National Library of Energy BETA

Sample records for fukushima daiichi nuclear

  1. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Broader source: Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  2. Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent Fuel Pool Citation Details In-Document Search Title: Study of Fukushima Dai-ichi Nuclear Power...

  3. Statement from Deputy Secretary of Energy Elizabeth Sherwood-Randall after Visiting the Fukushima Dai-ichi Nuclear Power Station

    Broader source: Energy.gov [DOE]

    Deputy Secretary Elizabeth Sherwood-Randall's statement after visiting the Fukushima Dai-ichi Nuclear Power Station in Japan

  4. Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident

    SciTech Connect (OSTI)

    Guss, P. P.

    2012-07-16

    This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.

  5. The Fukushima Daiichi Accident Study Information Portal

    SciTech Connect (OSTI)

    Shawn St. Germain; Curtis Smith; David Schwieder; Cherie Phelan

    2012-11-01

    This paper presents a description of The Fukushima Daiichi Accident Study Information Portal. The Information Portal was created by the Idaho National Laboratory as part of joint NRC and DOE project to assess the severe accident modeling capability of the MELCOR analysis code. The Fukushima Daiichi Accident Study Information Portal was created to collect, store, retrieve and validate information and data for use in reconstructing the Fukushima Daiichi accident. In addition to supporting the MELCOR simulations, the Portal will be the main DOE repository for all data, studies and reports related to the accident at the Fukushima Daiichi nuclear power station. The data is stored in a secured (password protected and encrypted) repository that is searchable and accessible to researchers at diverse locations.

  6. Public dialogue on physics and related technology after the Fukushima Daiichi nuclear accident

    SciTech Connect (OSTI)

    Sasao, Mamiko

    2015-12-31

    After the Fukushima Daiichi Nuclear Accident, the importance of bottom-up and two-way dialogue between scientists and the public has been recognized. In such dialogue, information provided must accurately match the public’s interest and ability regarding science and technology. We have started to investigate what people want to know about physics. Some were interested in energy security (a particular concern in Japan), but others were concerned about radioactivity in food and natural radiation background. The conversations revealed that physicists often give insufficient explanations of the biological effects of radiation and highlighted key points for physicists to make when talking with the public.

  7. Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

    2011-12-05

    Evidence of the release Pu from the Fukushima Daiichi nuclear power station to the local environment and surrounding communities and estimates on fraction of total fuel inventory released

  8. NARAC Modeling During the Response to the Fukushima Dai-ichi Nuclear Power Plant Emergency

    SciTech Connect (OSTI)

    Sugiyama, G; Nasstrom, J S; Probanz, B; Foster, K T; Simpson, M; Vogt, P; Aluzzi, F; Dillon, M; Homann, S

    2012-02-14

    This paper summarizes the activities of the National Atmospheric Release Advisory Center (NARAC) during the Fukushima Dai-ichi nuclear power plant crisis. NARAC provided a wide range of products and analyses as part of its support including: (1) Daily Japanese weather forecasts and hypothetical release (generic source term) dispersion predictions to provide situational awareness and inform planning for U.S. measurement data collection and field operations; (2) Estimates of potential dose in Japan for hypothetical scenarios developed by the Nuclear Regulatory Commission (NRC) to inform federal government considerations of possible actions that might be needed to protect U.S. citizens in Japan; (3) Estimates of possible plume arrival times and dose for U.S. locations; and (4) Plume model refinement and source estimation based on meteorological analyses and available field data. The Department of Energy/National Nuclear Security Administration (DOE/NNSA) deployed personnel to Japan and stood up 'home team' assets across the DOE complex to aid in assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. The DOE Nuclear Incident Team (NIT) coordinated response activities, while DOE personnel provided predictive modeling, air and ground monitoring, sample collection, laboratory analysis, and data assessment and interpretation. DOE deployed the Aerial Measuring System (AMS), Radiological Assistance Program (RAP) personnel, and the Consequence Management Response Team (CMRT) to Japan. DOE/NNSA home team assets included the Consequence Management Home Team (CMHT); National Atmospheric Release Advisory Center (NARAC); Radiation Emergency Assistance Center/Training Site (REAC/TS); and Radiological Triage. NARAC was activated by the DOE/NNSA on March 11, shortly after the Tohoku earthquake and tsunami occurred. The center remained on active operations through late May when DOE ended its deployment to Japan. Over 32 NARAC staff members

  9. Aerosol Sample Inhomogeneity with Debris from the Fukushima Daiichi Nuclear Accident

    SciTech Connect (OSTI)

    Gomez, Reynaido; Biegalski, Steven R.; Woods, Vincent T.

    2014-09-01

    Radionuclide aerosol sampling is a vital component in the detection of nuclear explosions, nuclear accidents, and other radiation releases. This was proven by the detection and tracking of emissions from the Fukushima Daiichi incident across the globe by IMS stations. Two separate aerosol samplers were operated in Richland, WA following the event and debris from the accident were measured at levels well above detection limits. While the atmospheric activity concentration of radionuclides generally compared well between the two stations, they did not agree within uncertainties. This paper includes a detailed study of the aerosol sample homogeneity of 134Cs and 137Cs, then relates it to the overall uncertainty of the original measurement. Our results show that sample inhomogeneity adds an additional 5–10% uncertainty to each aerosol measurement and that this uncertainty is in the same range as the discrepancies between the two aerosol sample measurements from Richland, WA.

  10. Fukushima Daiichi Information Repository FY13 Status

    SciTech Connect (OSTI)

    Curtis Smith; Cherie Phelan; Dave Schwieder

    2013-09-01

    The accident at the Fukushima Daiichi nuclear power station in Japan is one of the most serious in commercial nuclear power plant operating history. Much will be learned that may be applicable to the U.S. reactor fleet, nuclear fuel cycle facilities, and supporting systems, and the international reactor fleet. For example, lessons from Fukushima Daiichi may be applied to emergency response planning, reactor operator training, accident scenario modeling, human factors engineering, radiation protection, and accident mitigation; as well as influence U.S. policies towards the nuclear fuel cycle including power generation, and spent fuel storage, reprocessing, and disposal. This document describes the database used to establish a centralized information repository to store and manage the Fukushima data that has been gathered. The data is stored in a secured (password protected and encrypted) repository that is searchable and available to researchers at diverse locations.

  11. Activities for the remediation of TEPCO's Fukushima Daiichi nuclear power plant

    SciTech Connect (OSTI)

    Kinoshita, Hirofumi; Kometani, Yutaka; Asano, Takashi; Ishiwata, Masayuki; Fukasawa, Tetsuo; Tadokoro, Takahiro; Nagumo, Yasushi; Kani, Yuko; Matsui, Tetsuya

    2013-07-01

    With the aim of fulfilling recovery work for the Fukushima Daiichi NPP, technological efforts have been made for the development of a survey robot system, adequate communication infrastructure technologies, high radiation environment compatible gamma cameras, heavy machinery-type robots (ASTACO-SoRa), remote decontamination devices (AROUNDER), and contaminated waste water treatment system. We have developed a new type of absorbents which remove cesium (Cs) and strontium (Sr) simultaneously at a high removal rate of 99 % or more. We will provide valuable solutions and rational systems for waste water treatment using this developed adsorbent as well as other various adsorbents for the recovery of Fukushima Daiichi NPP.

  12. Challenges in Determining the Isotopic Mixture for the Fukushima Daiichi Nuclear Power Plant

    SciTech Connect (OSTI)

    Shanks, Arthur; Fournier, Sean; Shanks, Sonoya

    2012-05-01

    As part of the United States response to the Fukushima Daiichi Nuclear Power Plant emergency, the National Nuclear Security Administration (NNSA) Consequence Management (CM) Teams were activated with elements deploying to Japan. The NNSA CM teams faced the urgent need for information regarding the potential radiological doses that citizens of might experience. This paper discusses the challenges and lessons learned associated with the analysis of field collected samples and gamma spectra in an attempt to determine the isotopic mixture present on the ground around the Plant. There were several interesting and surprising lessons to be learned from the sample analysis portion of the response. The paper discusses several elements of the response that were unique to the event occurring in Japan, as well as several elements that would have occurred in a U.S. nuclear reactor event. Sections of this paper address details of the specific analytical challenges faced during the efforts to analyze samples and try to understand the overall release source term.

  13. Tritiated Water Challenge in Fukushima Daiichi | Department of...

    Office of Environmental Management (EM)

    Tritiated Water Challenge in Fukushima Daiichi Tritiated Water Challenge in Fukushima Daiichi Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina ...

  14. Research subjects for analytical estimation of core degradation at Fukushima-Daiichi nuclear power plant

    SciTech Connect (OSTI)

    Nagase, F.; Ishikawa, J.; Kurata, M.; Yoshida, H.; Kaji, Y.; Shibamoto, Y.; Amaya, M; Okumura, K.; Katsuyama, J.

    2013-07-01

    Estimation of the accident progress and status inside the pressure vessels (RPV) and primary containment vessels (PCV) is required for appropriate conductance of decommissioning in the Fukushima-Daiichi NPP. For that, it is necessary to obtain additional experimental data and revised models for the estimation using computer codes with increased accuracies. The Japan Atomic Energy Agency (JAEA) has selected phenomena to be reviewed and developed, considering previously obtained information, conditions specific to the Fukushima-Daiichi NPP accident, and recent progress of experimental and analytical technologies. As a result, research and development items have been picked up in terms of thermal-hydraulic behavior in the RPV and PCV, progression of fuel bundle degradation, failure of the lower head of RPV, and analysis of the accident. This paper introduces the selected phenomena to be reviewed and developed, research plans and recent results from the JAEA's corresponding research programs. (authors)

  15. Tritiated Water Challenge in Fukushima Daiichi

    Office of Environmental Management (EM)

    Tritiated water Challenge in Fukushima Daiichi Steve Xiao, Ph.D. Hydrogen Processing ... decommissioned for training * Currently water is circulating to cool fuels * Radioactive ...

  16. Agricultural approaches of remediation in the outside of the Fukushima Daiichi nuclear power plant

    SciTech Connect (OSTI)

    Sato, Nobuaki; Saso, Michitaka; Umeda, Miki; Fujii, Yasuhiko; Amemiya, Kiyoshi

    2013-07-01

    This paper outlines agricultural approaches of remediation activity done in contaminated areas around the Fukushima Daiichi Nuclear Power Plant. About the decontamination examination of contaminated areas, we have tried the land scale test of a rice field before and after planting by the use of currently recommended methods. Since farmers would carry out the land preparation by themselves, generation of secondary radioactive waste should be as low as possible through the decontamination works. For the radioactive nuclide migration control of rice by wet rice production, several types of decontamination methods such as zeolite addition and potassium fertilization in the soil have been examined. The results are summarized in the 4 following points. 1) Plowing and water discharge are effective for removing radioactive cesium from rice field. 2) Additional potassium fertilization is effective for reducing cesium radioactivity in the product. 3) No significant difference is observed with or without the zeolite addition. 4) Very low transfer factor of cesium from soil to brown rice has been obtained compared with literature values.

  17. Direction on characterization of fuel debris for defueling process in Fukushima Daiichi Nuclear Power Station

    SciTech Connect (OSTI)

    Yano, Kimihiko; Kitagaki, Toru; Ikeuchi, Hirotomo; Wakui, Ryohei; Higuchi, Hidetoshi; Kaji, Naoya; Koizumi, Kenji; Washiya, Tadahiro

    2013-07-01

    For the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), defueling of the fuel debris in the reactor core of Units 1-3 is planned to start within 10 years. Preferential items in the characterization of the fuel debris were identified for this work, in which the procedure and handling tools were assumed on the basis of information on 1F and experience after the Three Mile Island Unit 2 (TMI-2) accident. The candidates for defueling tools for 1F were selected from among the TMI- 2 defueling tools. It was found that they could be categorized into six groups according to their operating principles. The important properties of the fuel debris for defueling were selected considering the effect of the target materials on the tool performance. The selected properties are shape, size, density, thermal conductivity, heat capacity, melting point, hardness, elastic modulus, and fracture toughness. Of these properties, the mechanical properties (hardness, elastic modulus, fracture toughness) were identified as preferential items, because too few data on these characteristics of fuel debris are available in past severe accident studies. (authors)

  18. Linear Free Energy Correlations for Fission Product Release from the Fukushima-Daiichi Nuclear Accident

    SciTech Connect (OSTI)

    Abrecht, David G.; Schwantes, Jon M.

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes, et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the source of the radionuclides to be from active reactors rather than the spent fuel pool. Linear correlations of the form ln⁡Χ=-α (ΔG_rxn^° (T_C ))/(RT_C )+β were obtained between the deposited concentration and the reduction potential of the fission product oxide species using multiple reduction schemes to calculate ΔG_rxn^° (T_C ). These models allowed an estimate of the upper bound for the reactor temperatures of T_C between 2130 K and 2220 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, 151Sm through atmospheric venting and releases during the first month following the accident were performed, and indicate large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  19. Fukushima Daiichi Unit 3 MELCOR Investigation

    SciTech Connect (OSTI)

    Robb, Kevin R; Francis, Matthew W; Ott, Larry J

    2012-01-01

    The Department of Energy sponsored a Fukushima Daiichi accident study as a collaboration between Sandia, Oak Ridge (ORNL), and Idaho National Laboratories. The purpose of the effort was to compile relevant data, reconstruct the accident progression using computer codes, assess the codes predictive capabilities, and to identify future data needs. The following summarizes MELCOR simulations performed at ORNL on Fukushima Daiichi Unit 3.

  20. Imaging Fukushima Daiichi reactors with muons

    SciTech Connect (OSTI)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Milner, Edward C.; Morris, Christopher L.; Lukic, Zarija; Masuda, Koji; Perry, John O.

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  1. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    SciTech Connect (OSTI)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke; Asano, Takashi; Tamata, Shin

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it

  2. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    SciTech Connect (OSTI)

    Torii, Tatsuo; Sugita, Takeshi; Okada, Colin E.; Reed, Michael S.; Blumenthal, Daniel J.

    2013-08-01

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  3. Nuclear Crisis Communications: The Plan Worked. A Critique of NRC Communications in the Fukushima Daiichi Reactor Crisis - 12073

    SciTech Connect (OSTI)

    Brenner, Eliot; Harrington, Holly; Schmidt, Rebecca

    2012-07-01

    'Call the AV-Photo folks and get someone in here to shoot b-roll. We'll never be able to accommodate the network cameras and the only way I can get this to the media is to produce it ourselves'. Eliot Brenner, Director NRC Office of Public Affairs, March 12, 2011. For the past four years we have been speaking to audiences at Waste Management about communications issues. Last year, though we were kept from attending because of the federal budget crisis, our surrogates described to you the lessons the nuclear industry should draw from the BP Gulf oil spill crisis. Those remarks were delivered 11 days before the Fukushima Daiichi tragedy became the nuclear landmark of a generation - an industry changing event with worldwide ramifications, both in science and regulation and in communications. Eliot Brenner cut his teeth on crisis communication in the aviation industry where tragedy unfolds rapidly. He has been a speech-writer to three cabinet secretaries, spokesman for the Federal Aviation Administration and now spokesman for the Nuclear Regulatory Commission since 2004. Holly Harrington manages the NRC crisis response program and has 26 years federal public affairs experience, including eight years at the Federal Emergency Management Agency. Her crisis experience includes the 1989 Loma Prieta earthquake, numerous hurricanes and floods, Sept 11, and, now Fukushima Daiichi. Rebecca Schmidt is a veteran government relations professional whose decades in Washington include service with the House Armed Services Committee, the House Budget Committee and the Secretary of Defense. Collectively, the Offices of Public Affairs and Congressional Affairs conducted the largest outreach for the agency since Three Mile Island. We worked with the basic rule, described to Waste Management last year just 11 days before Fukushima - communicate early, often and clearly. The response - while not without its problems and lessons - went as smoothly as a chaotic event like Fukushima could go

  4. Insight from Fukushima Daiichi Unit 3 Investigations using MELCOR

    SciTech Connect (OSTI)

    Robb, Kevin R.; Francis, Matthew W.; Ott, Larry J.

    2014-01-01

    During the emergency response period of the accidents that took place at Fukushima Daiichi in March of 2011, researchers at Oak Ridge National Laboratory (ORNL) conducted a number of studies using the MELCOR code to help understand what was occurring and what had occurred. During the post-accident period, the Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC) jointly sponsored a study of the Fukushima Daiichi accident with collaboration among Oak Ridge, Sandia, and Idaho national laboratories. The purpose of the study was to compile relevant data, reconstruct the accident progression using computer codes, assess the codes predictive capabilities, and identify future data needs. The current paper summarizes some of the early MELCOR simulations and analyses conducted at ORNL of the Fukushima Daiichi Unit 3 accident. Extended analysis and discussion of the Unit 3 accident is also presented taking into account new knowledge and modeling refinements made since the joint DOE/NRC study.

  5. Multi-Phased, Post-Accident Support of the Fukushima Dai-Ichi Nuclear Power Plant - 12246

    SciTech Connect (OSTI)

    Gay, Arnaud; Gillet, Philippe; Ytournel, Bertrand; Varet, Thierry; David, Laurent; Prevost, Thierry; Redonnet, Carol; Piot, Gregoire; Jouaville, Stephane; Pagis, Georges

    2012-07-01

    In the wake of the March 11 earthquake and tsunami and the subsequent flooding of several of the Fukushima Dai-Ichi reactors, Japan and the Japanese utility TEPCO faced a crisis situation with incredible challenges: substantial amounts of radioactive mixed seawater and freshwater accumulated in the basements of four reactor and other buildings on the site. This water held varying levels of contamination due to the fact that it had been in contact with damaged fuel elements in the cores and with other contaminated components. The overall water inventory was estimated at around 110,000 tons of water with contamination levels up to the order of 1 Ci/l. Time was of the essence to avoid overflow of this accumulated water into the ocean. AREVA proposed, designed and implemented a water treatment solution using a proven chemical coprecipitation process with ppFeNi reagent, which is currently in use for effluent treatment on several nuclear sites including AREVA sites. In addition to the extremely short schedule the other challenge was to adapt the chemical treatment process to the expected composition of the Fukushima water and, in particular, to evaluate the impact of salinity on process performance. It was also necessary to define operating conditions for the VEOLIA equipment that had been selected for implementation of the process in the future facility. The operation phase began on June 17, and by the end of July more than 30,000 tons of highly radioactive saltwater had been decontaminated - the Decontamination Factor (DF) for Cesium was ∼10{sup 4}. It allowed recycling the contaminated water to cool the reactors while protecting workers and the environment. This paper focuses on the Actiflo{sup TM}-Rad water treatment unit project that was part of the TEPCO general water treatment scheme. It presents a detailed look at the principles of the Actiflo{sup TM}-Rad, related on-the-fly R and D, an explanation of system implementation challenges, and a brief summary of

  6. Analysis of data from sensitive U.S. monitoring stations for the Fukushima Dai-ichi nuclear reactor accident

    SciTech Connect (OSTI)

    Biegalski, Steven R.; Bowyer, Ted W.; Eslinger, Paul W.; Friese, Judah I.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Hoffman, Ian; Keillor, Martin E.; Miley, Harry S.; Morin, Marc P.

