

    E-Print Network [OSTI]

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; ?kesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Aleppo, Mario; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; ?sman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Giovanni; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blocki, Jacek; Blondel, Alain

    2011-01-01

    The inclusive $J/\\psi$ production cross-section and fraction of $J/\\psi$ mesons produced in B-hadron decays are measured in proton-proton collisions at $\\sqrt{s}$ = 7 TeV with the ATLAS detector at the LHC, as a function of the transverse momentum and rapidity of the $J/\\psi$, using 2.3 pb.1 of integrated luminosity. The cross-section is measured from a minimum pT of 1 GeV to a maximum of 70 GeV and for rapidities within |y| Evaporation Model, and FONLL predictions.

  7. Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at $$\\sqrt{s}=7\\,\\text {TeV} $$ s = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei [Yerevan Physics Institute (Armenia); et al.,

    2014-11-01

    A measurement of differential cross sections for the production of a pair of isolated photons in proton–proton collisions at $\\sqrt{s}=7\\,\\text {TeV} $ is presented. The data sample corresponds to an integrated luminosity of 5.0 $\\,\\text {fb}^{-1}$ collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 $\\,\\text {GeV}$ respectively, in the pseudorapidity range $|\\eta |<2.5$ , $|\\eta |\

  8. Measurement of the W+b-jet and W+c-jet differential production cross sections in pp-bar collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor M.

    2015-02-10

    We present a measurement of the cross sections for the associated production of a W boson with at least one heavy quark jet, b or c, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb?¹ recorded with the D0 detector at the Fermilab Tevatron pp-bar Collider at ?s=1.96 TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.

  9. Measurement of the $W+b$-jet and $W+c$-jet differential production cross sections in $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV

    E-Print Network [OSTI]

    D0 Collaboration

    2015-02-23

    We present a measurement of the cross sections for the associated production of a $W$ boson with at least one heavy quark jet, $b$ or $c$, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ recorded with the D0 detector at the Fermilab Tevatron \\ppbar Collider at $\\sqrt{s}=1.96$ TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.

  10. Measurement of the W+b-jet and W+c-jet differential production cross sections in pp-bar collisions at ?s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor M. [Joint Institute for Nuclear Research, Moscow (Russia) et.al.

    2015-04-01

    We present a measurement of the cross sections for the associated production of a W boson with at least one heavy quark jet, b or c, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb?¹ recorded with the D0 detector at the Fermilab Tevatron pp-bar Collider at ?s=1.96 TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.

  11. Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at sqrt(s) = 7 and 8 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-12-28

    Differential and integrated fiducial cross sections for the production of four leptons via the H to 4l decays (l = e, mu) are measured in pp collisions at sqrt(s) = 7 and 8 TeV. Measurements are performed with data corresponding to integrated luminosities of 5.1 inverse-femtobarns at 7 TeV, and 19.7 inverse-femtobarns at 8 TeV, collected with the CMS experiment at the LHC. Differential cross sections are determined as functions of the transverse momentum and rapidity of the four-lepton system, accompanying jet multiplicity, transverse momentum of the leading jet, and difference in rapidity between the Higgs boson candidate and the leading jet. A measurement of the Z to 4l cross section, and its ratio to the H to 4l cross section is also performed. All cross sections are measured within a fiducial phase space defined by the requirements on lepton kinematics and event topology. The integrated H to 4l fiducial cross section is measured to be 0.56 +0.67-0.44 (stat) +0.21-0.06 (syst) fb at 7 TeV, and 1.11 +0.41-0.35 (stat) +0.14-0.10 (syst) fb at 8 TeV. The measurements are found to be compatible with theoretical calculations based on the standard model.

  12. Measurement of the Differential Cross Section d?/d(cos ?t) for Top-Quark Pair Production in p-pbar Collisions at sqrt{s} = 1.96 TeV

    E-Print Network [OSTI]

    CDF Collaboration; T. Aaltonen; S. Amerio; D. Amidei; A. Anastassov; A. Annovi; J. Antos; G. Apollinari; J. A. Appel; T. Arisawa; A. Artikov; J. Asaadi; W. Ashmanskas; B. Auerbach; A. Aurisano; F. Azfar; W. Badgett; T. Bae; A. Barbaro-Galtieri; V. E. Barnes; B. A. Barnett; P. Barria; P. Bartos; M. Bauce; F. Bedeschi; S. Behari; G. Bellettini; J. Bellinger; D. Benjamin; A. Beretvas; A. Bhatti; K. R. Bland; B. Blumenfeld; A. Bocci; A. Bodek; D. Bortoletto; J. Boudreau; A. Boveia; L. Brigliadori; C. Bromberg; E. Brucken; J. Budagov; H. S. Budd; K. Burkett; G. Busetto; P. Bussey; P. Butti; A. Buzatu; A. Calamba; S. Camarda; M. Campanelli; F. Canelli; B. Carls; D. Carlsmith; R. Carosi; S. Carrillo; B. Casal; M. Casarsa; A. Castro; P. Catastini; D. Cauz; V. Cavaliere; M. Cavalli-Sforza; A. Cerri; L. Cerrito; Y. C. Chen; M. Chertok; G. Chiarelli; G. Chlachidze; K. Cho; D. Chokheli; A. Clark; C. Clarke; M. E. Convery; J. Conway; M. Corbo; M. Cordelli; C. A. Cox; D. J. Cox; M. Cremonesi; D. Cruz; J. Cuevas; R. Culbertson; N. d'Ascenzo; M. Datta; P. de Barbaro; L. Demortier; M. Deninno; M. D'Errico; F. Devoto; A. Di Canto; B. Di Ruzza; J. R. Dittmann; S. Donati; M. D'Onofrio; M. Dorigo; A. Driutti; K. Ebina; R. Edgar; A. Elagin; R. Erbacher; S. Errede; B. Esham; S. Farrington; J. P. Fernández Ramos; R. Field; G. Flanagan; R. Forrest; M. Franklin; J. C. Freeman; H. Frisch; Y. Funakoshi; C. Galloni; A. F. Garfinkel; P. Garosi; H. Gerberich; E. Gerchtein; S. Giagu; V. Giakoumopoulou; K. Gibson; C. M. Ginsburg; N. Giokaris; P. Giromini; G. Giurgiu; V. Glagolev; D. Glenzinski; M. Gold; D. Goldin; A. Golossanov; G. Gomez; G. Gomez-Ceballos; M. Goncharov; O. González López; I. Gorelov; A. T. Goshaw; K. Goulianos; E. Gramellini; S. Grinstein; C. Grosso-Pilcher; R. C. Group; J. Guimaraes da Costa; S. R. Hahn; J. Y. Han; F. Happacher; K. Hara; M. Hare; R. F. Harr; T. Harrington-Taber; K. Hatakeyama; C. Hays; J. Heinrich; M. Herndon; A. Hocker; Z. Hong; W. Hopkins; S. Hou; R. E. Hughes; U. Husemann; M. Hussein; J. Huston; G. Introzzi; M. Iori; A. Ivanov; E. James; D. Jang; B. Jayatilaka; E. J. Jeon; S. Jindariani; M. Jones; K. K. Joo; S. Y. Jun; T. R. Junk; M. Kambeitz; T. Kamon; P. E. Karchin; A. Kasmi; Y. Kato; W. Ketchum; J. Keung; B. Kilminster; D. H. Kim; H. S. Kim; J. E. Kim; M. J. Kim; S. H. Kim; S. B. Kim; Y. J. Kim; Y. K. Kim; N. Kimura; M. Kirby; K. Knoepfel; K. Kondo; D. J. Kong; J. Konigsberg; A. V. Kotwal; M. Kreps; J. Kroll; M. Kruse; T. Kuhr; M. Kurata; A. T. Laasanen; S. Lammel; M. Lancaster; K. Lannon; G. Latino; H. S. Lee; J. S. Lee; S. Leo; S. Leone; J. D. Lewis; A. Limosani; E. Lipeles; A. Lister; H. Liu; Q. Liu; T. Liu; S. Lockwitz; A. Loginov; D. Lucchesi; A. Lucà; J. Lueck; P. Lujan; P. Lukens; G. Lungu; J. Lys; R. Lysak; R. Madrak; P. Maestro; S. Malik; G. Manca; A. Manousakis-Katsikakis; L. Marchese; F. Margaroli; P. Marino; M. Martínez; K. Matera; M. E. Mattson; A. Mazzacane; P. Mazzanti; R. McNulty; A. Mehta; P. Mehtala; C. Mesropian; T. Miao; D. Mietlicki; A. Mitra; H. Miyake; S. Moed; N. Moggi; C. S. Moon; R. Moore; M. J. Morello; A. Mukherjee; Th. Muller; P. Murat; M. Mussini; J. Nachtman; Y. Nagai; J. Naganoma; I. Nakano; A. Napier; J. Nett; C. Neu; T. Nigmanov; L. Nodulman; S. Y. Noh; O. Norniella; L. Oakes; S. H. Oh; Y. D. Oh; I. Oksuzian; T. Okusawa; R. Orava; L. Ortolan; C. Pagliarone; E. Palencia; P. Palni; V. Papadimitriou; W. Parker; G. Pauletta; M. Paulini; C. Paus; T. J. Phillips; G. Piacentino; E. Pianori; J. Pilot; K. Pitts; C. Plager; L. Pondrom; S. Poprocki; K. Potamianos; A. Pranko; F. Prokoshin; F. Ptohos; G. Punzi; N. Ranjan; I. Redondo Fernández; P. Renton; M. Rescigno; F. Rimondi; L. Ristori; A. Robson; T. Rodriguez; S. Rolli; M. Ronzani; R. Roser; J. L. Rosner; F. Ruffini; A. Ruiz; J. Russ; V. Rusu; W. K. Sakumoto; Y. Sakurai; L. Santi; K. Sato; V. Saveliev; A. Savoy-Navarro; P. Schlabach; E. E. Schmidt; T. Schwarz; L. Scodellaro; F. Scuri; S. Seidel; Y. Seiya; A. Semenov; F. Sforza; S. Z. Shalhout; T. Shears; P. F. Shepard; M. Shimojima; M. Shochet; I. Shreyber-Tecker; A. Simonenko; K. Sliwa; J. R. Smith; F. D. Snider; H. Song; V. Sorin; R. St. Denis; M. Stancari; D. Stentz; J. Strologas; Y. Sudo; A. Sukhanov; I. Suslov; K. Takemasa; Y. Takeuchi; J. Tang; M. Tecchio; P. K. Teng; J. Thom; E. Thomson; V. Thukral; D. Toback; S. Tokar; K. Tollefson; T. Tomura; D. Tonelli; S. Torre; D. Torretta; P. Totaro; M. Trovato; F. Ukegawa; S. Uozumi; G. Velev; C. Vellidis; C. Vernieri; M. Vidal; R. Vilar; J. Vizán; M. Vogel; G. Volpi; F. Vázquez; P. Wagner; R. Wallny; S. M. Wang; D. Waters; W. C. Wester III; D. Whiteson; A. B. Wicklund; S. Wilbur; H. H. Williams; J. S. Wilson; P. Wilson; B. L. Winer; P. Wittich; S. Wolbers; H. Wolfe; T. Wright; X. Wu; Z. Wu; K. Yamamoto; D. Yamato; T. Yang; U. K. Yang; Y. C. Yang; W. -M. Yao; G. P. Yeh; K. Yi; J. Yoh; K. Yorita; T. Yoshida; G. B. Yu

    2013-11-05

    We report a measurement of the differential cross section, d{\\sigma}/d(cos {\\theta}t), for top-quark-pair production as a function of the top-quark production angle in proton-antiproton collisions at sqrt{s} = 1.96 TeV. This measurement is performed using data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.4/fb. We employ the Legendre polynomials to characterize the shape of the differential cross section at the parton level. The observed Legendre coefficients are in good agreement with the prediction of the next-to-leading-order standard-model calculation, with the exception of an excess linear-term coefficient, a1 = 0.40 +- 0.12, compared to the standard-model prediction of a1 = 0.15^{+0.07}_{-0.03}.

  13. Measurement of the tt? production cross section in pp? collisions at ?s=1.96 TeV using events with large Missing ET and jets

    SciTech Connect (OSTI)

    Aaltonen, T; Alvarez Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T

    2011-08-09

    In this paper we report a measurement of the t{anti t} production cross section in pp? collisions at ?s = 1.96 TeV using data corresponding to an integrated luminosity of 2.2 fb-1 collected with the CDF II detector at the Tevatron accelerator. We select events with significant missing transverse energy and high jet multiplicity. This measurement vetoes the presence of explicitly identified electrons and muons, thus enhancing the tau contribution of ttMs; decays. Signal events are discriminated from the background using a neural network and heavy flavor jets are identified by a secondary-vertex tagging algorithm. We measure a tt? production cross section of 7.99 ± 0.55(stat) ± 0.76(syst) ± 0.46(lumi) pb, assuming a top mass mtop = 172.5 GeV/c2, in agreement with previous measurements and standard model predictions.

  14. Top physics: measurement of the tt-bar production cross section in p anti-p collisions at s**(1/2) = 1.96 tev using lepton + jets events with secondary vertex b-tagging

    SciTech Connect (OSTI)

    Acosta, D.; The CDF Collaboration

    2005-04-07

    We present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96TeV. In these events, heavy flavor quarks from top quark decay are identified with a secondary vertex tagging algorithm. From 162 pb{sup -1} of data collected by the Collider Detector at Fermilab, a total of 48 candidate events are selected, where 13.5 {+-} 1.8 events are expected from background contributions. We measure a t{bar t} production cross section of 5.6{sub -1.1}{sup _1.2}(stat.){sub -0.6}{sup +0.9}(syst.)pb.

  15. Full page fax print

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServicesAmesFourFromFuel CellFull CommentsI,

  16. Full page fax print

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServicesAmesFourFromFuel CellFull CommentsI,5 (U)

  17. Measurement of the Production Cross Sections of a $Z$ Boson in Association with Jets in $pp$ collisions at $\\sqrt{s} = 13$ TeV with the ATLAS Detector

    E-Print Network [OSTI]

    The ATLAS collaboration

    2015-01-01

    Preliminary measurements of the cross section for the production of a \\Zboson boson in association with jets in $pp$ collisions at $\\sqrt{s} = 13$~TeV are presented, using data corresponding to an integrated luminosity of $85$~pb$^{-1}$ collected by the ATLAS experiment at the Large Hadron Collider. The cross sections are measured for events containing a $Z$ boson decaying to electrons or muons and produced in association with up to four jets in the kinematical range of $p_T > 30$~GeV and $|y| <2.5$. The observed cross sections are compared to predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements supplemented by parton showers.

  18. Measurement of the production and differential cross sections of $W^{+}W^{-}$ bosons in association with jets in $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV

    E-Print Network [OSTI]

    Aaltonen, T; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Marchese, L; Deninno, M; Devoto, F; D'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Ramos, J P Fernández; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; López, O González; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grosso-Pilcher, C; da Costa, J Guimaraes; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucà, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Fernández, I Redondo; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; Denis, R St; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W -M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2015-01-01

    We present a measurement of the $W$-boson-pair production cross section in $p\\bar{p}$ collisions at 1.96 TeV center-of-mass energy and the first measurement of the differential cross section as a function of jet multiplicity and leading-jet energy. The $W^{+}W^{-}$ cross section is measured in the final state comprising two charged leptons and neutrinos, where either charged lepton can be an electron or a muon. Using data collected by the CDF experiment corresponding to $9.7~\\rm{fb}^{-1}$ of integrated luminosity, a total of $3027$ collision events consistent with $W^{+}W^{-}$ production are observed with an estimated background contribution of $1790\\pm190$ events. The measured total cross section is $\\sigma(p\\bar{p} \\rightarrow W^{+}W^{-}) = 14.0 \\pm 0.6~(\\rm{stat})^{+1.2}_{-1.0}~(\\rm{syst})\\pm0.8~(\\rm{lumi})$ pb, consistent with the standard model prediction.

  19. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 2, Sections 1-6

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains the analysis of programmatic alternatives, project alternatives, affected environment of alternative sites, environmental consequences, and environmental regulations and permit requirements.

  20. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 3, Sections 7-12, Appendices A-C

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains references; a list of preparers and recipients; acronyms, abbreviations, and units of measure; a glossary; an index and three appendices.

  1. Measurement of the B+ production cross-section in p anti-p collisions at s**(1/2) = 1960-GeV

    SciTech Connect (OSTI)

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys.

    2006-12-01

    The authors present a new measurement of the B{sup +} meson differential cross section d{sigma}/dP{sub T} at {radical}s = 1960 GeV. The data correspond to an integrated luminosity of 739 pb{sup -1} collected with the upgraded CDF detector (CDF II) at the Fermilab Tevatron collider. B{sup +} candidates are reconstructed through the decay B{sup +} {yields} J/{psi} K{sup +}, with J/{psi} {yields} {mu}{sup +}{mu}{sup -}. The integrated cross section for producing B{sup +} mesons with p{sub T} {ge} 6 GeV/c and |y| {le} 1 is measured to be 2.78 {+-} 0.24 {mu}b.

  2. Measurement of the D* Meson Production Cross Section and F_2^{ccbar}, at High Q^2, in ep Scattering at HERA

    E-Print Network [OSTI]

    The H1 Collaboration

    2009-11-20

    The inclusive production of D*(2010) mesons in deep-inelastic ep scattering is measured in the kinematic region of photon virtuality 100 production are measured in the visible range defined by |eta(D*)| 1.5 GeV. The data were collected by the H1 experiment during the period from 2004 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. The charm contribution, F_2^{ccbar}, to the proton structure function F_2 is determined. The measurements are compared with QCD predictions.

  3. Measurement of the Total Cross Section for Hadronic Production by e+e- Annihilation at Energies between 2.6-5 Gev

    E-Print Network [OSTI]

    J. Z. Bai

    1999-08-11

    Using the upgraded Beijing Spectrometer (BESII), we have measured the total cross section for $e^+e^-$ annihilation into hadronic final states at center-of-mass energies of 2.6, 3.2, 3.4, 3.55, 4.6 and 5.0 GeV. Values of $R$, $\\sigma(e^+e^-\\to {hadrons})/\\sigma(e^+e^-\\to\\mu^+\\mu^-)$, are determined.

  4. Measurement of W? and Z? production cross sections in pp collisions at ?s = 7 TeV and limits on anomalous triple gauge couplings with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    This Letter presents measurements of l[superscript ±]?? and l[superscript +l[superscript ?]? (l=e,?) production in 1.02 fb[superscript ?1] of pp collision data recorded at ?s = 7 TeV with the ATLAS detector at the LHC in ...

  5. Measurement of the Single Top Quark Production Cross Section and |V[subscript tb]| in Events with One Charged Lepton, Large Missing Transverse Energy, and Jets at CDF

    E-Print Network [OSTI]

    Aaltonen, T.

    We report a measurement of single top quark production in proton-antiproton collisions at a center-of-mass energy of ?s = 1.96??TeV using a data set corresponding to 7.5??fb[superscript -1] of integrated luminosity collected ...

  6. Measurement of the production cross sections for a Z boson and one or more b jets in pp collisions at ?s = 7 TeV

    E-Print Network [OSTI]

    Apyan, Aram

    The production of a Z boson, decaying into two leptons and produced in association with one or more b jets, is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV. The data were ...

  7. Measurement of the production cross section of jets in association with a Z boson in pp collisions at ?s = 7 TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    Measurements of the production of jets of particles in association with a Z boson in pp collisions at s? = 7 TeV are presented, using data corresponding to an integrated luminosity of 4.6 fb[superscript ?1] collected by ...

