Powered by Deep Web Technologies
Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

COMBUSTION  

E-Print Network (OSTI)

This document presents an overview of combustion as a waste management strategy in relation to the development of material-specific emission factors for EPA’s Waste Reduction Model (WARM). Included are estimates of the net greenhouse gas (GHG) emissions from combustion of most of the materials considered in WARM and several categories of mixed waste. 1. A SUMMARY OF THE GHG IMPLICATIONS OF COMBUSTION Combustion of municipal solid waste (MSW) results in emissions of CO 2 and N2O. Note that CO2 from combustion of biomass (such as paper products and yard trimmings) is not counted because it is biogenic (as explained in the Introduction & Overview chapter). WARM estimates emissions from combustion of MSW in waste-to-energy (WTE) facilities. WARM does not consider any recovery of materials from the MSW stream that may occur before MSW is delivered to the combustor. WTE facilities can be divided into three categories: (1) mass burn, (2) modular and (3) refusederived fuel (RDF). A mass burn facility generates electricity and/or steam from the combustion of

unknown authors

2012-01-01T23:59:59.000Z

2

Combustibles Alternativos  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustibles Alternativos Dispensador de Combustible Alternativo Los combustibles alternativos estn derivados de otras fuentes adems del petrleo. Unos son producidos en el...

3

Computational Combustion  

DOE Green Energy (OSTI)

Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

2004-08-26T23:59:59.000Z

4

Advanced Combustion  

Science Conference Proceedings (OSTI)

Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

Holcomb, Gordon R. [NETL

2013-03-05T23:59:59.000Z

5

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary for the Combustion Program The Combustion Technologies Product promotes the advancement of coal combustion power generation for use in industrial, commercial, and utility...

6

COMBUSTION RESEARCH - FY-1979  

E-Print Network (OSTI)

Optical Measurement of Combustion Products by Zeeman Atomicand T. Hadeishi • . . • . • . • • . • Combustion Sources offrom Pulverized Coal Combustion J. Pennucci, R. Greif, F.

,

2012-01-01T23:59:59.000Z

7

Advanced Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

8

Advanced Combustion  

Science Conference Proceedings (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

9

Simulation of lean premixed turbulent combustion  

E-Print Network (OSTI)

turbulent methane combustion. Proc. Combust. Inst. , 29:in premixed turbulent combustion. Proc. Combust. Inst. ,for zero Mach number combustion. Combust. Sci. Technol. ,

2008-01-01T23:59:59.000Z

10

Combustion Technologies Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Technologies Group Combustion research generates the fundamental physical and chemical knowledge on the interaction between flame and turbulence. Experimental and...

11

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

with Combustion A number of companies are participating in DOE's evaluation of Combustion Systems products. The list below gives you access to each participant company's home page....

12

Transport Properties for Combustion Modeling  

E-Print Network (OSTI)

a critical role in combustion processes just as chemicalparameters are essential for combustion modeling; molecularwith Application to Combustion. Transport Theor Stat 2003;

Brown, N.J.

2010-01-01T23:59:59.000Z

13

Vehículos de Célula de Combustible  

NLE Websites -- All DOE Office Websites (Extended Search)

de Clula de Combustible Vehculo de Clula de Combustible Honda Clarity FCX Los vehculos de clula de combustible (FCVs)tambin llamados de pila de combustibletienen el...

14

Combustion 2000  

SciTech Connect

This report is a presentation of work carried out on Phase II of the HIPPS program under DOE contract DE-AC22-95PC95144 from June 1995 to March 2001. The objective of this report is to emphasize the results and achievements of the program and not to archive every detail of the past six years of effort. These details are already available in the twenty-two quarterly reports previously submitted to DOE and in the final report from Phase I. The report is divided into three major foci, indicative of the three operational groupings of the program as it evolved, was restructured, or overtaken by events. In each of these areas, the results exceeded DOE goals and expectations. HIPPS Systems and Cycles (including thermodynamic cycles, power cycle alternatives, baseline plant costs and new opportunities) HITAF Components and Designs (including design of heat exchangers, materials, ash management and combustor design) Testing Program for Radiative and Convective Air Heaters (including the design and construction of the test furnace and the results of the tests) There are several topics that were part of the original program but whose importance was diminished when the contract was significantly modified. The elimination of the subsystem testing and the Phase III demonstration lessened the relevance of subtasks related to these efforts. For example, the cross flow mixing study, the CFD modeling of the convective air heater and the power island analysis are important to a commercial plant design but not to the R&D product contained in this report. These topics are of course, discussed in the quarterly reports under this contract. The DOE goal for the High Performance Power Plant System ( HIPPS ) is high thermodynamic efficiency and significantly reduced emissions. Specifically, the goal is a 300 MWe plant with > 47% (HHV) overall efficiency and {le} 0.1 NSPS emissions. This plant must fire at least 65% coal with the balance being made up by a premium fuel such as natural gas. To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization issues of fabrication and reliability, availability and maintenance. The program that has s

A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

2001-06-30T23:59:59.000Z

15

Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel  

E-Print Network (OSTI)

Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel Methodology Engineering University of Notre Dame University of Notre Dame #12;Outline: Overview of combustion synthesis Reaction system Combustion front analaysis Theoretical model results Conclusions Acknowledgements #12

Mukasyan, Alexander

16

HYDROGEN ASSISTED DIESEL COMBUSTION.  

E-Print Network (OSTI)

??In this study, the effect of hydrogen assisted diesel combustion on conventional and advanced combustion modes was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged,… (more)

Lilik, Gregory

2008-01-01T23:59:59.000Z

17

Combustion oscillation control  

SciTech Connect

Premixing of fuel and air can avoid high temperatures which produce thermal NOx, but oscillating combustion must be eliminated. Combustion oscillations can also occur in Integrated Gasification Combined Cycle turbines. As an alternative to design or operating modifications, METC is investigating active combustion control (ACC) to eliminate oscillations; ACC uses repeated adjustment of some combustion parameter to control the variation in heat release that drives oscillations.

Richards, G.A.; Janus, M.C.

1996-12-31T23:59:59.000Z

18

Proceedings: Coal Combustion Workshop  

Science Conference Proceedings (OSTI)

The primary objective of the 2007 Coal Combustion workshop was to present a holistic view of the various combustion processes required for minimal emissions, peak performance, and maximum reliability in a coal-fired power plant. The workshop also defined needs for future RD in coal combustion technology.

2008-01-09T23:59:59.000Z

19

Surface runoff from full-scale coal combustion product pavements during accelerated loading  

Science Conference Proceedings (OSTI)

In this study, the release of metals and metalloids from full-scale portland cement concrete pavements containing coal combustion products (CCPs) was evaluated by laboratory leaching tests and accelerated loading of full-scale pavement sections under well-controlled conditions. An equivalent of 20 years of highway traffic loading was simulated at the OSU/OU Accelerated Pavement Load Facility (APLF). Three types of portland cement concrete driving surface layers were tested, including a control section (i.e., ordinary portland cement (PC) concrete) containing no fly ash and two sections in which fly ash was substituted for a fraction of the cement; i.e., 30% fly ash (FA30) and 50% fly ash (FA50). In general, the concentrations of minor and trace elements were higher in the toxicity characteristic leaching procedure (TCLP) leachates than in the leachates obtained from synthetic precipitation leaching procedure and ASTM leaching procedures. Importantly, none of the leachate concentrations exceeded the TCLP limits or primary drinking water standards. Surface runoff monitoring results showed the highest release rates of inorganic elements from the FA50 concrete pavement, whereas there were little differences in release rates between PC and FA30 concretes. The release of elements generally decreased with increasing pavement loading. Except for Cr, elements were released as particulates (>0.45 {mu} m) rather than dissolved constituents. The incorporation of fly ash in the PC cement concrete pavements examined in this study resulted in little or no deleterious environmental impact from the leaching of inorganic elements over the lifetime of the pavement system.

Cheng, C.M.; Taerakul, P.; Tu, W.; Zand, B.; Butalia, T.; Wolfe, W.; Walker, H. [Western Kentucky University, Bowling Green, KY (United States)

2008-08-15T23:59:59.000Z

20

Boiler using combustible fluid  

DOE Patents (OSTI)

A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

Baumgartner, H.; Meier, J.G.

1974-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Precision Combustion, Inc  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Reliable, Cost Effective Fuel Processors. Abstract: Precision Combustion, Inc. (PCI) is developing ultra-compact Fuel Processing systems for a range of Fuel Cells and...

22

Low NOx combustion  

DOE Patents (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

2008-10-21T23:59:59.000Z

23

Low NOx combustion  

DOE Patents (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

2007-06-05T23:59:59.000Z

24

Contrôle de combustion en transitoires des moteurs ŕ combustion interne.  

E-Print Network (OSTI)

??Cette thčse traite le problčme du contrôle de combustion des moteurs automobiles ŕ combustion interne. On propose une méthode complétant les stratégies de contrôle existantes… (more)

Hillion, Mathieu

2009-01-01T23:59:59.000Z

25

COMBUSTION SOURCES OF NITROGEN COMPOUNDS  

E-Print Network (OSTI)

Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

Brown, Nancy J.

2011-01-01T23:59:59.000Z

26

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

27

Fifteenth combustion research conference  

Science Conference Proceedings (OSTI)

The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

NONE

1993-06-01T23:59:59.000Z

28

Transport Properties for Combustion Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Properties for Combustion Modeling Title Transport Properties for Combustion Modeling Publication Type Journal Article Year of Publication 2011 Authors Brown, Nancy J.,...

29

Computation of azimuthal combustion instabilities in an helicopter combustion chamber  

E-Print Network (OSTI)

Computation of azimuthal combustion instabilities in an helicopter combustion chamber C. Sensiau to compute azimuthal combustion instabilities is presented. It requires a thermoacoustic model using a n - formulation for the coupling between acoutics and combustion. The parameters n and are computed from a LES

Nicoud, Franck

30

Theoretical studies on hydrogen ignition and droplet combustion  

E-Print Network (OSTI)

1.2 Droplet Combustion . . . . . . . . . . . . .Combustion . . . . . . . . . . . . . . . . . . . . . . . . . .Lewis, B. and von Elbe, G. Combustion, Flames and Explosions

Del Álamo, Gonzalo

2006-01-01T23:59:59.000Z

31

Coal combustion products (CCPs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

32

Internal combustion engine  

SciTech Connect

An improvement to an internal combustion engine is disclosed that has a fuel system for feeding a fuel-air mixture to the combustion chambers and an electrical generation system, such as an alternator. An electrolytic cell is attached adjacent to the engine to generate hydrogen and oxygen upon the application of a voltage between the cathode and anode of the electrolytic cell. The gas feed connects the electrolytic cell to the engine fuel system for feeding the hydrogen and oxygen to the engine combustion chambers. Improvements include placing the electrolytic cell under a predetermined pressure to prevent the electrolyte from boiling off, a cooling system for the electrolytic cell and safety features.

Valdespino, J.M.

1981-06-09T23:59:59.000Z

33

Gas turbine combustion instability  

DOE Green Energy (OSTI)

Combustion oscillations are a common problem in development of LPM (lean premix) combustors. Unlike earlier, diffusion style combustors, LPM combustors are especially susceptible to oscillations because acoustic losses are smaller and operation near lean blowoff produces a greater combustion response to disturbances in reactant supply, mixing, etc. In ongoing tests at METC, five instability mechanisms have been identified in subscale and commercial scale nozzle tests. Changes to fuel nozzle geometry showed that it is possible to stabilize combustion by altering the timing of the feedback between acoustic waves and the variation in heat release.

Richards, G.A.; Lee, G.T.

1996-09-01T23:59:59.000Z

34

Photo of Spray Combustion Chamber  

Science Conference Proceedings (OSTI)

NIST Spray Combustion Chamber. NIST, National Institute of Standards and Technology, Material Measurement Laboratory, ...

2013-07-15T23:59:59.000Z

35

Four Lectures on Turbulent Combustion  

E-Print Network (OSTI)

Four Lectures on Turbulent Combustion N. Peters Institut f¨ur Technische Mechanik RWTH Aachen Turbulent Combustion: Introduction and Overview 1 1.1 Moment Methods in Modeling Turbulence with Combustion and Velocity Scales . . . . . . . . . . . 11 1.4 Regimes in Premixed Turbulent Combustion

Peters, Norbert

36

Sandia Combustion Research: Technical review  

SciTech Connect

This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

NONE

1995-07-01T23:59:59.000Z

37

Engine Combustion & Efficiency - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Combustion & Efficiency Engine Combustion & Efficiency ORNL currently and historically supports the U.S. DOE on multi-cylinder and vehicle applications of diesel combustion, lean burn gasoline combustion, and low temperature combustion processes, and performs principal research on efficiency enabling technologies including emission controls, thermal energy recovery, and bio-renewable fuels. Research areas span from fundamental concepts to engine/vehicle integration and demonstration with a particular emphasis on the following areas: Thermodynamics for identifying and characterizing efficiency opportunities for engine-systems as well as the development of non-conventional combustion concepts for reducing fundamental combustion losses. Nonlinear sciences for improving the physical understanding and

38

Definition: Combustion | Open Energy Information  

Open Energy Info (EERE)

Combustion Combustion Jump to: navigation, search Dictionary.png Combustion The process of burning; chemical oxidation accompanied by the generation of light and heat.[1][2] View on Wikipedia Wikipedia Definition "Burning" redirects here. For combustion without external ignition, see spontaneous combustion. For the vehicle engine, see internal combustion engine. For other uses, see Burning (disambiguation) and Combustion (disambiguation). Error creating thumbnail: Unable to create destination directory This article's introduction section may not adequately summarize its contents. To comply with Wikipedia's lead section guidelines, please consider modifying the lead to provide an accessible overview of the article's key points in such a way that it can stand on its own as a

39

Spontaneous Human Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Spontaneous Human Combustion Spontaneous Human Combustion Name: S. Phillips. Age: N/A Location: N/A Country: N/A Date: N/A Question: One of our 8th grade students has tried to find information in our library about spontaneous human combustion, but to no avail. Could you tell us where we might locate a simple reference, or provide some in information about this subject for him. Replies: Sorry, but this is definitely "fringe science"...try asking in bookstores. I seem to recall one of those "believe it or not" type of TV shows did an episode on spontaneous human combustion a few years ago in which they reported on some British scientists who investigated this purported phenomenon. Remember that people (back in the Dark Ages, and before) used to believe in "spontaneous generation" of certain plants and animals because they were not aware of the reproduction methods used by those plants and animals.

40

IN SITU COMBUSTION  

NLE Websites -- All DOE Office Websites (Extended Search)

a combustion zone that moves through the formation toward production wells, providing a steam drive and an intense gas drive for the recovery of oil. This process is sometimes...

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Technology (June 15-16, 1999) Animal Waste Remediation Roundtable PDF-78KB Advanced Coal-Based Power and Environmental Systems '98 Conference (July 21-23, 1998)...

42

Just the Basics: Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

diesel fuel, transportation- based combustion accounts for the majority of our fossil fuel use in the United States, which has led the U.S. to demand a lot of imported oil....

43

METC Combustion Research Facility  

SciTech Connect

The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

Halow, J.S.; Maloney, D.J.; Richards, G.A.

1993-11-01T23:59:59.000Z

44

Coal combustion system  

SciTech Connect

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

45

Sandia Combustion Research Program  

DOE Green Energy (OSTI)

During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.) [eds.

1988-01-01T23:59:59.000Z

46

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

47

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network (OSTI)

Pollutants from Indoor Combustion Sources: I. Field Measure-Characteristics in Two Stage Combustion, paper presented atInternational) on Combustion, August, 1974, Tokyo, Japan. 8

Hollowell, C.D.

2011-01-01T23:59:59.000Z

48

Building America Expert Meeting: Combustion Safety | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting: Combustion Safety Building America Expert Meeting: Combustion Safety This is a meeting overview of "The Best Approach to Combustion Safety in a Direct Vent World, held...

49

Coal Combustion Products | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

50

Ignition of Combustion Modified Polyurethane Foam  

E-Print Network (OSTI)

Modeling of smoldering combustion propagation," Prog. Energysmoldering to flaming combustion of horizontally orientedThermal decomposition, combustion and fire-retardancy of

Putzeys, Olivier; Fernandez-Pello, Carlos; Urban, Dave L.

2005-01-01T23:59:59.000Z

51

A Generalized Pyrolysis Model for Combustible Solids  

E-Print Network (OSTI)

decomposition fronts in wood,” Combustion and Flame 139: 16–dynamics modeling of wood combustion,” Fire Safety Journalduring the pyrolysis of wood,” Combustion and Flame 17: 79–

Lautenberger, Chris

2007-01-01T23:59:59.000Z

52

Enlaces de Vehículos de Combustible Fexible  

NLE Websites -- All DOE Office Websites (Extended Search)

combustible flexible provista por el Alternative Fuels & Advanced Vehicles Data Center (AFDC) del DOE Vehculos de Combustible Flexible: Una alternativa de combustible renovable...

53

Combustible structural composites and methods of forming combustible structural composites  

DOE Patents (OSTI)

Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

Daniels, Michael A. (Idaho Falls, ID); Heaps, Ronald J. (Idaho Falls, ID); Steffler, Eric D (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID)

2011-08-30T23:59:59.000Z

54

Combustion Safety Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 1-2, 2012 March 1-2, 2012 Building America Stakeholders Meeting Austin, Texas Combustion Safety in the Codes Larry Brand Gas Technology Institute Acknowledgement to Paul Cabot - American Gas Association 2 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Widely adopted fuel gas codes: * National Fuel Gas Code - ANSI Z223.1/NFPA 54, published by AGA and NFPA (NFGC) * International Fuel Gas Code - published by the International Code Council (IFGC) * Uniform Plumbing Code published by IAPMO (UPC) Safety codes become requirements when adopted by the Authority Having Jurisdiction (governments or fire safety authorities) 3 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Formal Relationships Between these codes: - The IFGC extracts many safety

55

Internal combustion engine  

DOE Patents (OSTI)

An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

Baker, Quentin A. (P.O. Box 6477, San Antonio, TX 78209); Mecredy, Henry E. (1630-C W. 6th, Austin, TX 78703); O' Neal, Glenn B. (6503 Wagner Way, San Antonio, TX 78256)

1991-01-01T23:59:59.000Z

56

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion Advanced Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Advanced Combustion Engines on Facebook Tweet about Vehicle Technologies Office: Advanced Combustion Engines on Twitter Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Google Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Delicious Rank Vehicle Technologies Office: Advanced Combustion Engines on Digg Find More places to share Vehicle Technologies Office: Advanced Combustion Engines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Advanced Combustion Engines

57

Vehicle Technologies Office: Combustion Engine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engine Combustion Engine Research to someone by E-mail Share Vehicle Technologies Office: Combustion Engine Research on Facebook Tweet about Vehicle Technologies Office: Combustion Engine Research on Twitter Bookmark Vehicle Technologies Office: Combustion Engine Research on Google Bookmark Vehicle Technologies Office: Combustion Engine Research on Delicious Rank Vehicle Technologies Office: Combustion Engine Research on Digg Find More places to share Vehicle Technologies Office: Combustion Engine Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Combustion Engine Research

58

Thermal ignition combustion system  

DOE Patents (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

59

Application and Practice of Regenerative Combustion Technology ...  

Science Conference Proceedings (OSTI)

Regenerative Combustion burning alternative to traditional flow control system is ... that regenerative combustion have many advantage in energy conservation ...

60

A Generalized Pyrolysis Model for Combustible Solids  

E-Print Network (OSTI)

different stages of combustion,” Biomass and Bioenergy 23:biomass pyrolysis,” to appear in Progress in Energy and Combustion

Lautenberger, Chris

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reversed flow fluidized-bed combustion apparatus  

DOE Patents (OSTI)

The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

1984-01-01T23:59:59.000Z

62

Packed Bed Combustion: An Overview  

E-Print Network (OSTI)

Packed Bed Combustion: An Overview William Hallett Dept. of Mechanical Engineering Université d'Ottawa - University of Ottawa #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Introduction air fuel feedproducts xbed grate Packed Bed Combustion: fairly large particles of solid fuel on a grate, air supplied

Hallett, William L.H.

63

Fragments, Combustion and Earthquakes  

E-Print Network (OSTI)

This paper is devoted to show the advantages of introducing a geometric viewpoint and a non extensive formulation in the description of apparently unrelated phenomena: combustion and earthquakes. Here, it is shown how the introduction of a fragmentation analysis based on that formulation leads to find a common point for description of these phenomena

Oscar Sotolongo-Costa; Antonio Posadas

2005-03-16T23:59:59.000Z

64

Low emission internal combustion engine  

DOE Patents (OSTI)

A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

Karaba, Albert M. (Muskegon, MI)

1979-01-01T23:59:59.000Z

65

Combustion Research Facility | A Department of Energy Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy-Duty Heavy-Duty Low-Temperature and Diesel Combustion HCCISCCI Engine Fundamentals Spray Combustion Automotive Low-Temperature Diesel Combustion DISI Combustion...

66

Internal combustion engine using premixed combustion of stratified charges  

DOE Patents (OSTI)

During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

Marriott, Craig D. (Rochester Hills, MI); Reitz, Rolf D. (Madison, WI

2003-12-30T23:59:59.000Z

67

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Abbreviations & Acronyms Abbreviations & Acronyms Reference Shelf Solicitations & Awards Abbreviations & Acronyms The Combustion Technologies Product uses a number of abbreviations and acronyms. This web page gives you a definition of frequently used terms, as follows: 1½-Generation PFBC -- A PFBC plant where the hot (about 1400ºF) PFBC exhaust gases are used as a vitiated air supply for a natural gas combustor supplying high-temperature gas (above 2000ºF) to a combustion turbine expander (synonym for "PFB-NGT"). 1st-Generation PFBC -- Commercial PFBC technology where an unfired low-temperature (below 1650ºF) ruggedized turbine expander expands PFBC exhaust gases (synonym for "PFB-EGT"). 2nd-Generation PFBC (see synonyms: "APFBC," "PFB-CGT") -- Advanced PFBC where a carbonizer (mild gasifier) provides hot (about 1400ºF) coal-derived synthetic fuel gas to a special topping combustor. The carbonizer char is burned in the PFBC, and the PFBC exhaust is used as a hot (about 1400ºF) vitiated air supply for the topping combustor. The syngas and vitiated air are burned in a topping combustor to provide high-temperature gas (above 1700ºF) to a combustion turbine expander.

68

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Public Power District's Sheldon Station with APFBC Technology Nebraska Public Power District's Sheldon Station with APFBC Technology FBC Repower APFBC AES Greenidge APFBC Dan River FBC, APFBC Four Corners CHIPPS H.F. Lee Products Summary Sheldon Summary APFBC Sheldon GFBCC Sheldon APFBC L.V. Sutton Contents: APFBC Repowering Project Summary Key Features Site Layout Performance Environmental Characteristics Cost Other Combustion Systems Repowering Study Links: A related study is underway that would repower Sheldon Unit 1 and Unit 2 with gasification fluidized-bed combined cycle technology (GFBCC). CLICK HERE to find out more about repowering the Sheldon station with GFBCC instead. APFBC Repowering Project Summary Click on picture to enlarge Advanced circulating pressurized fluidized-bed combustion combined cycle systems (APFBC) are systems with jetting-bed pressurized fluidized-bed (PFB) carbonizer/gasifier and circulating PFBC combustor. The PFB carbonizer and PFBC both operate at elevated pressures (10 to 30 times atmospheric pressure) to provide syngas for operating a gas turbine topping combustor giving high cycle energy efficiency. The remaining char from the PFB carbonizer is burned in the pressurized PFBC. The combustion gas from the PFB also feeds thermal energy to the gas turbine topping combustor. This provides combined cycle plant efficiency on coal by providing the opportunity to generate electricity using both high efficiency gas turbines and steam.

69

Measurement of spray combustion processes  

SciTech Connect

A free jet configuration was chosen for measuring noncombusting spray fields and hydrocarbon-air spray flames in an effort to develop computational models of the dynamic interaction between droplets and the gas phase and to verify and refine numerical models of the entire spray combustion process. The development of a spray combustion facility is described including techniques for laser measurements in spray combustion environments and methods for data acquisition, processing, displaying, and interpretation.

Peters, C.E.; Arman, E.F.; Hornkohl, J.O.; Farmer, W.M.

1984-04-01T23:59:59.000Z

70

Municipal Waste Combustion (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This rule establishes requirements for emissions from, and design and operation of, municipal waste combustion units. "Municipal waste" means all materials and substances discarded from residential...

71

Light Duty Efficient, Clean Combustion  

SciTech Connect

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

72

Light Duty Efficient, Clean Combustion  

DOE Green Energy (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

73

Light Duty Efficient, Clean Combustion  

SciTech Connect

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

Stanton, Donald W

2011-06-03T23:59:59.000Z

74

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network (OSTI)

x A Emission Characteristics in Two Stage Combustion. PaperInternational) on Combustion, Tokyo (August, 1974). Chang,fll , J I ___F J "J LBL-S9lS COMBUSTION-GENERATED INDOOR AIR

Hollowell, C.D.

2010-01-01T23:59:59.000Z

75

Utilization ROLE OF COAL COMBUSTION  

E-Print Network (OSTI)

Center for Products Utilization ROLE OF COAL COMBUSTION PRODUCTS IN SUSTAINABLE CONSTRUCTION and Applied Science THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;ROLE OF COAL COMBUSTION PRODUCTS, Federal Highway Administration, Washington, DC., U.S.A. SYNOPSIS Over one hundred million tonnes of coal

Wisconsin-Milwaukee, University of

76

Method for in situ combustion  

DOE Patents (OSTI)

This invention relates to an improved in situ combustion method for the recovery of hydrocarbons from subterranean earth formations containing carbonaceous material. The method is practiced by penetrating the subterranean earth formation with a borehole projecting into the coal bed along a horizontal plane and extending along a plane disposed perpendicular to the plane of maximum permeability. The subterranean earth formation is also penetrated with a plurality of spaced-apart vertical boreholes disposed along a plane spaced from and generally parallel to that of the horizontal borehole. Fractures are then induced at each of the vertical boreholes which project from the vertical boreholes along the plane of maximum permeability and intersect the horizontal borehole. The combustion is initiated at the horizontal borehole and the products of combustion and fluids displaced from the earth formation by the combustion are removed from the subterranean earth formation via the vertical boreholes. Each of the vertical boreholes are, in turn, provided with suitable flow controls for regulating the flow of fluid from the combustion zone and the earth formation so as to control the configuration and rate of propagation of the combustion zone. The fractures provide a positive communication with the combustion zone so as to facilitate the removal of the products resulting from the combustion of the carbonaceous material.