    2012-12-01

    The March 11, 2011 9.0 magnitude undersea megathrust earthquake off the coast of Japan and subsequent tsunami waves triggered a major nuclear event at the Fukushima Dai-ichi nuclear power station. At the time of the event, units 1, 2, and 3 were operating and units 4, 5, and 6 were in a shutdown condition for maintenance. Loss of cooling capacity to the plants along with structural damage caused by the earthquake and tsunami resulted in a breach of the nuclear fuel integrity and release of radioactive fission products to the environment. Fission products started to arrive in the United States via atmospheric transport on March 15, 2011 and peaked by March 23, 2011. Atmospheric activity concentrations of 131I reached levels of 3.0 * 10*2 Bqm*3 in Melbourne, FL. The noble gas 133Xe reached atmospheric activity concentrations in Ashland, KS of 17 Bqm*3. While these levels are not health concerns, they were well above the detection capability of the radionuclide monitoring systems within the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty.

  7. Removal of Radiocesium from Food by Processing: Data Collected after the Fukushima Daiichi Nuclear Power Plant Accident - 13167

    SciTech Connect (OSTI)

    Uchida, Shigeo; Tagami, Keiko

    2013-07-01

    Removal of radiocesium from food by processing is of great concern following the accident of TEPCO's Fukushima Daiichi Nuclear Power Plant accident. Foods in markets are monitored and recent monitoring results have shown that almost all food materials were under the standard limit concentration levels for radiocesium (Cs-134+137), that is, 100 Bq kg{sup -1} in raw foods, 50 Bq kg{sup -1} in baby foods, and 10 Bq kg{sup -1} in drinking water; those food materials above the limit cannot be sold. However, one of the most frequently asked questions from the public is how much radiocesium in food would be removed by processing. Hence, information about radioactivity removal by processing of food crops native to Japan is actively sought by consumers. In this study, the food processing retention factor, F{sub r}, which is expressed as total activity in processed food divided by total activity in raw food, is reported for various types of corps. For white rice at a typical polishing yield of 90-92% from brown rice, the F{sub r} value range was 0.42-0.47. For leafy vegetable (indirect contamination), the average F{sub r} values were 0.92 (range: 0.27-1.2) after washing and 0.55 (range: 0.22-0.93) after washing and boiling. The data for some fruits are also reported. (authors)

  8. Tritiated Water Challenge in Fukushima Daiichi

    Office of Environmental Management (EM)

    Trish Williams About Us Trish Williams - Communications Specialist, EERE Communications Office Most Recent Friedman Sets Sights on Accelerating America's Transition to a Clean Energy Economy July 22 Friedman Sets Sights on Accelerating America's Transition to a Clean Energy Economy July 12 National Clean Energy Incubators Spawn New Commercialization Centers June 27

    Tritiated water Challenge in Fukushima Daiichi Steve Xiao, Ph.D. Hydrogen Processing Tritium Focus Group Meeting, April 2014

  9. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    SciTech Connect (OSTI)

    McNaughton, Michael; Allen, Shannon P.; Archuleta, Debra C.; Brock, Burgandy; Coronado, Melissa A.; Dewart, Jean M.; Eisele, William F. Jr.; Fuehne, David P.; Gadd, Milan S.; Green, Andrew A.; Lujan, Joan J.; MacDonell, Carolyn; Whicker, Jeffrey J.

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132, and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.

  10. Risk communication with Fukushima residents affected by the Fukushima Daiichi accident at whole-body counting

    SciTech Connect (OSTI)

    Gunji, I.; Furuno, A.; Yonezawa, R.; Sugiyama, K.

    2013-07-01

    After the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi nuclear power plant accident, the Tokai Research and Development Center of the Japan Atomic Energy Agency (JAEA) have had direct dialogue as risk communication with Fukushima residents who underwent whole-body counting examination (WBC). The purpose of the risk communication was to exchange information and opinions about radiation in order to mitigate Fukushima residents' anxiety and stress. Two kinds of opinion surveys were performed: one survey evaluated residents' views of the nuclear accident itself and the second survey evaluated the management of WBC examination as well as the quality of JAEA's communication skills on risks. It appears that most Fukushima residents seem to have reduced their anxiety level after the direct dialogue. The results of the surveys show that Fukushima residents have the deepest anxiety and concern about their long-term health issues and that they harbor anger toward the government and TEPCO. On the other hand, many WBC patients and patients' relatives have expressed gratitude for help in reducing their feelings of anxiety.

  11. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    SciTech Connect (OSTI)

    Sugiyama, Gayle; Nasstrom, John; Pobanz, Brenda; Foster, Kevin; Simpson, Matthew; Vogt, Phil; Aluzzi, Fernando; Homann, Steve

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  12. Source Term Estimation of Radioxenon Released from the Fukushima Dai-ichi Nuclear Reactors Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Biegalski, S.; Bowyer, Ted W.; Cooper, Matthew W.; Haas, Derek A.; Hayes, James C.; Hoffman, Ian; Korpach, E.; Yi, Jing; Miley, Harry S.; Rishel, Jeremy P.; Ungar, R. Kurt; White, Brian; Woods, Vincent T.

    2014-01-01

    Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout from the Fukushima Daiichi nuclear accident in March 2011. Atmospheric transport modeling (ATM) of plumes of noble gases and particulates were performed soon after the accident to determine plausible detection locations of any radioactive releases to the atmosphere. We combine sampling data from multiple International Modeling System (IMS) locations in a new way to estimate the magnitude and time sequence of the releases. Dilution factors from the modeled plume at five different detection locations were combined with 57 atmospheric concentration measurements of 133-Xe taken from March 18 to March 23 to estimate the source term. This approach estimates that 59% of the 1.24×1019 Bq of 133-Xe present in the reactors at the time of the earthquake was released to the atmosphere over a three day period. Source term estimates from combinations of detection sites have lower spread than estimates based on measurements at single detection sites. Sensitivity cases based on data from four or more detection locations bound the source term between 35% and 255% of available xenon inventory.

  13. Suggestion of typical phases of in-vessel fuel-debris by thermodynamic calculation for decommissioning technology of Fukushima-Daiichi nuclear power station

    SciTech Connect (OSTI)

    Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro; Kondo, Yoshikazu; Noguchi, Yoshikazu

    2013-07-01

    For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)

  14. Results of detailed analyses performed on boring cores extracted from the concrete floors of the Fukushima Daiichi nuclear power plant reactor buildings

    SciTech Connect (OSTI)

    Maeda, Koji; Sasaki, S.; Kumai, M.; Sato, Isamu; Osaka, Masahiko; Fukushima, Mineo; Kawatsuma, Shinji; Goto, Tetsuo; Sakai, Hitoshi; Chigira, Takayuki; Murata, Hirotoshi

    2013-07-01

    Due to the massive earthquake and tsunami on March 11, 2011, and the following severe accident at the Fukushima Daiichi Nuclear Power Plant, concrete surfaces within the reactor buildings were exposed to radioactive liquid and vapor phase contaminants. In order to clarify the situation of this contamination in the reactor buildings of Units 1, 2 and 3, selected samples were transported to the Fuels Monitoring Facility in the Oarai Engineering Center of JAEA where they were subjected to analyses to determine the surface radionuclide concentrations and to characterize the radionuclide distributions in the samples. In particular, penetration of radiocesium in the surface coatings layer and sub-surface concrete was evaluated. The analysis results indicate that the situation of contamination in the building of Unit 2 was different from others, and the protective surface coatings on the concrete floors provided significant protection against radionuclide penetration. The localized penetration of contamination in the concrete floors was found to be confined within a millimeter of the surface of the coating layer of some millimeters. (authors)

  15. Our Next Two Steps for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-04-11

    After the vast disasters caused by the great earthquake and tsunami in eastern Japan, we proposed applying our Muon Tomography (MT) technique to help and improve the emergency situation at Fukushima Daiichi using cosmic-ray muons. A reactor-tomography team was formed at LANL which was supported by the Laboratory as a response to a request by the former Japanese Prime Minister, Naoto Kan. Our goal is to help the Japanese people and support remediation of the reactors. At LANL, we have carried out a proof-of-principle technical demonstration and simulation studies that established the feasibility of MT to image a reactor core. This proposal covers the next two critical steps for Fukushima Daiichi Muon Imaging: (1) undertake case study mock-up experiments of Fukushima Daiichi, and (2) system optimization. We requested funding to the US and Japanese government to assess damage of reactors at Fukushima Daiichi. The two steps will bring our project to the 'ready-to-go' level.

  16. Variations in Map Products Demonstrated During the FRMAC Fukushima Daiichi Response

    SciTech Connect (OSTI)

    Pemberton, W. J.

    2012-04-03

    This presentation provides a brief summary of the Fukushima Daiichi disaster, discussion on map uses and production, early phase maps, intermediate phase maps, and late phase maps.

  17. The Role of the Consequence Management Home Team in the Fukushima Daiichi Response

    SciTech Connect (OSTI)

    Pemberton, Wendy; Mena, RaJah; Beal, William

    2012-05-01

    The Consequence Management Home Team (CMHT) is a U.S. Department of Energy/National Nuclear Security Administration asset and played an important role in the U.S. response effort to the Fukushima Daiichi accident, ranging from the early days of the response to a continued involvement in supporting late phase efforts. Each stage of their work had distinct characteristics in terms of management of incoming data streams and creation of products. The CMHT assisted a variety of response organizations with modeling; radiological operations planning; field monitoring techniques; and the analysis, interpretation, and distribution of radiological data. In the Fukushima Daiichi response, the CMHT grew to include a broader range of support than was historically planned. Through their work, the social and economic impacts of a nuclear or radiological incident were minimized. The CMHT was an integral component of the response in Japan and acted as the central point from which all of the data and products flowed.

  18. The Role of the Consequence Management Home Team in the Fukushima Daiichi Response

    SciTech Connect (OSTI)

    Pemberton, W., Mena, R., Beal, W.

    2012-05-01

    The Consequence Management Home Team is a U.S. Department of Energy/National Nuclear Security Administration asset. It assists a variety of response organizations with modeling; radiological operations planning; field monitoring techniques; and the analysis, interpretation, and distribution of radiological data. These reach-back capabilities are activated quickly to support public safety and minimize the social and economic impact of a nuclear or radiological incident. In the Fukushima Daiichi response, the Consequence Management Home Team grew to include a more broad range of support than was historically planned. From the early days of the response to the continuing involvement in supporting late phase efforts, each stage of the Consequence Management Home Team support had distinct characteristics in terms of management of incoming data streams as well as creation of products. Regardless of stage, the Consequence Management Home Team played a critical role in the Fukushima Daiichi response effort.

  19. Atmospheric Dispersion Modeling: Challenges of the Fukushima Daiichi Response

    SciTech Connect (OSTI)

    Sugiyama, Gayle; Nasstrom, John; Pobanz, Brenda; Foster, Kevin; Simpson, Matthew; Vogt, Phil; Aluzzi, Fernando; Homann, Steve

    2012-05-01

    The U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident. This work encompassed: weather forecasts and atmospheric transport predictions, estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases, predictions of possible plume arrival times and dose levels at U.S. locations, and source estimation and plume model refinement. An overview of NARAC response activities is provided, along with a more in-depth discussion of some of NARAC’s preliminary source reconstruction analyses. NARAC optimized the overall agreement of model predictions to dose rate measurements using statistical comparisons of data and model values paired in space and time. Estimated emission rates varied depending on the choice of release assumptions (e.g., time-varying vs. constant release rates), the radionuclide mix, meteorology, and/or the radiological data used in the analysis. Results were found to be consistent with other studies within expected uncertainties, despite the application of different source estimation methodologies and the use of significantly different radiological measurement data. A discussion of some of the operational and scientific challenges encountered during the response, along with recommendations for future work, is provided.

  20. Discussion - Next Step for Fukushima Daiichi Muon Tomography

    SciTech Connect (OSTI)

    Miyadera, Haruo

    2012-08-13

    Specification of Fukushima Daiichi Muon Tomography (FMT): (1) 18-feet (5.5-m) drift tube, 2-inch (5-cm) diameter; (2) 108 tubes per layer; (3) Unit layer = 2 layer (detection efficiency: 0.96 x 0.96 = 92%); (4) 12 or 16 layer per module; (5) 16 layers allows momentum analysis at 30% level; (6) 2 module per super module (5.5 x 11 m{sup 2}); and (7) FMT = 2 super module. By deploying MMT next to a research reactor, we will be able to measure the impact of low level radiation fields on muon tomography and reconstruction processes. Radiation level during reactor operation is {approx}50 {micro}Sv/h which provides similar radiation environment of inside the FMT radiation shield at Fukushima Daiichi. We will implement coincidence algorithm on the FPGA board.

  1. Environmental remediation following the Fukushima-Daiichi accident

    SciTech Connect (OSTI)

    Tagawa, A.; Miyahara, K.; Nakayama, S.

    2013-07-01

    A wide area of Fukushima Prefecture was contaminated with radioactivity released by the Fukushima Daiichi nuclear accident. The decontamination pilot projects conducted by JAEA aimed at demonstrating the applicability of different techniques to rehabilitate affected areas. As most radioactive cesium is concentrated at the top of the soil column and strongly bound to mineral surfaces, there are 3 options left to decrease the gamma dose rate (usually measured 1 m above the ground surface): the stripping of the contaminated topsoil (i.e. direct removal of cesium), the dilution by mixing and the soil profile inversion. The last two options do not generate waste. As the half-distance of {sup 137}Cs gammas in soil is in the order of 5-6 cm (depending on density and water content), the shielding by 50 cm of uncontaminated deep soil would theoretically reduce gamma doses by about 3 orders of magnitude. Which option is employed depends basically on the Cesium concentration in the topsoil, averaged over a 15-cm thickness. The JAEA's decontamination pilot projects focus on soil profile inversion and topsoil stripping. Two different techniques have been tested for the soil profile inversion: one is the reversal tillage by which surface soil of thickness of several tens of cm is reversed by using a tractor plough and the other is the complete interchanging of contaminated topsoil with uncontaminated subsoil by using a back-hoe. Reversal tillage with a tractor plough cost about 30 yen/m{sup 2}, which is an order of magnitude lower than that of topsoil-subsoil interchange (about 300 yen/m{sup 2}). Topsoil stripping is significantly more costly (between 550 yen/m{sup 2} and 690 yen/m{sup 2} according to the equipment used)

  2. Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery

    SciTech Connect (OSTI)

    Layne Pincock; Wendell Hintze; Dr. Koji Shirai

    2012-07-01

    Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japan’s Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

  3. Markov Model of Accident Progression at Fukushima Daiichi

    SciTech Connect (OSTI)

    Cuadra A.; Bari R.; Cheng, L-Y; Ginsberg, T.; Lehner, J.; Martinez-Guridi, G.; Mubayi, V.; Pratt, T.; Yue, M.

    2012-11-11

    On March 11, 2011, a magnitude 9.0 earthquake followed by a tsunami caused loss of offsite power and disabled the emergency diesel generators, leading to a prolonged station blackout at the Fukushima Daiichi site. After successful reactor trip for all operating reactors, the inability to remove decay heat over an extended period led to boil-off of the water inventory and fuel uncovery in Units 1-3. A significant amount of metal-water reaction occurred, as evidenced by the quantities of hydrogen generated that led to hydrogen explosions in the auxiliary buildings of the Units 1 & 3, and in the de-fuelled Unit 4. Although it was assumed that extensive fuel damage, including fuel melting, slumping, and relocation was likely to have occurred in the core of the affected reactors, the status of the fuel, vessel, and drywell was uncertain. To understand the possible evolution of the accident conditions at Fukushima Daiichi, a Markov model of the likely state of one of the reactors was constructed and executed under different assumptions regarding system performance and reliability. The Markov approach was selected for several reasons: It is a probabilistic model that provides flexibility in scenario construction and incorporates time dependence of different model states. It also readily allows for sensitivity and uncertainty analyses of different failure and repair rates of cooling systems. While the analysis was motivated by a need to gain insight on the course of events for the damaged units at Fukushima Daiichi, the work reported here provides a more general analytical basis for studying and evaluating severe accident evolution over extended periods of time. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accidents.

  4. Measuring Radioactivity from Fukushima Daiichi in New Mexico

    SciTech Connect (OSTI)

    McNaughton, Michael

    2011-01-01

    On March 11, 2011, the Fukushima Daiichi nuclear power plant was damaged by the tsunami that followed the 'Great East Japan Earthquake,' and the reactor subsequently leaked radioactive material. In response, LANL augmented the routine ambient (AIRNET) and stack (Rad-NESHAP) measurements with three high-volume samplers: No.167 at the Old White Rock Fire Station; No.173 at the TA-49 gate, and No.211 at the Los Alamos Medical Center. Previous accidents, such as the Three-Mile-Island accident in 1979 and the Chernobyl accident in 1986, indicated that the most likely releases were (a) the noble gases: krypton and xenon; and (b) the volatile elements: cesium, tellurium, and iodine. At the latitude of Fukushima, the predominant winds across the Pacific Ocean are from west to east, and models predicted that the plume would arrive in the western US on about March 18. By this time the shorter-lived isotopes would have decayed. Therefore, the expected radionuclides were xenon-133, cesium-134, cesium-136, cesium-137, tellurium-132, iodine-131, and iodine-132. As expected, cesium-134, cesium-136, cesium-137, tellurium-132, iodine-131, and iodine-132 were all detected by all three high-volume samplers during March 17-21. The concentrations peaked during the March 24-28 period. After this, concentrations of all nuclides declined. In general, the concentrations were consistent with those measured by the EPA RadNet system and many other monitoring systems throughout the world. At the time of writing, preliminary results from the AIRNET and Rad-NESHAP systems are being reported. More detailed results are described in LA-UR-11-10304 and will be reported in full in the annual environmental report for 2011. All previous releases from nuclear reactors have been dominated by noble gases, primarily krypton and xenon, which are not measured by the high-volume samplers or the AIRNET system. However, in sufficient concentrations these and other fission products would be detected by NEWNET

  5. Fukushima Daiichi Unit 1 Accident Progression Uncertainty Analysis and Implications for Decommissioning of Fukushima Reactors - Volume I.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Mattie, Patrick D.