  8. Measurement of the t-tbar production cross section in p-pbar collisions at s**(1/2) = 1.96 TeV using lepton+jets events in the CDF detector at Fermilab

    SciTech Connect (OSTI)

    Palencia, Enrique; /Cantabria Inst. of Phys. /Cantabria U., Santander

    2006-12-01

    The top quark is the most massive fundamental particle observed so far, and the study of its properties is interesting for several reasons ranging from its possible special role in electroweak symmetry breaking to its sensitivity to physics beyond the standard model (SM). In particular, the measurement of the top quark pair production cross section {sigma}{sub t{bar t}} is of interest as a test of QCD predictions. Recent QCD calculations done with perturbation theory to next-to-leading order predict {sigma}{sub t{bar t}} with an uncertainty of less than 15%, which motivate measurements of comparable precision. In this thesis, the author reports a measurement of the cross section for pair production of top quarks in the lepton+jets channel in 318 pb{sup -1} of p{bar p} collision data at {radical}s = 1.96 TeV. The data were recorded between March 2002 and September 2004, during Run II of the Tevatron, by the CDF II detector, a general purpose detector which combines charged particle trackers, sampling calorimeters, and muon detectors. processes in which a W boson is produced in association with several jets with large transverse momentum can be misidentified at t{bar t}, since they have the same signature. In order to separate the t{bar t} events from this background, they develop a method to tag b-jets based on tracking information from the silicon detector. The main event selection requires at least one tight (more restrictive) b tag in the event. As a cross check, they also measure the cross section using events with a loose (less restrictive) b tag and events which have at least two tight or at least two loose b tags. Background contributions from heavy flavor production processes, such as Wb{bar b}, Wc{bar c} or Wc, misidentified W bosons, electroweak processes, single top production, and mistagged jets are estimated using a combination of Monte Carlo calculations and independent measurements in control data samples. An excess over background in the number of events that contain a lepton, missing energy and three or more jets with at least one b-tag is assumed to be a signal of t{bar t} production and is used to measure the production cross section {sigma}{sub t{bar t}}.

  9. Production of excited atomic hydrogen and deuterium from H2, HD and D2 photodissociation This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Gay, Timothy J.

    Production of excited atomic hydrogen and deuterium from H2, HD and D2 photodissociation.1088/0953-4075/44/4/045201 Production of excited atomic hydrogen and deuterium from H2, HD and D2 photodissociation J R Machacek1,2, V M 28 January 2011 Online at stacks.iop.org/JPhysB/44/045201 Abstract We have measured the production

  10. B physics: measurement of the j/psi meson and b-hadron production cross sections in p anti-p collisions at s**(1/2) = 1960 gev

    SciTech Connect (OSTI)

    Acosta, D.; The CDF Collaboration

    2004-12-23

    The authors present a new measurement of the inclusive and differential production cross sections of J/{psi} mesons and b-hadrons in proton-antiproton collisions at {radical}s = 1960 GeV. The data correspond to an integrated luminosity of 39.7 pb{sup -1} collected by the CDF Run II detector. They find the integrated cross section for inclusive J/{psi} production for all transverse momenta from 0 to 20 GeV/c in the rapidity range |y| < 0.6 to be 4.08 {+-} 0.02(stat){sub -0.33}{sup +0.36}(syst) {mu}b. They separate the fraction of J/{psi} events from the decay of the long-lived b-hadrons using the lifetime distribution in all events with p{sub T}(J/{psi}) > 1.25 GeV/c. They find the total cross section for b-hadrons, including both hadrons and anti-hadrons, decaying to J/{psi} with transverse momenta greater than 1.25 GeV/c in the rapidity range |y(J/{psi})| < 0.6, is 0.330 {+-} 0.005(stat){sub -0.033}{sup +0.036}(syst) {mu}b. Using a Monte Carlo simulation of the decay kinematics of b-hadrons to all final states containing a J/{psi}, they extract the first measurement of the total single b-hadron cross section down to zero transverse momentum at {radical}s = 1960 GeV. They find the total single b-hadron cross section integrated over all transverse momenta for b-hadrons in the rapidity range |y| < 0.6 to be 17.6 {+-} 0.4(stat){sub -2.3}{sup +2.5}(syst) {mu}b.

  11. Full hoop casing for midframe of industrial gas turbine engine

    DOE Patents [OSTI]

    Myers, Gerald A.; Charron, Richard C.

    2015-12-01

    A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).

  12. Measurement of the Top-antitop Production Cross Section in pp Collisions at sqrt(s)=7 TeV using the Kinematic Properties of Events with Leptons and Jets

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2011-09-01

    A measurement of the top-antitop production cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV has been performed at the LHC with the CMS detector. The analysis uses a data sample corresponding to an integrated luminosity of 36 inverse picobarns and is based on the reconstruction of the final state with one isolated, high transverse-momentum electron or muon and three or more hadronic jets. The kinematic properties of the events are used to separate the top-antitop signal from W+jets and QCD multijet background events. The measured cross section is 173 + 39 - 32 (stat. + syst.) pb, consistent with standard model expectations.

  13. A Measurement of the production cross section of top-antitop pairs in proton-antiproton collisions at a center of mass of 1.96 TeV using secondary vertex b-tagging.

    SciTech Connect (OSTI)

    Bachacou, Henri

    2004-12-01

    A measurement of the t{bar t} pair production cross section is presented using 162 pb{sup -1} of data collected by the CDF experiment during Run II at the Tevatron. t{bar t} events in the lepton+jets channel are isolated by identifying electrons and muons, reconstructing jets and transverse missing energy, and identifying b jets with a secondary vertex tagging algorithm. The efficiency of the algorithm is measured in a control sample using a novel technique that is less dependent on the simulation. For a top quark mass of 175 GeV/c{sup 2}, a cross section of {sigma}{sub t{bar t}} = 5.6{sub -1.1}{sup +1.2}(stat.){sub -0.6}{sup +0.9}(syst.)pb is measured.

  14. Guidelines to assist rural electric cooperatives to fulfill the requirements of Sections 201 and 210 of PURPA for cogeneration and small power production

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    These guidelines were designed to assist National Rural Electric Cooperative Association staff and consultants involved in the implementation of Sections 201 and 210 of the Public Utilities Regulatory Policies Act (PURPA). The guidelines were structured to meet anticipated use as: a self-contained legal, technical and economic reference manual helpful in dealing with small power producers and cogenerators; a roadmap through some of the less obvious obstacles encountered by utilities interacting with small power producers and cogenerators; a starting point for those utilities who have not yet formulated specific policies and procedures, nor developed rates for purchasing power from small power producers and cogenerators; a discussion vehicle to highlight key issues and increase understanding in workshop presentations to rural electric cooperatives; and an evolutionary tool which can be updated to reflect changes in the law as they occur. The chapters in these Guidelines contain both summary information, such as compliance checklists, and detailed information, such as cost rate calculations, on regulatory requirements, operational considerations, and rate considerations. The appendices contain more specific material, e.g. rural electric cooperative sample policy statements. (LCL)

  15. Measurement of the cross sections for the production of the isotopes {sup 74}As, {sup 68}Ge, {sup 65}Zn, and {sup 60}Co from natural and enriched germanium irradiated with 100-MeV protons

    SciTech Connect (OSTI)

    Barabanov, I. R.; Bezrukov, L. B.; Gurentsov, V. I.; Zhuykov, B. L.; Kianovsky, S. V.; Kornoukhov, V. N.; Kohanuk, V. M.; Yanovich, E. A. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2010-07-15

    The cross sections for the production of the radioactive isotopes {sup 74}As, {sup 68}Ge, {sup 65}Zn, and {sup 60}Co in metallic germanium irradiated with 100-MeV protons were measured, the experiments being performed both with germanium of natural isotopic composition and germanium enriched in the isotope {sup 76}Ge. The targets were irradiated with a proton beam at the facility for the production of radionuclides at the accelerator of the Institute for Nuclear Research (INR, Moscow). The data obtained will further be used to calculate the background of radioactive isotopes formed by nuclear cascades of cosmic-ray muons in new-generation experiments devoted to searches for the neutrinoless double-beta decay of {sup 76}Ge at underground laboratories.

  16. Measurement of the t-channel single-top-quark production cross section and of the |Vtb| CKM matrix element in pp collisions at sqrt(s) = 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, V.; et al.,

    2014-06-01

    Measurements are presented of the t-channel single-top-quark production cross section in proton-proton collisions at ?s = 8 TeV. The results are based on a data sample corresponding to an integrated luminosity of 19.7 fb?¹ recorded with the CMS detector at the LHC. The cross section is measured inclusively, as well as separately for top (t) and antitop $ \\left(\\overline{\\mathrm{t}}\\right) $ , in final states with a muon or an electron. The measured inclusive t-channel cross section is ?t-ch. = 83.6 ± 2.3 (stat.) ± 7.4 (syst.) pb. The single t and $ \\overline{\\mathrm{t}} $ cross sections are measured to be ?t-ch.(t) = 53.8 ± 1.5 (stat.) ± 4.4 (syst.) pb and ?$_{t-ch.}$ $ \\left(\\overline{t}\\right) $ = 27.6 ± 1.3 (stat.) ± 3.7 (syst.) pb, respectively. The measured ratio of cross sections is Rt-ch. = ?t-ch.(t)/?t-ch. $ \\left(\\overline{\\mathrm{t}}\\right) $ = 1.95 ± 0.10 (stat.) ± 0.19 (syst.), in agreement with the standard model prediction. The modulus of the Cabibbo-Kobayashi-Maskawa matrix element Vtb is extracted and, in combination with a previous CMS result at ?s = 7 TeV, a value |Vtb| = 0.998 ± 0.038 (exp.) ± 0.016 (theo.) is obtained.

  17. t anti-t production cross section measurement using soft electron tagging in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Chou, John Paul; /Harvard U.

    2008-09-01

    We measure the production cross section of t{bar t} events in p{bar p} collisions at {radical}s = 1.96 TeV. The data was collected by the CDF experiment in Run 2 of the Tevatron accelerator at the Fermi National Accelerator Laboratory between 2002 and 2007. 1.7 fb{sup -1} of data was recorded during this time period. We reconstruct t{bar t} events in the lepton+jets channel, whereby one W boson - resulting from the decay of the top quark pairs - decays leptonically and the other hadronically. The dominant background to this process is the production of W bosons in association with multiple jets. To distinguish t{bar t} from background, we identify soft electrons from the semileptonic decay of heavy flavor jets produced in t{bar t} events. We measure a cross section of {sigma}{sub p{bar p}} = 7.8 {+-} 2.4(stat) {+-} 1.6(syst) {+-} 0.5(lumi).

  18. Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at $$\\sqrt{s}=7\\,\\text {TeV} $$ s = 7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, Serguei

    2014-11-12

    A measurement of differential cross sections for the production of a pair of isolated photons in proton–proton collisions at $\\sqrt{s}=7\\,\\text {TeV} $ is presented. The data sample corresponds to an integrated luminosity of 5.0 $\\,\\text {fb}^{-1}$ collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 $\\,\\text {GeV}$ respectively, in the pseudorapidity range $|\\eta | 0.45$ , is $17.2 \\pm 0.2\\,\\text {(stat)} \\pm 1.9\\,\\text {(syst)}more »\\pm 0.4\\,\\text {(lumi)} $ $\\text {\\,pb}$ . Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins–Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.« less

  19. Measurements of fiducial cross-sections for $t\\bar{t}$ production with one or two additional $b$-jets in $pp$ collisions at $\\sqrt{s}$=8 TeV using the ATLAS detector

    E-Print Network [OSTI]

    ,; ATLAS Collaboration

    2015-01-01

    Fiducial cross-sections for $t\\bar{t}$ production with one or two additional $b$-jets are reported, using an integrated luminosity of 20.3 fb$^{-1}$ of proton--proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for $t\\bar{t}$ events with at least one additional $b$-jet is measured to be 950 $\\pm$ 70 (stat.) $^{+240}_{-190}$ (syst.) fb in the lepton-plus-jets channel and 50 $\\pm$ 10 (stat.) $^{+15}_{-10}$ (syst.) fb in the $e \\mu$ channel. The cross-section times branching ratio for events with at least two additional $b$-jets is measured to be 19.3 $\\pm$ 3.5 (stat.) $\\pm$ 5.7 (syst.) fb in the dilepton channel ($e \\mu$,\\,$\\mu\\mu$, and \\,$ee$) using a method based on tight selection criteria, and 13.5 $\\pm$ 3.3 (stat.) $\\pm$ 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 $\\pm$ 0.33 (stat.) $\\pm$...

  20. Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at $$\\sqrt{s}=7\\,\\text {TeV} $$ s = 7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, Serguei [Yerevan Physics Institute (Armenia); et al.,

    2014-11-01

    A measurement of differential cross sections for the production of a pair of isolated photons in proton–proton collisions at $\\sqrt{s}=7\\,\\text {TeV} $ is presented. The data sample corresponds to an integrated luminosity of 5.0 $\\,\\text {fb}^{-1}$ collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 $\\,\\text {GeV}$ respectively, in the pseudorapidity range $|\\eta | 0.45$ , is $17.2 \\pm 0.2\\,\\text {(stat)} \\pm 1.9\\,\\text {(syst)} \\pm 0.4\\,\\text {(lumi)} $ $\\text {\\,pb}$ . Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins–Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.

  1. Full Text HTML Hi-Res PDF [765 KB

    E-Print Network [OSTI]

    RajanBabu, T. V. "Babu"

    Abstract Full Text HTML Hi-Res PDF [765 KB] PDF w/ Links [366 KB] Supporting Info Figures Section. View: Full Text HTML | Hi-Res PDF | PDF w/ Links Abstract Asymmetric Hydrovinylation of Vinylindoles

  2. Measurement of the tt¯ production cross-section using e? events with b-tagged jets in pp collisions at ?s = 7 and 8 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2014-10-29

    The inclusive top quark pair (tt¯) production cross-section ?tt¯ has been measured in proton–proton collisions at ?s = 7 TeV ?s = 8 TeV with the ATLAS experiment at the LHC, using tt¯ events with an opposite-charge e? pair in the final state. Thus, the measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb–1 and the 2012 8 TeV dataset of 20.3 fb–1. The numbers of events with exactly one and exactly two b-tagged jets were counted and used to simultaneously determine ?tt¯ and the efficiency to reconstruct and b-tag a jetmore »from a top quark decay, thereby minimizing the associated systematic uncertainties.« less

  3. Measurement of the tt¯ production cross-section using e? events with b-tagged jets in pp collisions at ?s = 7 and 8 TeV with the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.

    2014-10-29

    The inclusive top quark pair (tt¯) production cross-section ?tt¯ has been measured in proton–proton collisions at ?s = 7 TeV ?s = 8 TeV with the ATLAS experiment at the LHC, using tt¯ events with an opposite-charge e? pair in the final state. Thus, the measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb–1 and the 2012 8 TeV dataset of 20.3 fb–1. The numbers of events with exactly one and exactly two b-tagged jets were counted and used to simultaneously determine ?tt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimizing the associated systematic uncertainties.

  4. Effect of pH treatment on K-shell x-ray intensity ratios and K-shell x-ray-production cross sections in ZnCo alloys

    SciTech Connect (OSTI)

    Kup Aylikci, N.; Aylikci, V.; Tirasoglu, E.; Cengiz, E.; Kahoul, A.; Karahan, I. H.

    2011-10-15

    In this study, empirical and semiempirical K-shell fluorescence yields ({omega}{sub K}) and K{beta}/K{alpha} intensity ratios from the available experimental data for elements with 23{<=}Z{<=}30 were calculated to compare them with elements in different alloys. The experimental data are fitted using the quantity [{omega}{sub K}/(1-{omega}{sub K})]{sup 1/4} vs Z to deduce the empirical K-shell fluorescence yields and K{beta}/K{alpha} intensity ratios. The empirical and semiempirical K-shell fluorescence yield values were used to calculate the K x-ray-production cross-section values for pure Co and Zn elements. Also, {sigma}{sub K{alpha}}, {sigma}{sub K{beta}} production cross sections and K{beta}/K{alpha} intensity ratios of Co and Zn have been measured in pure metals and in different alloy compositions which have different pH values. The samples were excited by 59.5-keV {gamma} rays from a {sup 241}Am annular radioactive source. K x rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The effect of pH values on alloy compositions and the effect of alloying on the fluorescence parameters of Co and Zn were investigated. The x-ray fluorescence parameters of Co and Zn in the alloying system indicate significant differences with respect to the pure metals. These differences are attributed to the reorganization of valence shell electrons and/or charge transfer phenomena.

  5. Measurement of the $W^+W^-$ Production Cross Section and Search for Anomalous $WW\\gamma$ and $WWZ$ Couplings in $p \\bar p$ Collisions at $\\sqrt{s} = 1.96$ TeV

    SciTech Connect (OSTI)

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2009-12-01

    This Letter describes the current most precise measurement of the W boson pair production cross section and most sensitive test of anomalous WW{gamma} and WWZ couplings in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. The WW candidates are reconstructed from decays containing two charged leptons and two neutrinos, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector from 3.6 fb{sup -1} of integrated luminosity, a total of 654 candidate events are observed with an expected background contribution of 320 {+-} 47 events. The measured total cross section is {sigma}(p{bar p} {yields} W{sup +}W{sup -} + X) = 12.1 {+-} 0.9 (stat){sub -1.4}{sup +1.6} (syst) pb, which is in good agreement with the standard model prediction. The same data sample is used to place constraints on anomalous WW{gamma} and WWZ couplings.

  6. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-05-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb$^{-1}$ collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to parameters of the theory such as the parton distribution functions of the proton and the strong coupling constant $\\alpha_S$ is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of $\\alpha_S(M_\\mathrm{Z})$ = 0.1171 $\\pm$ 0.0013 (exp) $^{+0.0073}_{-0.0047}$ (theo).

  7. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-05-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb$^{-1}$ collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD atmore »next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to parameters of the theory such as the parton distribution functions of the proton and the strong coupling constant $\\alpha_S$ is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of $\\alpha_S(M_\\mathrm{Z})$ = 0.1171 $\\pm$ 0.0013 (exp) $^{+0.0073}_{-0.0047}$ (theo).« less

  8. Measurement of the W and Z boson production cross sections in p{anti p} collisions at {radical}s = 1.8 TeV with the D0 detector

    SciTech Connect (OSTI)

    Grudberg, P.M.

    1997-01-01

    This thesis reports on the measurement of the W and Z boson inclusive production cross sections ({sigma}{sub W} and {sigma}{sub Z}) times electronic branching ratios (Br(W {r_arrow} e{nu}) and Br(Z {r_arrow} ee)) in p{anti p} collisions at {radical}s = 1.8 TeV. The analysis is based on 12.8 pb{sup {minus}1} of data taken in the 1992--1993 run by the D0 detector at the Fermilab Tevatron collider; the cross sections were measured to be: {sigma}{sub W} {center_dot} Br(W {r_arrow} e{nu}) = 2.36 {+-} 0.02 {+-} 0.07 {+-} 0.13 nb and {sigma}{sub Z} {center_dot} Br(Z {r_arrow} ee) = 0.218 {+-} 0.008 {+-} 0.008 {+-} 0.012 nb. The first error is statistical, the second error represents the non-luminosity systematic error, and the third error shows the uncertainty in the luminosity determination. Future prospects for similar measurements based on larger samples of data are discussed.

  9. Measurement of the W and Z boson production cross sections in p {anti p} collisions at {radical}s = 1.8 TeV with the D-Zero detector

    SciTech Connect (OSTI)

    Grudberg, P.M. [California Univ., Berkeley, CA (United States)

    1997-12-31

    This thesis reports on the measurement of the W and Z boson inclusive production cross sections ({sigma}{sub W} and {sigma}{sub Z}) times electronic branching ratios (Br(W {yields} e{nu}) and Br(Z {yields} ee)) in p{anti p} collisions at {radical}s = 1.8 TeV. The analysis is based on 12.8 pb{sup -1} of data taken in the 1992-1993 run by the D0 detector at the Fermilab Tevatron collider; the cross sections were measured to be: {sigma}{sub W} {center_dot} Br(W {yields} e{nu}) = 2. 36 {+-} 0.02 {+-} 0.07 {+-} 0.13 nb and {sigma}{sub Z} {center_dot} Br(Z {yields} ee) = 0.218 {+-} 0.008 {+-} 0.008 {+-} 0.012 nb. The first error is statistical, the second error represents the non- luminosity systematic error, and the third error shows the uncertainty in the luminosity determination. Future prospects for similar measurements based on larger samples of data are discussed.