Pasini, III, Joseph (Morgantown, WV); Shuck, Lowell Z. (Morgantown, WV); Overbey, Jr., William K. (Morgantown, WV)

1977-01-01T23:59:59.000Z

77

Quality Issues in Combustion LES  

Science Conference Proceedings (OSTI)

Combustion LES requires modelling of physics beyond the flow-field only. These additional models lead to further quality issues and an even stronger need to quantify simulation and modelling errors. We illustrate stability problems, the need for consistent ... Keywords: Combustion, Error landscape, LES, Large-Eddy simulation, Quality, Turbulence

A. M. Kempf; B. J. Geurts; T. Ma; M. W. Pettit; O. T. Stein

2011-10-01T23:59:59.000Z

78

Measurement Technology for Benchmark Spray Combustion ...  

Science Conference Proceedings (OSTI)

Benchmark Spray Combustion Database. ... A1, uncertainty budget for the fuel flow rate. A2, uncertainty budget for the combustion air flow rate. ...

2013-07-15T23:59:59.000Z

79

Turbulent Combustion Properties of Premixed Syngases  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbulent Combustion Properties of Premixed Syngases Title Turbulent Combustion Properties of Premixed Syngases Publication Type Journal Article Year of Publication 2009 Authors...

80

Hydrogen engine and combustion control process  

DOE Patents (OSTI)

Hydrogen engine with controlled combustion comprises suction means connected to the crankcase reducing or precluding flow of lubricating oil or associated gases into the combustion chamber.

Swain, Michael R. (Coral Gables, FL); Swain, Matthew N. (Miami, FL)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Improved Engine Design Through More Efficient Combustion ...  

Improved Engine Design Through More Efficient Combustion Simulations The Multi-Zone Combustion Model (MCM) is a software tool that enables ...

82

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Other Internal Combustion Engine Vehicles on Facebook Tweet about Advanced...

83

Advanced Computational Methods for Turbulence and Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Computational Methods for Turbulence and Combustion Advanced Computational Methods for Turbulence and Combustion Bell.png Key Challenges: Development and application of...

84

Post combustion trials at Dofasco's KOBM furnace  

DOE Green Energy (OSTI)

Post combustion trials were conducted at Dofasco's 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

Farrand, B.L.; Wood, J.E.; Goetz, F.J.

1992-01-01T23:59:59.000Z

85

POINTWISE GREEN FUNCTION BOUNDS AND STABILITY OF COMBUSTION WAVES  

E-Print Network (OSTI)

POINTWISE GREEN FUNCTION BOUNDS AND STABILITY OF COMBUSTION WAVES GREGORY LYNG, MOHAMMADREZA ROOFI for traveling wave solutions of an abstract viscous combustion model including both Majda's model and the full-wave) approximation. Notably, our results apply to combustion waves of any type: weak or strong, detonations or defla

Texier, Benjamin - Institut de Mathématiques de Jussieu, Université Paris 7

86

Droplet Combustion and Non-Reactive Shear-Coaxial Jets with Transverse Acoustic Excitation  

E-Print Network (OSTI)

Related Works in Droplet Combustion . . . . . . . .of Acoustics on Droplet Combustion . . . . . . . . . . . .Fuel Droplet Combustion . . . . . . . . . . . . . . .

Teshome, Sophonias

2012-01-01T23:59:59.000Z

87

Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 28152820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION  

E-Print Network (OSTI)

2815 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 2815­2820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION: THE CHARACTERISTIC SCALES OF THE DEVELOPED STATE ORY ZIK, Israel We present new results on the fingering instability in solid fuel combustion. The instability

Moses, Elisha

88

NETL: Combustion Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbines for APFBC Gas Turbines for APFBC FBC Repower Simple Description Detailed Description APFBC Specs GTs for APFBC Suited for Repowering Existing Power Plants with Advanced Pressurized Fluidized-Bed Combined Cycles APFBC combined cycles have high energy efficiency levels because they use modern, high-temperature, high-efficiency gas turbines as the core of a combined power cycle. This web page discusses a current U.S. Department of Energy project that is evaluating combustion turbines suited for repowering existing steam plants. The natural-gas-fueled version of the Siemens Westinghouse Power Corporation W501F. Modified versions of this gas turbine core are suited for operating in APFBC power plants. Contents: Introduction APFBC Repowering Considerations

89

Combustion in porous media  

DOE Green Energy (OSTI)

A 2.8-liter tube-shaped combustion vessel was constructed to study flame propagation and quenching in porous media. For this experiment, hydrogen-air flames propagating horizontally into abed of 6 mm diameter glass beads were studied. Measurements of pressure and temperature along the length of the tube were used to observe flame propagation of quenching. The critical hydrogen concentration for Hz-air mixtures was found to be 11.5%, corresponding to a critical Peclet number of Pe* = 37. This value is substantially less than the value of Pe* = 65 quoted in the literature, for example Babkin et al. (1991). It is hypothesized that buoyancy and a dependence of Pe on the Lewis number account for the discrepancy between these two results.

Dillon, J. [California Inst. of Technology, CA (US)

1999-09-01T23:59:59.000Z

90

Oxy-combustion: Oxygen Transport Membrane Development  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion: Oxygen Transport combustion: Oxygen Transport Membrane Development Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D

91

Particulate waste product combustion system  

SciTech Connect

An apparatus is described for incinerating combustion material within a fluidized bed, including the steps of: feeding the material into a fluidizing zone within which the bed is formed; introducing combustion supporting gas to the fluidizing zone in a plurality of inflow streams of different velocities insufficient to fluidize the material; continuously agitating the material to mechanically fluidize the same within the fluidizing zone during combustion and cause displacement of residual ash from the zone; and withdrawing the residual ash from a discharge location in the apparatus outside of the fluidizing zone.

Chastain, C.E.; King, D.R.

1986-05-20T23:59:59.000Z

92

COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS  

E-Print Network (OSTI)

COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS Arvind Varma, Alexander S. Gasless Combustion SynthesisFrom Elements B. Combustion Synthesis in Gas-Solid Systems C. Products of Thermite-vpe SHS D. Commercial Aspects IV. Theoretical Considerations A. Combustion Wave Propagation Theory

Mukasyan, Alexander

93

COMBUSTION ISSUES AND APPROACHES FOR CHEMICAL MICROTHRUSTERS  

E-Print Network (OSTI)

1 COMBUSTION ISSUES AND APPROACHES FOR CHEMICAL MICROTHRUSTERS Richard A. Yetter, Vigor Yang, Ming and the effects of downsizing on combustion performance. In particular, combustion of liquid nitromethane in a thruster combustion chamber with a volume of 108 mm3 and diameter of 5 mm was experimentally investigated

Yang, Vigor

94

The Combustion Institute 5001 Baum Boulevard  

E-Print Network (OSTI)

The Combustion Institute 5001 Baum Boulevard Pittsburgh, Pennsylvania, USA 15213-1851 CENTRAL STATES SECTION OF THE COMBUSTION INSTITUTE CALL FOR PAPERS TECHNICAL MEETING - SPRING 2002 COMBUSTION 7-9, 2002 #12;CENTRAL STATES SECTION OF THE COMBUSTION INSTITUTE www.cssci.org CALL FOR PAPERS

Tennessee, University of

95

Residential Wood Residential wood combustion (RWC) is  

E-Print Network (OSTI)

Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

96

Plum Combustion | Open Energy Information  

Open Energy Info (EERE)

Plum Combustion Plum Combustion Jump to: navigation, search Name Plum Combustion Place Atlanta, Georgia Product Combustion technology, which reduces NOx-emissions. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

Predictive modeling of combustion processes  

E-Print Network (OSTI)

Recently, there has been an increasing interest in improving the efficiency and lowering the emissions from operating combustors, e.g. internal combustion (IC) engines and gas turbines. Different fuels, additives etc. are ...

Sharma, Sandeep, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

98

Combustion modeling in waste tanks  

DOE Green Energy (OSTI)

This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data.

Mueller, C.; Unal, C. [Los Alamos National Lab., NM (United States); Travis, J.R. [Los Alamos National Lab., NM (United States)]|[Forschungszentrum Karlsruhe (Germany). Inst. fuer Reaktorsicherheit

1997-08-01T23:59:59.000Z

99

Reducing mode circulating fluid bed combustion  

DOE Patents (OSTI)

A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

Lin, Yung-Yi (Katy, TX); Sadhukhan, Pasupati (Katy, TX); Fraley, Lowell D. (Sugarland, TX); Hsiao, Keh-Hsien (Houston, TX)

1986-01-01T23:59:59.000Z

100

High Efficiency, Clean Combustion  

DOE Green Energy (OSTI)

Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

Donald Stanton

2010-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thallium in Coal Combustion Products  

Science Conference Proceedings (OSTI)

Thallium is a naturally occurring trace element that is present in coal and coal combustion products (CCPs). Thallium is of interest because it has a relatively low maximum contaminant level (MCL) in drinking water. This Technical Brief provides EPRI data on thallium in CCPs, along with general information on its occurrence, health effects, and treatment. Most of the information presented is summarized from the 2008 EPRI Technical Report 1016801, Chemical Constituents in Coal Combustion Product Leachate: ..

2013-11-27T23:59:59.000Z

102

Oxy-Combustion Activities Worldwide  

Science Conference Proceedings (OSTI)

This report reviews oxy-combustion development activities throughout the world. The report opens by reviewing carbon dioxide (CO2) capture technologies and their relative advantages and disadvantages before focusing on oxy-combustion concepts and giving details on potential designs. It then delves into each sub-system (air separation, oxy boiler, gas quality control, and CO2 purification) giving the latest updates on technologies and associated development issues, pulling from work reported at the Second...

2012-06-26T23:59:59.000Z

103

The first turbulent combustion  

E-Print Network (OSTI)

The first turbulent combustion arises in a hot big bang cosmological model Gibson (2004) where nonlinear exothermic turbulence permitted by quantum mechanics, general relativity, multidimensional superstring theory, and fluid mechanics cascades from Planck to strong force freeze out scales with gravity balancing turbulent inertial-vortex forces. Interactions between Planck scale spinning and non-spinning black holes produce high Reynolds number turbulence and temperature mixing with huge Reynolds stresses driving the rapid inflation of space. Kolmogorovian turbulent temperature patterns are fossilized as strong-force exponential inflation stretches them beyond the scale of causal connection ct where c is light speed and t is time. Fossil temperature turbulence patterns seed nucleosynthesis, and then hydro-gravitational structure formation in the plasma epoch, Gibson (1996, 2000). Evidence about formation mechanisms is preserved by cosmic microwave background temperature anisotropies. CMB spectra indicate hydro-gravitational fragmentation at supercluster to galaxy masses in the primordial plasma with space stretched by \\~10^50. Bershadskii and Sreenivasan (2002, 2003) CMB multi-scaling coefficients support a strong turbulence origin for the anisotropies prior to the plasma epoch.

Carl H. Gibson

2005-01-19T23:59:59.000Z

104

Particulate emissions from combustion of biomass in conventional combustion (air) and oxy-combustion conditions.  

E-Print Network (OSTI)

??Oxy-fuel combustion is a viable technology for new and existing coal-fired power plants, as it facilitates carbon capture and thereby, can reduce carbon dioxide emissions.… (more)

Ruscio, Amanda

2013-01-01T23:59:59.000Z

105

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network (OSTI)

1979. J.B. Heywood, Internal Combustion Engine Fundamentals.Ignition Engine with Optimal Combustion Control. ” US PatentIntroduction to Internal Combustion Engines (3rd Edition).

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

106

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network (OSTI)

J.M. , liThe F1uidised Combustion of Coal," Sixteenth Sm osium {International} on Combustion, August 1976 (to beof Various Polymers Under Combustion Conditions," Fourteenth

Chin, W.K.

2010-01-01T23:59:59.000Z

107

Pre-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a...

108

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

109

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

This invention is comprised of an improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1992-12-31T23:59:59.000Z

110

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1993-12-21T23:59:59.000Z

111

Turbulent Combustion in SDF Explosions  

Science Conference Proceedings (OSTI)

A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

Kuhl, A L; Bell, J B; Beckner, V E

2009-11-12T23:59:59.000Z

112

HCCI Combustion: Analysis and Experiments  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions. The multi-zone model h as applicability to the optimization of combustion chamber geometry and operating conditions to achieve controlled combustion at high efficiency and low emissions. On experimental work, we have done a thorough evaluation of operating conditions in a 4-cylinder Volkswagen TDI engine. The engine has been operated over a wide range of conditions by adjusting the intake temperature and the fuel flow rate. Satisfactory operation has been obtained over a wide range of operating conditions. Cylinder-to-cylinder variations play an important role in limiting maximum power, and should be controlled to achieve satisfactory performance.

Salvador M. Aceves; Daniel L. Flowers; Joel Martinez-Frias; J. Ray Smith; Robert Dibble; Michael Au; James Girard

2001-05-14T23:59:59.000Z

113

Hydrocarbon Fouling of SCR during PCCI combustion  

SciTech Connect

The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust. The Fe-zeolite NOX conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the raw engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite showed better tolerance to HC fouling at low temperatures compared to the Fe-zeolite but PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOX conversion efficiency. Furthermore, chemical analysis of the hydrocarbons trapped on the SCR cores was conducted to better determine chemistry specific effects.

Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL

2012-01-01T23:59:59.000Z

114

Combustion instability modeling and analysis  

DOE Green Energy (OSTI)

It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering

1995-12-31T23:59:59.000Z

115

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

116

Combustion heater for oil shale  

DOE Patents (OSTI)

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

117

Engine Combustion Network Experimental Data  

DOE Data Explorer (OSTI)

Maintained by the Engine Combustion Department of Sandia National Laboratories, data currently available on the website includes reacting and non-reacting sprays in a constant-volume chamber at conditions typical of diesel combustion. The data are useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. A search utility displays data based on experimental conditions such as ambient temperature, ambient density, injection pressure, nozzle size, fuel, etc. Experiment-related visualizations are also available. The search utility for experimental data is located at http://public.ca.sandia.gov/ecn/cvdata/frameset.html (Specialized Interface)

118

Transonic Combustion Inc | Open Energy Information  

Open Energy Info (EERE)

Transonic Combustion Inc Transonic Combustion Inc Jump to: navigation, search Name Transonic Combustion, Inc. Place Camarillo, California Zip CA 93012 Sector Efficiency, Renewable Energy Product Transonic Combustion, Inc. is a US based research & development company focused on developing ultra-high efficiency automotive engines that run on gasoline and bio-renewable flex fuels. References Transonic Combustion, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Transonic Combustion, Inc. is a company located in Camarillo, California . References ↑ "Transonic Combustion, Inc." Retrieved from "http://en.openei.org/w/index.php?title=Transonic_Combustion_Inc&oldid=352376

119

Engine control system for multiple combustion modes  

Science Conference Proceedings (OSTI)

To reduce the emission by Diesel-engine in railway traction, continuous development and innovation in combustion, sensing net, control method and strategies are required to met the legal requirements. Multiple combustion modes by Diesel engines can reduce ...

D. Bonta; V. Tulbure; Cl. Festila

2008-05-01T23:59:59.000Z

120

TURBULENT FRBRNNING MVK130 Turbulent Combustion  

E-Print Network (OSTI)

TURBULENT F�RBR�NNING MVK130 Turbulent Combustion Poäng: 3.0 Betygskala: TH Valfri för: M4 to combustion, McGraw-Hill 1996. #12;

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Free Energy and Internal Combustion Engine Cycles  

E-Print Network (OSTI)

The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

Harris, William D

2012-01-01T23:59:59.000Z

122

Method for storing radioactive combustible waste  

DOE Patents (OSTI)

A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

Godbee, H.W.; Lovelace, R.C.

1973-10-01T23:59:59.000Z

123

Large-Scale Hydrogen Combustion Experiments  

Science Conference Proceedings (OSTI)

Large-scale combustion experiments show that deliberate ignition can limit hydrogen accumulation in reactor containments. The collected data allow accurate evaluation of containment pressures and temperatures associated with hydrogen combustion.

1988-10-18T23:59:59.000Z

124

Theoretical studies on hydrogen ignition and droplet combustion  

E-Print Network (OSTI)

Combustion Theory Second Edition, Addison-Wesley, Red- woodCombustion Theory. Second Edition, Addison-Wesley, Red- wood

Del Álamo, Gonzalo

2006-01-01T23:59:59.000Z

125

Combustion Synthesis of Silicon Carbide 389 Combustion Synthesis of Silicon Carbide  

E-Print Network (OSTI)

Combustion Synthesis of Silicon Carbide 389 X Combustion Synthesis of Silicon Carbide Alexander S. Mukasyan University of Notre Dame USA 1. Introduction Combustion synthesis (CS) is an effective technique by which combustion synthesis can occur: self - propagating high-temperature synthesis (SHS) and volume

Mukasyan, Alexander

126

ME 6990 -Combustion Catalog Data: ME 6990: Combustion. Sem. 2. Class 3, Credit 3 (el.).  

E-Print Network (OSTI)

ME 6990 - Combustion Catalog Data: ME 6990: Combustion. Sem. 2. Class 3, Credit 3 (el.). Physical and chemical aspects of basic combustion phenomena. Classification of flames. Measurement of laminar flame. Fuels. Atomization and evaporation of liquid fuels. Theories of ignition, stability and combustion

Panchagnula, Mahesh

127

Supersonic combustion studies using a multivariate quadrature based method for combustion modeling  

E-Print Network (OSTI)

Supersonic combustion studies using a multivariate quadrature based method for combustion modeling function (PDF) of thermochemical variables can be used for accurately computing the combustion source term of predictive models for supersonic combustion is a critical step in design and development of scramjet engines

Raman, Venkat

128

Oxy-combustion Boiler Material Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-combustion Boiler Material Oxy-combustion Boiler Material Development Background In an oxy-combustion system, combustion air (79 percent nitrogen, 21 percent oxygen) is replaced by oxygen and recycled flue gas (carbon dioxide [CO 2 ] and water), eliminating nitrogen in the flue gas stream. When applied to an existing boiler, the flue gas recirculation rate is adjusted to enable the boiler to maintain its original air-fired heat absorption performance, eliminating the need to derate the boiler

129

Combustion Synthesis of Doped Calcium Cobaltate Thermoelectric ...  

Science Conference Proceedings (OSTI)

Symposium, Innovative Processing and Synthesis of Ceramics, Glasses and Composites. Presentation Title, Combustion Synthesis of Doped Calcium Cobaltate ...

130

Review of Combustion Modification Emerging Technologies  

Science Conference Proceedings (OSTI)

Combustion modification emerging technologies for coal-fired boilers represent new developments in NOx control through changes in the fuel/air mixing of the combustion process. Technologies examined in this report fall into the categories of low-NOX burners (LNB), overfire air (OFA), enriched combustion, and combustion diagnostics. The technology reviews are comprised of the following sections where sufficient information was available: background, NOX reduction principle, performance and experience base...

2008-02-26T23:59:59.000Z

131

Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode  

DOE Patents (OSTI)

This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

2008-10-07T23:59:59.000Z

132

Combustor nozzle for a fuel-flexible combustion system  

DOE Patents (OSTI)

A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

Haynes, Joel Meier (Niskayuna, NY); Mosbacher, David Matthew (Cohoes, NY); Janssen, Jonathan Sebastian (Troy, NY); Iyer, Venkatraman Ananthakrishnan (Mason, OH)

2011-03-22T23:59:59.000Z

133

Fifteen Lectures on Laminar and Turbulent Combustion  

E-Print Network (OSTI)

Fifteen Lectures on Laminar and Turbulent Combustion N. Peters RWTH Aachen Ercoftac Summer School in Combustion Systems 1 Lecture 2: Calculation of Adiabatic Flame Temperatures and Chemical Equilibria 20: Laminar Diffusion Flames: Different Flow Geometries 156 Lecture 11: Turbulent Combustion: Introduction

Peters, Norbert

134

Combustion joining of refractory materials: Carboncarbon composites  

E-Print Network (OSTI)

Combustion joining of refractory materials: Carbon­carbon composites Jeremiah D.E. White Department­carbon composite is achieved by employing self-sustained, oxygen-free, high-temperature combustion reactions to a used "core" to produce a brake that meets the performance specifications. The combustion-joining (CJ

Mukasyan, Alexander

135

Reduced No.sub.x combustion method  

DOE Patents (OSTI)

A combustion method enabling reduced NO.sub.x formation wherein fuel and oxidant are separately injected into a combustion zone in a defined velocity relation, combustion gases are aspirated into the oxidant stream prior to intermixture with the fuel, and the fuel is maintained free from contact with oxygen until the intermixture.

Delano, Mark A. (Briarcliff Manor, NY)

1991-01-01T23:59:59.000Z

136

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING  

E-Print Network (OSTI)

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE Prepared For: California Energy REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES EISG AWARDEE University://www.energy.ca.gov/research/index.html. #12;Page 1 Integral Catalytic Combustion/Fuel Reforming for Gas Turbine Cycles EISG Grant # 99

137

Boron in Coal Combustion Products  

Science Conference Proceedings (OSTI)

This Technical Brief summarizes EPRI data on boron in CCPs, along with general information on its occurrence, health effects, and treatment. Much of the information presented is summarized from the 2005 EPRI technical report 1005258, Chemical Constituents in Coal Combustion Product Leachate: Boron, and is updated where appropriate.

2012-12-30T23:59:59.000Z

138

Pressurized fluidized-bed combustion  

SciTech Connect

If pressurised fluidised-bed combustion is to be used in combined cycle electricity generation, gas turbines must be made reliable and flue gas emission standards must be met. This report examines the issues of particulate cleaning before the turbine and stack, as well as recent work on the development of advanced gas filters.

Yeager, K.

1983-06-01T23:59:59.000Z

139

Combustion characterization of beneficiated coal-based fuels  

Science Conference Proceedings (OSTI)

The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and missions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects test; and full-scale combustion tests.

Chow, O.K.; Nsakala, N.Y.

1990-06-01T23:59:59.000Z

140

Method of combustion for dual fuel engine  

DOE Patents (OSTI)

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Combustion engineering issues for solid fuel systems  

SciTech Connect

The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

Bruce Miller; David Tillman [Pennsylvania State University, University Park, PA (United States). Energy Institute

2008-05-15T23:59:59.000Z

142

Method of combustion for dual fuel engine  

DOE Patents (OSTI)

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21T23:59:59.000Z

143

Combustion diagnostic for active engine feedback control  

DOE Patents (OSTI)

This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

Green, Jr., Johney Boyd (Knoxville, TN); Daw, Charles Stuart (Knoxville, TN); Wagner, Robert Milton (Knoxville, TN)

2007-10-02T23:59:59.000Z

144

An Energy Analysis of the Catalytic Combustion Burner  

E-Print Network (OSTI)

The gas boilers of conventional flame always produce varying degrees of combustion products NOx and CO, which pollute the environment and waste energy. As a new way of combustion, catalytic combustion breaks the flammable limits of conventional flame combustion, and realizes the combustion of ultra-natural gas/air mixture under the flammable limits. Its combustion efficiency is higher, which improves the ratio of energy utilization. Applying the catalytic combustion to gas boilers could solve the gas boilers' lower combustion efficiency, and achieve energy savings. On the basis of the catalytic combustion burner, the catalytic combustion burner was designed according to the catalytic combustion and water heaters. In this paper, we analyzed the heat loss and thermal efficiency of the catalytic combustion burner, and compared it to that of flame combustion boilers. The results showed that catalytic combustion burner ?'s heat loss is not so high as originally considered, and its pollutant emissions are lower.

Dong, Q.; Zhang, S.; Duan, Z.; Zhou, Q.

2006-01-01T23:59:59.000Z

145

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion  

SciTech Connect

The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally, the transient demonstration was performed in Phase IV. The project demonstrated the achievement of meeting US10 emissions without NOx aftertreatment. The successful execution of the project has served to highlight the effectiveness of closely matched combustion predictive tools to engine testing. It has further served to highlight the importance of key technologies and future areas of research and development. In this regard, recommendations are made towards further improvements in the areas of engine hardware, fuel injection systems, controls and fuels.

Ojeda, William de

2010-07-31T23:59:59.000Z

146

Transportable Combustion Turbine Demonstration Project  

Science Conference Proceedings (OSTI)

New York State Electric and Gas Corporation (NYSEG) installed a 7.15-MW Solar® Taurus™ 70 (nominal 7 MW) gas combustion turbine (CT) at its State Street substation in Auburn, New York. As a demonstration project supported through EPRI's Tailored Collaboration (TC) program, it is intended to aid in better understanding the "complete picture" for siting this particular technology as a distributed resource (DR).

2001-12-14T23:59:59.000Z

147

Control circuit for combustion systems  

SciTech Connect

A control circuit is described for gas fired burners and the like such as are employed in commercial laundry fabric ironers requiring the energization of a blower motor and the resulting opening of a gas valve and ignition of a gas burner only after an air pressure sensitive switch is actuated through the operation of the blower motor for purging the system of combustible gases.

Kamberg, E.

1981-11-10T23:59:59.000Z

148

Oil shale combustion/retorting  

SciTech Connect

The Morgantown Energy Technology Center (METC) conducted a number of feasibility studies on the combustion and retorting of five oil shales: Celina (Tennessee), Colorado, Israeli, Moroccan, and Sunbury (Kentucky). These studies generated technical data primarily on (1) the effects of retorting conditions, (2) the combustion characteristics applicable to developing an optimum process design technology, and (3) establishing a data base applicable to oil shales worldwide. During the research program, METC applied the versatile fluidized-bed process to combustion and retorting of various low-grade oil shales. Based on METC's research findings and other published information, fluidized-bed processes were found to offer highly attractive methods to maximize the heat recovery and yield of quality oil from oil shale. The principal reasons are the fluidized-bed's capacity for (1) high in-bed heat transfer rates, (2) large solid throughput, and (3) selectivity in aromatic-hydrocarbon formation. The METC research program showed that shale-oil yields were affected by the process parameters of retorting temperature, residence time, shale particle size, fluidization gas velocity, and gas composition. (Preferred values of yields, of course, may differ among major oil shales.) 12 references, 15 figures, 8 tables.

Not Available

1983-05-01T23:59:59.000Z

149

Is combustion of plastics desirable?  

Science Conference Proceedings (OSTI)

Managing waste will always entail some tradeoffs. All of the three options--recycling, landfilling and combustion--have some disadvantages. Even landfilling, which produces no emissions, fails to take advantage of the energy value inherent in plastic. Waste combustion, on the other hand, recovers the energy in plastic materials and reduces the volume of disposed solid waste by up to 90% of its initial preburn volumes. However, this management option generates emissions and produces an ash residue that must be managed. As demonstrated by recent test burns, improvements in combustion and air-pollution-control technology have dramatically reduced the health risks from emissions and ash. Recent studies have shown that plastics--in quantities even higher than those normally found in municipal solid waste--do not adversely affect levels of emissions or the quality of ash from waste-to-energy facilities. In addition, waste-to-energy facilities may be a relatively economical source of fuel, and may be a more economic solution to waste management than the other available options. A waste-to-energy plant generally produces electricity that is sold to the electric utilities for approximately six cents per kilowatt-hour, a rate that is competitive with those offered by nuclear power plants and power plants that generate energy by burning fossil fuels.

