National Library of Energy BETA

Sample records for fuels project cxs

  1. Maritime Hydrogen Fuel Cell project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... SunShot Grand Challenge: Regional Test Centers Maritime Hydrogen Fuel Cell project HomeTag:Maritime Hydrogen Fuel Cell project - Pete Devlin, of the Department of Energy's Fuel ...

  2. Nuclear Fuels Storage & Transportation Planning Project | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown ...

  3. Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  4. Alternative Fuels Data Center: Project Assistance

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Project Assistance to someone by E-mail Share Alternative Fuels Data Center: Project Assistance on Facebook Tweet about Alternative Fuels Data Center: Project Assistance on Twitter Bookmark Alternative Fuels Data Center: Project Assistance on Google Bookmark Alternative Fuels Data Center: Project Assistance on Delicious Rank Alternative Fuels Data Center: Project Assistance on Digg Find More places to share Alternative Fuels Data Center: Project Assistance on AddThis.com... More in this

  5. LADWP FUEL CELL DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Thai Ta

    2003-09-12

    Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

  6. Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  7. Spent Nuclear Fuel Project Safety Management Plan

    SciTech Connect (OSTI)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities.

  8. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect (OSTI)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  9. 2015 Solid Oxide Fuel Cells Project Portfolio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Solid Oxide Fuel Cells Project Portfolio Solid Oxide Fuel Cells are energy conversion devices that produce electric power through an electrochemical reaction rather than by...

  10. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program New Fuel Cell Projects Kickoff Meeting DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting Presentation by DOE's Patrick Davis at a meeting on new fuel cell ...

  11. Kickoff Meeting for New Fuel Cell Projects

    Broader source: Energy.gov [DOE]

    This presentation by Reg Tyler of the DOE Golden Field Office was given at a meeting on new fuel cell projects in February 2007.

  12. 2010 New Fuel Cell Projects Meeting

    Broader source: Energy.gov [DOE]

    On September 28, 2010, the U.S. Department of Energy (DOE) held a kick-off meeting for new projects awarded under a fuel cell solicitation. Principal investigators presented project overviews,...

  13. Midwest Region Alternative Fuels Project

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  14. Midwest Region Alternative Fuels Project

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Safety Planning Guidance for Hydrogen and Fuel Cell Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Planning Guidance for Hydrogen and Fuel Cell Projects Safety Planning Guidance for Hydrogen and Fuel Cell Projects Hydrogen and fuel cell project safety by U.S. Department...

  16. Manufacturing Fuel Cell Manhattan Project

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  17. Bronx Zoo Fuel Cell Project

    SciTech Connect (OSTI)

    Hoang Pham

    2007-09-30

    A 200 kW Fuel Cell has been installed in the Lion House, Bronx Zoo, NY. The Fuel Cell is a 200 kW phosphoric acid type manufactured by United Technologies Corporation (UTC) and will provide thermal energy at 725,000 Btu/hr.

  18. Navy fuel cell demonstration project.

    SciTech Connect (OSTI)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  19. Demonstration Project for Fuel Cell Bus Commercialisation in...

    Open Energy Info (EERE)

    Project for Fuel Cell Bus Commercialisation in China Jump to: navigation, search Name: Demonstration Project for Fuel Cell Bus Commercialisation in China Place: Beijing and...

  20. Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

  1. Spent Nuclear Fuel (SNF) Project Execution Plan

    SciTech Connect (OSTI)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  2. 2010 New Fuel Cell Projects Meeting Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Fuel Cell Projects Meeting Agenda 2010 New Fuel Cell Projects Meeting Agenda This agenda was prepared for the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 2010_newfc_meetingagenda.pdf More Documents & Publications DOE 2010 Fuel Cell Pre-Solicitation Workshop Agenda Fuel Cell Bus Workshop FC-PAD Organization and Activities

  3. Financial Incentives for Hydrogen and Fuel Cell Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Market Transformation » Financial Incentives for Hydrogen and Fuel Cell Projects Financial Incentives for Hydrogen and Fuel Cell Projects Find information about federal and state financial incentives for hydrogen fuel cell projects. Federal Incentives The Emergency Economic Stabilization Act of 2008 includes tax incentives to help minimize the cost of hydrogen and fuel cell projects. It offers an investment tax credit of 30% for qualified fuel cell property or $3,000/kW of the fuel

  4. Recovery Act Projects Funded for Fuel Cell Market Transformation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recovery Act Projects Funded for Fuel Cell Market Transformation Recovery Act Projects Funded for Fuel Cell Market Transformation Following the fuel cell funding announcement, DOE funded the fuel cell market transformation projects listed below. These projects focus on fuel cell systems in emergency backup power, material handling, and combined heat and power applications, with the goal of improving the potential of fuel cells to provide power in stationary, portable,

  5. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  6. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  7. The Fuel Cell Mobile Light Project - A DOE Market Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Mobile Light Project -- A DOE Market Transformation Activity-- Lennie Klebanoff ... Systems Torsten Erbel Multiquip Inc. DOE Fuel Cell Technologies Webinar November 13, ...

  8. Fuel Cell Forklift Project Final Report

    SciTech Connect (OSTI)

    Cummings, Clifton C

    2013-10-23

    This project addresses the DOE’s priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freight’s Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freight’s previous field trial experience with a handful of Plug Power’s GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

  9. Southern Nevada Alternative Fuels Demonstration Project

    SciTech Connect (OSTI)

    Hyde, Dan; Fast, Matthew

    2009-12-31

    The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this project were related to the economy and the budget cutbacks required during the project duration, which resulted in fewer bus drivers than expected the ultimate shut down of the Citys downtown bus operations.

  10. Farm alcohol fuel project. Final report

    SciTech Connect (OSTI)

    Demmel, D.

    1981-11-15

    The Small Energy Project is a research and demonstration effort designed to assist small farmers in the utilization of energy conservation techniques on their farms. The Farm Alcohol Project was designed to demonstrate the production of alcohol fuels on small farms in order to reduce purchased liquid fuel requirements. The Project considered the use of on-farm raw materials for process heat and the production of fuel grade, low prood ethanol in volumes up to 10,000 gallons per year. The fuel would be used entirely on the farm. The approach considered low-cost systems the farmer could build himself from local resources. Various crops were considered for ethanol production. The interest in farm alcohol production reached a peak in 1980 and then decreased substantially as farmers learned that the process of alcohol production on the farm was much more complicated than earlier anticipated. Details of Alcohol Project experiences in ethanol production, primarily from corn, are included in this report. A one-bushel distillation plant was constructed as a learning tool to demonstrate the production of ethanol. The report discusses the various options in starch conversion, fermentation and distillation that can be utilized. The advantages and disavantages of atmospheric and the more complicated process of vacuum distillation are evaluated. Larger farm plants are considered in the report, although no experience in operating such plants was gained through the Project. Various precautions and other considerations are included for farm plant designs. A larger community portable distillery is also evaluated. Such a plant was considered for servicing farms with limited plant equipment. The farms serviced would perform only fermentation tasks, with the portable device performing distillation and starch conversion.

  11. Spent nuclear fuel project path forward preliminary safety evaluation

    SciTech Connect (OSTI)

    Brehm, J.R.; Crowe, R.D.; Siemer, J.M.; Wojdac, L.F.; Hosler, A.G.

    1995-03-01

    This preliminary safety evaluation (PSE) provides validation of the initial project design criteria for the Spent Nuclear Fuel Project (SNFP) Path Forward for removal of fuel from K Basins.

  12. Fuel Cell Projects Kickoff Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda for the Fuel Cell Projects Kickoff Meeting on September 30 - October 1, 2009 PDF icon fc_agenda_10-09.pdf More Documents & Publications Fuel Cell Projects Kickoff Meeting Fuel Cell Kickoff Meeting Agenda Advanced Materials and Concepts for Portable Power Fuel Cells

  13. Connecticut Clean Cities Future Fuels Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt049_ti_york_2011_p.pdf More Documents & Publications Connecticut Clean Cities Future Fuels Project Connecticut Clean Cities Future Fuels Project Vehicle Technologies Office Merit Review 2014: Clean Fuels Ohio's Fast Track to AFV Adoption in Ohio

  14. New Fuel Cell Projects Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Fuel Cell Projects Meeting New Fuel Cell Projects Meeting On February 13-14, 2007, the U.S. Department of Energy (DOE) held a kick-off meeting for fuel cell projects awarded under a hydrogen R&D solicitation. Principal investigators presented project overviews, which are provided below. Topics include: Membranes Water transport studies Catalyst development Innovative fuel cell concepts Cell hardware Reporting requirements Impurity studies Demonstrations The following documents are

  15. Kick-Off Meeting for New Fuel Cell Projects

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  16. Nuclear Fuel Storage and Transportation Planning Project Overview |

    Energy Savers [EERE]

    Department of Energy Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project Overview PDF icon Nuclear Fuel Storage and Transportation Planning Project Overview More Documents & Publications Section 180(c) Ad Hoc Working Group DOE Office of Nuclear Energy Transportation Plan Ad Hoc Working Group

  17. NREL Transportation Project to Reduce Fuel Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Project to Reduce Fuel Usage For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Barba Golden, Colo., Mar. 23, 2001 - The Jefferson County Seniors Resource Center (SRC) Paratransit Service has become an important part of Eulalia Gaillard's life since her stroke in 1996. She calls on SRC to drive her to cardiologist, neurologist and chiropractor appointments each week. "It's wonderful," Gaillard says. "I'd give this program 150 plus in regards

  18. SAVANNAH RIVER NATIONAL LABORATORYREGENERATIVE FUEL CELL PROJECT

    SciTech Connect (OSTI)

    Motyka, T

    2008-11-11

    A team comprised of governmental, academic and industrial partners led by the Savannah River National Laboratory developed and demonstrated a regenerative fuel cell system for backup power applications. Recent market assessments have identified emergency response and telecommunication applications as promising near-term markets for fuel cell backup power systems. The Regenerative Fuel Cell System (RFC) consisted of a 2 kg-per-day electrolyzer, metal-hydride based hydrogen storage units and a 5 kW fuel cell. Coupling these components together created a system that can produce and store its own energy from the power grid much like a rechargeable battery. A series of test were conducted to evaluate the performance of the RFC system under both steady-state and transit conditions that might be encountered in typical backup power applications. In almost all cases the RFC functioned effectively. Test results from the demonstration project will be used to support recommendations for future fuel cell and hydrogen component and system designs and support potential commercialization activities. In addition to the work presented in this report, further testing of the RFC system at the Center for Hydrogen Research in Aiken County, SC is planned including evaluating the system as a renewable system coupled with a 20kW-peak solar photovoltaic array.

  19. 2009 New Fuel Cell Projects Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 New Fuel Cell Projects Meeting 2009 New Fuel Cell Projects Meeting On September 30-October 1, 2009, the U.S. Department of Energy (DOE) held a kick-off meeting for new projects awarded under a fuel cell solicitation. Principal investigators presented project overviews, which are provided below. Topics include: Catalysts Transport Durability Innovative Concepts Portable Power. Meeting Agenda and Overviews Meeting Agenda Program Overview, Sunita Satyapal and Dimitrios Papageorgopoulos Reporting

  20. Safety Planning Guidance for Hydrogen and Fuel Cell Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Safety Planning Guidance for Hydrogen and Fuel Cell Projects Safety Planning Guidance for Hydrogen and Fuel Cell Projects Hydrogen and fuel cell project safety by U.S. Department of Energy, Fuel Cell Technologies Program PDF icon safety_guidance.pdf More Documents & Publications Safety Planning Guidance for Hydrogen and Fuel Cell Projects H2 Refuel H-Prize Safety Guidance Webinar H2 Refuel H-Prize Safety Guidance Webinar H2 Safety Snapshot - Vol. 2, Issue 2, July 2011

  1. Chicago Area Alternative Fuels Deployment Project (CAAFDP) | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt061_ti_bingham_2011_p.pdf More Documents & Publications Chicago Area Alternative Fuels Deployment Project (CAAFDP) Chicago Area Alternative Fuels Deployment Project (CAAFDP) Puget Sound Clean Cities Petroleum Reduction

  2. Connecticut Clean Cities Future Fuels Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt049_ti_york_2012_o.pdf More Documents & Publications Connecticut Clean Cities Future Fuels Project Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Connecticut Clean Cities Future Fuels Project

  3. USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel

  4. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    SciTech Connect (OSTI)

    NORTON SH

    2010-02-23

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.

  5. Financing Alternatives for Fuel Cell Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternatives for Fuel Cell Projects Financing Alternatives for Fuel Cell Projects Presentation prepared by Lee White of George K. Baum and Co. for the State and Regional Hydrogen and Fuel Cell Conference Call PDF icon baum.pdf More Documents & Publications Financing Solar PV at Government Sites with PPAs and Public Debt Reviewing the City of Milwaukee's Solar Financing Options Solar Schools Assessment and Implementation Project: Financing Options on Solar Installations on K-12 Schools

  6. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  7. Fuel Cell Technology Status Analysis Project: Partnership Opportunities

    SciTech Connect (OSTI)

    2015-09-01

    Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  8. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  9. Chicago Area Alternative Fuels Deployment Project (CAAFDP) | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Cheron Wicker - Department of Transporation Most Recent by Cheron Wicker Interagency Mentoring and STEM Open House a Success January 2 Energy

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt061_ti_bingham_2012_o.pdf More Documents & Publications Chicago Area Alternative Fuels Deployment Project (CAAFDP) Chicago Area Alternative Fuels Deployment Project (CAAFDP) Utah Clean Cities Transportation Sector

  10. Radkowsky Thorium Fuel Project (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Radkowsky Thorium Fuel Project Citation Details In-Document Search Title: Radkowsky Thorium Fuel Project In the early/mid 1990's Prof. Alvin Radkowsky, former chief scientist of the U.S. Naval Reactors program, proposed an alternate fuel concept employing thorium-based fuel for use in existing/next generation pressurized water reactors (PWRs). The concept was based on the use of a 'seed-blanket-unit' (SBU) that was a one-for-one replacement for a standard PWR assembly with a

  11. NREL: Hydrogen and Fuel Cells Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL scientist tests a photoelectrochemical water-splitting system used for renewable hydrogen production. Photo by Dennis Schroeder, NREL NREL hydrogen and fuel cell research...

  12. Fuel Cell Project Selected for First Ever Technology-to-Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Selected for First Ever Technology-to-Market SBIR Award Fuel Cell Project Selected ... electrolyte membrane electrode assemblies for fuel cell and electrolysis applications. ...

  13. FY 2014 Solid Oxide Fuel Cell Project Selections

    Broader source: Energy.gov [DOE]

    In FY 2014, nine research projects focused on advancing the reliability, robustness, and endurance of solid oxide fuel cells (SOFC) have been selected for funding by Office of Fossil Energy’s...

  14. DOE Announces $14 Million Industry Partnership Projects to Increase Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy 4 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership

  15. Radkowsky Thorium Fuel Project (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Radkowsky Thorium Fuel Project Citation Details In-Document Search Title: Radkowsky Thorium Fuel Project × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the public from

  16. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured and initial investigations at low DME blend ratios (around 5-10 vol%) will begin shortly. They have also performed viscosity measurements on diesel fuel, DME and 50-50 blends of DME in diesel. These tests have verified that DME has a much lower viscosity than the diesel fuel and that the viscosity of the blended fuel is also much lower than the diesel base fuel. This has implications for the injection and atomization of the DME/diesel blends.

  17. Hydrogen Fuel Cell Demonstration Project at Port of Honolulu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Demonstration Project at Port of Honolulu Sandia National Laboratories | Secure & Sustainable Energy Future E x c e p t i o n a l s e r v i c e i n t h e n a t i o n a l i n t e r e s t Hydrogen fuel cells have a long track record of supplying efficient, emissions-free power for a wide range of applications, including mobile lighting systems, forklifts, emergency backup systems, and vehicles. The Maritime Fuel Cell Project seeks to add another application to that portfolio,

  18. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The laboratory studies have included work with a Navistar V-8 turbodiesel engine, demonstration of engine operation on DME-diesel blends and instrumentation for evaluating fuel properties. The field studies have involved performance, efficiency and emissions measurements with the Champion Motorcoach ''Defender'' shuttle bus which will be converted to DME-fueling. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have completed engine combustion studies on DME-diesel blends up to 30 wt% DME addition.

  19. FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2003-04-23

    This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy-duty diesel vehicle during the Alaska winter; a comparative study of the cold-starting characteristics of FT and conventional diesel fuel; and demonstration of the use of the fuel to generate electricity for rural Alaskan villages using both a diesel generator set, and a reformer-equipped fuel cell.

  20. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

  1. U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-10-21

    This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

  2. The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity Download the presentation slides from the Fuel Cell Technologies Program webinar, "Fuel Cell Mobile Lighting," held on November 13, 2012. PDF icon Fuel Cell Mobile Lighting Webinar Slides More Documents & Publications DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia Fuel Cell Product

  3. 2010 Fuel Cell Project Kick-off Welcome | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Project Kick-off Welcome 2010 Fuel Cell Project Kick-off Welcome These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 1_welcome_papageorgopoulos.pdf More Documents & Publications U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure Vessel Forum DOE Hydrogen and Fuel Cell Overview: 2010 State and Regional Initiatives Informational Call and Meeting Series Relaunch DOE Hydrogen and Fuel Cell

  4. American Fuel Cell Bus Project Evaluation. Second Report

    SciTech Connect (OSTI)

    Eudy, Leslie; Post, Matthew

    2015-09-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.

  5. SNF fuel retrieval sub project safety analysis document

    SciTech Connect (OSTI)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  6. Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project

    SciTech Connect (OSTI)

    Fred Mitlitsky; Sara Mulhauser; David Chien; Deepak Shukla; David Weingaertner

    2009-11-14

    The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements. The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.