  10. Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, S.; et al.,

    2012-06-01

    The inclusive production cross sections for forward jets, as well for jets in dijet events with at least one jet emitted at central and the other at forward pseudorapidities, are measured in the range of transverse momenta pt = 35-150 GeV/c in proton-proton collisions at sqrt(s) = 7 TeV by the CMS experiment at the LHC. Forward jets are measured within pseudorapidities 3.2<|eta|<4.7, and central jets within the |eta|<2.8 range. The double differential cross sections with respect to pt and eta are compared to predictions from three approaches in perturbative quantum chromodynamics: (i) next-to-leading-order calculations obtained with and without matching to parton-shower Monte Carlo simulations, (ii) PYTHIA and HERWIG parton-shower event generators with different tunes of parameters, and (iii) CASCADE and HEJ models, including different non-collinear corrections to standard single-parton radiation. The single-jet inclusive forward jet spectrum is well described by all models, but not all predictions are consistent with the spectra observed for the forward-central dijet events.

  11. IEEE Policy Against Discrimination and Harassment (IEEE Policies, Section 9.27)

    E-Print Network [OSTI]

    Kaski, Samuel

    IEEE Policy Against Discrimination and Harassment (IEEE Policies, Section 9.27) IEEE, consistent with the purposes articulated in Article I of the IEEE Constitution, is committed to the realization and maintenance of an environment in which members may have full and productive careers free from Discrimination or Harassment. IEEE

  12. Measurement of the ratio of the production cross sections times branching fractions of Bc± ? J/??±and B± ? J/? K± and B(Bc±? J/? ?±?±?-/+)/B(Bc± ? J/? ?±) in pp collisions at ?s = 7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, V.

    2015-01-13

    The ratio of the production cross sections times branching fractions (?(Bc±) B(Bc± ? J/??±))/(?(B±) B(B± ? J/?K±) is studied in proton-proton collisions at a center-of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires Ba,sub>c± and B±mesons with transverse momentum p? > 15 GeV and rapidity |y| -1. The ratio is determined to be [0.48 ± 0.05 (stat) ± 0.03(syst) ± 0.05 (?Bc)]% The J/??±?±?-/+ decay mode is also observed in the same data sample. Using a model-independent method developed tomore »measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions J/? ?±?±?-/+)/B(Bc± is measured to be 2.55 ± 0.80(stat) ± 0.33(syst) +0.04-0.01 (?Bc), consistent with the previous LHCb result.« less

  13. Cross Section and Parity Violating Spin Asymmetries of W plus or minus Boson Production in Polarized p+p Collisions at s=500 GeV

    SciTech Connect (OSTI)

    Adare, A. [University of Colorado, Boulder; Awes, Terry C [ORNL; Cianciolo, Vince [ORNL; Efremenko, Yuri [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Enokizono, Akitomo [Oak Ridge National Laboratory (ORNL); Read Jr, Kenneth F [ORNL; Silvermyr, David O [ORNL; Sorensen, Soren P [University of Tennessee, Knoxville (UTK); Stankus, Paul W [ORNL; PHENIX, Collaboration [The

    2011-01-01

    Large parity-violating longitudinal single-spin asymmetries A{sub L}{sup e+} = -0.86{sub -0.14}{sup +0.30} and A{sub L}{sup e-} = 0.88{sub -0.71}{sup +0.12} are observed for inclusive high transverse momentum electrons and positrons in polarized p+p collisions at a center-of-mass energy of {radical}s = 500 GeV with the PHENIX detector at RHIC. These e{sup {+-}} come mainly from the decay of W{sup {+-}} and Z{sup 0} bosons, and their asymmetries directly demonstrate parity violation in the couplings of the W{sup {+-}} to the light quarks. The observed electron and positron yields were used to estimate W{sup {+-}} boson production cross sections for the e{sup {+-}} channels of {sigma}(pp {yields} W{sup +}X) x BR(W{sup +} {yields} e{sup +}{nu}{sub e}) = 144.1 {+-} 21.2(stat){sub -10.3}{sup +3.4}(syst) {+-} 21.6(norm) pb, and {sigma}(pp {yields} W{sup -}X) x BR(W{sup -} {yields} e{sup -} {bar {nu}}{sub e}) = 31.7 {+-} 12.1(stat){sub -8.2}{sup +10.1}(syst) {+-} 4.8(norm) pb.

  14. Measurement of the ratio of the production cross sections times branching fractions of Bc± ? J/??±and B± ? J/? K± and B(Bc±? J/? ?±?±?-/+)/B(Bc± ? J/? ?±) in pp collisions at ?s = 7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, V. [Yerevan Physics Institute (Armenia)

    2015-01-01

    The ratio of the production cross sections times branching fractions (?(Bc±) B(Bc± ? J/??±))/(?(B±) B(B± ? J/?K±) is studied in proton-proton collisions at a center-of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires Ba,sub>c± and B±mesons with transverse momentum p? > 15 GeV and rapidity |y| -1. The ratio is determined to be [0.48 ± 0.05 (stat) ± 0.03(syst) ± 0.05 (?Bc)]% The J/??±?±?-/+ decay mode is also observed in the same data sample. Using a model-independent method developed to measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions J/? ?±?±?-/+)/B(Bc± is measured to be 2.55 ± 0.80(stat) ± 0.33(syst) +0.04-0.01 (?Bc), consistent with the previous LHCb result.

  15. Clean Energy Manufacturing Resources - Technology Full-Scale Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStatesAInitiative Events

  16. Power Full | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono SolarPlexusJumpPowderOpenSikkim PDSFull

  17. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    SciTech Connect (OSTI)

    Enercon Services, Inc.

    2011-03-14

    Enercon Services, Inc. (ENERCON) was requested under Task Order No.2 to identify scientific and technical data needed to benchmark and justify Full Burnup Credit, which adds 16 fission products and 4 minor actinides1 to Actinide-Only burnup credit. The historical perspective for Full Burnup Credit is discussed, and interviews of organizations participating in burnup credit activities are summarized as a basis for identifying additional data needs and making recommendation. Input from burnup credit participants representing two segments of the commercial nuclear industry is provided. First, the Electric Power Research Institute (EPRI) has been very active in the development of Full Burnup Credit, representing the interests of nuclear utilities in achieving capacity gains for storage and transport casks. EPRI and its utility customers are interested in a swift resolution of the validation issues that are delaying the implementation of Full Burnup Credit [EPRI 2010b]. Second, used nuclear fuel storage and transportation Cask Vendors favor improving burnup credit beyond Actinide-Only burnup credit, although their discussion of specific burnup credit achievements and data needs was limited citing business sensitive and technical proprietary concerns. While Cask Vendor proprietary items are not specifically identified in this report, the needs of all nuclear industry participants are reflected in the conclusions and recommendations of this report. In addition, Oak Ridge National Laboratory (ORNL) and Sandia National Laboratory (SNL) were interviewed for their input into additional data needs to achieve Full Burnup Credit. ORNL was very open to discussions of Full Burnup Credit, with several telecoms and a visit by ENERCON to ORNL. For many years, ORNL has provided extensive support to the NRC regarding burnup credit in all of its forms. Discussions with ORNL focused on potential resolutions to the validation issues for the use of fission products. SNL was helpful in ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost compared to the acquisition of equivalent experimental data. ENERCON concludes that even with the cos

  18. Solar fusion cross sections Eric G. Adelberger

    E-Print Network [OSTI]

    Bahcall, John

    production. We provide best values for the low-energy cross-section factors and, wherever possible, estimates Karlheinz Langanke University of Aarhus, DK-8000, Aarhus C, Denmark Tohru Motobayashi Department of Physics on the nuclear-fusion cross sections that are most important for solar energy generation and solar neutrino

  19. FULL FUEL CYCLE ASSESSMENT WELL TO WHEELS ENERGY INPUTS,

    E-Print Network [OSTI]

    FULL FUEL CYCLE ASSESSMENT WELL TO WHEELS ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Preparation on a full fuel cycle basis for alternative-fueled vehicles is important when assessing the overall production are a significant portion of the total GHG emissions attributable to the full fuel cycle. Also

  20. Measurement of Inclusive Jet Cross Sections in Z/gamma*(->e+e-) + jets Production in ppbar Collisions at s**(1/2) = 1.96 TeV with the CDF Detector

    SciTech Connect (OSTI)

    Salto Bauza, Oriol; /Barcelona, IFAE

    2008-04-01

    This Ph.D. thesis presents the measurement of inclusive jet cross sections in Z/{gamma}* {yields} e{sup +}e{sup -} events using 1.7 fb{sup -1} of data collected by the upgraded CDF detector during the Run II of the Tevatron. The Midpoint cone algorithm is used to search for jets in the events after identifying the presence of a Z/{gamma}* boson through the reconstruction of its decay products. The measurements are compared to next-to-LO (NLO) pQCD predictions for events with one and two jets in the final state. The perturbative predictions are corrected for the contributions of non-perturbative processes, like the underlying event and the fragmentation of the partons into jets of hadrons. These processes are not described by perturbation theory and must be estimated from phenomenological models. In this thesis, a number of measurements are performed to test different models of underlying event and hadronization implemented in LO plus parton shower Monte Carlo generator programs. Chapter 2 is devoted to the description of the theory of strong interactions and jet phenomenology at hadron colliders. Chapter 3 contains the description of the Tevatron collider and the CDF detector. The analysis is described in detail in Chapter 4. Chapter 5 shows the measurement of those observables sensitive to non-perturbative effects compared to the predictions from several Monte Carlo programs. Chapter 6 discusses the final results and the comparison with theoretical expectations. Finally, Chapter 7 is devoted to the conclusions.

  1. Recent developments in heavy flavour production

    E-Print Network [OSTI]

    G. Kramer

    2007-07-12

    We review one-particle inclusive production of heavy-flavoured hadrons in a framework which resums the large collinear logarithms through the evolution of the FFs and PDFs and retains the full dependence on the heavy-quark mass without additional theoretical assumptions. We focus on presenting results for the inclusive cross section for the production of charmed mesons in p anti-p collisions and the comparison with CDF data from the Tevatron as well as on inclusive B-meson production and comparison with recent CDF data. The third topic is the production of D^* mesons in photoproduction and comparison with recent H1 data from HERA.

  2. IBM Presentation Template Full Version

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Hydrocarbon Gas LiquidsENERGYww0

  3. Temperature behavior in the build section of multilateral wells 

    E-Print Network [OSTI]

    Romero Lugo, Analis Alejandra

    2005-11-01

    4.3 Cases with Different Fractions of Total Production from Each Lateral: Dual-Lateral with Single-Phase Liquid ..................................................... 19 4.4 Temperature Profiles for Multilaterals: Dual... .................................................................... 16 4.5 Build section temperature profiles with liquid production at the same depth..... 17 4.6 Build section temperature profiles with liquid production at depths spaced 500 feet apart...

  4. 14655 Section D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Contract No. DE-AC06-05RL14655 A000 PART I - THE SCHEDULE SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 PACKAGING......

  5. Special Section on RFID

    E-Print Network [OSTI]

    Engels, Daniel W.

    The eight articles in this special section describe state-of-the-art technologies and tools and one application of RFID.

  6. Lesson 35, Section 6

    E-Print Network [OSTI]

    Lesson 34, Section 6.5. Application Problems Using Rational Equations. Define a Variable; Develop A Plan; Write an Equation; Solve and Answer the Question.

  7. Measurements of the total cross sections for Higgs boson production combining the $H \\to \\gamma \\gamma$ and $H \\to ZZ^* \\to 4\\ell$ decay channels at 7, 8 and 13 TeV center-of-mass energies with the ATLAS detector

    E-Print Network [OSTI]

    The ATLAS collaboration

    2015-01-01

    Measurements of total cross sections are presented for Higgs boson production in proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. The data correspond to 4.5 fb$^{-1}$ collected at the center-of-mass energy of 7 TeV, 20.3 fb$^{-1}$ at 8 TeV, and most recently 3.2 fb$^{-1}$ at 13 TeV. Cross sections are obtained from measured $H \\to \\gamma\\gamma$ and $H \\to ZZ^{*} \\to 4\\ell$ event yields, which are combined accounting for detector effects, fiducial acceptances and branching fractions. The total Higgs boson production cross sections are measured to be $34^{+11}_{-10}$ pb, $33.3^{+5.8}_{-5.5}$ pb, and $24^{+21}_{-18}$ pb for center-of-mass energies of 7, 8 and 13 TeV, respectively. These measurements are compared to state-of-the-art Standard Model theoretical predictions.

  8. Sectional device handling tool

    DOE Patents [OSTI]

    Candee, Clark B. (Monroeville, PA)

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  9. EPAct 2005 Section 242 Hydroelectric Incentive Program - 2013...

    Broader source: Energy.gov (indexed) [DOE]

    for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits...

  10. Measuring the top anti-t Production Cross-Section in the Electron + Jets Channel in Proton - Anti-proton Collisions at s**(1/2) = 1.96-TeV with the D0 Detector at the Tevatron: A Monte Carlo Study

    SciTech Connect (OSTI)

    Park, Su-Jung; /Bonn U.

    2004-02-01

    The measurement of the t{bar t} production cross section at {radical}s = 1.96 TeV using the final state with an electron and jets is studied with Monte Carlo event samples. All methods used in the real data analysis to measure efficiencies and to estimate the background contributions are examined. The studies focus on measuring the electron reconstruction efficiencies as well as on improving the electron identification and background suppression. With a generated input cross section of 7 pb the following result is obtained: {sigma}{sub t{bar t}} = (7 {+-} 1.63(stat){sub -1.14}{sup +0.94} (syst)) pb.

  11. 14655 Section J

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    321 Wood Product Manufacturing (321991 Mobile Home Mfg) 8,000,000.00 0.14% 531 Real Estate (531190 Lessors of Other Real Estate Property) 3,300,000.00 0.06% 532 Rental and...

  12. TRANSCONTINENTAL PRINTING INC.: FULL SCALE DEMONSTRATION OF A

    E-Print Network [OSTI]

    #12;TRANSCONTINENTAL PRINTING INC.: FULL SCALE DEMONSTRATION OF A TREATMENT TECHNOLOGY TO REDUCE Prevention Section Environment Canada 224 West Esplanade North Vancouver, B.C. V7M 3H7 #12;Transcontinental at the Transcontinental Printing facility in Delta, BC. At the time of writing, Transcontinental was the only printing

  13. Next-To-Leading Order Differential Cross-Sections for $J/?$, $?(2S)$ and $?$ Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC)

    E-Print Network [OSTI]

    Y. Feng; J. -X. Wang

    2015-10-18

    Using nonrelativistic QCD (NRQCD) factorization, we calculate the yields for $J/\\psi$, $\\psi(2S)$ and $\\Upsilon(1S)$ hadroproduction at $\\sqrt{s}=$ 72 GeV and 115 GeV including the next-to-leading order QCD corrections. Both these center-of-mass energies correspond to those obtained with 7~TeV and 2.76~TeV nucleon beam impinging a fixed target. We study the cross section integrated in $p_t$ as a function of the rapidity as well as the $p_t$ differential cross section in the central rapidity region. Using different NLO fit results of the NRQCD long-distance matrix elements, we evaluate a theoretical uncertainty which is certainly much larger than the projected experimental uncertainties with the expected 20 fb$^{-1}$ to be collected per year with AFTER@LHC.

  14. Measurement of the W[superscript ±]Z production cross section and limits on anomalous triple gauge couplings in proton–proton collisions at ?s = 7 TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    This Letter presents a measurement of W[superscript ±]Z production in 1.02 fb[superscript ?1] of pp collision data at ?s = 7 TeV collected by the ATLAS experiment in 2011. Doubly leptonic decay events are selected with ...

  15. Section D - G

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 » Searchwith First JamesofAward SECTION B SUPPLIES ANDC

  16. Section I: Contract Clause

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 » Searchwith First JamesofAward SECTION B SUPPLIES

  17. The SSC Full Cell Prototype String Test

    E-Print Network [OSTI]

    McInturff, A.D.

    2011-01-01

    the Proceedings The SSC Full Cell Prototype String Test A.D.AC03-76SFOOO98. The SSC Full Cell Prototype String Test P.the Proceedings The SSC Full Cell Prototype String Test A.D.

  18. Electromagnetic Higgs production

    E-Print Network [OSTI]

    J. S. Miller

    2007-11-13

    The cross section for central diffractive Higgs production is calculated, for the LHC range of energies. The graphs for the possible mechanisms for Higgs production, through pomeron fusion and photon fusions are calculated for all possibilities allowed by the standard model. The cross section for central diffractive Higgs production through pomeron fusion, must be multiplied by a factor for the survival probability, to isolate the Higgs signal and reduce the background. Due to the small value of the survival probability $\\Lb 4 \\times 10^{-3}\\Rb $, the cross sections for central diffractive Higgs production, in the two cases for pomeron fusion and photon fusion, are competitive.

  19. Section L, Paragraph L-4

    National Nuclear Security Administration (NNSA)

    D SECTION L ATTACHMENT D CROSS REFERENCE MATRIX Section L Section M Offeror's Proposal Criterion 1: PAST PERFORMANCE L-15 (a) M-3 (a) Criterion 2: SITE ORGANIZATION AND...

  20. A nuclear cross section data handbook

    SciTech Connect (OSTI)

    Fisher, H.O.M.

    1989-12-01

    Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.

  1. PART III - SECTION J

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPoster SessionPrograms |Y-12 reduces water usageE SECTION

  2. SECTION J, APPENDIX B - PEP

    National Nuclear Security Administration (NNSA)

    SECTION J APPENDIX B PERFORMANCE EVALUATION PLAN Replaced by Mods 002, 016, 020, 029, 0084 Intentionally left blank for Internet posting purposes. Section J, Appendix B, Page 1...

  3. Section 1: Contact Information Section 2: Employment History

    E-Print Network [OSTI]

    Section 1: Contact Information Section 2: Employment History Section 3: Educational History Section 4: Additional Required Information Employment Application The Ernest Orlando Lawrence Berkeley! Specific information about current job opportunities at LBNL may be found at http://cjo.lbl.gov/. Please

  4. ADAPTIVE FULL-SPECTRUM SOLOR ENERGY SYSTEMS

    SciTech Connect (OSTI)

    Byard D. Wood

    2004-04-01

    This RD&D project is a three year team effort to develop a hybrid solar lighting (HSL) system that transports solar light from a paraboloidal dish concentrator to a luminaire via a large core polymer fiber optic. The luminaire can be a device to distribute sunlight into a space for the production of algae or it can be a device that is a combination of solar lighting and electric lighting. A benchmark prototype system has been developed to evaluate the HSL system. Sunlight is collected using a one-meter paraboloidal concentrator dish with two-axis tracking. A secondary mirror consisting of eight planar-segmented mirrors directs the visible part of the spectrum to eight fibers (receiver) and subsequently to eight luminaires. This results in about 8,200 lumens incident at each fiber tip. Each fiber can illuminate about 16.7 m{sup 2} (180 ft{sup 2}) of office space. The IR spectrum is directed to a thermophotovoltaic (TPV) array to produce electricity. During this reporting period, the project team made advancements in the design of the second generation (Alpha) system. For the Alpha system, the eight individual 12 mm fibers have been replaced with a centralized bundle of 3 mm fibers. The TRNSYS Full-Spectrum Solar Energy System model has been updated and new components have been added. The TPV array and nonimaging device have been tested and progress has been made in the fiber transmission models. A test plan was developed for both the high-lumen tests and the study to determine the non-energy benefits of daylighting. The photobioreactor team also made major advancements in the testing of model scale and bench top lab-scale systems.