Piasecki, B.; Rainey, D. [Rensselaer Polytechnic Inst., Troy, NY (United States). Lally School of Management and Technology; Fletcher, K.

1998-07-01T23:59:59.000Z

150

Sandia Combustion Research Program: Annual report, 1986  

DOE Green Energy (OSTI)

This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

Not Available

1986-01-01T23:59:59.000Z

151

ME 374C Combustion Engine Processes ABET EC2000 syllabus  

E-Print Network (OSTI)

ME 374C ­ Combustion Engine Processes Page 1 ABET EC2000 syllabus ME 374C ­ Combustion Engine combustion engines, fuels, carburetion, combustion, exhaust emissions, knock, fuel injection, and factors to an appropriate major sequence in engineering. Textbook(s): Internal Combustion Engines and Automotive Engineering

Ben-Yakar, Adela

152

NISTIR 6458 Characterization of the Inlet Combustion Air in  

E-Print Network (OSTI)

NISTIR 6458 Characterization of the Inlet Combustion Air in NIST's Reference Spray Combustion January 2000 #12;ii Contents page Introduction 1 Reference Spray Combustion Facility 3 Numerical;1 Characterization of the Inlet Combustion Air in NIST's Reference Spray Combustion Facility: Effect of Vane Angle

Magee, Joseph W.

153

NETL: IEP – Post-Combustion CO2 Emissions Control - Oxy-Combustion Boiler  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Combustion Boiler Material Development Oxy-Combustion Boiler Material Development Project No.: DE-NT0005262 CLICK ON IMAGE TO ENLARGE Foster Wheeler Oxy-combustion CFD Graphic The objectives of this Foster Wheeler Corporation-managed program are to assess the corrosion characteristics of oxy-combustion relative to air-fired combustion; identify the corrosion mechanisms involved; and determine the effects of oxy-combustion on conventional boiler tube materials, conventional protective coatings, and alternative materials and coatings when operating with high to low sulfur coals. The program involves the prediction of oxy-combustion gas compositions by computational fluid dynamic calculations, exposure of coupons of boiler materials and coverings coated with coal ash deposit to simulated oxy-combustion gases in electric

154

Advanced Vehicle Testing Activity- Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles What's New 2012 Honda Civic CNG Baseline Performance Testing (PDF 292KB) 2013 Volkswagen Jetta TDI Baseline Performance Testing (PDF...

155

ENGINE COMBUSTION CONTROL VIA FUEL REACTIVITY ...  

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a ...

156

Investigation of Solution Combustion Synthesis and Precipitation ...  

Science Conference Proceedings (OSTI)

Presentation Title, Investigation of Solution Combustion Synthesis and Precipitation Synthesis Conditions on TiO2 and ZnO Nanopowder Characteristics

157

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing Activity:...

158

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles The Advanced Vehicle Testing Activity (AVTA) is tasked by the U.S. Department of Energy's (DOE) Vehicle Technology Office (VTO) to conduct...

159

Insitu Oxygen Conduction Into Internal Combustion Chamber  

Insitu Oxygen Conduction Into Internal Combustion Chamber Note: The technology described above is an early stage opportunity. Licensing rights to this ...

160

High Performance Alloys for Advanced Combustion Systems  

Science Conference Proceedings (OSTI)

For steam turbines, it is necessary to raise temperatures in excess of 700?C. For gas turbines, raising the temperature also works but migrating the combustion ...

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Session Overview: Heterogeneous Combustion Randall E. Winans...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heterogeneous Combustion Randall E. Winans, Session Chair X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA Heterogeneous...

162

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

163

Pyrolysis reactor and fluidized bed combustion chamber  

DOE Patents (OSTI)

A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

Green, Norman W. (Upland, CA)

1981-01-06T23:59:59.000Z

164

Combustion Process Contact NETL Technology Transfer Group  

NLE Websites -- All DOE Office Websites (Extended Search)

the Reactivity and Capacity of Oxygen Carriers for the Chemical Looping Combustion Process Contact NETL Technology Transfer Group techtransfer@netl.doe.gov February 2013 This...

165

Engine Valve Actuation For Combustion Enhancement  

DOE Patents (OSTI)

A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

2004-05-18T23:59:59.000Z

166

Engine valve actuation for combustion enhancement  

DOE Patents (OSTI)

A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

2008-03-04T23:59:59.000Z

167

Vehicle Technologies Office: Combustion and Emission Control  

NLE Websites -- All DOE Office Websites (Extended Search)

and fuel formulation to arrive at the most cost-effective approach to optimizing advanced combustion engine efficiency and performance while reducing emissions to near-zero levels....

168

Combustion turbine operation and optimization model.  

E-Print Network (OSTI)

??Combustion turbine performance deterioration, quantified by loss of system power, is an artifact of increased inlet air temperature and continuous degradation of the machine. Furthermore,… (more)

Sengupta, Jeet

2012-01-01T23:59:59.000Z

169

Premixed Combustion of Hydrogen Augmented Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

premixed combustion * Effective for emission reduction with natural gas * High hydrogen flame speed requires care in premixer design for SGH fuels * UC Irvine study quantifies...

170

COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977  

E-Print Network (OSTI)

Applied to Turbulent Combustion Flows J. W. Daily and C.Metals from Pulverized Coal Combustion P. Sherman and F.Applied to Turbulent Combustion Flows J. W. Daily and C.

Authors, Various

2011-01-01T23:59:59.000Z

171

Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion  

DOE Green Energy (OSTI)

The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustion control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.

Thornton, J.D.; Chorpening, B.T.; Sidwell, T.; Strakey, P.A.; Huckaby, E.D.; Benson, K.J. (Woodward)

2007-05-01T23:59:59.000Z

172

Manifold methods for methane combustion  

SciTech Connect

Objective is to develop a new method for studying realistic chemistry in turbulent methane combustion with NO{sub x} mechanism. The realistic chemistry is a simplification to a more detailed chemistry based on the manifold method; accuracy is determined by interaction between the transport process and the chemical reaction. In this new (tree) method, probability density function or partially stirred reactor calculations are performed. Compared with the reduced mechanism, manifold, and tabulation methods, the new method overcomes drawbacks of the reduced mechanism method and preserves the advantages of the manifold method. Accuracy is achieved by specifying the size of the cell.

Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)

1995-12-31T23:59:59.000Z

173

Nanotechnology Combustion Sensors: Prototype Development  

Science Conference Proceedings (OSTI)

The release of nitrogen oxides (NOx) and sulfur dioxide (SO2) from the combustion of fossil fuels and other sources is linked to various ecosystem impacts and human health effects, including acid rain, coastal eutrophication, damage to forest ecosystems, chronic bronchitis, respiratory problems, and heart attacks. The U.S. Environmental Protection Agency (EPA) estimates that in 2003, total NOx and SO2 emissions from various sources in the United States were 20.8 million tons and 15.9 million tons, respec...

2008-12-23T23:59:59.000Z

174

Findings of Hydrogen Internal Combustion Engine Durability  

DOE Green Energy (OSTI)

Hydrogen Internal Combustion Engine (HICE) technology takes advantage of existing knowledge of combustion engines to provide a means to power passenger vehicle with hydrogen, perhaps as an interim measure while fuel cell technology continues to mature. This project seeks to provide data to determine the reliability of these engines. Data were collected from an engine operated on a dynamometer for 1000 hours of continuous use. Data were also collected from a fleet of eight (8) full-size pickup trucks powered with hydrogen-fueled engines. In this particular application, the data show that HICE technology provided reliable service during the operating period of the project. Analyses of engine components showed little sign of wear or stress except for cylinder head valves and seats. Material analysis showed signs of hydrogen embrittlement in intake valves.

Garrett Beauregard

2010-12-31T23:59:59.000Z

175

Investigation of the relationship between particulate-bound mercury and properties of fly ash in a full-scale 100 MWe pulverized coal combustion boiler  

Science Conference Proceedings (OSTI)

The properties of fly ash in coal-fired boilers influence the emission of mercury from power plants into the environment. In this study, seven different bituminous coals were burned in a full-scale 100 MWe pulverized coal combustion boiler and the derived fly ash samples were collected from a mechanical hopper (MH) and an electrostatic precipitator hopper (ESP). The mercury content, specific surface area (SSA), unburned carbon, and elemental composition of the fly ash samples were analyzed to evaluate the correlation between the concentration of particulate-bound mercury and the properties of coal and fly ash. For a given coal, it was found that the mercury content in the fly ash collected from the ESP was greater than in the fly ash samples collected from the MHP. This phenomenon may be due to a lower temperature of flue gas at the ESP (about 135{sup o}C) compared to the temperature at the air preheater (about 350{sup o}C). Also, a significantly lower SSA observed in MH ash might also contribute to the observation. A comparison of the fly ash samples generated from seven different coals using statistical methods indicates that the mercury adsorbed on ESP fly ashes has a highly positive correlation with the unburned carbon content, manganese content, and SSA of the fly ash. Sulfur content in coal showed a significant negative correlation with the Hg adsorption. Manganese in fly ash is believed to participate in oxidizing volatile elemental mercury (Hg{sup 0}) to ionic mercury (Hg{sup 2+}). The oxidized mercury in flue gas can form a complex with the fly ash and then get removed before the flue gas leaves the stack of the boiler.

Sen Li; Chin-Min Cheng; Bobby Chen; Yan Cao; Jacob Vervynckt; Amanda Adebambo; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2007-12-15T23:59:59.000Z

176

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

177

Sandia combustion research program: Annual report, 1987  

DOE Green Energy (OSTI)

More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A. (eds.)

1988-01-01T23:59:59.000Z

178

Method and system for controlled combustion engines  

DOE Patents (OSTI)

A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

Oppenheim, A. K. (Berkeley, CA)

1990-01-01T23:59:59.000Z

179

TURBULENT FRBRNNING MVK 130 Turbulent Combustion  

E-Print Network (OSTI)

TURBULENT F�RBR�NNING MVK 130 Turbulent Combustion Antal poäng: 3.0. Valfri för: M4. Kursansvarig program med hänsyn till de modeller som används. Litteratur S.R. Turns: An introduction to combustion, Mc

180

Application of Computed Tomography to Microgravity Combustion  

Science Conference Proceedings (OSTI)

This paper describes applications of computed tomography (CT) to combustion phenomena under microgravity conditions. Infrared Thermography (IT) has been considered as a promising method for two-dimensional measurement of flames. We have applied IT to ... Keywords: computed tomography, diffusion flame, infrared thermography, microgravity combustion, spectroscopy

H. Sato; K. Itoh; M. Shimizu; S. Hayashi; Y. Fujimori; K. Maeno

1999-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Oscillating combustion from a premix fuel nozzle  

DOE Green Energy (OSTI)

Stringent emissions requirements for stationary gas turbines have produced new challenges in combustor design. In the past, very low NOx pollutant emissions have been achieved through various combustion modifications, such as steam or water injection, or post-combustion cleanup methods such as selective catalytic reduction (SCR). An emerging approach to NOx abatement is lean premix combustion. Lean premix combustion avoids the cost and operational problems associated with other NOx control methods. By premixing fuel and air at very low equivalence ratios, the high temperatures which produce NOx are avoided. The challenges of premix combustion include avoiding flashback, and ensuring adequate fuel/air premixing. In addition, the combustion must be stable. The combustor should not operate so close to extinction that a momentary upset will extinguish the flame (static stability), and the flame should not oscillate (dynamic stability). Oscillations are undesirable because the associated pressure fluctuations can shorten component lifetime. Unfortunately, experience has shown that premix fuel nozzles burning natural gas are susceptible to oscillations. Eliminating these oscillations can be a costly and time consuming part of new engine development. As part of the U.S. Department of Energy`s Advanced Turbine Systems Program, the Morgantown Energy Technology Center (METC) is investigating the issue of combustion oscillations produced by lean premix fuel nozzles. METC is evaluating various techniques to stabilize oscillating combustion in gas turbines. Tests results from a premix fuel nozzle using swirl stabilization and a pilot flame are reported here.

Richards, G.A.; Yip, M.J.

1995-08-01T23:59:59.000Z

182

High resolution fossil fuel combustion CO2 emission fluxes for...  

NLE Websites -- All DOE Office Websites (Extended Search)

High resolution fossil fuel combustion CO2 emission fluxes for the United States Title High resolution fossil fuel combustion CO2 emission fluxes for the United States Publication...

183

Vehicle Technologies Office: Materials for High Efficiency Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Materials for High Efficiency Combustion Engines on Facebook Tweet about Vehicle...

184

Method of launching a missile using secondary combustion  

SciTech Connect

A method is described of selectively increasing the energy output of a gas generator utilized to launch a missile from a launch tube without igniting the missile until after it is launched from the tube comprising the steps of: providing combustible products in the products of combustion produced by primary combustion within the gas generator; providing varying quantities of oxidant in the launch tube to burn the combustible products in the products of combustion produced by the gas generator; and controlling the temperature of the products of combustion produced by the gas generator to permit secondary combustion of the combustible products.

Erikson, E.E.

1987-06-09T23:59:59.000Z

185

NREL: Vehicles and Fuels Research - Advanced Combustion and Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion and Fuels Projects NREL's advanced combustion and fuels projects bridge fundamental chemical kinetics and engine research to investigate how new vehicle fuels...

186

Finite-Rate Chemistry Effects in Turbulent Premixed Combustion.  

E-Print Network (OSTI)

??In recent times significant public attention has been drawn to the topic of combustion. This has been due to the fact that combustion is the… (more)

Dunn, Matthew John

2008-01-01T23:59:59.000Z

187

Study on the Combustion Characteristics and Kinetics of Blending ...  

Science Conference Proceedings (OSTI)

The changes of combustion characteristic parameters o f pulverized coals are analyzed. The results show that DTG curves of coal combustion move to low ...

188

2.61 Internal Combustion Engines, Spring 2004  

E-Print Network (OSTI)

Fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Study of fluid flow, thermodynamics, combustion, heat transfer ...

Heywood, John B.

189

Post-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Post-Combustion Carbon Capture Research Post-Combustion Carbon Capture Research Fossil fuel fired electric generating plants are the cornerstone of America's central power system....

190

FEMP Technology Brief: Boiler Combustion Control and Monitoring...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Combustion Control and Monitoring System FEMP Technology Brief: Boiler Combustion Control and Monitoring System October 7, 2013 - 9:12am Addthis This composite photo shows...

191

Groundbreaking Combustion Research by LBNL Featured on Cover...  

NLE Websites -- All DOE Office Websites (Extended Search)

matches a combustion experiment. Gaining a better understanding of combustion, which powers everything from automobiles to aircraft to power generating plants, can help improve...

192

Pages that link to "Coal Combustion By-Products (Maryland)" ...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Combustion By-Products (Maryland)" Coal Combustion By-Products (Maryland) Jump to:...

193

Changes related to "Coal Combustion By-Products (Maryland)" ...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Combustion By-Products (Maryland)" Coal Combustion By-Products (Maryland) Jump to:...

194

NETL: Staged, High-Pressure Oxy-Combustion Technology: Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

tool Conducting CFD-aided design of a novel staged combustion vessel and radiative heat exchanger Performing lab-scale experiments of staged combustion without flue gas...

195

Coal combustion science. Quarterly progress report, April 1994--June 1994  

Science Conference Proceedings (OSTI)

Research on coal combustion continued. This report presents results on: kinetics and mechanisms of coal char combustion, and deposit growth and property development in coal-fired furnaces.

Hardesty, D.R. [ed.; Baxter, L.L.; Davis, K.A.

1995-07-01T23:59:59.000Z

196

Multi-stage combustion using nitrogen-enriched air - Energy ...  

Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and ...

197

Measurement and Mapping of Pulse Combustion Impingement Heat Transfer Rates .  

E-Print Network (OSTI)

??Current research shows that pulse combustion impingement drying is an improvement over the steady impingement drying currently in commercial use. Pulse combustion impingement has higher… (more)

Hagadorn, Charles C., III

2005-01-01T23:59:59.000Z

198

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Title Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in...

199

NETL: Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process Project No.: DE-FE0000646 The Gas Technology Institute is developing a pre-combustion...

200

Study of abnormal combustion oscillations in gas fired appliances.  

E-Print Network (OSTI)

??The thesis work discusses abnormal combustion noise in gas-fired appliances. An experimental model was made to provide insight into the causes of abnormal combustion noises.… (more)

Kumar, Dasari

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle  

Science Conference Proceedings (OSTI)

A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

2013-12-17T23:59:59.000Z

202

A hybrid 2-zone/WAVE engine combustion model for simulating combustion instabilities during dilute operation  

Science Conference Proceedings (OSTI)

Internal combustion engines are operated under conditions of high exhaust gas recirculation (EGR) to reduce NO x emissions and promote enhanced combustion modes such as HCCI. However, high EGR under certain conditions also promotes nonlinear feedback between cycles, leading to the development of combustion instabilities and cyclic variability. We employ a two-zone phenomenological combustion model to simulate the onset of combustion instabilities under highly dilute conditions and to illustrate the impact of these instabilities on emissions and fuel efficiency. The two-zone in-cylinder combustion model is coupled to a WAVE engine-simulation code through a Simulink interface, allowing rapid simulation of several hundred successive engine cycles with many external engine parametric effects included. We demonstrate how this hybrid model can be used to study strategies for adaptive feedback control to reduce cyclic combustion instabilities and, thus, preserve fuel efficiency and reduce emissions.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

2006-01-01T23:59:59.000Z

203

Oxy-coal Combustion Studies  

SciTech Connect

The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?˘ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?˘ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?˘ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?˘ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?˘ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?˘ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

2012-01-01T23:59:59.000Z

204

Advanced Combustion Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant emissions in advanced power cycles using gas turbines. Photo courtesy of NETL Multimedia. Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant

205

Argonne TTRDC - Engines - Combustion Visualization - emissions,  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Visualization Combustion Visualization Exploring Combustion Using Advanced Imaging Techniques In the photo, the GM diesel test cell is shown with vehicle exhaust aftertreatment hardware (diesel particulate filtration and diesel oxidation catalyst) along with other advanced technology-such as a variable geometry turbocharger, cooled exhaust gas recirculation and a common-rail fuel injection system. Fig. 1. The GM diesel test cell is shown with vehicle exhaust aftertreatment hardware (diesel particulate filtration and diesel oxidation catalyst) along with other advanced technology-such as a variable geometry turbocharger, cooled exhaust gas recirculation and a common-rail fuel injection system. Two-dimensional image of hydrogen combustion OH chemiluminescence. Fig. 2. Two-dimensional image of hydrogen combustion OH chemiluminescence.

206

Fine Particle Emissions from Combustion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Fine Particle Emissions from Combustion Systems Fine Particle Emissions from Combustion Systems Speaker(s): Allen Robinson Date: November 11, 2005 - 12:00pm Location: 90-3122 Combustion systems such as motor vehicles and power plants are major sources of fine particulate matter. This talk describes some of the changes in fine particle emissions that occur as exhaust from combustion systems mix with background air. This mixing cools and dilutes the exhaust which influences gas-particle partitioning of semi-volatile species, the aerosol size distribution, and the fine particle mass. Dilution sampling is used to characterize fine particle emissions from combustion systems because it simulates the rapid cooling and dilution that occur as exhaust mixes with the atmosphere. Results from dilution sampler

207

Post combustion trials at Dofasco`s KOBM furnace  

DOE Green Energy (OSTI)

Post combustion trials were conducted at Dofasco`s 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

Farrand, B.L.; Wood, J.E.; Goetz, F.J.

1992-12-31T23:59:59.000Z

208

Combustion turbine repowering: Final report  

SciTech Connect

The study discusses the findings of a conceptual site-specific investigation into the feasibility of repowering an existing reheat fossil unit utilizing combustion turbines. It identifies a potentially attractive repowering project, through the evaluation and selective elimination of a large number of alternatives. A conceptual design is performed on the selected alternative. Capital costs are developed for this alternative including new equipment and modifications to existing equipment. The results of an economic evaluation and sensitivity analysis are presented, to serve as a basis for a decision on whether or not to proceed with final design, procurement, and construction of the system. The steps presented in the report are intended to provide for the utility industry a detailed methodology for investigating repowering at a specific utility site. 4 refs., 21 figs., 15 tabs.

Oliker, I.; Silaghy, F.J.

1987-11-01T23:59:59.000Z

209

Advances in pulverized coal combustion  

Science Conference Proceedings (OSTI)

A combustion system has been developed to operate cost effectively in the difficult regulatory and economic climate of the 1980's. The system is designed to reduce auxiliary fuel oil comsumption by at least 30% while meeting all relevant emissions limits. This is achieved with the fewest components consistent with practical reliable design criteria. The Controlled Flow Split/Flame low NO/sub x/ burner, MBF pulverizer and Two-Stage ignition system are integrated into a mutually supporting system which is applicable to both new steam generators and, on a retrofit basis, to existing units. In the future, a pulverized coal ignition system will be available to eliminate fuel oil use within the boiler.

Vatsky, J.

1981-01-01T23:59:59.000Z

210

Vehicle Technologies Office: Advanced Combustion Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Engines Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing highway vehicles' fuel economy. The Vehicle Technologies Office's research and development activities address critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles. This technology has great potential to reduce U.S. petroleum consumption, resulting in greater economic, environmental, and energy security. Already offering outstanding drivability and reliability to over 230 million passenger vehicles, internal combustion engines have the potential to become substantially more efficient. Initial results from laboratory engine tests indicate that passenger vehicle fuel economy can be improved by more than up to 50 percent, and some vehicle simulation models estimate potential improvements of up to 75 percent. Advanced combustion engines can utilize renewable fuels, and when combined with hybrid electric powertrains could have even further reductions in fuel consumption. As the EIA reference case forecasts that by 2035, more than 99 percent of light- and heavy-duty vehicles sold will still have internal combustion engines, the potential fuel savings is tremendous.

211

Annual Report: Advanced Combustion (30 September 2012)  

SciTech Connect

The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

Hawk, Jeffrey [NETL] [NETL; Richards, George

2012-09-30T23:59:59.000Z

212

Coal Combustion Science quarterly progress report, April--June 1990  

SciTech Connect

This document provides a quarterly status report of the Coal Combustion Science Program that is being conducted at the Combustion, Research Facility, Sandia National Laboratories, Livermore, California. Coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 56 refs., 25 figs., 13 tabs.

Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

1990-11-01T23:59:59.000Z

213

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network (OSTI)

Wood, “Investigation of the Fate of Specific Hydrocarbon Fuel Components in Diesel Engine Combustion

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

214

Using Biofuel Tracers to Study Alternative Combustion Regimes  

E-Print Network (OSTI)

Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

2006-01-01T23:59:59.000Z

215

Pulse combustion: an assessment of opportunities for increased efficiency  

SciTech Connect

The results of a literature review on pulse combustion are discussed. Current, near-future, and potential opportunities for pulse combustion applications are summarized, and the barriers to developing and using pulse combustion technology are discussed, along with research and development needs. Also provided are the proceedings of a pulse combustion workshop held in May, 1984 in Seattle, Washington. (LEW)

Brenchley, D.L.; Bomelburg, H.J.

1984-12-01T23:59:59.000Z

216

Computationally efficient implementation of combustion chemistry in parallel PDF calculations  

Science Conference Proceedings (OSTI)

In parallel calculations of combustion processes with realistic chemistry, the serial in situ adaptive tabulation (ISAT) algorithm [S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combustion ... Keywords: 07.05.Mh, 46.15.-x, 47.11.-j, Combustion chemistry, Distribution strategy, ISAT, Load balance, Parallel calculation

Liuyan Lu; Steven R. Lantz; Zhuyin Ren; Stephen B. Pope

2009-08-01T23:59:59.000Z

217

Proceedings of the Combustion Institute, Volume 28, 2000/pp. 16631669 COMBUSTION CHEMISTRY OF PROPANE: A CASE STUDY OF DETAILED  

E-Print Network (OSTI)

1663 Proceedings of the Combustion Institute, Volume 28, 2000/pp. 1663­1669 COMBUSTION CHEMISTRY Detailed chemical reaction mechanisms describing hydrocarbon combustion chemistry are conceptually to small-hydrocarbon combustion data are secure foundations upon which to optimize the rate parameters

Wang, Hai

218

Progress in Energy and Combustion Science 34 (2008) 377416 Discrete reaction waves: Gasless combustion of solid powder mixtures  

E-Print Network (OSTI)

Progress in Energy and Combustion Science 34 (2008) 377­416 Discrete reaction waves: Gasless combustion of solid powder mixtures A.S. Mukasyana,�, A.S. Rogachevb a Department of Chemical Abstract This review considers a specific domain in combustion science, so-called discrete combustion waves

Mukasyan, Alexander

219

Combustion, Explosion, and Shock Waves, Vol. 46, No. 3, pp. , 2010 Combustion of Heterogeneous Nanostructural Systems (Review)  

E-Print Network (OSTI)

Combustion, Explosion, and Shock Waves, Vol. 46, No. 3, pp. ­, 2010 Combustion of Heterogeneous submitted November 26, 2009. The current status of research in the field of combustion of heterogeneous mechanisms of combustion in such systems and prospects of their further applications are discussed. Key words

Mukasyan, Alexander

220

Chemical Looping for Combustion and Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

ChemiCal looping for Combustion and ChemiCal looping for Combustion and hydrogen produCtion Objective The objective of this project is to determine the benefits of chemical looping technology used with coal to reduce CO 2 emissions. Background Chemical looping is a new method to convert coal or gasified coal to energy. In chemical looping, there is no direct contact between air and fuel. The chemical looping process utilizes oxygen from metal oxide oxygen carrier for fuel combustion, or for making hydrogen by "reducing" water. In combustion applications, the products of chemical looping are CO 2 and H 2 O. Thus, once the steam is condensed, a relatively pure stream of CO 2 is produced ready for sequestration. The production of a sequestration ready CO 2 stream does not require any additional separation units

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Combustion properties of Kraft Black Liquors  

DOE Green Energy (OSTI)

In a previous study of the phenomena involved in the combustion of black liquor droplets a numerical model was developed. The model required certain black liquor specific combustion information which was then not currently available, and additional data were needed for evaluating the model. The overall objectives of the project reported here was to provide experimental data on key aspects of black liquor combustion, to interpret the data, and to put it into a form which would be useful for computational models for recovery boilers. The specific topics to be investigated were the volatiles and char carbon yields from pyrolysis of single black liquor droplets; a criterion for the onset of devolatilization and the accompanying rapid swelling; and the surface temperature of black liquor droplets during pyrolysis, combustion, and gasification. Additional information on the swelling characteristics of black liquor droplets was also obtained as part of the experiments conducted.