  7. City of Tulare Renewable Biogas Fuel Cell Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City of Tulare Renewable Biogas Fuel Cell Project City of Tulare Renewable Biogas Fuel Cell Project Presented at the Technology Transition Corporation and U.S. Department of Energy Fuel Cell Technologies Program Webinar: Go Local: Maximizing Your Local Renewable Resources With Fuel Cells, August 16, 2011. PDF icon webinaraug16_nelson.pdf More Documents & Publications Synergy between Membranes and Microbial Fuel Cells High Temperature BOP and Fuel Processing Fuel Cell Power Plants Biofuel

  8. Mission Need Statement: Idaho Spent Fuel Facility Project

    SciTech Connect (OSTI)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  9. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet describes National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth. Participating fuel cell developers share price information about their fuel cell products and/or raw fuel cell test data related to operations, maintenance, and safety with NREL via the Hydrogen Secure Data Center (HSDC). The limited-access, off-network HSDC houses the data and analysis tools to protect proprietary information. NREL shares individualized data analysis results as detailed data products (DDPs) with the partners who supplied the data. Aggregated results are published as composite data products (CDPs), which show the technology status without identifying individual companies. The CDPs are a primary benchmarking tool for the U.S. Department of Energy and other stakeholders interested in tracking the status of fuel cell technologies. They highlight durability advancements, identify areas for continued development, and help set realistic price expectations at small-volume production.

  10. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethylether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operation in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges have continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. As of late June 2002, it appears that the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head is being installed on the system to alleviate this problem and get the shuttle bus back in operation. In summary, the conversion is completed but there have been operational challenges in the field. They continue to work to make the shuttle bus as reliable to operate on DME-diesel blends as possible.

  11. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy New Fuel Cell Projects Kickoff Meeting DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting Presentation by DOE's Patrick Davis at a meeting on new fuel cell projects on March 13, 2007. PDF icon new_fc_davis_doe.pdf More Documents & Publications Federal Support for Hydrogen and Fuel Cell Technologies Overview of the DOE Hydrogen Program (Presentation) FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program

  12. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project...

    Energy Savers [EERE]

    Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility ...

  13. Messiah College Biodiesel Fuel Generation Project Final Technical Report

    SciTech Connect (OSTI)

    Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

    2012-03-30

    Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

  14. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

  15. The Fuel Cell Mobile Light Project - A DOE Market Transformation...

    Broader source: Energy.gov (indexed) [DOE]

    Download the presentation slides from the Fuel Cell Technologies Program webinar, "Fuel Cell Mobile Lighting," held on November 13, 2012. PDF icon Fuel Cell Mobile Lighting Webinar ...

  16. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion

    Office of Scientific and Technical Information (OSTI)

    Engines (Technical Report) | SciTech Connect 6, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines Citation Details In-Document Search Title: DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated

  17. American Fuel Cell Bus Project Evaluation: Second Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    American Fuel Cell Bus Project Evaluation: Second Report Leslie Eudy and Matthew Post National Renewable Energy Laboratory Technical Report NREL/TP-5400-64344 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  18. BC Transit Fuel Cell Bus Project Evaluation Results: Second Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    BC Transit Fuel Cell Bus Project Evaluation Results: Second Report L. Eudy and M. Post National Renewable Energy Laboratory Technical Report NREL/TP-5400-62317 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  19. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheets highlights U.S. Department of Energy fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). More than 1,000 fuel cell systems have been deploy

  20. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects

    SciTech Connect (OSTI)

    Fuel Cell Technologies Office

    2012-05-01

    This fact sheets highlights U.S. Department of Energy fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). More than 1,000 fuel cell systems have been deployed through Recovery Act funding.

  1. The Council of Industrial Boiler Owners special project on non-utility fossil fuel ash classification

    SciTech Connect (OSTI)

    Svendsen, R.L.

    1996-12-31

    Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.

  2. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC)

    SciTech Connect (OSTI)

    Not Available

    2003-03-01

    Annual progress report of the Advanced Petroleum-based fuels-Diesel Emissions Control Project. Contains information on 5 test projects to determine the best combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emissions standards.

  3. Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by

    Energy Savers [EERE]

    DOE for Further Development | Department of Energy Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development July 27, 2012 - 1:00pm Addthis Washington, D.C. - Seven projects that will help develop low-cost solid oxide fuel cell (SOFC) technology for environmentally responsible central power generation from the Nation's abundant fossil energy

  4. Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

  5. Fuel Cell Projects Kickoff Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fuel Cell Kickoff Meeting Agenda Fuel Cell R&D Pre-Solicitiation Workshop WA03040UNITEDTECHNOLOGIESRESEARCHCENTERWaiverofDome.pdf...

  6. DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes BCA Perspective on Fuel Cell APUs Report of the ...

  7. Alternative Fuels Used in Transportation: Science Projects in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are making their ways to the market. These alternative fuels include such things as propane, natural gas, electric hybrids, hydrogen fuel cells, and biodiesel. Students will...

  8. Training implementation matrix, Spent Nuclear Fuel Project (SNFP)

    SciTech Connect (OSTI)

    EATON, G.L.

    2000-06-08

    This Training Implementation Matrix (TIM) describes how the Spent Nuclear Fuel Project (SNFP) implements the requirements of DOE Order 5480.20A, Personnel Selection, Qualification, and Training Requirements for Reactor and Non-Reactor Nuclear Facilities. The TIM defines the application of the selection, qualification, and training requirements in DOE Order 5480.20A at the SNFP. The TIM also describes the organization, planning, and administration of the SNFP training and qualification program(s) for which DOE Order 5480.20A applies. Also included is suitable justification for exceptions taken to any requirements contained in DOE Order 5480.20A. The goal of the SNFP training and qualification program is to ensure employees are capable of performing their jobs safely and efficiently.

  9. The MetroPCS South Florida Fuel Cell Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The MetroPCS South Florida Fuel Cell Project The MetroPCS South Florida Fuel Cell Project Presentation by Thomas Browning, MetroPCS, at the Technology Transition Corporation and U.S. Department of Energy Webinar: Fuel Cells and Telecom: Reports from the Field, December 7, 2011. PDF icon webinardec07_browning.pdf More Documents & Publications Early Stage Market Change and Effects of the Recovery Act Fuel Cell Program -- 2015 Update State of the States: Fuel Cells in America 2012 The Business

  10. Hydrogen Fuel Cell Project Seeks to Reduce Port Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education » Increase Your H2IQ » Hydrogen Fuel Cell Basics Hydrogen Fuel Cell Basics Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. The fuel cell-an energy conversion device that can efficiently capture and use the power of hydrogen-is the key to making it happen. Learn about fuel cell applications, benefits, how they work, and challenges and research directions. Fuel Cell Applications Stationary Power Stations Stationary fuel cells can be

  11. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2004-10-18

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

  12. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  13. State Level Incentives for Biogas-Fuel Cell Projects

    Broader source: Energy.gov [DOE]

    State policy and legislative outlook for biogas and fuel cells. Presented by Norma McDonald, Organic Waste Systems, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  14. ITC Role in U.S. Fuel Cell Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... commercial fuel cell products 1kW - multi megawatt... 2. Aggregate large multi-year orders to stabilize fuel cell supply chain requiring positive impact on price time curve... ...

  15. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    This fact sheet describes opportunities for leading fuel cell industry partners from the United States and abroad to participate in an objective and credible fuel cell technology performance and durability analysis by sharing their raw fuel cell test data related to operations, maintenance, safety, and cost with the National Renewable Energy Laboratory via the Hydrogen Secure Data Center.

  16. Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy, Prepare for Advanced Vehicles | Department of Energy Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles November 19, 2012 - 2:08pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced 20 new projects to help states and local

  17. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping

    Energy Savers [EERE]

    and Feasibility | Department of Energy Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility This Sandia National Laboratories study examines the feasibility of a hydrogen-fueled PEM fuel cell barge to provide electrical power to vessels at anchorage or at berth. The study includes both a determination of the technical feasibility of the idea as well as an analysis of

  18. ITC Role in U.S. Fuel Cell Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITC Role in U.S. Fuel Cell Projects ITC Role in U.S. Fuel Cell Projects This presentation by Samuel Logan of Logan Energy was given at a meeting of the Hydrogen and Fuel Cell Technical Advisory Committee in February 2009. It was posted on this Web site with permission from the author. PDF icon mt_logan_htac_presentation.pdf More Documents & Publications DOE Hydrogen and Fuel Cell Overview: 2010 State and Regional Initiatives Informational Call and Meeting Series Relaunch Federal Sector

  19. Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2010-11-08

    This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

  20. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2003-10-17

    The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

  1. Spent nuclear fuel removal program at the West Valley Demonstration Project: Topical report

    SciTech Connect (OSTI)

    Connors, B. J.; Golden, M. P.; Valenti, P. J.; Winkel, J. J.

    1987-03-01

    The spent nuclear fuel removal program at the West Valley Demonstration Project (WVDP) consisted of removing the spent nuclear fuel (SNF) assemblies from the storage pool in the plant, loading them in shielded casks, and preparing the casks for transportation. So far, four fuel removal campaigns have been completed with the return of 625 spent nuclear fuel assemblies to their four utility owners. A fifth campaign, which is not yet completed, will transfer the remaining 125 fuel assemblies to a government site in Idaho. A spent fuel rod consolidation demonstration has been completed, and the storage canisters and their racks are being removed from the fuel receiving and storage pool to make way for installation of the size reduction equipment. A brief history of the West Valley reprocessing plant and the events leading to the storage and ownership of the spent nuclear fuel assemblies and their subsequent removal from West Valley are also recorded as background information. 3 refs., 16 figs., 9 tabs.

  2. Cheyenne Light, Fuel and Power Company Smart Grid Project | Open...

    Open Energy Info (EERE)

    System Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability Reduced Ancillary Service Cost Reduced Truck Fleet Fuel Usage Reduced Greenhouse...

  3. Blender Pump Fuel Survey: CRC Project E-95

    SciTech Connect (OSTI)

    Alleman, T. L.

    2011-07-01

    To increase the number of ethanol blends available in the United States, several states have 'blender pumps' that blend gasoline with flex-fuel vehicle (FFV) fuel. No specification governs the properties of these blended fuels, and little information is available about the fuels sold at blender pumps. No labeling conventions exist, and labeling on the blender pumps surveyed was inconsistent.; The survey samples, collected across the Midwestern United States, included the base gasoline and FFV fuel used in the blends as well as the two lowest blends offered at each station. The samples were tested against the applicable ASTM specifications and for critical operability parameters. Conventional gasoline fuels are limited to 10 vol% ethanol by the U.S. EPA. The ethanol content varied greatly in the samples. Half the gasoline samples contained some ethanol, while the other half contained none. The FFV fuel samples were all within the specification limits. No pattern was observed for the blend content of the higher ethanol content samples at the same station. Other properties tested were specific to higher-ethanol blends. This survey also tested the properties of fuels containing ethanol levels above conventional gasoline but below FFV fuels.

  4. Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

  5. Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

  6. Blender Pump Fuel Survey: CRC Project E-95-2

    SciTech Connect (OSTI)

    Williams, A.; Alleman, T. L.

    2014-05-01

    With the increasing fuel diversity in the marketplace, the Coordinating Research Council and the U.S. Department of Energy's National Renewable Energy Laboratory conducted a survey of mid-level ethanol blends (MLEBs) in the market. A total of 73 fuel samples were collected from 20 retail stations. To target Class 4 volatility, the fuel samples were collected primarily in the midwestern United States in the month of February. Samples included the gasoline (E0), Flex Fuel, and every MLEB that was offered from each of the 20 stations. Photographs of each station were taken at the time of sample collection, detailing the pump labeling and configuration. The style and labeling of the pump, hose, and dispenser nozzle are all important features to prevent misfueling events. The physical location of the MLEB product relative to the gasoline product can also be important to prevent misfueling. In general, there were many differences in the style and labeling of the blender pumps surveyed in this study. All samples were analyzed for volatility and ethanol content. For the MLEB samples collected, the fuels tended to be lower in ethanol content than their indicated amount; however, the samples were all within 10 vol% of their indicated blend level. One of the 20 Flex Fuel samples was outside of the allowable limits for ethanol content. Four of the 20 Flex Fuel samples had volatility below the minimum requirement for Class 4.

  7. DOE Selects Research Projects to Advance Solid Oxide Fuel Cell Technology

    Broader source: Energy.gov [DOE]

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has selected for funding 16 solid oxide fuel cell (SOFC) technology research projects. Fuel cells are a modular, efficient, and virtually pollution-free power generation technology. In Fiscal Year 2015, NETL issued two funding opportunities announcements (FOAs) to support programs that enable the development and deployment of this energy technology.

  8. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects

    Broader source: Energy.gov [DOE]

    This fact sheets highlights fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). A total of $41.6 million in Recovery Act funding supported the deployment of over 1,000 fuel cell systems.

  9. Survey of Flex Fuel in 2014. CRC Project E-85-3

    SciTech Connect (OSTI)

    Alleman, Teresa L.

    2015-07-27

    ASTM D5798 sets the specifications for Ethanol Flex Fuel, which currently permits between 51 volume percent (vol%) and 83 vol% ethanol. The vapor pressure varies seasonally and geographically and is divided into four distinct classes to ensure year-round driveability. This project is the first survey of Ethanol Flex Fuel since these specification changes were made to Specification D5798.

  10. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    SciTech Connect (OSTI)

    Klingler, James J

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  11. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-11-04

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  12. LOS ANGELES DEPARTMENT OF WATER AND POWER FUEL CELL DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    William W. Glauz

    2004-03-26

    The Los Angeles Department of Water and Power (LADWP) is currently one of the most active electric utility companies in deploying fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell deploying, LADWP installed a Phosphoric Acid Fuel Cell (PAFC) in February 2002 at its Main Street service center. The goal of this project is to evaluate the PAFC's performance and cost benefits. This will provide LADWP an insight for future deployment of fuel cell technology. The fuel cell ran smoothly through the first year of operation with very high efficiency and availability, and only with some minor setbacks. The Main street fuel cell project is funded by LADWP with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the Main Street fuel cell are both examined in this report.

  13. Final Technical Report for the MIT Annular Fuel Research Project

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2008-01-31

    MIT-NFC-PR-082 (January 2006) Abstract This summary provides an overview of the results of the U.S. DOE funded NERI (Nuclear Research ENergy Initiative) program on development of the internally and externally cooled annular fuel for high power density PWRs. This new fuel was proposed by MIT to allow a substantial increase in poer density (on the order of 30% or higher) while maintaining or improving safety margins. A comprehensive study was performed by a team consisting of MIT (lead organization), Westinghuse Electric Corporation, Gamma Engineering Corporation, Framatome ANP(formerly Duke Engineering) and Atomic Energy of Canada Limited.

  14. Coal/D-RDF (densified refuse-derived fuel) co-firing project, Milwaukee County, Wisconsin

    SciTech Connect (OSTI)

    Hecklinger, R.S.; Rehm, F.R.

    1985-11-01

    A Research and Development Project was carried out to mix a densified refuse-derived fuel with coal at the fuel-receiving point and to co-fire the mixture in a spreader-stoker fired boiler. Two basic series of test runs were conducted. For the first series, coal was fired to establish a base line condition. For the second series, a mixture of coal and densified refuse-derived fuel was fired. The report describes the equipment used to densify refuse derived fuel, procedures used to prepare and handle the coal and densified refuse derived fuel mixture and the test results. The results include the effect of the coal and densified refuse derived fuel mixture on plant operations, boiler efficiency, stack emissions and EP toxicity.

  15. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Safety Vulnerabilities (ISV) o Risk Reduction Plan o Operating Procedures - ... o Project Safety Documentation 4. Communication Plan o Employee Training o Safety ...

  16. FY 2014 Solid Oxide Fuel Cell Project Selections | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The project will include fabrication and testing of cells, modeling the thermodynamics and ... and evaluate their performance in comparison to more established cathode materials. ...

  17. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2006-06-30

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

  18. Global Threat Reduction Initiative Fuel Thermo-Physical Characterization Project: Sample Management Plan

    SciTech Connect (OSTI)

    Casella, Amanda J.; Pereira, Mario M.; Steen, Franciska H.

    2013-01-01

    This sample management plan provides guidelines for sectioning, preparation, acceptance criteria, analytical path, and end-of-life disposal for the fuel element segments utilized in the Global Threat Reduction Initiative (GTRI), Fuel Thermo-Physical Characterization Project. The Fuel Thermo-Physical Characterization Project is tasked with analysis of irradiated Low Enriched Uranium (LEU) Molybdenum (U-Mo) fuel element samples to support the GTRI conversion program. Sample analysis may include optical microscopy (OM), scanning electron microscopy (SEM) fuel-surface interface analysis, gas pycnometry (density) measurements, laser flash analysis (LFA), differential scanning calorimetry (DSC), thermogravimetry and differential thermal analysis with mass spectroscopy (TG /DTA-MS), Inductively Coupled Plasma Spectrophotometry (ICP), alpha spectroscopy, and Thermal Ionization Mass Spectroscopy (TIMS). The project will utilize existing Radiochemical Processing Laboratory (RPL) operating, technical, and administrative procedures for sample receipt, processing, and analyses. Test instructions (TIs), which are documents used to provide specific details regarding the implementation of an existing RPL approved technical or operational procedure, will also be used to communicate to staff project specific parameters requested by the Principal Investigator (PI). TIs will be developed, reviewed, and issued in accordance with the latest revision of the RPL-PLN-700, RPL Operations Plan. Additionally, the PI must approve all project test instructions and red-line changes to test instructions.

  19. BC Transit Fuel Cell Bus Project: Evaluation Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Post, M.

    2014-02-01

    This report evaluates a fuel cell electric bus demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. This evaluation report covers two years of revenue service data on the buses from April 2011 through March 2013.

  20. Nuclear Fuels Storage and Transportation Planning Project (NFST...

    Office of Environmental Management (EM)

    and Transportation Planning Project (NFST) Program Status Presentation made by Jeff Williams for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY. PDF icon...

  1. Six Utah plants help fuel rise in geothermal projects | Department...

    Broader source: Energy.gov (indexed) [DOE]

    United States grew 20 percent since January. "These new projects will result in the infusion of roughly 15 billion in capital investment in the Western states and create 7,000...

  2. Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects

    SciTech Connect (OSTI)

    1981-08-07

    To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

  3. Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project

    SciTech Connect (OSTI)

    Steve Bergin

    2005-10-14

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

  4. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind.energy.gov WIND PROGRAM NEWSLETTER - MAY 2015 1 National Renewable Energy Laboratory 15013 Denver West Parkway, Golden, CO 80401 303-275-3000 * www.nrel.gov NREL prints on paper that contains recycled content. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) is seeking partners to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the

  5. BC Transit Fuel Cell Bus Project Evaluation Results: Second Report

    SciTech Connect (OSTI)

    Eudy, L.; Post, M.