  5. Section 4 -Financial Information A. General Information

    E-Print Network [OSTI]

    Pantaleone, Jim

    Section 4 - Financial Information A. General Information 1. All University Housing and Dining fees of Alaska campuses until the debt is paid in full. B. Security deposit 1. A security deposit is required performance of the agreement, and (2) for damages beyond normal wear and tear. The security deposit does

  6. Full-fuel-cycle modeling for alternative transportation fuels

    SciTech Connect (OSTI)

    Bell, S.R.; Gupta, M. [Univ. of Alabama, Tuscaloosa, AL (United States); Greening, L.A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1995-12-01

    Utilization of alternative fuels in the transportation sector has been identified as a potential method for mitigation of petroleum-based energy dependence and pollutant emissions from mobile sources. Traditionally, vehicle tailpipe emissions have served as sole data when evaluating environmental impact. However, considerable differences in extraction and processing requirements for alternative fuels makes evident the need to consider the complete fuel production and use cycle for each fuel scenario. The work presented here provides a case study applied to the southeastern region of the US for conventional gasoline, reformulated gasoline, natural gas, and methanol vehicle fueling. Results of the study demonstrate the significance of the nonvehicle processes, such as fuel refining, in terms of energy expenditure and emissions production. Unique to this work is the application of the MOBILE5 mobile emissions model in the full-fuel-cycle analysis. Estimates of direct and indirect greenhouse gas production are also presented and discussed using the full-cycle-analysis method.

  7. Measurements of the Higgs boson production cross section at 7, 8 and 13 TeV centre-of-mass energies and search for new physics at 13 TeV in the $H \\rightarrow ZZ^* \\rightarrow \\ell^+ \\ell^? \\ell'^+ \\ell'^?$ final state with the ATLAS detector

    E-Print Network [OSTI]

    The ATLAS collaboration

    2015-01-01

    Preliminary results for Higgs boson production in $pp$ collisions at a centre-of-mass energy of 13 TeV performed by the ATLAS Collaboration in the decay channel $H \\rightarrow ZZ^* \\rightarrow \\ell^+ \\ell^? \\ell'^+ \\ell'^?$, where $\\ell,\\ell^{'}=e\\text{ or }\\mu$, are presented. These results are based on an integrated luminosity of 3.2 fb$^{-1}$ collected in 2015 by the ATLAS detector at the LHC. The fiducial cross section after the selection cuts is reported as well as the total cross section, compared to new and updated results obtained at centre-of-mass energies of 7 and 8 TeV, repectively. Dark matter production in association with a Higgs boson decaying to $H \\rightarrow ZZ^* \\rightarrow 4\\ell$ is searched for in events with large missing transverse momentum. Moreover, a search for a heavy Higgs boson in the $H \\rightarrow ZZ^* \\rightarrow 4\\ell$ channel is performed for the mass range 200 to 1000 GeV assuming a narrow intrinsic width.

  8. Measurements of the Top Quark Pair Production Cross Section in Lepton + Jets Final States using a Topological Multivariate Technique as well as Lifetime b-Tagging in Proton - Anti-proton Collisions at s**(1/2)=1.96 TeV with the D0 Detector at the Tevatron

    SciTech Connect (OSTI)

    Golling, Tobias F

    2005-01-01

    Two alternative measurements of the t{bar t} production cross section at {radical}s = 1.96 TeV in proton-antiproton collisions in the lepton+jets channel are presented. The t{bar t} production cross section is extracted by combining the kinematic event information in a multivariate discriminant. The measurement yields {sigma}{sub p{bar p} {yields} t{bar t} + x} = 5.13{sub -1.57}{sup +1.76}(stat){sub -1.10}{sup +0.96}(syst) {+-} 0.33 (lumi) pb in the muon+jets channel, using 229.1 pb{sup -1}, and in the combination with the electron+jets channel 226.3 pb{sup -1} {sigma}{sub p{bar p} {yields} t{bar t} + x} = 6.60{sub -1.28}{sup +1.37}(stat){sub -1.11}{sup +1.25}(syst) {+-} 0.43 (lumi) pb. The second measurement presented reconstructs explicitly secondary vertices to d lifetime b-tagging. The measurement combines the muon+jets and the electron+jets channel, using 158.4 pb{sup -1} and 168.8 pb{sup -1}, respectively: {sigma}{sub p{bar p} {yields} t{bar t} + x} = 8.24{sub -1.25}{sup +1.34}(stat){sub -1.63}{sup +1.89}(syst) {+-} 0.54 (lumi) pb.

  9. A measurement of the t anti-t production cross-section in proton anti-proton collisions at s**(1/2) = 1.96-TeV with the D0 detector at the Tevatron using final states with a muon and jets

    SciTech Connect (OSTI)

    Klute, Markus

    2004-02-01

    A preliminary measurement of the t{bar t} production cross section at {radical}s = 1.96 TeV is presented. The {mu}-plus-jets final state is analyzed in a data sample of 94 pb{sup -1} and a total of 14 events are selected with a background expectation of 11.7 {+-} 1.9 events. The measurement yields: {sigma}{sub p{bar p} {yields} t{bar t} + X} = 2.4{sub -3.5}{sup +4.2}(stat.){sub -2.6}{sup +2.5}(syst.) {+-} 0.3(lumi.) pb. The analysis, being part of a larger effort to re-observe the top quark in Tevatron Run II data and to measure the production cross section, is combined with results from all available analyses channels. The combined result yields: {sigma}{sub p{bar p}} {yields} t{bar t} + X = 8.1{sub -2.0}{sup +2.2}(stat.){sub -1.4}{sup +1.6}(syst.) {+-} 0.8(lumi.) pb.

  10. SECTION A: STUDENT INFORMATION ______________________________________________________________________ 93#____________________________________

    E-Print Network [OSTI]

    Lewis, Robert Michael

    , as Amended, you have the right to withhold the disclosure of "Directory Information." a. Student's name bSECTION A: STUDENT INFORMATION # __________________@_________________________ (______)______________ ________/________/_________ Email Address Phone # Effective Date of this Request SECTION B: ADDITIONAL INFORMATION The items listed

  11. Canada's coal industry: full swing ahead

    SciTech Connect (OSTI)

    Stone, K. [Natural Resources Canada (Canada). Minerals and Metals Sector

    2007-03-15

    The article presents facts and figures about Canada's coal industry in 2006 including production, exports, imports, mines in operation, the Genesee 3 coal-fired generation unit, the Dodds-Roundhill Gasification Project, and new coal mine development plans. The outlook for 2007 is positive, with coal production expected to increase from 67 Mt in 2006 to 70 Mt in 2007 and exports expected to increase from 28 Mt in 2006 to 30 Mt in 2007.

  12. Quarkonium production at ATLAS

    E-Print Network [OSTI]

    Darren D Price

    2012-01-24

    The production of quarkonium is an important testing ground for QCD calculations. The J/\\psi\\ and \\Upsilon\\ production cross-sections are measured in proton-proton collisions at a centre-of-mass energy of 7~TeV with the ATLAS detector at the LHC. Differential cross-sections are presented as a function of transverse momentum and rapidity. The fraction of J/\\psi\\ produced in B-hadron decays is also measured and the differential cross-sections of prompt and non-prompt J/\\psi\\ production determined separately. Measurements of the fiducial production cross-section of the \\Upsilon(1S) and observation of the \\chi_{c,bJ} states are also discussed.

  13. Page 1 of 23 Full Screen

    E-Print Network [OSTI]

    Römisch, Werner

    Risikofunktionale in der Energiewirtschaft W. Römisch Humboldt-Universität Berlin Institut für Mathematik http Energiewirtschaft, Ludwigsburg, 24./25. November 2009 #12;Home Page Title Page Contents Page 2 of 23 Go Back Full

  14. Page 1 of 40 Full Screen

    E-Print Network [OSTI]

    Römisch, Werner

    the yearly electricity portfolio management of a mu- nicipal German power utility. Its portfolio consists of the following positions: · power production (based on utility-owned thermal units), · (mid-term) contracts (provided by large utilities), · (physical) spot market trading and · (financial) trading of futures

  15. Virginia/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairexVertVillage ofVirginia/Wind Resources/Full

  16. Indiana/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |source HistorypubIndiana/Wind Resources/Full

  17. Alabama/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAir QualityTuriAlabama/Wind Resources/Full

  18. SECTION J, APPENDIX A - SOW

    National Nuclear Security Administration (NNSA)

    and improve the industrial competitiveness and national security of the United States. Section J, Appendix A, Page 19 (Replaced Mod 002; Modified Mod 016; Replaced Mod...

  19. SECTION J, APPENDIX A - SOW

    National Nuclear Security Administration (NNSA)

    and improve the industrial competitiveness and national security of the United States. Section J, Appendix A, Page 17 Request for Proposal No. DE-SOL-0007749 CHAPTER...

  20. PART III-SECTION J

    National Nuclear Security Administration (NNSA)

    During Transition. The Contractor shall invoice for reimbursement of Transition Plan costs in accordance with Section G, G-7, Invoicing for Transition Costs, paragraph (b)....

  1. 1996 Central New Mexico Section [American Chemical Society] annual report

    SciTech Connect (OSTI)

    Cournoyer, M.E.

    1997-02-07

    The main goal of the Central New Mexico Section this year was to increase attendance at the local meetings. Throughout the course of the year attendance at the meeting more than doubled. This was brought on by several factors: having the meeting spread throughout the section (Albuquerque, Santa Fe, Las Vegas, Socorro, Los Alamos); supplementing the ACS National Tour speakers with interesting local sections speakers; and making full use of the newly formed Public Relations Committee. Activities during 1996 are summarized.

  2. Draft Guidance for Section 242 of the Energy Policy Act of 2005...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Guidance for Section 242 of the Energy Policy Act of 2005 - Hydroelectric Production Incentive Program - July 2014 Draft Guidance for Section 242 of the Energy Policy Act of...

  3. 2014 ELECTRICAL PRODUCTION: EPACT 2005 SECTION 242 HYDROELECTRIC INCENTIVE

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Diseasem-2m-3l-04-05-2012.xlsxFrontDepartmentAgency -

  4. 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration ofDepartment1 Webinar2013 DOEProgram |

  5. WOOD PRODUCTS AND UTILIZATION

    E-Print Network [OSTI]

    WOOD PRODUCTS AND UTILIZATION V #12;#12;443USDA Forest Service Gen. Tech. Rep. PSW-GTR-160. 1997. Section Overview Wood Products and Utilization1 John R. Shelly2 Forests are obviously a very important asset to California, and their economic and social value to the state is well documented. Wood

  6. Cross-sections for nuclide production in 56Fe target irradiated by 300, 500,750, 1000, 1500, and 2600 MeV protons compared with data on hydrogen target irradiation by 300, 500, 750, 1000, and 1500 MeV/nucleon 56Fe ions

    E-Print Network [OSTI]

    Yu. E. Titarenko; V. F. Batyaev; A. Yu. Titarenko; M. A. Butko; K. V. Pavlov; S. N. Florya; R. S. Tikhonov; S. G. Mashnik; A. V. Ignatyuk; N. N. Titarenko; W. Gudowsky; M. Tesinsky; C. -M. L. Persson; H. Ait Abderrahim; H. Kumawat; H. Duarte

    2008-04-07

    Cross-sections for radioactive nuclide production in 56Fe(p,x) reactions at 300, 500, 750, 1000, 1500, and 2600 MeV were measured using the ITEP U-10 proton accelerator. In total, 221 independent and cumulative yields of products of half-lives from 6.6 min to 312 days have been obtained via the direct-spectrometry method. The measured data have been compared with the experimental data obtained elsewhere by the direct and inverse kinematics methods and with calculations by 15 codes, namely: MCNPX (INCL, CEM2k, BERTINI, ISABEL), LAHET (BERTINI, ISABEL), CEM03 (.01, .G1, .S1), LAQGSM03 (.01, .G1, >.S1), CASCADE-2004, LAHETO, and BRIEFF. Most of our data are in a good agreement with the inverse kinematics results and disprove the results of some earlier activation measurements that were quite different from the inverse kinematics measurements. The most significant calculation-to-experiment differences are observed in the yields of the A<30 light nuclei, indicating that further improvements in nuclear reaction models are needed, and pointing out as well to a necessity of more complete measurements of such reactions.

  7. Table Of Contents Section: Page

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 2 SANITATION Table Of Contents Section: Page 02.A General Water......................................................... 2-1 02.D Non-Potable Water and openings. 02.C DRINKING WATER #12;EM 385-1-1 XX Sep 13 2-2 02.C.01 An adequate supply of potable water

  8. Page 1 of 9 Full Screen

    E-Print Network [OSTI]

    Levene, Mark

    Evolution of Database Systems Graph-Based Relational Object-Relational 1960's-1970's 1980's-1990's 1990's-Oriented programming language with a DBMS 3 One approach is to implement on top of a relational DBMS. · Object #12;Home Page Title Page Page 5 of 9 Go Back Full Screen Close Quit Object-Relational Evolution

  9. Holger Kleinke Full Professor -Canada Research Chair

    E-Print Network [OSTI]

    Le Roy, Robert J.

    ://kleinke.uwaterloo.ca Research Interests: Inorganic Materials, Solid State Chemistry, Thermoelectric Energy Conversion, Crystal research. Other high profile research projects that also combine theory and experiment are availableHolger Kleinke Full Professor - Canada Research Chair Department of Chemistry University

  10. Biochemistry as a Programming Language Full Presentation

    E-Print Network [OSTI]

    Seshia, Sanjit A.

    Biochemistry as a Programming Language Full Presentation Saurabh Srivastava Tim Hsiau, Sarah reactions within the cell, i.e., the biochemistry, to produce non-native compounds of commercial interest. In this talk, we present our lessons learnt, future av- enues and open problems, in formalizing biochemistry. 1

  11. CURRICULUM VITAE (FULL) Gail L. Christeson

    E-Print Network [OSTI]

    Yang, Zong-Liang

    and 3D tomography, and full waveform tomographic inversion to constrain crustal structure. Education B/01-8/10) Research Associate, University of Texas Institute for Geophysics (9/95-8/01) Post-doctoral Fellow seismic experiment. #12;2 2004 R/V Maurice Ewing, Seismic Study at Blanco Transform (chief scientist) 2004

  12. Adaptive, full-spectrum solar energy system

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.

    2003-08-05

    An adaptive full spectrum solar energy system having at least one hybrid solar concentrator, at least one hybrid luminaire, at least one hybrid photobioreactor, and a light distribution system operably connected to each hybrid solar concentrator, each hybrid luminaire, and each hybrid photobioreactor. A lighting control system operates each component.

  13. Page 1 of 18 Full Screen

    E-Print Network [OSTI]

    Römisch, Werner

    the booking process is controlled by seat protection levels or (so-called) bid prices. Aims: · Development Page 3 of 18 Go Back Full Screen Close Quit Notation Input data n : probability of node n; stochastic,j,k, zd,n i,j,k: slack variables; ~zn i,j,k: auxiliary integer variables; Indices t = 0, . . . , T: data

  14. Full Nexus between Newtonian and Relativistic Mechanics

    E-Print Network [OSTI]

    G. Sardin

    2008-06-01

    A full nexus between Newtonian and relativistic mechanics is set. Contrarily to what is commonly thought, Newtonian mechanics can be amended to suit all speeds up to c. It is demonstrated that when introducing the fact that the pulse of oscillators, i.e. emitters and clocks, is sensitive to speed, the Newtonian framework can be extended to all speeds. For this aim, it is formulated the concept of actor scenario vs. observer scenario. This differentiation is essential to avoid confusion between effective reality (actor scenario) and appearance (observer scenario). Measurements are subjected to kinematical aberrations, the observer scenario being inertial. These must be removed to attain intrinsic reality, i.e. that of actors. The lack of demarcation between the two scenarios leads to conceptual confusions. The amended Newtonian mechanics is of full application. Here, it has been mainly applied to the Newtonian Doppler effect, amended to suit all speeds.

  15. On Boolean matrices with full factor rank

    SciTech Connect (OSTI)

    Shitov, Ya

    2013-11-30

    It is demonstrated that every (0,1)-matrix of size n×m having Boolean rank n contains a column with at least ?n/2?1 zero entries. This bound is shown to be asymptotically optimal. As a corollary, it is established that the size of a full-rank Boolean matrix is bounded from above by a function of its tropical and determinantal ranks. Bibliography: 16 titles.

  16. Qurz 10 SOLUTIONS, SECTION ALL

    E-Print Network [OSTI]

    jony2_000

    Qurz 10 SOLUTIONS, SECTION ALL. If C is the line segment from (0, 0) to (3, 5), then fc 3x2ds :7. A16 B25 C45 D65 E.75. Solution. To parametrize the line we ...

  17. Marine Ecological Processes Online section

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    Marine Ecological Processes Online section FAS 6272 (3 credits) Fall 2014 Course Description, behavior, population dynamics, and community structure in marine and estuarine ecosystems. Prerequisite will have: · Examined how ecological processes operate in the marine environment · Compared how ecological

  18. Full Life Wind Turbine Gearbox Lubricating Fluids

    SciTech Connect (OSTI)

    Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

    2012-02-28

    Industrial gear box lubricants typically are hydrocarbon based mineral oils with considerable amounts of additives to overcome the lack of base fluid properties like wear protection, oxidation stability, load carrying capacity, low temperature solidification and drop of viscosity at higher temperatures. For today's wind turbine gearboxes, the requirements are more severe and synthetic hydrocarbon oils are used to improve on this, but all such hydrocarbon based lubricants require significant amounts of Extreme Pressure (EP) additives to meet performance requirements. Perfluoropolyether (PFPE) fluids provide load carrying capacity as an inherent property. During the course of the project with the main tasks of 'Establish a Benchmark', 'Lubricant Evaluation', 'Full Scale Gearbox Trial' and 'Economic Evaluation', the PAO Reference oil exhibited significant changes after laboratory gear testing, in service operation in the field and full scale gearbox trial. Four hydrocarbon base oils were selected for comparison in the benchmarking exercise and showed variation with respect to meeting the requirements for the laboratory micro-pitting tests, while the PFPE fluid exceeded the requirements even with the material taken after the full scale gear box trial. This is remarkable for a lubricant without EP additives. Laboratory bearing tests performed on the PFPE fluids before and after the full scale gear box trial showed the results met requirements for the industry standard. The PFPE fluid successfully completed the full scale gear box test program which included baseline and progressive staged load testing. The evaluation of gears showed no micro-pitting or objectionable wear. By the final stage, lubricant film thickness had been reduced to just 21% of its original value, this was by design and resulted in a lambda ratio of well below 1. This test design scenario of a low lambda ratio is a very undesirable lubrication condition for real world but creates the ability to test the lubricating fluids performance under the most extreme conditions. The PAO Reference oil also passed its testing without any noticeable deterioration of the gear surface. However the PAO Reference oil was replaced midway through the progressive loading, as the lubricant was burned in an attempt to raise the sump temperature to the same levels as for the PFPE. Both materials experienced a decrease of viscosity during their respective run times. The viscosity index decreased for the PAO there while there was a slight increase for the PFPE. FZG laboratory gear tests and measurements of the drive motor's current during the full scale gear box trial were made to characterize the relative efficiency between the PFPE fluid and the PAO Reference oil. In the FZG laboratory efficiency test, the PFPE fluids show much higher churning losses due to their higher viscosity and density. The analysis seems to show that the efficiency correlates better to dynamic viscosity than any other of the measured metrics such as film thickness. In load stages where the load, speed and temperature are similar, the PFPE fluid has a greater film thickness and theoretical gear protection, but requires a larger current for the drive motor than the PAO. However in load stages where the film thickness is the same, the PFPE fluid's reduced dynamic viscosity gives it a slight efficiency advantage relative to the PAO reference oil. Ultimately, many factors such as temperature, rotational speed, and fluid viscosity combine in a complex fashion to influence the results. However, the PFPE's much lower change of viscosity with respect to temperature, allows variations in designing an optimum viscosity to balance efficiency versus gear protection. Economic analysis was done using Cost of Energy calculations. The results vary from 5.3% for a 'Likely Case' to 16.8% for a 'Best Case' scenario as potential cost improvement by using PFPE as the gearbox lubricating fluid. It is important to note the largest portion of savings comes in Levelized Replacement Cost, which is dictated by the assumption on gearb

  19. Overview of Commercial Buildings, 2003 - Full Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+Elements) Gas and(BillionCompanies,77Full

  20. Full Text Glossary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information Resources » FuelDepartment ofFull Text

  1. Technology development for gene discovery and full-length sequencing

    SciTech Connect (OSTI)

    Marcelo Bento Soares

    2004-07-19

    In previous years, with support from the U.S. Department of Energy, we developed methods for construction of normalized and subtracted cDNA libraries, and constructed hundreds of high-quality libraries for production of Expressed Sequence Tags (ESTs). Our clones were made widely available to the scientific community through the IMAGE Consortium, and millions of ESTs were produced from our libraries either by collaborators or by our own sequencing laboratory at the University of Iowa. During this grant period, we focused on (1) the development of a method for preferential cloning of tissue-specific and/or rare transcripts, (2) its utilization to expedite EST-based gene discovery for the NIH Mouse Brain Molecular Anatomy Project, (3) further development and optimization of a method for construction of full-length-enriched cDNA libraries, and (4) modification of a plasmid vector to maximize efficiency of full-length cDNA sequencing by the transposon-mediated approach. It is noteworthy that the technology developed for preferential cloning of rare mRNAs enabled identification of over 2,000 mouse transcripts differentially expressed in the hippocampus. In addition, the method that we optimized for construction of full-length-enriched cDNA libraries was successfully utilized for the production of approximately fifty libraries from the developing mouse nervous system, from which over 2,500 full-ORF-containing cDNAs have been identified and accurately sequenced in their entirety either by our group or by the NIH-Mammalian Gene Collection Program Sequencing Team.