Frederick, W.J. Jr.; Hupa, M. (Aabo Akademi, Turku (Finland))

1993-04-01T23:59:59.000Z

222

Biomass Combustion Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Combustion Systems Inc Combustion Systems Inc Jump to: navigation, search Name Biomass Combustion Systems Inc Address 67 Millbrook St Place Worcester, Massachusetts Zip 01606 Sector Biomass Product Combustion systems for wood fuel Website http://www.biomasscombustion.c Coordinates 42.290195°, -71.799627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.290195,"lon":-71.799627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Control of NOx by combustion process modifications  

E-Print Network (OSTI)

A theoretical and experimental study was carried out to determine lower bounds of NOx emission from staged combustion of a 0.7%N #6 fuel oil. Thermodynamic and chemical kinetic calculations have shown minimum NOx emissions ...

Ber?, J. M.

1981-01-01T23:59:59.000Z

224

Coal Combustion By-Products (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of the Environment is responsible for regulating fugitive air emissions from the transportation of coal combustion by-products and the permissible beneficial uses of these by...

225

Two phase exhaust for internal combustion engine  

Science Conference Proceedings (OSTI)

An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

Vuk, Carl T. (Denver, IA)

2011-11-29T23:59:59.000Z

226

Combustion systems for power-MEMS applications  

E-Print Network (OSTI)

As part of an effort to develop a micro-scale gas turbine engine for power generation and micro-propulsion applications, this thesis presents the design, fabrication, experimental testing, and modeling of the combustion ...

Spadaccini, Christopher M. (Christopher Michael), 1974-

2004-01-01T23:59:59.000Z

227

Simplifying Chemistry for Computational Efficiency in Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Simplifying Chemistry for Computational Efficiency in Combustion Calculations Speaker(s): Shaheen Tonse Date: February 28, 2002 - 12:00pm Location: Bldg. 90 Seminar HostPoint of...

228

Predicting combustion properties of hydrocarbon fuel mixtures  

E-Print Network (OSTI)

In this thesis, I applied computational quantum chemistry to improve the accuracy of kinetic mechanisms that are used to model combustion chemistry. I performed transition state theory calculations for several reactions ...

Goldsmith, Claude Franklin, III

2010-01-01T23:59:59.000Z

229

Oil shale retorting and combustion system  

DOE Patents (OSTI)

The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

Pitrolo, Augustine A. (Fairmont, WV); Mei, Joseph S. (Morgantown, WV); Shang, Jerry Y. (Fairfax, VA)

1983-01-01T23:59:59.000Z

230

Chemical Characterization of Fossil Fuel Combustion Wastes  

Science Conference Proceedings (OSTI)

Fossil fuel combustion wastes differ considerably in total composition and in the key chemical characteristics of their extracts, making leachate composition difficult to predict. A new mechanistic approach, however, shows promise for more-accurate prediction.

1987-08-26T23:59:59.000Z

231

Vortex driven flame dynamics and combustion instability  

E-Print Network (OSTI)

Combustion instability in premixed combustors mostly arises due to the coupling between heat release rate dynamics and system acoustics. It is crucial to understand the instability mechanisms to design reliable, high ...

Altay, Hurrem Murat

2005-01-01T23:59:59.000Z

232

Active combustion control : modeling, design and implementation  

E-Print Network (OSTI)

Continuous combustion systems common in propulsion and power generation applications are susceptible to thermoacoustic instability, which occurs under lean burn conditions close to the flammability where most emissions and ...

Park, Sungbae, 1973-

2004-01-01T23:59:59.000Z

233

Flex-flame burner and combustion method  

DOE Patents (OSTI)

A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

Soupos, Vasilios (Chicago, IL); Zelepouga, Serguei (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Abbasi, Hamid A. (Naperville, IL)

2010-08-24T23:59:59.000Z

234

Engine combustion control via fuel reactivity stratification  

Science Conference Proceedings (OSTI)

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2013-12-31T23:59:59.000Z

235

Operational Flexibility Guidelines for Gas Turbine Low NOx Combustion Systems  

Science Conference Proceedings (OSTI)

Gas turbine low-NOx combustion systems can differ in hardware from manufacturer to manufacturer, but the principle is the same. Low-NOx combustors reduce peak flame temperatures by mixing fuel and air before combustion and by keeping the fuel-to-air ratio as low (lean) as possible, while still maintaining combustion stability over the broadest possible operating range. Low-NOx combustion systems are inherently more complex than diffusion combustion systems, a fact that impacts operational flexibility, re...

2011-12-14T23:59:59.000Z

236

Coal Combustion Products Extension Program  

SciTech Connect

This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be expanded at OSU, with support from state and federal agencies, utilities, trade groups, and the university, to focus on the following four specific areas of promise: (a) Expanding use in proven areas (such as use of fly ash in concrete); (b) Removing or reducing regulatory and perceptual barriers to use (by working in collaboration with regulatory agencies); (c) Developing new or under-used large-volume market applications (such as structural fills); and (d) Placing greater emphasis on FGD byproducts utilization.

Tarunjit S. Butalia; William E. Wolfe

2006-01-11T23:59:59.000Z

237

Combustion Turbine Experience and Intelligence Reports: 2007  

Science Conference Proceedings (OSTI)

Combustion turbine (CT) efficiency improvements coupled with heat recovery bottoming steam cycles has risen dramatically over the past 20 years. Much of this improvement is attributed to gas turbine technology transferred from military and commercial aircraft design. This technology advantage coupled with lower emissions inherent to natural gas combustion has effectively set the standard for new large generation additions in many regions. However, there are many concerns and issues related to effectively...

2008-03-27T23:59:59.000Z

238

Fundamental Studies in Syngas Premixed Combustion Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies Studies in Syngas Premixed Combustion Dynamics Ahmed F. Ghoniem, Anuradha M. Annaswamy, Raymond L. Speth, H. Murat Altay Massachusetts Institute of Technology SCIES Project 05-01-SR121 Project Awarded (08/01/2005, 36 Month Duration) Needs & Objectives Gas Turbine Needs Flexibility to operate with variable syngas compositions Ensure stable operation over a wide range of conditions Reduce emissions of CO and NO x Project Objectives Study experimentally lean premixed syngas combustion

239

Internal combustion engine and method for control  

SciTech Connect

In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

Brennan, Daniel G

2013-05-21T23:59:59.000Z

240

Building America Expert Meeting: Combustion Safety  

SciTech Connect

This is a meeting overview of 'The Best Approach to Combustion Safety in a Direct Vent World', held June 28, 2012, in San Antonio, Texas. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

Brand, L.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Combustion Turbine Experience and Intelligence Reports: 2006  

Science Conference Proceedings (OSTI)

Generation markets worldwide present both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive Combustion Turbine/Combined Cycle (CT/CC) program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. The rising cost of fuel gas is the dominant issue in today's market. The EPRI CT Experience and intelligence Reports (...

2007-03-27T23:59:59.000Z

242

Combustion Turbine Experience and Intelligence Report: 2010  

Science Conference Proceedings (OSTI)

Generation markets worldwide present both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive Combustion Turbine/Combined Cycle (CT/CC) program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. The rising cost of fuel gas is the dominant issue in today's market. The EPRI CT Experience and Intelligence Reports (...

2010-12-14T23:59:59.000Z

243

Combustion Turbine Experience and Intelligence Report: 2005  

Science Conference Proceedings (OSTI)

Generation markets worldwide present both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive Combustion Turbine/Combined Cycle (CT/CC) program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. The rising cost of fuel gas is the dominant issue in today's market. The EPRI CT Experience and Intelligence Reports (...

2006-03-06T23:59:59.000Z

244

Oxy-Combustion Activities Worldwide: 2013 Update  

Science Conference Proceedings (OSTI)

This report provides a review of oxy-combustion development activities throughout the world, most of which occurred in the calendar year of 2013. The report opens by introducing oxy-combustion and discussing its relative advantages and disadvantages and associated costs. It then delves into each sub-system (air separation, oxy boiler, gas quality control system [GQCS], and carbon dioxide [CO2] purification) giving the latest updates on technologies and associated development issues in ...

2013-12-18T23:59:59.000Z

245

Combustion Turbine Experience and Intelligence Report: 2008  

Science Conference Proceedings (OSTI)

Combustion turbine (CT) efficiency improvements, coupled with heat recovery bottoming steam cycles, have risen dramatically over the past 20 years. Much improvement is attributed to gas turbine technology transferred from military and commercial aircraft design. This technology advantage in combination with the lower emissions inherent to natural gas combustion has effectively set the standard for new large generation additions in many regions. However, there are many concerns and issues related to effec...

2009-03-23T23:59:59.000Z

246

Three-dimensional computer modeling of hydrogen injection and combustion  

DOE Green Energy (OSTI)

The hydrodynamics of hydrogen gas injection into a fixed-volume combustion chamber is analyzed and simulated using KIVA-3, a three-dimensional, reactive flow computer code. Comparisons of the simulation results are made to data obtained at the Combustion Research Facility at Sandia National Laboratory-California (SNL-CA). Simulation of the gas injection problem is found to be of comparable difficulty as the liquid fuel injection in diesel engines. The primary challenge is the large change of length scale from the flow of gas in the orifice to the penetration in the combustion chamber. In the current experiments, the change of length scale is about 4,000. A reduction of the full problem is developed that reduces the change in length scale in the simulation to about 400, with a comparable improvement in computational times. Comparisons of the simulation to the experimental data shows good agreement in the penetration history and pressure rise in the combustion chamber. At late times the comparison is sensitive to the method of determination of the penetration in the simulations. In a comparison of the combustion modeling of methane and hydrogen, hydrogen combustion is more difficult to model, and currently available kinetic models fail to predict the observed autoignition delay at these conditions.

Johnson, N.L.; Amsden, A.A. [Los Alamos National Lab., NM (United States). Theoretical Division; Naber, J.D.; Siebers, D.L. [Sandia National Lab., Livermore, CA (United States)

1995-02-01T23:59:59.000Z

247

Dust Combustion Safety Issues for Fusion Applications  

SciTech Connect

This report summarizes the results of a safety research task to identify the safety issues and phenomenology of metallic dust fires and explosions that are postulated for fusion experiments. There are a variety of metal dusts that are created by plasma erosion and disruptions within the plasma chamber, as well as normal industrial dusts generated in the more conventional equipment in the balance of plant. For fusion, in-vessel dusts are generally mixtures of several elements; that is, the constituent elements in alloys and the variety of elements used for in-vessel materials. For example, in-vessel dust could be composed of beryllium from a first wall coating, tungsten from a divertor plate, copper from a plasma heating antenna or diagnostic, and perhaps some iron and chromium from the steel vessel wall or titanium and vanadium from the vessel wall. Each of these elements has its own unique combustion characteristics, and mixtures of elements must be evaluated for the mixture’s combustion properties. Issues of particle size, dust temperature, and presence of other combustible materials (i.e., deuterium and tritium) also affect combustion in air. Combustion in other gases has also been investigated to determine if there are safety concerns with “inert” atmospheres, such as nitrogen. Several coolants have also been reviewed to determine if coolant breach into the plasma chamber would enhance the combustion threat; for example, in-vessel steam from a water coolant breach will react with metal dust. The results of this review are presented here.

L. C. Cadwallader

2003-05-01T23:59:59.000Z

248

Rapid Deployment of Rich Catalytic Combustion  

SciTech Connect

The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

Richard S. Tuthill

2004-06-10T23:59:59.000Z

249

Internal combustion electric power hybrid power plant  

SciTech Connect

An internal combustion-electric motor hybrid power plant for an automotive vehicle is disclosed. The power plant includes an internal combustion engine and a direct current electric motor generator which are connected to a drive shaft for the vehicle. A clutch mechanism is provided to connect the internal combustion engine, the direct current electric motor generator and the drive shaft for selectively engaging and disengaging the drive shaft with the internal combustion engine and the motor generator. A storage battery is electrically connected to the motor generator to supply current to and receive current therefrom. Thermoelectric semi-conductors are arranged to be heated by the waste heat of the internal combustion engine. These thermoelectric semi-conductors are electrically connected to the battery to supply current thereto. The thermoelectric semi-conductors are mounted in contact with the outer surfaces of the exhaust pipe of the internal combustion engine and also with the outer surfaces of the cylinder walls of the engine.

Cummings, T.A.

1979-04-10T23:59:59.000Z

250

Carburetor for internal combustion engines  

DOE Patents (OSTI)

A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

Csonka, John J. (625 Linwood Ave., Buffalo, NY 14209); Csonka, Albert B. (109 Larchmont Rd., Buffalo, NY 14214)

1978-01-01T23:59:59.000Z

251

Pressurized fluidized-bed combustion  

Science Conference Proceedings (OSTI)

The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

Not Available

1980-10-01T23:59:59.000Z

252

CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER I. EXPERIMENTAL MEASUREMENTS AND COMPARISON WITH NUMERICAL CALCULATIONS  

E-Print Network (OSTI)

l~ Roberts, "Catathermal Combustion: A New Process for Lm'l-significant gas phase combustion is induced by the presenceInternational) on Combustion (to be published), The

Robben, R.

2010-01-01T23:59:59.000Z

253

THE COMBUSTION OF SOLVENT REPINED COAL IN AN OPPOSED FLOW DIFFUSION FLAME  

E-Print Network (OSTI)

pyrolysis of various polymers under combustion conditions.Fourteenth Symposium (International) on Combustion,The Combustion Institute Pittsburgh, 1177. Chin, W.K. and

Chin, W.K.

2011-01-01T23:59:59.000Z

254

THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY  

E-Print Network (OSTI)

1973) Enthalpies of Combustion and Maximum Temperatures ofBurner Assembly Combustion Chamber Exhaust System. . CHAPTERIlMeasurement of NO and N02 in Combustion Systems," Western

Grosshandler, W.L.

2010-01-01T23:59:59.000Z

255

A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion  

E-Print Network (OSTI)

comparison of terascale combustion simulation data. Mathe-premixed hydrogen ?ames. Combustion and Flame, [7] J. L.of Large Scale Turbulent Combustion Peer-Timo Bremer 1 ,

Bremer, Peer-Timo

2010-01-01T23:59:59.000Z

256

An Explicit Runge-Kutta Iteration for Diffusion in the Low Mach Number Combustion Code  

E-Print Network (OSTI)

usion in the Low Mach Number Combustion Code Joseph F. Grcarthe low Mach number combustion code. Contents 1 Introductionthe low Mach number combustion code, LMC. The multicomponent

Grcar, Joseph F.

2007-01-01T23:59:59.000Z

257

CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER II. NUMERICAL CALCULATIONS  

E-Print Network (OSTI)

D.G. , Fourteenth Sympo- sium (International) on Combustion,The Combustion Institute, Pittsburgh, 107 (1973). Wilson,Program for Calculation of Combustion Reaction Equilibrium

Schefer, R.

2010-01-01T23:59:59.000Z

258

Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion  

E-Print Network (OSTI)

dimensional smoldering combustion. Figure 10. Results forModeling of Smoldering Combustion Propagation, Progressin Energy and Combustion Science 11, pp. 277-310. 2. T.J.

Rein, Guillermo; Lautenberger, Chris; Fernandez-Pello, Carlos; Torero, Jose; Urban, David

2006-01-01T23:59:59.000Z

259

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

emissions during biomass combustion: Controlling factors andopen burning of biomass in a combustion wind-tunnel, Globalfrom smoldering combustion of biomass measured by open-path

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

260

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

from residential wood combustion: Emissions characterizationfrom fireplace combustion of woods grown in the northeasternfrom the fireplace combustion of woods grown in the southern

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Leaching hierarchies in co-combustion residues  

Science Conference Proceedings (OSTI)

The leaching propensities from co-combustion residues of 10 trace elements (Be, V, Cr, Zn, As, Se, Cd, Ba, Hg, Pb) were evaluated. Eight fuels varying from coal blends to coal and secondary fuel mixtures to ternary mixtures were co-combusted in two reactor configurations and at two temperatures (850 and 950{sup o}C). The ash was subjected to a miniaturized toxicity characteristic leaching procedure (TCLP) developed for this study, and the trace element content in the leachate was analyzed, andpercentage retentions of elements in the ashes and leachates were calculated. Hg and Se were almost completely volatilized during combustion and, therefore, were largely absent from the ashes, in all cases. For the other trace elements, it was not possible to establish a hierarchy of relative trace-element retention. Retention was primarily a function of the combustion method, with no clear effect of temperature retention being observed. The measured trace-element retentions were compared to those predicted by thermodynamic equilibrium modeling, using the MTDATA software. The model successfully predicted the measured values in many cases; however, many anomalies were also noted. From trace-element analysis in the leachates, an extent-of-leaching hierarchy could be established. The elements that underwent low degrees of leaching were Zn, Hg, Pb, low to moderate leaching were Be, Cr, and Cd, and thoseleached to a greater extent were V, As, Se, and Ba. This hierarchy was observed for all fuels and conditions studied. Leaching was found to be a strong function of the combustion temperature and combustion method. When assessing the potential toxicity of leachate from co-combustion residues, Zn, Hg, and Pb may be deemed of least concern, while a greater emphasis should be placed in mitigating the release of the remaining elements. 18 refs., 7 tabs.

A. George; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering and Chemical Technology

2008-05-15T23:59:59.000Z

262

Combustion characterization of beneficiated coal-based fuels  

Science Conference Proceedings (OSTI)

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

Chow, O.K.; Nsakala, N.Y.

1990-11-01T23:59:59.000Z

263

NETL: IEP – Post-Combustion CO2 Emissions Control - Oxy-Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Oxy-Combustion CO2 Emissions Control IEP - Oxy-Combustion CO2 Emissions Control Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications Project No.: DE-NT0005290 Alstom oxy-combustion test facility Alstom oxy-combustion test facility. Alstom will develop an oxyfuel firing system design specifically for retrofit to tangential-fired (T-fired) boilers and provide information to address the technical gaps for commercial boiler design. Several oxyfuel system design concepts, such as internal flue gas recirculation and various oxygen injection schemes, will be evaluated for cost-effectiveness in satisfying furnace design conditions in a T-fired boiler. The evaluation will use an array of tools, including Alstom's proprietary models and design codes, along with 3-D computational fluid dynamics modeling. A

264

Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Technology FEMP Technology Brief: Boiler Combustion Control and Monitoring System to someone by E-mail Share Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Facebook Tweet about Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Twitter Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Google Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Delicious Rank Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Digg Find More places to share Federal Energy Management Program: FEMP

265

Descargue Datos de Ahorro de Combustible  

NLE Websites -- All DOE Office Websites (Extended Search)

Descargue Datos de Ahorro de Combustible Descargue Datos de Ahorro de Combustible Los datos de ahorro de combustible son el resultado de las pruebas realizadas en el Laboratorio de Emisiones de Combustible y VehĂ­culos de la Agencia Nacional de ProtecciĂłn del Medio Ambiente en Ann Arbor, Michigan y por fabricantes de automĂłviles, con la supervisiĂłn de la EPA. Archivo Descargable de Ahorro de Combustible Archivo* de la GuĂ­a de Ahorremos Gasolina Archivo 2014 No Disponible Archivo 2013 de la GuĂ­a de Ahorremos Gasolina 2013 ĂŤcono de Adobe Acrobat Archivo 2012 de la GuĂ­a de Ahorremos Gasolina 2012 ĂŤcono de Adobe Acrobat Archivo 2011 de la GuĂ­a de Ahorremos Gasolina 2011 ĂŤcono de Adobe Acrobat Archivo 2010 de la GuĂ­a de Ahorremos Gasolina 2010 ĂŤcono de Adobe Acrobat Archivo 2009 de la GuĂ­a de Ahorremos Gasolina 2009 ĂŤcono de Adobe Acrobat

266

Design factors for stable lean premix combustion  

DOE Green Energy (OSTI)

The Advanced Turbine Systems (ATS) program includes the development of low-emission combustors. Low emissions have already been achieved by premixing fuel and air to avoid the hot gas pockets produced by nozzles without premixing. While the advantages of premixed combustion have been widely recognized, turbine developers using premixed nozzles have experienced repeated problems with combustion oscillations. Left uncontrolled, these oscillations can lead to pressure fluctuations capable of damaging engine hardware. Elimination of such oscillations is often difficult and time consuming - particularly when oscillations are discovered in the last stages of engine development. To address this issue, METC is studying oscillating combustion from lean premixing fuel nozzles. These tests are providing generic information on the mechanisms that contribute to oscillating behavior in gas turbines. METC is also investigating the use of so-called {open_quotes}active{close_quotes} control of combustion oscillations. This technique periodically injects fuel pulses into the combustor to disrupt the oscillating behavior. Recent results on active combustion control are presented in Gemmen et al. (1995) and Richards et al. (1995). This paper describes the status of METC efforts to avoid oscillations through simple design changes.

Richards, G.; Yip, M.; Gemmen, R.

1995-12-31T23:59:59.000Z

267

Premixed Combustion of Hydrogen Augmented Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Premixed Combustion of Hydrogen Premixed Combustion of Hydrogen Augmented Natural Gas * Lean premixed combustion * Effective for emission reduction with natural gas * High hydrogen flame speed requires care in premixer design for SGH fuels * UC Irvine study quantifies effectiveness of hydrogen augmentation strategy * Lean stability limit improves linearly with hydrogen augmentation * Emissions reduction can be achieved * Two OEM's and the California Energy Commission have used the results to help guide them on adapting to hydrogen fuel UC Irvine Scott Samuelsen / Vince McDonell Project 98-01-SR062 1200 1300 1400 1500 1600 1700 1800 1900 0 10 20 30 40 50 60 Hydrogen Volume in Main Fuel (%) Adiabatic Flame Temperature (K) P0(3/4) High Stability High Stability Low emission Low emission operational zone operational zone

268

Fuel Interchangeability Considerations for Gas Turbine Combustion  

DOE Green Energy (OSTI)

In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

Ferguson, D.H.

2007-10-01T23:59:59.000Z

269

Spectroscopy, Kinetics, and Dynamics of Combustion Radicals  

SciTech Connect

Spectroscopy, kinetics and dynamics of jet cooled hydrocarbon transients relevant to the DOE combustion mission have been explored, exploiting i) high resolution IR lasers, ii) slit discharge sources for formation of jet cooled radicals, and iii) high sensitivity detection with direct laser absorption methods and near the quantum shot noise limit. What makes this combination powerful is that such transients can be made under high concentrations and pressures characteristic of actual combustion conditions, and yet with the resulting species rapidly cooled (T ?10-15K) in the slit supersonic expansion. Combined with the power of IR laser absorption methods, this provides novel access to spectral detection and study of many critical combustion species.

Nesbitt, David J. [Research/Professor

2013-08-06T23:59:59.000Z

270

Combustion Engineering IGCC Repowering Project  

SciTech Connect

C-E gasification process uses an entrained-flow, two-stage, slagging bottom gasifier. Figure 1 shows a schematic of the gasifier concept. Some of the coal and all of the char is fed to the combustor section, while the remaining coal is fed to the reducter section of the gasifier. The coal and char in the combustor is mixed with air and the fuel-rich mixture is burned creating the high temperature necessary to gasify the coal and melt the mineral matter in the coal. The slag flows through a slag tap at the bottom of the combustor into a water-filled slag tank where it is quenched and transformed into an inert, glassy, granular material. This vitrified slag is non-leaching, making it easy to dispose of in an environmentally acceptable manner. The hot gas leaving the combustor enters the second stage called the reductor. In the reducter, the char gasification occurs along the length of the reductor zone until the temperature falls to a point where the gasification kinetics become too slow. Once the gas temperature reaches this level, essentially no further gasification takes place and the gases subsequently are cooled with convective surface to a temperature low enough to enter the cleanup system. Nearly all of the liberated energy from the coal that does not produce fuel gas is collected and recovered with steam generating surface either in the walls of the vessel or by conventional boiler convective surfaces in the backpass of the gasifier. A mixture of unburned carbon and ash (called char) is carried out of the gasifier with the product gas strewn. The char is collected and recycled back to the gasifier where it is consumed. Thus, there is no net production of char which results in negligible carbon loss. The product gas enters a desulfurization system where it is cleaned of sulfur compounds present in the fuel gas. The clean fuel gas is now available for use in the gas turbine combuster for an integrated coal gasification combined cycle (IGCC) application.

Andrus, H.E.; Thibeault, P.R.; Gibson, C.R.

1992-11-01T23:59:59.000Z

271

Combustion Engineering IGCC Repowering Project  

SciTech Connect

C-E gasification process uses an entrained-flow, two-stage, slagging bottom gasifier. Figure 1 shows a schematic of the gasifier concept. Some of the coal and all of the char is fed to the combustor section, while the remaining coal is fed to the reducter section of the gasifier. The coal and char in the combustor is mixed with air and the fuel-rich mixture is burned creating the high temperature necessary to gasify the coal and melt the mineral matter in the coal. The slag flows through a slag tap at the bottom of the combustor into a water-filled slag tank where it is quenched and transformed into an inert, glassy, granular material. This vitrified slag is non-leaching, making it easy to dispose of in an environmentally acceptable manner. The hot gas leaving the combustor enters the second stage called the reductor. In the reducter, the char gasification occurs along the length of the reductor zone until the temperature falls to a point where the gasification kinetics become too slow. Once the gas temperature reaches this level, essentially no further gasification takes place and the gases subsequently are cooled with convective surface to a temperature low enough to enter the cleanup system. Nearly all of the liberated energy from the coal that does not produce fuel gas is collected and recovered with steam generating surface either in the walls of the vessel or by conventional boiler convective surfaces in the backpass of the gasifier. A mixture of unburned carbon and ash (called char) is carried out of the gasifier with the product gas strewn. The char is collected and recycled back to the gasifier where it is consumed. Thus, there is no net production of char which results in negligible carbon loss. The product gas enters a desulfurization system where it is cleaned of sulfur compounds present in the fuel gas. The clean fuel gas is now available for use in the gas turbine combuster for an integrated coal gasification combined cycle (IGCC) application.

Andrus, H.E.; Thibeault, P.R.; Gibson, C.R.

1992-01-01T23:59:59.000Z

272

Combustion modeling in advanced gas turbine systems  

DOE Green Energy (OSTI)

Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

1995-12-31T23:59:59.000Z

273

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

NLE Websites -- All DOE Office Websites (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

274

Building America Expert Meeting: Combustion Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting: Combustion Safety Meeting: Combustion Safety L. Brand Partnership for Advanced Residential Retrofit March 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply

275

Combustion Analysis of Different Olive Residues  

E-Print Network (OSTI)

Abstract: The Thermogravimetric Analysis (TGA) techniques and concretely the study of the burning profile provide information that can be used to estimate the behaviour of the combustion of carbonous materials. Commonly, these techniques have been used for the study of carbons, but are also interesting for the analysis of biomass wastes, due to the different species present on the wastes affect directly to its thermal properties. In this work, techniques of thermal analysis have been applied to compare the behaviour of different wastes coming from olive oil mills. From these results, it is remarkable that the Concentrated Olive Mill Waste Water (COMWW) presents more unfavourable conditions for its combustion.