    2014-09-01

    Second report evaluating a fuel cell electric bus (FCEB) demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. NREL published its first report on the demonstration in February 2014. This report is an update to the previous report; it covers 3 full years of revenue service data on the buses from April 2011 through March 2014 and focuses on the final experiences and lessons learned.

  6. Application of the BISON Fuel Performance Code to the FUMEX-III Coordinated Research Project

    SciTech Connect (OSTI)

    R. L. Williamson; S. R. Novascone

    2012-04-01

    INL recently participated in FUMEX-III, an International Atomic Energy Agency sponsored fuel modeling Coordinated Research Project. A main purpose of FUMEX-III is to compare code predictions to reliable experimental data. During the same time period, the INL initiated development of a new multidimensional (2D and 3D) multiphysics nuclear fuel performance code called BISON. Interactions with international fuel modeling researchers via FUMEX-III played a significant and important role in the BISON evolution, particularly influencing the selection of material and behavioral models which are now included in the code. BISON's ability to model integral fuel rod behavior did not mature until 2011, thus the only FUMEX-III case considered was the Riso3-GE7 experiment, which includes measurements of rod outer diameter following pellet clad mechanical interaction (PCMI) resulting from a power ramp late in fuel life. BISON comparisons to the Riso3-GE7 final rod diameter measurements are quite reasonable. The INL is very interested in participation in the next Fuel Modeling Coordinated Research Project and would like to see the project initiated as soon as possible.

  7. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    SciTech Connect (OSTI)

    Burkes, Douglas; Casella, Amanda J.; Gardner, Levi D.; Casella, Andrew M.; Huber, Tanja K.; Breitkreutz, Harald

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  8. Global Threat Reduction Initiative Fuel-Thermo-Physical Characterization Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Pereira, Mario M.; Slonecker, Bruce D.

    2012-06-01

    The charter of the Fuel Thermo-Physical Characterization Project is to ready Pacific Northwest National Laboratory (PNNL) facilities and processes for the receipt of unirradiated and irradiated low enriched uranium (LEU) molybdenum (U-Mo) fuel element samples, and to perform analysis to support the Global Threat Reduction Initiative conversion program. PNNLs support for the program will include the establishment of post-irradiation examination processes, including thermo-physical properties, unique to the U.S. Department of Energy laboratories. These processes will ultimately support the submission of the base fuel qualification (BFQ) to the U.S. Nuclear Regulatory Commission (NRC) and revisions to High Performance Research Reactor Safety Analysis Reports to enable conversion from highly enriched uranium to LEU fuel. This quality assurance plan (QAP) provides the quality assurance requirements and processes that support the NRC BFQ. This QAP is designed to be used by project staff, and prescribes the required management control elements that are to be met and how they are implemented. Additional controls are captured in Fuel Thermo-Physical Characterization Project plans, existing procedures, and procedures to be developed that provide supplemental information on how work is conducted on the project.

  9. Fuel Cells (Project FC-041): DOE Hydrogen Program 2011 Annual Merit Review and Peer Evaluation Report: Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    422 | FY 2011 Merit Review and Peer Evaluation Report Project # FC-041: Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Huyen Dinh; National Renewable Energy Laboratory Brief Summary of Project: The overall objective of this project is to develop and demonstrate direct methanol fuel cell (DMFC) anode catalyst systems that meet or exceed the U.S. Department of Energy's (DOE) 2010 targets for consumer electronics applications. The specific goal is to improve the catalytic

  10. Final Project Closeout Report for Sprint Hydrogen Fuel Cell (HFC) Deployment Project in California, Gulf Coast and Eastern Seaboard Markets

    SciTech Connect (OSTI)

    Kenny, Kevin; Bradley, Dwayne

    2015-09-01

    Sprint is one of the telecommunications industry leaders in the deployment of hydrogen fuel cell (HFC) systems to provide backup power for their mission critical wireless network facilities. With several hundred fuel cells commissioned in California, states in the gulf coast region, and along the upper eastern seaboard. A strong incentive for advancing the integration of fuel cells into the Sprint network came through the award of a Department of Energy (DOE) grant focused on Market Transformation activities for project (EE0000486). This grant was funded by the 2009 American Recovery and Reinvestment Act (ARRA). The funding provided by DOE ($7.295M) was allocated to support the installation of 260 new HFC systems, equipped with an on-site refillable Medium Pressure Hydrogen Storage Solution (MPHSS), as well as for the conversion of 21 low pressure hydrogen systems to the MPHSS, in hopes of reducing barriers to market acceptance.

  11. Multi-Canister overpack pressurization monitoring and control methodology for the spent nuclear fuel project

    SciTech Connect (OSTI)

    Pajunen, A.L., Westinghouse Hanford

    1996-07-19

    A control methodology is developed and monitoring alternatives evaluated for controlling pressurization in a Multi- Canister Overpack for the Hanford Spent Nuclear Fuel Project. Monitoring alternative evaluations include concept description, identification of uncertainties, and identification of experimental work required for implementation. A monitoring alternative is recommended and implementation requirements, risks and start up testing associated with the recommendation are discussed.

  12. EM Completes Project to Maintain Water Quality of Spent Nuclear Fuel Basin at Idaho Site

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – EM and its main cleanup contractor at DOE’s Idaho Site recently reached a major project milestone necessary to maintain water quality and continued, safe operations within the site’s spent nuclear fuel storage basin.

  13. UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project

    SciTech Connect (OSTI)

    Walkowicz, K.

    2001-08-14

    UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

  14. Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gurney, Kevin

    Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

  15. EIS-0357- Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale.

  16. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  17. Spent fuel performance data: An analysis of data relevant to the NNWSI Project

    SciTech Connect (OSTI)

    Oversby, V.M.; Shaw, H.F.

    1987-08-01

    This paper summarizes the physical and chemical properties of spent light water reactor fuel that might influence its performance as a waste form under geologic disposal conditions at Yucca Mountain, Nevada. Results obtained on the dissolution testing of spent fuel conducted by the NNWSI Project are presented and discussed. Work published by other programs, in particular those of Canada and Sweden, are reviewed and compared with the NNWSI testing results. An attempt is made to relate all of the results to a common basis of presentation and to rationalize apparent conflicts between sets of results obtained under different experimental conditions.

  18. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion

    Office of Scientific and Technical Information (OSTI)

    Engines (Technical Report) | SciTech Connect 6, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines Citation Details In-Document Search Title: DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in

  19. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect (OSTI)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  20. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect (OSTI)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  1. Spent Nuclear Fuel Project FY 1996 Multi-Year Program Plan WBS No. 1.4.1, Revision 1

    SciTech Connect (OSTI)

    1995-09-01

    This document describes the Spent Nuclear Fuel (SNF) Project portion of the Hanford Strategic Plan for the Hanford Reservation in Richland, Washington. The SNF Project was established to evaluate and integrate the urgent risks associated with N-reactor fuel currently stored at the Hanford site in the K Basins, and to manage the transfer and disposition of other spent nuclear fuels currently stored on the Hanford site. An evaluation of alternatives for the expedited removal of spent fuels from the K Basin area was performed. Based on this study, a Recommended Path Forward for the K Basins was developed and proposed to the U.S. DOE.

  2. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  3. Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1996-12-01

    The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

  4. Spent Nuclear Fuel Project document control and Records Management Program Description

    SciTech Connect (OSTI)

    MARTIN, B.M.

    2000-05-18

    The Spent Nuclear Fuel (SNF) Project document control and records management program, as defined within this document, is based on a broad spectrum of regulatory requirements, Department of Energy (DOE) and Project Hanford and SNF Project-specific direction and guidance. The SNF Project Execution Plan, HNF-3552, requires the control of documents and management of records under the auspices of configuration control, conduct of operations, training, quality assurance, work control, records management, data management, engineering and design control, operational readiness review, and project management and turnover. Implementation of the controls, systems, and processes necessary to ensure compliance with applicable requirements is facilitated through plans, directives, and procedures within the Project Hanford Management System (PHMS) and the SNF Project internal technical and administrative procedures systems. The documents cited within this document are those which directly establish or define the SNF Project document control and records management program. There are many peripheral documents that establish requirements and provide direction pertinent to managing specific types of documents that, for the sake of brevity and clarity, are not cited within this document.

  5. Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project

    SciTech Connect (OSTI)

    Brent Dixon

    2012-09-01

    Thirteen countries participated in the Collaborative Project GAINS Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle, which was the primary activity within the IAEA/INPRO Program Area B: Global Vision on Sustainable Nuclear Energy for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energy systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.

  6. Task 27 -- Alaskan low-rank coal-water fuel demonstration project

    SciTech Connect (OSTI)

    1995-10-01

    Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

  7. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST).

  8. Drop In Fuels: Where the Road Leads

    Broader source: Energy.gov [DOE]

    Reviews key fuel industry drivers, renewable fuel mandates and projected impact on hydrocarbon fuels

  9. Hanford spent nuclear fuel project recommended path forward, volume III: Alternatives and path forward evaluation supporting documentation

    SciTech Connect (OSTI)

    Fulton, J.C.

    1994-10-01

    Volume I of the Hanford Spent Nuclear Fuel Project - Recommended Path Forward constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. Volume II provided a comparative evaluation of four Alternatives for the Path Forward and an evaluation for the Recommended Path Forward. Although Volume II contained extensive appendices, six supporting documents have been compiled in Volume III to provide additional background for Volume II.

  10. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Broader source: Energy.gov [DOE]

    The U.S. biomass resource can be used several ways that provide domestic, renewable energy to users. Understanding the capacity of the biomass resource, its potential in energy markets, and the most economic utilization of biomass is important in policy development and project selection. This study analyzed the potential for biomass within markets and the competition between them. The study found that biomass has the potential to compete well in the jet fuel and gasoline markets, penetration of biomass in markets is likely to be limited by the size of the resource, and that biomass is most cost effectively used for fuels instead of power in mature markets unless carbon capture and sequestration is available and the cost of carbon is around $80/metric ton CO2e.

  11. Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT

    SciTech Connect (OSTI)

    Berry, JB

    2005-05-06

    Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

  12. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  13. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  14. Boraflex panel degradation in spent-fuel storage racks at the South Texas Project

    SciTech Connect (OSTI)

    Hoppes, D.F.

    1996-12-31

    Blackness (neutron absorption) testing was conducted in August 1994 on selected South Texas Project (STP) electric generating station spent-fuel pool (SFP) storage racks as required by the surveillance monitoring program. The tests were performed to determine if gaps had developed in the Boraflex neutron poison material and to determine size and location of any gaps identified. The testing was performed by HOLTEC International using a specially designed logging tool containing a {sup 252}Cf neutron source and four boron trifluoride (BF{sub 3}) thermal neutron detectors.

  15. Technical Approach and Plan for Transitioning Spent Nuclear Fuel (SNF) Project Facilities to the Environmental Restoration Program

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-10-06

    This document describes the approach and process in which the 100-K Area Facilities are to be deactivated and transitioned over to the Environmental Restoration Program after spent nuclear fuel has been removed from the K Basins. It describes the Transition Project's scope and objectives, work breakdown structure, activity planning, estimated cost, and schedule. This report will be utilized as a planning document for project management and control and to communicate details of project content and integration.

  16. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate

  17. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet describes the initiation of NREL’s evaluation of a fuel cell hybrid electric bus at Hickam Air Force Base in Honolulu, Hawaii as part of DOE’s Hydrogen, Fuel Cells & Infrastructure Technologies Program.

  18. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed from the MCO back to the K Basins.

  19. Fuel Thermo-physical Characterization Project. Fiscal Year 2014 Final Report

    SciTech Connect (OSTI)

    Burkes, Douglas; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Slonecker, Bruce D.; Smith, Frances N.; Steen, Franciska H.

    2015-03-15

    The Office of Material Management and Minimization (M3) Reactor Conversion Fuel Thermo-Physical Characterization Project at Pacific Northwest National Laboratory (PNNL) was tasked with using PNNL facilities and processes to receive irradiated low enriched uranium–molybdenum (LEU-Mo) fuel plate samples and perform analysis in support of the M3 Reactor Conversion Program. This work is in support of the M3 Reactor Conversion Fuel Development Pillar that is managed by Idaho National Laboratory. The primary research scope was to determine the thermo-physical properties as a function of temperature and burnup. Work conducted in Fiscal Year (FY) 2014 complemented measurements performed in FY 2013 on four additional irradiated LEU-Mo fuel plate samples. Specifically, the work in FY 2014 investigated the influence of different processing methods on thermal property behavior, the absence of aluminum alloy cladding on thermal property behavior for additional model validation, and the influence of higher operating surface heat flux / more aggressive irradiation conditions on thermal property behavior. The model developed in FY 2013 and refined in FY 2014 to extract thermal properties of the U-Mo alloy from the measurements conducted on an integral fuel plate sample (i.e., U-Mo alloy with a thin Zr coating and clad in AA6061) continues to perform very well. Measurements conducted in FY 2014 on samples irradiated under similar conditions compare well to measurements performed in FY 2013. In general, there is no gross influence of fabrication method on thermal property behavior, although the difference in LEU-Mo foil microstructure does have a noticeable influence on recrystallization of grains during irradiation. Samples irradiated under more aggressive irradiation conditions, e.g., higher surface heat flux, revealed lower thermal conductivity when compared to samples irradiated at moderate surface heat fluxes, with the exception of one sample. This report documents thermal property measurements conducted in FY 2014 and compares results to values obtained from literature and measurements performed in FY 2013, where applicable, along with appropriate discussion.

  20. Spent Nuclear Fuel (SNF) Project Cask and MCO Helium Purge System Design Review Completion Report Project A.5 and A.6

    SciTech Connect (OSTI)

    ARD, K.E.

    2000-04-19

    This report documents the results of the design verification performed on the Cask and Multiple Canister Over-pack (MCO) Helium Purge System. The helium purge system is part of the Spent Nuclear Fuel (SNF) Project Cask Loadout System (CLS) at 100K area. The design verification employed the ''Independent Review Method'' in accordance with Administrative Procedure (AP) EN-6-027-01.

  1. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion...

    Office of Scientific and Technical Information (OSTI)

    chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel ...

  2. Overview of An Analysis Project for Renewable Biogas / Fuel Cell Technologies (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2009-11-19

    Presentation on renewable biogas: as an opportunity for commercialization of fuel cells presented as part of a panel discussion at the 2009 Fuel Cell Seminar, Palm Springs, CA.

  3. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet.

    Broader source: Energy.gov [DOE]

    Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from November 2002 to February 2003. The bus was evaluated by DOE’s Advanced Vehicle Testing Activity.

  4. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  5. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    SciTech Connect (OSTI)

    Not Available

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  6. SBIR/STTR Phase I Release 1 Award Winners Announced, Includes Four Hydrogen and Fuel Cell Projects

    Broader source: Energy.gov [DOE]

    The US Department of Energy (DOE) recently announced the FY 2014 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 award winners, including four hydrogen and fuel cell projects in Arizona, Massachusetts, and South Carolina.

  7. SBIR/STTR Phase II Release 1 Award Winners Announced, Includes Two Hydrogen and Fuel Cell Projects

    Broader source: Energy.gov [DOE]

    The US Department of Energy (DOE) recently announced the FY 2014 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase II Release 1 award winners, including two hydrogen and fuel cell projects in Colorado and New Jersey.

  8. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FUEL CELL FUEL CELL FUEL CELL Fourth Edition November 1998 Fuel Cell Handbook Fuel Cell Handbook Fourth Edition November 1998 DOE/FETC-99/1076 by J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, and M.G. Klett Parsons Corporation Reading, PA 19607 Under Contract No. DE-AC21-94MC31166 for U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 Fuel Cell Handbook, Fourth Edition Contents Disclaimer List of

  9. Vehicle Technologies Office Merit Review 2014: Central Texas Fuel Independence Project

    Broader source: Energy.gov [DOE]

    Presentation given by City of Austin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Central Texas Fuel...

  10. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This fact sheet describes opportunities for interested stationary fuel cell developers and end users to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the current state of the technology and support industry growth.

  11. EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Spent nuclear fuel project multi-year work plan WBS {number_sign}1.4.1

    SciTech Connect (OSTI)

    Wells, J.L.

    1997-03-01

    The Spent Nuclear Fuel (SNF) Project Multi-Year Work Plan (MYWP) is a controlled living document that contains the current SNF Project Technical, Schedule and Cost Baselines. These baselines reflect the current Project execution strategies and are controlled via the change control process. Other changes to the MYWP document will be controlled using the document control process. These changes will be processed as they are approved to keep the MYWP a living document. The MYWP will be maintained continuously as the project baseline through the life of the project and not revised annually. The MYWP is the one document which summarizes and links these three baselines in one place. Supporting documentation for each baseline referred to herein may be impacted by changes to the MYWP, and must also be revised through change control to maintain consistency.

  13. Perspective and current status on fuel cycle system of fast reactor cycle Technology development (FaCT) project in Japan

    SciTech Connect (OSTI)

    Funasaka, Hideyuki; Itoh, Masanori

    2007-07-01

    FaCT Project taking over from Feasibility Study on Commercialized FR cycle system (FS) has been launched in 2006 by Japanese joint team with the participation of all parties concerned in Japan. Combination system of (the sodium-cooled reactor,) the advanced aqueous reprocessing system and the simplified pelletizing fuel fabrication (MOX fuel) is evaluated as the most promising fuel cycle system concept so that it has potential conformity to the design requirements, as well as a high level of technical feasibility as the final report of Phase II in FS. Current status and R and D prospects for this combination system of the advanced aqueous reprocessing system and the simplified pelletizing fuel fabrication (MOX fuel) system until around 2015 have been studied. Then, it is anticipated that in FR reprocessing commercial facility will start to operate around same time that in LWR reprocessing subsequent plant will be required to replace Rokkasho Reprocessing Plant (provided that life time 40 years) around 2050. From the view point of the smooth transition from LWRs to FRs in approximately the year 2050 and beyond in Japan, some issues on fuel cycle have been also discussed. (authors)

  14. Spent nuclear fuel project, Cold Vacuum Drying Facility human factors engineering (HFE) analysis: Results and findings

    SciTech Connect (OSTI)

    Garvin, L.J.