  2. Dosimetry and cross section measurements at RTNS II

    SciTech Connect (OSTI)

    Greenwood, L.R.; Kneff, D.W.

    1987-01-01

    Numerous measurements have been conducted at TRNS-II in order to map the neutron field for materials irradiations, to measure activation cross sections, and to measure helium production cross sections. Experiments of up to two weeks duration irradiated large numbers of activation dosimetry and helium samples both close to the source and throughout the target room. Many other samples have been irradiated in piggy-back positions over periods lasting many months. All of these experiments fall into four main classes, namely, fluence-mapping, activation dosimetry, the production of long-lived isotopes, and helium generation measurements. Radiometric dosimetry and activation cross section measurements were performed at Argonne National Laboratory; helium production was measured at Rockwell International Corporation. This paper briefly summarizes the principal results of our measurements at RTNS-II; references are given for more detailed publications. 14 refs., 4 figs.

  3. Full body powder antichip. Final report

    SciTech Connect (OSTI)

    1996-04-17

    Chipping is the major paint defect listed for automobile customer dissatisfaction. The improved chip resistance and smoother paint surfaces produced by full body powder antichip will result in greater customer satisfaction and greater demand for US-produced automobiles. Powder antichip contains virtually no solvent, thereby reducing the potential VOC emissions from Newark Assembly by more than 90 tons per year as compared to the solvent-borne material presently applied in most full body applications. Since Newark Assembly Plant is in a severe non-attainment air quality area, which must demonstrate a 15% reduction in emissions by 1996, projects such as this are crucial to the longevity of industry in this region. The liquid paint spray systems include incineration of the oven volatile organic compounds (VOC`s) at 1,500 F. Since there are minimal VOC`s in powder coatings and the only possible releases occur only during polymerization, incineration is not required. The associated annual savings resulting from the elimination of the incinerator utilized on the liquid spray system is 1.44 {times} 10{sup 10} BTU`s per unit installed. The annual cost savings is approximately $388 thousand, far below the original estimates.

  4. The full squeezed CMB bispectrum from inflation

    E-Print Network [OSTI]

    Antony Lewis

    2012-06-19

    The small-scale CMB temperature we observe on the sky is modulated by perturbations that were super-horizon at recombination, giving differential focussing and lensing that generate a non-zero bispectrum even for single-field inflation where local physics is identical. Understanding this signal is important for primordial non-Gaussianity studies and also parameter constraints from the CMB lensing bispectrum signal. Because of cancellations individual effects can appear larger or smaller than they are in total, so a full analysis may be required to avoid biases. I relate angular scales on the sky to physical scales at recombination using the optical equations, and give full-sky results for the large-scale adiabatic temperature bispectrum from Ricci focussing (expansion of the ray bundle), Weyl lensing (convergence and shear), and temperature redshift modulations of small-scale power. The delta N expansion of the beam is described by the constant temperature 3-curvature, and gives a nearly-observable version of the consistency relation prediction from single-field inflation. I give approximate arguments to quantify the likely importance of dynamical effects, and argue that they can be neglected for modulation scales l <~ 100, which is sufficient for lensing studies and also allows robust tests of local primordial non-Gaussianity using only the large-scale modulation modes. For accurate numerical results early and late-time ISW effects must be accounted for, though I confirm that the late-time non-linear Rees-Sciama contribution is negligible compared to other more important complications. The total corresponds to f_NL ~ 7 for Planck-like temperature constraints and f_NL ~ 11 for cosmic-variance limited data to lmax=2000. Temperature lensing bispectrum estimates are affected at the 0.2 sigma level by Ricci focussing, and up to 0.5 sigma with polarization.

  5. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    from Conventional Oil Production and Oil Sands. ” Environ.6 Forecasts of Canadian oil production published in 2006 andPetroleum Fuels The oil production chain is similar to

  6. Comment on the $?^+$-production at high energy

    E-Print Network [OSTI]

    A. I. Titov; A. Hosaka; S. Date'; Y. Ohashi

    2004-09-15

    We show that the cross sections of the $\\Theta^+$-pentaquark production in different processes decrease with energy faster than the cross sections of production of the conventional three-quark hyperons. Therefore, the threshold region with the initial energy of a few GeV or less seemsto be more favorable for the production and experimental study of $\\Theta^+$-pentaquark.

  7. Hamilton and Jacobi come full circle: Jacobi algorithms for structured Hamiltonian eigenproblems

    E-Print Network [OSTI]

    Mackey, Niloufer

    Hamilton and Jacobi come full circle: Jacobi algorithms for structured Hamiltonian eigenproblems. J. Eberlein To appear in Linear Algebra & its Applications Abstract We develop Jacobi algorithms- symmetric, symplectic, Jacobi method, quaternion, tensor product, structure-preserving, paral- lelizable

  8. Full Scale Coated Fiber Neutron Detector Measurements

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Stromswold, David C.; Woodring, Mitchell L.

    2010-03-17

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. Reported here are the results of tests of the full-scale 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT) and Saint Gobain, and is a follow-up report to an earlier one on a smaller prototype system.

  9. Full waveform inversion of solar interior flows

    SciTech Connect (OSTI)

    Hanasoge, Shravan M.

    2014-12-10

    The inference of flows of material in the interior of the Sun is a subject of major interest in helioseismology. Here, we apply techniques of full waveform inversion (FWI) to synthetic data to test flow inversions. In this idealized setup, we do not model seismic realization noise, training the focus entirely on the problem of whether a chosen supergranulation flow model can be seismically recovered. We define the misfit functional as a sum of L {sub 2} norm deviations in travel times between prediction and observation, as measured using short-distance filtered f and p {sub 1} and large-distance unfiltered p modes. FWI allows for the introduction of measurements of choice and iteratively improving the background model, while monitoring the evolution of the misfit in all desired categories. Although the misfit is seen to uniformly reduce in all categories, convergence to the true model is very slow, possibly because it is trapped in a local minimum. The primary source of error is inaccurate depth localization, which, due to density stratification, leads to wrong ratios of horizontal and vertical flow velocities ({sup c}ross talk{sup )}. In the present formulation, the lack of sufficient temporal frequency and spatial resolution makes it difficult to accurately localize flow profiles at depth. We therefore suggest that the most efficient way to discover the global minimum is to perform a probabilistic forward search, involving calculating the misfit associated with a broad range of models (generated, for instance, by a Monte Carlo algorithm) and locating the deepest minimum. Such techniques possess the added advantage of being able to quantify model uncertainty as well as realization noise (data uncertainty).

  10. GRAPHICS PROGRAMMING Section A Java

    E-Print Network [OSTI]

    Hill, Gary

    GRAPHICS PROGRAMMING Section A ­ Java 1 - Introduction 2 - Installation & First Programs 3 - GUI: Layout Managers 9 - GUI: JMenu Gary Hill December 2003 Java 1 of 1 #12;GRAPHICS PROGRAMMING 1, sample applications, and support for Java standards. Get started quickly using the included tutorials

  11. Marine Ecological Processes Online section

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    Marine Ecological Processes Online section FAS 4270 (3 credits) Fall 2012 Course Description The course covers the ecology of marine organisms and habitats with focus on how general ecological principles and those unique to the marine environment drive patterns and processes. Prerequisite: Two

  12. Full Action for an Electromagnetic Field with Electrical and Magnetic Charges

    E-Print Network [OSTI]

    S. S. Serova; S. A. Serov

    2010-09-25

    The paper offers the full action for an electromagnetic field with electrical and magnetic charges; Feynman laws are formulated for the calculation of the interaction cross-sections for electrically and magnetically charged particles on the base of offered action within relativistic quantum field theory. Derived with formulated Feynman rules cross-section of the interaction between an elementary particle with magnetic charge and an elementary particle with electrical charge proves to be equal zero.

  13. Pottery Production

    E-Print Network [OSTI]

    Nicholson, Paul T.

    2009-01-01

    Paul T. Nicholson. ) Pottery Production, Nicholson, UEE 2009Short Citation: Nicholson 2009, Pottery Production. UEE.Paul T. , 2009, Pottery Production. In Willeke Wendrich (

  14. Cordage Production

    E-Print Network [OSTI]

    Veldmeijer, André J.

    2009-01-01

    294: fig. 15-3). Cordage Production, Veldmeijer, UEE 2009Short Citation: Veldmeijer, 2009, Cordage Production. UEE.André J. , 2009, Cordage Production. In Willeke Wendrich (

  15. Glass Production

    E-Print Network [OSTI]

    Shortland, Andrew

    2009-01-01

    40, pp. 162 - 186. Glass Production, Shortland, UEE 2009AINES Short Citation: Shortland 2009, Glass Production. UEE.Andrew, 2009, Glass Production. In Willeke Wendrich (ed. ),

  16. ECE/TIM/SP/23 Timber Section, Geneva, Switzerland

    E-Print Network [OSTI]

    , timber, wood industry, pulp and paper industry, wood fuels, certification, wood products, tropical timber#12;#12;ECE/TIM/SP/23 Timber Section, Geneva, Switzerland Geneva Timber and Forest Study Paper 23 the Geneva Timber and Forest Study Paper series, which started in 2006. ABSTRACT The UNECE/FAO Forest

  17. Section H: Special Contract Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 » Searchwith First JamesofAward SECTION B SUPPLIES ANDCH

  18. Turbine airfoil having outboard and inboard sections

    DOE Patents [OSTI]

    Mazzola, Stefan; Marra, John J

    2015-03-17

    A turbine airfoil usable in a turbine engine and formed from at least an outboard section and an inboard section such that an inner end of the outboard section is attached to an outer end of the inboard section. The outboard section may be configured to provide a tip having adequate thickness and may extend radially inward from the tip with a generally constant cross-sectional area. The inboard section may be configured with a tapered cross-sectional area to support the outboard section.

  19. SECTION THIRTY SEVEN Consultants Section Thirty Seven Consultants, Inc.

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OF COLUMBIANorth Pitt Street, Alexandria,J-1 SECTION JTHIRTY

  20. Special Section Which Way Forward?

    E-Print Network [OSTI]

    Kemp, Brian M.

    "owned" in small scale societies, posit- ing processes of class formation, and describing the nature in the domestic (or household) mode of production. On all fronts, these are important and enduring issues, has been subject to wide swings in approach over the years. Unifying explanations give way to more

  1. Handbook of LHC Higgs Cross Sections: 2. Differential Distributions

    E-Print Network [OSTI]

    LHC Higgs Cross Section Working Group; S. Dittmaier; C. Mariotti; G. Passarino; R. Tanaka; S. Alekhin; J. Alwall; E. A. Bagnaschi; A. Banfi; J. Blumlein; S. Bolognesi; N. Chanon; T. Cheng; L. Cieri; A. M. Cooper-Sarkar; M. Cutajar; S. Dawson; G. Davies; N. De Filippis; G. Degrassi; A. Denner; D. D'Enterria; S. Diglio; B. Di Micco; R. Di Nardo; R. K. Ellis; A. Farilla; S. Farrington; M. Felcini; G. Ferrera; M. Flechl; D. de Florian; S. Forte; S. Ganjour; M. V. Garzelli; S. Gascon-Shotkin; S. Glazov; S. Goria; M. Grazzini; J. -Ph. Guillet; C. Hackstein; K. Hamilton; R. Harlander; M. Hauru; S. Heinemeyer; S. Hoche; J. Huston; C. Jackson; P. Jimenez-Delgado; M. D. Jorgensen; M. Kado; S. Kallweit; A. Kardos; N. Kauer; H. Kim; M. Kovac; M. Kramer; F. Krauss; C. -M. Kuo; S. Lehti; Q. Li; N. Lorenzo; F. Maltoni; B. Mellado; S. O. Moch; A. Muck; M. Muhlleitner; P. Nadolsky; P. Nason; C. Neu; A. Nikitenko; C. Oleari; J. Olsen; S. Palmer; S. Paganis; C. G. Papadopoulos; T . C. Petersen; F. Petriello; F. Petrucci; G. Piacquadio; E. Pilon; C. T. Potter; J. Price; I. Puljak; W. Quayle; V. Radescu; D. Rebuzzi; L. Reina; J. Rojo; D. Rosco; G. P. Salam; A. Sapronov; J. Schaarschmidt; M. Schonherr; M. Schumacher; F. Siegert; P. Slavich; M. Spira; I. W. Stewart; W. J. Stirling; F. Stockli; C. Sturm; F. J. Tackmann; R. S. Thorne; D. Tommasini; P. Torrielli; F. Tramontano; Z. Trocsanyi; M. Ubiali; S. Uccirati; M. Vazquez Acosta; T. Vickey; A. Vicini; W. J. Waalewijn; D. Wackeroth; M. Warsinsky; M. Weber; M. Wiesemann; G. Weiglein; J. Yu; G. Zanderighi

    2012-01-15

    This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) focuses on predictions (central values and errors) for total Higgs production cross sections and Higgs branching ratios in the Standard Model and its minimal supersymmetric extension, covering also related issues such as Monte Carlo generators, parton distribution functions, and pseudo-observables. This second Report represents the next natural step towards realistic predictions upon providing results on cross sections with benchmark cuts, differential distributions, details of specific decay channels, and further recent developments.

  2. Designing Critical Experiments in Support of Full Burnup Credit

    SciTech Connect (OSTI)

    Mueller, Don [ORNL; Roberts, Jeremy A [ORNL

    2008-01-01

    Burnup credit is the process of accounting for the negative reactivity due to fuel burnup and generation of parasitic absorbers over fuel assembly lifetime. For years, the fresh fuel assumption was used as a simple bound in criticality work for used fuel storage and transportation. More recently, major actinides have been included [1]. However, even this yields a highly conservative estimate in criticality calculations. Because of the numerous economical benefits including all available negative reactivity (i.e., full burnup credit) could provide [2], it is advantageous to work toward full burnup credit. Unfortunately, comparatively little work has been done to include non-major actinides and other fission products (FP) in burnup credit analyses due in part to insufficient experimental data for validation of codes and nuclear data. The Burnup Credit Criticality Experiment (BUCCX) at Sandia National Laboratory was a set of experiments with {sup 103}Rh that have relevance for burnup credit [3]. This work uses TSUNAMI-3D to investigate and adjust a BUCCX model to match isotope-specific, energy-dependent k{sub eff} sensitivity profiles to those of a representative high-capacity cask model (GBC-32) [4] for each FP of interest. The isotopes considered are {sup 149}Sm, {sup 143}Nd, {sup 103}Rh, {sup 133}Cs, {sup 155}Gd, {sup 152}Sm, {sup 99}Tc, {sup 145}Nd, {sup 153}Eu, {sup 147}Sm, {sup 109}Ag, {sup 95}Mo, {sup 150}Sm, {sup 101}Ru, and {sup 151}Eu. The goal is to understand the biases and bias uncertainties inherent in nuclear data, and ultimately, to apply these in support of full burnup credit.

  3. SECTION J, APPENDIX B - PEP

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en NNSAReference to Mod 0108C SECTION

  4. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    emissions intensity of unconventional oil production remainof the forecasts of unconventional oil and gas productionassociated with unconventional production of oil and gas;

  5. Section 999 Program Library | Department of Energy

    Energy Savers [EERE]

    Offshore Drilling Section 999 Program Library Section 999 Program Library Cost-Shared Program Publications October 2, 2013 UDAC Meeting - October 2013 October 2, 2013 URTAC...

  6. Interagency ADR Workplace Section Education Programs

    Broader source: Energy.gov [DOE]

    The Interagency Alternative Dispute Resolution Working Group (IADRWG) Workplace Conflict Management Section (“Workplace Section”) provides guidance on “best practices” in ADR program development,...

  7. LLNL-Generated Content for the California Academy of Sciences, Morrison Planetarium Full-Dome Show: Earthquake

    SciTech Connect (OSTI)

    Rodgers, A J; Petersson, N A; Morency, C E; Simmons, N A; Sjogreen, B

    2012-01-23

    The California Academy of Sciences (CAS) Morrison Planetarium is producing a 'full-dome' planetarium show on earthquakes and asked LLNL to produce content for the show. Specifically the show features numerical ground motion simulations of the M 7.9 1906 San Francisco and a possible future M 7.05 Hayward fault scenario earthquake. The show also features concepts of plate tectonics and mantle convection using images from LLNL's G3D global seismic tomography. This document describes the data that was provided to the CAS in support of production of the 'Earthquake' show. The CAS is located in Golden Gate Park, San Francisco and hosts over 1.6 million visitors. The Morrison Planetarium, within the CAS, is the largest all digital planetarium in the world. It features a 75-foot diameter spherical section projection screen tilted at a 30-degree angle. Six projectors cover the entire field of view and give a three-dimensional immersive experience. CAS shows strive to use scientifically accurate digital data in their productions. The show, entitled simply 'Earthquake', will debut on 26 May 2012. They are working on graphics and animations based on the same data sets for display on LLNL powerwalls and flat-screens as well as for public release.

  8. Transistor roadmap projection using predictive full-band atomistic modeling

    SciTech Connect (OSTI)

    Salmani-Jelodar, M., E-mail: m.salmani@gmail.com; Klimeck, G. [Network for Computational Nanotechnology and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Kim, S. [Intel Corporation, 2501 Northwest 229th Avenue, Hillsboro, Oregon 97124 (United States); Ng, K. [Semiconductor Research Corporation (SRC), 1101 Slater Rd, Durham, North Carolina 27703 (United States)

    2014-08-25

    In this letter, a full band atomistic quantum transport tool is used to predict the performance of double gate metal-oxide-semiconductor field-effect transistors (MOSFETs) over the next 15?years for International Technology Roadmap for Semiconductors (ITRS). As MOSFET channel lengths scale below 20?nm, the number of atoms in the device cross-sections becomes finite. At this scale, quantum mechanical effects play an important role in determining the device characteristics. These quantum effects can be captured with the quantum transport tool. Critical results show the ON-current degradation as a result of geometry scaling, which is in contrast to previous ITRS compact model calculations. Geometric scaling has significant effects on the ON-current by increasing source-to-drain (S/D) tunneling and altering the electronic band structure. By shortening the device gate length from 20?nm to 5.1?nm, the ratio of S/D tunneling current to the overall subthreshold OFF-current increases from 18% to 98%. Despite this ON-current degradation by scaling, the intrinsic device speed is projected to increase at a rate of at least 8% per year as a result of the reduction of the quantum capacitance.