Teresa Mir; Alberto Esteban; Sebastián Rojas; Irene Montero; Antonio Ruiz

2008-01-01T23:59:59.000Z

276

A laboratory scale supersonic combustive flow system  

DOE Green Energy (OSTI)

A laboratory scale supersonic flow system [Combustive Flow System (CFS)] which utilizes the gaseous products of methane-air and/or liquid fuel-air combustion has been assembled to provide a propulsion type exhaust flow field for various applications. Such applications include providing a testbed for the study of planar two-dimensional nozzle flow fields with chemistry, three-dimensional flow field mixing near the exit of rectangular nozzles, benchmarking the predictive capability of various computational fluid dynamic codes, and the development and testing of advanced diagnostic techniques. This paper will provide a detailed description of the flow system and data related to its operation.

Sams, E.C.; Zerkle, D.K.; Fry, H.A.; Wantuck, P.J.

1995-02-01T23:59:59.000Z

277

Past experiences with automotive external combustion engines  

SciTech Connect

GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

Amann, C.A.

1999-07-01T23:59:59.000Z

278

TransForum v9n2 - Low Temperature Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Temperature Combustion Knocks Out NOx, Saves Fuel and Money One of the hottest concepts in clean diesel technology is low-temperature combustion (LTC). Engineers from Argonne's...

279

GAS TURBINE REHEAT USING IN-SITU COMBUSTION  

NLE Websites -- All DOE Office Websites (Extended Search)

GAS TURBINE REHEAT USING IN-SITU COMBUSTION Topical Report: Task 2 - Combustion and Emissions Cooperative Agreement No. DE-FC26-00NT40913 April 30, 2004 by D.M. Bachovchin T.E....

280

2010 Advanced Combustion Engine R&D Report  

NLE Websites -- All DOE Office Websites (Extended Search)

and Development Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Vehicle Technologies Program FY 2010 Progress rePort For AdvAnced combustion engine...

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process  

This patent-pending technology, “Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process,” provides a metal-oxide oxygen carrier for application in fuel combustion processes that use oxygen.

282

Combustion: Sandwiched Between Engines and Fuel (Trying to Make...  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion: Sandwiched Between Engines and Fuel (Trying to Make Bread from Combustion) Speaker(s): Robert Dibble Date: March 10, 2010 - 12:00pm Location: 90-3122 This seminar will...

283

Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency  

E-Print Network (OSTI)

thermal efficiency for electricity generation from combustible sources ( , or as a fraction of energy converted in the case of solar

DeFilippo, Anthony Cesar

2013-01-01T23:59:59.000Z

284

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network (OSTI)

and N.M. Laurendeau, "Gasification of Pulverized Coal Withininformation on the gasification and combustion of coal with

Chin, W.K.

2010-01-01T23:59:59.000Z

285

Staged combustion with piston engine and turbine engine supercharger  

DOE Patents (OSTI)

A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

Fischer, Larry E. (Los Gatos, CA); Anderson, Brian L. (Lodi, CA); O' Brien, Kevin C. (San Ramon, CA)

2006-05-09T23:59:59.000Z

286

Staged combustion with piston engine and turbine engine supercharger  

DOE Patents (OSTI)

A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

Fischer, Larry E. (Los Gatos, CA); Anderson, Brian L. (Lodi, CA); O' Brien, Kevin C. (San Ramon, CA)

2011-11-01T23:59:59.000Z

287

Traveling-Wave Thermoacoustic Engines With Internal Combustion  

DOE Patents (OSTI)

Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

Weiland, Nathan Thomas (Blacksburg, VA); Zinn, Ben T. (Atlanta, GA); Swift, Gregory William (Sante Fe, NM)

2004-05-11T23:59:59.000Z

288

Near-zero Emissions Oxy-combustion Flue Gas Purification  

NLE Websites -- All DOE Office Websites (Extended Search)

Near-zero Emissions Oxy-combustion Near-zero Emissions Oxy-combustion Flue Gas Purification Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) R&D Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio of post- and

289

Application of Regenerative Combustion Technology on Reheating Furnace in PISCO  

Science Conference Proceedings (OSTI)

The key features of the regenerative combustion technology were introduced and its application in the reheating furnace of Rail & Beam plant of PISCOŁ¨Panzhihua Iron & Steel Co.Ł©was discussedŁ®Comparedwith the traditional combustion technologyŁ¬the ... Keywords: Regenerative Style, Combustion Technology, Reheating Furnace, Energy Conservation

Chen Yong; Pan Hong; Xue Nianfu

2011-02-01T23:59:59.000Z

290

On the existence of high Lewis number combustion fronts  

Science Conference Proceedings (OSTI)

We study a mathematical model for high Lewis number combustion processes with the reaction rate of the form of an Arrhenius law with or without an ignition cut-off. An efficient method for the proof of the existence and uniqueness of combustion fronts ... Keywords: Combustion fronts, Geometric singular perturbation theory, Ignition cut-off

Anna Ghazaryan; Christopher Jones

2012-02-01T23:59:59.000Z

291

IFRF Combustion Journal Article Number 200303, July 2003  

E-Print Network (OSTI)

IFRF Combustion Journal Article Number 200303, July 2003 ISSN 1562-479X Waste Incineration European-mail: klaus.goerner@uni-essen.den URL: http://www.luat.uni-essen.de #12;IFRF Combustion Journal - 2 - Goerner the lower calorific value of normal municipal waste increased with the consequence of increasing combustion

Columbia University

292

FLUCTUATIONS OF THE FRONT IN A STOCHASTIC COMBUSTION MODEL  

E-Print Network (OSTI)

FLUCTUATIONS OF THE FRONT IN A STOCHASTIC COMBUSTION MODEL #1; (FLUCTUATIONS DU FRONT DANS UN MODĂ?LE DE COMBUSTION) FRANCIS COMETS 1 , JEREMY QUASTEL 2 AND ALEJANDRO F. RAMĂŤREZ 3 Abstract. We consider an interacting particle system on the one dimensional lattice Z modeling combustion. The process

Quastel, Jeremy

293

Combustion synthesis and quasi-isostatic densication of powder cermets  

E-Print Network (OSTI)

Combustion synthesis and quasi-isostatic densi®cation of powder cermets E.A. Olevskya,* , E-propagating High-temperature synthesis (also known as SHS or combustion synthesis) presents a bright potential equation parameters. The distortion undergone by the combustion synthesis products during QIP densi

Meyers, Marc A.

294

Modeling of combustion noise spectrum from turbulent premixed flames  

E-Print Network (OSTI)

Modeling of combustion noise spectrum from turbulent premixed flames Y. Liu, A. P. Dowling, T. D, Nantes, France 2321 #12;Turbulent combustion processes generate sound radiation due to temporal changes, this temporal correlation and its role in the modeling of combustion noise spectrum are studied by analyzing

Paris-Sud XI, Université de

295

A filtered tabulated chemistry model for LES of premixed combustion  

E-Print Network (OSTI)

A filtered tabulated chemistry model for LES of premixed combustion B. Fiorinaa , R. Vicquelina to turbulent combustion regimes by including subgrid scale wrinkling effects in the flame front propagation Simulation, Turbulent premixed combustion, Tabulated chemistry 1. Introduction Flame ignition and extinction

Paris-Sud XI, Université de

296

On the ChapmanJouguet Limit for a Combustion Model  

E-Print Network (OSTI)

On the Chapman­Jouguet Limit for a Combustion Model Bernard Hanouzet \\Lambda , Roberto Natalini y and Alberto Tesei z Abstract We study the limiting behaviour of solutions to a simple model for combustion detonations and deflagrations with respect to the reaction rate. Key words and phrases: combustion

297

Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models  

E-Print Network (OSTI)

Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models of more predictive and more accurate detailed chemical kinetic models for the combustion of fuels that the combustion of liquid fuels will remain the main source of energy for transportation for the next 50 years.1

298

Post-Combustion CO2 Capture 11 -13 July 2010  

E-Print Network (OSTI)

Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Tufts European Center Talloires, France Institute | | Clean Air Task Force | | Asia Clean Energy Innovation Initiative | #12;Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Talloires, France PROCEEDINGS: Post-Combustion CO2 Capture Workshop

299

An Unstable Elliptic Free Boundary Problem arising in Solid Combustion  

E-Print Network (OSTI)

An Unstable Elliptic Free Boundary Problem arising in Solid Combustion R. Monneau Ecole Nationale in solid combustion. The maximal solution and every local minimizer of the energy are regular, that is, {u combustion, singularity, unstable problem, Aleksandrov reflection, unique blow-up limit, second variation

Monneau, RĂ©gis

300

Combustion fronts in porous media with two layers Steve Schecter  

E-Print Network (OSTI)

Combustion fronts in porous media with two layers layer 1 layer 2 Steve Schecter North Carolina Subject: Propagation of a combustion front through a porous medium with two parallel layers having different properties. · Each layer admits a traveling combustion wave. · The layers are coupled by heat

Schecter, Stephen

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Control of Combustion Processes in an Internal Combustion Engine by Low-Temperature Plasma  

Science Conference Proceedings (OSTI)

A new method of operation of internal combustion engines enhances power and reduces fuel consumption and exhaust toxicity. Low-temperature plasma control combines working processes of thermal engines and steam machines into a single process.

E. A. Olenev

2002-07-01T23:59:59.000Z

302

E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter  

Science Conference Proceedings (OSTI)

Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

NONE

1999-04-01T23:59:59.000Z

303

TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT  

SciTech Connect

The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the National Energy Technology Laboratory (NETL), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). The work discussed in this report covers the Phase II program. Five coals were studied (three in Phase I and two new ones in Phase II). In this work UK has used XAFS and Moessbauer spectroscopies to characterize elements in project coals. For coals, the principal use was to supply direct information about certain hazardous and other key elements (iron) to complement the more complete indirect investigation of elemental modes of occurrence being carried out by colleagues at USGS. Iterative selective leaching using ammonium acetate, HCl, HF, and HNO3, used in conjunction with mineral identification/quantification, and microanalysis of individual mineral grains, has allowed USGS to delineate modes of occurrence for 44 elements. The Phase II coals show rank-dependent systematic differences in trace-element modes of occurrence. The work at UU focused on the behavior of trace metals in the combustion zone by studying vaporization from single coal particles. The coals were burned at 1700 K under a series of fuel-rich and oxygen-rich conditions. The data collected in this study will be applied to a model that accounts for the full equilibrium between carbon monoxide and carbon dioxide. The model also considers many other reactions taking place in the combustion zone, and involves the diffusion of gases into the particle and combustion products away from the particle. A comprehensive study has been conducted at UA to investigate the post-combustion partitioning of trace elements during large-scale combustion of pulverized coal combustion. For many coals, there are three distinct particle regions developed by three separate mechanisms: (1) a submicron fume, (2) a micron-sized fragmentation region, and (3) a bulk (>3 {micro}m) fly ash region. The controlling partitioning mechanisms for trace elements may be different in each of the three particle regions. A substantial majority of semi-volatile trace elements (e.g., As, Se, Sb, Cd, Zn, Pb) volatilize during combustion. The most common partitioning mechanism for semi-volatile elements is reaction with active fly ash surface sites. Experiments conducted under this program at UC focused on measuring mercury oxidation under cooling rates representative of the convective section of a coal-fired boiler to determine the extent of homogeneous mercury oxidation under these conditions. In fixed bed studies at EERC, five different test series were planned to evaluate the effects of temperature, mercury concentration, mercury species, stoichiometric ratio of combustion air, and ash source. Ash samples generated at UA and collected from full-scale power plants were evaluated. Extensive work was carried out at UK during this program to develop new methods for identification of mercury species in fly ash and sorbents. We demonstrated the usefulness of XAFS spectroscopy for the speciation of mercury captured on low-temperature sorbents from combustion flue gases and dev

C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

2001-06-30T23:59:59.000Z

304

Combustion Turbine Experience and Intelligence Reports: 2009  

Science Conference Proceedings (OSTI)

Along with up-to-date information on trends in gas markets in the United States and around the world, the 2009 edition of the Combustion Turbine Experience and Intelligence Report (CTEIR) addresses developments in natural gas supply fundamentals, extending plant depreciable life, and CO2 capture for combined cycles.

2009-12-04T23:59:59.000Z

305

Kompetenscentrum Frbrnningsprocesser Centre of Competence Combustion Processes  

E-Print Network (OSTI)

engine fuel effi- ciency is limited by emission Aftertreatment due to emis- sions legislation. However 2011 Faculty of Engineering, LTH Lund University #12;KCFP Kompetenscentrum Förbränningsprocesser Centre of Competence Combustion Processes Faculty of Engineering, LTH P.O. Box 118 SE-221 00 Lund Sweden #12;KCFP

306

Dust Mitigation Methods for Coal Combustion Products  

Science Conference Proceedings (OSTI)

Coal-fired power plants generate coal combustion products (CCPs) requiring management for storage and disposal. These products are often stored in facilities such as landfills or placed in temporary storage pads for short or long durations. At these facilities, there is a need to address dust mitigation concerns in order to comply with environmental permits, ...

2013-08-27T23:59:59.000Z

307

Combustion Turbine Experience and Intelligence Report: 2011  

Science Conference Proceedings (OSTI)

Along with up-to-date information on trends in gas markets in the United States and around the world, the 2011 edition of the Combustion Turbine Experience and Intelligence Report (CTEIR) addresses the impact of shales on natural gas markets and associated risks and includes an overview of boiler windbox repowering using gas turbines.

2011-12-07T23:59:59.000Z

308

Starting apparatus for internal combustion engines  

DOE Patents (OSTI)

This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

Dyches, G.M.; Dudar, A.M.

1995-01-01T23:59:59.000Z

309

Biomass pyrolysis oil properties and combustion meeting  

DOE Green Energy (OSTI)

These proceedings contain extended abstracts from the Biomass Pyrolysis Oil Properties and Combustion Meeting held September 26-28, 1994. This meeting is cosponsored by the DOE, NREL, NRCan, and VTT Energy (Finland) for the discussion of developments in the application of biomass-derived pyrolysis oil.

NONE

1995-03-01T23:59:59.000Z

310

Oscillatory combustion in closed vessels under microgravity  

Science Conference Proceedings (OSTI)

The existence and spatial development of gas-phase, thermokinetic oscillations in a spherical reactor under the influence of mass and thermal diffusion have been investigated by numerical methods. The conditions correspond to those that would be experienced ... Keywords: Microgravity, Oscillatory combustion, Sal'nikov model, Thermal diffusion

R. Fairlie; J. F. Griffiths

2002-08-01T23:59:59.000Z

311

A model for premixed combustion oscillations  

DOE Green Energy (OSTI)

Combustion oscillations are receiving renewed research interest due to increasing application of lean premix (LPM) combustion to gas turbines. A simple, nonlinear model for premixed combustion is described; it was developed to explain experimental results and to provide guidance for developing active control schemes based on nonlinear concepts. The model can be used to quickly examine instability trends associated with changes in equivalence ratio, mass flow rate, geometry, ambient conditions, etc. The model represents the relevant processes occurring in a fuel nozzle and combustor analogous to current LPM turbine combustors. Conservation equations for the nozzle and combustor are developed from simple control volume analysis, providing ordinary differential equations that can be solved on a PC. Combustion is modeled as a stirred reactor, with bimolecular reaction between fuel and air. Although focus is on the model, it and experimental results are compared to understand effects of inlet air temperature and open loop control schemes. The model shows that both are related to changes in transport time.

Janus, M.C.; Richards, G.A.

1996-03-01T23:59:59.000Z

312

Chemical Constituents in Coal Combustion Products: Molybdenum  

Science Conference Proceedings (OSTI)

This report provides comprehensive information on the environmental occurrence and behavior of molybdenum (Mo), with specific emphasis on Mo derived from coal combustion products (CCPs). Included are discussions of Mo's occurrence in water and soil, potential human health and ecological effects, geochemistry, occurrence in CCPs, leaching characteristics from CCPs, measurement techniques, and treatment/remediation options.

2011-11-04T23:59:59.000Z

313

Simulation of lean premixed turbulent combustion  

DOE Green Energy (OSTI)

There is considerable technological interest in developingnew fuel-flexible combustion systems that can burn fuels such ashydrogenor syngas. Lean premixed systems have the potential to burn thesetypes of fuels with high efficiency and low NOx emissions due to reducedburnt gas temperatures. Although traditional scientific approaches basedon theory and laboratory experiment have played essential roles indeveloping our current understanding of premixed combustion, they areunable to meet the challenges of designing fuel-flexible lean premixedcombustion devices. Computation, with itsability to deal with complexityand its unlimited access to data, hasthe potential for addressing thesechallenges. Realizing this potential requires the ability to perform highfidelity simulations of turbulent lean premixed flames under realisticconditions. In this paper, we examine the specialized mathematicalstructure of these combustion problems and discuss simulation approachesthat exploit this structure. Using these ideas we can dramatically reducecomputational cost, making it possible to perform high-fidelitysimulations of realistic flames. We illustrate this methodology byconsidering ultra-lean hydrogen flames and discuss how this type ofsimulation is changing the way researchers study combustion.

Bell, John B.; Day, Marcus S.; Almgren, Ann S.; Lijewski, MichaelJ.; Rendleman, Charles A.; Cheng, Robert K.; Shepherd, Ian G.

2006-06-25T23:59:59.000Z

314

Combustion and Inert Gas Fusion Analysis  

Science Conference Proceedings (OSTI)

...high-temperature combustion and inert gas fusion processes is shown in Fig. 8 . Small samples of known weight are heated to very high temperatures. The elements of interest are driven off as either elemental gas or gaseous oxidation products. These gaseous products are then

315

Combustion Turbine Diagnostic Health Monitoring: Combustion Turbine Performance and Fault Diagnostic Module (CTPFDM)  

Science Conference Proceedings (OSTI)

The industry-wide transition to condition-based maintenance strategies has prompted development of sophisticated, automated condition assessment tools. The Combustion Turbine Performance and Fault Diagnostic Module (CTPFDM) presented in this report is the second of a suite of intelligent software tools being developed by EPRI and the U.S. Department of Energy (DOE) National Energy Technology Laboratory as part of the Combustion Turbine Health Management (CTHM) System. The CTHM System will offer a signifi...

2004-03-17T23:59:59.000Z

316

STRUCTURE-BASED PREDICTIVE MODEL FOR COAL CHAR COMBUSTION  

Science Conference Proceedings (OSTI)

Progress was made this period on a number of tasks. A significant advance was made in the incorporation of macrostructural ideas into high temperature combustion models. Work at OSU by R. Essenhigh in collaboration with the University of Stuttgart has led to a theory that the zone I / II transition in char combustion lies within the range of conditions of interest for pulverized char combustion. The group has presented evidence that some combustion data, previously interpreted with zone II models, in fact takes place in the transition from zone II to zone 1. This idea was used at Brown to make modifications to the CBK model (a char kinetics package specially designed for carbon burnout prediction, currently used by a number of research and furnace modeling groups in academia and industry). The resulting new model version, CBK8, shows improved ability to predict extinction behavior in the late stages of combustion, especially for particles with low ash content. The full development and release of CBK8, along with detailed descriptions of the role of the zone 1/2 transition will be reported on in subsequent reports. ABB-CE is currently implementing CBK7 into a special version of the CFD code Fluent for use in the modeling and design of their boilers. They have been appraised of the development, and have expressed interest in incorporating the new feature, realizing full CBK8 capabilities into their combustion codes. The computational chemistry task at OSU continued to study oxidative pathways for PAH, with emphasis this period on heteroatom containing ring compounds. Preliminary XPS studies were also carried out. Combustion experiments were also carried out at OSU this period, leading to the acquisition of samples at various residence times and the measurement of their oxidation reactivity by nonisothermal TGA techniques. Several members of the project team attended the Carbon Conference this period and made contacts with representatives from the new FETC Consortium for Premium Carbon Products from Coal. Possibilities for interactions with this new center will be explored. Also this period, an invited review paper was prepared for the 27th International Symposium on Combustion, to be held in Boulder, Colorado in August. The paper is entitled; "Structure, Properties, and Reactivity of Solid Fuels," and reports on a number of advances made in this collaborative project.

CHRISTOPHER M. HADAD; JOSEPH M. CALO; ROBERT H. ESSENHIGH; ROBERT H. HURT

1998-09-11T23:59:59.000Z

317

Oxy-Combustion Boiler Material Development  

SciTech Connect

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

2012-01-31T23:59:59.000Z

318

Oxy-Combustion Boiler Material Development  

SciTech Connect

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

2012-01-31T23:59:59.000Z

319

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 4, February--April 1990  

SciTech Connect

The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and missions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects test; and full-scale combustion tests.

Chow, O.K.; Nsakala, N.Y.

1990-06-01T23:59:59.000Z

320

A combustion model for IC engine combustion simulations with multi-component fuels  

Science Conference Proceedings (OSTI)

Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison (United States)

2011-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FEMP Technology Brief: Boiler Combustion Control and Monitoring System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Combustion Control and Monitoring Boiler Combustion Control and Monitoring System FEMP Technology Brief: Boiler Combustion Control and Monitoring System October 7, 2013 - 9:12am Addthis This composite photo shows technicians observing operation at the monitoring station and making subsequent fine adjustments on combustion system controls Technical staff are making boiler adjustments with the control and monitoring system. Photo courtesy of the Department of Defense's Environmental Security Technology Certification Program. Technology Description A novel combustion control system, along with gas sensors, sets the opening of fuel and air inlets based on flue-gas concentrations. Continuous feedback from measurements of oxygen, carbon monoxide, and nitrogen oxide concentrations enable the control system

322

2009 Advanced Combustion Engine R&D Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION COMBUSTION ENGINE RESEARCH AND DEVELOPMENT annual progress report 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Office of Vehicle Technologies FY 2009 Progress rePort For AdvAnced combustion engine reseArcH And deveLoPment Energy Efficiency and Renewable Energy Office of Vehicle Technologies December 2009 U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 ii Advanced Combustion Engine Technologies FY 2009 Annual Progress Report

323

Combustion chamber and thermal vapor stream producing apparatus and method  

DOE Patents (OSTI)

A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

Sperry, John S. (Houston, TX); Krajicek, Richard W. (Sugar Land, TX); Cradeur, Robert R. (Spring, TX)

1978-01-01T23:59:59.000Z

324

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect

Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2004-04-01T23:59:59.000Z

325

Method of improving fuel combustion efficiency  

Science Conference Proceedings (OSTI)

This patent describes a method of operating an internal combustion engine. It comprises: vaporizing a gasoline-alcohol fuel mixture by heating it in a chamber to above the final boiling point of the gasoline at one atmosphere pressure in the absence of air to form a vaporized gasoline-alcohol fuel mixture and immediately mixing the vaporized gasoline-alcohol fuel mixture with air in a carburetor without forming liquid droplets in the mixture and then immediately combusting the mixture in the engine in substantially a vaporized state. The gasoline comprises a mixture of hydrocarbons: the mixture having an intermediate carbon range relative to c{sub 4}-C{sub 12} fuel.

Talbert, W.L.

1990-09-11T23:59:59.000Z

326

Lagrangian formulation of turbulent premixed combustion  

E-Print Network (OSTI)

The Lagrangian point of view is adopted to study turbulent premixed combustion. The evolution of the volume fraction of combustion products is established by the Reynolds transport theorem. It emerges that the burned-mass fraction is led by the turbulent particle motion, by the flame front velocity, and by the mean curvature of the flame front. A physical requirement connecting particle turbulent dispersion and flame front velocity is obtained from equating the expansion rates of the flame front progression and of the unburned particles spread. The resulting description compares favorably with experimental data. In the case of a zero-curvature flame, with a non-Markovian parabolic model for turbulent dispersion, the formulation yields the Zimont equation extended to all elapsed times and fully determined by turbulence characteristics. The exact solution of the extended Zimont equation is calculated and analyzed to bring out different regimes.

Pagnini, Gianni

2011-01-01T23:59:59.000Z

327

Critical reaction rates in hypersonic combustion chemistry  

DOE Green Energy (OSTI)

High Mach number flight requires that the scramjet propulsion system operate at a relatively low static inlet pressure and a high inlet temperature. These two constraints can lead to extremely high temperatures in the combustor, yielding high densities of radical species and correspondingly poor chemical combustion efficiency. As the temperature drops in the nozzle expansion, recombination of these excess radicals can produce more product species, higher heat yield, and potentially more thrust. The extent to which the chemical efficiency can be enhanced in the nozzle expansion depends directly on the rate of the radical recombination reactions. A comprehensive assessment of the important chemical processes and an experimental validation of the critical rate parameters is therefore required if accurate predictions of scramjet performance are to be obtained. This report covers the identification of critical reactions, and the critical reaction rates in hypersonic combustion chemistry. 4 refs., 2 figs.

Oldenborg, R.C.; Harradine, D.M.; Loge, G.W.; Lyman, J.L.; Schott, G.L.; Winn, K.R.

1989-01-01T23:59:59.000Z

328

Combustion characterization of coals for industrial applications  

Science Conference Proceedings (OSTI)

The five parent coals ear-marked for this study have been characterized. These coals include (1) a Texas (Wilcox) lignite; (2) a Montana (Rosebud) subbituminous; (4) an Alabama (Black Creek) high volatile bituminous; and (5) a Pennsylvania (Buck Mountain) anthracite. Samples for analyses were prepared in accordance with the ASTM standard (ASTM D 2013-72). The following ASTM analyses were performed on each coal: proximate, ultimate, higher heating value, Hardgrove grindability index, ash fusibility, and ash composition. Additionally, the flammability index (FI) of each coal was determined in an in-house apparatus. The FI is indicative of the ignition temperature of a given fuel on a relative basis. The combustion kinetic parameters (apparent activation energies and frequency factors) of Montana subbituminous and Pennsylvania anthracite chars have also been derived from data obtained in the Drop Tube Furnace System (DTFS). This information depicts the combustion characteristics of these two coal chars. 1 ref., 5 figs., 4 tabs.

Nsakala, N.; Patel, R.L.; Lao, T.C.

1982-11-01T23:59:59.000Z

329

Coal char fragmentation during pulverized coal combustion  

Science Conference Proceedings (OSTI)

A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

Baxter, L.L.