    1998-07-17

    This report presents the background, methodology, and findings of a human factors engineering (HFE) analysis performed in May, 1998, of the Spent Nuclear Fuels (SNF) Project Cold Vacuum Drying Facility (CVDF), to support its Preliminary Safety Analysis Report (PSAR), in responding to the requirements of Department of Energy (DOE) Order 5480.23 (DOE 1992a) and drafted to DOE-STD-3009-94 format. This HFE analysis focused on general environment, physical and computer workstations, and handling devices involved in or directly supporting the technical operations of the facility. This report makes no attempt to interpret or evaluate the safety significance of the HFE analysis findings. The HFE findings presented in this report, along with the results of the CVDF PSAR Chapter 3, Hazards and Accident Analyses, provide the technical basis for preparing the CVDF PSAR Chapter 13, Human Factors Engineering, including interpretation and disposition of findings. The findings presented in this report allow the PSAR Chapter 13 to fully respond to HFE requirements established in DOE Order 5480.23. DOE 5480.23, Nuclear Safety Analysis Reports, Section 8b(3)(n) and Attachment 1, Section-M, require that HFE be analyzed in the PSAR for the adequacy of the current design and planned construction for internal and external communications, operational aids, instrumentation and controls, environmental factors such as heat, light, and noise and that an assessment of human performance under abnormal and emergency conditions be performed (DOE 1992a).

  15. CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project

    Broader source: Energy.gov [DOE]

    Categorical Determination Alcoa Tennessee Automotive Sheet Expansion Project CX(s) Applied: B1.31 Date: 05/06/2014 Location(s): Alcoa, Tennessee Offices(s): Loan Programs Office

  16. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect (OSTI)

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  17. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion...

    Office of Scientific and Technical Information (OSTI)

    and FACE fuels with detailed exhaust chemistry and particulate size measurements. ... smaller molecular weight compounds are used for chemistry to speed chemical calculations. ...

  18. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion

    Office of Scientific and Technical Information (OSTI)

    Combustion Engines Bunting, Bruce G ORNL; Bunce, Michael ORNL 02 PETROLEUM; 04 OIL SHALES AND TAR SANDS; 10 SYNTHETIC FUELS; 33 ADVANCED PROPULSION SYSTEMS; BIOFUELS;...

  19. Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

    2007-03-30

    The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

  20. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report

    SciTech Connect (OSTI)

    Not Available

    2006-06-01

    This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

  1. HOW MANY DID YOU SAY? HISTORICAL AND PROJECTED SPENT NUCLEAR FUEL SHIPMENTS IN THE UNITED STATES, 1964 - 2048

    SciTech Connect (OSTI)

    Halstead, Robert J.; Dilger, Fred

    2003-02-27

    No comprehensive, up-to-date, official database exists for spent nuclear fuel shipments in the United States. The authors review the available data sources, and conclude that the absence of such a database can only be rectified by a major research effort, similar to that carried out by Oak Ridge National Laboratory (ORNL) in the early 1990s. Based on a variety of published references, and unpublished data from the U.S. Nuclear Regulatory Commission (NRC), the authors estimate cumulative U.S. shipments of commercial spent fuel for the period 1964-2001. The cumulative estimates include quantity shipped, number of cask-shipments, and shipment-miles, by truck and by rail. The authors review previous estimates of future spent fuel shipments, including contractor reports prepared for the U.S. Department of Energy (DOE), NRC, and the State of Nevada. The DOE Final Environmental Impact Statement (FEIS) for Yucca Mountain includes projections of spent nuclear fuel and high-level radioactive was te shipments for two inventory disposal scenarios (24 years and 38 years) and two national transportation modal scenarios (''mostly legal-weight truck'' and ''mostly rail''). Commercial spent fuel would compromise about 90 percent of the wastes shipped to the repository. The authors estimate potential shipments to Yucca Mountain over 38 years (2010-2048) for the DOE ''mostly legal-weight truck'' and ''mostly rail'' scenarios, and for an alternative modal mix scenario based on current shipping capabilities of the 72 commercial reactor sites. The cumulative estimates of future spent fuel shipments include quantity shipped, number of cask-shipments, and shipment-miles, by legal-weight truck, heavy-haul truck, rail and barge.

  2. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  3. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  4. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8

    SciTech Connect (OSTI)

    Payton, M. L.; Williams, J. T.; Tolbert-Smith, M.; Klein, J. A.

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  5. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  6. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9

    SciTech Connect (OSTI)

    Klein, J.A.; Storch, S.N.; Ashline, R.C.

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  7. Project Description Advanced Fuel Cycle Initiative AFC-2A and AFC-2B Experiments

    SciTech Connect (OSTI)

    AFCI AFC-2A and AFC-2B Experiments Project Executi

    2007-03-01

    The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the AFC-1 fuel test series currently in progress in the ATR. This document discusses the experiments and the planned activities that will take place.

  8. UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2002-08-01

    This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  9. Vehicle Technologies Office Merit Review 2014: California Fleets and Workplace Alternative Fuels Project

    Broader source: Energy.gov [DOE]

    Presentation given by Bay Area Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  10. President Obama Announces LPO Support for Distributed Energy Projects, New Guidance Includes Fuel Cells

    Broader source: Energy.gov [DOE]

    In August at the National Clean Energy Summit in Nevada, President Obama announced that the Loan Programs Office has issued guidance for potential applicants on the kinds of distributed energy projects it can support, in the form of supplements to its existing Renewable Energy and Efficient Energy Projects and Advanced Fossil Energy Projects solicitations.

  11. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Harris, Aaron P

    2013-01-01

    A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle, powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.

  12. SECA Fuel Cell Program Moves Two Key Projects Into Next Phase

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has selected two projects for continuation within the Department's Solid State Energy Conversion Alliance (SECA) Program research portfolio.

  13. Two dimensional point of use fuel cell : a final LDRD project report.

    SciTech Connect (OSTI)

    Zavadil, Kevin Robert; Hickner, Michael A.; Gross, Matthew L.

    2011-03-01

    The Proliferation Assessment (program area - Things Thin) within the Defense Systems and Assessment Investment Area desires high energy density and long-lived power sources with moderate currents (mA) that can be used as building blocks in platforms for the continuous monitoring of chemical, biological, and radiological agents. Fuel cells can be an optimum choice for a power source because of the high energy densities that are possible with liquid fuels. Additionally, power generation and fuel storage can be decoupled in a fuel cell for independent control of energy and power density for customized, application-driven power solutions. Direct methanol fuel cells (DMFC) are explored as a possible concept to develop into ultrathin or two-dimensional power sources. New developments in nanotechnology, advanced fabrication techniques, and materials science are exploited to create a planar DMFC that could be co-located with electronics in a chip format. Carbon nanotubes and pyrolyzed polymers are used as building block electrodes - porous, mechanically compliant current collectors. Directed assembly methods including surface functionalization and layer-by-layer deposition with polyelectrolytes are used to pattern, build, and add functionality to these electrodes. These same techniques are used to incorporate nanoscale selective electrocatalyst into the carbon electrodes to provide a high density of active electron transfer sites for the methanol oxidation and oxygen reduction reactions. The resulting electrodes are characterized in terms of their physical properties, electrocatalytic function, and selectivity to better understand how processing impacts their performance attributes. The basic function of a membrane electrode assembly is demonstrated for several prototype devices.

  14. Spent nuclear fuels project: FY 1995 multi-year program plan, WBS {number_sign}1.4

    SciTech Connect (OSTI)

    Denning, J.L.

    1994-09-01

    The mission of the Spent Nuclear Fuel (SNF) program is to safely, reliably, and efficiently manage, condition, transport, and store Department of Energy (DOE)-owned SNF, so that it meets acceptance criteria for disposal in a permanent repository. The Hanford Site Spent Nuclear Fuel strategic plan for accomplishing the project mission is: Establish near-term safe storage in the 105-K Basins; Complete national Environmental Policy Act (NEPA) process to obtain a decision on how and where spent nuclear fuel will be managed on the site; Define and establish alternative interim storage on site or transport off site to support implementation of the NEPA decision; and Define and establish a waste package qualified for final disposition. This report contains descriptions of the following: Work Breakdown Structure; WBS Dictionary; Responsibility Assignment Matrix; Program Logic Diagrams; Program Master Baseline Schedule; Program Performance Baseline Schedule; Milestone List; Milestone Description Sheets; Cost Baseline Summary by Year; Basis of Estimate; Waste Type Data; Planned Staffing; and Fiscal Year Work Plan.

  15. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720 Hydrogen as a Vehicle Fuel into September 2005 the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates Santa Monica, California

  16. Technical Basis Spent Nuclear Fuel (SNF) Project Radiation and Contamination Trending Program

    SciTech Connect (OSTI)

    KURTZ, J.E.

    2000-05-10

    This report documents the technical basis for the Spent Nuclear Fuel (SNF) Program radiation and contamination trending program. The program consists of standardized radiation and contamination surveys of the KE Basin, radiation surveys of the KW basin, and radiation surveys of the Cold Vacuum Drying Facility (CVD) with the associated tracking. This report also discusses the remainder of radiological areas within the SNFP that do not have standardized trending programs and the basis for not having this program in those areas.

  17. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    SciTech Connect (OSTI)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

  18. NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coal, oil, and natural gas. System Components The Wind2H2 project uses two wind turbine technologies: a Northern Power Systems 100-kW wind turbine and a Bergey 10-kW wind turbine. ...

  19. Vehicle Technologies Office Merit Review 2015: Fuel Economy Information Project- Research, Data Validation, and Technical Assistance Related to Collecting, Analyzing, and Disseminating Accurate Fuel Economy Information

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel economy...

  20. Technical Basis Spent Nuclear Fuel (SNF) Project Radiation and Contamination Trending Program

    SciTech Connect (OSTI)

    ELGIN, J.C.

    2000-10-02

    This report documents the technical basis for the Spent Nuclear Fuel (SNF) Program radiation and contamination trending program. The program consists of standardized radiation and contamination surveys of the KE Basin, radiation surveys of the KW basin, radiation surveys of the Cold Vacuum Drying Facility (CVD), and radiation surveys of the Canister Storage Building (CSB) with the associated tracking. This report also discusses the remainder of radiological areas within the SNFP that do not have standardized trending programs and the basis for not having this program in those areas.

  1. Technical Cross-Cutting Issues for the Next Generation Safeguards Initiative's Spent Fuel Nondestructive Assay Project

    SciTech Connect (OSTI)

    Tobin, S. J.; Menlove, H. O.; Swinhoe, Martyn T.; Blanc, P.; Burr, T.; Evans, L. G.; Favalli, A.; Fensin, M. L.; Freeman, C. R.; Galloway, J.; Gerhart, J.; Rajasingam, A.; Rauch, E.; Sandoval, N. P.; Trellue, H.; Ulrich, T. J.; Conlin, J. L.; Croft, S.; Hendricks, John; Henzl, V.; Henzlova, D.; Eigenbrodt, J. M.; Koehler, W. E.; Lee, D. W.; Lee, T. H.; Lafleur, A. M.; Schear, M. A.; Humphrey, M. A.; Smith, Leon E.; Anderson, Kevin K.; Campbell, Luke W.; Casella, Andrew M.; Gesh, Christopher J.; Shaver, Mark W.; Misner, Alex C.; Amber, S. D.; Ludewigt, Bernhard A.; Quiter, B.; Solodov, Alexander; Charlton, W.; Stafford, A.; Romano, C.; Cheatham, J.; Ehinger, Michael; Thompson, S. J.; Chichester, David; Sterbentz, James; Hu, Jianwei; Hunt, A.; Mozin, Vladimir V.; Richard, J. G.

    2012-03-01

    Ever since there has been spent fuel (SF), researchers have made nondestructive assay (NDA) measurements of that fuel to learn about its content. In general these measurements have focused on the simplest signatures (passive photon and total neutron emission) and the analysis has often focused on diversion detection and on determining properties such as burnup (BU) and cooling time (CT). Because of shortcomings in current analysis methods, inspectorates and policy makers are interested in improving the state-of-the-art in SF NDA. For this reason the U.S. Department of Energy, through the Next Generation Safeguards Initiative (NGSI), targeted the determination of elemental Pu mass in SF as a technical goal. As part of this research effort, 14 nondestructive assay techniques were studied . This wide range of techniques was selected to allow flexibility for the various needs of the safeguards inspectorates and to prepare for the likely integration of one or more techniques having complementary features. In the course of researching this broad range of NDA techniques, several cross-cutting issues were. This paper will describe some common issues and insights. In particular we will describe the following: (1) the role of neutron absorbers with emphasis on how these absorbers vary in SF as a function of initial enrichment, BU and CT; (2) the need to partition the measured signal among different isotopic sources; and (3) the importance of the “first generation” concept which indicates the spatial location from which the signal originates as well as the isotopic origins.

  2. 105-K Basin material design basis feed description for spent nuclear fuel project facilities

    SciTech Connect (OSTI)

    Praga, A.N.

    1998-01-08

    Revisions 0 and 0A of this document provided estimated chemical and radionuclide inventories of spent nuclear fuel and sludge currently stored within the Hanford Site`s 105-K Basins. This Revision (Rev. 1) incorporates the following changes into Revision 0A: (1) updates the tables to reflect: improved cross section data, a decision to use accountability data as the basis for total Pu, a corrected methodology for selection of the heat generation basis fee, and a revised decay date; (2) adds section 3.3.3.1 to expand the description of the approach used to calculate the inventory values and explain why that approach yields conservative results; (3) changes the pre-irradiation braze beryllium value.

  3. Final Report of Project Nanometer Structures for Fuel Cells and Displays, etc.

    SciTech Connect (OSTI)

    Ji, Qing

    2011-12-15

    Low-energy ion beam bombardment induced self-assembly has been used to form various periodic nano-size wave-ordered structures (WOS). Such WOS can be used as hard etching masks to produce nanowire arrays, trenches etc., on other materials by means of traditional etching or ion sputtering. These periodic nano-size structures have a wide range of applications, including flat panel displays, optical electronics, and clean energy technologies (solar and fuel cells, lithium batteries). In order to achieve high throughput of the above processes, a large area RF-driven multicusp nitrogen ion source has been developed for the application of nitrogen ion beam induced surface modification. An integrated ion beam system, which can house either a large area RF-driven multicusp ion source or a commercially available microwave ion source (Roth & Rau AG Tamiris 400-f) have been designed, manufactured, assembled, and tested.

  4. EERE Fuel Cell Technologies Program

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 October 1, 2009

  5. Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report

    SciTech Connect (OSTI)

    Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

    2006-02-28

    This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle quality qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

  6. SBIR/STTR FY15 Phase 2 Release 2 Awards Announced—Includes Projects to Increase Fuel Cell Performance and Durability

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase II Release 2 Awards, including projects focused on fuel cell durability, performance, and efficiency with the ultimate goal of lowering costs.

  7. Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project

    SciTech Connect (OSTI)

    Brown, R.C.; Smeenk, J.; Steinfeld, G.

    1998-09-30

    The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

  8. EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

  9. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    SciTech Connect (OSTI)

    Wessel, Silvia; Harvey, David

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on performance/catalyst degradation. The key accomplishments of this project are: The development of a molecular-dynamics based description of the carbon supported-Pt and ionomer system The development of a composition-based, 1D-statistical Unit Cell Performance model A modified and improved multi-pathway ORR model An extension of the existing micro-structural catalyst model to transient operation The coupling of a Pt Dissolution model to the modified ORR pathway model The Development A Semi-empirical carbon corrosion model The integration and release of an open-source forward predictive MEA performance and degradation model Completion of correlations of BOT (beginning of test) and EOT (end of test) performance loss breakdown with cathode catalyst layer composition, morphology, material properties, and operational conditions Catalyst layer durability windows and design curves A design flow path of interactions from materials properties and catalyst layer effective properties to performance loss breakdown for virgin and degraded catalyst layers In order to ensure the best possible user experience we will perform a staged release of the software leading up to the webinar scheduled in October 2013. The release schedule will be as follows (please note that the manual will be released with the beta release as direct support is provided in Stage 1): Stage 0 - Internal Ballard Release o Cross check of compilation and installation to ensure machine independence o Implement code on portable virtual machine to allow for non-UNIX use (pending) Stage 1 - Alpha Release o The model code will be made available via a GIT, sourceforge, or other repository (under discussion at Ballard) for download and installation by a small pre-selected group of users o Users will be given three weeks to install, apply, and evaluate features of the code, providing feedback on issues or software bugs that require correction prior to beta release Stage 2 - Beta Release o The model code repository is opened to the general public on a beta release concept, with a mechanism for bug tracking and feedback from a large user group o Code will be tracked and patched for any discovered bugs or relevant feedback from the user community, upon the completion of three months without a major bug submission the code will be moved to a full version release Stage 3 - Full Version Release o Code is version to revision 1.0 and that version is frozen in development/patching

  12. Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds a wide variety of renewable energy and energy efficiency projects in an effort to assist tribes in realizing their energy visions.

  13. Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint

    Broader source: Energy.gov [DOE]

    To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9, 2010

  14. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons ...

  15. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB: ...

  16. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    durability Safety, Codes & Standards Development Domestic Manufacturing & Supplier Base Public ... Projected Transportation Fuel Cell System Cost - projected to high volume ...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Eligible projects include powertrains and energy storage or conversion devices (e.g., fuel cells and batteries), and implementation of clean fuels (e.g., natural gas, propane, and ...