    2016-01-01

    Sandia National Laboratories (SNL) has conducted an uncertainty analysis (UA) on the Fukushima Daiichi unit (1F1) accident progression with the MELCOR code. The model used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). That study focused on reconstructing the accident progressions, as postulated by the limited plant data. This work was focused evaluation of uncertainty in core damage progression behavior and its effect on key figures-of-merit (e.g., hydrogen production, reactor damage state, fraction of intact fuel, vessel lower head failure). The primary intent of this study was to characterize the range of predicted damage states in the 1F1 reactor considering state of knowledge uncertainties associated with MELCOR modeling of core damage progression and to generate information that may be useful in informing the decommissioning activities that will be employed to defuel the damaged reactors at the Fukushima Daiichi Nuclear Power Plant. Additionally, core damage progression variability inherent in MELCOR modeling numerics is investigated.

  6. Fukushima Daiichi unit 1 uncertainty analysis--Preliminary selection of uncertain parameters and analysis methodology

    SciTech Connect (OSTI)

    Cardoni, Jeffrey N.; Kalinich, Donald A.

    2014-02-01

    Sandia National Laboratories (SNL) plans to conduct uncertainty analyses (UA) on the Fukushima Daiichi unit (1F1) plant with the MELCOR code. The model to be used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). However, that study only examined a handful of various model inputs and boundary conditions, and the predictions yielded only fair agreement with plant data and current release estimates. The goal of this uncertainty study is to perform a focused evaluation of uncertainty in core melt progression behavior and its effect on key figures-of-merit (e.g., hydrogen production, vessel lower head failure, etc.). In preparation for the SNL Fukushima UA work, a scoping study has been completed to identify important core melt progression parameters for the uncertainty analysis. The study also lays out a preliminary UA methodology.

  7. Fukushima Daiichi Accident Study Information Portal Quality Assurance Review: Pre-Public Release

    SciTech Connect (OSTI)

    Kurt G. Vedros

    2012-01-01

    This design review compared the current product with the original intent set forth in the initial internet portal design found in the document: Fukushima Daiichi Database Design, Revision 5. The current revision of the Fukushima Daiichi Accident Study Information Portal (FDASIP) is 1.0.21. This revision is one that restricts access for each user based on roles granted by the project administrator. The public access revision is currently on the test server and will be considered in this review as well.

  8. Hydrogen combustion in a flat semi-confined layer with respect to the Fukushima Daiichi accident

    SciTech Connect (OSTI)

    Kuznetsov, M.; Yanez, J.; Grune, J.; Friedrich, A.; Jordan, T.

    2012-07-01

    The hydrogen accumulation at the top of containment or reactor building may occur due to an interaction of molten corium and water followed by a severe accident of a nuclear reactor (TMI, Chernobyl, Fukushima Daiichi). The hydrogen, released from the reactor, accumulates usually as a stratified semi-confined layer of hydrogen-air mixture. A series of large scale experiments on hydrogen combustion and explosion in a semi-confined layer of uniform and non-uniform hydrogen-air mixtures in presence of obstructions or without them was performed at the Karlsruhe Inst. of Technology (KIT). Different flame propagation regimes from slow subsonic to relative fast sonic flames and then to the detonations were experimentally investigated in different geometries and then simulated with COMSD code with respect to evaluate amount of burnt hydrogen taken place during the Fukushima Daiichi Accident (FDA). The experiments were performed in a horizontal semi-confined layer with dimensions of 9x3x0.6 m with/without obstacles opened from below. The hydrogen concentration in the mixtures with air was varied in the range of 0-34 vol. % without or with a gradient of 0-60 vol. %H{sub 2}/m. Effects of hydrogen concentration gradient, thickness of the layer, geometry of the obstructions, average and maximum hydrogen concentration on flame propagation regimes were investigated with respect to evaluate the maximum pressure loads of internal structures. Blast wave strength and dynamics of propagation after explosion of the layer of hydrogen-air mixture was numerically simulated to reproduce the hydrogen explosion process during the Fukushima Daiichi Accident. (authors)

  9. Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

    2012-09-10

    Measurements of several radionuclides within environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Company website following the recent tsunami-initiated catastrophe were evaluated for the purpose of identifying the source term, reconstructing the release mechanisms, and estimating the extent of the release. 136Cs/137Cs and 134Cs/137Cs ratios identified Units 1-3 as the major source of radioactive contamination to the surface soil close to the facility. A trend was observed between the fraction of the total core inventory released for a number of fission product isotopes and their corresponding Gibbs Free Energy of formation for the primary oxide form of the isotope, suggesting that release was dictated primarily by chemical volatility driven by temperature and reduction potential within the primary containment vessels of the vented reactors. The absence of any major fractionation beyond volatilization suggested all coolant had evaporated by the time of venting. High estimates for the fraction of the total inventory released of more volatile species (Te, Cs, I) indicated the damage to fuel bundles was likely extensive, minimizing any potential containment due to physical migration of these species through the fuel matrix and across the cladding wall. 238Pu/239,240Pu ratios close-in and at 30 km from the facility indicated that the damaged reactors were the major contributor of Pu to surface soil at the source but that this contribution likely decreased rapidly with distance from the facility. The fraction of the total Pu inventory released to the environment from venting units 1 and 3 was estimated to be ~0.003% based upon Pu/Cs isotope ratios relative to the within-reactor modeled inventory prior to venting and was consistent with an independent model evaluation that considered chemical volatility based upon measured fission product release trends. Significant volatile radionuclides within the spent fuel

  10. Independent technical support for the frozen soil barrier installation and operation at the Fukushima Daiichi Nuclear Power Station (F1 Site)

    SciTech Connect (OSTI)

    Looney, Brian B.; Jackson, Dennis G.; Truex, Michael J.; Johnson, Christian D.

    2015-02-23

    TEPCO is implementing a number of water countermeasures to limit the releases and impacts of contaminated water to the surrounding environment. The diverse countermeasures work together in an integrated manner to provide different types, and several levels, of protection. In general, the strategy represents a comprehensive example of a “defense in depth” concept that is used for nuclear facilities around the world. One of the key countermeasures is a frozen soil barrier encircling the damaged reactor facilities. The frozen barrier is intended to limit the flow of water into the area and provide TEPCO the ability to reduce the amount of contaminated water that requires treatment and storage. The National Laboratory team supports the selection of artificial ground freezing and the incorporation of the frozen soil barrier in the contaminated water countermeasures -- the technical characteristics of a frozen barrier are relatively well suited to the Fukushima-specific conditions and the need for inflow reduction. Further, our independent review generally supports the TEPCO/Kajima design, installation strategy and operation plan.

  11. Restoration of water environment contaminated by radioactive cesium released from Fukushima Daiichi NPP

    SciTech Connect (OSTI)

    Takeshita, K.; Takahashi, H.; Jinbo, Y.; Ishido, A.

    2013-07-01

    In the Fukushima Daiichi NPP Accident, large amounts of volatile radioactive nuclides, such as {sup 131}I, {sup 134}Cs and {sup 137}Cs, were released to the atmosphere and huge areas surrounding the nuclear site were contaminated by the radioactive fallout. In this study, a combined process with a hydrothermal process and a coagulation settling process was proposed for the separation of radioactive Cs from contaminated soil and sewage sludge. The coagulation settling operation uses Prussian Blue (Ferric ferrocyanide) and an inorganic coagulant. The recovery of Cs from sewage sludge sampled at Fukushima city (100.000 Bq/kg) and soil at a nearby village (55.000 Bq/kg), was tested. About 96% of Cs in the sewage sludge was removed successfully by combining simple hydrothermal decomposition and coagulation settling. However, Cs in the soil was not removed sufficiently by the combined process (Cs removal is only 56%). The hydrothermal decomposition with blasting was carried out. The Cs removal from the soil was increased to 85%. When these operations were repeated twice, the Cs recovery was over 90%. The combined process with hydrothermal blasting and coagulation settling is applicable to the removal of Cs from highly contaminated soil.

  12. Cesium Removal at Fukushima Nuclear Plant - 13215

    SciTech Connect (OSTI)

    Braun, James L.; Barker, Tracy A.

    2013-07-01

    The Great East Japan Earthquake that took place on March 11, 2011 created a number of technical challenges at the Fukushima Daiichi Nuclear Plant. One of the primary challenges involved the treatment of highly contaminated radioactive wastewater. Avantech Inc. developed a unique patent pending treatment system that addressed the numerous technical issues in an efficient and safe manner. Our paper will address the development of the process from concept through detailed design, identify the lessons learned, and provide the updated results of the project. Specific design and operational parameters/benefits discussed in the paper include: - Selection of equipment to address radionuclide issues; - Unique method of solving the additional technical issues associated with Hydrogen Generation and Residual Heat; - Operational results, including chemistry, offsite discharges and waste generation. Results show that the customized process has enabled the utility to recycle the wastewater for cooling and reuse. This technology had a direct benefit to nuclear facilities worldwide. (authors)

  13. Research and development on waste management for the Fukushima Daiichi NPS by JAEA

    SciTech Connect (OSTI)

    Koma, Yoshikazu; Ashida, Takashi; Meguro, Yoshihiro; Miyamoto, Yasuaki; Sasaki, Toshiki; Yamagishi, Isao; Kameo, Yutaka; Terada, Atsuhiko; Hiyama, T.; Koyama, Tomozo; Kaminishi, Shuji; Saito; Noriyuki; Denda, Yasutaka

    2013-07-01

    Technologies for waste management of Fukushima Daiichi Nuclear Power Station (F1NPS) have been investigated. It is expected that the amount of wastes will be considerable. It is considered that F1NPS wastes were contaminated with radionuclides contained in spent fuel and with activation products, therefore the number of nuclides which needs to be considered in evaluating disposal safety is high. As a result, it is possible that the technologies selected will be different from those of the current wastes from nuclear reactors and fuel cycle facilities. The secondary waste from the accumulated water treatment, contaminated rubble and trees were analyzed, and the data obtained was provided for inventory evaluation. Demand on analytical data is strong, and sampling at the site and analysis have been continued. Storage safety of the secondary waste, especially for zeolite and sludge is under investigation. Investigation on conditioning and disposal was initiated, for survey on existing disposal concept assuming that both inventory and waste classification are uncertain. Different from usual methodology, these research and development activities should be conducted side-by-side.

  14. New Standards in Liquid Waste Treatment at Fukushima Dai-ichi - 13134

    SciTech Connect (OSTI)

    Sylvester, Paul; Milner, Tim; Ruffing, Jennifer; Poole, Scott; Townson, Paul; Jensen, Jesse

    2013-07-01

    The earthquake and tsunami on March 11, 2011 severely damaged the Fukushima Dai-ichi nuclear plant leading to the most severe nuclear incident since Chernobyl. Ongoing operations to cool the damaged reactors at the site have led to the generation of highly radioactive coolant water. This is currently mainly treated to remove Cs-137 and Cs-134 and passed through a reverse osmosis (RO) unit to reduce the salinity before being cycled back to the reactors. Because only the Cs isotopes are removed, the RO reject water still contains many radioactive isotopes and this has led to the accumulation of over 200,000 cubic meters (52 million gallons) of extremely contaminated water which is currently stored on site in tanks. EnergySolutions, in partnership with Toshiba, were contracted to develop a system to reduce 62 isotopes in this waste down to allowable levels. This was a significant technical challenge given the high background salt content of the wastewater, the variation in aqueous chemistry of the radioactive isotopes and the presence of non-active competing ions (e.g. Ca and Mg) which inhibit the removal of isotopes such as Sr-89 and Sr-90. Extensive testing was performed to design a suitable system that could meet the required decontamination goals. These tests were performed over a 6 month period at facilities available in the nearby Fukushima Dai-ni laboratory using actual waste samples. This data was then utilized to design a Multi Radioactive Nuclides Removal System (MRRS) for Fukushima which is a modified version of EnergySolutions' proprietary Advanced Liquid Processing System (ALPS)'. The stored tank waste is fed into a preliminary precipitation system where iron flocculation is performed to remove a number of isotopes, including Sb-125, Ru-106, Mn-54 and Co-60. The supernatant is then fed into a second precipitation tank where the pH is adjusted and the bulk of the Mg, Ca and Sr precipitated out as carbonates and hydroxides. After passing through a cross

  15. EM Leads Successful Workshop Supporting Fukushima Cleanup | Department...

    Broader source: Energy.gov (indexed) [DOE]

    officials leading the cleanup of the Fukushima Daiichi Nuclear Power Plant site and surrounding area, this time addressing priorities identified by Japan's government agencies. ...

  16. Fukushima Daiichi Unit 1 Uncertainty Analysis-Exploration of Core Melt Progression Uncertain Parameters-Volume II.

    SciTech Connect (OSTI)

    Denman, Matthew R.; Brooks, Dusty Marie

    2015-08-01

    Sandia National Laboratories (SNL) has conducted an uncertainty analysi s (UA) on the Fukushima Daiichi unit (1F1) accident progression wit h the MELCOR code. Volume I of the 1F1 UA discusses the physical modeling details and time history results of the UA. Volume II of the 1F1 UA discusses the statistical viewpoint. The model used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). The goal of this work was to perform a focused evaluation of uncertainty in core damage progression behavior and its effect on key figures - of - merit (e.g., hydrogen production, fraction of intact fuel, vessel lower head failure) and in doing so assess the applicability of traditional sensitivity analysis techniques .

  17. Los Alamos Air Monitoring Data Related to the Fukushima Daiichi Reactor

    SciTech Connect (OSTI)

    McNaughton, Michael

    2011-01-01

    In response to the disasters in Japan on March 11, 2011, Los Alamos National Laboratory (LANL) is collecting air data and analyzing the data for fission products. At present, we report preliminary data from three high-volume air samplers and one stack sampler. Iodine-131 (I-131) is not optimally measured by our standard polypropylene filters. In addition to the filter data, we have one measurement obtained from a charcoal cartridge. These data, together with measurements of other radionuclides are adequate for a preliminary assessment and assure us that radionuclides from Fukushima Daiichi do not present a threat to human health at or near Los Alamos.

  18. Present status and future plans for the restoration of Fukushima Daiichi NPS

    SciTech Connect (OSTI)

    Takizawa, Shin

    2013-07-01

    There are many challenges at Fukushima-Daiichi Nuclear Power Station, even though the reactors have reached a condition equivalent to cold shutdown. Cooling of reactors is maintained using the circulating cooling system, which contains some temporary equipments and consists of long pipes reaching to about 4 km. The reliability of the cooling system is one of the keys to maintaining the stabilized condition. Therefore a variety of activities, such as the replacement of hoses with more durable pipes, is being conducted to improve the reliability of the cooling system. The first fuel bundle will be removed from the spent fuel pool (SFP) at Unit 4 in November, which is earlier than the original plan. In preparation for the fuel debris removal, investigations inside the primary containment vessel (PCVs) have been initiated. Visual images and other data, such as water level, radiation dose and temperature inside the PCVs, have been taken at Units 1 and 2. The issue of excessive contaminated water is the most urgent one. About 400 tons of ground water is intruding into the turbine and reactor buildings every day. This intruding water mixes with the core cooling water and becomes a large amount of contaminated water. It has to be stored on the site, despite the fact that some radioactive nuclides remain in it even after cesium is removed. The amount of water stored on the site has reached about 290,000 tons so far and is increasing. Counter measures for this issue, such as reduction of intruding water, cleaning up of the contaminated water and securing of water storage tanks, are under consideration and being conducted. However, certain recent events, such as the power loss of the SFP cooling systems and leakage of contaminated water from the underground tanks, have raised concerns about reliability. Vulnerabilities have been evaluated systematically and counter measures are being taken. (authors)

  19. Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Snow, Mathew S.; Snyder, Darin C.; Delmore, James E.

    2016-01-18

    Source term attribution of environmental contamination following the Fukushima Daiichi Nuclear Power Plant (FDNPP) disaster is complicated by a large number of possible similar emission source terms (e.g. FDNPP reactor cores 1–3 and spent fuel ponds 1–4). Cesium isotopic analyses can be utilized to discriminate between environmental contamination from different FDNPP source terms and, if samples are sufficiently temporally resolved, potentially provide insights into the extent of reactor core damage at a given time. Rice, soil, mushroom, and soybean samples taken 100–250 km from the FDNPP site were dissolved using microwave digestion. Radiocesium was extracted and purified using two sequentialmore » ammonium molybdophosphate-polyacrylonitrile columns, following which 135Cs/137Cs isotope ratios were measured using thermal ionization mass spectrometry (TIMS). Results were compared with data reported previously from locations to the northwest of FDNPP and 30 km to the south of FDNPP. 135Cs/137Cs isotope ratios from samples 100–250 km to the southwest of the FDNPP site show a consistent value of 0.376 ± 0.008. 135Cs/137Cs versus 134Cs/137Cs correlation plots suggest that radiocesium to the southwest is derived from a mixture of FDNPP reactor cores 1, 2, and 3. Conclusions from the cesium isotopic data are in agreement with those derived independently based upon the event chronology combined with meteorological conditions at the time of the disaster. In conclusion, cesium isotopic analyses provide a powerful tool for source term discrimination of environmental radiocesium contamination at the FDNPP site. For higher precision source term attribution and forensic determination of the FDNPP core conditions based upon cesium, analyses of a larger number of samples from locations to the north and south of the FDNPP site (particularly time-resolved air filter samples) are needed. Published in 2016. This article is a U.S. Government work and is in the public domain

  20. Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the {sup 134}Cs/{sup 137}Cs ratio method

    SciTech Connect (OSTI)

    Endo, T.; Sato, S.; Yamamoto, A.

    2012-07-01

    Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the {sup 134}Cs/{sup 137}Cs ratio method for measured radioactivities of {sup 134}Cs and {sup 137}Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured {sup 134}Cs/{sup 137}Cs ratio from the contaminated soil is 0.996{+-}0.07 as of March 11, 2011. Based on the {sup 134}Cs/{sup 137}Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2{+-}1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost the same evaluation values of {sup 134}Cs/ {sup 137}Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on {sup 134}Cs/{sup 137}Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)

  1. Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core Concrete Interaction

    SciTech Connect (OSTI)

    Robb, Kevin R; Farmer, Mitchell; Francis, Matthew W

    2015-01-01

    Lower head failure and corium concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis was carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input. MELTSPREAD was then used to predict the spatially dependent melt conditions and extent of spreading during relocation from the vessel. The results of the MELTSPREAD analysis are reported in a companion paper. This information was used as input for the long-term debris coolability analysis with CORQUENCH.