  9. Evolving desiderata for validating engineered-physics systems without full-scale testing

    SciTech Connect (OSTI)

    Langenbrunner, James R [Los Alamos National Laboratory; Booker, Jane M [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Ross, Timothy J [Los Alamos National Laboratory

    2010-01-01

    Theory and principles of engineered-physics designs do not change over time, but the actual engineered product does evolve. Engineered components are prescient to the physics and change with time. Parts are never produced exactly as designed, assembled as designed, or remain unperturbed over time. For this reason, validation of performance may be regarded as evolving over time. Desired use of products evolves with time. These pragmatic realities require flexibility, understanding, and robustness-to-ignorance. Validation without full-scale testing involves engineering, small-scale experiments, physics theory and full-scale computer-simulation validation. We have previously published an approach to validation without full-scale testing using information integration, small-scale tests, theory and full-scale simulations [Langenbrunner et al. 2008]. This approach adds value, but also adds complexity and uncertainty due to inference. We illustrate a validation example that manages evolving desiderata without full-scale testing.

  10. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    of electricity generation using different fuels andof fossil fuel production, electricity generation, and other

  11. OPTIMIZATION OF THE CAPTURE SECTION OF A STAGED NEUTRINO FACTORY

    E-Print Network [OSTI]

    McDonald, Kirk

    OPTIMIZATION OF THE CAPTURE SECTION OF A STAGED NEUTRINO FACTORY H.K. Sayed,*1 H.G. Kirk,1 K.T. McV beam energy The optimization of the initial Target Station and the following NAPAC'13 upgraded to the full power of 4 MW at 8-GeV beam energy. The optimization of the initial Target Station

  12. Finance President's Council Section Page 6 Motion: 199610.30

    E-Print Network [OSTI]

    Bolch, Tobias

    Finance President's Council Section Page 6 Motion: 199610.30 UNIVERSITY OF NORTHERN BRITISH by the Finance Department. 1. Cheque Requisition Procedure Complete the Cheque Requisition form in full as indicated (form available from the Finance department). This includes the name of the payee, address, amount

  13. MATH225, Fall 2012 Name: Worksheet 1 (Review) Section

    E-Print Network [OSTI]

    MATH225, Fall 2012 Name: Worksheet 1 (Review) Section: For full credit, you must show all work dy #12;Algebra and Calculus Review In MATH225 you will need to use algebra, trigonometry intensely than what you may have been accustomed to in your previous math classes. This paper is intended

  14. MATH225, Fall 2013 Name: Worksheet 1 (Review) Recitation Section

    E-Print Network [OSTI]

    MATH225, Fall 2013 Name: Worksheet 1 (Review) Recitation Section: Due Wednesday, Aug. 28th For full (1 - P)P dP (d) 3dy 5 + y2 #12;Algebra and Calculus Review In MATH225 you will need to use algebra may be graded more intensely than what you may have been accustomed to in your previous math classes

  15. On Primitivity and the Unital Full Free Product of Finite Dimensional C*-algebras 

    E-Print Network [OSTI]

    Torres Ayala, Francisco

    2012-07-16

    &M University in partial ful llment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Kenneth Dykema Committee Members, Frederick Dahm Ronald Douglas David Kerr Head of Department, Emil Straube May 2012 Major... of Mexico Chair of Advisory Committee: Dr. Kenneth Dykema A C -algebra is called primitive if it admits a {representation that is both faithful and irreducible. Thus the simplest examples are matrix algebras. The main objective of this work...

  16. Doosan Fuel Cell Takes Closed Plant to Full Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment ofGraphics » Documents Memorandum

  17. An Analysis of Full-Time Commercial Farms in Northeast Texas. 

    E-Print Network [OSTI]

    Edmondson, Vance W.

    1962-01-01

    with other inputs, to bring about a more productive basis for livestock production. Management is probably the most significant obstacle to increased incomes on many of the full- time commercial farms, although factors beyond the operators' control... large amounts of labor. Since the settler\\ were inclined toward family-type farm operations ant1 ownership control of land, many small-acreage farm, were established in East Texas as both a way of life and as a way of livelihood. When oil...

  18. Heavy Flavour Production at HERA

    E-Print Network [OSTI]

    Benno List; for the H1; ZEUS Collaborations

    2006-05-19

    The production of charm and beauty quarks in ep collisions at HERA has been studied by the H1 and ZEUS collaborations. Charm production is generally well described in total rate and in shape by next to leading order (NLO) calculations in perturbative quantum chromodynamics (QCD), although in specific phase space corners the NLO calculations underestimate the observed cross sections. More and more beauty production data are becoming available. For this process, NLO QCD predictions tend to be lower than the measurements.

  19. Full fuel-cycle comparison of forklift propulsion systems.

    SciTech Connect (OSTI)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  20. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    A Mathematical Analysis of Full Fuel Cycle Energy Use. ”of Policy for Adopting Full-Fuel-Cycle Analyses Into Energyof Policy for Adopting Full-Fuel-Cycle Analyses Into Energy

  1. Integration of Full Tensor Gravity and ZTEM Passive Low Frequency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Tensor Gravity and ZTEM Passive Low Frequency EM Instruments for Simultaneous Data Acquisition Integration of Full Tensor Gravity and ZTEM Passive Low Frequency EM Instruments...

  2. POLICY FLASH 2014-10 UPDATE TO CONGRESSIONAL NOTIFICATION_ FULL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POLICY FLASH 2014-10 UPDATE TO CONGRESSIONAL NOTIFICATION FULL IMPLEMENTATION OF ANA SYSTEM POLICY FLASH 2014-10 UPDATE TO CONGRESSIONAL NOTIFICATION FULL IMPLEMENTATION OF ANA...

  3. High Efficiency Full Expansion (FEx) Engine for Automotive Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Expansion (FEx) Engine for Automotive Applications High Efficiency Full Expansion (FEx) Engine for Automotive Applications Large increases in engine thermal efficiency result...

  4. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    et al. 2012). As unconventional gas is expected to provide ato be 6% higher and unconventional gas production to be 8%2010), but for unconventional gas the short production

  5. Coupling Extraction From Off-Shell Cross-sections

    E-Print Network [OSTI]

    Baradhwaj Coleppa; Tanumoy Mandal; Subhadip Mitra

    2014-10-09

    In this note, we present a novel method of extracting the couplings of a new heavy particle to the Standard Model states. Contrary to the usual discovery process which involves studying the on-shell production, we look at regions away from resonance to take advantage of the simple scaling of the cross-section with the couplings. We apply the procedure to the case of a heavy quark as an illustration.

  6. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    comprises the mining and milling of uranium ore, conversionof Uranium-235 by fuel type and production stage. Mining and

  7. Analysis of Soluble Re Concentrations in Refractory from Bulk Vitrification Full-Scale Test 38B

    SciTech Connect (OSTI)

    Cooley, Scott K.; Pierce, Eric M.; Bagaasen, Larry M.; Schweiger, Michael J.

    2006-06-30

    The capacity of the waste treatment plant (WTP) being built at the Hanford Site is not sufficient to process all of the tank waste accumulated from more than 40 years of nuclear materials production. Bulk vitrification can accelerate tank waste treatment by providing some supplemental low-activity waste (LAW) treatment capacity. Bulk vitrification combines LAW and glass-forming chemicals in a large metal container and melts the contents using electrical resistance heating. A castable refractory block (CRB) is used along with sand to insulate the container from the heat generated while melting the contents into a glass waste form. This report describes engineering-scale (ES) and full-scale (FS) tests that have been conducted. Several ES tests showed that a small fraction of soluble Tc moves in the CRB and results in a groundwater peak different than WTP glass. The total soluble Tc-99 fraction in the FS CRB is expected to be different than that determined in the ES tests, but until FS test results are available, the best-estimate soluble Tc-99 fraction from the ES tests has been used as a conservative estimate. The first FS test results are from cold simulant tests that have been spiked with Re. An estimated scale-up factor extrapolates the Tc-99 data collected at the ES to the FS bulk vitrification waste package. Test FS-38A tested the refractory design and did not have a Re spike. Samples were taken and analyzed to help determine Re CRB background concentrations using a Re-spiked, six-tank composite simulant mixed with soil and glass formers to produce the waste feed. Although this feed is not physically the same as the Demonstration Bulk Vitrification System feed , the chemical make-up is the same. Extensive sampling of the CRB was planned, but difficulties with the test prevented completion of a full box. An abbreviated plan is described that looks at duplicate samples taken from refractory archive sections, a lower wall sample, and two base samples to gain early information about Re and projected Tc-99 levels in the FS box.

  8. Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics

    SciTech Connect (OSTI)

    Jiang, Bin; Guo, Hua

    2013-12-14

    Dynamics of the title reaction is investigated on an ab initio based potential energy surface using a full-dimensional quantum wave packet method within the centrifugal sudden approximation. It is shown that the reaction between H and HCN leads to both the hydrogen exchange and hydrogen abstraction channels. The exchange channel has a lower threshold and larger cross section than the abstraction channel. It also has more oscillations due apparently to quantum resonances. Both channels are affected by long-lived resonances supported by potential wells. Comparison with experimental cross sections indicates underestimation of the abstraction barrier height.

  9. Part IV: Section D: Packaging and Marketing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D PACKAGING AND MARKING DE-AC36-08GO28308 Modification M801 Section D - Page ii PART I SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 Packaging 1 D.2 Marking 1...

  10. Part V: Section H: Special Contract Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE-AC36-08GO28308 Modification M801 Section H - Page 2 of 50 PART I SECTION H SPECIAL CONTRACT REQUIREMENTS TABLE OF CONTENTS H.1 No Third Party Beneficiaries...

  11. SECTION FOUR Site Design Guidelines Bicycle Systems

    E-Print Network [OSTI]

    Stuart, Steven J.

    SECTION FOUR Site Design Guidelines Bicycle Systems 26 4, the following should be considered when designa ng bicycle routes on roadways: Vehicular speed limits; SECTION FOUR Site Design Guidelines Bicycle Systems 27 4.2 BIKE LANES Bike lanes

  12. Math 1600B Lecture 6, Section 2, 17 Jan 2014 Announcements

    E-Print Network [OSTI]

    Christensen, Dan

    Math 1600B Lecture 6, Section 2, 17 Jan 2014 Announcements: Read Sections 2.0 and 2.1 for next, January 20. Lecture notes (this page) available from course web page. Partial review of last lecture a way to produce a new vector that is orthogonal to both and . The cross product does this. Definition

  13. GRAPHICS PROGRAMMING SECTION D -JAVA 3D

    E-Print Network [OSTI]

    Hill, Gary

    GRAPHICS PROGRAMMING SECTION D - JAVA 3D 1SECTION D - GRAPHICS 3-D........................................................................................... 2 30 Graphics 3D: Introduction to Java 3D........................................................................................ 78 ©Gary Hill September 2004 Java 3-D 1 of 13 #12;GRAPHICS PROGRAMMING SECTION D - GRAPHICS 3-D 30

  14. Human Subjects Section 6. Protection of Human

    E-Print Network [OSTI]

    Heller, Barbara

    Human Subjects Section 6. Protection of Human Subjects This section is required for applicants answering "yes" to the question "Are human subjects involved?" on the R&R Other Project Information form subjects applicants must provide a justification in this section for the claim that no human subjects

  15. From ZZ to ZH : How Low Can These Cross Sections Go or Everybody, Let's Cross Section Limbo!

    SciTech Connect (OSTI)

    Strauss, Emanuel Alexandre; /SUNY, Stony Brook

    2009-08-01

    We report on two searches performed at the D0 detector at the Fermi National Laboratory. The first is a search for Z di-boson production with a theoretical cross section of 1.4 pb. The search was performed on 2.6 fb{sup -1} of data and contributed to the first observation of ZZ production at a hadron collider. The second is a search for a low mass Standard Model Higgs in 4.2 fb{sup -1} of data. The Higgs boson is produced in association with a Z boson where the Higgs decays hadronically and the Z decays to two leptons. The ZZ search was performed in both the di-electron and di-muon channels. For the ZH search, we will focus on the muonic decays where we expanded the traditional coverage by considering events in which one of the two muons fails the selection requirement, and is instead reconstructed as an isolated track. We consider Higgs masses between 100 and 150 GeV, with theoretical cross sections ranging from 0.17 to 0.042 pb, and set upper limits on the ZH production cross-section at 95% confidence level.

  16. Measurement of Hadron and Lepton-Pair Production in e+e- Collisions at sqrt{s}=192-208GeV at LEP

    E-Print Network [OSTI]

    L3 Collaboration

    2006-03-10

    Hadron production and lepton-pair production in e+e- collisions are studied with data collected with the L3 detector at LEP at centre-of-mass energies sqrt{s}=192-208GeV. Using a total integrated luminosity of 453/pb, 36057 hadronic events and 12863 lepton-pair events are selected. The cross sections for hadron production and lepton-pair production are measured for the full sample and for events where no high-energy initial-state-radiation photon is emitted prior to the collisions. Lepton-pair events are further investigated and forward-backward asymmetries are measured. Finally, the differential cross sections for electron-positron pair-production is determined as a function of the scattering angle. An overall good agreement is found with Standard Model predictions.

  17. Molecular dynamics evidences of the full graphitization of a nanodiamond annealed at 1500 K

    E-Print Network [OSTI]

    Powles, Rebecca

    Molecular dynamics evidences of the full graphitization of a nanodiamond annealed at 1500 K J The annealing of a small nanodiamond cluster at 1500 K is studied by molecular dynamics. The transformation nanodiamond clusters (NDC) [7] is probably the most pop- ular, as it allows the production of onions

  18. SNL RML recommended dosimetry cross section compendium

    SciTech Connect (OSTI)

    Griffin, P.J.; Kelly, J.G.; Luera, T.F.; VanDenburg, J.

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  19. Development of Thin Section Zinc Die Casting Technology

    SciTech Connect (OSTI)

    Goodwin, Frank [International Lead Zinc Research Org., Inc.] [International Lead Zinc Research Org., Inc.

    2013-10-31

    A new high fluidity zinc high pressure die casting alloy, termed the HF alloy, was developed during laboratory trials and proven in industrial production. The HF alloy permits castings to be achieved with section thicknesses of 0.3 mm or less. Technology transfer activities were conducted to develop usage of the HF high fluidity alloy. These included production of a brochure and a one-hour webinar on the HF alloy. The brochure was then sent to 1,184 product designers in the Interzinc database. There was excellent reception to this mailing, and from this initial contact 5 technology transfer seminars were conducted for 81 participants from 30 companies across a wide range of business sectors. Many of the successful applications to date involve high quality surface finishes. Design and manufacturing assistance was given for development of selected applications.

  20. Measurement of the complete nuclide production and kinetic energies of the system 136Xe + hydrogen at 1 GeV per nucleon

    E-Print Network [OSTI]

    P. Napolitani; K. -H. Schmidt; L. Tassan-Got; P. Armbruster; T. Enqvist; A. Heinz; V. Henzl; D. Henzlova; A. Kelic; R. Pleskac; M. V. Ricciardi; C. Schmitt; O. Yordanov; L. Audouin; M. Bernas; A. Lafriaskh; F. Rejmund; C. Stephan; J. Benlliure; E. Casarejos; M. Fernandez Ordonez; J. Pereira; A. Boudard; B. Fernandez; S. Leray; C. Villagrasa; C. Volant

    2007-06-05

    We present an extensive overview of production cross sections and kinetic energies for the complete set of nuclides formed in the spallation of 136Xe by protons at the incident energy of 1 GeV per nucleon. The measurement was performed in inverse kinematics at the FRagment Separator (GSI, Darmstadt). Slightly below the Businaro-Gallone point, 136Xe is the stable nuclide with the largest neutron excess. The kinematic data and cross sections collected in this work for the full nuclide production are a general benchmark for modelling the spallation process in a neutron-rich nuclear system, where fission is characterised by predominantly mass-asymmetric splits.

  1. Measurement of the hadronic cross section in electron-positron annihilation

    SciTech Connect (OSTI)

    Clearwater, S.

    1983-11-01

    This thesis describes the most precise measurement to date of the ratio R, the hadronic cross section in lowest order electron-positron annihilation to the cross section for muon pair production in lowest order electron-positron annihilation. This experiment is of interest because R is a fundamental parameter that tests in a model independent way the basic assumptions of strong interaction theories. According to the assumptions of one of these theories the value of R is determined simply from the electric charges, spin, and color assignments of the produced quark-pairs. The experiment was carried out with the MAgnetic Calorimeter using collisions of 14.5 GeV electrons and positrons at the 2200m circumference PEP storage ring at SLAC. The MAC detector is one of the best-suited collider detectors for measuring R due to its nearly complete coverage of the full angular range. The data for this experiment were accumulated between February 1982 and April 1983 corresponding to a total event sample of about 40,000 hadronic events. About 5% of the data were taken with 14 GeV beams and the rest of the data were taken with 14.5 GeV beams. A description of particle interactions and experimental considerations is given.

  2. A stacked full-bridge microinverter topology for photovoltaic applications

    E-Print Network [OSTI]

    Yogeswaran, Kesavan

    2012-01-01

    Previous work has been done to develop a microinverter for solar photovoltaic applications consisting of a high-frequency series resonant inverter and transformer section connected to a a cycloconverter that modulates the ...

  3. Pion production reactions in nucleon-nucleon collisions

    E-Print Network [OSTI]

    Veronica Malafaia

    2006-02-09

    Understanding pion production in nucleon-nucleon collisions near threshold has been a challenge for the last decades. In particular, the reaction pp -> pppi0 is highly sensitive to short-range mechanisms, because isospin conservation suppresses the otherwise dominant pion exchange term. However, the relative importance of the various reaction processes has been very difficult to establish. After reviewing the state-of-the-art of the theoretical approaches, we address the validity of the distorted-wave Born approximation (DWBA) through its link to the time-ordered perturbation theory (TOPT) diagrams. As the energy of the exchanged pion is not determined unambiguously within the non-relativistic formalism underlying DWBA, we analyse several options to determine which one is closer to TOPT. The S-matrix technique, successfully used below threshold, is shown to reproduce the results of TOPT for the re-scattering mechanism in pi0 production. It is afterwards applied to full calculations of both charged and neutral pion production reactions, the cross sections of which are described successfully. The main production mechanisms and partial waves corresponding to high angular momentum are included in the calculations. Finally we discuss the effect on the cross section of the frequent prescriptions for the energy of the exchanged pion.

  4. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    coal production by region, coal type, and sulfur content infrom AEO 2011 and AEO 2012. Coal Type Bituminous Bituminousproportions of total coal output by mining type. To estimate

  5. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    well Drilling and Hydraulic Fracturing. ” Proceedings of thedrilling or by hydraulic fracturing (Holditch 2006; Van Dykegas production by hydraulic fracturing (also known as “

  6. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    Accompanying Gas-well Drilling and Hydraulic Fracturing. ”hydraulic fracturing production methods. In reality, wellhydraulic fracturing) are about four to five times greater than for conventional wells.

  7. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    for building energy use, the petroleum fuel chain ispet ng coal petroleum ng Table 12 Energy multipliers forand petroleum production, but the FFC impacts related to that energy

  8. Provisioning high-availability datacenter networks for full bandwidth communication

    E-Print Network [OSTI]

    Huang, Changcheng

    Provisioning high-availability datacenter networks for full bandwidth communication Wenda Ni a 4 December 2013 Available online 12 March 2014 Keywords: Datacenter networks Valiant load balancing critical challenge in datacenter network design is full bandwidth communication. Recent advances have

  9. SWiFT Turbines Full Dynamic Characterization Opens Doors for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SWiFT Turbines Full Dynamic Characterization Opens Doors for Research in the Dynamics of Coupled Systems SWiFT Turbines Full Dynamic Characterization Opens Doors for Research in...