  18. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  19. Projecting

    U.S. Energy Information Administration (EIA) Indexed Site

    Projecting the scale of the pipeline network for CO2-EOR and its implications for CCS infrastructure development Matthew Tanner Office of Petroleum, Gas, & Biofuels Analysis U.S. Energy Information Administration October 25, 2010 This paper is released to encourage discussion and critical comment. The analysis and conclusions ex- pressed here are those of the author and not necessarily those of the U.S. Energy Information Administration. Author: Matthew Tanner, matthew.tanner@eia.gov

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit for Residents Through the Residential Energy Tax Credit program, qualified residents may receive a tax credit for 25% of alternative fuel infrastructure project costs, up to $750. Qualified residents may receive a tax credit for 50% of project costs, up to $750. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85), propane, and other fuels that the Oregon Department of Energy approves. A

  1. Spent Nuclear Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Spent Nuclear Fuel Release date: December 7, 2015 Next release date: Late 2018 Spent nuclear fuel data are

  2. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect (OSTI)

    Sinskey, Anthony J.; Worden, Robert Mark; Brigham, Christopher; Lu, Jingnan; Quimby, John Westlake; Gai, Claudia; Speth, Daan; Elliott, Sean; Fei, John Qiang; Bernardi, Amanda; Li, Sophia; Grunwald, Stephan; Grousseau, Estelle; Maiti, Soumen; Liu, Chole

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and aceE), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation supplied the cells with sufficient nutrients while minimizing the toxicity caused by isobutanol. Under this cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis. While this bioengineering work was being done at the Sinskey laboratory at MIT, the researchers at the Worden laboratory at Michigan State were working on the design and construction of the required specialty bioreactor for incompatible gasses (BIG) that would allow the safe feeding of microbes on Carbon Dioxide, Hydrogen, and Oxygen without explosive results. The early design and assembly work in year 1 incorporated a novel microbubble generator to maximize the bioavailability of gasses within the system comprised of small scale hollow fiber reactors. The early success of the microbubble generator eliminated the need to investigate potentially toxic surfactants within the system. For operational control, the system design incorporated a Opto22-based control network. The researchers also selected the specific hollow fiber material suitable for the bioreactor application. A variety of commercially available hollow fiber membranes were compared with regard to their pore sizes, cell affinity, and potential interference to cell viability assays. The selected membrane with its spongy layer was then tested for diffusivity of O2 and CO2. The instrumented system was then fully assembled for experimentally measuring the heterotrophic growth rate of immobilized R. eutropha cells. The requisite procedures for inoculation, measurement, and cleaning were established enabling the system performance to be validated under controlled laboratory conditions. In year 2, the researchers completed the Opto22 based cross-platform control network, and the system’s communications across the Sartorius fermentation system and Bruker gas chromatograph was established via open platform communications (OPC) protocol. Using the revised system, measurements were taken of the R.eutropha cell growth rate and substrate mass transfer rate in the hollow fiber membrane. Several IBT recovery strategies were explored and resin adsorption was determined to be optimal solution for lab scale operations. The adsorption capacity of the resin column was then measured and IBT desorption using methanol has been demonstrated. With the growing body of experimental data in hand, mathematical models were constructed to demonstrate and map the cellular kinetics, mass transfer of heterotrophic and autotrophic substrates in the hollow fiber, and the adsorption process in the resin column. A structured kinetic model was constructed to describe the competition between cell mass generation and IBT production. The reactor was then scaled up from single fiber to a membrane area of 180 cm2 and then further to 1 ft2. In Year 3 of the research, the IBT mass transfer across the membrane was characterized within the system with experiments to empirically measure the IBT diffusion coefficient in the BIG spongy layer. Using the refined mathematical models, the researchers are now able to explain the experimental observations and predict bioreactor performance under a wide range of experimental conditions. The Big system is able to demonstrate continuous controlled operations with the integrated IBT recovery system. Both heterotrophic and autotrophic production have been shown during continuous operation with heterotrophic and autotrophic stages. Performance of BIG system has been measured during continuous run with alternating heterotrophic growth on fructose and autotrophic product formation on H2, CO2, and O2. Volumetric productivities of IBT at 325 mg/(L day) and of 3M1B at 50 mg/(L day) were achieved, which were comparable to that achieved under heterotrophic conditions. Using the mathematical model, researchers are able to predict system performance for scaled-up BIG system. The apparent diffusion coefficient of IBT in the spongy layer of XM-50 hollow fiber membranes has been measured at various lumen liquid flow rates. The experiment is simulated in COMSOL to validate the results. The constructed COMSOL model is able to simulate BIG system performance in both batch and continuous mode. Mathematical simulations of the system performance have been run to identify the most crucial operational conditions, identifying the rate-limiting factors in autotrophic production of IBT, and quantitating the rate of IBT catabolism. Investigations of the productivity of the production system have suggested and the modeling of the system has revealed a particular sensitivity to the catabolism of the produced IBT by the engineered R. eutropha. Experiments have been designed and executed to quantify the IBT catabolism of R. eutropha, which open up possibilities for further system improvements through future, targeted bioengineering of the strain. Finally, the researchers at Michigan State performed an economic analysis of the system, based on the collective results, and their findings are presented in full within the report.

  3. International Stationary Fuel Cell Demonstration

    Broader source: Energy.gov [DOE]

    This presentation by John Vogel of Plug Power was given at the New Fuel Cell Projects Meeting in February 2007.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) and Fueling Infrastructure Loans The Nebraska Energy Office administers the Dollar and Energy Saving Loan Program, which makes low-cost loans available for a variety of alternative fuel projects, including the replacement of conventional vehicles with AFVs; the purchase of new AFVs; the conversion of conventional vehicles to operate on alternative fuels; and the construction or purchase of fueling stations or equipment. The maximum loan amount is $750,000 per borrower, and the

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    two competitive grant programs to fund projects that reduce greenhouse gas (GHG) emissions in the transportation sector. The Delaware Alternative Fueling Infrastructure Grant...

  6. Light Weight, Low Cost PEM Fuel Cell Stacks

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on fuel cell stacks, was given at a February 2007 meeting on new fuel cell projects.

  7. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  8. Synthetic fuels

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    In January 1982, the Department of Energy guaranteed a loan for the construction and startup of the Great Plains project. On August 1, 1985, the partnership defaulted on the $1.54 billion loan, and DOE acquired control of, and then title to, the project. DOE continued to operate the plant, through the ANG Coal Gasification Company, and sell synthetic fuel. The DOE's ownership and divestiture of the plant is discussed.

  9. Implementation of advanced LCNG fueling infrastructure in Texas along the I-35/NAFTA Clean Corridor Project. Final report

    SciTech Connect (OSTI)

    Taylor, Stan; Hightower, Jared; Knight, Koby

    2001-05-01

    This report documents the process of planning, siting, and permitting recent LCNG station projects; identifying existing constraints in these processes, and recommendations for improvements; LCNG operating history.

  10. Novel Materials for High Efficiency Direct Methanol Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for High Efficiency Direct Methanol Fuel Cells Novel Materials for High Efficiency Direct Methanol Fuel Cells Presented at the Department of Energy Fuel Cell Projects ...

  11. CX-010618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  12. CX-011065: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 08/29/2013 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  13. CX-010938: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 09/17/2013 Location(s): Kansas, Kansas Offices(s): National Energy Technology Laboratory

  14. CX-007939: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 02/16/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  15. CX-011712: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 01/08/2014 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support The Clean Fuel Advanced Technology (CFAT) project provides grant funding to reducing transportation-related emissions in nonattainment and maintenance counties for National Ambient Air Quality Standards. A project that is adjacent to these areas may also be eligible for funding if the project will reduce emissions in eligible counties. The North Carolina Department of Transportation funds the CFAT project, which covers

  17. NREL: Transportation Research - Alternative Fuels Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternative Fuels Characterization Find out about other biomass research projects at NREL. NREL alternative fuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, other biomass-derived fuels, and natural gas. By studying the fuel chemistry as well as combustion and emissions impacts of alternative fuels, NREL helps improve engine efficiency, reduce

  18. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    SciTech Connect (OSTI)

    Gladstein, Neandross and Associates

    2005-09-01

    Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

  19. Durable, Low Cost, Improved Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on fuel cell membranes, was given by Michel Foure of Arkema at a meeting on new fuel cell projects in February 2007.

  20. NETL: Solid Oxide Fuel Cells Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid Oxide Fuel Cells Publications This page provides links to SOFC Program related documents and reference materials. Solid Oxide Fuel Cells Program 2015 Project Portfolio The ...

  1. Natura Bio Fuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Natura Bio Fuels Ltd Jump to: navigation, search Name: Natura Bio-Fuels Ltd. Place: Bangalore, Karnataka, India Zip: 560091 Sector: Biomass Product: Bangalore-based biomass project...

  2. Fuel Cells 2000 | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cells 2000 Place: Washington DC, Washington, DC Zip: 20005 Product: A non-profit project providing educational informaiton on fuel cells to the general public and private...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants The Motor Vehicle Registration Fee Program (Program) provides funding for projects that reduce air pollution from on- and off-road vehicles. Eligible projects include purchasing AFVs and developing alternative fueling infrastructure. Contact local air districts and see the Program website for more information about available grant funding and distribution from the Program. (Reference California Health and Safety Code 44220 (b))

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    (AFV) and Fueling Infrastructure Grants The New Mexico Energy, Minerals, and Natural Resources Department administers the Clean Energy Grants Program, which provides grants for projects using clean energy technologies, including alternative fuel vehicles and fueling infrastructure, as well as projects that provide clean energy education, technical assistance, and training programs. These grants are provided on a competitive basis to qualifying entities such as municipalities and county

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding The Alternative Fuels Incentive Grant (AFIG) Program provides financial assistance for qualified projects; information on alternative fuels, AFVs, HEVs, plug-in hybrid electric vehicles; and advanced vehicle technology research, development, and demonstration. Projects that result in product commercialization and the expansion of Pennsylvania companies are favored in the selection process. The AFIG Program also offers

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated feedstock production, fueling infrastructure, and fleet vehicles. Loan recipients must complete a loan application and pay a loan application fee. For more information, including application forms and interest rate and fee information, see the SELP website. (Reference Oregon

  7. U.S. Environmental Protection Agency Clean Air Act notice of construction for spent nuclear fuel project - hot conditioning system annex, project W-484

    SciTech Connect (OSTI)

    Baker, S.K., Westinghouse Hanford

    1996-12-10

    This notice of construction (NOC) provides information regarding the source and the estimated quantity of potential airborne radionuclide emissions resulting from the operation of the Hot Conditioning System (HCS) Annex. The construction of the HCS Annex is scheduled to conunence on or about December 1996, and will be completed when the process equipment begins operations. This document serves as a NOC pursuant to the requirements of 40 Code of Federal Regulations (CFR) 61 for the HCS Annex. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is contained in open canisters, which allows release of corrosion products to the K East Basin water. Storage of the current inventory in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PUREX Plant left approximately 2, 1 00 MT (2,300 tons) of uranium, as part of 1133 N Reactor SNF in the K Basins with no means for near-term removal and processing. The HCS Annex will be constructed as an annex to the Canister Storage Building (CSB) and will contain the hot conditioning equipment. The hot conditioning system (HCS) will release chemically-bound water and will condition (process of using a controlled amount of oxygen to destroy uranium hydride) the exposed uranium surfaces associated with the SNF through oxidation. The HCS Annex will house seven hot conditioning process stations, six operational and one auxiliary, which could be used as a welding area for final closure of the vessel containing the SNF. The auxiliary pit is being evaluated at this time for its usefulness to support other operations that may be needed to ensure proper conditioning of the SNF and proper storage of the vessel containing the SNF. Figures I and 2 contain map locations of the Hanford Site and the HCS Annex.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Tax Credit for Businesses Business owners and others may be eligible for a tax credit of 35% of eligible costs for qualified alternative fuel infrastructure projects, or the incremental or conversion cost of two or more AFVs. Qualified infrastructure includes facilities for mixing, storing, compressing, or dispensing fuels for vehicles operating on alternative fuels. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85),

  9. Methane conversion for highway fuel (Methanol Plantship Project), interim report. Resource materials. Report for November 1991-May 1992

    SciTech Connect (OSTI)

    Fink, C.; Jackson, I.; Wright, S.; Booras, P.; Linaweaver, P.

    1997-01-01

    The report presents partial results of a study undertaken to respond to PL 101-516; that law provided funding for `phase II of the development/design work on a floating methanol production plantship to advance work already completed under phase I of the project, which was authorized by section 152 of the Surface Transportation Act of 1982.` Phase I determined the feasibility of producing large volumes of low-cost methanol aboard a plantship. The interim report includes: an examination of the impact of recent permitting, licensing, and environmental regulations on methanol plantship (MPS) design and operation; analysis of other recent MPS design studies and updating of the process technology; and revision and updating of an economic analysis which continues to demonstrate the project`s viability.

  10. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exposition | Department of Energy Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel Cell Seminar and Exposition on October 19, 2010. PDF icon Hydrogen and Fuel Cell Technologies Update More Documents & Publications DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop 2010 Fuel Cell Project Kick-off Welcome DOE Hydrogen and Fuel Cell

  11. 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles November 5, 2015 - 1:07am Addthis Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Shannon Brescher Shea Communications Manager, Clean Cities Program The 2016 Fuel Economy Guide is now available. It provides fuel economy, greenhouse gas emission, and projected fuel cost information on model year

  12. Displacement of diesel fuel with wind energy in rural Alaskan villages. Final progress and project closeout report

    SciTech Connect (OSTI)

    Meiners, Dennis; Drouhilet, Steve; Reeve, Brad; Bergen, Matt

    2002-03-11

    The basic concept behind this project was to construct a wind diesel hybrid power system which combines and maximizes the intermittent and variable energy output of wind turbine(s) with diesel generator(s) to provide continuous high quality electric power to weak isolated mini-grids.

  13. Seventh Edition Fuel Cell Handbook

    SciTech Connect (OSTI)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  14. Fuel Cell Kickoff Meeting Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kickoff Meeting Agenda Fuel Cell Kickoff Meeting Agenda This agenda provides information about the fuel cell projects meeting in February 2007. PDF icon new_fc_agenda_0207.pdf More Documents & Publications Fuel Cell Projects Kickoff Meeting Fuel Cell Projects Kickoff Meeting 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

  15. Effects of Fuel and Air Impurities on PEM Fuel Cell Performance

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on PEM fuel cell performance, was given by Fernando Garzon of LANL at a February 2007 meeting on new fuel cell projects.

  16. Phoenix Fuels | Open Energy Information

    Open Energy Info (EERE)

    Phoenix Fuels Place: Notts, United Kingdom Zip: NG22 9HB Product: Ethanol project developer based in Newark, Nottingham. References: Phoenix Fuels1 This article is a stub. You...

  17. POET-DSM Project LIBERTY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    alternative energy production and minimize traditional energy usage * Project LIBERTY is one of ... fuel ethanol distillation and molecular sieves * Scale of the project under ...

  18. 2004 Office of Fossil Energy Fuel Cell Program Annual Report

    SciTech Connect (OSTI)

    NETL

    2004-11-01

    Annual report of fuel cell projects sponsored by Department of Energy, National Energy Technology Laboratory.

  19. ALARA Controls and the Radiological Lessons Learned During the Uranium Fuel Removal Projects at the Molten Salt Reactor Experiment

    SciTech Connect (OSTI)

    Gilliam, B. J.; Chapman, J. A.; Jugan, M. R.

    2002-02-26

    The removal of uranium-233 (233 U) from the auxiliary charcoal bed (ACB) of the Molten Salt Reactor Experiment (MSRE), performed from January through May 2001, created both unique radiological challenges and widely-applicable lessons learned. In addition to the criticality concerns and alpha contamination, 233U has an associated intense gamma photon from the cocontaminant uranium-232 (232U) decaying to thallium-208 (208Tl). Therefore, rigorous contamination controls and significant shielding were implemented. Extensive, timed mock-up training was also imperative to minimize individual and collective personnel exposures. Back-up shielding and containment techniques (that had been previously developed for defense in depth) were used successfully to control significant, changed conditions. Additional controls were placed on tests and on recovery designs to assure a higher level of safety throughout the removal operations. This paper delineates the manner in which each difficulty was solved, while relating the relevance of the results and the methodology to other projects with high dose-rate, highly-contaminated ionizing radiation hazards. Because of the distinctive features of and current interest in molten salt technology, a brief overview is provided. Also presented is the detailed, practical application of radiological controls integrated into, rather than added after, each evolution of the project--thus demonstrating the broad-based benefits of radiological engineering and ALARA reviews. The resolution of the serious contamination-control problems caused by unexpected uranium hexafluoride (UF6) gaseous diffusion is also explicated. Several tables and figures document the preparations, equipment and operations. A comparison of the pre-job dose calculations for the various functions of the uranium deposit removal (UDR) and the post-job dose-rate data are included in the conclusion.

  20. Farms to Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Farms to Fuels Farms to Fuels Presented at the Technology Transition Corporation and U.S. Department of Energy Fuel Cell Technologies Program Webinar: Go Local: Maximizing Your Local Renewable Resources With Fuel Cells, August 16, 2011. PDF icon webinaraug16_bolten.pdf More Documents & Publications Project Reports for Ak Chin Indian Community - 2004 Project Project Reports for Tulalip Tribes - 2003 Project EA-1402: Final Environmental Assessment

  1. Portable Power Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's Portable Power, Auxiliary Power Units, and R&D for Off-Road Fuel Cell Applications Research Projects Awarded April 2004

  2. NREL: Biomass Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

  3. Fuel Cells Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells » Fuel Cells Related Links Fuel Cells Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded fuel cell activities, research plans and roadmaps, partnerships, and additional related links. DOE-Funded Fuel Cell Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and presentations from the

  4. Gaseous-fuel engine technology

    SciTech Connect (OSTI)

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  5. Financing Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    briefing papers and materials for state policymakers and others on the Hydrogen and Fuel Cells Project page at www.cleanenergystates.org 2 A nonprofit coalition of state and ...

  6. Development of models and online diagnostic monitors of the high-temperature corrosion of refractories in oxy/fuel glass furnaces : final project report.

    SciTech Connect (OSTI)

    Griffiths, Stewart K.; Gupta, Amul; Walsh, Peter M.; Rice, Steven F.; Velez, Mariano; Allendorf, Mark D.; Pecoraro, George A.; Nilson, Robert H.; Wolfe, H. Edward; Yang, Nancy Y. C.; Bugeat, Benjamin American Air Liquide, Countryside, IL); Spear, Karl E.; Marin, Ovidiu American Air Liquide, Countryside, IL); Ghani, M. Usman

    2005-02-01

    This report summarizes the results of a five-year effort to understand the mechanisms and develop models that predict the corrosion of refractories in oxygen-fuel glass-melting furnaces. Thermodynamic data for the Si-O-(Na or K) and Al-O-(Na or K) systems are reported, allowing equilibrium calculations to be performed to evaluate corrosion of silica- and alumina-based refractories under typical furnace operating conditions. A detailed analysis of processes contributing to corrosion is also presented. Using this analysis, a model of the corrosion process was developed and used to predict corrosion rates in an actual industrial glass furnace. The rate-limiting process is most likely the transport of NaOH(gas) through the mass-transport boundary layer from the furnace atmosphere to the crown surface. Corrosion rates predicted on this basis are in better agreement with observation than those produced by any other mechanism, although the absolute values are highly sensitive to the crown temperature and the NaOH(gas) concentration at equilibrium and at the edge of the boundary layer. Finally, the project explored the development of excimer laser induced fragmentation (ELIF) fluorescence spectroscopy for the detection of gas-phase alkali hydroxides (e.g., NaOH) that are predicted to be the key species causing accelerated corrosion in these furnaces. The development of ELIF and the construction of field-portable instrumentation for glass furnace applications are reported and the method is shown to be effective in industrial settings.

  7. Confederated Tribes of Warm Springs - Biomass Project

    Energy Savers [EERE]

    Three Major Sides of a Viable Biomass Energy Project Other ... collocate with a user of steam and user of steam and ... Restoration Fuel Supply Fuel Supply Questions ...

  8. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel ...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Innovative Transportation Project Competitive Grant Program The Maryland Energy Administration (MEA) provides funds to deploy "game changing" or innovative transportation projects that increase the use of alternative fuel vehicles, such as workplace charging. Projects must be located in Maryland and have the potential to significantly advance the clean energy market through commercially available technologies. Projects can include clean energy conversion technologies, systems, or

  10. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  11. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  12. National Fuel Cell Technology Evaluation Center (NFCTEC) (Revised...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information. Since 2004 NREL has produced around 200 CDPs for these hydrogen and fuel cell technology validation projects: * Hydrogen Fuel Cell Vehicle and Infrastructure...

  13. Henan Tianguan Fuel Ethanol Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianguan Fuel Ethanol Co Ltd Jump to: navigation, search Name: Henan Tianguan Fuel Ethanol Co Ltd Place: Nanyang, Henan Province, China Product: Project developer of a bioethanol...

  14. Spent Fuel Transportation Risk Assessment | Department of Energy

    Office of Environmental Management (EM)

    Spent Fuel Transportation Risk Assessment Spent Fuel Transportation Risk Assessment SFTRA Overview Contents Project and review teams Purpose and goals Basic methodology ...

  15. Effects of Impurities on Fuel Cell Performance and Durability

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on fuel cell performance and durability, was given by James Goodwin of Clemson Univeristy at a February 2007 meeting on new fuel cell projects.

  16. Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Projects Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies In February 2000, the ...

  17. Fuel Cell Tax Incentives: How Monetization Lowers the Government...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy projects like fuel cells and CHP. Intended to stimulate the purchase of renewable technologies, hence, the private sector "invests" in ownership of fuel cells and receives ...

  18. List of Renewable Transportation Fuels Incentives | Open Energy...

    Open Energy Info (EERE)

    Wind Biomass Renewable Transportation Fuels Fuel Cells Ground Source Heat Pumps Ethanol Methanol Biodiesel No Community Energy Project Grants (Michigan) State Grant Program...

  19. 105 K East and 105 K West fuel transfer bay crane use strategy for spent nuclear fuel path-forward

    SciTech Connect (OSTI)

    Ard, K.E.

    1996-04-02

    The purpose of this document is to outline the K Basins 30 ton crane qualification strategy for use in the Spent Nuclear Fuel Project fuel relocation campaign.

  20. Midwest Region Alternative Fuels Project

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. mhtml:file://H:\CATX\APPROVED-CXS\EERE FOA 1201 - Rankine Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . ., . . BNL-68599 PRODUCTION OF RADIOACTIVE IODINE David J. Schlyer Iodine-123 Probably the most 'widely used cyclotron produced radiohalogen is 1-123. It has gradually replaced I-13 1 as the isotope of choice for diagnostic radiopharmaceuticals containing radioiodine. It gives a much lower radiation dose to the patient and the gamma ray energy of 159 keV is ideally suited for use in a gamma camera. The gamma ray will penetrate tissue very effectively without excessive radiation dose. For this

  2. Fuel Cell Powered Lift Truck

    SciTech Connect (OSTI)

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  3. Fuel Cell Demonstration Program

    SciTech Connect (OSTI)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

  4. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect (OSTI)

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  5. S. 403: A Bill to amend the Internal Revenue Code of 1986 to allow a tax credit for fuels produced from offshore deep-water projects. Introduced in the Senate of the United States, One Hundred Third Congress, First Session, February 18, 1993

    SciTech Connect (OSTI)

    1993-12-31

    The report S.403 is a bill to amend the Internal Revenue Code of 1986 to allow a tax credit for fuels produced from offshore deep-water projects. The proposed legislative text is included.

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Improved Energy Technology Loans The U.S. Department of Energy (DOE) provides loan guarantees through the Loan Guarantee Program to eligible projects that reduce air pollution and greenhouse gases, and support early commercial use of advanced technologies, including biofuels and alternative fuel vehicles. The program is not intended for research and development projects. DOE may issue loan guarantees for up to 100% of the amount of the loan for an eligible project. For loan guarantees of over

  7. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Units Greater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Than 100 kW Achieve 2015 Target for Electrical Efficiency Stationary Fuel Cell Units Greater Than 100 kW Achieve 2015 Target for Electrical Efficiency Project Technology Validation: Stationary Fuel Cell Evaluation Contact Genevieve Saur Related Publications Stationary Fuel Cell System Composite Data Products Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities In a newly released composite data product (CDP), NREL's National Fuel Cell Technology Evaluation Center (NFCTEC)

  8. Project No 974 | Open Energy Information

    Open Energy Info (EERE)

    Project No 974 Place: Oxford, United Kingdom Zip: OX2 7SG Product: Biological fuel cell technology employing enzymatic catalysts. Project is at present without company name....

  9. Category:Smart Grid Projects - Advanced Metering Infrastructure...

    Open Energy Info (EERE)

    Central Maine Power Company Smart Grid Project Cheyenne Light, Fuel and Power Company Smart Grid Project City of Fulton, Missouri Smart Grid Project City of Glendale Water and...

  10. Final report on LDRD project : elucidating performance of proton-exchange-membrane fuel cells via computational modeling with experimental discovery and validation.

    SciTech Connect (OSTI)

    Wang, Chao Yang (Pennsylvania State University, University Park, PA); Pasaogullari, Ugur (Pennsylvania State University, University Park, PA); Noble, David R.; Siegel, Nathan P.; Hickner, Michael A.; Chen, Ken Shuang

    2006-11-01

    In this report, we document the accomplishments in our Laboratory Directed Research and Development project in which we employed a technical approach of combining experiments with computational modeling and analyses to elucidate the performance of hydrogen-fed proton exchange membrane fuel cells (PEMFCs). In the first part of this report, we document our focused efforts on understanding water transport in and removal from a hydrogen-fed PEMFC. Using a transparent cell, we directly visualized the evolution and growth of liquid-water droplets at the gas diffusion layer (GDL)/gas flow channel (GFC) interface. We further carried out a detailed experimental study to observe, via direct visualization, the formation, growth, and instability of water droplets at the GDL/GFC interface using a specially-designed apparatus, which simulates the cathode operation of a PEMFC. We developed a simplified model, based on our experimental observation and data, for predicting the onset of water-droplet instability at the GDL/GFC interface. Using a state-of-the-art neutron imaging instrument available at NIST (National Institute of Standard and Technology), we probed liquid-water distribution inside an operating PEMFC under a variety of operating conditions and investigated effects of evaporation due to local heating by waste heat on water removal. Moreover, we developed computational models for analyzing the effects of micro-porous layer on net water transport across the membrane and GDL anisotropy on the temperature and water distributions in the cathode of a PEMFC. We further developed a two-phase model based on the multiphase mixture formulation for predicting the liquid saturation, pressure drop, and flow maldistribution across the PEMFC cathode channels. In the second part of this report, we document our efforts on modeling the electrochemical performance of PEMFCs. We developed a constitutive model for predicting proton conductivity in polymer electrolyte membranes and compared model prediction with experimental data obtained in our laboratory and from literature. Moreover, we developed a one-dimensional analytical model for predicting electrochemical performance of an idealized PEMFC with small surface over-potentials. Furthermore, we developed a multi-dimensional computer model, which is based on the finite-element method and a fully-coupled implicit solution scheme via Newton's technique, for simulating the performance of PEMFCs. We demonstrated utility of our finite-element model by comparing the computed current density distribution and overall polarization with those measured using a segmented cell. In the last part of this report, we document an exploratory experimental study on MEA (membrane electrode assembly) degradation.

  11. Visual examinations of K east fuel elements

    SciTech Connect (OSTI)

    Pitner, A.L., Fluor Daniel Hanford

    1997-02-03

    Selected fuel elements stored in both ``good fuel`` and ``bad fuel`` canisters in K East Basin were extracted and visually examined full length for damage. Lower end damage in the ``bad fuel`` canisters was found to be more severe than expected based on top end appearances. Lower end damage for the ``good fuel`` canisters, however, was less than expected based on top end observations. Since about half of the fuel in K East Basin is contained in ``good fuel`` canisters based on top end assessments, the fraction of fuel projected to be intact with respect to IPS processing considerations remains at 50% based on these examination results.

  12. World nuclear fuel cycle requirements 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  13. Eco Fuel Positive | Open Energy Information

    Open Energy Info (EERE)

    Kingdom-based financial services firm. The firm organised finances to run Rwandan Eco-Fuel Global's biodiesel project. References: Eco-Fuel Positive1 This article is a stub....

  14. Polyelectrolyte Materials for High Temperature Fuel Cells

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on polyelectrolyte materials for high temperature fuel cells, was given by John Kerr of Lawrence Berkeley National Laboratory at a meeting on new fuel cell projects in February 2007.

  15. Fuel-Flexible Microturbine and Gasifier System

    SciTech Connect (OSTI)

    2009-12-01

    This factsheet describes a project that will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions.

  16. AltAir Fuels | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Product: Seattle-based developer of projects for the production of jet fuel from renewable and sustainable oils. References: AltAir Fuels1 This article is a...

  17. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (DBS) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  18. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  19. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  20. Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit

  1. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels This fact sheet provides an overview of the Next Generation Manufacturing Processes project to develop a unique, fuel-flexible catalytic combustor capable of enabling ultra-low emission, lean premixed combustion of a wide range of gaseous opportunity fuels. PDF icon Fact sheet - Enabling Clean Consumption of Low Btu and Reactive Fuels

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fueling Station Evaluation The California Air Resources Board (ARB) may not enforce any element of regulations that would require a supplier to construct, operate, or provide funding to construct or operate a publicly available hydrogen fueling station. Annually, ARB must aggregate and share the number of hydrogen vehicles that manufacturers project will be sold or leased over the next three years and the total number of hydrogen vehicle registered in the state. Based on this

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Idle Reduction Revolving Loan Program for Public Entities The Alabama Department of Economic and Community Affairs (ADECA) provides low-interest energy efficiency loans through its Local Government Energy Loan program to local governments and educational institutions. Eligible energy efficiency improvement projects include those involving idle reduction equipment and natural gas and propane vehicle conversions or purchases. Dedicated and bi-fuel vehicles are eligible, and

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Grants The Maryland Energy Administration (MEA) administers the Maryland Alternative Fuel Infrastructure Program (AFIP), which provides grants to develop public access alternative fueling and charging infrastructure. Only Maryland-based private businesses are eligible, and projects must take place in the state. Grant awards will range from $35,000 to $500,000 and applicant cost share must be at least 50%. Funding is not currently available for the AFIP (verified April 2016). For

  5. Project Reports for Oneida Seven Generations Corp.- 2012 Project

    Broader source: Energy.gov [DOE]

    The primary goal of the Oneida Energy project is to achieve the environmental and economic benefits of using waste as a fuel for energy conversion.

  6. Fuel Cell Development and Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Fuel Cell Development and Test Laboratory at the Energy Systems Integration Facility. NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development projects through in-situ fuel cell testing. Current projects include various catalyst development projects, a system contaminant project, and the manufacturing project. Testing capabilities include but are not limited to single cell fuel cells and fuel cell stacks.

  7. Alternative fuel transit buses

    SciTech Connect (OSTI)

    Motta, R.; Norton, P.; Kelly, K.

    1996-10-01

    The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

  8. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  9. DOE Hydrogen and Fuel Cell Activities Panel Discussion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes & Standards Development Domestic Manufacturing & Supplier Base Public Awareness & Acceptance ... Projected Transportation Fuel Cell System Cost - projected to high volume ...

  10. Durable Catalysts for Fuel Cell Protection during Transient Conditions

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  11. Low Cost PEM Fuel Cell Metal Bipolar Plates

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  12. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  13. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  14. Fuel Cell Technologies Multimedia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Fuel Cell Technologies Multimedia Fuel Cell Technologies Multimedia View and download multimedia-including infographics, videos, and animations-related to hydrogen and fuel cell technologies, research, projects, and program activities. Infographics View the fuel cell electric vehicle infographic to learn about how fuel cell electric vehicles (FCEVs) work and some of the benefits of FCEVs, such as how they reduce greenhouse gas emissions, emit only water, and operate

  15. Fuel Cell Technologies Technical Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Fuel Cell Technologies Technical Publications Fuel Cell Technologies Technical Publications Access technical information about hydrogen; fuel cells; safety, codes, and standards; hydrogen and fuel cell technology market analysis; and jobs and economic impacts resulting from fuel cell deployment. This information is provided in documents such as technical and project reports, conference proceedings and journal articles, technical presentations, and websites. Hydrogen

  16. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  17. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  18. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  19. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  20. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  1. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  2. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  3. Fuel Cell Technologies Educational Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Fuel Cell Technologies Educational Publications Fuel Cell Technologies Educational Publications Access easy-to-understand fact sheets and other information designed to introduce hydrogen and fuel cell technologies to non-technical audiences. DOE Hydrogen and Fuel Cells Program Fact Sheets Fuel Cell Technologies Office Fact Sheet Progress and Accomplishments in Hydrogen and Fuel Cells Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects World's

  4. NREL: Hydrogen and Fuel Cells Research - Evaluation Results Show Continued

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvements in Fuel Cell Electric Vehicle Durability, Fuel Economy, Driving Range Evaluation Results Show Continued Improvements in Fuel Cell Electric Vehicle Durability, Fuel Economy, Driving Range Project Technology Validation: Fuel Cell Electric Vehicle Evaluation Contact Jennifer Kurtz Related Publications FCEV Composite Data Products New composite data products (CDPs) published by NREL's National Fuel Cell Technology Evaluation Center (NFCTEC) show that fuel cell durability has

  5. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop City of Tulare Renewable Biogas Fuel Cell Project Microsoft Word - AL2003-04.doc

  6. International Bio Fuels Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Jump to: navigation, search Name: International Bio Fuels Corporation Place: Vancouver, Washington State Zip: WA 98682 Product: Vancouver based Biodiesel project...

  7. Fuel Cells News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Obama Announces LPO Support for Distributed Energy Projects, New Guidance Includes Fuel Cells In August at the National Clean Energy Summit in Nevada, President Obama...

  8. DKRW Advanced Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Fuels LLC Place: Houston, Texas Zip: 77056 Product: Focues on projects that utilise coal gasification technology, including coal-to-liquids, methanation, and integrated coal...

  9. Sandia Energy - Widespread Hydrogen Fueling Infrastructure Is...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project Home Infrastructure Security Energy Transportation Energy Facilities Partnership Capabilities News News &...

  10. ARRA Project Info Combined 0112110.xls | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications ARRA Projects Chart Missouri Recovery Act State Memo Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  11. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  12. Gasification Systems 2013 Project Selections

    Broader source: Energy.gov [DOE]

    The Department of Energy in 2013 selected ten projects that will focus on reducing the cost of gasification with carbon capture for producing electric power, fuels, and chemicals. The projects will...

  13. SRNL LDRD - Current Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Projects Continuing Strategic Initiatives Long-Term, In-Situ Monitoring for Subsurface Contaminant Stability (Charles Turick) Spectroscopic Techniques for the Characterization of Particulates from Proliferation Activities (Eliel Villa-Aleman) Ternary Carbide Clad Coatings, and High-Conductivity Fuel System for Accident Tolerant Light Water Reactor Fuel (Robert Sindelar) Structural Integrity of Dual-Purpose Canister for Used Nuclear Fuel under Extended Storage and Transportation (Thad

  14. fuel cells | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fuel cells

  15. CNEEC - Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of developing systems that can lead to break-out high-efficiency, cost-effective solar energy-to-fuel technologies. The projects are closely tied together through two mechanisms:...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Reductions Grants The Carl Moyer Memorial Air Quality Standards Attainment Program (Program) provides incentives to cover the incremental cost of purchasing engines and equipment that are cleaner than required by law. Eligible projects include heavy-duty fleet modernization, light-duty vehicle replacements and retrofits, idle reduction technology, off-road vehicle and equipment purchases, and alternative fuel and electric vehicle infrastructure projects. The Program provides funds for

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Advanced Vehicle Technology Research and Demonstration Bonds Qualified state, tribal, and local governments may issue Qualified Energy Conservation Bonds subsidized by the U.S. Department of Treasury at competitive rates to fund capital expenditures on qualified energy conservation projects. Eligible activities include research and demonstration projects related to cellulosic ethanol and other non-fossil fuels, as well as advanced battery manufacturing technologies. Government entities may

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Financing The SouthCarolinaSAVES (SCSAVES) Green Community Program provides low cost financing to eligible government entities, institutions, and commercial and industrial entities for qualified conservation measures, including natural gas and propane vehicle conversions, incremental costs of eligible vehicles, and alternative fueling infrastructure. Financing is available for up to 100% of the project cost ranging from $500,000 to $5 million; projects must have a payback

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Emissions Reduction Grants The New Hampshire Department of Environmental Services (NHDES) provides U.S. Environmental Protection Agency Diesel Emissions Reduction Act (DERA) funding for projects that reduce diesel emissions in New Hampshire. Funding for between 25% and 100% of eligible project costs is available for businesses, individuals, and local or state agencies that reduce diesel emissions by converting engines to alternative fuels, retrofitting exhaust controls, purchasing new

  20. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  1. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  2. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  3. Progress in the R and D Project on Oxide Dispersion Strengthened and Precipitation Hardened Ferritic Steels for Sodium Cooled Fast Breeder Reactor Fuels

    SciTech Connect (OSTI)

    Kaito, Takeji; Ohtsuka, Satoshi; Inoue, Masaki

    2007-07-01

    High burnup capability of sodium cooled fast breeder reactor (SFR) fuels depends significantly on irradiation performance of their component materials. Japan Atomic Energy Agency (JAEA) has been developing oxide dispersion strengthened (ODS) ferritic steels and a precipitation hardened (PH) ferritic steel as the most prospective materials for fuel pin cladding and duct tubes, respectively. Technology for small-scale manufacturing is already established, and several hundreds of ODS steel cladding tubes and dozens of PH steel duct tubes were successfully produced. We will step forward to develop manufacturing technology for mass production to supply these steels for future SFR fuels. Mechanical properties of the products were examined by out-of-pile and in-pile tests including material irradiation tests in the experimental fast reactor JOYO and foreign fast reactors. The material strength standards (MSSs) were tentatively compiled in 2005 for ODS steels and in 1993 for PH steel. In order to upgrade the MSSs and to demonstrate high burnup capability of the materials, we will perform a series of irradiation tests in BOR-60 and JOYO until 2015 and contribute to design study for a demonstration SFR of which operation is expected after 2025. (authors)

  4. CHP R&D Project Descriptions

    Broader source: Energy.gov [DOE]

    The CHP R&D project portfolio includes advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, and demonstrations of these technologies. Project fact sheets and short project descriptions are provided below:

  5. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  6. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  7. Fuels Technologies

    Energy Savers [EERE]

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  8. Transportation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Transportation Projects Transportation Projects Because highway vehicles account for a large share of petroleum use, carbon dioxide (a primary greenhouse gas) emissions, and air pollution, advances in fuel cell power systems for transportation could substantially improve our energy security and air quality. However, few fuel-cell-powered vehicles are in use today; even fewer are available commercially. A number of fuel cell vehicle demonstrations are currently underway

  9. Apparatus for shearing spent nuclear fuel assemblies

    DOE Patents [OSTI]

    Weil, Bradley S.; Metz, III, Curtis F.