1995-07-01T23:59:59.000Z

330

Theory and modeling in combustion chemistry  

DOE Green Energy (OSTI)

This paper discusses four important problems in combustion chemistry. In each case, resolution of the problem focuses on a single elementary reaction. Theoretical analysis of this reaction is discussed in some depth, with emphasis on its unusual features. The four combustion problems and their elementary reactions are: (1) Burning velocities, extinction limits, and flammability limits: H+O{sub 2}{leftrightarrow}OH+O, (2) Prompt NO: CH+N{sub 2}{leftrightarrow}HCN+N, (3) the Thermal De-NO{sub x} Process: NH{sub 2}+NO{leftrightarrow}products, and (4) ``Ring`` formation in flames of aliphatic fuels and the importance of resonantly stabilized free radicals: C{sub 3}H{sub 3}{leftrightarrow}products.

Miller, J.A.

1996-10-01T23:59:59.000Z

331

Combustion MHD experiments at 5 Tesla  

DOE Green Energy (OSTI)

An experimental linear MHD channel was designed, developed, and operated at high magnetic fields with a seeded combustion plasma. The channel's performance was investigated analytically with a one-dimensional model which included axial current leakage. Two-dimensional calculations were performed to examine model predictions and channel performance. The goal of this work was to collect early data on MHD channel performance at high magnetic fields to guide future work in this area.

Bennett, B.C.

1982-04-01T23:59:59.000Z

332

Combustion Turbine Experience and Intelligence Report: 2012  

Science Conference Proceedings (OSTI)

This report provides funders of the New Combustion Turbine/Combined-Cycle Plant Design and Technology Selection program (P80) with an overview of current industry trends and market conditions, new gas turbine designs and equipment, and an update on greenhouse gas control options for combined-cycle power plants.BackgroundThe relatively ample supply and low price of natural gas in North America, along with the retirement of coal-fired fossil plants, is leading ...

2012-12-31T23:59:59.000Z

333

Dilute Oxygen Combustion - Phase 3 Report  

Science Conference Proceedings (OSTI)

Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good, and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel's standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion on furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

Riley, Michael F.

2000-05-31T23:59:59.000Z

334

Dilute Oxygen Combustion Phase 3 Final Report  

SciTech Connect

Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel?s standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion of furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

Riley, M.F.; Ryan, H.M.

2000-05-31T23:59:59.000Z

335

Evaluation of Coal Combustion Product Damage Cases  

Science Conference Proceedings (OSTI)

In 2007, the United States Environmental Protection Agency (USEPA) published an assessment that identified 67 coal combustion product (CCP) management with groundwater or surface water impacts that were categorized as proven or potential damage cases. This report provides further evaluation of these cases, including additional data obtained from power companies and public sources. Volume 1 provides an overview and summary of findings, and Volume 2 provides descriptions of individual cases.

2010-07-26T23:59:59.000Z

336

Evaluation of Coal Combustion Product Damage Cases  

Science Conference Proceedings (OSTI)

In 2007, the United States Environmental Protection Agency (USEPA) published an assessment that identified 67 coal combustion product (CCP) management facilities with groundwater or surface water impacts that were categorized as proven or potential damage cases. This report provides further evaluation of these cases, including additional data obtained from power companies and public sources. Volume 1 provides an overview and summary of findings, and Volume 2 provides descriptions of individual cases.

2010-09-03T23:59:59.000Z

337

Ecological Effects of Coal Combustion Products  

Science Conference Proceedings (OSTI)

An extensive amount of research has been conducted to evaluate the potential adverse effects of coal-combustion products (CCPs) on the health of ecosystems. The objective of this project was to evaluate the ecological effects of CCPs and to identify the primary CCP-related factors that have the potential to pose the most substantial risk to ecological receptors. To meet this objective, the investigators conducted a comprehensive review of the peer-reviewed chemical and toxicological literature on the eco...

2011-11-29T23:59:59.000Z

338

Extinguishing agent for combustible metal fires  

DOE Patents (OSTI)

A low chloride extinguishing agent for combustible metal fires comprising from substantially 75 to substantially 94 weight percent of sodium carbonate as the basic fire extinguishing material, from substantially 1 to substantially 5 weight percent of a water-repellent agent such as a metal stearate, from substantially 2 to substantially 10 weight percent of a flow promoting agent such as attapulgus clay, and from substantially 3 to substantially 15 weight percent of a polyamide resin as a crusting agent.

Riley, John F. (Menominee, MI); Stauffer, Edgar Eugene (Wallace, MI)

1976-10-12T23:59:59.000Z

339

Real-Time Combustion Controls and Diagnostics Sensors (CCADS)  

DOE Patents (OSTI)

The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes. A voltage is applied between the first and second electrodes and the magnitude of resulting current between the first and second electrodes is determined.

Thornton, J.D.; Richard, G.A.; Dodrill, K.A.; Nutter, R.S. Jr; Straub, D.

2005-05-03T23:59:59.000Z

340

Real-time combustion controls and diagnostics sensors (CCADS)  

DOE Patents (OSTI)

The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes. A voltage is applied between the first and second electrodes and the magnitude of resulting current between the first and second electrodes is determined.

Thornton, Jimmy D. (Morgantown, WV); Richards, George A. (Morgantown, WV); Dodrill, Keith A. (Fairmont, WV); Nutter, Jr., Roy S. (Morgantown, WV); Straub, Douglas (Morgantown, WV)

2005-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coal combustion science. Quarterly progress report, April 1993--June 1993  

Science Conference Proceedings (OSTI)

This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Hardesty, D.R. [ed.

1994-05-01T23:59:59.000Z

342

Combustion, pyrolysis, gasification, and liquefaction of biomass  

DOE Green Energy (OSTI)

All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

Reed, T.B.

1980-09-01T23:59:59.000Z

343

Wood combustion systems: status of environmental concerns  

DOE Green Energy (OSTI)

This document addresses the uncertainties about environmental aspects of Wood Combustion Systems that remain to be resolved through research and development. The resolution of these uncertainties may require adjustments in the technology program before it can be commercialized. The impacts and concerns presented in the document are treated generically without reference to specific predetermined sites unless these are known. Hence, site-specific implications are not generally included in the assessment. The report consists of two main sections which describe the energy resource base involved, characteristics of the technology, and introduce the environmental concerns of implementing the technology; and which review the concerns related to wood combustion systems which are of significance for the environment. It also examines the likelihood and consequence of findings which might impede wood commercialization such as problems and uncertainties stemming from current or anticipated environmental regulation, or costs of potential environmental controls. This document is not a formal NEPA document. Appropriate NEPA documentation will be prepared after a formal wood combustion commercialization program is approved by DOE.

Dunwoody, J.E.; Takach, H.; Kelley, C.S.; Opalanko, R.; High, C.; Fege, A.

1980-01-01T23:59:59.000Z

344

Premixed turbulent combustion to opposed streams  

DOE Green Energy (OSTI)

Premixed turbulent combustion in opposed streams has been studied experimentally by the use of two component laser doppler aneomometry. This flow geometry is part of a class of stagnating flows used to study turbulent combustion in recent years. It does not involve any surface near the flames because of the flow symmetry thus circumventing many of the effects of flame surface interaction. The mean non-reacting flow is found to be self-similar for all the conditions studied in this and the stagnation plate configuration. A homogeneous region of plane straining is produced in the vicinity of the stagnation and there is a strong interaction between the turbulence in the flow and the mean straining which can increase the rms velocity as the flow stagnates. The reacting flow fields are found to be symmetric about the free stagnation point. The traverses of mean axial velocity in the stagnation streamlines for reaction flows are not dramatically different from the non-reaction flows. These results differ from turbulent combustion experiments where the flow is stagnated by a flat plate. The extinction limits was studied for propane:air mixtures. 11 refs.

Kostiuk, L.W.; Cheng, R.K.

1992-03-01T23:59:59.000Z

345

Palladium-catalyzed combustion of methane: Simulated gas turbine combustion at atmospheric pressure  

Science Conference Proceedings (OSTI)

Atmospheric pressure tests were performed in which a palladium catalyst ignites and stabilizes the homogeneous combustion of methane. Palladium exhibited a reversible deactivation at temperatures above 750 C, which acted to ``self-regulate`` its operating temperature. A properly treated palladium catalyst could be employed to preheat a methane/air mixture to temperatures required for ignition of gaseous combustion (ca. 800 C) without itself being exposed to the mixture adiabatic flame temperature. The operating temperature of the palladium was found to be relatively insensitive to the methane fuel concentration or catalyst inlet temperature over a wide range of conditions. Thus, palladium is well suited for application in the ignition and stabilization of methane combustion.

Griffin, T.; Weisenstein, W. [ABB Corporate Research Center, Daettwill (Switzerland); Scherer, V. [ABB Kraftwerke, Mannheim (Germany); Fowles, M. [ICI Katalco, Cleveland (United Kingdom)

1995-04-01T23:59:59.000Z

346

Hybrid Combustion-Gasification Chemical Looping  

DOE Green Energy (OSTI)

For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

2009-01-07T23:59:59.000Z

347

NREL: Vehicles and Fuels Research - Fuel Combustion Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Combustion Lab Fuel Combustion Lab NREL's Fuel Combustion Laboratory focuses on characterizing fuels at the molecular level. This information can then be used to understand and predict the fuel's effect on engine performance and emissions. By understanding the effects of fuel chemistry on ignition we can develop fuels that enable more efficient engine designs, using both today's technology and future advanced combustion concepts. This lab supports the distributed Renewable Fuels and Lubricants (ReFUEL) Laboratory, and the Biofuels activity. Photo of assembled IQT. Ignition Quality Tester The central piece of equipment in the Fuel Combustion Laboratory is the Ignition Quality Tester (IQT(tm)). The IQT(tm) is a constant volume combustion vessel that is used to study ignition properties of liquid

348

Pre-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a feedstock (such as coal) is partially oxidized in steam and oxygen/air under high temperature and pressure to form synthesis gas. This synthesis gas, or syngas, is a mixture of hydrogen, carbon monoxide, CO2, and smaller amounts of other gaseous components, such as methane. The syngas can then undergo the water-gas shift reaction to convert CO and water (H2O) to H2 and CO2, producing a H2 and CO2-rich gas mixture. The concentration of CO2 in this mixture can range from 15-50%. The CO2 can then be captured and separated, transported, and ultimately sequestered, and the H2-rich fuel combusted.

349

CO2 Emissions from Fuel Combustion | Open Energy Information  

Open Energy Info (EERE)

CO2 Emissions from Fuel Combustion CO2 Emissions from Fuel Combustion Jump to: navigation, search Tool Summary Name: CO2 Emissions from Fuel Combustion Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Dataset, Publications Website: www.iea.org/co2highlights/co2highlights.pdf CO2 Emissions from Fuel Combustion Screenshot References: CO2 Emissions from Fuel Combustion[1] Overview "This annual publication contains: estimates of CO2 emissions by country from 1971 to 2008 selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh CO2 emissions from international marine and aviation bunkers, and other relevant information" Excel Spreadsheet References ↑ "CO2 Emissions from Fuel Combustion"

350

Method of controlling cyclic variation in engine combustion  

DOE Patents (OSTI)

Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling.

Davis, Jr., Leighton Ira (Ann Arbor, MI); Daw, Charles Stuart (Knoxville, TN); Feldkamp, Lee Albert (Plymouth, MI); Hoard, John William (Livonia, MI); Yuan, Fumin (Canton, MI); Connolly, Francis Thomas (Ann Arbor, MI)

1999-01-01T23:59:59.000Z

351

Method of controlling cyclic variation in engine combustion  

DOE Patents (OSTI)

Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling. 27 figs.

Davis, L.I. Jr.; Daw, C.S.; Feldkamp, L.A.; Hoard, J.W.; Yuan, F.; Connolly, F.T.

1999-07-13T23:59:59.000Z

352

Chemical Kinetic Models for HCCI and Diesel Combustion  

DOE Green Energy (OSTI)

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbook, C K; Mehl, M

2008-10-30T23:59:59.000Z

353

FY 2008 Progress Report for Advanced Combustion Engine Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION COMBUSTION ENGINE TECHNOLOGIES annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2008 Progress rePort For AdvAnced combustion engine technologies Energy Efficiency

354

Emissions Characterization from Advanced Combustion & Alternative Fuels -  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Characterization from Advanced Combustion & Emissions Characterization from Advanced Combustion & Alternative Fuels Exhaust emissions from engines operating in advanced combustion modes such as PCCI (Premixed Charge Compression Ignition) and HCCI (Homogeneous Charge Compression Ignition) are analyzed with an array of analytical tools. Furthermore, emissions from a variety of alternative fuels and mixtures thereof with conventional gasoline and diesel fuels are also measured. In addition to measuring the criteria pollutants nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HCs) are also measured and categorized based on chemistry. These chemical details of the emissions provide important information for optimizing combustion processes to maximize fuel efficiency while minimizing emissions

355

Improve Your Boiler's Combustion Efficiency  

SciTech Connect

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

356

Combustion Behavior of Pulverized Coal Injection in Corex Melter ...  

Science Conference Proceedings (OSTI)

In order to increase the utilization of fine coal, reduce coke consumption and enhance the competitiveness of the technology, the combustion behavior of ...

357

Numerical Simulation of Pulverized Coal Combustion Behavior in ...  

Science Conference Proceedings (OSTI)

Furthermore, the influence of increasing oxygen content on the pulverized coal combustion in oxygen blast furnace is small due to higher oxygen content.

358

Microsoft Word - 41776_GE_Fuel Flexible Combustion_Factsheet...  

NLE Websites -- All DOE Office Websites (Extended Search)

A. Objective: Develop a multi-fuel low emission combustor for Vision 21 plant and gas turbine system applications. Combustion system development includes the development of...

359

Combustion Characterization and Modelling of Fuel Blends for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Value (405,990 DOE) COMBUSTION CHARACTERIZATION AND MODELLING OF FUEL BLENDS FOR POWER GENERATION GAS TURBINES University of Central Florida Presentation-Petersen, 1013...

360

Gas turbine combustion modeling for a Parametric Emissions Monitoring System.  

E-Print Network (OSTI)

??Oxides of nitrogen (NOx), carbon monoxide (CO) and other combustion by-products of gas turbines have long been identified as harmful atmospheric pollutants to the environment… (more)

Honegger, Ueli

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

New insights into strobe reactions: An intriguing oscillatory combustion phenomenon.  

E-Print Network (OSTI)

??Strobes are self-sustained oscillatory combustions that have various applications in the fireworks industry and also in the military area (signaling, missile decoys and crowd control).… (more)

Corbel, J.M.L.

2013-01-01T23:59:59.000Z

362

State Grid Biomass Fuel and Combustion Technology Laboratory...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon State Grid Biomass Fuel and Combustion Technology Laboratory Jump to: navigation, search Name State Grid...

363

and Oxy-Fuel Combustion Modes on Hydroxyl Content  

Science Conference Proceedings (OSTI)

Presentation Title, The Challenges of Measuring the Impact of Air- and Oxy-Fuel Combustion Modes on Hydroxyl Content in Glass. Author(s), Leighta Johnson, ...

364

Characterization and Control of Multi-Cylinder Partially Premixed Combustion.  

E-Print Network (OSTI)

??In the last decade diesel combustion has developed in a new direction. Research has been carried out trying to prolong the ignition delay and enhance… (more)

Lewander, Magnus

2011-01-01T23:59:59.000Z

365

Combustion Stability in Complex Engineering Flows | Argonne Leadership...  

NLE Websites -- All DOE Office Websites (Extended Search)

vortex. Virtual testing enables engineers to design next-generation, low-emission combustion systems. Lee Shunn, Cascade Technologies; Shoreh Hajiloo, GE Global Research...

366

CSE - International Workshop on Photon Tools for Combustion and...  

NLE Websites -- All DOE Office Websites (Extended Search)

and other large light sources to energy conversion research -- particularly to combustion and the productionstorage of energy from novel sources. The inaugural meeting was...

367

Mathematical Modeling for Side-Blow Combustion Region in Iron ...  

Science Conference Proceedings (OSTI)

Presentation Title, Mathematical Modeling for Side-Blow Combustion Region in Iron Bath Reactor with H2-C Mixture Reduction. Author(s), Bo Zhang, Hong Xin.

368

Rugged, Verifiable In-Situ Oxygen Analyzers for Combustion ...  

Science Conference Proceedings (OSTI)

Conventional, heated in-situ sensors must be located in cooler furnace regions far from combustion and have similar time delays, a need for frequent calibration

369

Examining the Relationship of Near Limit Combustion Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Examining the Relationship of Near Limit Combustion Research, Technology Commercialization, and Energy Savings Analysis Speaker(s): Peter Therkelsen Date: January 15, 2013 -...

370

CSE - International Workshop on Photon Tools for Combustion and...  

NLE Websites -- All DOE Office Websites (Extended Search)

International Workshop on Photon Tools for Combustion and Energy Conversion - Lodging GUEST HOUSE Argonne Guest House Please remember to make your lodging reservation directly...

371

Early Science High Speed Combustion and Detonation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Science High Speed Combustion and Detonation Project (HSCD) Alexei Khokhlov, University of Chicago Joanna Austin, University of Illinois Andrew Knisely, University of Illinois...

372

Low-Temperature Combustion Synthesis Method for Preparation of ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Tungsten carbide (WC) power for gas diffusion electrodes catalyst was prepared by low-temperature combustion synthesis (LCS) method using ...

373

Princeton-CEFRC Summer Program on Combustion: 2013 Session |...  

Office of Science (SC) Website

Princeton-CEFRC Summer Program on Combustion: 2013 Session Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC...

374

CSE - International Workshop on Photon Tools for Combustion and...  

NLE Websites -- All DOE Office Websites (Extended Search)

International Workshop on Photon Tools for Combustion and Energy Conversion Organizing Committee Robert S. Tranter, Co-chair (Argonne National Lab) Randall E. Winans, Co-chair...

375

Argonne TTRDC - Engines - Multi-Dimensional Modeling - Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Modeling with Detailed Chemistry It is well known that the optimization of engines burning liquid and gaseous fuels through repeated experiments is a routine but rather...

376

CSE - International Workshop on Photon Tools for Combustion and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Chair: Randall E. Winans, Argonne National Laboratory 1:55 Organic Radicals in Pyrolysis of Furans and Biomass-Based Fuels Barney Ellison University of Boulder at...

377

Chemical Looping Combustion Prototype for CO2 Capture from Existing...  

NLE Websites -- All DOE Office Websites (Extended Search)

looping combustion prototype based on successful development and testing of a 65 kW (thermal) pilot-scale system under a previous Department of Energy (DOE) cooperative...

378

Combustion of High Hydrogen Fuel for Norske Hydro  

NLE Websites -- All DOE Office Websites (Extended Search)

results of a recent hydrogen combustion-testing program including resultant affects on gas turbine cycles. Testing program results show the feasibility of hydrogen use for...

379

Combustion Instability and Blowout Characteristics of Fuel Flexible...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Blowout Combustion Instability and Blowout Characteristics of Fuel Flexible Gas Turbine Characteristics of Fuel Flexible Gas Turbine Combustors Combustors Georgia...

380

Carbon ion pump for removal of carbon dioxide from combustion ...  

Biomass and Biofuels; Building Energy Efficiency; ... Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures United States Patent ...

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NERSC to Provide Resources to INCITE Projects Studying Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC to Provide Resources to INCITE Projects Studying Combustion, Fusion Energy, Materials and Accelerator Design NERSC to Provide Resources to INCITE Projects Studying...

382

NETL: IEP ? Oxy-Combustion CO2 Emissions Control - Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

to determine the performance of the oxy-combustion process for the respective boiler configurations. Phase I will evaluate the effect of coal rank used in existing...

383

Modeling and Rendering Physically-Based Wood Combustion  

Science Conference Proceedings (OSTI)

This paper describes extensions to existing methods for rendering of the effects of combustion on a wood object, adding considerations for wood grain and moisture content.

Riensche, Roderick M.; Lewis, Robert R.

2009-08-01T23:59:59.000Z

384

Microsoft PowerPoint - Mechanically Activated Combustion_Shafirovich  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanically activated SHS (MASHS) Adds a short-duration high-energy ball milling step before combustion The high-energy milling rapidly produces nanostructured...

385

NETL: Health Effects - Laboratory Generation of Coal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Generation of Coal Combustion Atmospheres Although emissions from coal-fired power plants and their atmospheric reaction products contribute to environmental air...

386

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California and Spatial Disaggregated Estimate of Energy-related Carbon Dioxide for California...

387

Novel Reactor Design for Solid Fuel Chemical Looping Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

for Solid Fuel Chemical Looping Combustion Opportunity Research is active on the patent pending technology, titled "Apparatus and Method for Solid Fuel Chemical Looping...

388

Update on Engine Combustion Research at Sandia National Laboratories  

DOE Green Energy (OSTI)

The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.

Jay Keller; Gurpreet Singh

2001-05-14T23:59:59.000Z

389

A-15: Combustion of Aluminum Powder Compacts due to Dynamic ...  

Science Conference Proceedings (OSTI)

The goal is to determine the meso-scale mechanisms of combustion of aluminum ... of High Nitrogen Duplex Stainless Steel by Multiscale in-situ Experiments.

390

Superadiabatic combustion in counter-flow heat exchangers.  

E-Print Network (OSTI)

??Syngas, a combustible gaseous mixture of hydrogen, carbon monoxide, and other species, is a promising fuel for efficient energy conversion technologies. Syngas is produced by… (more)

Schoegl, Ingmar Michael

2011-01-01T23:59:59.000Z

391

The Advanced Tangentially Fired Combustion Techniques for the...  

NLE Websites -- All DOE Office Websites (Extended Search)

MWe, but is capable of producing 200 MWe. The boiler is a Combustion Engineering, Inc. radiant reheat, natural circulation, steam generator, with five elevations of burners fed...

392

DEMONSTRATION OF ADVANCED COMBUSTION NO X CONTROL TECHNIQUES  

NLE Websites -- All DOE Office Websites (Extended Search)

x producing tempera- ture). The AOFA system enables the delayed combustion and sub-stoichiometric burner operation by introducing 10-20 percent of the secondary air through...

393

CANMET CO2 Consortium - O2/CO2 Recycle Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

CANMET CO CANMET CO 2 Consortium - O 2 /CO 2 Recycle Combustion Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

394

Fluctuations in combustion-driven MHD generators  

DOE Green Energy (OSTI)

Results of an experimental and theoretical investigation of inherent fluctuations that occur within combustion-driven MHD generators are presented. The primary concern was to determine the presence and effects of axially-propagating, linear hydrodynamic traveling-waves of the magnetoacoustic and magnetoentropic types. The possible development of large fluctuations in high magnetic interaction MHD generators caused by hydrodynamic traveling-waves propagating with increasing amplitude was considered. Experimentally, time-resolved measurements of pressures, electrode currents, and internal differential voltages within a laboratory-scale, combustion-driven MHD generator facility were analyzed. A special probe-tube microphone provided a sensitive measurement of the pressure fluctuations within a combustion-driven MHD generator duct. The time-resolved measurements were analyzed in terms of statistical properties such as relative fluctuation levels, spectraldensity functions, cross-correlation coefficients, and coherence and relative phase functions. The presence and subsequent electrical effects of axially-propagating acoustic and entropy waves were observed. At low mean fluid velocities during MHD generator operation with high current densities, 1.0 Amp/cm/sup 2/, and with applied magnetic field, 2.4 Tesla, fluctuations in the current-magnetic field interaction force caused by the electrical conductivity variations associated with the entropy waves resulted in a threefold increase in pressure fluctuation levels within the upstream part of the MHD duct. Hydrodynamic traveling-waves within an MHD duct were theoretically investigated by considering a first-order linearization analysis of the controlling, quasi-one dimensional fluid and electrical equations of an MHD generator. Comparisons between experimental results and a theoretical model were in qualitative agreement.

Barton, J.P.

1980-08-01T23:59:59.000Z

395

VOC Destruction by Catalytic Combustion Microturbine  

SciTech Connect

This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of the catalytic bed.

Tom Barton

2009-03-10T23:59:59.000Z

396

VOC Destruction by Catalytic Combustion Microturbine  

SciTech Connect

This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of the catalytic bed.

Tom Barton

2009-03-10T23:59:59.000Z

397

Combustion of volatile matter during the initial stages of coal combustion  

DOE Green Energy (OSTI)

Both the secondary pyrolysis and combustion of the volatiles from a bituminous coal will be studied. Devolatilization and secondary pyrolysis experiments will be conducted in a novel flow reactor in which secondary pyrolysis of the volatiles occurs after devolatilization is complete. This allows unambiguous measurements of the yields from both processes. Measurements will be made for reactor temperatures from 1500 to 1700 K, and a nominal residence time of 200 msec. These conditions are typical of coal combustion. Yields of tar, soot, H{sub 2}, CO, CH{sub 4}, and C{sub 2} and C{sub 3} hydrocarbons will be determined as a function of reactor temperature. The yields will be reported as a function of the temperature of the reactor. The instrumentation for temperature measurements will be developed during future studies. Combustion studies will be conducted in a constant volume bomb, which will be designed and constructed for this study. Tar and soot will be removed before introducing the volatiles to the bomb, so that only the combustion of the light gas volatiles will be considered. The burning velocities of light gas volatiles will be determined both as functions of mixture stoichiometry and the temperature at which the volatiles are pyrolysed. 90 refs., 70 figs., 13 tabs.

Marlow, D.; Niksa, S.; Kruger, C.H.

1990-08-01T23:59:59.000Z

398

Future Direction of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion  

Science Conference Proceedings (OSTI)

The Air Force Office of Scientific Research, the Air Force Wright Laboratory Aero Propulsion and Power Directorate, and the NASA Langley Research Center held a joint supersonic combustion workshop on 14-16 May 1996. The intent of this meeting was to: ...

Tishkoff Julian M.; Drummond J. Philip; Edwards T.; Nejad A. S.

1997-01-01T23:59:59.000Z

399

MSTER EN ENERGIAS RENOVABLES, PILAS DE COMBUSTIBLE E TITULO MSTER EN ENERGAS RENOVABLES, PILAS DE COMBUSTIBLE E HIDRGENO  

E-Print Network (OSTI)

hidrĂłgeno (2 ECTS) Pilas de combustible y economĂ­a del hidrogeno (1 ECTS) PRACTICAS DE LABORATORIO Se

Fitze, Patrick

400

Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story  

DOE Green Energy (OSTI)

Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

Wogsland, J.

2001-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuel Composition Impacts on Combustion Turbine Operability  

Science Conference Proceedings (OSTI)

Most new CT plants today area permitted at low emission limits for NOx and CO, leading to greater use of lean, pre-mix combustion of natural gas in dry, low-NOx (DLN) combustors. These combustors are typically fine-tuned for a narrow range of fuel properties. At the same time, the increasing variability of natural gas supplies, deregulation of the gas industry, and increasing use of liquefied natural gas (LNG) has led to more variability in fuel properties and a need for greater flexibility in firing gas...