  10. FULL FUEL CYCLE ASSESSMENT TANK TO WHEELS EMISSIONS

    E-Print Network [OSTI]

    FULL FUEL CYCLE ASSESSMENT TANK TO WHEELS EMISSIONS AND ENERGY CONSUMPTION Prepared For: California emission projections for the years 2012, 2017, 2022, and 2030 KEYWORDS Full Fuel Cycle Analysis, Well

  11. St. Augustinegrass Warm-season turfgrass. Prefers full sun, but

    E-Print Network [OSTI]

    Ishida, Yuko

    St. Augustinegrass Warm-season turfgrass. Prefers full sun, but has a high tolerance for shade-season grass. It does best in full sun and high temperatures. Goes dormant and turns brown in winter. Very

  12. ICCAT BIGEYE TUNA RE-EXPORT CERTIFICATE RE-EXPORT SECTION

    E-Print Network [OSTI]

    Appendix DOCUMENT NUMBER ICCAT BIGEYE TUNA RE-EXPORT CERTIFICATE RE-EXPORT SECTION: 1. RE-EXPORTING COUNTRY / ENTITY / FISHING ENTITY 2. POINT OF RE-EXPORT 3. DESCRIPTION OF IMPORTED FISH Product Type(*) F OF FISH FOR RE-EXPORT Product Type(*) F/FR RD/GG/DR/FL/OT Net Weight (Kg) * F=FRESH, FR=Frozen, RD

  13. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore »the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  14. Generation of Full-Length cDNA Library

    E-Print Network [OSTI]

    Chuong, Cheng-Ming

    Generation of Full- Length cDNA Library from Single Human Prostate Cancer Cells BioTechniques 27 are performed on fixed and per- meabilized cells. Subsequent RT-PCR generates full-length cDNA libraries. Flowchart of current method for generating a full-length cDNA library from single cells. Cell fixation

  15. A NOVEL LOW POWER ENERGY RECOVERY FULL ADDER CELL

    E-Print Network [OSTI]

    John, Lizy Kurian

    A NOVEL LOW POWER ENERGY RECOVERY FULL ADDER CELL R. Shalem1 , E. John2 and L. K. John1 1 count static energy recovery full adder (SERF) is presented in this paper. The power consumption and general characteristics of the SERF adder are then compared against three low power full adders

  16. Full-Arm Haptics in an Accessibility Task Matthew Frey

    E-Print Network [OSTI]

    Hollerbach, John M.

    Full-Arm Haptics in an Accessibility Task Matthew Frey Department of Mechanical Engineering This paper develops haptic rendering for the Sarcos Dextrous Tele- operation System, a full-arm force location in a mechanical system and apply forces. A user study suggests that users receiving full-arm force

  17. FULL FUEL CYCLE ASSESSMENT: WELL-TO-WHEELS ENERGY INPUTS,

    E-Print Network [OSTI]

    FULL FUEL CYCLE ASSESSMENT: WELL-TO-WHEELS ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS STATE PLAN Waterland Stefan Unnasch FULL FUEL CYCLE ANALYSIS PEER REVIEWERS Argonne National Laboratory Michael Wang organizations were given an opportunity to review and comment on the AB 1007 full fuel cycle analysis. Comments

  18. Catalyst-Assisted Production of Olefins from Natural Gas Liquids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst-Assisted Production of Olefins from Natural Gas Liquids: Prototype Development and Full-Scale Testing, April 2013 Catalyst-Assisted Production of Olefins from Natural Gas...

  19. Expandable mixing section gravel and cobble eductor

    DOE Patents [OSTI]

    Miller, Arthur L. (Kenyon, MN); Krawza, Kenneth I. (Lakeville, MN)

    1997-01-01

    In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.

  20. SECTION 2 -HOSPITAL SALARY (salary paid to the employee by the hospital) SECTION 1 -PERSONAL DETAILS

    E-Print Network [OSTI]

    Tobar, Michael

    SECTION 2 - HOSPITAL SALARY (salary paid to the employee by the hospital) SECTION 1 - PERSONAL Location UWA School SECTION 4 - UWA SALARY (salary paid to the employee by the University) SECTION 3 - HOSPITAL SUPERANNUATION A base hospital salary amount (including a supplementary clinical loading) plus

  1. SECTION 3161 ANNOUNCEMENT: New Draft Workforce Restructuring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    policies of" Section 3161 of the National Defense Authorization Act for Fiscal Year 1993 to mitigate the impact of any potential workforce reductions on contractor employees at...

  2. Cross-Section Fluctuations in Chaotic Scattering

    E-Print Network [OSTI]

    B. Dietz; H. L. Harney; A. Richter; F. Schaefer; H. A. Weidenmueller

    2009-12-22

    For the theoretical prediction of cross-section fluctuations in chaotic scattering, the cross-section autocorrelation function is needed. That function is not known analytically. Using experimental data and numerical simulations, we show that an analytical approximation to the cross-section autocorrelation function can be obtained with the help of expressions first derived by Davis and Boose. Given the values of the average S-matrix elements and the mean level density of the scattering system, one can then reliably predict cross-section fluctuations.

  3. Guest editorial special section on RFID

    E-Print Network [OSTI]

    Sarma, Sanjay Emani

    The eight articles in this special section describe state-of-the-art technologies and tools and one application of RFID.

  4. Software Patent Litigation ABA Section of Litigation

    E-Print Network [OSTI]

    Shamos, Michael I.

    1 Software Patent Litigation ABA Section of Litigation Intellectual Property Litigation Committee............................................................ 2 II. Infringement issues specific to software patents Relating to Software Patents.........................................................15 POSSIBLE ISSUES

  5. Math 265, Section 32: Elementary Linear Algebra

    E-Print Network [OSTI]

    Math 265, Section 32: Elementary Linear Algebra. Course Information. Professor: Kiril Datchev Email: kdatchev@purdue.edu. Lectures: Tuesday and Thursday ...

  6. In situ oil shale retort with a generally T-shaped vertical cross section

    DOE Patents [OSTI]

    Ricketts, Thomas E. (Grand Junction, CO)

    1981-01-01

    An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale and has a production level drift in communication with a lower portion of the fragmented mass for withdrawing liquid and gaseous products of retorting during retorting of oil shale in the fragmented mass. The principal portion of the fragmented mass is spaced vertically above a lower production level portion having a generally T-shaped vertical cross section. The lower portion of the fragmented mass has a horizontal cross sectional area smaller than the horizontal cross sectional area of the upper principal portion of the fragmented mass above the production level.

  7. Measurement of the inclusive W± and Z/?* cross sections in the e and ? decay channels in pp collisions at ?s=7??TeV with the ATLAS detector

    E-Print Network [OSTI]

    Taylor, Frank E.

    The production cross sections of the inclusive Drell-Yan processes W[superscript ±]??? and Z/?*??? (?=e, ?) are measured in proton-proton collisions at ?s=7??TeV with the ATLAS detector. The cross sections are reported ...

  8. Lexical influences on disfluency production 

    E-Print Network [OSTI]

    Schnadt, Michael J.

    2009-01-01

    Natural spoken language is full of disfluency. Around 10% of utterances produced in everyday speech contain disfluencies such as repetitions, repairs, filled pauses and other hesitation phenomena. The production of ...

  9. Monthly/Annual Energy Review - renewable section

    Reports and Publications (EIA)

    2015-01-01

    Monthly and latest annual statistics on renewable energy production and consumption and overviews of fuel ethanol and biodiesel.

  10. Accepting Applications: $3.96 Million Hydroelectric Production...

    Energy Savers [EERE]

    of cost-competitive, renewable energy at a lower cost than creating new powered dam structures. Under the Section 242 Hydroelectric Production Incentive program, on December 16,...

  11. Higgs Boson Cross Section from CTEQ-TEA Global Analysis

    E-Print Network [OSTI]

    Sayipjamal Dulat; Tie-Jiun Hou; Jun Gao; Joey Huston; Pavel Nadolsky; Jon Pumplin; Carl Schmidt; Daniel Stump; C. -P. Yuan

    2014-08-19

    We study the uncertainties of the Higgs boson production cross section through the gluon fusion subprocess at the LHC (with $\\sqrt s=7, 8$ and $14$ TeV) arising from the uncertainties of the parton distribution functions (PDFs) and of the value of the strong coupling constant $\\alpha_s(M_Z)$. These uncertainties are computed by two complementary approaches, based on the Hessian and the Lagrange Multiplier methods within the CTEQ-TEA global analysis framework. We find that their predictions for the Higgs boson cross section are in good agreement. Furthermore, the result of the Lagrange Multiplier method supports the prescriptions we have previously provided for using the Hessian method to calculate the combined PDF and $\\alpha_s$ uncertainties, and to estimate the uncertainties at the $68\\%$ confidence level by scaling them from the $90\\%$ confidence level.

  12. Higgs Boson Cross Section from CTEQ-TEA Global Analysis

    E-Print Network [OSTI]

    Dulat, Sayipjamal; Gao, Jun; Huston, Joey; Nadolsky, Pavel; Pumplin, Jon; Schmidt, Carl; Stump, Daniel; Yuan, C -P

    2013-01-01

    We study the uncertainties of the Higgs boson production cross section through the gluon fusion subprocess at the LHC (with $\\sqrt s=7, 8$ and $14$ TeV) arising from the uncertainties of the parton distribution functions (PDFs) and of the value of the strong coupling constant $\\alpha_s(M_Z)$. These uncertainties are computed by two complementary approaches, based on the Hessian and the Lagrange Multiplier methods within the CTEQ-TEA global analysis framework. We find that their predictions for the Higgs boson cross section are in good agreement. Furthermore, the result of the Lagrange Multiplier method supports the prescriptions we have previously provided for using the Hessian method to calculate the combined PDF and $\\alpha_s$ uncertainties, and to estimate the uncertainties at the $68%$ confidence level by scaling them from the 90% confidence level.

  13. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect (OSTI)

    Woo Y. Yoon; David W. Nigg

    2011-09-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B3 or B1 zero-dimensional approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constants may be output in any of several standard formats including INL format, ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional (1-D) discrete-ordinate transport code, is incorporated into COMBINE7.1. As an option, the 167 fine-group constants generated by zero-dimensional COMBINE portion in the program can be used to calculate regionwise spectra in the 1-D ANISN portion, all internally to reflect the 1-D transport correction. The regionwise spectra are then used to generate mutigroup regionwise neutron constants. The 1-D neutron transport can be performed up to three stages, e.g., from a TRISO fuel to PEBBLE to 1-D full core wedge. In addition, COMBINE7.1 has now the capability of adjoint flux calculation through the 1-D ANISN transport. Photon transport capability is also added. For this, a photon production and photo-atomic cross section library, MATNG.LIB, was generated in MATXS format through NJOY code. The photon production cross section matrix is of 167 neutron - 18 photon groups. Photo-atomic cross sections, including heating, are in 18 energy groups.

  14. Cross section for charmonium absorption by nucleons 

    E-Print Network [OSTI]

    Liu, W.; Ko, Che Ming; Lin, ZW.

    2002-01-01

    The cross section for J/psi absorption by nucleons is studied using a gauged SU(4) hadronic Lagrangian but with empirical particle masses, which has been used previously to study the cross sections for J/psi absorption by pion and rho meson...

  15. electronic reprint Acta Crystallographica Section D

    E-Print Network [OSTI]

    Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne synchrotron radiation. Refinement with anisotropic displacement para- meters and with the removal acetate ion and three ethylene glycol molecules were located in the electron-density map. Eight sections

  16. electronic reprint Acta Crystallographica Section C

    E-Print Network [OSTI]

    94720, USA, c Basic Research Program, SAIC­Frederick Inc., Synchrotron Radiation Research Section, MCL Synchrotron Radiation Research Section, MCL, NCI, Argonne National Laboratory, Biosciences Division, Building Fourier map from 0.063 to 0.037 e A° À3 . Comment Alzheimer's disease, a progressive neurodegenerative dis

  17. FAR SIDE ONLY SECTION A-A

    E-Print Network [OSTI]

    McDonald, Kirk

    NOTES 1. WELDING SHALL BE PERFORMED IN ACCORDANCE WITH ASME SECTION IX. NO CODE STAMP REQUIRED. 2. ALL is property of 1. ALL DIMENSIONS ARE IN INCHES 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M 3 REQUIRED. NO RADIOGRAPHY REQUIRED. 2. ALL WELDS SHALL BE DYE PENETRANT INSPECTED. WITH ASME SECTION IX

  18. Full Reviews: Low-temperature and Exploration Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-temperature and Exploration Demonstration Projects Full Reviews: Low-temperature and Exploration Demonstration Projects Below are the project presentations and respective peer...

  19. Physics-based multiscale coupling for full core nuclear reactor...

    Office of Scientific and Technical Information (OSTI)

    multiscale coupling for full core nuclear reactor simulation Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety,...

  20. A Method for Broadband Full-Duplex MIMO Radio

    E-Print Network [OSTI]

    Hua, Yingbo; Liang, Ping; Ma, Yiming; Cirik, Ali C; Gao, Qian

    2012-01-01

    canceller for collocated radios,” IEEE Trans. Microwaveusing off-the shelf radios: Feasibility and first results,”Broadband Full-Duplex MIMO Radio Yingbo Hua, Fellow, IEEE,

  1. Full Steam Ahead for PV in US Homes?

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Full Steam Ahead for PV in US Homes? Mark Bolinger, Galenutility-scale photovoltaic (PV) installations in the yearsimplications for PV rebate program administrators, PV system

  2. Enterprise Assessments Review, Pantex Plant 2014 Full Participation...

    Broader source: Energy.gov (indexed) [DOE]

    April 2015 Review of the Pantex Plant 2014 Full Participation Exercise The Office of Emergency Management Assessments, within the U.S. Department of Energy's independent Office of...

  3. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    Oil Production and Oil Sands. ” Environ. Sci. Technol. 44 (and B. L. Fortin. 2009. “Oil Sands Development ContributesGHG) Emissions from Canadian Oil Sands as a Feedstock for

  4. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    of Coal, Domestic Natural Gas, LNG, and SNG for Electricityand Mexico and net imports of liquefied natural gas (LNG).The production chain for LNG includes additional steps that

  5. Upsilon Productions at STAR

    E-Print Network [OSTI]

    A. M. Hamed

    2010-05-22

    The $\\Upsilon(1S+2S+3S)\\to e^{+}e^{-}$ cross section is measured at mid-rapidity ($y$) in $p+p$ collisions and in d$+Au$ collisions at center-of-mass energy $\\sqrt{s}$ = 200 GeV with the STAR detector at RHIC. In $p+p$, the measured cross section is found to be consistent with the world data trend as a function of $\\sqrt{s}$, in agreement with the Color Evaportaion Model (CEM), and underestimated by the Color Singlet Model (CSM) up to the Next-to-Leading-Order Quantum Chromodynamics (NLO QCD) calculations. In d+$Au$, the measured cross section is in agreement with the CEM prediction with anti-shadowing effects, and the nuclear modification factor indicates that $\\Upsilon(1S+2S+3S)$ production follows binary scaling within the current uncertainties. These measurements provide a benchmark for the future measurements of $\\Upsilon$ production in $Au+Au$ collisions.

  6. Briefing Memo: Petroleum Product Transmission & Distribution...

    Broader source: Energy.gov (indexed) [DOE]

    PDF of the briefing memo. Briefing Memo More Documents & Publications Briefing Memo: Petroleum Product Transmission & Distribution The Quadrennial Energy Review (Full Report)...

  7. A review of "Full of Soup and Gold: The Life of Henry Jermyn" by Anthony Adolph 

    E-Print Network [OSTI]

    Maureen E. Mulvihill

    2007-01-01

    of the sites of production and the modes of transmission as part of understanding the poetics of the text and the dynamics of the period. Anthony Adolph. Full of Soup and Gold: The Life of Henry Jermyn. London: Anthony Adolph, 2006. Cloth. 324 pp., 31... Albans full of soup and gold, The new court?s pattern, stallion of the old. Him neither wit nor courage did exalt, But Fortune chose him for her pleasure salt. Paint him with drayman?s shoulders, butcher?s mien, Member?d like mules, with elephantine...

  8. Full-System Power Analysis and Modeling for Server Environments

    E-Print Network [OSTI]

    Kozyrakis, Christos

    Full-System Power Analysis and Modeling for Server Environments Dimitris Economou, Suzanne Rivoire consumption trends and developing simple yet accurate models to predict full-system power. We study to generate a model by correlating AC power measurements with user-level system utilization metrics. We

  9. Full 180u Magnetization Reversal with Electric Fields

    E-Print Network [OSTI]

    Chen, Long-Qing

    Full 180u Magnetization Reversal with Electric Fields J. J. Wang1 *, J. M. Hu1,2 *, J. Ma1 , J. X reversal with an electric field rather than a current or magnetic field is a fundamental challenge morphological engineering approach to accomplishing full 1806 magnetization reversals with electric fields

  10. Building Full Cost Accounting Resource Decisions for the Fraser Basin

    E-Print Network [OSTI]

    #12;Building Full Cost Accounting into Resource Decisions for the Fraser Basin Prepared by: Tim Mc for this study. I #12;Executive Summary ! T& report is concerned with the potential use of full cost accounting accounting (FCA) is an analytical process that involves systematic comparison of all broadly defined costs

  11. New orthogonal space-time block codes with full diversity 

    E-Print Network [OSTI]

    Dalton, Lori Anne

    2002-01-01

    It has been shown from the Hurwitz-Radon theorem that square complex orthogonal space-time code designs cannot achieve full diversity and full rate simul-taneously, except in the two transmit antenna case. However, this result does not consider non...

  12. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  13. Measurement Of Differential Cross Sections Of p(e,e'{pi}{sup +})n For High-Lying Resonances At Q{sup 2} < 5 GeV{sup 2}

    SciTech Connect (OSTI)

    Park, Kijun

    2014-01-01

    The exclusive electro-production process ep -> e'n{pi}{sup +} was measured in the range of the invariant mass for n{pi}{sup +} system 1.6 GeV <= W <= 2.0 GeV, and the photon virtuality 1.8 GeV{sup 2} <= Q{sup 2} <= 4.0 GeV{sup 2} using CLAS. For the first time, these kinematics are probed in exclusive {pi}{sup +} production from the protons with nearly full coverage in the azimuthal and polar angles of the n{pi}{sup +} center-of-mass system. In this experiment, approximately 39,000 differential cross-section data points were measured. In this proceeding, preliminary results of our latest analysis work are presented on differential cross sections and structure functions as well as Legendre Moments.

  14. Measurement of the ratio of the production cross sections times branching fractions of Bc± ? J/??±and B± ? J/? K± and B(Bc±? J/? ?±?±?-/+)/B(Bc± ? J/? ?±) in pp collisions at ?s = 7 TeV

    SciTech Connect (OSTI)

    Khachatryan, V. [Yerevan Physics Institute (Armenia)

    2015-01-01

    The ratio of the production cross sections times branching fractions (?(Bc±) B(Bc± ? J/??±))/(?(B±) B(B± ? J/?K±) is studied in proton-proton collisions at a center-of-mass energy of 7 TeV with the CMS detector at the LHC. The kinematic region investigated requires Ba,sub>c± and B±mesons with transverse momentum p? > 15 GeV and rapidity |y| < 1.6. The data sample corresponds to an integrated luminosity of 5.1 fb-1. The ratio is determined to be [0.48 ± 0.05 (stat) ± 0.03(syst) ± 0.05 (?Bc)]% The J/??±?±?-/+ decay mode is also observed in the same data sample. Using a model-independent method developed to measure the efficiency given the presence of resonant behaviour in the three-pion system, the ratio of the branching fractions J/? ?±?±?-/+)/B(Bc± is measured to be 2.55 ± 0.80(stat) ± 0.33(syst) +0.04-0.01 (?Bc), consistent with the previous LHCb result.

  15. Full-length high-temperature severe fuel damage test No. 2. Final safety analysis

    SciTech Connect (OSTI)

    Hesson, G.M.; Lombardo, N.J.; Pilger, J.P.; Rausch, W.N.; King, L.L.; Hurley, D.E.; Parchen, L.J.; Panisko, F.E.

    1993-09-01

    Hazardous conditions associated with performing the Full-Length High- Temperature (FLHT). Severe Fuel Damage Test No. 2 experiment have been analyzed. Major hazards that could cause harm or damage are (1) radioactive fission products, (2) radiation fields, (3) reactivity changes, (4) hydrogen generation, (5) materials at high temperature, (6) steam explosion, and (7) steam pressure pulse. As a result of this analysis, it is concluded that with proper precautions the FLHT- 2 test can be safely conducted.

  16. Introduction to biogas production on the farm

    SciTech Connect (OSTI)

    Not Available

    1984-03-01

    A number of farmers, ranchers, and engineers received support from the US Department of Energy Appropriate Technology Small Grants Program to design, construct, and demonstrate biogas production systems. Many of these projects generated more than just biogas; grantees' work and results have contributed to a growing body of information about practical applications of this technology. This publication was developed to share some of that information, to answer the basic questions about biogas production, and to lead farmers to more information. Section I introduces biogas and the various components of a biogas production system, discusses the system's benefits and liabilities, and provides a brief checklist to determine if biogas production may be applicable to an individual's particular situation. Section II features descriptions of four biogas projects of various sizes. Section III provides sources of additional information including descriptions of other biogas production projects.

  17. AB 1007 Full Fuel Cycle Analysis (FFCA) Peer Review

    SciTech Connect (OSTI)

    Rice, D; Armstrong, D; Campbell, C; Lamont, A; Gallegos, G; Stewart, J; Upadhye, R

    2007-01-19

    LLNL is a participant of California's Advanced Energy Pathways (AEP) team funded by DOE (NETL). At the AEP technical review meeting on November 9, 2006. The AB 1007 FFCA team (Appendix A) requested LLNL participate in a peer review of the FFCA reports. The primary contact at the CEC was McKinley Addy. The following reports/presentations were received by LLNL: (1) Full Fuel Cycle Energy and Emissions Assumptions dated September 2006, TIAX; (2) Full Fuel cycle Assessment-Well to Tank Energy Inputs, Emissions, and Water Impacts dated December 2006, TIAX; and (3) Full Fuel Cycle Analysis Assessment dated October 12, 2006, TIAX.

  18. Method for producing through extrusion an anisotropic magnet with high energy product

    DOE Patents [OSTI]

    Chandhok, Vijay K.

    2004-09-07

    A method for producing an anisotropic magnet with high energy product through extrusion and, more specifically, by placing a particle charge of a composition from the which magnet is to be produced in a noncircular container, heating the container and particle charge and extruding the container and particle charge through a noncircular extrusion die in such a manner that one of the cross-sectional axes or dimension of the container and particle charge is held substantially constant during the extrusion to compact the particle charge to substantially full density by mechanical deformation produced during the extrusion to achieve a magnet with anisotropic magnetic properties along the axes or dimension thereof and, more specifically, a high energy product along the transverse of the smallest cross-sectional dimension of the extruded magnet.

  19. On the Wong cross section and fusion oscillations

    E-Print Network [OSTI]

    N. Rowley; K. Hagino

    2015-03-26

    We re-examine the well-known Wong formula for heavy-ion fusion cross sections. Although this celebrated formula yields almost exact results for single-channel calculations for relatively heavy systems such as $^{16}$O+$^{144}$Sm, it tends to overestimate the cross section for light systems such as $^{12}$C+$^{12}$C. We generalise the formula to take account of the energy dependence of the barrier parameters and show that the energy-dependent version gives results practically indistinguishable from a full quantal calculation. We then examine the deviations arising from the discrete nature of the intervening angular momenta, whose effect can lead to an oscillatory contribution to the excitation function. We recall some compact, analytic expressions for these oscillations, and highlight the important physical parameters that give rise to them. Oscillations in symmetric systems are discussed, as are systems where the target and projectile identities can be exchanged via a strong transfer channel.

  20. On the Wong cross section and fusion oscillations

    E-Print Network [OSTI]

    Rowley, N

    2015-01-01

    We re-examine the well-known Wong formula for heavy-ion fusion cross sections. Although this celebrated formula yields almost exact results for single-channel calculations for relatively heavy systems such as $^{16}$O+$^{144}$Sm, it tends to overestimate the cross section for light systems such as $^{12}$C+$^{12}$C. We generalise the formula to take account of the energy dependence of the barrier parameters and show that the energy-dependent version gives results practically indistinguishable from a full quantal calculation. We then examine the deviations arising from the discrete nature of the intervening angular momenta, whose effect can lead to an oscillatory contribution to the excitation function. We recall some compact, analytic expressions for these oscillations, and highlight the important physical parameters that give rise to them. Oscillations in symmetric systems are discussed, as are systems where the target and projectile identities can be exchanged via a strong transfer channel.

  1. Motivation Selection CC Cross Sections Summary Charged Current DIS Cross Sections with a

    E-Print Network [OSTI]

    Raval, Amita

    Motivation Selection CC Cross Sections Summary Charged Current DIS Cross Sections polarised e+ 21st April 2010 1 / 15 #12;Motivation Selection CC Cross Sections Summary Charged Current Interaction: Motivation Extraction of MW d2(e+p) dxdQ2 = (1 + P) × G2 F M4 W 2(Q2 + M2 W )2 u + c + (1 - y)2

  2. SECTION 2 -HOSPITAL SALARY (salary paid to the employee by the hospital) SECTION 1 -PERSONAL DETAILS

    E-Print Network [OSTI]

    Tobar, Michael

    SECTION 2 - HOSPITAL SALARY (salary paid to the employee by the hospital) SECTION 1 - PERSONAL with this document. Funding % Base Salary UWA % HOSPITAL % $ Private Practice Allowance $ Head of Department Allowance $ Superannuation $ SECTION 3 - UWA SALARY (salary paid to the employee by the University) Funding

  3. Section 4. Inventory Table of Contents

    E-Print Network [OSTI]

    Section 4. Inventory Table of Contents 4.1 Existing Legal Protections Protections Level Name Clean Water Act Endangered Species Act Migratory Bird Treaty Act National Environmental State Instream Water Rights ­ Oregon Water Resources Department Morrow County Zoning Ordinance ­ Morrow

  4. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect (OSTI)

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  5. Asymptotic cross sections for composite projectile reactions 

    E-Print Network [OSTI]

    Neves, Andrea Marolt Pimenta

    1995-01-01

    The First Born Approximation has been used to compute excitation and ionization cross sections for ion-atom collisions involving two electrons at high energies. The projectile is treated semi-classically following a straight ...

  6. Annual Energy Review - financial indicators section

    Reports and Publications (EIA)

    2012-01-01

    Annual statistics on consumer energy prices and expenditures, fossil fuel production prices and value, and value of fossil fuel imports and exports back to 1949.

  7. Transportation Energy Data Book: Edition 34 - Full Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts > ProductsSubtitleTransportation

  8. (n, 2)-SETS HAVE FULL HAUSDORFF DIMENSION THEMIS MITSIS

    E-Print Network [OSTI]

    Jyväskylä, University of

    : dist(x, Le(a)) } is the infinite tube with axis Le(a) and cross-section radius . 2000 Mathematics measure n,2 which is invariant under the action of the orthogonal group. The elements of Gn that n,2({P Gn : d(P, P0) }) 2(n-2) for all P0 Gn, 1. So if A Gn and B is a maximal -separated

  9. Georgia/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages Recent Changes All Special Pages Semantic

  10. Maine/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration

  11. Maryland/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios

  12. Path forward for dosimetry cross sections

    SciTech Connect (OSTI)

    Griffin, P.J. [Sandia National Laboratories, Albuquerque, NM 87185-1146 (United States); Peters, C.D. [Sandia Staffing Alliance, Albuquerque, NM 87110 (United States)

    2011-07-01

    In the 1980's the dosimetry community embraced the need for a high fidelity quantification of uncertainty in nuclear data used for dosimetry applications. This led to the adoption of energy-dependent covariance matrices as the accepted manner of quantifying the uncertainty data. The trend for the dosimetry community to require high fidelity treatment of uncertainty estimates has continued to the current time where requirements on nuclear data are codified in standards such as ASTM E 1018. This paper surveys the current state of the dosimetry cross sections and investigates the quality of the current dosimetry cross section evaluations by examining calculated-to-experimental ratios in neutron benchmark fields. In recent years more nuclear-related technical areas are placing an emphasis on uncertainty quantification. With the availability of model-based cross sections and covariance matrices produced by nuclear data codes, some nuclear-related communities are considering the role these covariance matrices should play. While funding within the dosimetry community for cross section evaluations has been very meager, other areas, such as the solar-related astrophysics community and the US Nuclear Criticality Safety Program, have been supporting research in the area of neutron cross sections. The Cross Section Evaluation Working Group (CSEWG) is responsible for the creation and maintenance of the ENDF/B library which has been the mainstay for the reactor dosimetry community. Given the new trends in cross section evaluations, this paper explores the path forward for the US nuclear reactor dosimetry community and its use of the ENDF/B cross-sections. The major concern is maintenance of the sufficiency and accuracy of the uncertainty estimate when used for dosimetry applications. The two major areas of deficiency in the proposed ENDF/B approach are: 1) the use of unrelated covariance matrices in ENDF/B evaluations and 2) the lack of 'due consideration' of experimental data in the evaluation. (authors)

  13. Modified Empirical Parametrization of Fragmentation Cross Sections

    E-Print Network [OSTI]

    K. Sümmerer; B. Blank

    1999-11-17

    New experimental data obtained mainly at the GSI/FRS facility allow to modify the empirical parametrization of fragmentation cross sections, EPAX. It will be shown that minor modifications of the parameters lead to a much better reproduction of measured cross sections. The most significant changes refer to the description of fragmentation yields close to the projectile and of the memory effect of neutron-deficient projectiles.

  14. Section M: Evaluations Factors for Award

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 » Searchwith First JamesofAward SECTION BIVV SECTION M

  15. Section 999: Annual Plans | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1ResearchUniversityPreparedAwardsAchievementSectionSection

  16. Full vector low-temperature magnetic measurements of geologic materials

    E-Print Network [OSTI]

    Feinberg, Joshua M; Solheid, Peter A; Swanson-Hysell, Nicholas L; Jackson, Mike J; Bowles, Julie A

    2015-01-01

    511. FEINBERG ET AL. : THREE-AXIS LOW-TEMPERATURE REMANENCEof pyrrhotite as determined by low- and high-field experi-10.1029/, Full vector low-temperature magnetic measurements

  17. Pre- and Post-Full-Application General Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    Only those applicants that submit an LOI through the DOE PAMS system by the due date at 5 p.m. Eastern time (ET) are eligible to submit a full application.

  18. Apparatus and method for detecting full-capture radiation events

    DOE Patents [OSTI]

    Odell, D.M.C.

    1994-10-11

    An apparatus and method are disclosed for sampling the output signal of a radiation detector and distinguishing full-capture radiation events from Compton scattering events. The output signal of a radiation detector is continuously sampled. The samples are converted to digital values and input to a discriminator where samples that are representative of events are identified. The discriminator transfers only event samples, that is, samples representing full-capture events and Compton events, to a signal processor where the samples are saved in a three-dimensional count matrix with time (from the time of onset of the pulse) on the first axis, sample pulse current amplitude on the second axis, and number of samples on the third axis. The stored data are analyzed to separate the Compton events from full-capture events, and the energy of the full-capture events is determined without having determined the energies of any of the individual radiation detector events. 4 figs.

  19. Apparatus and method for detecting full-capture radiation events

    DOE Patents [OSTI]

    Odell, Daniel M. C. (Aiken, SC)

    1994-01-01

    An apparatus and method for sampling the output signal of a radiation detector and distinguishing full-capture radiation events from Compton scattering events. The output signal of a radiation detector is continuously sampled. The samples are converted to digital values and input to a discriminator where samples that are representative of events are identified. The discriminator transfers only event samples, that is, samples representing full-capture events and Compton events, to a signal processor where the samples are saved in a three-dimensional count matrix with time (from the time of onset of the pulse) on the first axis, sample pulse current amplitude on the second axis, and number of samples on the third axis. The stored data are analyzed to separate the Compton events from full-capture events, and the energy of the full-capture events is determined without having determined the energies of any of the individual radiation detector events.

  20. Financial Sustainability and Efficiency in Full Economic Costing of Research

    E-Print Network [OSTI]

    Crowther, Paul

    1 Financial Sustainability and Efficiency in Full Economic Costing of Research in UK Higher ............................................................................................................................................ 8 THE WIDER CONTEXT: PRESSURES ON COSTS AND FINANCIAL SUSTAINABILITY............. 10 FINANCIAL SUSTAINABILITY OF RESEARCH IN HIGHER EDUCATION....................................... 12 Income and expenditure

  1. Full Useful Life (120,000 miles) Exhaust Emission Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with...

  2. Effects of surface scattering in full-waveform inversion

    E-Print Network [OSTI]

    Rondenay, Stephane

    In full-waveform inversion of seismic body waves, often the free surface is ignored on grounds of computational efficiency. A synthetic study was performed to investigate the effects of this simplification. In terms of ...

  3. Verification of full functional correctness for imperative linked data structures

    E-Print Network [OSTI]

    Zee, Karen K

    2010-01-01

    We present the verification of full functional correctness for a collection of imperative linked data structures implemented in Java. A key technique that makes this verification possible is a novel, integrated proof ...

  4. NDAA Section 3116 Waste Determinations with Related Disposal...

    Office of Environmental Management (EM)

    NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Section...

  5. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  6. Databases selected: Multiple databases... Full Text (1060 words)

    E-Print Network [OSTI]

    Deutch, John

    . If the past is any guide, accidents in the energy sector profoundly affect this country's energy outlook 2010 International Energy Outlook, the EIA predicts growth in natural gas production principally from. In terms of renewable energy, low-cost natural gas will make hybrid solar plants that use both sunlight

  7. Databases selected: Multiple databases... Full Text (1060 words)

    E-Print Network [OSTI]

    Deutch, John

    . If the past is any guide, accidents in the energy sector profoundly affect this country's energy outlook 2010 International Energy Outlook, the EIA predicts growth in natural gas production principally from) Yet even as we endlessly debate U.S. energy and climate policy in the wake of the BP gusher, we aren

  8. South Carolina/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSolo EnergySouth Carolina/Wind Resources/Full

  9. WW and WZ production at the Tevatron

    SciTech Connect (OSTI)

    Lipeles, Elliot; /UC, San Diego

    2007-01-01

    This report summarizes recent measurements of the production properties of WW and WZ pairs of bosons at the Tevatron. This includes measurements of the cross-section and triple gauge couplings in the WW process and the first evidence for WZ production.

  10. J/psi production and polarization

    E-Print Network [OSTI]

    Maddalena Frosini; for the LHCb Collaboration

    2012-08-31

    The study of the production of heavy quarkonium is crucial for a thorough understanding of Quantum Chromodynamics (QCD). This note reports the measurements of the J\\psi, \\chi_c and double charm production cross section, and discusses the prospects for the J/psi polarization at LHCb.

  11. WW and WZ Production at the Tevatron

    E-Print Network [OSTI]

    Elliot Lipeles

    2007-01-19

    This report summarizes recent measurements of the production properties of WW and WZ pairs of bosons at the Tevatron. This includes measurements of the cross-section and triple gauge couplings in the WW process and the first evidence for WZ production.

  12. Measurement of the W+W- Cross Section in ?s=7??TeV pp Collisions with ATLAS

    E-Print Network [OSTI]

    Taylor, Frank E.

    This Letter presents a measurement of the W[superscript +]W[superscript -] production cross section in ?s=7??TeV pp collisions by the ATLAS experiment, using 34??pb[superscript -1] of integrated luminosity produced by the ...

  13. Photon and di-photon production at ATLAS

    E-Print Network [OSTI]

    Marco Delmastro

    2011-11-09

    The latest ATLAS measurements of the cross section for the inclusive production of isolated prompt photons in $pp$ collisions at a centre-of-mass energy $\\sqrt{s}$ = 7 TeV at the LHC are presented, as well as the measurement of the di-photon production cross section.

  14. Modular properties of full 5D SYM partition function

    E-Print Network [OSTI]

    Jian Qiu; Luigi Tizzano; Jacob Winding; Maxim Zabzine

    2015-12-17

    We study properties of the full partition function for the $U(1)$ 5D $\\mathcal{N}=2^*$ gauge theory with adjoint hypermultiplet of mass $M$. This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition function on toric Sasaki-Einstein manifolds by gluing flat copies of the Nekrasov partition function and we express the full partition function in terms of the generalized double elliptic gamma function $G_2^C$ associated with a certain moment map cone $C$. The answer exhibits a curious $SL(4,\\mathbb{Z})$ modular property. Finally, we propose a set of rules to construct the partition function that resembles the calculation of 5D supersymmetric partition function with the insertion of defects of various co-dimensions.

  15. Modular properties of full 5D SYM partition function

    E-Print Network [OSTI]

    Jian Qiu; Luigi Tizzano; Jacob Winding; Maxim Zabzine

    2015-11-19

    We study properties of the full partition function for the $U(1)$ 5D $\\mathcal{N}=2^*$ gauge theory with adjoint hypermultiplet of mass $M$. This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition function on toric Sasaki-Einstein manifolds by gluing flat copies of the Nekrasov partition function and we express the full partition function in terms of the generalized double elliptic gamma function $G_2^C$ associated with a certain moment map cone $C$. The answer exhibits a curious $SL(4,\\mathbb{Z})$ modular property. Finally, we propose a set of rules to construct the partition function that resembles the calculation of 5D supersymmetric partition function with the insertion of defects of various co-dimensions.

  16. Small Wind Guidebook/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSlough Heat and Power Jump to:SmallSmallSmall

  17. Tennessee/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation JumpSet RenewableFuelStandardsource History View New

  18. Utah/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnited States:UserLabor CommissionPage Edit History

  19. Vermont/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex CorporationVereniumVermont/Incentivessource

  20. Widget:PrintFullVersionButton | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,What IsLogoCloud Jump to:NOTOCNUMBERS

  1. Wyoming/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas: Energy Resourcessource History View

  2. Florida/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7th

  3. Hawaii/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energy ResourcesHasselbachLight Companysource History View

  4. Idaho/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Opensource History View New Pages Recent Changes

  5. Illinois/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |source History View New Pages Recent Changes

  6. Iowa/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy) (Webinar)LakotaIowa/Wind

  7. Kansas/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanosh Town Corporationsource History View New Pages

  8. Kentucky/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanosh TownKenetech/Wintech WindPage Edit

  9. Massachusetts/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville Mt Geothermal AreaInformationsource History

  10. Michigan/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical AreaInformation

  11. Minnesota/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, search Name Minn-Dakota WindMinnesota/Incentives

  12. Mississippi/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, search NameMississippi/Incentives < Mississippi Jump

  13. Missouri/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View New Pages Recent Changes

  14. Alaska/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAirAlamo Heights,Game JumpInformationsource

  15. Arkansas/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line SitingOil and Gas Commission

  16. Colorado/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to:Information 4thColorado/Incentives

  17. Connecticut/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewable Servicessource History View New Pages

  18. Delaware/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGridDeepi hassource History View New Pages

  19. California/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California:InformationInformation 9th congressionalsource

  20. Nebraska/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation,National Marine FisheriesPolicy