    1980-01-01

    A method and apparatus are described for shearing spent nuclear fuel assemblies of the type comprising an array of fuel pins disposed within an outer metal shell or shroud. A spent fuel assembly is first compacted in a known manner and then incrementally sheared using fixed and movable shear blades having matched laterally projecting teeth which slidably intermesh to provide the desired shearing action. Incremental advancement of the fuel assembly after each shear cycle is limited to a distance corresponding to the lateral projection of the teeth to ensure fuel assembly breakup into small uniform segments which are amenable to remote chemical processing.

  10. DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-05-12

    Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

  11. Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on cathode supports for PEM fuel cells, was given by Yong Wang of PNNL at a February 2007 meeting on new fuel cell projects.

  12. Updated NGNP Fuel Acquisition Strategy

    SciTech Connect (OSTI)

    David Petti; Tim Abram; Richard Hobbins; Jim Kendall

    2010-12-01

    A Next Generation Nuclear Plant (NGNP) fuel acquisition strategy was first established in 2007. In that report, a detailed technical assessment of potential fuel vendors for the first core of NGNP was conducted by an independent group of international experts based on input from the three major reactor vendor teams. Part of the assessment included an evaluation of the credibility of each option, along with a cost and schedule to implement each strategy compared with the schedule and throughput needs of the NGNP project. While credible options were identified based on the conditions in place at the time, many changes in the assumptions underlying the strategy and in externalities that have occurred in the interim requiring that the options be re-evaluated. This document presents an update to that strategy based on current capabilities for fuel fabrication as well as fuel performance and qualification testing worldwide. In light of the recent Pebble Bed Modular Reactor (PBMR) project closure, the Advanced Gas Reactor (AGR) fuel development and qualification program needs to support both pebble and prismatic options under the NGNP project. A number of assumptions were established that formed a context for the evaluation. Of these, the most important are: Based on logistics associated with the on-going engineering design activities, vendor teams would start preliminary design in October 2012 and complete in May 2014. A decision on reactor type will be made following preliminary design, with the decision process assumed to be completed in January 2015. Thus, no fuel decision (pebble or prismatic) will be made in the near term. Activities necessary for both pebble and prismatic fuel qualification will be conducted in parallel until a fuel form selection is made. As such, process development, fuel fabrication, irradiation, and testing for pebble and prismatic options should not negatively influence each other during the period prior to a decision on reactor type. Additional funding will be made available beginning in fiscal year (FY) 2012 to support pebble bed fuel fabrication process development and fuel testing while maintaining the prismatic fuel schedule. Options for fuel fabrication for prismatic and pebble bed were evaluated based on the credibility of each option, along with a cost and schedule to implement each strategy. The sole prismatic option is Babcock and Wilcox (B&W) producing uranium oxycarbide (UCO) tristructural-isotropic (TRISO) fuel particles in compacts. This option finishes in the middle of 2022 . Options for the pebble bed are Nuclear Fuel Industries (NFI) in Japan producing uranium dioxide (UO2) TRISO fuel particles, and/or B&W producing UCO or UO2 TRISO fuel particles. All pebble options finish in mid to late 2022.

  13. EM Completes Project to Maintain Water Quality of Spent Nuclear...

    Energy Savers [EERE]

    Completes Project to Maintain Water Quality of Spent Nuclear Fuel Basin at Idaho Site EM Completes Project to Maintain Water Quality of Spent Nuclear Fuel Basin at Idaho Site ...

  14. Development Plan for the Fuel Cycle Simulator

    SciTech Connect (OSTI)

    Brent Dixon

    2011-09-01

    The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

  15. Short-term energy outlook quarterly projections. Third quarter 1997

    SciTech Connect (OSTI)

    1997-07-01

    This document presents the 1997 third quarter short term energy projections. Information is presented for fossil fuels and renewable energy.

  16. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect (OSTI)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  17. Alternative transportation fuels

    SciTech Connect (OSTI)

    Askew, W.S.; McNamara, T.M.; Maxfield, D.P.

    1980-01-01

    The commercialization of alternative fuels is analyzed. Following a synopsis of US energy use, the concept of commercialization, the impacts of supply shortages and demand inelasticity upon commercialization, and the status of alternative fuels commercialization to date in the US are discussed. The US energy market is viewed as essentially numerous submarkets. The interrelationship among these submarkets precludes the need to commercialize for a specific fuel/use. However, the level of consumption, the projected growth in demand, and the inordinate dependence upon foreign fuels dictate that additional fuel supplies in general be brought to the US energy marketplace. Commercialization efforts encompass a range of measures designed to accelerate the arrival of technologies or products in the marketplace. As discussed in this paper, such a union of willing buyers and willing sellers requires that three general conditions be met: product quality comparable to existing products; price competitiveness; and adequate availability of supply. Product comparability presently appears to be the least problematic of these three requirements. Ethanol/gasoline and methanol/gasoline blends, for example, demonstrate the fact that alternative fuel technologies exist. Yet price and availability (i.e., production capacity) remain major obstacles. Given inelasticity (with respect to price) in the US and abroad, supply shortages - actual or contrived - generate upward price pressure and should make once-unattractive alternative fuels more price competitive. It is noted, however, that actual price competitiveness has been slow to occur and that even with price competitiveness, the lengthy time frame needed to achieve significant production capacity limits the near-term impact of alternative fuels.

  18. Corrugated Membrane Fuel Cell Structures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrugated Membrane Fuel Cell Structures Corrugated Membrane Fuel Cell Structures These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 4_ion_power_grot.pdf More Documents & Publications Breakout Group 3: Water Management US DRIVE Fuel Cell Technical Team Roadmap Automotive Perspective on PEM Evaluation

  19. NREL: Transportation Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Illustration of aerodynamic light-, medium, and heavy-duty vehicles. NREL research helps optimize the energy efficiency of a wide range of vehicle technologies and applications. NREL's innovative transportation research, development, and deployment projects accelerate widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. The following NREL transportation projects are propelling

  20. Project Submission Template

    Energy Savers [EERE]

    Department of Energy Stockbridge-Munsee Community - 2012 Project Project Reports for Stockbridge-Munsee Community - 2012 Project The ends to investigate the feasibility of utilizing renewable energy resources on- site in order to provide electric power as well as heating and cooling energy for the Stockbridge-Munsee Health and Wellness Center (SMHWC) as well as two support buildings that house an emergency diesel generator, a fuel storage tank, a workshop, and garage space for vehicles and

  1. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  2. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Fact Sheets Research Team Members Key Contacts Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1000 hours over a

  3. World nuclear fuel cycle requirements 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-26

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

  4. CX-010939: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 09/17/2013 Location(s): North Carolina Offices(s): National Energy Technology Laboratory

  5. CX-008332: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: B5.22 Date: 04/05/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  6. CX-012117: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fuel Cell Hybrid Walk-In Van Deployment Project CX(s) Applied: A9 Date: 05/21/2014 Location(s): Georgia Offices(s): Golden Field Office

  7. CX-010803: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1, B5.22 Date: 08/08/2013 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  8. CX-011758: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University of Delaware - Synthetic Methylotrophy to Liquid Fuel CX(s) Applied: B3.6 Date: 12/19/2013 Location(s): Delaware, New York Offices(s): Advanced Research Projects Agency-Energy

  9. CX-009856: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: A1, B5.22 Date: 01/16/2013 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  10. CX-008364: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Paint Disturbance and/or Removal Activities in Spent Fuel Project Facilities CX(s) Applied: B1.3 Date: 04/09/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  11. FE Categorical Exclusions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09162011 Location(s): South Windsor, Connecticut...

  12. CX-013870: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southeast Alternative Fuel Demonstration Project CX(s) Applied: A1, A9Date: 07/07/2015 Location(s): North CarolinaOffices(s): National Energy Technology Laboratory

  13. CX-013675: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex MH50 Fiber Optic Installation Project CX(s) Applied: B4.7Date: 05/19/2015 Location(s): IdahoOffices(s): Idaho Operations Office

  14. CX-011303: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota E85 Fueling Network Expansion Project CX(s) Applied: B5.22 Date: 10/08/2013 Location(s): Minnesota Offices(s): National Energy Technology Laboratory

  15. CX-009364: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, B5.1 Date: 09/19/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  16. CX-007595: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1 Date: 01/26/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  17. CX-007592: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: B5.22 Date: 01/27/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  18. CX-007946: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: B2.3, B5.1 Date: 02/09/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  19. CX-012145: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Connecticut Clean Cities Future Fuels Project CX(s) Applied: A1, B5.1 Date: 05/22/2014 Location(s): Connecticut Offices(s): National Energy Technology Laboratory

  20. CX-007585: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Minnesota E85 Fueling Network Expansion Project CX(s) Applied: B5.22 Date: 12/29/2011 Location(s): Minnesota Offices(s): National Energy Technology Laboratory

  1. CX-007719: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Carolina State University - Jet Fuel from Camelina Sativa: A Systems Approach CX(s) Applied: B3.6 Date: 11/23/2011 Location(s): North Carolina Offices(s): Advanced Research Projects Agency-Energy

  2. CX-011302: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Minnesota E85 Fueling Network Expansion Project CX(s) Applied: B5.22 Date: 10/08/2013 Location(s): Minnesota Offices(s): National Energy Technology Laboratory

  3. Categorical Exclusion Determinations: A7 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 28, 2011 CX-006912: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 09282011 Location(s): Kansas City, Kansas ...

  4. Methane conversion for highway fuel use (Methanol Plantship Project). Volume 1. Final report. Resource materials. Report for May 1992-May 1993

    SciTech Connect (OSTI)

    Fink, C.; Jackson, I.; Wright, S.; Booras, P.; Wise, A.

    1997-01-01

    The report presents results from a study undertaken to respond to PL 101-516. The law provided funding for `phase II of the development/design work on a floating methanol production plantship to advance work already completed under phase I of the project, which was authorized by section 152 of the Surface Transportation Act of 1982.` Phase I determined the feasibility of producing large volumes of low-cost methanol aboard a plantship. The report consists of two volumes: the final report FHWA-RD-93-091 and the Executive Summary FHWA-RD-93-092.

  5. Fuel Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  6. DOE Technology Validation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary/Distributed Generation Projects » DOE Technology Validation Projects DOE Technology Validation Projects Stationary fuel cells can be used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation for buildings, and co-generation of heat and power. The Fuel Cell Technologies Office has a number of demonstrations underway to develop and evaluate the performance of fuel cells for stationary applications. The status of DOE's

  7. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration). Project quarterly report, September 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Quimby, J.M.

    1992-02-01

    The objective of this contract is to investigate the removal of SO{sub x} and particulate matter from direct coal-fired combustion gas streams at high temperature and high pressure conditions. This investigation will be accomplished through a bench-scale testing and evaluation program employing sorbent mixed with a coal-water slurry for SO{sub x} removal, and an innovative particulate control concept. The particulate control device utilizes electrostatic agglomeration followed by a high efficiency mechanical collector (cyclone). The process goal is to achieve particulate collection efficiency better than that required by the 1979 new source performance standards. An additional goal is to demonstrate 70% SO{sub x} removal efficiency. This research project is now in the second of a 3 phase (Phase II) project. Phase II is to fabricate the combustor and particulate control devices and install the system at a test facility located at Research-Cottrell`s, KVB Western Laboratory, Santa Ana, CA. There are three functional categories, or tasks which are to be completed in sequence. These tasks are itemized as follows: Design, procurement, and installation; Shakedown and startup; Reporting. Attempts to validate the concept of electrostatic agglomeration were not possible in the shakedown program before budget constraints halted the program. What was learned was that electrostatic precipitation is feasible in the temperature range of 1600--1800{degrees}F and at pressures above 10 atmospheres.

  8. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. PDF icon apu2011_6_roychoudhury.pdf More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  9. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  10. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  11. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Partnership - Alternative Fuels Research TNS Automotive Chris White Communications Director cwhite@cafcp.org 2 TNS Automotive for California Fuel Cell Partnership ...

  12. Light Weight, Low Cost PEM Fuel Cell Stacks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Oct. 25, 2006. PDF icon 5cwru.pdf More Documents & Publications Fuel Cell Kickoff Meeting Agenda Light Weight, Low Cost PEM Fuel Cell Stacks Fuel Cell Projects Kickoff Meeting

  13. National Fuel Cell Technology Evaluation Center (NFCTEC); (NREL) National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam

    2014-03-11

    This presentation gives an overview of the National Fuel Cell Technology Evaluation Center (NFCTEC), describes how NFCTEC benefits the hydrogen and fuel cell community, and introduces a new fuel cell cost/price aggregation project.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Employer Invested Emissions Reduction Funding - South Coast The South Coast Air Quality Management District (SCAQMD) administers the Air Quality Investment Program (AQIP). AQIP provides funding to allow employers within SCAQMD's jurisdiction to make annual investments into an administered fund to meet employers' emissions reduction targets. The revenues collected are used to fund alternative mobile source emissions and trip reduction programs, including alternative fuel vehicle projects, on an

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuels Program Impact Studies The Oregon Department of Energy (ODOE) must conduct periodic impact studies related to the biofuels industry in the state. These studies should evaluate such criteria as: jobs created; current and projected feedstock availability; amount of biofuels blends produced and consumed in the state; cost comparison of biofuels blends and petroleum fuel; environmental impacts; and the extent to which Oregon producers import biofuels or biofuels feedstocks from outside the

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet Grants The Texas Commission on Environmental Quality (TCEQ) administers the Texas Clean Fleet Program (TCFP) as part of the Texas Emissions Reduction Plan. TCFP encourages owners of fleets containing diesel vehicles to permanently remove the vehicles from the road and replace them with alternative fuel vehicles (AFVs) or hybrid electric vehicles (HEVs). Grants are available to fleets to offset the incremental cost of such replacement projects. An entity that operates a fleet of at least 75

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Air Pollution Control Program The Air Pollution Control Program assists state, local, and tribal agencies in planning, developing, establishing, improving, and maintaining adequate programs for prevention and control of air pollution or implementation of national air quality standards. Plans may emphasize alternative fuels, vehicle maintenance, and transportation choices to reduce vehicle miles traveled. Eligible applicants may receive federal funding for up to 60% of project costs to implement

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    School Bus USA Clean School Bus USA is a public-private partnership that focuses on reducing children's exposure to harmful diesel exhaust by limiting school bus idling, implementing pollution reduction technologies, improving route logistics, and switching to clean fuels. Clean School Bus USA is part of the U.S. Environmental Protection Agency's National Clean Diesel Campaign and provides funding for projects designed to retrofit and/or replace older diesel school buses. Eligible applicants are

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Construction USA Clean Construction USA is a voluntary program that promotes the reduction of diesel exhaust emissions from construction equipment and vehicles by encouraging proper operations and maintenance, use of emissions-reducing technologies, and use of cleaner fuels. Clean Construction USA is part of the U.S. Environmental Protection Agency's National Clean Diesel Campaign, which offers funding for clean diesel construction equipment projects. For more information, see the Clean

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Agriculture USA Clean Agriculture USA is a voluntary program that promotes the reduction of diesel exhaust emissions from agricultural equipment and vehicles by encouraging proper operations and maintenance by farmers, ranchers, and agribusinesses, use of emissions-reducing technologies, and use of cleaner fuels. Clean Agriculture USA is part of the U.S. Environmental Protection Agency's National Clean Diesel Campaign, which offers funding for clean diesel agricultural equipment projects.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Infrastructure Grants and Loan Guarantees The Rural Energy for America Program (REAP) provides loan guarantees and grants to agricultural producers and rural small businesses to purchase renewable energy systems or make energy efficiency improvements. Eligible renewable energy systems include flexible fuel pumps, or blender pumps, that dispense intermediate ethanol blends. The maximum loan guarantee is $25 million and the maximum grant funding is 25% of project costs. At least 20% of the

  2. Comprehensive Energy Projects (CEP) and Innovative Financing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Comprehensive Energy Projects (CEP) and Innovative Financing Presented at the Technology Transition Corporation and U.S. Department of Energy Webinar: The Top 5 Fuel...

  3. Oneida Seven Generations Corp.- 2012 Project

    Broader source: Energy.gov [DOE]

    The primary goal of the Oneida Energy project is to achieve the environmental and economic benefits of using waste as a fuel for energy conversion.

  4. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Citation Details In-Document Search Title: Transportation Energy Futures ...

  5. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  6. Hydrogen Fueling Infrastructure Research and Station Technology Webinar Slides

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  7. Effects of Impurities of Fuel Cell Performance and Durability

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on fuel cell performance and durability, was given by Trent Molter of the University of Connecticut at a February 2007 meeting on new fuel cell projects.