2006-03-20T23:59:59.000Z

402

PDF Modeling of Turbulent Lean Premixed Combustion  

Science Conference Proceedings (OSTI)

The joint velocity-scalar-frequency probability density function (PDF) methodology is employed for prediction of a bluff-body stabilized lean premixed methane-air flame. A reduced mechanism with CO and NO chemistry is used to describe fuel oxidation. The predicted mean and rms values of the velocity, temperature and concentrations of major and minor species are compared with laboratory measurements. This technical effort was performed in support of the National Energy Technology Laboratory’s on-going research in “Assessment of Turbo-Chemistry Models for Gas Turbine Combustion Emissions” under the RDS contract DE-AC26-04NT41817.

Yilmaz, S.L.; •Givi, P.; Strakey, P.A.

2007-10-01T23:59:59.000Z

403

Combustion chamber for a commercial laundry dryer  

SciTech Connect

This patent describes combustion for a laundry article-drying device or the like, comprising: a front wall; a back wall having a flame source mounted thereon; a burner cylinder mounted at one end to the back wall around the flame source, the burner cylinder having an open end facing the front wall; and a heating cylinder coaxial with and slightly overlapping the burner cylinder. The heating cylinder has a larger diameter than the burner cylinder to provide a clearance for fresh air entering between the heating and burner cylinders into the heating cylinder.

Grantham, C.R.

1986-12-02T23:59:59.000Z

404

2009 Laser Diagnostics in Combustion GRC  

Science Conference Proceedings (OSTI)

Non-intrusive laser diagnostics for the spatially and temporally resolved measurement of temperature, chemical composition, and flow parameters have emerged over the last few decades as major tools for the study of both fundamental and applied combustion science. Many of the important advances in the field can be attributed to the discussions and ideas emanating from this meeting. This conference, originating in 1981 and held biennially, focuses on laser-based methods for measurement of both macroscopic parameters and the underlying microscale physical and chemical processes. Applications are discussed primarily to elucidate new chemical and physical issues and/or interferences that need to be addressed to improve the accuracy and precision of the various diagnostic approaches or to challenge the community of diagnosticians to invent new measurement techniques. Combustion environments present special challenges to the optical diagnostics community as they address measurements relevant to turbulence, spray and mixture formation, or turbulence/chemistry interactions important in practical combustion systems as well as fundamental chemical reactions in stationary laminar flames. The diagnostics considered may be generally classed as being incoherent, where the signals are radiated isotropically, or coherent, where the signals are generated in a directed, beam-like fashion. Both of the foregoing may employ either electronic or Raman resonance enhancement or a combination of both. Prominent incoherent approaches include laser induced fluorescence (LIF), spontaneous Raman scattering, Rayleigh scattering, laser induced incandescence, molecular flow tagging, and Mie scattering and their two- and three-dimensional imaging variants. Coherent approaches include coherent anti-Stokes Raman scattering (CARS), degenerate four wave mixing (DFWM), polarization spectroscopy (PS), laser induced grating spectroscopy (LIGS) and laser-based absorption spectroscopy. Spectroscopic modelling and validation are key elements to extract accurate parameter measurements and discussions focusing on key energy transfer processes, collisional models, and lineshapes. The properties and behaviour of lasers, optical arrangements and techniques, spectrally-selective and dispersive instruments and detectors are also important determinants of successful measurements and are discussed in detail. Recent developments in the conference have highlighted the application of techniques developed for combustion research that find application in other areas such as biological, atmospheric, chemical engineering or plasma processes.

Volker Sick

2009-08-16T23:59:59.000Z

405

Advanced clean combustion technology in Shanxi province  

Science Conference Proceedings (OSTI)

Biomass energy resources in China are first described, along with biomass gasification R & D now underway. In Shanxi province biomass and other regenerative energy is relatively little used but coal resources are large. Hence Shanxi is mainly developing clean coal technology to meet its economic and environmental protection requirements. Clean combustion research at Taiyuan University of Technology includes cofiring of coal and RDF in FBC, gas purification and adsorption, fundamentals of plasma-aided coal pyrolysis and gasification and coal derived liquid fuels from synthesis gas. 5 refs.

Xie, K.-C. [Taiyuan University of Technology, Taiyuan (China)

2004-07-01T23:59:59.000Z

406

An optimization approach to kinetic model reduction for combustion chemistry  

E-Print Network (OSTI)

Model reduction methods are relevant when the computation time of a full convection-diffusion-reaction simulation based on detailed chemical reaction mechanisms is too large. In this article, we review a model reduction approach based on optimization of trajectories and show its applicability to realistic combustion models. As most model reduction methods, it identifies points on a slow invariant manifold based on time scale separation in the dynamics of the reaction system. The numerical approximation of points on the manifold is achieved by solving a semi-infinite optimization problem, where the dynamics enter the problem as constraints. The proof of existence of a solution for an arbitrarily chosen dimension of the reduced model (slow manifold) is extended to the case of realistic combustion models including thermochemistry by considering the properties of proper maps. The model reduction approach is finally applied to three models based on realistic reaction mechanisms: 1. ozone decomposition as a small t...

Lebiedz, Dirk

2013-01-01T23:59:59.000Z

407

Combustion characterization of beneficiated coal-based fuels  

Science Conference Proceedings (OSTI)

The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, conbustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Sciences, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for the full-scale tests. Approximately nine BCFs will be in dry ultra-fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

Chow, O.K.; Nsakala, N.Y.

1990-08-01T23:59:59.000Z

408

Fundamental combustion and diagnostics research at Sandia. Progress report, April-June 1980  

DOE Green Energy (OSTI)

The combustion research emphasizes basic research into fundamental problems associated with combustion. The overall program addresses detailed chemistry of combustion, fundamental processes associated with laminar and turbulent flames, development of research techniques specifically applicable to combustion environments, and operation of the user-oriented Combustion Research Facility. The first section of this report contains activities in Combustion Research, the second section contains activities in Molecular Physics and Spectroscopy, and the third section contains activities in Diagnostics Research.

Gusinow, M.A. (ed.)

1980-09-01T23:59:59.000Z

409

Mejores y Peores en Ahorro de Combustible  

NLE Websites -- All DOE Office Websites (Extended Search)

Mejores y Peores MPG Mejores y Peores MPG Los Vehículos Más y Menos Eficientes del 2014 Autos Autos (excluyendo VE) Camiones Camiones (exluyendo VE) Autos 2014 más eficientes en consumo de combustible por clase y tamaño según la EPA (incluye vehículos eléctricos) EPA Clase Descripción del Auto Ahorro de Combustible Combinado Dos-Plazas smart fortwo electric drive convertible smart fortwo electric drive Convertible A-1, 55kw DCPM, Vehículo Eléctrico 107* smart fortwo electric drive coupe smart fortwo electric drive coupe A-1, 55kw DCPM, Vehículo Eléctrico 107* Minicompactos Fiat 500e Fiat 500e A-1, 82 kW AC Induction, Vehículo Eléctrico 116* Subcompactos Chevrolet Spark EV Chevrolet Spark EV A-1, 104 kW ACPM, Vehículo Eléctrico 119* Compactos Ford Focus Electric Ford Focus Electric

410

Thermally induced structural changes in coal combustion  

SciTech Connect

Research continued on coal combustion. The project objectives are (1) to measure the effect of devolatilization temperature and time on the properties of the char and (2) characterize and quantify the effect of thermal annealing on char reactivity during char burnout under conditions of pulverized combustion. Work done during this reporting period includes: coal devolatilization/char generation; char oxidation in the thermogravimetric analyzer (TGA). Oxidation was conducted at 500{degree}C in a 5% O{sub 2}-N{sub 2} mixture at 150 cm{sup 3}/min flowrate. Under these conditions external and intraparticle diffusional limitations were negligible. Three chars obtained from the Pittsburgh No. 8 coal were used in the experiments; oxidation of single char particles in the electrodynamic balance. Experiments were carried out with particles from the Pittsburgh No. 8 char and a spherocarb'' synthetic char obtained from a vendor. The spherocarb char was used because the particles are nearly spherical thus avoiding the complications of irregular particle shape. 15 figs., 1 tab.

Gavalas, G.R.; Flagan, R.C.

1990-12-06T23:59:59.000Z

411

Hydrogen-fueled internal combustion engines.  

DOE Green Energy (OSTI)

The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

2009-12-01T23:59:59.000Z

412

State of Industrial Fluidized Bed Combustion  

E-Print Network (OSTI)

A new combustion technique has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal limits. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures am chemical activity within the bed to limit S02 am NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements, thus reducing the size and cost of steam generators. Recent tests on commercial units have proven the concept. This paper reviews the progress that has been trade in the development of fluidized bed combustion boilers, as well as work currently under way in the United States and overseas. Details on the installation at Georgetown University in Washington, D.C., am at other locations are presented, am operational results are discussed. Potential application of fluidized bed boilers in industrial plants using lignite and lignite refuse is also examined.

Mesko, J. E.

1982-01-01T23:59:59.000Z

413

State of Fluidized Bed Combustion Technology  

E-Print Network (OSTI)

A new combustion technology has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal EPA limits. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements, thus reducing the size and cost of steam generators. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600oF, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. Early history of this technology is traced, and the progress that has been made in the development of fluidized bed combustion boilers, as well as work currently underway, in the United States and overseas, is reviewed. Details on the fluidized bed boiler installations at Alexandria, Virginia (5,000 lbs/hr), Georgetown University (100,000 lbs/hr), and Rivesville, West Virginia (300,000 Ibs/hr) are presented, and test results are discussed. Potential application of fluidized bed boilers in industrial plants using lignite and lignite refuse is examined. The impact of proposed new DOE and EPA regulations on solid fuels burning is also examined.

Pope, M.

1979-01-01T23:59:59.000Z

414

Coal combustion products: trash or treasure?  

Science Conference Proceedings (OSTI)

Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

Hansen, T.

2006-07-15T23:59:59.000Z

415

Co-combustion feasibility study. Final report  

DOE Green Energy (OSTI)

This report investigates the technical and economic feasibility of co-combusting municipal sewage sludge produced by the Saratoga County Sewer District No. 1 with paper mill sludge produced by the Cottrell Paper Company, Encore Paper Company, International Paper Company, Mohawk Paper Mills, and TAGSONS Papers at the Saratoga County Sewer District No. 1`s secondary wastewater treatment plant and recovering any available energy products. The co-combustion facility would consist of sludge and wood chip storage and conveying systems, belt filter presses, screw presses, fluidized-bed incinerators, venturi scrubbers and tray cooling systems, ash dewatering facilities, heat recovery steam generators, gas-fired steam superheaters, and a back-pressure steam turbine system. Clean waste wood chips would be used as an auxiliary fuel in the fluidized-bed incinerators. It is recommended that the ash produced by the proposed facility be beneficially used, potentially as a raw material in the manufacture of cement and/or as an interim barrier layer in landfills.

Handcock, D.J. [Clough, Harbour and Associates, Albany, NY (United States)

1995-01-01T23:59:59.000Z

416

Estimation of Chinese Inventories for Historical NMVOCs Emissions from Combustion  

Science Conference Proceedings (OSTI)

Based on time-varying statistical data and emission factors, multiyear NMVOCs emission inventories from fossil fuel combustion, biofuel burning, and biomass open burning in China for 1980-2005 were presented by a bottom-up estimate. The contributions ... Keywords: NMVOCs, emission inventory, combustion, China

Y. Bo; H. Cai; S. D. Xie

2008-10-01T23:59:59.000Z

417

Process of producing combustible gas and for carbonizing coal  

SciTech Connect

This patent describes a process of producing combustible gas by supporting a column of fuel in a shaft furnace, intermittently blasting a combustion-supporting gas transversely through a mid portion of said column to produce a mid zone of sufficiently high temperature to decompose steam. The steam then circulated upwardly through said column between said blasting operations.

Doherty, H.L.

1922-08-15T23:59:59.000Z

418

Numerical Simulation on Forced Swirl Combustion Chamber in Diesel Engine  

Science Conference Proceedings (OSTI)

A concept of forced swirl combustion chamber in diesel engine is proposed in this paper. It can be used to enhance the intensity of swirl flow in the cylinder and accelerate the rate of air-fuel mixture process by designing the special structure in the ... Keywords: diesel engine, forced swirl, combustion chamber, simulation

Yong Shang; Fu-shui Liu; Xiang-rong Li

2010-12-01T23:59:59.000Z

419

Building materials using binders and solid combustible minerals  

Science Conference Proceedings (OSTI)

Local materials including low-quality solid combustible minerals and their wastes, are being used to cheapen building costs. The author reviews the use of solid combustible minerals and their carbonaceous wastes as nonbaking binders of the lime-pozzolana type in the production of building and other materials.

Gorlov, E.G.

1982-01-01T23:59:59.000Z

420

8th International symposium on transport phenomena in combustion  

DOE Green Energy (OSTI)

The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

NONE

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

System Issues and Tradeoffs Associated with Syngas Production and Combustion  

DOE Green Energy (OSTI)

future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Kent H. Casleton; Ronald W. Breault; George A. Richards

2008-06-01T23:59:59.000Z

422

Numerical Simulation on Forced Swirl Combustion Chamber in Diesel Engine  

Science Conference Proceedings (OSTI)

A concept of forced swirl combustion chamber in diesel engine is proposed in this paper. It can be used to enhance the intensity of swirl flow in the cylinder and accelerate the rate of air-fuel mixture process by designing the special structure in the ... Keywords: diesel engine, forced swirl, combustion chamber, simulation

Shang Yong; Liu Fu-shui; Li Xiang-rong

2011-02-01T23:59:59.000Z

423

Support Vector Machines Applied to a Combustion Process  

Science Conference Proceedings (OSTI)

The following research aims to make the characterization of flames in the combustion process in an industrial boiler fossil fuel composed of one burner. The characterization of the flames is performed by analysis of electrical signals that are obtained ... Keywords: Combustion, electromagnetic radiation, principal components analysis, statistical moments, support vector machines

Claudia I. Torres, Fernando Hernandez, Antonio Trejo, Guillermo Ronquillo

2012-11-01T23:59:59.000Z

424

Modeling and Rendering Physically-Based Wood Combustion  

Science Conference Proceedings (OSTI)

Rendering of wood combustion has received some attention recently, but prior work has not incorporated effects of internal wood properties such as density variation (i.e. "grain") and pre-combustion processes such as drying. In this paper we present ...

Roderick M. Riensche; Robert R. Lewis

2009-11-01T23:59:59.000Z

425

Chemical Constituents in Coal Combustion Product Leachate: Boron  

Science Conference Proceedings (OSTI)

This report profiles the element boron as it occurs in leachate at coal combustion product management sites. Included are discussions of boron's occurrence in soils and water, concentrations in coal combustion products (CCPs), CCP leaching characteristics, effects on human health and ecology, geochemistry, and treatment options for removal from water.

2005-03-21T23:59:59.000Z

426

Mathematical modeling of MILD combustion of pulverized coal  

SciTech Connect

MILD (flameless) combustion is a new rapidly developing technology. The IFRF trials have demonstrated high potential of this technology also for N-containing fuels. In this work the IFRF experiments are analyzed using the CFD-based mathematical model. Both the Chemical Percolation Devolatilization (CPD) model and the char combustion intrinsic reactivity model have been adapted to Guasare coal combusted. The flow-field as well as the temperature and the oxygen fields have been accurately predicted by the CFD-based model. The predicted temperature and gas composition fields have been uniform demonstrating that slow combustion occurs in the entire furnace volume. The CFD-based predictions have highlighted the NO{sub x} reduction potential of MILD combustion through the following mechanism. Before the coal devolatilization proceeds, the coal jet entrains a substantial amount of flue gas so that its oxygen content is typically not higher than 3-5%. The volatiles are given off in a highly sub-stoichiometric environment and their N-containing species are preferentially converted to molecular nitrogen rather than to NO. Furthermore, there exists a strong NO-reburning mechanism within the fuel jet and in the air jet downstream of the position where these two jets merge. In other words, less NO is formed from combustion of volatiles and stronger NO-reburning mechanisms exist in the MILD combustion if compared to conventional coal combustion technology. (author)

Schaffel, N. [Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-101 Gliwice (Poland); Clausthal University of Technology, Institute of Energy Process Engineering and Fuel Technology, Agricolastrasse 4, 38678 Clausthal-Zellerfeld (Germany); Mancini, M.; Weber, R. [Clausthal University of Technology, Institute of Energy Process Engineering and Fuel Technology, Agricolastrasse 4, 38678 Clausthal-Zellerfeld (Germany); Szlek, A. [Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-101 Gliwice (Poland)

2009-09-15T23:59:59.000Z

427

Downhole steam generator with improved preheating, combustion, and protection features  

DOE Patents (OSTI)

For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

428

Energy Department Awards $2.6 Million to Boost Combustion Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.6 Million to Boost Combustion Efficiency in Industrial Boilers Energy Department Awards 2.6 Million to Boost Combustion Efficiency in Industrial Boilers September 26, 2005 -...

429

FLAMELESS COMBUSTION APPLICATION FOR GAS TURBINE ENGINES IN THE AEROSPACE INDUSTRY.  

E-Print Network (OSTI)

??The objective of this thesis is to review the potential application of flameless combustion technology in aerospace gas turbine engines. Flameless combustion is a regime… (more)

OVERMAN, NICHOLAS

2006-01-01T23:59:59.000Z

430

Analysis of the Current Signature in a Constant-Volume Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of the Current Signature in a Constant-Volume Combustion Chamber Title Analysis of the Current Signature in a Constant-Volume Combustion Chamber Publication Type Journal...

431

Engine spray combustion modeling using unified spray model with dynamic mesh refinement.  

E-Print Network (OSTI)

??The primary objective of this study is to improve the spray and combustion modeling of internal combustion engines using dynamic mesh refinement. The first part… (more)

Kolakaluri, Ravi

2009-01-01T23:59:59.000Z

432

A homogenous combustion catalyst for fuel efficiency improvements in diesel engines fuelled with diesel and biodiesel.  

E-Print Network (OSTI)

??[Truncated abstract] The ferrous picrate based homogeneous combustion catalyst has been claimed to promote diesel combustion and improve fuel efficiency in diesel engines. However, the… (more)

Zhu, Mingming

2012-01-01T23:59:59.000Z

433

Dilute Oxygen Combustion Phase IV Final Report  

Science Conference Proceedings (OSTI)

Novel furnace designs based on Dilute Oxygen Combustion (DOC) technology were developed under subcontract by Techint Technologies, Coraopolis, PA, to fully exploit the energy and environmental capabilities of DOC technology and to provide a competitive offering for new furnace construction opportunities. Capital cost, fuel, oxygen and utility costs, NOx emissions, oxide scaling performance, and maintenance requirements were compared for five DOC-based designs and three conventional air5-fired designs using a 10-year net present value calculation. A furnace direct completely with DOC burners offers low capital cost, low fuel rate, and minimal NOx emissions. However, these benefits do not offset the cost of oxygen and a full DOC-fired furnace is projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The incremental cost of the improved NOx performance is roughly $6/lb NOx, compared with an estimated $3/lb. NOx for equ8pping a conventional furnace with selective catalytic reduction (SCCR) technology. A furnace fired with DOC burners in the heating zone and ambient temperature (cold) air-fired burners in the soak zone offers low capital cost with less oxygen consumption. However, the improvement in fuel rate is not as great as the full DOC-fired design, and the DOC-cold soak design is also projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The NOx improvement with the DOC-cold soak design is also not as great as the full DOC fired design, and the incremental cost of the improved NOx performance is nearly $9/lb NOx. These results indicate that a DOC-based furnace design will not be generally competitive with conventional technology for new furnace construction under current market conditions. Fuel prices of $7/MMBtu or oxygen prices of $23/ton are needed to make the DOC furnace economics favorable. Niche applications may exist, particularly where access to capital is limited or floor space limitations are critical. DOC technology will continue to have a highly competitive role in retrofit applications requiring increases in furnace productivity.

Riley, M.F.

2003-04-30T23:59:59.000Z

434

Hydrogen program combustion research: Three dimensional computational modeling  

DOE Green Energy (OSTI)

We have significantly increased our computational modeling capability by the addition of a vertical valve model in KIVA-3, code used internationally for engine design. In this report the implementation and application of the valve model is described. The model is shown to reproduce the experimentally verified intake flow problem examined by Hessel. Furthermore, the sensitivity and performance of the model is examined for the geometry and conditions of the hydrogen-fueled Onan engine in development at Sandia National Laboratory. Overall the valve model is shown to have comparable accuracy as the general flow simulation capability in KIVA-3, which has been well validated by past comparisons to experiments. In the exploratory simulations of the Onan engine, the standard use of the single kinetic reaction for hydrogen oxidation was found to be inadequate for modeling the hydrogen combustion because of its inability to describe both the observed laminar flame speed and the absence of autoignition in the Onan engine. We propose a temporary solution that inhibits the autoignition without sacrificing the ability to model spark ignition. In the absence of experimental data on the Onan engine, a computational investigation was undertaken to evaluate the importance of modeling the intake flow on the combustion and NO{sub x} emissions. A simulation that began with the compression of a quiescent hydrogen-air mixture was compared to a simulation of the full induction process with resolved opening and closing of the intake valve. Although minor differences were observed in the cylinder-averaged pressure, temperature, bulk-flow kinetic energy and turbulent kinetic energy, large differences where observed in the hydrogen combustion rate and NO{sub x} emissions. The flow state at combustion is highly heterogeneous and sensitive to the details of the bulk and turbulent flow and that an accurate simulation of the Onan engine must include the modeling of the air-fuel induction.

Johnson, N.L.; Amsden, A.A.; Butler, T.D.

1995-05-01T23:59:59.000Z

435

Assessment of Literature Related to Combustion Appliance Venting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Literature Related to Combustion Appliance Venting Systems Assessment of Literature Related to Combustion Appliance Venting Systems Title Assessment of Literature Related to Combustion Appliance Venting Systems Publication Type Report LBNL Report Number LBNL-5798E Year of Publication 2012 Authors Rapp, Vi H., Brett C. Singer, J. Chris Stratton, and Craig P. Wray Date Published 06/2012 Abstract In many residential building retrofit programs, air tightening to increase energy efficiency is constrained by concerns about related impacts on the safety of naturally vented combustion appliances. Tighter housing units more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spillage. Several test methods purportedly assess the potential for depressurization-induced backdrafting and spillage, but these tests are not robustly reliable and repeatable

436

National Carbon Capture Center Launches Post-Combustion Test Center |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 7, 2011 - 1:00pm Addthis Washington, D.C. - The recent successful commissioning of an Alabama-based test facility is another step forward in research that will speed deployment of innovative post-combustion carbon dioxide (CO2) capture technologies for coal-based power plants, according to the U.S. Department of Energy (DOE). Technologies tested at the Post-Combustion Carbon Capture Center (or PC4) are an important component of Carbon Capture and Storage, whose commercial deployment is considered by many experts as essential for helping to reduce human-generated CO2 emissions that contribute to potential climate change.

437

Understanding and Control of Combustion Dynamics in Gas Turbine Combustors  

NLE Websites -- All DOE Office Websites (Extended Search)

Control of Combustion Understanding and Control of Combustion Control of Combustion Understanding and Control of Combustion Dynamics in Gas Turbine Combustors Dynamics in Gas Turbine Combustors Georgia Institute of Technology Georgia Institute of Technology Ben T. Zinn, Tim Lieuwen, Yedidia Neumeier, and Ben Bellows SCIES Project 02-01-SR095 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/2002, 36 Month Duration) $452,695 Total Contract Value CLEMSONPRES.PPT, 10/28/2003, B.T. ZINN, T. LIEUWEN, Y. NEUMEIER Gas Turbine Need Gas Turbine Need * Need: Gas turbine reliability and availability is important factor affecting power plant economics - Problem: Combustion driven oscillations severely reduce part life, requiring substantially more frequent outages

438

National Carbon Capture Center Launches Post-Combustion Test Center |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture Center Launches Post-Combustion Test Center Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 6, 2011 - 2:32pm Addthis Jenny Hakun What does this mean for me? Commercial deployment of the processes tested here could cut carbon pollution. Innovation is important to finding ways to make energy cleaner. And testing the ideas and processes that researchers come up with is critical to moving ideas from the lab to the marketplace. That's why the Department of Energy recently commissioned an Alabama testing facility that will help move research forward and speed up deployment of innovative post-combustion carbon dioxide (CO2) capture technologies for coal-based power plants. The Post-Combustion Carbon Capture Center (or PC4) facility tests new

439

Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II Title Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II Publication Type Report LBNL Report Number LBNL-6193E Year of Publication 2013 Authors Rapp, Vi H., Albert Pastor-Perez, Brett C. Singer, and Craig P. Wray Date Published 04/2013 Abstract VENT-II is a computer program designed to provide detailed analysis of natural draft and induced draft combustion appliance vent-systems (i.e., furnace or water heater). This program is capable of predicting house depressurization thresholds that lead to backdrafting and spillage of combustion appliances; however, validation reports of the program being applied for this

440

Numerical Simulation Of Utility Boilers With Advanced Combustion Technologies  

E-Print Network (OSTI)

This paper presents calculations of a pulverized coal flame and a coal-fired utility boiler with advanced combustion technologies. A combustion model based on an extended Eddy Dissipation Concept (EDC) combined with finite rate chemistry is described and some applications are shown. This model can be regarded as an extension of the previously used Eddy Breakup model (EBU) where infinite fast chemistry is assumed. It is part of a 3D-prediction code for quasi-stationary turbulent reacting flows which is based on a conservative finite-volume solution procedure. Equations are solved for the conservation of mass, momentum and scalar quantities. A domain decomposition method is used to introduce locally refined grids. Validation and comparison of both combustion models are made by comparison with measurement data of a swirled flame with air staging in a semi-industrial pulverized coal combustion facility. The application to three-dimensional combustion systems is demonstrated by the simulati...

H. C. Magel; R. Schneider; B. Risio; U. Schnell; K. R. G. Hein

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Low emission U-fired boiler combustion system  

DOE Patents (OSTI)

At least one main combustion chamber contains at least one pulverized coal burner. Each pulverized coal burner is operatively arranged for minimizing NO.sub.X production and for maintaining a predetermined operating temperature to liquefy ash within the combustion chamber. The combustion chamber includes a slag drain for removing slag from the combustion chamber. A slag screen is positioned in a generally U-shaped furnace flow pattern. The slag screen is positioned between the combustion chamber and a radiant furnace. The radiant furnace includes a reburning zone for in-furnace No.sub.X reduction. The reburning zone extends between a reburning fuel injection source and at least one overfire air injection port for injecting air.