  2. Revisiting Insights from Three Mile Island Unit 2 Postaccident Examinations and Evaluations in View of the Fukushima Daiichi Accident

    SciTech Connect (OSTI)

    Joy Rempe; Mitchell Farmer; Michael Corradini; Larry Ott; Randall Gauntt; Dana Powers

    2012-11-01

    The Three Mile Island Unit 2 (TMI-2) accident, which occurred on March 28, 1979, led industry and regulators to enhance strategies to protect against severe accidents in commercial nuclear power plants. Investigations in the years after the accident concluded that at least 45% of the core had melted and that nearly 19 tonnes of the core material had relocated to the lower head. Postaccident examinations indicate that about half of that material formed a solid layer near the lower head and above it was a layer of fragmented rubble. As discussed in this paper, numerous insights related to pressurized water reactor accident progression were gained from postaccident evaluations of debris, reactor pressure vessel (RPV) specimens, and nozzles taken from the RPV. In addition, information gleaned from TMI-2 specimen evaluations and available data from plant instrumentation were used to improve severe accident simulation models that form the technical basis for reactor safety evaluations. Finally, the TMI-2 accident led the nuclear community to dedicate considerable effort toward understanding severe accident phenomenology as well as the potential for containment failure. Because available data suggest that significant amounts of fuel heated to temperatures near melting, the events at Fukushima Daiichi Units 1, 2, and 3 offer an unexpected opportunity to gain similar understanding about boiling water reactor accident progression. To increase the international benefit from such an endeavor, we recommend that an international effort be initiated to (a) prioritize data needs; (b) identify techniques, samples, and sample evaluations needed to address each information need; and (c) help finance acquisition of the required data and conduct of the analyses.

  3. U.S. DOE's Response to the Fukushima Daiichi Reactor Accident: Answers and Data Products for Decision Makers

    SciTech Connect (OSTI)

    Reed, A. L.

    2012-05-01

    The Fukushima Daiichi response posed a plethora of scientific questions to the U.S. Department of Energy’s (DOE) radiological emergency response community. As concerns arose for decision makers, the DOE leveraged a community of scientists well-versed in the tenants of emergency situations to provide answers to time-sensitive questions from different parts of the world. A chronology of the scientific Q and A that occurred is presented along with descriptions of the challenges that were faced and how new methods were employed throughout the course of the response.

  4. Current status of research and development program for characterizing fuel debris at Fukushima Daiichi NPS by JAEA

    SciTech Connect (OSTI)

    Kaji, Naoya; Takano, Masahide; Washiya, Tadahiro; Koyama, Tomozo

    2013-07-01

    Japan Government and TEPCO submitted a research road map for decommissioning Fukushima Daiichi Nuclear Power Plant. Two projects about debris are in progress: 'Assessment of simulated fuel debris characteristics' and 'Development of technologies for the processing of fuel debris'. The major results concerning the first project are the following 4 points. First, it was suggested that typical phase of oxide of fuel debris is (U,Zr)O{sub 2} and that of metal is Fe{sub 2}(Zr,U) by thermodynamic calculation. Secondly, important properties of fuel debris for developing defueling tools were identified as shape, size, density, hardness, elastic modulus, fracture toughness, thermal conductivity, specific heat (heat capacity), and melting point. Thirdly, the influence of seawater salt and B{sub 4}C/SUS to characteristics of debris was found, such as deposition of magnesium oxide crystal on the surface of fuel debris. The Influence of Pu to thermal properties of fuel debris was found, such as the increase of melting point. Concerning the second project, the major results are the following. First, a draft of the whole image of scenarios was developed. Secondly, the alkaline resolution method using Na{sub 2}O{sub 2} is most likely to be applied as a part of analysis technologies. Thirdly, it was shown that a part of fuel debris rich in U might be soluble in nitric acid. Fourthly, it was shown that all pyrochemical processes examined have potential to be applied for treating fuel debris. The results of the projects will contribute to the decommissioning program.

  5. MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit 4

    SciTech Connect (OSTI)

    Carbajo, Juan J

    2012-01-01

    Unit 4 of the Fukushima Dai-ichi Nuclear Power Plant suffered a hydrogen explosion at 6:00 am on March 15, 2011, exactly 3.64 days after the earthquake hit the plant and the off-site power was lost. The earthquake occurred on March 11 at 2:47 pm. Since the reactor of this Unit 4 was defueled on November 29, 2010, and all its fuel was stored in the spent fuel pool (SFP4), it was first believed that the explosion was caused by hydrogen generated by the spent fuel, in particular, by the recently discharged core. The hypothetical scenario was: power was lost, cooling to the SFP4 water was lost, pool water heated/boiled, water level decreased, fuel was uncovered, hot Zircaloy reacted with steam, hydrogen was generated and accumulated above the pool, and the explosion occurred. Recent analyses of the radioisotopes present in the water of the SFP4 and underwater video indicated that this scenario did not occur - the fuel in this pool was not damaged and was never uncovered the hydrogen of the explosion was apparently generated in Unit 3 and transported through exhaust ducts that shared the same chimney with Unit 4. This paper will try to answer the following questions: Could that hypothetical scenario in the SFP4 had occurred? Could the spent fuel in the SPF4 generate enough hydrogen to produce the explosion that occurred 3.64 days after the earthquake? Given the magnitude of the explosion, it was estimated that at least 150 kg of hydrogen had to be generated. As part of the investigations of this accident, MELCOR models of the SFP4 were prepared and a series of calculations were completed. The latest version of MELCOR, version 2.1 (Ref. 1), was employed in these calculations. The spent fuel pool option for BWR fuel was selected in MELCOR. The MELCOR model of the SFP4 consists of a total of 1535 fuel assemblies out of which 548 assemblies are from the core defueled on Nov. 29, 2010, 783 assemblies are older assemblies, and 204 are new/fresh assemblies. The total decay

  6. Nuclear Safety Workshop Agenda - Post Fukushima Initiatives and...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy's (DOE) nuclear facilities and identify opportunities for improvement. Nuclear Safety Workshop Agenda - Post Fukushima Initiatives and Results More Documents &...

  7. Environmental Remediation Activities in Japan Following the Fukushima Dai-ichi Reactor Incident - 12603

    SciTech Connect (OSTI)

    Lively, J.W.; Kelley, J.L.; Marcial, M.R.; Yashio, Shoko; Kuriu, Nobou; Kamijo, Hiroaki; Jotatsu, Kato

    2012-07-01

    In March 2011, the Fukushima Dai-ichi reactor power plant was crippled by the Great Pacific earthquake and subsequent tsunami. Much of the focus in the news was on the reactor site itself as the utility company (TEPCO), the Japanese government, and experts from around the world worked to bring the damaged plants into a safe shutdown condition and stem the release of radioactivity to the environment. Most of the radioactivity released was carried out to sea with the prevailing winds. Still, as weather patterns changed and winds shifted, a significant plume of radioactive materials released from the plant deposited in the environment surrounding the plant, contaminating large land areas of the Fukushima Prefecture. The magnitude of the radiological impact to the surrounding environmental is so large that the Japanese government has had to reevaluate the meaning of 'acceptably clean'. In many respects, 'acceptably clean' cannot be a one-size-fits-all standard. The economics costs of such an approach would make impossible what is already an enormous and costly environmental response and remediation task. Thus, the Japanese government has embarked upon an approach that is both situation-specific and reasonably achievable. For example, the determination of acceptably clean for a nursery school or kindergarten play yard may be different from that for a parking lot. The acceptably clean level of residual radioactivity in the surface soil of a rice paddy is different from that in a forested area. The recognized exposure situation (scenario) thus plays a large role in the decision process. While sometimes complicated to grasp or implement, such an approach does prioritize national resources to address environment remediation based upon immediate and significant risks. In addition, the Japanese government is testing means and methods, including advanced or promising technologies, that could be proven to be effective in reducing the amount of radioactivity in the environment

  8. Microsoft PowerPoint - Fukushima_perspectives from FRMAC_Daniel...

    National Nuclear Security Administration (NNSA)

    Response to Radiological Releases from the Fukushima Dai-ichi Nuclear Power Plant Daniel Blumenthal, PhD, CHP Manager, Consequence Management Program U.S. Department of Energy ...

  9. A Statement from U.S. Secretary of Energy Ernest Moniz Regarding Fukushima

    Broader source: Energy.gov [DOE]

    On Friday, I made my first visit to the Fukushima Daiichi Nuclear Power Station. It is stunning that one can see firsthand the destructive force of the tsunami even more than two and a half years after the tragic events

  10. Radiation Monitoring Data from Fukushima Area -5/6/11 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5/6/11 Radiation Monitoring Data from Fukushima Area -5/6/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. 050611__Joint_DOE_GoJ_AMS_Data_v3.pptx (2.46 MB) More Documents & Publications Radiation Monitoring Data from Fukushima Area Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant Radiation Monitoring Data from Fukushima Area - 5/13

  11. Elevated Radioxenon Detected Remotely Following the Fukushima Nuclear Accident

    SciTech Connect (OSTI)

    Bowyer, Ted W.; Biegalski, Steven R.; Cooper, Matthew W.; Eslinger, Paul W.; Haas, Derek A.; Hayes, James C.; Miley, Harry S.; Strom, Daniel J.; Woods, Vincent T.

    2011-04-21

    We report on the first measurements of short-lived gaseous fission products detected outside of Japan following the Fukushima nuclear releases, which occurred after a 9.0 magnitude earthquake and tsunami on March 11, 2011.

  12. MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit...

    Office of Scientific and Technical Information (OSTI)

    ALUMINIUM; BOILING; DIMENSIONS; EARTHQUAKES; EXPLOSIONS; FUEL ASSEMBLIES; FUEL RACKS; HYDROGEN; NUCLEAR POWER PLANTS; OXIDATION; OXYGEN; RADIOISOTOPES; REACTOR ACCIDENTS;...

  13. The Fukushima Nuclear Event and its Implications for Nuclear Power

    SciTech Connect (OSTI)

    Golay, Michael

    2011-07-06

    The combined strong earthquake and super tsunami of 12 March 2011 at the Fukushima nuclear power plant imposed the most severe challenges ever experienced at such a facility. Information regarding the plant response and status remains uncertain, but it is clear that severe damage has been sustained, that the plant staff have responded creatively and that the offsite implications are unlikely to be seriously threatening to the health, if not the prosperity, of the surrounding population. Re-examination of the regulatory constraints of nuclear power will occur worldwide, and some changes are likely, particularly concerning reliance upon active systems for achieving critical safety functions and concerning treatments of used reactor fuel. Whether worldwide expansion of the nuclear power economy will be slowed in the long run is perhaps unlikely and worth discussion.

  14. ORISE: REAC/TS Symposium to include sessions on the Fukushima crisis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEDIA ADVISORY: REAC/TS International Symposium to include sessions on the Fukushima crisis FOR IMMEDIATE RELEASE Aug. 31, 2011 FY11-42 Who: Radiation Emergency Assistance Center/Training Site What: Speakers to explore U.S. and Japanese response to Fukushima Daiichi nuclear crisis The crisis at the Fukushima Daiichi plant reminded the world that we are vulnerable. The response to this nuclear emergency is among the topics to be discussed at the 5th International REAC/TS Symposium on the Medical

  15. Biological Monitoring at Amchitka Appears to Show Impacts from Fukushima Dai-ichi Incident

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office Legacy Management (LM) has a long-term stewardship mission to protect human health and the environment from the legacy of underground nuclear testing conducted at Amchitka Island, Alaska, from 1965 to 1971.

  16. Fukushima: Five Years Later | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Fukushima: Five Years Later Friday, March 11, 2016 - 2:42pm After the March 11, 2011, Japan earthquake, tsunami, and ensuing nuclear reactor accident, the United States sent Department of Energy (DOE) National Nuclear Security Administration (NNSA) emergency response teams. The NNSA teams included nuclear experts in predictive modeling, monitoring, sample collection, laboratory analysis, and data analysis and interpretation. The deployment marked the first time NNSA's full complement

  17. Rapid Radiochemical Analyses in Support of Fukushima Nuclear Accident - 13196

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2013-07-01

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples [1, 2]. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90}Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation [3, 4]. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride

  18. RAPID RADIOCHEMICAL ANALYSES IN SUPPORT OF FUKUSHIMA NUCLEAR ACCIDENT

    SciTech Connect (OSTI)

    Maxwell, S.

    2012-11-07

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90} Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed

  19. Cleaning Contaminated Water at Fukushima

    ScienceCinema (OSTI)

    Rende, Dean; Nenoff, Tina

    2014-02-26

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  20. Cleaning Contaminated Water at Fukushima

    SciTech Connect (OSTI)

    Rende, Dean; Nenoff, Tina

    2013-11-21

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  1. 2012 Nuclear Safety Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Background In response to the March 2011 accident at the Fukushima Daiichi nuclear power plant, Secretary Chu initiated a series of actions to review the safety of the Department...

  2. "Is There a Future for Nuclear Power After Fukushima?", Dr. Alexander...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Saturday MBG Auditorium "Is There a Future for Nuclear Power After Fukushima?", Dr. ... For the safety of staff and visitors, PPPL security officers retain the right to ...

  3. Radiation Monitoring Data from Fukushima Area - 5/13/11 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5/13/11 Radiation Monitoring Data from Fukushima Area - 5/13/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. 051311__Joint_DOE_GoJ_AMS_Train_Data_FINAL_v2_0.pptx (2.54 MB) More Documents & Publications Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area -

  4. A Perspective on Long-Term Recovery Following the Fukushima Nuclear Accident - 12075

    SciTech Connect (OSTI)

    Chen, S.Y.

    2012-07-01

    The tragic events at the Fukushima Daiichi Nuclear Power Station began occurring on March 11, 2011, following Japan's unprecedented earthquake and tsunami. The subsequent loss of external power and on-site cooling capacity severely compromised the plant's safety systems, and subsequently, led to core melt in the affected reactors and damage to spent nuclear fuel in the storage pools. Together with hydrogen explosions, this resulted in a substantial release of radioactive material to the environment (mostly Iodine-131 and Cesium- 137), prompting an extensive evacuation effort. The latest release estimate places the event at the highest severity level (Level 7) on the International Nuclear Event Scale, the same as the Chernobyl accident of 1986. As the utility owner endeavored to stabilize the damaged facility, environmental contamination continued to propagate and affect every aspect of daily life in the affected region of Japan. Elevated levels of radioactivity (mostly dominated by Cs-137 with the passage of time) were found in soil, drinking water, vegetation, produce, seafood, and other foodstuffs. An estimated 80,000 to 90,000 people were evacuated; more evacuations are being contemplated months after the accident, and a vast amount of land has become contaminated. Early actions were taken to ban the shipment and sale of contaminated food and drinking water, followed by later actions to ban the shipment and sale of contaminated beef, mushrooms, and seafood. As the event continues to evolve toward stabilization, the long-term recovery effort needs to commence - a process that doubtless will involve rather complex decision-making interactions between various stakeholders. Key issues that may be encountered and considered in such a process include (1) socio-political factors, (2) local economic considerations, (3) land use options, (4) remediation approaches, (5) decontamination methods, (6) radioactive waste management, (7) cleanup levels and options, and (8

  5. Fukushima: Looking Back, Looking Ahead

    Broader source: Energy.gov [DOE]

    On March 11, 2011, a magnitude 9.0 earthquake struck Japan. It was one of the most powerful earthquakes on record, unleashing a tsunami that ravaged 430 miles of coastline, destroying communities, and killing nearly 16,000 people. The combined effects of the earthquake and tsunami overwhelmed on and offsite power systems at the Fukushima Daiichi nuclear power plant, leading to the meltdown of three reactors and the release of radioactive contaminants into the surrounding environment. Five years on, the decommissioning and clean-up at Fukushima remains in the early stages and will likely take decades to be completed. In the aftermath of this multi-unit accident, the global nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur.

  6. Nuclear Safety Workshop Agenda- Post Fukushima Initiatives and Results

    Broader source: Energy.gov [DOE]

    The theme of this year's workshop was Post Fukushima Initiatives and Results. It featured keynote speakers and technical breakout sessions over two days.

  7. Microsoft PowerPoint - Fukushima_perspectives from FRMAC_Daniel Blumenthal

    National Nuclear Security Administration (NNSA)

    Response to Radiological Releases from the Fukushima Dai-ichi Nuclear Power Plant Daniel Blumenthal, PhD, CHP Manager, Consequence Management Program U.S. Department of Energy National Nuclear Security Administration 2 2 Office of Emergency Response  Expert technical advice from the DOE/NNSA National Laboratories in response to:  Nuclear weapon accidents and incidents  Possible acts of nuclear terrorism  Lost or stolen radioactive materials  Radiological accidents  Expertise in

  8. Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489

    SciTech Connect (OSTI)

    Denton, Mark S.; Mertz, Joshua L.; Bostick, William D.

    2012-07-01

    On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One

  9. Decontamination of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant - 13277

    SciTech Connect (OSTI)

    Parajuli, Durga; Minami, Kimitaka; Tanaka, Hisashi; Kawamoto, Tohru

    2013-07-01

    Peculiar binding of Cesium to the soil clay minerals remained the major obstacle for the immediate Cs-decontamination of soil and materials containing clay minerals like sludge. Experiments for the removal of Cesium from soil and ash samples from different materials were performed in the lab scale. For soil and sludge ash formed by the incineration of municipal sewage sludge, acid treatment at high temperature is effective while washing with water removed Cesium from ashes of plants or burnable garbage. Though total removal seems a difficult task, water-washing of wood-ash or garbage-ash at 40 deg. C removes >90% radiocesium, while >60% activity can be removed from soil and sludge-ash by acid washing at 95 deg. C. (authors)

  10. The Accident at Fukushima: What Happened?

    SciTech Connect (OSTI)

    Fujie, Takao

    2012-07-01

    At 2:46 PM, on the coast of the Pacific Ocean in eastern Japan, people were spending an ordinary afternoon. The earthquake had a magnitude of 9.0, the fourth largest ever recorded in the world. Avery large number of aftershocks were felt after the initial earthquake. More than 100 of them had a magnitude of over 6.0. There were very few injured or dead at this point. The large earthquake caused by this enormous crustal deformation spawned a rare and enormous tsunami that crashed down 30-40 minutes later. It easily cleared the high levees, washing away cars and houses and swallowing buildings of up to three stories in height. The largest tsunami reading taken from all regions was 40 meters in height. This tsunami reached the West Coast of the United States and the Pacific coast of South America, with wave heights of over two meters. It was due to this tsunami that the disaster became one of a not imaginable scale, which saw the number of dead or missing reach about 20,000 persons. The enormous tsunami headed for 15 nuclear power plants on the Pacific coast, but 11 power plants withstood the tsunami and attained cold shutdown. The flood height of the tsunami that struck each power station ranged to a maximum of 15 meters. The Fukushima Daiichi Nuclear Power Plant Units experienced the largest and the cores of three reactors suffered meltdown. As a result, more than 160,000 residents were forced to evacuate, and are still living in temporary accommodation. The main focus of this presentation is on what happened at the Fukushima Daiichi, and how station personnel responded to the accident, with considerable international support. A year after the Fukushima Daiichi accident, Japan is in the process of leveraging the lessons learned from the accident to further improve the safety of nuclear power facilities and regain the trust of society. In this connection, not only international organizations, including IAEA, and WANO, but also governmental organizations and nuclear

  11. Public meetings on radiation and its health effects caused by the Fukushima nuclear accident

    SciTech Connect (OSTI)

    Sugiyama, K.; Ayame, J.; Takashita, H.; Yamamoto, R.

    2013-07-01

    The Japan Atomic Energy Agency (JAEA) has held public meetings on radiation and its health effects mainly for parents of students in kindergartens, elementary schools, and junior high schools in Fukushima and Ibaraki prefectures after the Fukushima nuclear accident. These meetings are held based on our experience of practicing risk communication activities for a decade in JAEA with local residents. By analyzing questionnaires collected after the meetings, we confirmed that interactive communication is effective in increasing participants' understanding and in decreasing their anxiety. Most of the participants answered that they understood the contents and that it eased their mind. (authors)

  12. "Is There a Future for Nuclear Power After Fukushima?", Dr. Alexander

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glaser, Woodrow Wilson School of Public and International Affairs and Department of Mechanical and Aerospace Engineering, Princeton University | Princeton Plasma Physics Lab January 21, 2012, 9:30am Science On Saturday MBG Auditorium "Is There a Future for Nuclear Power After Fukushima?", Dr. Alexander Glaser, Woodrow Wilson School of Public and International Affairs and Department of Mechanical and Aerospace Engineering, Princeton University Is There a Future for Nuclear Power

  13. WHEN MODEL MEETS REALITY – A REVIEW OF SPAR LEVEL 2 MODEL AGAINST FUKUSHIMA ACCIDENT

    SciTech Connect (OSTI)

    Zhegang Ma

    2013-09-01

    The Standardized Plant Analysis Risk (SPAR) models are a set of probabilistic risk assessment (PRA) models used by the Nuclear Regulatory Commission (NRC) to evaluate the risk of operations at U.S. nuclear power plants and provide inputs to risk informed regulatory process. A small number of SPAR Level 2 models have been developed mostly for feasibility study purpose. They extend the Level 1 models to include containment systems, group plant damage states, and model containment phenomenology and accident progression in containment event trees. A severe earthquake and tsunami hit the eastern coast of Japan in March 2011 and caused significant damages on the reactors in Fukushima Daiichi site. Station blackout (SBO), core damage, containment damage, hydrogen explosion, and intensive radioactivity release, which have been previous analyzed and assumed as postulated accident progression in PRA models, now occurred with various degrees in the multi-units Fukushima Daiichi site. This paper reviews and compares a typical BWR SPAR Level 2 model with the “real” accident progressions and sequences occurred in Fukushima Daiichi Units 1, 2, and 3. It shows that the SPAR Level 2 model is a robust PRA model that could very reasonably describe the accident progression for a real and complicated nuclear accident in the world. On the other hand, the comparison shows that the SPAR model could be enhanced by incorporating some accident characteristics for better representation of severe accident progression.

  14. Remembering Fukushima: PNNL Monitors Radiation from Nuclear Disaster

    ScienceCinema (OSTI)

    Miley, Harry

    2014-06-12

    Senior Scientist Harry Miley describes how his work in ultra-trace, nuclear detection technology picked up the first reading of radiological materials over the U.S. following the nuclear power plant explosion in Japan.

  15. Remembering Fukushima: PNNL Monitors Radiation from Nuclear Disaster

    SciTech Connect (OSTI)

    Miley, Harry

    2014-03-07

    Senior Scientist Harry Miley describes how his work in ultra-trace, nuclear detection technology picked up the first reading of radiological materials over the U.S. following the nuclear power plant explosion in Japan.

  16. Report to the Secretary of Energy on Beyond Design Basis Event Pilot Evaluations, Results and Recommendations for Improvements to Enhance Nuclear Safety at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its nuclear facilities and identify situations where near-term improvements could be made.

  17. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    SciTech Connect (OSTI)

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  18. Input of 129I into the western Pacific Ocean resulting from the Fukushima nuclear event

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tumey, S. J.; Guilderson, T. P.; Brown, T. A.; Broek, T.; Buesseler, K. O.

    2013-04-02

    We present an initial characterization of the input of 129I into the Pacific Ocean resulting from the 2011 Fukushima nuclear accident. This characterization is based primarily on 129I measurements on samples collected from a research cruise conducted in waters off the eastern coast of Japan in June 2011. The resulting measurements were compared with samples intended to reflect pre-Fukushima background that were collected during a May 2011 transect of the Pacific by a commercial container vessel. In surface waters, we observed peak 129I concentrations of ~300 μBq/m3 which represents an elevation of nearly three orders of magnitude compared to pre-Fukushimamore » backgrounds. The 129I results were coupled with 137Cs measurements from the same cruise and derived an average 129I/137Cs activity ratio of 0.442 × 10-6 for the effluent from Fukushima. Finally, we present 129I depth profiles from five stations from this cruise which form the basis for future studies of ocean transport and mixing process as well as estimations of the total budget of 129I released into the Pacific.« less

  19. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    SciTech Connect (OSTI)

    Su'ud, Zaki; Anshari, Rio

    2012-06-06

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  20. History of nuclear technology development in Japan

    SciTech Connect (OSTI)

    Yamashita, Kiyonobu

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  1. A Look Back at the Nuclear Safety Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Workshop A Look Back at the Nuclear Safety Workshop June 16, 2011 - 2:59pm Addthis Glenn Podonsky Glenn Podonsky Director, Independent Enterprise Assessments As the Department's Chief Health, Safety and Security Officer, my job is to make sure that we continue to enhance and improve the safety of the Energy Department's nuclear facilities. That is why, in response to the March accident at the Fukushima Daiichi nuclear complex, the Department hosted a Nuclear Safety Workshop to

  2. Comparison of Radionuclide Ratios in Atmospheric Nuclear Explosions and Nuclear Releases from Chernobyl and Fukushima seen in Gamma Ray Spectormetry

    SciTech Connect (OSTI)

    Friese, Judah I.; Kephart, Rosara F.; Lucas, Dawn D.

    2013-05-01

    The Comprehensive Nuclear Test Ban Treaty (CTBT) has remote radionuclide monitoring followed by an On Site Inspection (OSI) to clarify the nature of a suspect event. An important aspect of radionuclide measurements on site is the discrimination of other potential sources of similar radionuclides such as reactor accidents or medical isotope production. The Chernobyl and Fukushima nuclear reactor disasters offer two different reactor source term environmental inputs that can be compared against historical measurements of nuclear explosions. The comparison of whole-sample gamma spectrometry measurements from these three events and the analysis of similarities and differences are presented. This analysis is a step toward confirming what is needed for measurements during an OSI under the auspices of the Comprehensive Test Ban Treaty.

  3. Introduction to the Special Issue on the U.S. Response to the Fukushima Accident

    SciTech Connect (OSTI)

    Blumenthal, Daniel J.

    2012-05-01

    Provides an introduction to the May 2012 issue of Health Physics, based on a special session at the 2011 Health Physics Society (HPS) annual meeting that focused on the United States' radiological response to the Fukushima Daiichi Nuclear Power Plant accident. This introduction outlines the papers in this important issue and describes the activities of the U.S. response participants, including the U.S. Department of Energy National Nuclear Security Administration (DOE/NNSA), Department of Defense, the U.S. Nuclear Regulatory Commission (NRC) and other organizations. Observations are provided and the stage is set for the articles in this issue which document many of the activities undertaken during the Fukushima accident and which describe challenges faced and valuable lessons learned.

  4. What Students Think About (Nuclear) Radiation – Before and After Fukushima

    SciTech Connect (OSTI)

    Neumann, S.

    2014-06-15

    Preparing successful science lessons is very demanding. One important aspect a teacher has to consider is the students' previous knowledge about the specific topic. This is why research about students' preconceptions has been, and continues to be, a major field in science education research. Following a constructivistic approach [R. Duit et al., International handbook of research on conceptual change, p. 629 (2008)], helping students learn is only possible if teachers know about students' ideas beforehand. Studies about students' conceptions regarding the major topics in physics education (e.g. mechanics, electrodynamics, optics, thermodynamics), are numerous and well-documented. The topic radiation, however, has seen very little empirical research about students' ideas and misconceptions. Some research was conducted after the events of Chernobyl [P. Lijnse et al., International Journal of Science Education 12, 67 (1990); B. Verplanken, Environment and Behavior 21, 7 (1989)] and provided interesting insight into some of the students' preconceptions about radiation. In order to contribute empirical findings to this field of research, our workgroup has been investigating the conceptions students have about the topic radiation for several years [S. Neumann et al., Journal of Science Education and Technology 21, 826 (2012)]. We used children's drawings and conducted short follow-up interviews with students (9 – 12 years old) and more detailed interviews with 15-year-old students. Both studies were originally done before the events in Fukushima and replicated a year later. We not only asked students about their general associations and emotions regarding the term radiation, but also examined the students' risk perceptions of different types of radiation. Through the use of open-ended questions we were able to examine students' conceptions about different types of radiation (including nuclear) that could be a hindrance to student learning. Our results show that

  5. Input of 129I into the western Pacific Ocean resulting from the Fukushima nuclear event

    SciTech Connect (OSTI)

    Tumey, S. J.; Guilderson, T. P.; Brown, T. A.; Broek, T.; Buesseler, K. O.

    2013-04-02

    We present an initial characterization of the input of 129I into the Pacific Ocean resulting from the 2011 Fukushima nuclear accident. This characterization is based primarily on 129I measurements on samples collected from a research cruise conducted in waters off the eastern coast of Japan in June 2011. The resulting measurements were compared with samples intended to reflect pre-Fukushima background that were collected during a May 2011 transect of the Pacific by a commercial container vessel. In surface waters, we observed peak 129I concentrations of ~300 μBq/m3 which represents an elevation of nearly three orders of magnitude compared to pre-Fukushima backgrounds. The 129I results were coupled with 137Cs measurements from the same cruise and derived an average 129I/137Cs activity ratio of 0.442 × 10-6 for the effluent from Fukushima. Finally, we present 129I depth profiles from five stations from this cruise which form the basis for future studies of ocean transport and mixing process as well as estimations of the total budget of 129I released into the Pacific.

  6. Probing Fukushima with cosmic rays should help speed cleanup of damaged

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant Probing Fukushima with cosmic rays Probing Fukushima with cosmic rays should help speed cleanup of damaged plant The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. December 22, 2014 Probing Fukushima with cosmic rays should help speed cleanup of damaged plant Los Alamos-generated computer animation of the Fukushima Daiichi power plant. Contact James Rickman

  7. Operation Tomodachi: Answers, Data Products,and Lessons Learned from the U.S. Department of Energy's Consequence Management Response Team (CMRT) to the Fukushima-Daiichi Reactor Accident

    SciTech Connect (OSTI)

    Hopkins, R.

    2012-07-11

    This slide-show presents the DOE response to the Fukushima Diaiichi disaster, including aerial and ground monitoring, issues for which the team had not trained or planned for, and questions from decision makers.

  8. Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R and D: Application to Fukushima Waste Waters - 12312

    SciTech Connect (OSTI)

    Fournel, B.; Barre, Y.; Lepeytre, C.; Peycelon, H.; Grandjean, A.; Prevost, T.; Valery, J.F.; Shilova, E.; Viel, P.

    2012-07-01

    Liquid wastes decontamination processes are mainly based on two techniques: Bulk processes and the so called Cartridges processes. The first technique has been developed for the French nuclear fuel reprocessing industry since the 60's in Marcoule and La Hague. It is a proven and mature technology which has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The second technique, involving cartridges processes, offers new opportunities for the use of innovative adsorbents. The AREVA process developed for Fukushima and some results obtained on site will be presented as well as laboratory scale results obtained in CEA laboratories. Examples of new adsorbents development for liquid wastes decontamination are also given. A chemical process unit based on co-precipitation technique has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The asset of this technique is its ability to process large volumes in a continuous mode. Several chemical products can be used to address specific radioelements such as: Cs, Sr, Ru. Its drawback is the production of sludge (about 1% in volume of initial liquid volume). CEA developed strategies to model the co-precipitation phenomena in order to firstly minimize the quantity of added chemical reactants and secondly, minimize the size of co-precipitation units. We are on the way to design compact units that could be mobilized very quickly and efficiently in case of an accidental situation. Addressing the problem of sludge conditioning, cementation appears to be a very attractive solution. Fukushima accident has focused attention on optimizations that should be taken into account in future studies: - To better take account for non-typical aqueous matrixes like seawater; - To enlarge the spectrum of radioelements that can be efficiently processed and especially short lives radioelements that are usually less present in

  9. Report to the Secretary of Energy on Beyond Design Basis Event Pilot Evaluations, Results and Recommendations for Improvements to Enhance Nuclear Safety at DOE Nuclear Facilities, January 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its nuclear facilities and identify situations where near-term improvements could be made. These actions and recommendations were addressed in an August 2011 report to the Secretary of Energy, Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events.

  10. Factsheet: Second Meeting of the United States-Japan Bilateral...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tokyo Electric Power Company's (TEPCO) Fukushima Dai-ichi Nuclear Power Station (NPS), ... The current situation of the Fukushima Dai-ichi NPS and decommissioning and ...

  11. October

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    members stand in front of the damaged Fukushima Daiichi reactor complex during a visit ... from inside the damaged cores of the Fukushima Daiichi nuclear reactors. - 101712 ...

  12. Microsoft Word - DOE-ID-INL-12-003.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    earthquake and tsunami events at the Fukushima- Daiichi Nuclear Power Plant in March of ... (INL) to mitigate beyond design basis events similar to the Fukushima-Daiichi disaster. ...

  13. Comparison of dynamic characteristics of Fukushima Nuclear Power Plant containment building determined from tests and earthquakes

    SciTech Connect (OSTI)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1985-10-01

    Modal parameters determined from response measured in dynamic tests and from analytical models for simulating the tests and two subsequent earthquakes experienced by the containment building of Unit 1 of the Fukushima Power Station complex in Japan are compared for the purpose of evaluating the effectiveness of the dynamic tests in earthquake response prediction. The tests are found to have led to the correct identification of a fundamental frequency. The lack of agreement between test- and earthquake-determined modeshapes and damping is attributable more to the shortcomings of the simulation models than to differences in actual behavior.

  14. A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system

    SciTech Connect (OSTI)

    Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K.; Oomori, T.

    2013-07-01

    At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

  15. Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement- The Operator Viewpoints

    Broader source: Energy.gov [DOE]

    Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company

  16. Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruedig, Elizabeth; Duncan, Colleen; Dickerson, Bobette; Williams, Michael; Gelatt, Thomas; Bell, Justin; Johnson, Thomas E.

    2015-11-28

    In July 2014, our investigative team traveled to St. Paul Island, Alaska to measure concentrations of radiocesium in wild-caught food products, primarily northern fur seal (Callorhinus ursinus). The 2011 Fukushima Daiichi Nuclear Power Plant accident released radiocesium into the atmosphere and into the western Pacific Ocean; other investigators have detected Fukushima-derived radionuclides in a variety of marine products harvested off the western coast of North America. We tested two subsistence-consumed food products from St. Paul Island, Alaska for Fukushima-derived radionuclides: 54 northern fur seal, and nine putchki (wild celery, Angelica lucida) plants. Individual northern fur seal samples were below minimummore » detectable activity concentrations of 137Cs and 134Cs, but when composited, northern fur seal tissues tested positive for trace quantities of both isotopes. Radiocesium was detected at an activity concentration of 37.2 mBq 134Cs kg-1 f.w. (95% CI: 35.9–38.5) and 141.2 mBq 137Cs kg-1f.w. (95% CI: 135.5–146.8). The measured isotopic ratio, decay-corrected to the date of harvest, was 0.26 (95% CI: 0.25–0.28). The Fukushima nuclear accident released 134Cs and 137Cs in roughly equal quantities, but by the date of harvest in July 2014, this ratio was 0.2774, indicating that this population of seals has been exposed to small quantities of Fukushima-derived radiocesium. Activity concentrations of both 134Cs and 137Cs in putchki were below detection limits, even for composited samples. Northern fur seal is known to migrate between coastal Alaska and Japan and the trace 134Cs in northern fur seal tissue suggests that the population under study had been minimally exposed Fukushima-derived radionuclides. Despite this inference, the radionuclide quantities detected are small and no impact is expected as a result of the measured radiation exposure, either in northern fur seal or human populations consuming this species.« less

  17. Fukushima derived radiocesium in subsistence-consumed northern fur seal and wild celery

    SciTech Connect (OSTI)

    Ruedig, Elizabeth; Duncan, Colleen; Dickerson, Bobette; Williams, Michael; Gelatt, Thomas; Bell, Justin; Johnson, Thomas E.

    2015-11-28

    In July 2014, our investigative team traveled to St. Paul Island, Alaska to measure concentrations of radiocesium in wild-caught food products, primarily northern fur seal (Callorhinus ursinus). The 2011 Fukushima Daiichi Nuclear Power Plant accident released radiocesium into the atmosphere and into the western Pacific Ocean; other investigators have detected Fukushima-derived radionuclides in a variety of marine products harvested off the western coast of North America. We tested two subsistence-consumed food products from St. Paul Island, Alaska for Fukushima-derived radionuclides: 54 northern fur seal, and nine putchki (wild celery, Angelica lucida) plants. Individual northern fur seal samples were below minimum detectable activity concentrations of 137Cs and 134Cs, but when composited, northern fur seal tissues tested positive for trace quantities of both isotopes. Radiocesium was detected at an activity concentration of 37.2 mBq 134Cs kg-1 f.w. (95% CI: 35.9–38.5) and 141.2 mBq 137Cs kg-1f.w. (95% CI: 135.5–146.8). The measured isotopic ratio, decay-corrected to the date of harvest, was 0.26 (95% CI: 0.25–0.28). The Fukushima nuclear accident released 134Cs and 137Cs in roughly equal quantities, but by the date of harvest in July 2014, this ratio was 0.2774, indicating that this population of seals has been exposed to small quantities of Fukushima-derived radiocesium. Activity concentrations of both 134Cs and 137Cs in putchki were below detection limits, even for composited samples. Northern fur seal is known to migrate between coastal Alaska and Japan and the trace 134Cs in northern fur seal tissue suggests that the population under study had been minimally exposed Fukushima-derived radionuclides. Despite this inference, the radionuclide quantities detected are small and no impact is expected as a result of the measured radiation

  18. The prospect of nuclear energy in Türkiye especially after Fukushima accident

    SciTech Connect (OSTI)

    Şahin, Sümer

    2014-09-30

    Türkiye considers since mid-50's to use nuclear electricity, but Government and bureaucracy have continuously postponed reactor construction. However, since 2010 the case has gained a real shape. Official agreement has been signed for the construction of 4 units of Russian VVER type reactors with installed power of 4×1200 MW{sub el}. It is expected that they will begin to deliver electricity early 20's. Further negotiations are being conducted with Japanese Mitsubashi and French AREVA. The target is to have nuclear electricity by 2023 at the 100{sup th} anniversary of Turkish Republic. Turkish Nuclear Energy Strategy aims; • Decrease country's dependency on foreign suppliers of energy sources • Provide fuel supply mix diversification • Utilization of environmentally friendly energy production technologies Possess advanced and prestigious power generation technologies.

  19. Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396

    SciTech Connect (OSTI)

    Devgun, Jas S.; Laraia, Michele; Dinner, Paul

    2012-07-01

    Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimize the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new

  20. Los Alamos, Toshiba probing Fukushima with cosmic rays

    SciTech Connect (OSTI)

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  1. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema (OSTI)

    Morris, Christopher

    2014-06-25

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  2. Answering Public Health Concerns Over Japanese Nuclear Disaster | ORAU

    SciTech Connect (OSTI)

    Allen, Leeanna; Vasconez, Rachel

    2012-03-08

    When the Fukushima Daiichi Nuclear Power Plant became crippled following Japan's March 2011 earthquake and tsunami, some U.S. citizens became concerned about whether radiation would disperse across the Pacific Ocean. As the Centers for Disease Control and Prevention prepared to assist in the U.S. response effort, ORAU provided the CDC with onsite, staff support at its Joint Information Center. ORAU also had a lead role in the development and execution of the CDC's first-ever Bridging the Gaps: Public Health and Radiation Emergency Preparedness conference, which took place 10 days after the earthquake and served as a forum for discussing the current state of radiation emergency preparedness.

  3. Estimate of the Potential Amount of Low-Level Waste from the Fukushima Prefecture - 12370

    SciTech Connect (OSTI)

    Hill, Carolyn; Olson, Eric A.J.; Elmer, John

    2012-07-01

    The amount of waste generated by the cleanup of the Fukushima Prefecture (Fukushima-ken) following the releases from the Fukushima Daiichi nuclear power plant accident (March 2011) is dependent on many factors, including: - Contamination amounts; - Cleanup levels determined for the radioisotopes contaminating the area; - Future land use expectations and human exposure scenarios; - Groundwater contamination considerations; - Costs and availability of storage areas, and eventually disposal areas for the waste; and - Decontamination and volume reduction techniques and technologies used. For the purposes of estimating these waste volumes, Fukushima-ken is segregated into zones of similar contamination level and expected future use. Techniques for selecting the appropriate cleanup methods for each area are shown in a decision tree format. This approach is broadly applied to the 20 km evacuation zone and the total amounts and types of waste are estimated; waste resulting from cleanup efforts outside of the evacuation zone is not considered. Some of the limits of future use and potential zones where residents must be excluded within the prefecture are also described. The size and design of the proposed intermediate storage facility is also discussed and the current situation, cleanup, waste handling, and waste storage issues in Japan are described. The method for estimating waste amounts outlined above illustrates the large amount of waste that could potentially be generated by remediation of the 20 km evacuation zone (619 km{sup 2} total) if the currently proposed cleanup goals are uniformly applied. The Japanese environment ministry estimated in early October that the 1 mSv/year exposure goal would make the government responsible for decontaminating about 8,000 km{sup 2} within Fukushima-ken and roughly 4,900 km{sup 2} in areas outside the prefecture. The described waste volume estimation method also does not give any consideration to areas with localized hot spots

  4. ORISE: Report shows number of health physics degrees for 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seen what impact the March 11 Fukushima Daiichi accident may have on the nuclear industry. ... Conversely, the Fukushima incident has also led to a reassessment of the safety ...

  5. LOS ALAMOS, N.M., Oct. 17, 2012-Researchers from Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from inside the damaged cores of the Fukushima Daiichi nuclear reactors, which were ... the core of a reactor - 2 - similar to Fukushima Daiichi Reactor No. 1. The team found ...

  6. Task 6 - Subtask 1: PNNL Visit by JAEA Researchers to Evaluate the Feasibility of the FLESCOT Code for the Future JAEA Use for the Fukushima Surface Water Environmental Assessment

    SciTech Connect (OSTI)

    Onishi, Yasuo

    2014-01-01

    Four Japan Atomic Energy Agency (JAEA) researchers visited Pacific Northwest National Laboratory (PNNL) for seven working days and have evaluated the suitability and adaptability of FLESCOT to a JAEA’s supercomputer system to effectively simulate cesium behavior in dam reservoirs, river mouths, and coastal areas in Fukushima contaminated by the Fukushima Daiichi nuclear accident. PNNL showed the following to JAEA visitors during the seven-working day period: • FLESCOT source code • User’s manual • FLESCOT description – Program structure – Algorism – Solver – Boundary condition handling – Data definition – Input and output methods – How to run. During the visit, JAEA had access to FLESCOT to run with an input data set to evaluate the capacity and feasibility of adapting it to a JAEA super computer with massive parallel processors. As a part of this evaluation, PNNL ran FLESCOT for sample cases of the contaminant migration simulation to further describe FLESCOT in action. JAEA and PNNL researchers also evaluated time spent for each subroutine of FLESCOT, and the JAEA researcher implemented some initial parallelization schemes to FLESCOT. Based on this code evaluation, JAEA and PNNL determined that FLESCOT is • applicable to Fukushima lakes/dam reservoirs, river mouth areas, and coastal water • feasible to implement parallelization for the JAEA supercomputer. In addition, PNNL and JAEA researchers discussed molecular modeling approaches on cesium adsorption mechanisms to enhance the JAEA molecular modeling activities. PNNL and JAEA also discussed specific collaboration of molecular and computational modeling activities.

  7. nuclear emergency | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home nuclear emergency nuclear emergency Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, and ...

  8. INL Director Discusses Lessons Learned from TMI, Fukushima

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher explains how the U.S. nuclear industry has boosted its safety procedures as a result of the Three Mile Island (TMI) accident in 1979 and how the industry plans to use current events at Japan's Fukushima nuclear plants to further enhance safety. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  9. INL Director Discusses Lessons Learned from TMI, Fukushima

    SciTech Connect (OSTI)

    Grossenbacher, John

    2011-01-01

    Idaho National Laboratory's Director John Grossenbacher explains how the U.S. nuclear industry has boosted its safety procedures as a result of the Three Mile Island (TMI) accident in 1979 and how the industry plans to use current events at Japan's Fukushima nuclear plants to further enhance safety. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  10. DOE-Japan Collaboration Expands with U.S. Embassy Fellows | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Environment and other agencies as they clean up from the Fukushima Daiichi Nuclear Power Plant accident in 2011. The fellowships mark new efforts to share EM's nuclear facilities ...

  11. Transmittal Memorandum, Report on Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events, September 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    The March 2011 accident at the Fukushima Daiichi nuclear power plant, the Department of Energy (DOE) took several actions to review the safety of its nuclear facilities.

  12. A win-win situation | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    benefits for responses to nuclear crises, like the disaster that occurred at Japan's Fukushima Daiichi nuclear power plant in March 2011. The initial assessment of an event's ...

  13. Synergistic Smart Fuel For In-pile Nuclear Reactor Measurements

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Ali; Steven L . Garrett

    2013-10-01

    In March 2011, an earthquake of magnitude 9.0 on the Richter scale struck Japan with its epicenter on the northeast coast, near the Tohoku region. In addition to the immense physical destruction and casualties across the country, several nuclear power plants (NPP) were affected. It was the Fukushima Daiichi NPP that experienced the most severe and irreversible damage. The earthquake brought the reactors at Fukushima to an automatic shutdown and because the power transmission lines were damaged, emergency diesel generators (EDGs) were activated to ensure that there was continued cooling of the reactors and spent fuel pools. The situation was being successfully managed until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to the reactors.2 At this point, the situation became critical. There was a loss of the sensors and instrumentation within the reactor that could have provided valuable information to guide the operators to make informed decisions and avoid the unfortunate events that followed. In the light of these events, we have developed and tested a potential self-powered thermoacoustic system, which will have the ability to serve as a temperature sensor and can transmit data independently of electronic networks. Such a device is synergistic with the harsh environment of the nuclear reactor as it utilizes the heat from the nuclear fuel to provide the input power.

  14. LWR spent fuel reduction by the removal of U and the compact storage of Pu with FP for long-term nuclear sustainability

    SciTech Connect (OSTI)

    Fukasawa, T.; Hoshino, K.; Takano, M.; Sato, S.; Shimazu, Y.

    2013-07-01

    Fast breeder reactors (FBR) nuclear fuel cycle is needed for long-term nuclear sustainability while preventing global warming and maximum utilizing the limited uranium (U) resources. The 'Framework for Nuclear Energy Policy' by the Japanese government on October 2005 stated that commercial FBR deployment will start around 2050 under its suitable conditions by the successive replacement of light water reactors (LWR) to FBR. Even after Fukushima Daiichi Nuclear Power Plant accident which made Japanese tendency slow down the nuclear power generation activities, Japan should have various options for energy resources including nuclear, and also consider the delay of FBR deployment and increase of LWR spent fuel (LWR-SF) storage amounts. As plutonium (Pu) for FBR deployment will be supplied from LWR-SF reprocessing and Japan will not possess surplus Pu, the authors have developed the flexible fuel cycle initiative (FFCI) for the transition from LWR to FBR. The FFCI system is based on the possibility to stored recycled materials (U, Pu)temporarily for a suitable period according to the FBR deployment rate to control the Pu demand/supply balance. This FFCI system is also effective after the Fukushima accident for the reduction of LWR-SF and future LWR-to-FBR transition. (authors)

  15. NNSA Meets with Japanese Scientists to Discuss On-Going Fukushima Work |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Meets with Japanese Scientists to Discuss On-Going Fukushima Work NNSA Meets with Japanese Scientists to Discuss On-Going Fukushima Work August 3, 2012 - 1:30pm Addthis Scientists from the Japanese Atomic Energy Agency (JAEA) and National Nuclear Security Administration (NNSA). | Photo from the Office of Public Affairs, NNSA Scientists from the Japanese Atomic Energy Agency (JAEA) and National Nuclear Security Administration (NNSA). | Photo from the Office of Public

  16. Statement from Deputy Secretary of Energy Elizabeth Sherwood...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deputy Secretary of Energy Elizabeth Sherwood-Randall after Visiting the Fukushima Dai-ichi Nuclear Power Station Statement from Deputy Secretary of Energy Elizabeth Sherwood-Randa...

  17. News & Blog | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Deputy Secretary of Energy Elizabeth Sherwood-Randall after Visiting the Fukushima Dai-ichi Nuclear Power Station Deputy Secretary Elizabeth Sherwood-Randall's...

  18. Transmittal Memorandum, Report on Review of Requirements and...

    Broader source: Energy.gov (indexed) [DOE]

    and Responding to Beyond Design Basis Events Following the March 2011 accident at the Fukushima Daiichi nuclear power plant, the Department of Energy (DOE) took several actions to...

  19. EM Hosts Second Successful Workshop for Japanese Officials |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RICHLAND, Wash. - An EM-led delegation said its recent workshop for Japanese officials leading the cleanup of the Fukushima Daiichi Nuclear Power Plant site and surrounding area ...

  20. Draft- Predecisional

    Office of Environmental Management (EM)

    of US National Laboratories. Current information to U.S. National Laboratories on the progress, challenges and opportunities at the Fukushima- Daiichi Nuclear Power Plant site. ...

  1. ORISE: DOE Secretary Chu honors ORAU employees for Japan crisis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sixteen ORAU employees received U.S. Department of Energy Secretarial Honor Awards for their work supporting the agency in responding to the Fukushima Daiichi nuclear reactor ...

  2. iaea

    National Nuclear Security Administration (NNSA)

    session is part of the review meeting agenda, which will focus on the progress and lessons learned from the March 2011 Fukushima Daiichi nuclear power plant accident in...

  3. Burnup estimation of fuel sourcing radioactive material based on monitored Cs and Pu isotopic activity ratios in Fukushima N. P. S. accident

    SciTech Connect (OSTI)

    Yamamoto, T.; Suzuki, M.; Ando, Y.

    2012-07-01

    After the severe core damage of Fukushima Dai-Ichi Nuclear Power Station, radioactive material leaked from the reactor buildings. As part of monitoring of radioactivity in the site, measurements of radioactivity in soils at three fixed points have been performed for {sup 134}Cs and {sup 137}Cs with gamma-ray spectrometry and for Pu, Pu, and {sup 240}Pu with {alpha}-ray spectrometry. Correlations of radioactivity ratios of {sup 134}Cs to {sup 137}Cs, and {sup 238}Pu to the sum of {sup 239}Pu and {sup 240}Pu with fuel burnup were studied by using theoretical burnup calculations and measurements on isotopic inventories, and compared with the Cs and Pu radioactivity rations in the soils. The comparison indicated that the burnup of the fuel sourcing the radioactivity was from 18 to 38 GWd/t, which corresponded to that of the fuel in the highest power and, therefore, the highest decay heat in operating high-burnup fueled BWR cores. (authors)

  4. Nuclear Incident Team | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Nuclear Incident Team Nuclear Incident Team Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, ...

  5. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Deputy Secretary Daniel Poneman spoke at the Tokyo American Center today about nuclear power after Fukushima.

  6. MELCOR Applications to SOARCA and Fukushima

    SciTech Connect (OSTI)

    Gauntt, Randall O.

    2014-03-01

    This PowerPoint presentation was organized as follows: Background; Overview of Fukushima Accidents; Comparisons of SOARCA Study with Fukushima accidents; Equipment functioning in real-world accidents; and, Conclusions.

  7. Post Fukushima tsunami simulations for Malaysian coasts

    SciTech Connect (OSTI)

    Koh, Hock Lye; Teh, Su Yean; Abas, Mohd Rosaidi Che

    2014-10-24

    The recent recurrences of mega tsunamis in the Asian region have rekindled concern regarding potential tsunamis that could inflict severe damage to affected coastal facilities and communities. The 11 March 2011 Fukushima tsunami that crippled nuclear power plants in Northern Japan has further raised the level of caution. The recent discovery of petroleum reserves in the coastal water surrounding Malaysia further ignites the concern regarding tsunami hazards to petroleum facilities located along affected coasts. Working in a group, federal government agencies seek to understand the dynamics of tsunami and their impacts under the coordination of the Malaysian National Centre for Tsunami Research, Malaysian Meteorological Department. Knowledge regarding the generation, propagation and runup of tsunami would provide the scientific basis to address safety issues. An in-house tsunami simulation models known as TUNA has been developed by the authors to assess tsunami hazards along affected beaches so that mitigation measures could be put in place. Capacity building on tsunami simulation plays a critical role in the development of tsunami resilience. This paper aims to first provide a simple introduction to tsunami simulation towards the achievement of tsunami simulation capacity building. The paper will also present several scenarios of tsunami dangers along affected Malaysia coastal regions via TUNA simulations to highlight tsunami threats. The choice of tsunami generation parameters reflects the concern following the Fukushima tsunami.

  8. Recovery and Resilience After a Nuclear Power Plant Disaster: A Medical Decision model for Managing an Effective, Timely, and Balanced Response

    SciTech Connect (OSTI)

    Coleman, C. Norman; Blumenthal, Daniel J.

    2013-05-01

    Based on experiences in Tokyo responding to the Fukushima Daiichi nuclear power plant crisis, a real-time, medical decision model is presented by which to make key health-related decisions given the central role of health and medical issues in such disasters. Focus is on response and recovery activities that are safe, timely, effective, and well-organized. This approach empowers on-site decision makers to make interim decisions without undue delay using readily available and high-level scientific, medical, communication, and policy expertise. Key features of this approach include ongoing assessment, consultation, information, and adaption to the changing conditions. This medical decision model presented is compatible with the existing US National Response Framework structure.

  9. eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident

    SciTech Connect (OSTI)

    Blumenthal, Daniel J.; Clark, Harvey W.; Essex, James J.; Wagner, Eric C.

    2013-07-01

    The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administration’s Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

  10. Correlation of Fukushima data with SSI models

    SciTech Connect (OSTI)

    Miller, C.A.; Costantino, C.J.; Philippacopoulos, A.J.

    1985-01-01

    The seismic response of nuclear power plant structures is often calculated using lumped parameter methods. A finite element model of the structure is coupled to the soil with a spring-dashpot system used to represent the interaction process. The parameters of the interaction model are based on analytic solutions to simple problems which are idealizations of the actual problem. The objective of this work is to compare predicted responses using the standard lumped parameter models with experimental data. Comparisons are made between response predictions based on lumped parameter models and measured data at the Fukushima Reactor Containment Building during a moderately large earthquake. These comparisons are shown to be good for fairly uniform soil systems. 6 refs., 4 figs.

  11. Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249

    SciTech Connect (OSTI)

    Devgun, Jas S.

    2013-07-01

    Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

  12. Cleaning Contaminated Water at Fukushima (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Other: Cleaning Contaminated Water at Fukushima Citation Details In-Document Search Title: Cleaning Contaminated Water at Fukushima You are accessing a document from the ...

  13. Probing Fukushima with cosmic rays should speed cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Fukushima with cosmic rays should speed cleanup Alumni Link: Opportunities, News ... Latest Issue:September 2015 all issues All Issues submit Probing Fukushima with cosmic ...

  14. Probing Fukushima with cosmic rays should speed cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Fukushima with cosmic rays should speed cleanup Probing Fukushima with cosmic rays should speed cleanup The initiative could reduce the time required to clean up the ...

  15. Probing Fukushima with cosmic rays should help speed cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Fukushima with cosmic rays Probing Fukushima with cosmic rays should help speed cleanup of damaged plant The initiative could reduce the time required to clean up the ...

  16. Sandia National Laboratories: Lessons from Fukushima

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia helps spread lessons learned from Japanese reactor accident The Fukushima reactor complex in Japan suffered catastrophic failure in 2011 in the wake of an earthquake and ...

  17. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Thompson Release Date: 43014 Since the March 2011 accident at Japan's Fukushima Daiichi nuclear power plant, the U.S. Nuclear Regulatory Commission (NRC) and the U.S. nuclear...

  18. KERENA safety concept in the context of the Fukushima accident

    SciTech Connect (OSTI)

    Zacharias, T.; Novotny, C.; Bielor, E.

    2012-07-01

    Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basic physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)

  19. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to

  20. Fukushima Media Involvement: Lessons Learned and Challenges

    SciTech Connect (OSTI)

    Harvey, Geoffrey L.; Koller, Greg L.; Johnson, Wayne L.

    2013-04-01

    Only days after the Fukushima nuclear reactor disaster on March 11, 2011, the Department of Energy’s Pacific Northwest National Laboratory, or PNNL, found itself in a maelstrom of media attention following announcement of the detection of minute levels of radioactive material originating from the damaged reactors 4,500 miles away. Within days, PNNL had set up a technical team in support of the U.S. government’s efforts to assist the devastated country. While a vast amount of information began to flow from Japan, the situation rapidly evolved challenging PNNL scientists and engineers, as well as news media and the general public to deal with a complex and often conflicting information stream. Over the course of about three weeks, PNNL’s News & Media Relations staff and its scientists and engineers responded to more than one hundred requests for information, and engaged in dozens of personal interviews with international, national, regional and local media. While many of the interviews and resulting stories were accurate and well done, to say that all communication went flawless would be far from the truth. In the midst of chaos and confusion, which are part of any significant crisis, hiccoughs are sure to occur. Even when communications guidelines are established and agreed-to ahead of time, and spokespeople promise to stay on message and within their areas of expertise, there is no guarantee the ball will not be dropped on occasion. Addressed here is “the rest of the story.”

  1. December

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    providing a simple, passive system that can be used to thwart nuclear smugglers or look inside the cores of damaged nuclear reactors, such as those at Fukushima Daiichi in Japan. ...

  2. EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Safety year 2012 report-id SAND2012-6173 author Randall Gauntt, Donald ... In response to the accident at the Fukushima Daiichi nuclear power station in Japan, the ...

  3. Nuclear energy acceptance and potential role to meet future energy demand. Which technical/scientific achievements are needed?

    SciTech Connect (OSTI)

    Schenkel, Roland

    2012-06-19

    25 years after Chernobyl, the Fukushima disaster has changed the perspectives of nuclear power. The disaster has shed a negative light on the independence, reliability and rigor of the national nuclear regulator and plant operator and the usefulness of the international IAEA guidelines on nuclear safety. It has become clear that, in the light of the most severe earthquake in the history of Japan, the plants at Fukushima Daiichi were not adequately protected against tsunamis. Nuclear acceptance has suffered enormously and has changed the perspectives of nuclear energy dramatically in countries that have a very risk-sensitive population, Germany is an example. The paper analyses the reactions in major countries and the expected impact on future deployment of reactors and on R and D activities. On the positive side, the disaster has demonstrated a remarkable robustness of most of the 14 reactors closest to the epicentre of the Tohoku Seaquake although not designed to an event of level 9.0. Public acceptance can only be regained with a rigorous and worldwide approach towards inherent reactor safety and design objectives that limit the impact of severe accidents to the plant itself (like many of the new Gen III reactors). A widespread release of radioactivity and the evacuation (temporary or permanent) of the population up to 30 km around a facility are simply not acceptable. Several countries have announced to request more stringent international standards for reactor safety. The IAEA should take this move forward and intensify and strengthen the different peer review mission schemes. The safety guidelines and peer reviews should in fact become legally binding for IAEA members. The paper gives examples of the new safety features developed over the last 20 years and which yield much safer reactors with lesser burden to the environment under severe accident conditions. The compatibility of these safety systems with the current concepts for fusion-fission hybrids, which

  4. Modeling of Some Physical Properties of Zirconium Alloys for Nuclear Applications in Support of UFD Campaign

    SciTech Connect (OSTI)

    Michael V. Glazoff

    2013-08-01

    Zirconium-based alloys Zircaloy-2 and Zircaloy-4 are widely used in the nuclear industry as cladding materials for light water reactor (LWR) fuels. These materials display a very good combination of properties such as low neutron absorption, creep behavior, stress-corrosion cracking resistance, reduced hydrogen uptake, corrosion and/or oxidation, especially in the case of Zircaloy-4. However, over the last couple of years, in the post-Fukushima Daiichi world, energetic efforts have been undertaken to improve fuel clad oxidation resistance during off-normal temperature excursions. Efforts have also been made to improve upon the already achieved levels of mechanical behavior and reduce hydrogen uptake. In order to facilitate the development of such novel materials, it is very important to achieve not only engineering control, but also a scientific understanding of the underlying material degradation mechanisms, both in working conditions and in storage of used nuclear fuel. This report strives to contribute to these efforts by constructing the thermodynamic models of both alloys; constructing of the respective phase diagrams, and oxidation mechanisms. A special emphasis was placed upon the role of zirconium suboxides in hydrogen uptake reduction and the atomic mechanisms of oxidation. To that end, computational thermodynamics calculations were conducted concurrently with first-principles atomistic modeling.

  5. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, D.C. – Energy Deputy Secretary Daniel Poneman spoke at the Tokyo American Center today about nuclear power after Fukushima.

  6. International Perspective on Fukushima Accident

    Broader source: Energy.gov [DOE]

    Presenter: Miroslav Lipár, Head, Operational Safety Section, Department of Nuclear Safety and Security, International Atomic Energy Agency

  7. U.S. Leads Fifth International Review Meeting on the Safety of...

    National Nuclear Security Administration (NNSA)

    will focus on the progress and lessons learned from the March 2011 Fukushima Daiichi nuclear power plant accident in respect to the safety of spent fuel and radioactive waste...

  8. Report to the Secretary of Energy on Beyond Design Basis Event...

    Energy Savers [EERE]

    In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its ...

  9. National Laboratory Fukushima Support Network (NLFSN) Workflow | Department

    Energy Savers [EERE]

    of Energy Workflow National Laboratory Fukushima Support Network (NLFSN) Workflow This document illustrates the proposed distribution and workflow of any requests made through the NLFSN network. National Laboratory Fukushima Support Network (NLFSN) Workflow (176.39 KB) More Documents & Publications National Laboratory Fukushima Support Network (NLFSN) Pre-Decisional Fact Sheet Status of UFD Campaign International Activities in Disposal Research DFAS Wide-Area Workflow Issues

  10. Thermoacoustic Thermometry for Nuclear Reactor Monitoring

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2013-06-01

    On Friday, March 11, 2011, at 2:46pm (Japan Standard Trme), the Tohoku region on the east coast of northern Japan experi­enced what would become known as the largest earthquake in the country's history at magnitude 9.0 on the Richter scale. The Fukushima Daiichi nuclear power plant suffered exten­sive and irreversible damage. Six operating units were at the site, each with a boiling water reactor. When the earthquake struck, three of the six reactors were operating and the others were in a periodic inspection outage phase. In one reactor, all of the fuel had been relocated to a spent fuel pool in the reactor building. The seismic acceleration caused by the earthquake brought the three operating units to an automatic shutdown. Since there was damage to the power transmission lines, the emergency diesel generators (EDG) were automat­ically started to ensure continued cooling of the reactors and spent fuel pools. The situation was under control until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 meters, which was three times taller than the sea wall of 5m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to five of the six reactors. The flooding also resulted in the loss of instrumentation that would have other­ wise been used to monitor and control the emergency. The ugly aftermath included high radiation exposure to operators at the nuclear power plants and early contamina­tion of food supplies and water within several restricted areas in Japan, where high radiation levels have rendered them un­safe for human habitation. While the rest of the story will remain a tragic history, it is this part of the series of unfortunate events that has inspired our research. It has indubitably highlighted the need for a novel sensor and instrumentation system that can withstand similar or worse conditions to avoid future catastrophe and assume damage

  11. Japanese Ratify Convention on Supplementary Compensation for Nuclear Damage (CSC)

    Broader source: Energy.gov [DOE]

    "The Japanese ratification of the Convention on Supplementary Compensation for Nuclear Damage (CSC) marks an important milestone towards creating a global nuclear liability regime that will assure prompt and meaningful compensation in the event of a nuclear accident and will facilitate international cooperation on nuclear projects such as ongoing clean-up work at the Fukushima site."

  12. Probing Fukushima with cosmic rays should speed cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Fukushima with cosmic rays should speed cleanup Probing Fukushima with cosmic rays should speed cleanup The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. June 18, 2014 Los Alamos National Laboratory postdoctoral researcher Elena Guardincerri, right, and undergraduate research assistant Shelby Fellows prepare a lead hemisphere inside a muon tomography machine, which

  13. NPR: Particles From The Edge Of Space Shine A Light On Fukushima

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NPR: Particles From The Edge Of Space Shine A Light On Fukushima NPR: Particles From The Edge Of Space Shine A Light On Fukushima It's one of the greatest, and most disturbing, ...

  14. NPR: Particles From The Edge Of Space Shine A Light On Fukushima

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NPR: Particles From The Edge Of Space Shine A Light On Fukushima August 30, 2015 NPR: Particles From The Edge Of Space Shine A Light On Fukushima It's one of the greatest, and most ...

  15. Analysis of muon radiography of the Toshiba nuclear critical assembly reactor

    SciTech Connect (OSTI)

    Morris, C. L.; Bacon, Jeffery; Borozdin, Konstantin; Fabritius, J. M.; Perry, John; Ramsey, John [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ban, Yuichiro; Izumi, Mikio; Sano, Yuji; Yoshida, Noriyuki [Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Miyadera, Haruo [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Mizokami, Shinya; Otsuka, Yasuyuki; Yamada, Daichi [Tokyo Electric Power Company, 1-1-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo (Japan); Sugita, Tsukasa; Yoshioka, Kenichi [Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan)

    2014-01-13

    A 1.2??1.2 m{sup 2} muon tracker was moved from Los Alamos to the Toshiba facility at Kawasaki, Japan, where it was used to take ?4 weeks of data radiographing the Toshiba Critical Assembly Reactor with cosmic ray muons. In this paper, we describe the analysis procedure, show results of this experiment, and compare the results to Monte Carlo predictions. The results validate the concept of using cosmic rays to image the damaged cores of the Fukushima Daiichi reactors.

  16. Radiation Monitoring Data from Fukushima Area - 3/25/11 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5/11 Radiation Monitoring Data from Fukushima Area - 3/25/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. AMS_Data_March25__UDPATED1.pptx (641.14 KB) More Documents & Publications Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area - 3/22/11 Radiation Monitoring Data from Fukushima Area - 4/22

  17. Radiation Monitoring Data from Fukushima Area - 4/22/11 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 22/11 Radiation Monitoring Data from Fukushima Area - 4/22/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. 042111__AMS_Data_April_21__v1.pptx (1.06 MB) More Documents & Publications Radiation Monitoring Data from Fukushima Area - 4/7/11 Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area - 4/18

  18. Radiation Monitoring Data from Fukushima Area - 4/4/11 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4/11 Radiation Monitoring Data from Fukushima Area - 4/4/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. AMS_Data_April_4__v1.pptx (505.44 KB) More Documents & Publications Radiation Monitoring Data from Fukushima Area - 4/22/11 Radiation Monitoring Data from Fukushima Area - 4/7/11 Radiation Monitoring Data from Fukushima Area

  19. Fukushima Media Involvement: Lessons Learned and Challenges - 13261

    SciTech Connect (OSTI)

    Harvey, Geoffrey L.; Johnson, Wayne L.; Koller, Greg L.

    2013-07-01

    Only days after the Fukushima nuclear reactor disaster on March 11, 2011, the DOE's Pacific Northwest National Laboratory, or PNNL, found itself in a maelstrom of media attention following its announcement of the detection of minute levels of radioactive material originating from the damaged reactors 4,500 miles away. Because PNNL develops state-of-the-art ultra-sensitive radionuclide detection and monitoring systems for national security applications, and has some of the equipment operating on its Richland campus, there was little surprise when one of these sophisticated systems led PNNL to be the first to detect measurable radionuclides in the United States. On Wednesday, March 16, 2011, that system detected minuscule levels of short-lived radioactive xenon, a telltale element derived from either weapons testing or a major reactor disruption. Immediately after the detection was announced, a flurry of inquiries nearly overwhelmed staff as governments, scientific organizations, the general public, and reporters struggled to understand and estimate what impacts this disaster might have on health and environment. Over the course of about three weeks, PNNL's News and Media Relations staff and its scientists and engineers responded to more than 100 requests for information, and engaged in dozens of personal interviews with international, national, regional, and local media. While many of the interviews and resulting stories were accurate and well done, not all communication went flawlessly. In the midst of chaos and confusion, which are part of any significant crisis, hiccoughs are sure to occur. Addressed here is 'the rest of the story'. (authors)

  20. Environmental Remediation Strategic Planning of Fukushima Nuclear Accident

    SciTech Connect (OSTI)

    Onishi, Yasuo

    2011-12-01

    Environmntal Remediation Assessment and other respons decision making on Environmental monitoring, experiments and assessment. Preliminary assessment to grasp the overall picture and determine critical locations, phenomena, people, etc. Using simple methods and models.

  1. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  2. Parallel Radioisotope Collection and Analysis in Response to the Fukushima Release

    SciTech Connect (OSTI)

    Woods, Vincent T.; Bowyer, Ted W.; Biegalski, S.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Lepel, Elwood A.; Miley, Harry S.; Morris, Scott J.

    2013-05-01

    Two independent air samplers were operated at Pacific Northwest National Laboratory in parallel during the collection of samples from the Fukushima reactor releases. One system is an automated aerosol collection and analysis unit, while the other was a manual sampler of higher daily air volume. The samples collected each day showed excellent correlation in radionuclide activity, although some variations were seen. These variations illustrate the reproducibility of the air sample radionuclide measurements made by the Comprehensive Nuclear-Test-Ban Treaty International Monitoring System (IMS) and show a simple way to acquire useful parallel samples for scientific purposes. In particular, a party wishing to have a “copy” of a sample acquired by the verification regime of the treaty could employ this method and have results similar to the IMS station at low cost and even higher sensitivity.

  3. Radioactive Waste Issues in Major Nuclear Incidents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radioactive Waste Issues in Major Nuclear Incidents Radioactive Waste Issues in Major Nuclear Incidents S.Y. Chen*, Illinois Institute of Technology Abstract: Large amounts of radioactive waste had been generated in major nuclear accidents such as the Chernobyl nuclear accident in Ukraine of 1986 and the recent Fukushima nuclear accident in Japan of 2011. The wastes were generated due to the accidental releases of radioactive materials that resulted in widespread contamination throughout the

  4. LOS ALAMOS, N.M., June 18, 2014-Los Alamos National Laboratory today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fukushima with cosmic rays should speed cleanup June 18, 2014 Los Alamos to partner with Toshiba to remotely and safely peer inside nuclear reactors LOS ALAMOS, N.M., June 18, 2014-Los Alamos National Laboratory today announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the

  5. Qualification of Daiichi Units 1, 2, and 3 Data for Severe Accident Evaluations - Process and Illustrative Examples from Prior TMI-2 Evaluations

    SciTech Connect (OSTI)

    Rempe, Joy Lynn; Knudson, Darrell Lee

    2014-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This initial review focused on the set of sensors deemed most important by post-TMI-2 instrumentation evaluation programs. Instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken by these operators. In addition, prior efforts focused on sensors providing data required for subsequent forensic evaluations and accident simulations. To encourage the potential for similar activities to be completed for qualifying data from Daiichi Units 1, 2, and 3, this report provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: primary system pressure; containment building temperature; and containment pressure. As described within this report, sensor evaluations and data qualification required implementation of various processes, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design to instruments easily removed from the TMI-2 plant for evaluations. As documented

  6. Radiation Monitoring Data from Fukushima Area - 3/29/11 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 3/29/11 Radiation Monitoring Data from Fukushima Area - 3/29/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. AMS_Data_March29_FINAL.pptx (1.62 MB) More Documents & Publications Radiation Monitoring Data from Fukushima Area - 3/22/11 Radiation Monitoring Data from Fukushima Area - 4

  7. Radiation Monitoring Data from Fukushima Area - 4/18/11 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4/18/11 Radiation Monitoring Data from Fukushima Area - 4/18/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. 041811__AMS_Data_April_18__v1.pptx (1.05 MB) More Documents & Publications Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area - 3

  8. RCIC operation in Fukushima accidents as modeled by MELCOR and proposed testing

    SciTech Connect (OSTI)

    Gauntt, Randall O.

    2014-10-01

    This report discusses some of the findings from a Fukushima analysis that relays deep insight into critical operating systems such as the RCIC cooling system.

  9. Radiation Monitoring Data from Fukushima Area - 3/22/11 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2/11 Radiation Monitoring Data from Fukushima Area - 3/22/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. AMS_Data_for_USDoS__March22_1530_JLC.pptx (942.72 KB) More Documents & Publications Radiation Monitoring Data from Fukushima Area - 3/25/11 Radiation Monitoring Data from Fukushima Area Radiation Monitoring Data from Fukushima Area - 4/4

  10. Radiation Monitoring Data from Fukushima Area - 4/7/11 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4/7/11 Radiation Monitoring Data from Fukushima Area - 4/7/11 This data was recorded from DOE's Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. 040711__AMS_Data_April_7__v3.pptx (2.28 MB) More Documents & Publications Radiation Monitoring Data from Fukushima Area - 4/4/11 Radiation Monitoring Data from Fukushima Area - 4/22/11 Radiation Monitoring Data from Fukushima Area - 4/18

  11. Lessons from Fukushima | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    The Impact The inadequate understanding of water interactions with damaged fuel, such as occurred at Fukushima, suggests new research areas to help minimize the impact of future ...

  12. LOS ALAMOS, N.M., June 18, 2014-Los Alamos National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fukushima with cosmic rays should speed cleanup June 18, 2014 Los Alamos to partner with ... to safely peer inside the cores of the Fukushima Daiichi reactors and create ...

  13. In the News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electricity without resistance. 32715 Fukushima man Cosmic-ray Muon Technology to be Used To Image Debris Inside Fukushima Dai-ichi Reactors The solution developed by ...

  14. Microsoft PowerPoint - 7_LAUREN_GIBSON_NMMSS Presentation Gibson no talking points-UPDATED_rev2.pptx

    National Nuclear Security Administration (NNSA)

    Update: Fukushima Lessons Learned Lauren Gibson, U.S. Nuclear Regulatory Commission Agenda  Overview of the Accident  NRC Response  Identifying Lessons-Learned  Implementing Lessons-Learned  Other Regulated Facilities 2 Reactor #4 Shutdown Reactor # 3 Operating Reactor #2 Operating Reactor #1 Operating Reactors 5 & 6 Shutdown 3 Fukushima Daiichi Site Before the Event 4 * Site designed to withstand ~6 meters (20 foot) tsunami * Actual size estimated ~14 meters (46 feet) Reactor

  15. INL Director Discusses the Future for Nuclear Energy in the United States

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  16. INL Director Discusses the Future for Nuclear Energy in the United States

    SciTech Connect (OSTI)

    Grossenbacher, John

    2011-01-01

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  17. AP1000{sup R} severe accident features and post-Fukushima considerations

    SciTech Connect (OSTI)

    Scobel, J. H.; Schulz, T. L.; Williams, M. G.

    2012-07-01

    The AP1000{sup R} passive nuclear power plant is uniquely equipped to withstand an extended station blackout scenario such as the events following the earthquake and tsunami at Fukushima without compromising core and containment integrity. The AP1000 plant shuts down the reactor, cools the core, containment and spent fuel pool for more than 3 days using passive systems that do not require AC or DC power or operator actions. Following this passive coping period, minimal operator actions are needed to extend the operation of the passive features to 7 days using installed equipment. To provide defense-in-depth for design extension conditions, the AP1000 plant has engineered features that mitigate the effects of core damage. Engineered features retain damaged core debris within the reactor vessel as a key feature. Other aspects of the design protect containment integrity during severe accidents, including unique features of the AP1000 design relative to passive containment cooling with water and air, and hydrogen management. (authors)

  18. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  19. INL Director Explains How the National Labs Are Assisting With Japan's Nuclear Crisis

    SciTech Connect (OSTI)

    Grossenbacher, John

    2011-01-01

    Idaho National Laboratory's Director John Grossenbacher discusses the types of nuclear expertise and capabilities that exist within the U.S. Department of Energy's national labs to assist with the Japan nuclear crisis. He also explains how the labs will provide long-term research that will uncover lessons learned from the Fukushima nuclear plants. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  20. U.S. Department of Energy Releases Radiation Monitoring Data from Fukushima

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area | Department of Energy Radiation Monitoring Data from Fukushima Area U.S. Department of Energy Releases Radiation Monitoring Data from Fukushima Area March 22, 2011 - 12:00am Addthis Today the U.S. Department of Energy released data recorded from its Aerial Monitoring System as well as ground detectors deployed along with its Consequence Management Response Teams. The information has also been shared with the government of Japan as part of the United States' ongoing efforts to support

  1. Beyond Design Basis Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond Design Basis Events Beyond Design Basis Events Beyond Design Basis Events Following the March 2011 Fukushima Daiichi nuclear plant accident in Japan, DOE embarked upon several initiatives to investigate the safety posture of its nuclear facilities relative to beyond design basis events (BDBEs). These initiatives included issuing Safety Bulletin 2011-01, Events Beyond Design Safety Basis Analysis, and conducting two DOE nuclear safety workshops. DOE also issued two reports documenting the

  2. Criticality safety analysis on fissile materials in Fukushima reactor cores

    SciTech Connect (OSTI)

    Liu, Xudong; Lemaitre-Xavier, E.; Ahn, Joonhong; Hirano, Fumio

    2013-07-01

    The present study focuses on the criticality analysis for geological disposal of damaged fuels from Fukushima reactor cores. Starting from the basic understanding of behaviors of plutonium and uranium, a scenario sequence for criticality event is considered. Due to the different mobility of plutonium and uranium in geological formations, the criticality safety is considered in two parts: (1) near-field plutonium system and (2) far-field low enriched uranium (LEU) system. For the near-field plutonium system, a mathematical analysis for pure-solute transport was given, assuming a particular buffer material and waste form configuration. With the transport and decay of plutonium accounted, the critical mass of plutonium was compared with the initial load of a single canister. Our calculation leads us to the conclusion that our system with the initial loading being the average mass of plutonium in an assembly just before the accident is very unlikely to become critical over time. For the far-field LEU system, due to the uncertainties in the geological and geochemical conditions, calculations were made in a parametric space that covers the variation of material compositions and different geometries. Results show that the LEU system could not remain sub-critical within the entire parameter space assumed, although in the iron-rich rock, the neutron multiplicity is significantly reduced.

  3. Tiny travelers from deep space could assist in healing Fukushima...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    visit to determine evaluate whether Los Alamos' Scattering Method for cosmic-ray radiography could be used to image the location of nuclear materials within the reactor buildings. ...

  4. Topics in nuclear power

    SciTech Connect (OSTI)

    Budnitz, Robert J.

    2015-03-30

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its 'lessons learned' have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  5. Understanding the nature of nuclear power plant risk

    SciTech Connect (OSTI)

    Denning, R. S.

    2012-07-01

    This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

  6. Directory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three Mile Island Unit 2 Postaccident Examinations and Evaluations in View of the Fukushima Daiichi Accident Revisiting Insights from Three Mile Island Unit 2 Postaccident...

  7. Saluting Daniel Poneman's Service to the Department of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and response capabilities, leading the Department's efforts in the wake of the Fukushima Daiichi disaster in 2011, as well as during and after Hurricane Sandy in 2012. In ...

  8. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 SECTION A. Project Title: CFA-16-12043: Using Radioiodine Speciation to Address Environmental Remediation and Waste Stream Sequestration Problems at the Fukushima Daiichi Nuclear Power Plant and a DOE Site, MS-EM-1: Radioactive Waste Management - Texas A&M University - Galveston SECTION B. Project Description Texas A&M University - Galveston proposes to 1) measure radioiodine speciation to provide information that will be used in the development of species-specific stabilization

  9. DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety Basis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis, March 2011 | Department of Energy DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety Basis Analysis, March 2011 DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety Basis Analysis, March 2011 PURPOSE This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis. BACKGROUND On March 11, 2011, the Fukushima Daiichi nuclear power station in

  10. Multinational underground nuclear parks

    SciTech Connect (OSTI)

    Myers, C.W.; Giraud, K.M.

    2013-07-01

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  11. Cosmic ray radiography of the damaged cores of the Fukushima reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borozdin, Konstantin; Greene, Steven; Lukić, Zarija; Milner, Edward; Miyadera, Haruo; Morris, Christopher; Perry, John

    2012-10-11

    The passage of muons through matter is dominated by the Coulomb interaction with electrons and nuclei. The interaction with the electrons leads to continuous energy loss and stopping of the muons. The interaction with nuclei leads to angle “diffusion.” Two muon-imaging methods that use flux attenuation and multiple Coulomb scattering of cosmic-ray muons are being studied as tools for diagnosing the damaged cores of the Fukushima reactors. Here, we compare these two methods. We conclude that the scattering method can provide detailed information about the core. Lastly, attenuation has low contrast and little sensitivity to the core.

  12. Task 3: PNNL Visit by JAEA Researchers to Participate in TODAM Code Applications to Fukushima Rivers and to Evaluate the Feasibility of Adaptation of FLESCOT Code to Simulate Radionuclide Transport in the Pacific Ocean Coastal Water Around Fukushima

    SciTech Connect (OSTI)

    Onishi, Yasuo

    2013-03-29

    Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate • 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and • their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenarios would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: • TODAM and FLESCOT’s theories and mathematical formulations • TODAM and FLESCOT model structures • Past TODAM and FLESCOT applications • Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. • Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including • PNNL molecular modeling and EMSL computer facilities • Cesium adsorption/desorption characteristics • Experiences of connecting molecular science research results to macro model applications to the environment • EMSL tour • Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.

  13. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    . In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Associations data, the realization of Chinas deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

  14. Safer nuclear power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The more recent Fukushima disaster was similar to the TMI event, in that each was a loss-of-coolant accident (LOCA), which is essentially a plumbing problem: plant operators are ...

  15. Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Bond, Leonard J.; Ramuhalli, Pradeep

    2012-03-31

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption for online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components.

  16. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  17. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › U.S. nuclear outages this summer were higher than in summer 2015

  18. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear explosion, is the application of laboratory analysis and interpretation to provide technical conclusions (provenance, design, etc.) about a nuclear device or interdicted nuclear material. Nuclear forensic analysts can build confidence in their conclusions by employing multiple signatures that collectively minimize the

  19. Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.

  20. How Much Do We Understand About the Role of Organizational Safety Culture in the Fukushima Nuclear Accident?

    Broader source: Energy.gov [DOE]

    Presenter: Dr. Sonja B. Haber, President and Executive Consultant, Human Performance Analysis Corporation

  1. nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

    Learning techniques to combat nuclear trafficking, touring the...

  2. radiological consquence management | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home radiological consquence management radiological consquence management Fukushima: Five Years Later After the March 11, 2011, ...

  3. radiological response | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home radiological response radiological response Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, ...

  4. predictive modeling | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home predictive modeling predictive modeling Fukushima: Five Years Later After the March 11, 2011, Japan earthquake, tsunami, and ...

  5. Nuclear Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  6. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  7. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. ...

  8. 2012 Annual Report: Simulate and Evaluate the Cesium Transport and Accumulation in Fukushima-Area Rivers by the TODAM Code

    SciTech Connect (OSTI)

    Onishi, Yasuo; Yokuda, Satoru T.

    2013-03-28

    Pacific Northwest National Laboratory initiated the application of the time-varying, one-dimensional sediment-contaminant transport code, TODAM (Time-dependent, One-dimensional, Degradation, And Migration) to simulate the cesium migration and accumulation in the Ukedo River in Fukushima. This report describes the preliminary TODAM simulation results of the Ukedo River model from the location below the Ougaki Dam to the river mouth at the Pacific Ocean. The major findings of the 100-hour TODAM simulation of the preliminary Ukedo River modeling are summarized as follows:

  9. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    SciTech Connect (OSTI)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  10. Spent Nuclear Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary FAQS Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data ...

  11. Nuclear Emergency and the Atmospheric Dispersion of Nuclear Aerosols: Discussion of the Shared Nuclear Future - 13163

    SciTech Connect (OSTI)

    Rana, Mukhtar A.; Ali, Nawab; Akhter, Parveen; Khan, E.U.; Mathieson, John

    2013-07-01

    This paper has a twofold objective. One is to analyze the current status of high-level nuclear waste disposal along with presentation of practical perspectives about the environmental issues involved. Present disposal designs and concepts are analyzed on a scientific basis and modifications to existing designs are proposed from the perspective of environmental safety. Other is to understand the aerosol formation in the atmosphere for the case of the leakage from the nuclear waste containers or a nuclear accident. Radio-nuclides released from the waste will attach themselves to the existing aerosols in the atmosphere along with formation of new aerosols. Anticipating the nuclear accident when a variety of radioactive aerosols will form and exist in the atmosphere, as a simple example, measurement of naturally existing radioactive aerosols are made in the atmosphere of Islamabad and Murree. A comparison with similar measurements in 3 cities of France is provided. Measurement of radionuclides in the atmosphere, their attachment to aerosols and follow up transport mechanisms are key issues in the nuclear safety. It is studied here how {sup 7}Be concentration in the atmospheric air varies in the capital city of Islamabad and a Himalaya foothill city of Murree (Pakistan). Present results are compared with recent related published results to produce a {sup 7}Be concentration versus altitude plot up to an altitude of 4000 m (a.s.l.). Origin and variance of {sup 7}Be concentration at different altitudes is discussed in detail. The relevance of results presented here with the evaluation of implications of Chernobyl and Fukushima nuclear disasters has been discussed in a conclusive manner. It is the first international report of a joint collaboration/project. The project is being generalized to investigate and formulate a smooth waste storage and disposal policy. The project will address the fission and fusion waste reduction, its storage, its recycling, air, water and soil

  12. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear science nuclear chemistry Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line

  13. ORISE: REAC/TS Symposium to include sessions on the Fukushima...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The response to this nuclear emergency is among the topics to be discussed at the 5th International REACTS Symposium on the Medical Basis for Radiation Accident Preparedness. ...

  14. Report urges more planning to cope with Fukushima-like event

    SciTech Connect (OSTI)

    Kramer, David

    2014-09-01

    Industry and the NRC maintain that US reactor safety has greatly improved in the three years since Japan’s nuclear catastrophe.

  15. Adapting the U.S. Domestic Radiological Emergency Response Process to an Overseas Incident: FRMAC Without the F

    SciTech Connect (OSTI)

    Blumenthal, Daniel J.; Bowman, David R.; Remick, Alan

    2012-05-01

    The earthquake and resulting tsunami in Japan led to a radiological release from the Fukushima Daiichi Nuclear Power Plan, which in turn resulted in the rapid activation and deployment by the U.S. Department of Energy National Nuclear Security Administration (DOE/NNSA) emergency response teams. These teams and those from other federal agencies are typically coordinated through the Federal Radiological Monitoring and Assessment Center (FRMAC) when responding to radiological incidents in the U.S. FRMAC is the body through which the collection, analysis, and assessment of environmental radiological data are coordinated and products released to decision makers. This article discusses DOE/NNSAs role in the U.S. response to the Fukushima accident as it implemented its components of FRMAC in a foreign country, coordinated its assets, integrated with its federal partners, and collaborated with the Government of Japan. The technical details of the various data collections and analyses are covered in other articles of this issue.

  16. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Technical Assistance Nuclear Energy Technical Assistance "The United States will continue to promote the safe and secure use of nuclear power worldwide through a variety of bilateral and multilateral engagements. For example, the U.S. Nuclear Regulatory Commission advises international partners on safety and regulatory best practices, and the Department of Energy works with international partners on research and development, nuclear waste and storage, training, regulations,

  17. Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Nuclear Energy Nuclear Energy Tara Camacho-Lopez 2016-06-29T14:02:38+00:00 Contributing to the Next Generation of Nuclear Power Generation Our nuclear energy and fuel cycle technologies supports the safe, secure, reliable, and sustainable use of nuclear power worldwide through strengths in repository science, nonproliferation, safety and security, transportation, modeling, and system demonstrations. Areas of Expertise Defense Waste Management Sandia advises the U.S. Department

  18. EM Hosts Well-Attended, Successful Business Opportunity Forum | Department

    Office of Environmental Management (EM)

    Energy Second Successful Workshop for Japanese Officials EM Hosts Second Successful Workshop for Japanese Officials March 9, 2012 - 12:00pm Addthis Participants in the EM-led delegation's second workshop gather for a photo at the Hanford site. Participants in the EM-led delegation's second workshop gather for a photo at the Hanford site. RICHLAND, Wash. - An EM-led delegation said its recent workshop for Japanese officials leading the cleanup of the Fukushima Daiichi Nuclear Power Plant site

  19. Advising Japan on Medical Aspects of Radiation Exposure | ORAU

    SciTech Connect (OSTI)

    Wiley, Al; Sugarman, Steve

    2015-03-08

    Because of Japan's March 11, 2011, earthquake and tsunami, the Fukushima Daiichi Nuclear Power Plant suffered catastrophic damage—ultimately leaking dangerously high amounts of radiation that led to the evacuation of more than 80,000 Japanese citizens within a 12-mile radius of the crippled plant. Responding agencies were concerned about the medical impacts of radiation exposure, the effect upon food and water safety and what actions individuals could take to protect themselves. To provide advice and consultation, the physicians and health physicists at REAC/TS were on-call 24/7 and responded to more than 700 inquiries in the days and weeks that followed.

  20. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures: Revision 2015

    SciTech Connect (OSTI)

    Katoh, Yutai; Terrani, Kurt A.

    2015-08-01

    Fuels and core structures in current light water reactors (LWR’s) are vulnerable to catastrophic failure in severe accidents as unfortunately evidenced by the March 2011 Fukushima Dai-ichi Nuclear Power Plant Accident. This vulnerability is attributed primarily to the rapid oxidation kinetics of zirconium alloys in a water vapor environment at very high temperatures. Zr alloys are the primary material in LWR cores except for the fuel itself. Therefore, alternative materials with reduced oxidation kinetics as compared to zirconium alloys are sought to enable enhanced accident-tolerant fuels and cores.

  1. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  2. Using the sound of nuclear energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garrett, Steven; Smith, James; Smith, Robert; Heidrich, Benden; Heibel, Michael

    2016-08-01

    The generation of sound by heat has been documented as an “acoustical curiosity” since a Buddhist monk reported the loud tone generated by a ceremonial rice-cooker in his diary, in 1568. Over the last four decades, significant progress has been made in understanding “thermoacoustic processes,” enabling the design of thermoacoustic engines and refrigerators. Motivated by the Fukushima nuclear reactor disaster, we have developed and tested a thermoacoustic engine that exploits the energy-rich conditions in the core of a nuclear reactor to provide core condition information to the operators without a need for external electrical power. The heat engine is self-poweredmore » and can wirelessly transmit the temperature and reactor power level by generation of a pure tone which can be detected outside the reactor. We report here the first use of a fission-powered thermoacoustic engine capable of serving as a performance and safety sensor in the core of a research reactor and present data from the hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These measurements confirmed that the frequency of the sound produced indicates the reactor’s coolant temperature and that the amplitude (above an onset threshold) is related to the reactor’s operating power level. Furthermore, these signals can be detected even in the presence of substantial background noise generated by the reactor’s fluid pumps.« less

  3. Study of feasible and sustainable multilateral approach on nuclear fuel cycle

    SciTech Connect (OSTI)

    Kuno, Y.; Tazaki, M.; Akiba, M.; Takashima, R.; Izumi, Y.; Tanaka, S.

    2013-07-01

    Despite the Fukushima accident it is undeniable that nuclear power remains one of the most important methods to handle global growth of economic/energy consumption and issues with greenhouse gases. If the demand for nuclear power increases, the demand for not only the generation of power but also for refining uranium (U), conversion, enrichment, re-conversion, and fuel manufacturing should increase. In addition, concerns for the proliferation of 'Sensitive Nuclear Technologies' (SNT) should also increase. We propose a demand-side approach, where nuclear fuel cycle (NFC) activities would be implemented among multiple states. With this approach, NFC services, in particular those using SNTs, are multilaterally executed and controlled, thereby preventing unnecessary proliferation of SNTs, and enabling safe and appropriate control of nuclear technologies and nuclear materials. This proposal would implement nuclear safety and security at an international level and solve transport issues for nuclear fuels. This proposal is based on 3 types of cooperation for each element of NFC: type A: cooperation for 3S only, services received; Type B: cooperation for 3S, MNA (Multilateral Nuclear Activities) without transfer of ownership to MNA; and Type C cooperation for 3S, MNA holding ownership rights. States involved in the 3 types of activity should be referred to as partner states, host states, and site states respectively. The feasibility of the proposal is discussed for the Asian region.

  4. Nuclear Navy

    SciTech Connect (OSTI)

    1994-12-31

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  5. Transient Testing of Nuclear Fuels and Materials in United States

    SciTech Connect (OSTI)

    Daniel M. Wachs

    2012-12-01

    The US Department of Energy (DOE) has been engaged in an effort to develop and qualify next generation LWR fuel with enhanced performance and safety and reduced waste generation since 2010. This program, which has emphasized collaboration between the DOE, U.S. national laboratories and nuclear industry, was refocused from enhanced performance to enhanced accident tolerance following the events at Fukushima in 2011. Accident tolerant fuels have been specifically described as fuels that, in comparison with standard UO2-Zircaloy, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events. The program maintains an ambitious goal to insert a lead test assembly (LTA) of the new design into a commercial power reactor by 2022 .

  6. Beyond Design Basis Events Analysis and Response Information...

    Broader source: Energy.gov (indexed) [DOE]

    Fact Finding Expert Mission of the Fukushima Dai-ichi Accident Following the Great East Japan Earthquake And Tsunami, June 16, 2011 INPO Special Report - Lessons Learned from the...

  7. 2011 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phishing Alert Mon, 04252011 - 3:00pm RadCon Hosts Webinar on April 26: Lessons of Fukushima Daiichi Wed, 04132011 - 3:00pm Get in on Home Energy Savings With 'Next Step' ...

  8. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create this roadmap. This quest requires a broad approach to different, but related, scientific

  9. Nuclear Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Nuclear Security Centers of Excellence: Fact Sheet March 23, 2012 "We [the Participating States]... Acknowledge the need for capacity building for nuclear security and cooperation at bilateral, regional and multilateral levels for the promotion of nuclear security culture through technology development, human resource development, education, and training; and stress the importance of optimizing international cooperation and coordination of

  10. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Supersedes DOE O 457.1 and DOE M 457.1-1.