  8. Fuel Cell Financing for Tax-Exempt Entities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investment Tax Credit (ITC) 1 can help reduce the cost of installing a fuel cell system. ... private-sector project developers such as fuel cell vendors and energy service providers. ...

  9. Describing Current & Potential Markets for Alternative-Fuel Vehicles

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy, and Safety Data" on alternative fuels and alternative-fuel vehicles. No specific projects are currently underway. Some related data may be developed as part of the EPACT...

  10. Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell Technologies Program (FCTP) (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This fact sheet reports on the City of Burbank, California's fuel cell bus demonstration project and the U.S. Department of Energy's (DOE) involvement; included are specifications for the fuel cell bus and information about its operation.

  11. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Bus Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surpasses 2016 and Ultimate Technical Targets Fuel Cell Electric Bus Reliability Surpasses 2016 and Ultimate Technical Targets Project Technology Validation: Fuel Cell Electric Bus Evaluations Contact Leslie Eudy Related Publications Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015 Results from NREL's fuel cell electric bus (FCEB) evaluations show that manufacturers have made consistent progress over the last few years in improving durability and reliability. The transit industry

  12. Renewable & Alternative Fuels - U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    (EIA) Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative transportation fuels All renewable & alternative fuels data reports Analysis & Projections Major Topics Most popular Alternative Fuels Capacity and generation Consumption Environment Industry Characteristics Prices Production Projections Recurring Renewable energy type All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues &

  13. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FIRST: Hydrogen Fueling Infrastructure Research and Station Technology H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) is a project launched by the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy. The project leverages capabilities at the national laboratories to address the technology

  14. Highlights from U.S. Department of Energy's Fuel Cell Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects This fact sheets highlights ...

  15. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  16. Seed Project - Coates > New Research Projects > Research > The Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Center at Cornell New Research Projects In This Section Seed Project - Coates Research Initiative - Abruña Research Initiative - Schlom Transport Dynamics and Carbonation Tolerance in Solution Processable Ionomers: Enabling a Viable Alkaline Anion Exchange Membrane Fuel Cell PI Team members include: Geoffrey Coates and Héctor Abruña. A major advantage of alkaline fuel cells, relative to acidic fuel cells, is their enhanced reaction kinetics for both oxygen reduction and fuel

  17. Renewable Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Fuels 5 th Annual Green Technologies Conference IEEE IEEE Ch IEEE IEEE H l Helena L L. Chum April 5 April 5 th 2013 , 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Outline * Renewable Fuels Renewable Fuels * Biomass and Bioenergy Today C di i i i i /d l i * Commoditization existing/developing * Sustainability y Considerations to Imp prove Agriculture and

  18. FUEL ELEMENT

    DOE Patents [OSTI]

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  19. Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  20. Polymer Electrolyte Fuel Cell Lifetime Limitations: The Role of Electrocatalyst Degradation

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  1. Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  2. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels- Fact Sheet, 2015

    Broader source: Energy.gov [DOE]

    Factsheet summarizing how this project will modify a gas turbine combustion system to operate on hydrogen-rich opportunity fuels

  3. Development and Validation of a Two-phase, Three-dimensional Model for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  4. Development of Micro-structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulation and Experimental Approaches

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  5. Fuel Cell Vehicle and Infrastructure Learning Demonstration Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2008-10-13

    Presentation on the Fuel Cell Vehicle and Infrastructure Learning Demonstration project prepared for the 215th Electrochemical Society Meeting.

  6. Project Reports for Chaninik Wind Group- 2010 Project

    Broader source: Energy.gov [DOE]

    The goals of this project are to reduce the consumption of fossil fuel by 40% in four Lower Kuskokwim Alaska villages and use wind energy to displace 200,000 gallons of diesel fuel, 70,000 of which is now being used to generate power, and 130,000 of which will be captured and stored for use as heat.

  7. NREL: Transportation Research - Emissions and Fuel Economy Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emissions and Fuel Economy Analysis Photo of a man hooking up test instruments to an engine mounted on an engine dynamometer. An NREL engineer maintains an engine fuel economy and emissions test stand at the ReFUEL Laboratory. Photo by Dennis Schroeder, NREL NREL's emissions and fuel economy testing and analysis projects help address greenhouse gas and pollutant emissions by advancing the development of new fuels and engines that deliver both high efficiency and reduced emissions. Emissions that

  8. Fuel Cell Technologies Manufacturing Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing » Fuel Cell Technologies Manufacturing Related Links Fuel Cell Technologies Manufacturing Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded fuel cell technologies manufacturing activities, other EERE and federal manufacturing activities and initiatives, research plans and roadmaps, workshops, and additional related links. DOE-Funded Fuel Cell Technologies Manufacturing Activities Each year, hydrogen and fuel cell projects funded by

  9. NREL: Hydrogen and Fuel Cells Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cells Research Photo of a fuel cell electric vehicle refueling at a hydrogen dispensing station. NREL hydrogen and fuel cell research focuses on developing, integrating, and demonstrating hydrogen production and delivery, hydrogen storage, and fuel cell technologies for transportation, stationary, and portable applications. Projects range from fundamental research to overcome technical barriers, manufacturing process improvement to enable high-volume fuel cell production,

  10. Advanced Materials and Concepts for Portable Power Fuel Cells | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy and Concepts for Portable Power Fuel Cells Advanced Materials and Concepts for Portable Power Fuel Cells These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 9_lanl_zelenay.pdf More Documents & Publications Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts New MEA Materials for Improved DMFC Performance, Durability and Cos

  11. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect (OSTI)

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough, component sizing, and utility needs. These data, along with process efficiency results from the model, were subsequently used to calculate the cost of electricity. Sensitivity analyses were conducted to correlate the concentrations of key impurities in the fuel gas feedstock to the cost of electricity.

  12. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  13. Appendix A: Reference case projections

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reference case projections by end-use sector and country grouping Table F1. Total world delivered energy consumption by end-use sector and fuel, 2011-40 (quadrillion Btu) Sector...

  14. Chaninik Wind Group- 2010 Project

    Broader source: Energy.gov [DOE]

    The goals of this project are to reduce the consumption of fossil fuel by 40% in four Lower Kuskokwim Alaska villages and use wind energy to displace 200,000 gallons of diesel fuel, 70,000 of which is now being used to generate power, and 130,000 of which will be captured and stored for use as heat.

  15. BPA, public utilities fueling the energy efficiency powerhouse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    public-utilities-fueling-the-energy-efficiency-powerhouse Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives...

  16. Report: Efficiency, Alternative Fuels to Impact Market Through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analyzes projections made by the U.S. Energy Information Administration in its Annual Energy Outlook 2014. Liquid fuelsgasoline, diesel fuel, and E85, which can...

  17. NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-01-01

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  18. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    none,

    2012-12-01

    The 2012 Annual Progress Report summarizes fiscal year 2012 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program.

  19. Patrick Kwan | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrick Kwan Graduate student Subtask 3 project: "Protein Film Electrochemistry for the Investigation of Redox Enzymes" Related links: Patrick Kwan explores solar fuel production

  20. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    The 2012 Annual Progress Report summarizes fiscal year 2012 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program.

  1. EERE Success Story-Advancing Hydrogen Infrastructure and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The project was established by FCTO, drawing on existing and emerging core capabilities at the national labs. The Fuel Cell Technologies Office (FCTO) conducts comprehensive ...

  2. Microchannel High-Temperature Recuperator for Fuel Cell Systems

    SciTech Connect (OSTI)

    2010-02-01

    This factsheet describes a research project whose goal is to build an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system.

  3. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Next Generation Manufacturing Processes project to develop a unique, fuel-flexible catalytic combustor capable of enabling ultra-low emission, lean premixed combustion of a ...

  4. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

  5. Categorical Exclusion Determinations: Advanced Research Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... November 19, 2013 CX-011740: Categorical Exclusion Determination Stanford University - Robust Multifunctional Battery Chassis Systems for Automotive Applications CX(s) Applied: ...

  6. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  7. Fuel Cells and RPSs: An Introduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    briefing papers and materials for state policymakers and others on the Hydrogen and Fuel Cells Project page at www.cleanenergystates.org To get on the Hydrogen listserv, send ...

  8. Fuel Cell 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    101 Fuel Cell 101 Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. PDF icon apu2011_2_hoffman.pdf More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Waste-to-Energy Projects at Army Installations Comparison of Fuel Cell Technologies: Fact Sheet

  9. Valve for fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, D.W.

    1984-01-01

    A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.

  10. Valve for fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, David W.

    1985-01-01

    A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.

  11. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell ...

  12. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems ...

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  14. Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    M. Namazian, S. Sethuraman and G. Venkataraman

    2004-12-31

    Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

  15. PURPA and solid fuels

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    Speaking before the FERC during the Spring, 1987 PURPA Hearings, Dr. Thomas A.V. Cassel, president of the Philadelphia, Pennsylvania-based Reading Energy Group, testified on the role PURPA has played in the development of the nation's solid fuel resource. Reading's Energy Group has in excess of $150 million of cogeneration assets under construction. These projects represent more than 65 MW and are fired by solid fuels which, prior to PURPA's enactment, were considered to be valueless waste and were overlooked by the electric utility industry. These plants will burn lignite and culm. Because of PURPA, culm will soon be eliminated as an eyesore and source of river pollution, and, at the same time, will help revitalize depressed mining areas.

  16. Materials and Modules for Low Cost, High Performance Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advance Patent Waiver W(A)2010-041 Kick-Off Meeting for New Fuel Cell Projects CARISMA: A Networking Project for High Temperature PEMFC MEA Activities ...

  17. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  18. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  19. Development of alkaline fuel cells.

    SciTech Connect (OSTI)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  20. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  1. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  2. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  3. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  4. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  5. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  6. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 1112011 2 | Fuel Cell Technologies Program Source: US ...

  7. TEXAS LPG FUEL CELL DEVELOPMENT AND DEMONSTRATION PROJECT Full-Text - Submission contains both citation data and full-text of the journal article. Full-text can be either a pre-print or post-print, but not the copyrighted article.

    SciTech Connect (OSTI)

    SOUTHWEST RESEARCH LABORATORY SUBMITTED BY SUBCONTRACTOR, RAILROAD COMMISSION OF TEXAS

    2004-07-26

    The State Energy Conservation Office has executed its first Fuel Cell Project which was awarded under a Department of Energy competitive grant process. The Texas LPG Fuel Processor Development and Fuel Cell Demonstration Program is a broad-based public/private partnership led by the Texas State Energy Conservation Office (SECO). Partners include the Alternative Fuels Research and Education Division (AFRED) of the Railroad Commission of Texas; Plug Power, Inc., Latham, NY, UOP/HyRadix, Des Plaines, IL; Southwest Research Institute (SwRI), San Antonio, TX; the Texas Natural Resource Conservation Commission (TNRCC), and the Texas Department of Transportation (TxDOT). The team proposes to mount a development and demonstration program to field-test and evaluate markets for HyRadix?s LPG fuel processor system integrated into Plug Power?s residential-scale GenSys 5C (5 kW) PEM fuel cell system in a variety of building types and conditions of service. The program?s primary goal is to develop, test, and install a prototype propane-fueled residential fuel cell power system supplied by Plug Power and HyRadix in Texas. The propane industry is currently funding development of an optimized propane fuel processor by project partner UOP/HyRadix through its national checkoff program, the Propane Education and Research Council (PERC). Following integration and independent verification of performance by Southwest Research Institute, Plug Power and HyRadix will produce a production-ready prototype unit for use in a field demonstration. The demonstration unit produced during this task will be delivered and installed at the Texas Department of Transportation?s TransGuide headquarters in San Antonio, Texas. Simultaneously, the team will undertake a market study aimed at identifying and quantifying early-entry customers, technical and regulatory requirements, and other challenges and opportunities that need to be addressed in planning commercialization of the units. For further information please contact Mary-Jo Rowan at mary-jo.rowan@cpa.state.tx.us

  8. CLIMATE CHANGE FUEL CELL PROGRAM

    SciTech Connect (OSTI)

    Mike Walneuski

    2004-09-16

    ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

  9. Metrology for Fuel Cell Manufacturing

    SciTech Connect (OSTI)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  10. Winters fuels report

    SciTech Connect (OSTI)

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  11. Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision Makers | Department of Energy Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers This step-by-step manual guides readers through the process of implementing a fuel cell stationary power project. The guide outlines the basics of fuel cell technology and describes how fuel cell projects can meet on-site energy service needs as well as support strategic agency

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Hybrid and Zero Emission Light-Duty Public Fleet Vehicle Fleet Rebates The Public Fleet Pilot Project (PFPP) offers rebates to eligible state and local public entities for the purchase of qualified light-duty fleet vehicles located in disadvantaged communities. The rebates are for up to $5,250 for plug-in hybrid electric vehicles, $10,000 for battery electric vehicles, and $15,000 for fuel-cell electric vehicles the California Air Resources Board (ARB) has certified. Rebates are

  13. EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This success story highlights the EPAct Alternative Fuel Transportation Program's series of workshops that bring fleets regulated under the Energy Policy Act of 1992 (EPAct) together with Clean Cities stakeholders and fuel providers to form and strengthen regional partnerships and initiate projects that will deploy more alternative fuel infrastructure.

  14. Greater fuel diversity needed to meet growing US electricity demand

    SciTech Connect (OSTI)

    Burt, B.; Mullins, S.

    2008-01-15

    Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

  15. Nuclear Fuels Storage & Transportation Planning Project Documents...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It was cochaired by Rep. Lee H. Hamilton and Gen. Brent Scowcroft. Other Commissioners were Mr. Mark H. Ayers, the Hon. Vicky A. Bailey, Dr. Albert Carnesale, Sen. Pete Domenici, ...

  16. Connecticut Clean Cities Future Fuels Project

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. Chicago Area Alternative Fuels Deployment Project (CAAFDP)

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  18. Financing Alternatives for Fuel Cell Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Conference Call May 21, 2008 Lee White Executive Vice President George K. Baum & Co. ... and Manager for George K. Baum & Company at its Denver Public Finance Headquarters. ...

  19. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel cells are the most energy efficient devices for extracting power from fuels. Capable of running on a variety of fuels, including hydrogen, natural gas, and biogas, fuel cells ...

  20. Status of U.S. FCEV and Infrastructure Learning Demonstration Project (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2011-03-01

    Presented at the Japan Hydrogen and Fuel Cell Demonstration Project (JHFC), 1 March 2011, Tokyo, Japan. This presentation summarizes the status of U.S. fuel cell electric vehicles and infrastructure learning demonstration project.

  1. California Fuel Cell Partnership: Alternative Fuels Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provides information about alternative fuels research. PDF icon cafcpinitiativescall.pdf More Documents & Publications The Department of Energy Hydrogen and Fuel Cells Program ...

  2. Project Profile: Commercial Development of an Advanced Linear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Development of an Advanced Linear-Fresnel-Based CSP Concept Project Profile: Commercial Development of an Advanced Linear-Fresnel-Based CSP Concept SkyFuel logo SkyFuel, ...

  3. Project Profile: High-Concentration, Low-Cost Parabolic Trough...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentration, Low-Cost Parabolic Trough System for Baseload CSP Project Profile: High-Concentration, Low-Cost Parabolic Trough System for Baseload CSP SkyFuel logo SkyFuel, under ...

  4. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  5. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  6. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  7. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on

  8. Alternative Fuels Data Center: Natural Gas Fuel Safety

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on

  9. Department of Energy Offers Severstal Dearborn, LLC a $730 Million Conditional Loan Commitment for Michigan Project

    Broader source: Energy.gov [DOE]

    Project Expected to Generate Over 2,500 Jobs and Manufacture Advanced Steel to Improve Fuel Efficiency

  10. Molecular-scale, Three-dimensional Non-Platinum Group Metal Electrodes for Catalysis of Fuel Cell Reactions

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  11. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  12. Final Report for the H2Fuel Bus

    SciTech Connect (OSTI)

    Jacobs, W.D.

    1998-11-25

    The H2Fuel Bus is the world's first hydrogen-fueled electric hybrid transit bus. It was a project developed through a public/private partnership involving several leading technological and industrial organizations, with primary funding by the Department of Energy (DOE). The primary goals of the project are to gain valuable information on the technical readiness and economic viability of hydrogen fueled buses and to enhance the public awareness and acceptance of emerging hydrogen technologies.

  13. Residential Energy Consumption Survey (RECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative transportation fuels All renewable & alternative fuels data reports Analysis & Projections Major Topics Most popular Alternative Fuels Capacity and generation Consumption Environment Industry Characteristics Prices Production Projections Recurring Renewable energy type All reports Browse by Tag Alphabetical Frequency Tag Cloud ‹ See all Renewable Reports

  14. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a “real-world” retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation’s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products’ Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user’s fueling experience.

  15. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    SciTech Connect (OSTI)

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  16. NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure April 30, 2014 A new project led by the Energy Department's National Renewable Energy Laboratory (NREL) and Sandia National Laboratories will support H2USA, a public-private partnership co-launched by industry and the Energy Department, and will work to ensure that hydrogen fuel cell vehicle owners have a positive fueling experience as fuel cell electric vehicles are introduced starting in 2014-2015. By tackling the

  17. Fuel Cell Technologies Office Past Financial Opportunities and Selections |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Financial Opportunities » Fuel Cell Technologies Office Past Financial Opportunities and Selections Fuel Cell Technologies Office Past Financial Opportunities and Selections Past funding opportunities from the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office are listed below. Since 2003, DOE has awarded funding to a number of science and research projects to support research, development, and demonstration of hydrogen and fuel cell technologies. Find

  18. Alternative Fuels Lessons Learned Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Lessons Learned Workshop Alternative Fuels Lessons Learned Workshop Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. PDF icon melendez_alt_fuels_lessons.pdf More Documents & Publications Geographically Based Hydrogen Demand and Infrastructure Analysis SANBAG Natural Gas Truck Project Vehicle Technologies Office Merit Review 2015: Clean Cities "Tiger

  19. Report on interim storage of spent nuclear fuel

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  20. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support for decommissioning projects. Whether the need is assistance with the development of technical basis documents or advice on how to identify, measure and assess the presence of radiological materials, ORISE can help determine the best course for an environmental cleanup project. Our key areas of expertise include fuel