Ake, Terence (North Brookfield, MA); Beittel, Roderick (Worcester, MA); Lisauskas, Robert A. (Shrewsbury, MA); Reicker, Eric (Barre, MA)

2000-01-01T23:59:59.000Z

442

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 12, January--March 1992  

Science Conference Proceedings (OSTI)

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; completed editing of the fifth quarterly report and sent it to the publishing office; and prepared two technical papers for conferences.

Chow, O.K.; Nsakala, N.Y.

1992-08-01T23:59:59.000Z

443

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 17, April--June 1993  

SciTech Connect

Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1993, the following technical progress was made: Completed modeling calculations of coal mineral matter transformations, deposition behavior, and heat transfer impacts of six test fuels; and ran pilot-scale tests of Upper Freeport feed coal, microagglomerate product, and mulled product.

Chow, O.K.; Nsakala, N.Y.

1993-08-01T23:59:59.000Z

444

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 14, July--September 1992  

SciTech Connect

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; published two technical papers at conferences; and prepared for upcoming tests of new BCFs being produced.

Chow, O.K.; Nsakala, N.Y.

1993-02-01T23:59:59.000Z

445

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Green Energy (OSTI)

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

446

Thermally induced structural changes in coal combustion  

DOE Green Energy (OSTI)

The project objectives are (1) to measure the effect of devolatilization temperature and time on properties of the char and (2) characterize and quantify the effect of thermal annealing on char reactivity during char burnout under conditions of pulverized combustion. Coal devolatilization runs continued during the reporting period. Elemental analysis and N{sub 2} BET surface areas measurements were carried out on the three chars produced in the devolatilization runs. The results are presented. Experiments in the electrodynamic balance during the reporting period were focused on developing ways to measure the particle mass loss and, therefore, the reaction rate directly. This work is summarized in the attached Appendix. 4 refs., 1 fig., 1 tab.

Gavalas, G.R.; Flagan, R.C.

1990-12-07T23:59:59.000Z

447

FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS  

Office of Scientific and Technical Information (OSTI)

Bulletin 627 Bulletin 627 BUREAU o b MINES FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS By Michael G. Zabetakis DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

448

HICEV AMERICA: HYDROGEN INTERNAL COMBUSTION ENGINE  

NLE Websites -- All DOE Office Websites (Extended Search)

HICEV AMERICA: HICEV AMERICA: HYDROGEN INTERNAL COMBUSTION ENGINE VEHICLE (HICEV) TECHNICAL SPECIFICATIONS Revision 0 November 1, 2004 Prepared by Electric Transportation Applications HICEV America Vehicle Specification i TABLE OF CONTENTS Minimum Vehicle Requirements 1 1. Regulatory Requirements 7 2. Chassis 8 3. Vehicle Characteristics 10 4. Drive System 11 5. Vehicle Performance 12 6. Hydrogen Fuel Storage System (HFSS) 14 7. Additional Vehicle Systems 17 8. Documentation 18 Appendices Appendix A - Vehicle Data 19 Appendix B - FMVSS Certification Methodology 26 DB12/7/04 HICEV America Vehicle Specification 2 MINIMUM VEHICLE REQUIREMENTS The HICEV America Program is sponsored by the U.S. Department of Energy Office of Transportation Technology to provide for independent assessment of hydrogen fueled, internal

449

Combustion synthesis of boride and other composites  

DOE Patents (OSTI)

A self-sustaining combustion synthesis process for producing hard, tough, lightweight B/sub 4/C/TiB/sub 2/ composites is described. It is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the B/sub 4/C and TiB/sub 2/ reactants. For lightweight products the composition must be relatively rich in the B/sub 4/C component. B/sub 4/C-rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component. 9 figs., 4 tabs.

Halverson, D.C.; Lum, B.Y.; Munir, Z.A.

1988-07-28T23:59:59.000Z

450

Pulse combusted acoustic agglomeration apparatus and process  

SciTech Connect

An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

Mansour, Momtaz N. (Columbia, MD)

1993-01-01T23:59:59.000Z

451

Pulse combusted acoustic agglomeration apparatus and process  

SciTech Connect

An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

Mansour, Momtaz N. (Columbia, MD); Chandran, Ravi (Ellicott City, MD)

1994-01-01T23:59:59.000Z

452

Thermally induced structural changes in coal combustion  

Science Conference Proceedings (OSTI)

The effects of the temperature-time history during coal devolitization and oxidation on the physical properties and the reactivity of resulting char were studied experimentally for temperatures and residence times typical of pulverized combustion. Experiments were also carried out at somewhat lower temperatures and correspondingly longer residence times. An electrically heated laminar flow reactor was used to generate char and measure the rates of oxidation at gas temperatures about 1600K. Partially oxidized chars were extracted and characterized by gas adsorption and mercury porosimetry, optical and scanning electron microscopy, and oxidation in a thermogravimetric analysis system (TGA). A different series of experiments was conducted using a quadrople electrodynamic balance. Single particles were suspended electrodynamically and heated by an infrared laser in an inert or oxygen-containing atmosphere. During the laser heating, measurements were taken of particle mass, size/shape, and temperature.

Flagan, R.C.; Gavalas, G.R.

1992-01-01T23:59:59.000Z

453

Combustion synthesis of boride and other composites  

DOE Patents (OSTI)

A self-sustaining combustion synthesis process for producing hard, tough, lightweight B.sub.4 C/TiB.sub.2 composites is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the B.sub.4 C and TiB.sub.2 reactants. For lightweight products the composition must be relatively rich in the B.sub.4 C component. B.sub.4 C-rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component.

Halverson, Danny C. (Modesto, CA); Lum, Beverly Y. (Livermore, CA); Munir, Zuhair A. (Davis, CA)

1989-01-01T23:59:59.000Z

454

Combustion oscillation control by cyclic fuel injection  

SciTech Connect

A number of recent articles have demonstrated the use of active control to mitigate the effects of combustion instability in afterburner and dump combustor applications. In these applications, cyclic injection of small quantities of control fuel has been proposed to counteract the periodic heat release that contributes to undesired pressure oscillations. This same technique may also be useful to mitigate oscillations in gas turbine combustors, especially in test rig combustors characterized by acoustic modes that do not exist in the final engine configuration. To address this issue, the present paper reports on active control of a subscale, atmospheric pressure nozzle/combustor arrangement. The fuel is natural gas. Cyclic injection of 14% control fuel in a premix fuel nozzle is shown to reduce oscillating pressure amplitude by a factor of 0.30 (i.e., {approximately}10 dB) at 300 Hz. Measurement of the oscillating heat release is also reported.

Richards, G.A.; Yip, M.J. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E. [EG& G Technical Services of West Virginia, Morgantown Energy Technology Center, WV (United States); Cowell, L.; Rawlins, D. [Solar Turbines, Inc., San Diedgo, CA (United States)

1995-04-01T23:59:59.000Z

455

Oxygen enriched combustion system performance study  

SciTech Connect

The current study was undertaken to evaluate the performance of a pressure swing adsorption (PSA) oxygen plant to provide oxygen for industrial combustion applications. PSA oxygen plants utilize a molecular sieve material to separate air into an oxygen rich product stream and a nitrogen rich exhaust stream. These plants typically produce 90-95% purity oxygen and are located in close proximity to the point of use. In contrast, high purity (99.999%) oxygen is produced by the distillation of liquid air at a remote plant and is usually transported to the point of use either as a cryogenic liquid in a tank trailer or as a high pressure gas via pipeline. In this study, experiments were performed to the test PSA system used in conjunction with an A'' burner and comparisons were made with the results of the previous study which utilized high purity liquid oxygen. 4 refs., 6 figs., 6 tabs.

Delano, M.A. (Union Carbide Industrial Gases, Inc., Tarrytown, NY (USA)); Kwan, Y. (Energy and Environmental Research Corp., Irvine, CA (USA))

1989-07-01T23:59:59.000Z

456

Denitrification of combustion gases. [Patent application  

DOE Patents (OSTI)

A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

Yang, R.T.

1980-10-09T23:59:59.000Z

457

Diagnostics for the Combustion Science Workbench  

SciTech Connect

As the cost of computers declines relative to outfitting andmaintaining laser spectroscopy laboratories, computers will account foran increasing proportion of the research conducted in fundamentalcombustion science. W.C. Gardiner foresaw that progress will be limitedby the ability to understand the implications of what has been computedand to draw inferences about the elementary components of the combustionmodels. Yet the diagnostics that are routinely applied to computerexperiments have changed little from the sensitivity analyses includedwith the original chemkin software distribution. This paper describessome diagnostics capabilities that may be found on the virtual combustionscience workbench of the future. These diagnostics are illustrated bysome new results concerning which of the hydrogen/oxygen chain branchingreactions actually occur in flames, the increased formation of NOx inwrinkled flames versus flat flames, and the adequacy oftheoreticalpredictions of the effects of stretch. Several areas are identified wherework is needed, including the areas of combustion chemistry and laserdiagnostics, to make the virtual laboratory a reality.

Grcar, J.F.; Day, M.S.; Bell, J.B.

2007-02-21T23:59:59.000Z

458

Circulating Fluidized Bed Combustion Boiler Project  

E-Print Network (OSTI)

The project to build a PYROFLOW circulating fluidized bed combustion (FBC) boiler at the BFGoodrich Chemical Plant at Henry, Illinois, is described. This project is being partially funded by Illinois to demonstrate the feasibility of utilizing high-sulfur Illinois coal. Design production is 125,000 pounds per hour of 400 psig saturated steam. An Illinois EPA construction permit has been received, engineering design is under way, major equipment is on order, ground breaking occurred in January 1984 and planned commissioning date is late 1985. This paper describes the planned installation and the factors and analyses used to evaluate the technology and justify the project. Design of the project is summarized, including the boiler performance requirements, the PYROFLOW boiler, the coal, limestone and residue handling systems and the pollutant emission limitations.

Farbstein, S. B.; Moreland, T.

1984-01-01T23:59:59.000Z

459

Femtosecond laser induced breakdown for combustion diagnostics  

Science Conference Proceedings (OSTI)

The focused beam of a 100 fs, 800 nm laser is used to induce a spark in some laminar premixed air-methane flames operating with variable fuel content (equivalence ratio). The analysis of the light escaping from the plasma revealed that the Balmer hydrogen lines, H{sub {alpha}} and H{sub {beta}}, and some molecular origin emissions were the most prominent spectral features, while the CN ({Beta}{sup 2}{Sigma}{sup +}-{Chi}{sup 2}{Sigma}{sup +}) band intensity was found to depend linearly with methane content, suggesting that femtosecond laser induced breakdown spectroscopy can be a useful tool for the in-situ determination and local mapping of fuel content in hydrocarbon-air combustible mixtures.

Kotzagianni, M. [Department of Physics, University of Patras, 26504 Patras (Greece); Institute of Chemical Engineering and High Temperature Chemical Processes (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), 26504 Patras (Greece); Couris, S. [Department of Physics, University of Patras, 26504 Patras (Greece); Institute of Chemical Engineering and High Temperature Chemical Processes (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), 26504 Patras (Greece); Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Universite de Bourgogne, 21078 Dijon Cedex (France)

2012-06-25T23:59:59.000Z

460

High efficiency stoichiometric internal combustion engine system  

DOE Patents (OSTI)

A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

Winsor, Richard Edward (Waterloo, IA); Chase, Scott Allen (Cedar Falls, IA)

2009-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Jupiter Oxy-combustion and Integrated Pollutant Removal for the Existing Coal Fired Power Generation Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

Jupiter Oxy-combustion and Integrated Jupiter Oxy-combustion and Integrated Pollutant Removal for the Existing Coal Fired Power Generation Fleet Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of

462

Contain analysis of hydrogen distribution and combustion in PWR dry containments  

DOE Green Energy (OSTI)

Hydrogen transport and combustion in a PWR dry containment are analyzed using the CONTAIN code for a multi-compartment model of the Zion plant. The analysis includes consideration of both degraded core and full core meltdown accidents initiated by a small break LOCA. The importance of intercell flow mixing on distributions of gas composition and temperature in various compartments are evaluated. Thermal stratification and combustion behavior are discussed. 4 refs., 8 figs., 2 tabs.

Yang, J.W.; Nimnual, S.

1991-01-01T23:59:59.000Z

463

Combustion characterization of methylal in reciprocating engines  

DOE Green Energy (OSTI)

Methylal, CH{sub 3}OCH{sub 2}OCH{sub 3}, also known as dimethoxy-methane, is unique among oxygenates in that it has a low autoignition temperature, no carbon-carbon bonds, and is soluble in middle distillate fuels. Because of these properties, methylal has been shown to be a favorable fuel additive for reducing smoke in diesel engines. Recent measurements of ignition delay times indicate that methylal has a cetane number in the range of 45-50, which is compatible with diesel fuels. Engine tests have shown that adding methylal to diesel fuel significantly reduces smoke emissions. Gaseous emissions and combustion efficiencies obtained with methylal/diesel fuel blends remain essentially the same as those measured using neat diesel fuel. Lubricity measurements of methylal/diesel fuel blends with a ball on cylinder lubrication evaluator (BOCLE) show that methylal improves the lubricity of diesel fuel. Even though additions of methylal lower the fuel viscosity, the results of the BOCLE tests indicate that the methylal/diesel fuel blends cause less pump wear than neat diesel fuel. The one drawback is that methylal has a low boiling point (42{degrees}C) and a relatively high vapor pressure. As a result, it lowers the flash point of diesel fuel and causes a potential fuel tank flammability hazard. One solution to this increased volatility is to make polyoxymethylenes with the general formula of CH{sub 3}O(CH{sub 2}O){sub x}CH{sub 3} where x > 2. The molecules are similar to methylal, but have higher molecular weights and thus higher viscosities and substantially lower vapor pressures. Therefore, their flash points will be compatible with regular diesel fuel. The polyoxymethylenes are expected to have combustion properties similar to methylal. It is theorized that by analogy with hydrocarbons, the ignition quality (i.e., cetane number) of the polyoxymethylenes will be better than that of methylal.

Dodge, L.; Naegeli, D. [Southwest Research Institute, San Antonio, TX (United States)

1994-06-01T23:59:59.000Z

464

Coal-Fired Fluidized Bed Combustion Cogeneration  

E-Print Network (OSTI)

The availability of an environmentally acceptable multifuel technology, such as fluidized bed combustion, has encouraged many steam producers/ users to investigate switching from oil or gas to coal. Changes in federal regulations encouraging cogeneration have further enhanced the economic incentives for primary fuel switching. However, this addition of cogeneration to the fuel conversion analysis considerably complicates the investigation. A system design for cogeneration of steam and electricity at a nominal 40,000 pound per hour capacity utilizing fluidized bed combustion is described. The basic system incorporates silo storage of coal, ash, and limestone with dense phase conveying. The system generates power utilizing either a backpressure turbine or a condensing turbine with steam extraction. Three case studies performed for specific end users are presented. The interaction among plant steam requirements, rate purchase structure, and electrical energy buy back rate is discussed. How these factors interact determine the final design and the choice of fuels is illustrated. Because the decision to switch fuel, as well as to cogenerate, is usually economically motivated, an in-depth understanding of the steam/electrical needs and interactions is critical. How these considerations are integrated in the system and the effect they have on the monetary returns are discussed. Electric rate agreements vary significantly from one state to another. Therefore, the examples selected are intended to provide, insight into this variability. For example, one rate structure encourages solid fuel cogeneration. The second is a block structure with low sell back rates making cogeneration difficult to justify. How these rate schedules affected the recommended design illustrates that the system selection is very important.

Thunem, C.; Smith, N.

1985-05-01T23:59:59.000Z

465

Atmospheric fluidized-bed combustion performance guidelines  

SciTech Connect

Performance specifications for conventional coal-fired boilers typically call for tests to be conducted in accordance with the ASME Performance Test Code for Steam Generating Units, PTC 4.1. The Code establishes procedures for conducting performance tests primarily to determine efficiency and capacity. The current edition of the PTC 4.1 is not entirely applicable to atmospheric fluidized-bed combustion boilers, however. AFBC boilers typically are equipped with integral sulfur capture through the addition of a sorbent material along with the fuel feed to the combustor, and this new technology introduces heat losses and credits that are not described in PTC 4.1. These heat losses and credits include combustion heat loss due to the calcination of the sorbent, heat credit due to sulfation, and the effects of calcination and sulfation on the dry flue gas flow, all of which significantly affect boiler efficiency calculations. The limitations of the current issue of the PTC 4.1 is recognized and the Code is now being reviewed to include heat losses and credits common to AFBC boilers. While this work will take some time, there is an immediate need for procedures for performance testing of AFBC boilers. These Guidelines are prepared to meet that need in the interim. The Guidelines detail procedures for boiler efficiency tests. They introduce technical and economic issues that may influence the test level of detail and accuracy. Methods of identifying required measurements, selection of measurement schemes, and assessment of measured versus estimated values are presented. A case study is used to illustrate the procedures and indicate which are the major credits and losses in the efficiency of a typical AFBC boiler. 6 figs., 8 tabs.

Sotelo, E. (Sotelo (Ernest), Berkeley, CA (USA))

1991-03-01T23:59:59.000Z

466

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents (OSTI)

A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

Robben, Franklin A. (Berkeley, CA)

1985-01-01T23:59:59.000Z

467

Downhole steam generator with improved preheating, combustion and protection features  

DOE Patents (OSTI)

An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

468

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents (OSTI)

A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

Robben, F.A.

1984-10-19T23:59:59.000Z

469

Corrosion performance of materials for advanced combustion systems  

Science Conference Proceedings (OSTI)

Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high-temperature furnaces and heat transfer surfaces capable of operating at much higher temperatures than those in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments requires development and application of advanced ceramic materials for heat exchangers in these designs. This paper characterizes the chemistry of coal-fired combustion environments over the wide temperature range of interest in these systems and discusses some of the experimental results for several materials obtained from laboratory tests and from exposures in a pilot-scale facility.

Natesan, K. [Argonne National Lab., IL (United States); Freeman, M.; Mathur, M. [Pittsburgh Energy Technology Center, PA (United States)

1995-05-01T23:59:59.000Z

470

http://www.genie.uottawa.ca/~hallett/hallett.htm Combustion Research  

E-Print Network (OSTI)

http://www.genie.uottawa.ca/~hallett/hallett.htm Combustion Research W. Hallett, Mechanical Engineering Main themes: - solid fuel combustion/packed beds - liquid droplet combustion - biofuels (biomass, pyrolysis oil, biodiesel, alcohol blends,etc.) #12;Solid Fuel Combustion/Packed Beds - solid fuel particles

Hallett, William L.H.

471

Co-combustion Character of Oil Shale and Its Semi-coke on CFB Bench  

Science Conference Proceedings (OSTI)

Semi-coke is by-product from oil shale retorts and it is important to burn it in CFB furnace. But limited to the inflammable combustion traits, co-combustion of semi-coke with raw oil shale would be meaningful. Experimental research on co-combustion ... Keywords: combustion, distribution, semi-coke, temperature

Sun Baizhong; Huang Zhirong

2011-08-01T23:59:59.000Z

472

Elimination of abnormal combustion in a hydrogen-fueled engine  

DOE Green Energy (OSTI)

This report covers the design, construction, and testing of a dedicated hydrogen-fueled engine. Both part-load and full-load data were taken under laboratory conditions. The engine design included a billet aluminum single combustion chamber cylinder-head with one intake valve, two sodium coiled exhaust valves, and two spark plugs. The cylinder-head design also included drilled cooling passages. The fuel-delivery system employed two modified Siemens electrically actuated fuel injectors, The exhaust system included two separate headers, one for each exhaust port. The piston/ring combination was designed specifically for hydrogen operation.

Swain, M.R.; Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

1995-11-01T23:59:59.000Z

473

A coal-water slurry fueled internal combustion engine and method for operating same  

DOE Patents (OSTI)

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, M.H.

1992-12-31T23:59:59.000Z

474

Coal-water slurry fuel internal combustion engine and method for operating same  

SciTech Connect

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, Michael H. (Fairmont, WV)

1992-01-01T23:59:59.000Z

475

2011 Advanced Combustion Engine R&D Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

annual progress report 2011 annual progress report 2011 Advanced Combustion Engine Research and Development DOE-ACE-2011AR Approved by Gurpreet Singh Team Leader, Advanced Combustion Engine R&D Vehicle Technologies Program FY 2011 Progress rePort For AdvAnced combustion engine reseArcH And deveLoPment Energy Efficiency and Renewable Energy Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 December 2011 DOE-ACE-2011AR ii Advanced Combustion Engine R&D FY 2011 Annual Progress Report We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the programs and all the

476

An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion  

DOE Green Energy (OSTI)

Biodiesel is typically a mixture of long chain fatty acid methyl esters for use in compression ignition engines. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This research study presents new combustion data for methyl decanoate in an opposed-flow diffusion flame. An improved detailed chemical kinetic model for methyl decanoate combustion is developed, which serves as the basis for deriving a skeletal mechanism via the direct relation graph method. The novel skeletal mechanism consists of 648 species and 2998 reactions. This mechanism well predicts the methyl decanoate opposed-flow diffusion flame data. The results from the flame simulations indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.

Sarathy, S M; Thomson, M J; Pitz, W J; Lu, T

2010-02-19T23:59:59.000Z

477

Combustion Simulations [Heat Transfer and Fluid Mechanics] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Simulations Combustion Simulations Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Combustion Simulations Density Distribution of Spray in Near-Injector Region Density Distribution of Spray in Near-Injector Region. Click on image to view larger image. Development of computer models based on Front-Tracking and

478

NETL: Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic  

NLE Websites -- All DOE Office Websites (Extended Search)

Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process Project No.: DE-FE0000646 The Gas Technology Institute is developing a pre-combustion carbon dioxide (CO2) separation technology based on a solvent scrubbing process using a novel gas/liquid membrane contactor concept. The primary goal of the project is to develop a practical and cost-effective technology for CO2 separation and capture from the pre-combustion syngas in coal gasification plants. The specific objective of the project is to (1) develop a membrane contactor module containing a superhydrophobic--extremely difficult to wet--hollow fiber membrane with optimal pore size and surface chemistry, and (2) design the CO2 separation process and conduct an economic evaluation.

479

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network (OSTI)

November 1976. Wilson, P.J. and Wells, J.H. , Coal, Cokeand Coal Chemicals, 108, (1950). This report was done withliThe F1uidised Combustion of Coal," Sixteenth S m osium {

Chin, W.K.

2010-01-01T23:59:59.000Z

480

Fireside Corrosion in the Oxy-Combustion of Coal  

Science Conference Proceedings (OSTI)

Oxy-fuel combustion is burning a fuel in oxygen rather than air. This work considers the case of burning coal in a mixture of recirculated flue gas and oxygen.

Note: This page contains sample records for the topic "full combustion combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Way We Burn: Combustion, Climate, and Carbonaceous Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

The Way We Burn: Combustion, Climate, and Carbonaceous Particles Speaker(s): Tami Bond Date: June 5, 2002 - 12:00pm Location: Bldg. 90 Carbonaceous particles-- which engineers...

482

System and method for reducing combustion dynamics in a combustor  

Science Conference Proceedings (OSTI)

A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

2013-08-20T23:59:59.000Z

483

High-Speed Combustion and Detonation (HSCD) | Argonne Leadership...  

NLE Websites -- All DOE Office Websites (Extended Search)

in a hydrogen-oxygen mixture in a square channel, performed within the high-speed combustion and detonation project (HSCD). Pseudo-schlieren image of a temperature field....

484

Princeton-CEFRC Summer Program on Combustion: 2010 Session |...  

Office of Science (SC) Website

Publications Contact BES Home 04.09.10 Princeton-CEFRC Summer Program on Combustion: 2010 Session Print Text Size: A A A Subscribe FeedbackShare Page June 27 - July 3,...

485

Princeton-CEFRC Summer Program on Combustion: 2010 Session |...  

Office of Science (SC) Website

Publications Contact BES Home 03.16.11 Princeton-CEFRC Summer Program on Combustion: 2011 Session Print Text Size: A A A Subscribe FeedbackShare Page June 26 - July 1,...

486

Visualizing Low-Swirl Combustion Simulations at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen flame Low-Swirl Combustion: Experiments and Simulations Working Together energy16gunther.jpg Simulations that ran on the Franklin Cray XT at NERSC captured the detailed...

487

Kinetic Modeling Study of Oxy-methane Combustion at Ordinary ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Oxy-fuel combustion is one promising option among different CO2 capture technologies. The object of this work is to show the effect of CO2 ...

488

Coal Combustion By-Products (Maryland) | Open Energy Information  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Coal Combustion By-Products (Maryland) This is the approved revision of this page, as well...

489

NETL: IEP - Post-Combustion CO2 Emissions Control - Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP Post-Combustion CO2 Emissions Control Advanced Low Energy Enzyme Catalyzed Solvent for CO2 Capture Project No.: DE-FE0004228 Akermin, Inc. is to conduct bench-scale testing...

490

Multi-variable optimization of pressurized oxy-coal combustion  

E-Print Network (OSTI)

Simultaneous multi-variable gradient-based optimization with multi-start is performed on a 300 MWe wet-recycling pressurized oxy-coal combustion process with carbon capture and sequestration. The model accounts for realistic ...

Zebian, Hussam

2011-01-01T23:59:59.000Z

491

Pre-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

refers to removing CO2 from fossil fuels before they are burned (or combusted) in a power plant. For example, in gasification processes a feedstock (such as coal) is partially...

492

Strategies for Improving Effi ciencies in Oxy-Combustion Retrofits  

NLE Websites -- All DOE Office Websites (Extended Search)

CO 2 and H 2 O Spectrum - Intensity Shown as Log Value Improving Oxy-Combustion Power Plant Effi ciency Coal Into System Coal Thermal Power 4,003x10 BTUhr 6 Heat to...

493

Combustion Organic Aerosol as Cloud Condensation Nuclei in Ship Tracks  

Science Conference Proceedings (OSTI)

Polycyclic aromatic hydrocarbons (PAHs) have been sampled in marine stratiform clouds to identify the contribution of anthropogenic combustion emissions in activation of aerosol to cloud droplets. The Monterey Area Ship Track experiment provided ...

Lynn M. Russell; Kevin J. Noone; Ronald J. Ferek; Robert A. Pockalny; Richard C. Flagan; John H. Seinfeld

2000-08-01T23:59:59.000Z

494

Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies  

DOE Green Energy (OSTI)

The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuelsâ?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

Soloiu, Valentin

2012-03-31T23:59:59.000Z

495

Gasification and combustion modeling for porous char particles  

E-Print Network (OSTI)

Gasification and combustion of porous char particles occurs in many industrial applications. Reactor-scale outputs of importance depend critically on processes that occur at the particle-scale. Because char particles often ...

Singer, Simcha Lev

2012-01-01T23:59:59.000Z

496

Chemical Kinetic Models for HCCI and Diesel Combustion  

DOE Green Energy (OSTI)

Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced