Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuel Transportation Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review: EPAct State and Alternative Fuel Provider Fleets "Alternative Fuel Transportation Program" Dana O'Hara, DOE Ted Sears, NREL Vehicle Technologies Program June 20,...

2

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network [OSTI]

collectors. In a Polymer Electrolyte Membrane (PEM) fuel cell, which is widely regarded as the most promisingFUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fuel Cells -- is the key to making it happen. Stationary fuel cells can be used for backup power, power for remote loca

3

Fuel Cell Technologies Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CSD Workshop Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Energy Efficiency and Renewable Energy U.S....

4

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one be Stored? Hydrogen storage will be required onboard vehicles and at hydrogen production sites, hydrogen

5

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability Dated...

6

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Appendix D: Project Evaluation Form  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings | DepartmentCaseEnergyDepartment| DepartmentA -

7

Automated Fuel Dispensing System Form Instructions  

E-Print Network [OSTI]

Automated Fuel Dispensing System Form Instructions If additional forms are necessary to provide(s) are hired and will be obtaining fuel, an Add Driver Form MUST be submitted for entry into the web database and/or diesel fuel to operate. Note: When a new vehicle, golf cart (gasoline), etc., is placed

Fernandez, Eduardo

8

Alternative Fuel Transportation Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on

9

National Spent Nuclear Fuel Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

need to safely and efficiently manage all DOE-owned spent nuclear fuel and high level waste and prepare it for disposal. The National Spent Nuclear Fuel Program is addressing...

10

Report Form for Program Termination  

E-Print Network [OSTI]

Report Form for Program Termination Program(s) to be deleted: Effective date of termination: 1. List reasons for termination and describe the background leading to this decision. 2. Technical the last five years. #12;3. Impact of the termination. Internal 3.1 What if any impact

Saskatchewan, University of

11

Fuel Cell Technologies Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0 ProgramFuel

12

Fuel Cell Technologies Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0 Program

13

ADMISSION INFORMATION FORM MSW Program  

E-Print Network [OSTI]

ADMISSION INFORMATION FORM MSW Program Please indicate the MSW degree plan(s) for which you would.5 overall GPA in social work courses) In completing your application to the MSW program, please be aware of the following: 1. The MSW courses start in the summer and are offered during the summer, fall and spring

Ward, Karen

14

Hydrogen, Fuel Cells and Infrastructure Technologies Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

15

Hydrogen, Fuel Cells and Infrastructure Technologies Program...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

16

1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program  

E-Print Network [OSTI]

, and Specialty Vehicles Fuel cells can be a cost-competitive option for critical-load facilities, backup power1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies

17

FUEL CELL TECHNOLOGIES PROGRAM Case Study: Fuel  

E-Print Network [OSTI]

)/hour/ton of cooling capacity. The absorption chillers' internal pumps consume approximately 0.07 kW (supplied-switching generate significant heat during operation and must be kept cool to maintain reliable phone connectivity through March), cooling water conveys waste heat from the fuel cells to an unfired furnace for space

18

1986 fuel cell seminar: Program and abstracts  

SciTech Connect (OSTI)

Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

none,

1986-10-01T23:59:59.000Z

19

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network [OSTI]

and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially, such as a hydrogen fueling station or hydrogen fuel cell vehicle. Technology validation does not certify, and the Federal Government to evaluate hydrogen fuel cell vehicle and infrastructure technologies together in real

20

FUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and  

E-Print Network [OSTI]

. Many odorants can also contaminate fuel cells. Hydrogen burns very quickly. Under optimal combustionFUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and Standards Hydrogen and fuel cell technologies, nuclear, natural gas, and coal with carbon sequestration. Fuel cells provide a highly efficient means

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FUEL CELL TECHNOLOGIES PROGRAM Small Business  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Small Business Innovation Research (SBIR) Award Success Story Fuel up to 90 MW per year with full utilization. FuelCell Energy has received Small Business Innovation compression at fueling stations. However in the short term, EHCs can be used to compress hydro

22

National Fuel (Gas)- Small Commercial Conservation Program  

Broader source: Energy.gov [DOE]

In conjunction with NYSERDA's Existing Facilities Program, National Fuel provides an energy efficient equipment application for custom and standard rebates. These rebates are available for large...

23

Fuel Cell Technologies Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0

24

Nuclear Spent Fuel Program Drivers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was created to plan and coordinate the management of Department of Energy-owned spent nuclear fuel. It was established as a result of a 1992 decision to stop spent nuclear fuel...

25

CLIMATE CHANGE FUEL CELL PROGRAM  

SciTech Connect (OSTI)

This report discusses the first year of operation of a fuel cell power plant located at the Sheraton Edison Hotel, Edison, New Jersey. PPL EnergyPlus, LLC installed the plant under a contract with the Starwood Hotels & Resorts Worldwide, Inc. A DFC{reg_sign}300 fuel cell, manufactured by FuelCell Energy, Inc. of Danbury, CT was selected for the project. The fuel cell successfully operated from June 2003 to May 2004. This report discusses the performance of the plant during this period.

Steven A. Gabrielle

2004-12-03T23:59:59.000Z

26

Hydrogen & Fuel Cells -Program Overview -  

E-Print Network [OSTI]

, Panasonic, Delphi Technologies Clean Energy Patent Growth Index Source: Clean Energy Patent Growth Index #12 and Peer Evaluation Meeting May 14, 2012 #12;Petroleum 37% Natural Gas 25% Coal 21% Nuclear Energy 9, 2010 Fuel Cells can apply to diverse sectors #12;3 Fuel Cells ­ An Emerging Global Industry Clean

27

Climate Change Fuel Cell Program  

SciTech Connect (OSTI)

A 200 kW, natural gas fired fuel cell was installed at the Richard Stockton College of New Jersey. The purpose of this project was to demonstrate the financial and operational suitability of retrofit fuel cell technology at a medium sized college. Target audience was design professionals and the wider community, with emphasis on use in higher education. ''Waste'' heat from the fuel cell was utilized to supplement boiler operations and provide domestic hot water. Instrumentation was installed in order to measure the effectiveness of heat utilization. It was determined that 26% of the available heat was captured during the first year of operation. The economics of the fuel cell is highly dependent on the prices of electricity and natural gas. Considering only fuel consumed and energy produced (adjusted for boiler efficiency), the fuel cell saved $54,000 in its first year of operation. However, taking into account the price of maintenance and the cost of financing over the short five-year life span, the fuel cell operated at a loss, despite generous subsidies. As an educational tool and market stimulus, the fuel cell attracted considerable attention, both from design professionals and the general public.

Alice M. Gitchell

2006-09-15T23:59:59.000Z

28

National Spent Fuel Program Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

define the means to implement the requirements defined in the Level I documents. Implementation is defined through program, strategic, and QA plans; schedules; and procedures...

29

Climate Change Fuel Cell Program  

SciTech Connect (OSTI)

Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

Paul Belard

2006-09-21T23:59:59.000Z

30

Fuel Cell Technologies Program Overview  

Broader source: Energy.gov (indexed) [DOE]

1 http:cepgi.typepad.comfilescepgi-4th-quarter-2011-1.pdf United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel...

31

CLIMATE CHANGE FUEL CELL PROGRAM  

SciTech Connect (OSTI)

ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

Mike Walneuski

2004-09-16T23:59:59.000Z

32

Status of the US Fuel Cell Program  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is sponsoring major programs to develop high efficiency fuel cell technologies to produce electric power from natural gas and other hydrogen sources. Fuel cell systems offer attractive potential for future electric power generation and are expected to have worldwide markets. They offer ultra-high energy conversion efficiency and extremely low environmental emissions. As modular units for distributed power generation, fuel cells are expected to be particularly beneficial where their by-product, heat, can be effectively used in cogeneration applications. Advanced fuel cell power systems fueled with natural gas are expected to be commercially available after the turn of the century.

Williams, M.C.

1996-04-01T23:59:59.000Z

33

Hydrogen & Fuel Cells - Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health and ProductivityEnergyEnergyHybrid MembraneHydroVisionProgram

34

Fuel Cell Technologies Program Overview  

E-Print Network [OSTI]

per kW, 5,000-hr durability Hydrogen Cost Technology Validation: Technologies Techno Barri y g. Benefits · Efficiencies can be 60% (electrical) and 3 60% (electrical) and 85% (with CHP) · > 90% reduction (> 40% increase over 2008) Fuel cells can be a cost-competitive option for critical

35

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network [OSTI]

resources including fossil fuels, such as coal (preferentially with carbon sequestration), natural gas, solar, geothermal, nuclear, coal with carbon sequestration, and natural gas. This diversity of sources gas with carbon sequestration are preferred. Gasification Gasification is a process in which coal

36

AMS INTERNSHIP PROGRAM Employer Posting Form  

E-Print Network [OSTI]

AMS INTERNSHIP PROGRAM Employer Posting Form Organization Name WorksafeBC Location 6951 Westminster 604-279-8136 Fax Skills acquired during this internship include Microsoft Excel and/or Microsoft

Pulfrey, David L.

37

Awareness Program Fuels Energy Savings Projects  

E-Print Network [OSTI]

AWARENESS PROGRAM FUELS ENERGY SAVINGS PROJECTS ALEKS M. KLIDZEJS Senior Mechanical Engineer 3M Company Saint Paul, Minnesota ABSTRACT Energy awareness concepts were incorporated as part of a plant energy survey and played a major part... in the followup program. Plant manager support was received and multi-disciplinary task group was established to review and recommend energy saving potentials. Beyond instilling traditional benefits of an awareness program, capital expenditure energy savings...

Klidzejs, A. M.

38

High temperature methods for forming oxidizer fuel  

DOE Patents [OSTI]

A method of treating a formation fluid includes providing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes carbon dioxide, hydrogen sulfide, hydrocarbons, hydrogen or mixtures thereof. Molecular oxygen is separated from air to form a molecular oxygen stream comprising molecular oxygen. The first gas stream is combined with the molecular oxygen stream to form a combined stream comprising molecular oxygen and the first gas stream. The combined stream is provided to one or more downhole burners.

Bravo, Jose Luis (Houston, TX)

2011-01-11T23:59:59.000Z

39

DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen...

40

Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Presented at the DOE-DOD...

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 DOE Hydrogen and Fuel Cells Program Annual Merit Review Proceedings Available Online 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review Proceedings Available Online...

42

Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review and Peer...

43

Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer...

44

Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer...

45

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...  

Broader source: Energy.gov (indexed) [DOE]

Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks...

46

Air Quality: Monthly Hazardous Material Use, Fuel Consumption, and Equipment Operation Forms  

E-Print Network [OSTI]

Air Quality: Monthly Hazardous Material Use, Fuel Consumption, and Equipment Operation Forms Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 The conditions of SLAC's air quality permits specify that all subject hazardous

Wechsler, Risa H.

47

1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program  

E-Print Network [OSTI]

Electricity Natural Gas Power Heat + Cooling Electricity Cooling Natural GasNatural Gas or Biogas Fuel Cell H Excess for Our Energy Future 5 | Fuel Cell Technologies Program eere.energy.govSource: US DOE 10/2010 #12;Biogas Cell Technologies Program eere.energy.gov #12;Biogas Resource Example: Methane from Waste Water

48

Fuel Cell Program 2003 Hydrogen and Fuel Cells Merit Review Meeting  

E-Print Network [OSTI]

Fuel Cell Program 2003 Hydrogen and Fuel Cells Merit Review Meeting Rod Borup, Michael Inbody, Jose in Fuel Cell Reformers #12;Fuel Cell Program Technical Objectives: Examine Fuel Effects on Fuel Processor processor and stack lifetime and durability. · Fuel processor catalyst stability and activity · Evaluate

49

DOE Hydrogen and Fuel Cells Program Plan (September 2011)  

Fuel Cell Technologies Publication and Product Library (EERE)

The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities

50

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage Developing safe, reliable, compact, and cost of space. Where and How Will Hydrogen be Stored? Hydrogen storage will be required onboard vehicles to storing hydrogen include: · Physical storage of compressed hydrogen gas in high pressure tanks (up to 700

51

FUEL CELL TECHNOLOGIES PROGRAM Small Business  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Small Business Innovation Research (SBIR) Award Success Story Proton Energy Systems Proton Energy Systems is a suc- cessful small business specializing in clean production that can be coupled with HOGEN RE® hydrogen generators are wind, solar, hydro, and wave power. Proton

52

American Studies Graduate Program Advisor Form  

E-Print Network [OSTI]

American Studies Graduate Program Advisor Form Thank you for your interest in the American Studies must first secure an advisor in order to be considered for admission. The first-year advisor can, American Studies is not in a position to assign faculty to serve as advisors. It is, therefore

Dyer, Bill

53

AMS INTERNSHIP PROGRAM Employer Posting Form  

E-Print Network [OSTI]

AMS INTERNSHIP PROGRAM Employer Posting Form Organization Name Reframe Marketing Inc. Location on an Internship basis. Because we are a smaller company, you will get to learn lots since you are expected to fill · not guaranteed a job at the end of the internship · flexibility of working from home If you are interested

Pulfrey, David L.

54

AMS INTERNSHIP PROGRAM Employer Posting Form  

E-Print Network [OSTI]

AMS INTERNSHIP PROGRAM Employer Posting Form Organization Name Star Solutions International internship. The Visual Communication/ Marketing Intern will use their skills and knowledge to create, produce. Completion of this project will be the main focus of the internship. SKILLS REQUIRED AND/OR RECOMMENDED Must

Pulfrey, David L.

55

AMS INTERNSHIP PROGRAM Employer Posting Form  

E-Print Network [OSTI]

AMS INTERNSHIP PROGRAM Employer Posting Form Organization Name Star Solutions International for 2 - 3 high-energy, resourceful individuals for a 10-12 week internship. This is an entry-level internship in marketing and sales. This position will be working with senior marketing and sales executives

Pulfrey, David L.

56

Application Form for Replacement Diploma/Program Certificate (Form must be notarized)  

E-Print Network [OSTI]

Application Form for Replacement Diploma/Program Certificate (Form must be notarized) Complete to Princeton University as follows: Replacement Diploma - $75 Replacement Program Certificate - $30 Please

57

Fuel Flexible Turbine System (FFTS) Program  

SciTech Connect (OSTI)

In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone?s lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was tested in a C65 engine operating on 100% hydrogen and with the redesigned combustion liner - Combustion Liner Design A - installed. The results were promising for the FFTS program as the system was able to burn 100% hydrogen fuel without flashback while maintaining good combustion performance. While initial results have been demonstrated the feasibility of this program, further research is needed to determine whether these results will be repeated with FFTS-4 injectors installed in all injector ports and over a wide range of operating conditions and fuel variations.

None

2012-12-31T23:59:59.000Z

58

EISA 2007: Focus on Renewable Fuels Standard Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EISA 2007: Focus on Renewable Fuels Standard Focus on Renewable Fuels Standard Program Paul Argyropoulos Paul Argyropoulos Office of Office of T Tr ransportation ansportation and...

59

DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels...  

Broader source: Energy.gov (indexed) [DOE]

5.pdf More Documents & Publications 2010 DOE EERE Vehicle Technologies Program Merit Review - Fuels Technologies 2011 Annual Merit Review Results Report - Fuels & Lubricants DOE...

60

New Mexico Hydrogen Fuels Challenge Program Description The New...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels Challenge is an event that provides a hands-on opportunity for middle school students (grades...

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fuel Cells for Transportation - Research and Development: Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research and Development: Program Abstracts Fuel Cells for Transportation - Research and Development: Program Abstracts Remarkable progress has been achieved in the development of...

62

Fuel Cell Technologies Program FY 2013 Budget Request Rollout...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program FY 2013 Budget Request Rollout to Stakeholders Fuel Cell Technologies Program FY 2013 Budget Request Rollout to Stakeholders Presentation by Sunita Satyapal at the FY 2013...

63

EISA 2007: Focus on Renewable Fuels Standard Program | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EISA 2007: Focus on Renewable Fuels Standard Program At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Paul Argyropoulos (U.S....

64

Alternative Fuel and Advanced Technology Vehicles Pilot Program...  

Open Energy Info (EERE)

Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

65

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

66

Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review...  

Office of Environmental Management (EM)

Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer Evaluation Meeting...

67

Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards  

Broader source: Energy.gov [DOE]

The USDOE's Hydrogen and Fuel Cells Program presented its annual awards at the 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting on June 17.

68

2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted 2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report...

69

2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review...  

Energy Savers [EERE]

4 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report Posted 2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Report...

70

DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...  

Broader source: Energy.gov (indexed) [DOE]

13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the DOE...

71

Argonne Electrochemical Technology ProgramArgonne Electrochemical Technology Program Effects of Fuel Composition on  

E-Print Network [OSTI]

Argonne Electrochemical Technology ProgramArgonne Electrochemical Technology Program Effects. Applegate, L. Miller, Cecille Rossignol Argonne National Laboratory Annual Review The Hydrogen, Fuel Cells Argonne National Laboratory Annual Review The Hydrogen, Fuel Cells & Infrastructure Technologies Program

72

Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy9/9/2011

73

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

SciTech Connect (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

74

Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy9/9/2011 eere.energy.gov

75

PROGRAM OPPORTUNITY NOTICE Alternative and Renewable Fuel and Vehicle  

E-Print Network [OSTI]

Alternative Fuel Readiness Plans PON-13-603 http://www.energy.ca.gov/contracts State of California California Energy Commission August 12, 2013 #12;8-9-13 Page i PON-13-603 Alternative Fuel Readiness Plans TablePROGRAM OPPORTUNITY NOTICE Alternative and Renewable Fuel and Vehicle Technology Program

76

California and Connecticut: National Fuel Cell Bus Programs Drive Fuel  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden2 Categorical ExclusionOrderEconomy Higher | Department of

77

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises OptionDOE Hydrogen and Fuel

78

Form:Program | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlixMapFile Jump to: navigation, search

79

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...  

Broader source: Energy.gov (indexed) [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

80

NREL Fuel Cell and Hydrogen Technologies Program Overview (Presentation)  

SciTech Connect (OSTI)

The presentation, 'NREL Fuel Cell and Hydrogen Technologies Program Overview,' was presented at the Fuel Cell and Hydrogen Energy Expo and Policy Forum, April 24, 2013, Washington, D.C.

Gearhart, C.

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Connecticut Fuel Cell Activities: Markets, Programs, & Models  

E-Print Network [OSTI]

· Connecticut DOT Plan for Hydrogen Stations and Zero Emission Fuel Cell Vehicles (In Development) · Renewable) Passenger Car Light Truck Transit Bus Hydrogen Fuel Cell Gasoline Powered Car Hydrogen Fuel Cell Gasoline fleets, delivery fleets, major highway fueling stations, etc. Connecticut Hydrogen Roadmap #12;9 9

82

A mixed integer programming approach to reduce fuel load ...  

E-Print Network [OSTI]

Feb 12, 2015 ... A mixed integer programming approach to reduce fuel load accumulation for prescribed burn planning. Ramya Rachmawati(ramya.rachmawati...

Ramya Rachmawati

2015-02-12T23:59:59.000Z

83

2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program  

Fuel Cell Technologies Publication and Product Library (EERE)

The 2012 Annual Progress Report summarizes fiscal year 2012 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program.

84

Fuel Cell Technologies Program Overview: 2010 Annual Merit Review...  

Broader source: Energy.gov (indexed) [DOE]

Overview: 2010 Annual Merit Review and Peer Evaluation Meeting Fuel Cell Technologies Program Overview: 2010 Annual Merit Review and Peer Evaluation Meeting Presentation by Richard...

85

Fuel Cell Technologies Program Overview: 2010 Annual Merit Review...  

Energy Savers [EERE]

0 Annual Merit Review and Peer Evaluation Meeting Fuel Cell Technologies Program Overview: 2010 Annual Merit Review and Peer Evaluation Meeting Presentation by Richard Farmer at...

86

National Fuel- Large Non-Residential Conservation Program  

Broader source: Energy.gov [DOE]

In conjunction with NYSERDA's Existing Facilities Program, National Fuel provides an energy efficient equipment application for custom and standard rebates. These rebates are available for large...

87

Biomass Program Perspectives on Anaerobic Digestion and Fuel...  

Broader source: Energy.gov (indexed) [DOE]

at biorefineries. Presented by Brian Duff, DOE Biomass Program, at the NRELDOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado....

88

Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review...  

Energy Savers [EERE]

3 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at...

89

Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review...  

Energy Savers [EERE]

1 Annual Merit Review and Peer Evaluation Meeting Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer Evaluation Meeting Presentation by Sunita Satyapal at...

90

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel Cell Stack Durability  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3AofFuel Cell

91

1990 fuel cell seminar: Program and abstracts  

SciTech Connect (OSTI)

This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

Not Available

1990-12-31T23:59:59.000Z

92

1 | Fuel Cell Technologies Program Source: US DOE 9/9/2011 eere.energy.gov FUEL CELL TECHNOLOGIES PROGRAM  

E-Print Network [OSTI]

&D needs for hydrogen and fuel cell manufacturing · Report of workshop proceedings including plenary projections show significant growth in Asia and Europe. Annual granted fuel cell patents per country of origin1 | Fuel Cell Technologies Program Source: US DOE 9/9/2011 eere.energy.gov FUEL CELL TECHNOLOGIES

93

Fuel Cell Seminar, 1992: Program and abstracts  

SciTech Connect (OSTI)

This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

Not Available

1992-12-31T23:59:59.000Z

94

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Program Overview  

E-Print Network [OSTI]

For The Hydrogen Economy President Bush "Hydrogen fuel cells represent one of the most encouraging, innovative for the Hydrogen Economy Hydrogen is America's clean energy choice. Hydrogen is flexible, affordable, safe Calls for "International Partnership for the Hydrogen Economy" April 28, 2003 Secretary of Energy

95

HNEI Overview and Fuel Cell Programs  

E-Print Network [OSTI]

fuels · Integrated bioenergy systems · Technology Assessment and Policy #12;ACT 253 (HB1003 and from the energy fund to HNEI. Passed out of House and Senate EEN committees #12;Technology Assessment fuel cells and materials · Fuel cell testing and modeling · Hydrogen ­ · Renewable hydrogen production

96

Introduction to SAS Programming Registration Form  

E-Print Network [OSTI]

* Date of Birth Employer Job Title Work Address * Home Address City / State / Zip * City / State / Zip a certificate, you must complete at least 80% of the online quizzes and programming activities with scores of 70% or higher. Certificates of completion may take up to two weeks to process once your program has concluded

97

Fuel Cell Technologies Program: Delivery Fact Sheet  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0Materials

98

Fuel Cycle Research and Development Program  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNG Expansion, L.P.Fuel CellResearch &

99

Hydrogen & Fuel Cells Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto Apply forInstitute Mission andHDEnergy2013

100

Hydrogen and Fuel Cells Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of Energy and the Federal Transit2011 Annual

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen and Fuel Cells Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of Energy and the Federal Transit2011

102

Hydrogen and Fuel Cells Program Plenary Presentation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of Energy and the Federal Transit2011U.S.

103

Political Economy Graduate Interdisciplinary Studies Program Course Completion Form (*)  

E-Print Network [OSTI]

Political Economy Graduate Interdisciplinary Studies Program Course Completion Form (*) (03 of Political Science, Clark C346, and another one for your personal records. (**) Traditional students

104

Scholarship Student Information Form Office of International Programs  

E-Print Network [OSTI]

Scholarship Student Information Form Office of International Programs Thomas Residence Hall 203 this challenge? What do I ultimately plan to do? Why am I ready to lead

105

Scholarship Student Information Form Office of International Programs and Fellowships  

E-Print Network [OSTI]

Scholarship Student Information Form Office of International Programs and Fellowships 1706 Illinois this challenge? What do I ultimately plan to do? Why am I ready to lead

106

DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed Fuel  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5QualityDOEDOEHonorsDOECell

107

Graduation Checklist 1. Submit study program (form 1)  

E-Print Network [OSTI]

the graduation regulations before actually starting your graduation project available at http://w3.win.tue.nl/nl/onderwijs/reglementen/ 3. Submit your graduation plan (form 2) before actually starting your graduation project formGraduation Checklist 1. Submit study program (form 1) if you have accumulated 40-50 credits form

Sidorova, Natalia

108

Fuel Cycle Research and Development Program  

Office of Environmental Management (EM)

29, 2009 Fuel Cycle Research and Development DM 195665 5 Identify the governing phenomenology Identify the governing phenomenology Develop a first-principle based model of the...

109

Engagement Academy Page 1 Customized Program/Service Request Form  

E-Print Network [OSTI]

Engagement Academy Page 1 Customized Program/Service Request Form The Engagement Academy faculty. Hosting an Engagement Academy program at your site gives you the flexibility and convenience to address-mail Address #12;Engagement Academy Page 2 Which program or service are you interested in bringing to yourself

Liskiewicz, Maciej

110

EPAct Alternative Fuel Transportation Program (Brochure)  

SciTech Connect (OSTI)

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2012/fiscal year 2013.

Not Available

2014-06-01T23:59:59.000Z

111

Program Area of Interest: Fuel Transformer Solid Oxide Fuel Cell  

SciTech Connect (OSTI)

The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2005 through December 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Rhys Foster; Anthony Litka

2006-02-01T23:59:59.000Z

112

Energy Smart Grocer Program Sign-up Form FY2014-FY2015 Customer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart Grocer Program Sign-up Form FY2014-FY2015 Customer

113

DOE Hydrogen Program New Fuel Cell Projects  

E-Print Network [OSTI]

Development Building Weatherization & Intergovernmental Geothermal Hydrogen Wind & Hydropower #12;Integrated Production EERE is working to provide a prosperous future where energy is clean, abundant, reliable Davis - Safety, Codes/Standards Antonio Ruiz - Safety Engineer Hydrogen Technologies Program Patrick

114

2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program  

SciTech Connect (OSTI)

In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

Not Available

2012-12-01T23:59:59.000Z

115

Small Scale CHP and Fuel Cell Incentive Program (New Jersey)  

Broader source: Energy.gov [DOE]

The New Jersey Clean Energy Program (NJCEP) offers incentives for several types of small combined heat and power (CHP) and fuel cell systems that have a generating capacity of 1 MW or less and are...

116

Stochastic Programming Model for Fuel Treatment Management  

E-Print Network [OSTI]

Due to the increased number and intensity of wild fires, the need for solutions that minimize the impact of fire are needed. Fuel treatment is one of the methods used to mitigate the effects of fire at a certain area. In this thesis, a two...

Kabli, Mohannad Reda A

2014-04-28T23:59:59.000Z

117

1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program  

E-Print Network [OSTI]

fuel cell vehicles ~ 20 active fuel cell buses ~ 60 fueling stations In the U.S., there are currently Power, Auxiliary Power, and Specialty Vehicles Fuel cells can be a cost-competitive option for critical the world signed a letter of understanding supporting fuel cell vehicles in anticipation of widespread

118

Breeder Spent Fuel Handling Program multipurpose cask design basis document  

SciTech Connect (OSTI)

The Breeder Spent Fuel Handling (BSFH) Program multipurpose cask Design Basis Document defines the performance requirements essential to the development of a legal weight truck cask to transport FFTF spent fuel from reactor to a reprocessing facility and the resultant High Level Waste (HLW) to a repository. 1 ref.

Duckett, A.J.; Sorenson, K.B.

1985-09-01T23:59:59.000Z

119

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect (OSTI)

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

120

New York State-wide Alternative Fuel Vehicle Program for Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations 2010...

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fifth annual report to congress. Federal alternative motor fuels programs  

SciTech Connect (OSTI)

This report presents the status of the US Department of Energy`s alternative fuel vehicle demonstration and performance tracking programs being conducted in accordance with the Energy Policy and Conservation Act. These programs comprise the most comprehensive data collection effort ever undertaken on alternative transportation fuels and alternative fuel vehicles. The report summarizes tests and results from the fifth year. Electric vehicles are not included in these programs, and the annual report does not include information on them. Since the inception of the programs, great strides have been made in developing commercially viable alternative fuel vehicle technologies. However, as is the case in the commercialization of all new technologies, some performance problems have been experienced on vehicles involved in early demonstration efforts. Substantial improvements have been recorded in vehicle practicality, safety, and performance in real-world demonstrations. An aspect of particular interest is emissions output. Results from light duty alternative fuel vehicles have demonstrated superior inservice emissions performance. Heavy duty alternative fuel vehicles have demonstrated dramatic reductions in particulate emissions. However, emissions results from vehicles converted to run on alternative fuel have not been as promising. Although the technologies available today are commercially viable in some markets, further improvements in infrastructure and economics will result in greater market expansion. Information is included in this report on light and heavy duty vehicles, transit buses, vehicle conversions, safety, infrastructure support, vehicle availability, and information dissemination.

NONE

1996-09-01T23:59:59.000Z

122

Nucleon form factors program with SBS at JLAB  

SciTech Connect (OSTI)

The physics of the nucleon form factors is the basic part of the Jefferson Laboratory program. We review the achievements of the 6-GeV era and the program with the 12- GeV beam with the SBS spectrometer in Hall A, with a focus on the nucleon ground state properties.

Wojtsekhowski, Bogdan B. [JLAB

2014-12-01T23:59:59.000Z

123

E-Print Network 3.0 - advanced fuel forms Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

124

DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting June 16, 2014...

125

Sandia National Laboratories: Hydrogen and Fuel Cells Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit atVehicle Technologies On NovemberSafety, CodesProgram

126

Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy via ITS  

E-Print Network [OSTI]

Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy new traffic flow and traffic light control concepts with respect to emissions and fuel economy. Some

California at Davis, University of

127

Fuel Technologies: Goals, Strategies, and Top Accomplishments; Vehicle Technologies Program (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describes the top accomplishments, goals, and strategies of DOE's Fuel Technologies sub program.

Not Available

2009-04-01T23:59:59.000Z

128

QUEEN'S UNDERGRADUATE INTERNSHIP PROGRAM 13-14 REGISTRATION FORM -School of Computing, Professional Internship Program  

E-Print Network [OSTI]

QUEEN'S UNDERGRADUATE INTERNSHIP PROGRAM 13-14 REGISTRATION FORM - School of Computing, Professional Internship Program FIRST ROUND REGISTRATION DEADLINE: November 4, 2013 SECOND ROUND REGISTRATION is on internship the department will allow this student to return to his/her original program without penalty upon

Graham, Nick

129

DOE Hydrogen and Fuel Cells Program 2015 Annual Merit Review...  

Broader source: Energy.gov (indexed) [DOE]

June 8, 2015 1:00PM EDT to June 12, 2015 12:00PM EDT The DOE Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting will be held on June 8-12, 2015,...

130

Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms  

SciTech Connect (OSTI)

This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

Vinson, D.W.

1998-11-06T23:59:59.000Z

131

Furman University Club Sports Program Acknowledgement and Release Form  

E-Print Network [OSTI]

Furman University Club Sports Program Acknowledgement and Release Form I, the undersigned, acknowledge that I am at least 18 years of age and that I am voluntarily requesting permission to become. In consideration of being permitted to participate in the Activity, _____ (initial here) I acknowledge that I am

132

Forms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" Give Forms (All forms are in .pdf

133

Forming Teams for Teaching Programming based on Static Code Analysis  

E-Print Network [OSTI]

The use of team for teaching programming can be effective in the classroom because it helps students to generate and acquire new knowledge in less time, but these groups to be formed without taking into account some respects, may cause an adverse effect on the teaching-learning process. This paper proposes a tool for the formation of team based on the semantics of source code (SOFORG). This semantics is based on metrics extracted from the preferences, styles and good programming practices. All this is achieved through a static analysis of code that each student develops. In this way, you will have a record of students with the information extracted; it evaluates the best formation of teams in a given course. The team's formations are based on programming styles, skills, pair programming or with leader.

Arosemena-Trejos, Davis; Clunie, Clifton

2012-01-01T23:59:59.000Z

134

Consolidated fuel reprocessing. Program progress report, April 1-June 30, 1980  

SciTech Connect (OSTI)

This progress report is compiled from major contributions from three programs: (1) the Advanced Fuel Recycle Program at ORNL; (2) the Converter Fuel Reprocessing Program at Savannah River Laboratory; and (3) the reprocessing components of the HTGR Fuel Recycle Program, primarily at General Atomic and ORNL. The coverage is generally overview in nature; experimental details and data are limited.

Not Available

1980-09-01T23:59:59.000Z

135

Method of forming a package for MEMS-based fuel cell  

DOE Patents [OSTI]

A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.

Morse, Jeffrey D; Jankowski, Alan F

2013-05-21T23:59:59.000Z

136

Consolidated fuel reprocessing program: Criticality experiments with fast test reactor fuel pins in an organic moderator  

SciTech Connect (OSTI)

The results obtained in a series of criticality experiments performed as part of a joint program on criticality data development between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan are presented in this report along with a complete description of the experiments. The experiments involved lattices of Fast Test Reactor (FTR) fuel pins in an organic moderator mixture similar to that used in the solvent extraction stage of fuel reprocessing. The experiments are designed to provide data for direct comparison with previously performed experimental measurements with water moderated lattices of FTR fuel pins. The same lattice arrangements and FTR fuel pin types are used in these organic moderated experimental assemblies as were used in the water moderated experiments. The organic moderator is a mixture of 38 wt % tributylphosphate in a normal paraffin hydrocarbon mixture of C{sub 11}H{sub 24} to C{sub 15}H{sub 32} molecules. Critical sizes of 1054.8, 599.2, 301.8, 199.5 and 165.3 fuel pins were obtained respectively for organic moderated lattices having 0.761 cm, 0.968 cm, 1.242 cm, 1.537 cm and 1.935 cm square lattice pitches as compared to 1046.9, 571.9, 293.9, 199.7 and 165.1 fuel pins for the same lattices water moderated.

Bierman, S.R.

1986-12-01T23:59:59.000Z

137

Forms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, ProgramsClean Energy Technologies

138

2014 DOE Hydrogen and Fuel Cells Program Annual Progress Report Posted  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Fuel Cell Technologies Office has posted the 2014 Hydrogen and Fuel Cells Program Annual Progress Report.

139

Vehicle Technologies Office Merit Review 2014: Alternative Fuel Market Development Program- Forwarding Wisconsins Fuel Choice  

Broader source: Energy.gov [DOE]

Presentation given by Wisconsin Department of Administration at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

140

Liquid Tin Anode Direct Coal Fuel Cell Final Program Report  

SciTech Connect (OSTI)

This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

Tao, Thomas

2012-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Department of Energy Fuel Cell Technologies Program: 18th...  

Energy Savers [EERE]

Technologies Program: 18th World Hydrogen Energy Conference U.S. Department of Energy Fuel Cell Technologies Program: 18th World Hydrogen Energy Conference Presentation by Nancy...

142

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials- 2004 vs. 2006  

Broader source: Energy.gov [DOE]

This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about hydrogen storage materials (2004 vs. 2006).

143

Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel Production and  

E-Print Network [OSTI]

fuel providers to meet annual carbon intensity targets. These targets are based on carbon intensityProject Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel or organization) ARB $250,000 Total Project Cost $250,000 Agency ID or Contract Number DTRT13-G-UTC29 Start

California at Davis, University of

144

DoD Climate Change Fuel Cell Program  

SciTech Connect (OSTI)

This report discusses the first year of operation of a fuel cell power plant located at the Ocean County College, Toms River, New Jersey. PPL EnergyPlus, LLC installed the plant under a contract with Ocean County College. A DFC{reg_sign}300 fuel cell, manufactured by Fuel Cell Energy, Inc. of Danbury, CT was selected for the project. The fuel cell successfully operated from January 1, 2004 to December 31, 2004. This report discusses the performance of the plant during this period. Ocean County College's decision to contract for use of a fuel cell at the college reflects the institution's commitment to managing energy costs, exercising environmental leadership, and leveraging innovative technologies to accomplish its energy and environmental goals. Ocean County College's director of facilities was interested in finding new energy cost reduction opportunities that could build on the institution's growing reputation for commitment to energy efficiency and environmental quality while exploring new technologies. This combination of goals positioned Ocean County College to value the prospect of installing a fuel cell as a demonstration project that could deliver on its commitment. PPL EnergyPlus, LLC developed the project and Millennium Builders, a PPL company, was chosen as the general contractor for the project. PPL and Ocean County College worked very closely with Jersey Central Power and Light (JCP&L) and New Jersey Natural Gas (NJNG) Company to assure integration of the fuel cell with the local utilities. The 250 kW molten carbonate fuel cell (MCFC) and its balance of plant is contained in an all-weather container located just outside the college's Instructional Building on a cement pad in a fenced-in 30 x 50 foot area in close proximity to the college's boiler and electrical rooms. Cables and piping bring power and hot water from the fuel cell into these interior control areas. The unit's electrical output is fed onto the college's main circuit while the hot water flows from the fuel cell to the college through a closed loop equipped with internal heat exchangers mounted on a custom skid in the boiler room. Fresh make-up water for the fuel cell's reverse osmosis equipment is piped separately from the boiler room out to the fuel cell. The fuel cell operates in parallel with the local electric utility's distribution system that serves the general area. The interconnection design relies on the grid protection components that come as standard equipment in the FCE unit design. Ultimately, the only substantive approval for the installation was for the parallel interconnection with the grid, provided by Jersey Central Power & Light. The utility had a well-defined set of interconnection requirements and procedures for units under 5 MW, and the approval process went smoothly and caused little delays. The primary liaison with PPL and the college was the utility's account representative. PPL and the college report that JCP&L was quite supportive of the project. The 60 percent reimbursement of installed costs was made through the New Jersey Clean Energy Fund, which is in turn funded through utility contributions. The Department of Energy provided an additional $250,000 grant under the Department of Defense fuel cell buy down program. PPL started testing the fuel cell on October 31, 2003. Final acceptance of the fuel cell was completed on December 21, 2003. Following several months of start-up activities, a high availability factor and few operating difficulties have marked operations during the first year.

Ken Olsen

2006-09-15T23:59:59.000Z

145

Selection and Properties of Alternative Forming Fluids for TRISO Fuel Kernel Production  

SciTech Connect (OSTI)

Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 C and 80 C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.

Doug Marshall; M. Baker; J. King; B. Gorman

2013-01-01T23:59:59.000Z

146

Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program  

SciTech Connect (OSTI)

Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.

David Petti

2014-06-01T23:59:59.000Z

147

Transportation costs for new fuel forms produced from low rank US coals  

SciTech Connect (OSTI)

Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

Newcombe, R.J.; McKelvey, D.G. (TMS, Inc., Germantown, MD (USA)); Ruether, J.A. (USDOE Pittsburgh Energy Technology Center, PA (USA))

1990-09-01T23:59:59.000Z

148

Quality Assurance Program Plan for AGR Fuel Development and Qualification Program  

SciTech Connect (OSTI)

Quality Assurance Plan (QPP) is to document the Idaho National Engineering and Environmental Laboratory (INEEL) Management and Operating (M&O) Contractors quality assurance program for AGR Fuel Development and Qualification activities, which is under the control of the INEEL. The QPP is an integral part of the Gen IV Program Execution Plan (PEP) and establishes the set of management controls for those systems, structures and components (SSCs) and related quality affecting activities, necessary to provide adequate confidence that items will perform satisfactorily in service.

W. Ken Sowder

2004-02-01T23:59:59.000Z

149

Alternative Fuels Data Center: City of Chicago Program Encourages Petroleum  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative FuelInfrastructureFirst-of-Its-Kindat

150

The thermionic fuel element verification program: Technical accomplishments and goals  

SciTech Connect (OSTI)

The goal of the Thermionic Fuel Element Verification Program (TFEVP) is to demonstrate the technological readiness of a thermionic fuel element in a thermionic reactor having an electric power output in the 0.5- to 5-MW(electric) range and a full-power life of 7 yr. The TFEVP has made significant progress in developing components capable of withstanding the required neutron fluence (4 x 10[sup 22] n/cm[sup 2], E > 0. 1 MeV) and the required burnup (5.3%) of a 2-MW(electric) system. Technology developed under the TFEVP also supports the 5- to 40-kW(electric) thermionic systems currently of interest to the Strategic Defense Initiative Organization and the US Air Force. The fast-neutron flux in certain 5- to 40-kW(electric) systems is up to a factor of 7 less than that in 0.5- to 5-MW(electric) systems. Component technology that has been developed for 0.5- to 5-MW(electric) systems will thus be suitable for use in long-life, high-performance, 5- to 40-kW(electric) systems. Components that are being developed by the TFEVP include insulator seals, sheath insulators, fueled emitters, cesium reservoirs, and inter- connective TFE components. In addition, the TFEVP has created a preliminary 2-MW(electric) system design and is currently evaluating converter performance under various conditions. Prototypical TFEs are also being tested. The TFEVP is developing accurate converter-performance models that are correlated to observed test data.

Houts, M.G. (Los Alamos National Lab., NM (United States)); Wharton, W.R. Jr. (Department of Energy, Germantown, MD (United States)); Begg, L.L. (General Atomics, San Diego, CA (United States)); Lawrence, L.A. (Westinghouse Hanford Company, Richland, WA (United States))

1993-01-01T23:59:59.000Z

151

Project Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel Vehicles for  

E-Print Network [OSTI]

agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract Number DTRT13-GProject Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel-UTC29 Start and End Dates May 16, 2014 to May 31, 2015 Brief Description of Research Project

California at Davis, University of

152

Project Information Form Project Title Designing and Analyzing Policies for Renewable Fuels  

E-Print Network [OSTI]

or organization) US DOT $38,942 Total Project Cost $38,942 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Designing and Analyzing Policies for Renewable Fuels and End Dates September 1, 2014 to August 31, 2015 Brief Description of Research Project Federal and state

California at Davis, University of

153

Project Information Form Project Title Designing and Analyzing Policies for Renewable Fuels  

E-Print Network [OSTI]

or organization) US DOT $38,925 Total Project Cost $38,925 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Designing and Analyzing Policies for Renewable Fuels and End Dates September 1, 2014 to August 31, 2015 Brief Description of Research Project Federal and state

California at Davis, University of

154

at Western University From the production of biofuels, fuel cells and alternative forms of energy,  

E-Print Network [OSTI]

at Western University From the production of biofuels, fuel cells and alternative forms of energy supply chains. By reducing manufacturing costs, improving design and production, making safer, cost, and online training simulators Materials · Fraunhofer Project Centre @ Western: world's premiere facility

Denham, Graham

155

DOE Hydrogen and Fuel Cells Program Record 13013: Hydrogen Delivery Cost Projections - 2013  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises OptionDOE Hydrogen and Fuel Cells

156

Fuel Cell Technologies Program Record Record #: 11003 Date: March 8, 2011  

E-Print Network [OSTI]

1 Fuel Cell Technologies Program Record Record #: 11003 Date: March 8, 2011 Title: Fuel Cell Stack, with automotive fuel cell stack and system durability in laboratory testing increasing from approximately 2 Information Laboratory Durability In 2006, fuel cell durability was reported to be approximately 2,000 hours

157

DOE Hydrogen and Fuel Cells Program Record Record #: 11012 Date: August 17, 2011  

E-Print Network [OSTI]

1 DOE Hydrogen and Fuel Cells Program Record Record #: 11012 Date: August 17, 2011 Title: Fuel Cell membrane (PEM) fuel cell system based on 2011 technology1 and operating on direct hydrogen is projected hydrogen PEM automotive fuel cell systems, based on 2011 technology and projected to a manufacturing volume

158

New York State-wide Alternative Fuel Vehicle Program for Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting arravt053tibolton2012o.pdf More Documents & Publications New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New...

159

New York State-wide Alternative Fuel Vehicle Program for Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review and Peer Evaluation arravt053tibolton2011p.pdf More Documents & Publications New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New...

160

Technical Qualification Program Administrative Forms | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesign &ReportOperationofEnergy

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Air Permit Program Application Forms | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowatt EnergiesFacilityInformationWeb Site: Air

162

Form:Financial Incentive Program | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlackFluvanna3°,Forestville,DJumpis the

163

Form:Rules Regulations Policies Incentive Program | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFluxInput your datasetOil

164

EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs  

Broader source: Energy.gov [DOE]

Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

165

REQUEST FOR COMMERCIAL FUEL CREDIT CARD PURPOSE: This form will be used by The University of Texas at Austin departments to request a commercial fuel  

E-Print Network [OSTI]

REQUEST FOR COMMERCIAL FUEL CREDIT CARD PURPOSE: This form will be used by The University of Texas at Austin departments to request a commercial fuel credit card for university business use. The Requestor commercial fuel credit cards for the following department vehicles. I understand that there will be one

Yang, Zong-Liang

166

2004 Office of Fossil Energy Fuel Cell Program Annual Report  

SciTech Connect (OSTI)

Annual report of fuel cell projects sponsored by Department of Energy, National Energy Technology Laboratory.

NETL

2004-11-01T23:59:59.000Z

167

Vehicle Technologies Office Merit Review 2014: EPAct State and Alternative Fuel Transportation Program  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EPAct...

168

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance...

169

Review of the Research Program of the FreedomCAR and Fuel Partnership...  

Open Energy Info (EERE)

Research Program of the FreedomCAR and Fuel Partnership: Third Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Review of the Research Program of the FreedomCAR...

170

Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0

171

Connecticut Fuel Cell Activities: Markets, Programs, and Models  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized91 *09 FY 2009 ($1

172

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContractto Host a

173

2010 DOE EERE Vehicle Technologies Program Merit Review - Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation, AnalysisofCombustion |

174

Connecticut Fuel Cell Activities: Markets, Programs, and Models |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor Engineering New Thermochemical StorageBudgetJuly

175

Connecticut Fuel Cell Programs - From Demonstration to Deployment |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor Engineering New Thermochemical StorageBudgetJulyDepartment of

176

DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department of EnergyJanuaryTransmission Capacityof|

177

Hydrogen & Fuel Cells Program Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto Apply forInstitute Mission

178

Hydrogen and Fuel Cell Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProductionEnergy RefuelingHydrogen

179

Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department of Energy and the Federalas ain

180

Fuel-Efficient Stove Programs in Humanitarian Settings | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,using Renewable

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Check here if a revision PROGRAM OF STUDY FORM GRADUATE  

E-Print Network [OSTI]

: _______________________________________ PROJECTED GRADUATION DATE*: _____ _____ _____ _____ YEAR: 20_____ DEC MAY JUNE AUG TODAY'S DATE: _______________ DEGREE DATE/PROJECTED GRADUATION DATE: ____________ DEGREE: ______________________ PROGRAM: _______________ DEGREE DATE/PROJECTED GRADUATION DATE: ____________ PROGRAM OF STUDY APPROVALS

Crowston, Kevin

182

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect (OSTI)

The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

Levins, W.P.; Ternes, M.P.

1994-09-01T23:59:59.000Z

183

Form Date 09.01.2013 Incentive Program for Researchers (IPR)  

E-Print Network [OSTI]

Form Date 09.01.2013 Incentive Program for Researchers (IPR) Intent to Participate Form Instructions The MSU Incentive Program for Researchers (IPR) has been developed to enhance sponsored research program projects so they can participate in IPR. All tenured and tenure-track faculty members, except

Maxwell, Bruce D.

184

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20,

185

EERE Fuel Cell Technologies Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department of Energy atDepartment20, 201418,Fuel

186

Fuel Cell Technologies Program Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuel Cell Technologies

187

Fuel Cell Technologies Program Overview: 2012 IEA HIA Hydrogen Safety  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuel CellStakeholder

188

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCellsatin the

189

Hydrogen & Fuel Cells Program Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto Apply forInstitute Mission& Fuel Cells

190

Alternative Fuels Data Center: Idle Reduction Programs at Tennessee Schools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel BasicsProduction andConserve FuelIdle

191

Status and progress in the U.S. RERTR fuel development program  

SciTech Connect (OSTI)

In 2004, U.S. Energy Secretary Abraham established the Global Threat Reduction Initiative (GTRI). This program set goals for the conversion of many of the world's research and test reactors to low-enriched fuels, including those for which suitable fuels are currently not available. Development of fuels for reactors that cannot currently be converted requires an aggressive program of fuel fabrication development, out-of-pile testing and characterization, irradiation testing, post-irradiation examination, and fuel performance modeling. Both dispersion and monolithic versions of a uranium-molybdenum based fuel are being developed in conjunction with strong international partnerships. The development is being carried out with the intent to qualify a low-enrichment, high- density fuel suitable for utilization in these reactors by the end of 2011, allowing conversion of the U.S. reactors by 2014. An overview of program progress and plans leading to fuel qualification will be presented. (author)

Wachs, Daniel M

2008-07-15T23:59:59.000Z

192

A mixed integer programming approach to reduce fuel load ...  

E-Print Network [OSTI]

Fuel management is the process of altering the amount and structure of fuels ... area (treatment unit), the land ownership (public or private), vegetation type and vegetation age, each attributes as critical ..... New York Springer. Minas, J., J.

2015-02-13T23:59:59.000Z

193

Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Federal rebate money for consumers who traded old vehicles with an EPA combined fuel economy of 18 miles per gallon or less for brand new vehicles with improved fuel economy. The...

194

California and Connecticut: National Fuel Cell Bus Programs Drive...  

Energy Savers [EERE]

250,000 miles and had almost 25,000 hours of fuel operation. The 12-month status report includes data collected from 18 fuel cell electric buses at three transit agencies:...

195

Sandia National Laboratories: Hydrogen and Fuel Cells Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation Technology Infrastructure

196

2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)  

SciTech Connect (OSTI)

In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

Not Available

2011-11-01T23:59:59.000Z

197

PROGRAM TERMINATION FORM Board of Governors, State University System of Florida  

E-Print Network [OSTI]

PROGRAM TERMINATION FORM Board of Governors, State University System of Florida UNIVERSITY TERMINATION DATE: _____________________________________ (Last date that students will be accepted into program for this program) 1. Provide a narrative rationale for the request to terminate the program. 3. Indicate on which

Pilyugin, Sergei S.

198

Fuel Cell Technologies Program Overview: 2012 DOE Polymer and Composite  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0Materials

199

Fuel Cells for Transportation - Research and Development: Program Abstracts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10, 2014 2014for| Department

200

Gasoline Ultra Fuel Efficient Vehicle Program Update | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas asWindEECBGSE DOE/IG-480Vehicle

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Connecticut Fuel Cell Programs - From Demonstration to Deployment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized91 *09 FY 2009 ($1Connecticut

202

Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014Biogas andManaged by UT-Battelle for

203

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy FocusBenefit Tool | Open Energy

204

Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFactEducationEvaluationWebinar

205

Fuel Cell Technologies Program FY 2013 Budget Request Rollout to  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings | DepartmentCaseEnergyDepartment| Department

206

The Department of Energy's Hydrogen and Fuel Cells Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlowNation | DepartmentDepartmentEnergy's

207

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment ofCaldwellWestern States,FYDOE's Hydrogen

208

Sandia National Laboratories: Nuclear Energy and Fuel Systems Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More GreenWorkshops Nuclearand Fuel

209

Renewable Fuel Standards Program Update | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexasEnergy DieselRenewablePlants

210

Category:Alternative Fuels Incentive Programs | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade Sierra SolutionsGeothermalpower.jpgAirborne Gravity

211

DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor06/2015)09 I. Steps Taken5 DOEPipeline R&D Project

212

NREL Fuel Cell and Hydrogen Technologies Program Introduction  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogen Delivery Workshop February

213

NYSERDA's RPS Customer Sited Tier Fuel Cell Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogenNRGA C T S H E E T

214

U.S. Department of Energy Fuel Cell Technologies Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy American IndianSeptemberEarth DayMay 20,o nergy

215

US Navy Tactical Fuels From Renewable Sources Program | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energyof Energy8,November

216

DOE Hydrogen and Fuel Cells Program Record Record #: 13007 Date: 09/05/2013  

E-Print Network [OSTI]

for these fuel cell projects is $18.5M, with an industry cost share of $30.8M.i While publicly available sales i, 2012: http://www.altergy.com/announcements/largest_fuelcell_order_in_history.asp 5. "PEM Fuel CellDOE Hydrogen and Fuel Cells Program Record Record #: 13007 Date: 09/05/2013 Title: Industry

217

High-Activity Dealloyed Catalysts 2010 DOE Hydrogen Program Fuel Cell  

E-Print Network [OSTI]

High-Activity Dealloyed Catalysts 2010 DOE Hydrogen Program Fuel Cell Project Kick-active-area fuel cells, to be made available for DOE testing Reduce catalyst cost while achieving the required · Subcontractors: ­ Technical University of Berlin ­ Johnson Matthey Fuel Cells ­ Massachusetts Institute

218

DOE Hydrogen and Fuel Cells Program Record Record #: 13008 Date: 10/04/2013  

E-Print Network [OSTI]

DOE Hydrogen and Fuel Cells Program Record Record #: 13008 Date: 10/04/2013 Title: Industry trucks is about $9.7M, with an industry cost share of $11.8M.i The DOE Fuel Cell Technologies (FCT Deployed Fuel Cell Powered Lift Trucks Originators: Pete Devlin, Jim Alkire, Sara Dillich, Kristen Nawoj

219

DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting ...  

Broader source: Energy.gov (indexed) [DOE]

Presentation by DOE's Patrick Davis at a meeting on new fuel cell projects on March 13, 2007. newfcdavisdoe.pdf More Documents & Publications Federal Support for Hydrogen and...

220

DoD Climate Change Fuel Cell Program  

SciTech Connect (OSTI)

A grant was awarded to PPL EnergyPlus, LLC for two (2) 250kW Molten Carbonate Fuel Cells at Pepperidge Farm, Inc. on 9/30/03. Pepperidge Farm subsequently signed a contract for one 250kW fuel cell. A request was made and granted to apply the award for the second fuel cell to the Sheraton New York Hotel & Towers (see attached email). This report discusses the first year of operation of a fuel cell power plant located at Pepperidge Farm, Inc., Bloomfield, Connecticut and a fuel cell power plant located at Sheraton New York Hotel & Towers, New York, New York. PPL EnergyPlus, LLC installed the plants under a contract with Pepperidge Farm and Starwood Hotels & Resorts Worldwide, Inc. Two DFC 300 fuel cells, manufactured by FuelCell Energy, Inc. of Danbury, CT were selected for the project. The fuel cell located at Pepperidge Farm successfully operated from January 16, 2006 to January 15, 2007. The fuel cell located at Sheraton New York Hotel & Tower successfully operated from May 19, 2005 to May 18, 2006.This report discusses the performance of these plants during these periods.

Steven A. Gabrielle

2007-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Clean Energy Solutions Large Scale CHP and Fuel Cells Program  

Broader source: Energy.gov [DOE]

The New Jersey Economic Development Authority (EDA) is offering grants for the installation of combined heat and power (CHP) or fuel cell systems to commercial, industrial, and institutional...

222

FUEL CYCLE TECHNOLOGIES QUALITY ASSURANCE PROGRAM DOCUMENT | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of Energy memoCityTheDepartmentKey FTCPApril 7,

223

Hydrogen and Fuel Cell Technologies Program: Storage Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubbles andof the TroughStorageNREL is

224

NNSS Alternative Fuel Vehicle Management Program receives federal award |  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclearhas 'Natitude' | National NuclearAdministrator| NEWS

225

Sandia National Laboratories: Nuclear Energy and Fuel Cycle Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More GreenWorkshops Nuclear

226

Nuclear Fuels Storage and Transportation Planning Project (NFST) Program  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 PrintingNeed| Department ofDC. |NuclearFacts:Department

227

NREL Fuel Cell and Hydrogen Technologies Program Introduction  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250ThisMarsh More DocumentsNOWEGISfrom the 2011FCHT

228

Alternative Fuels Data Center: Voucher Incentive Programs: Lessons From the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share AlternativeRight Now

229

The French national program for spent fuel and high-level waste management  

SciTech Connect (OSTI)

From its very beginning, the French national program for spent fuel and HLW management is aimed at the recycling of energetic materials and the safe disposal of nuclear waste. Spent fuel reprocessing is the cornerstone of this program, since it directly opens the way to energetic material recycling, waste minimization and safe conditioning. It is complemented by the HLW management program which is defined by the HLW disposal regulation and the Waste Act issued in 1991.

Giraud, J.P.; Demontalembert, J.A. [COGEMA, Velizy-Villacoublay (France)

1993-12-31T23:59:59.000Z

230

Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration  

SciTech Connect (OSTI)

The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has also established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.

Block, David L.; Sleiti, Ahmad

2011-09-19T23:59:59.000Z

231

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdf Flash_2010_-24.pdf2009 DOEthe GasAdityaan

232

Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs - Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0 ACell

233

Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFactEducationEvaluation

234

Experimental plan for the fuel-oil study. Weatherization Assistance Program: Volume 2  

SciTech Connect (OSTI)

An up-to-date assessment of the Weatherization Assistance Program (WAP) is being performed by the US Department of Energy WAP Division and the Oak Ridge National Laboratory. Five studies form the evaluation. Major goals of the Fuel-Oil Study are to estimate the fuel oil saved by the WAP in the Northeast during the 1990 and 1991 program years, identify and quantify non-energy impacts of the WAP, assess the cost effectiveness of the WAP within this submarket, and assess factors which may cause savings and cost effectiveness to vary. The study will only analyze single-family houses in the nine states in the Northeast census region and will be carried out over two heating seasons (1990 and 1991 WAP program years). A split-winter, pre- and post-weatherization experimental design with a control group will be used. Houses will be monitored over one winter. Energy conservation measures will be installed in the weatherized houses in January of each winter by the local WAP subgrantee. One hundred twenty five weatherized houses and 75 control houses will be monitored over the 1990--1991 winter; a different set of 200 houses will be monitored over the 1991--1992 winter. The houses will be evenly distributed among 25 subgrantees. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature data will be collected for all houses. Fuel-oil delivery data will be collected for each house monitored over the 1990--1991 winter for at least a year before weatherization. The delivery data will be analyzed to determine if the accuracy of the study can be improved by collecting fuel-oil delivery data on a larger sample of houses over the 1991--1992 winter. Detailed survey information will be obtained on all the houses. This information includes descriptive details of the house and its mechanical systems, details on household size and other demographics, and occupant answers to questions regarding comfort, safety, and operation of their space-heating system and house.

Ternes, M.P.; Levins, W.P.; Brown, M.A.

1992-01-01T23:59:59.000Z

235

Proceedings of the 2002 U.S. DOE Hydrogen and Fuel Cells Annual Program/Lab R&D Review, May 6-10, 2002, Golden, Colorado.  

Broader source: Energy.gov [DOE]

Proceedings of the US DOE Hydrogen Program, the Fuel Cells for Transportation Program, and the Fuels for Fuel Cells Program inaugural combined Annual Program/Lab R&D Review held May 6-10, 2002 in Golden, Colorado.

236

Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel  

SciTech Connect (OSTI)

Epsilon metal (?-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish; Zumhoff, Mac R.

2013-10-01T23:59:59.000Z

237

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen is a versatile energy car-  

E-Print Network [OSTI]

to power nearly every end-use energy need. The fuel cell -- an energy conversion device that can a particularly important role in the future by re- placing the imported petroleum we currently use in our cars) fuel cell, which is widely regarded as the most promising for light-duty transporta- tion, hydrogen gas

238

DOE Hydrogen and Fuel Cells Program Record Record #: 5037 Date: May 22, 2006  

E-Print Network [OSTI]

1 DOE Hydrogen and Fuel Cells Program Record Record #: 5037 Date: May 22, 2006 Title: Hydrogen at Sandia National Laboratory", J. Wang in the DOE Hydrogen Program 2005 Annual Merit Review Proceedings and J. Vajo in the DOE Hydrogen Program 2006 Annual Merit Review Proceedings. An improvement in hydrogen

239

Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09Biomass Program

240

New York State-wide Alternative Fuel Vehicle Program for Vehicles and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |Million DOEYellow SchoolNew YorkFueling

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

1 | Fuel Cell Technologies Program Source: US DOE 3/3/2011 eere.energy.gov FUEL CELL TECHNOLOGIES PROGRAM  

E-Print Network [OSTI]

Germany 9 785 MW U.S. Rest of E.U. 1,333 MW 9,785 MW Japan U.S. share of PV production has fallen favors H2 & Fuel Cells · Germany (>$1.2B; 1,000 H2 stations) · European Commission (>$1 2B 2008 2013 cell cost reduction Medium-Scale Fuel Cell CHP with Biogas Small-scale PEM Fuel Cells with Natural Gas

242

1 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel Cell Technologies Overview  

E-Print Network [OSTI]

of a combined heat and power fuel cell system, coupled with the educational benefits of a living laboratory, structured to address all the key challenges and obstacles facing widespread commercialization. The Program carbon pollution, and increase our competitiveness in today's global clean energy economy." "The benefits

243

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel Cell Stack  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department2013 | Department

244

Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41Adam GarberStart DateDepartment

245

New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutrons used to studyThe4SkyNewNew Mexico

246

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | National Hansen 1 ,Flexible Fuelan

247

Revision of Existing Program 1 EDUCATIONAL POLICIES COMMITTEE FORM  

E-Print Network [OSTI]

that considers the following: 1. Identify additional faculty, capital equipment, special instructional resources.) 2. Technology Needs. Please detail the additional technology support, estimated costs/school.) RESOURCE STATEMENT No changes in resources are required by the revised program. Or attach a statement

Ravikumar, B.

248

Metro/Transit Pass Reimbursement Form Program Regulations  

E-Print Network [OSTI]

participate at least 70% of your scheduled workdays to meet program eligibility Eligible non-permit holders receive 100% reimbursement of the monthly Metro monthly pass cost (max $75) Eligible permit holders, WORK LOCATION, WORK HRS, PERMIT PURCHASE/TURNED IN) DAYS COMMUTED BY BUS REIMBURSEMENT REQUESTED (non-permit

de Lijser, Peter

249

Commuter Choice Program Rail/Vanpool Reimbursement Form  

E-Print Network [OSTI]

workdays to meet program eligibility. Eligible non-permit holders receive 100% reimbursement (max $120); eligible permit holders receive 25% reimbursement (max $30) You will receive your reimbursement check CHANGES FROM THE PRIOR MONTH (ADDRESS, WORK LOCATION, WORK HRS, PERMIT PURCHASE/TURNED IN) COST OF RAIL

de Lijser, Peter

250

York Electric Cooperative- Dual Fuel Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and...

251

Size distribution of metals in particulate matter formed during combustion of residual fuel oil  

SciTech Connect (OSTI)

Between July 1992 and January 1993 three full-scale test programs were performed by Carnot for the Electric Power Research Institute and the Fuel Oil Users` Support (FOUS) Group, as part of a program for development and testing of various stack emissions models. One of the components of the program was determination of the concentrations of individual elements as a function of the size of particles suspended in flue gas. The size distributions of species are important because several aspects of system performance depend upon particulate matter size and composition: (1) the rate of ash deposition in the convection section, and activity of deposits for high temperature corrosion and SO{sub 3} formation, (2) the efficiency of precipitators for collection of individual elements, and (3) scattering of visible light and contribution of particles to stack plume opacity. Size distributions of major ash constituents were measured at the entrance and exit of the dust collectors during each of the field tests. To the authors` knowledge, these are the first reports of such measurements in residual oil-fired utility boilers. The focus, in the present paper, is on the composition of the particles entering the dust collectors.

Walsh, P. [Pennsylvania State Univ., University Park, PA (United States); Rovesti, W.C. [Electric Power Research Institute, Washington, DC (United States); Freeman, R.F. [Niagara Mohawk Power Corp., Oswego, NY (United States); Olen, K.R.; Washington, K.T.; Patrick, S.T.; Campbell, G.L.; Harper, D.S. [Florida Power & Light Co., West Palm Beach, FL (United States); Teetz, R.D.; Bennett, T.E. [Long Island Lighting Co., Glenwood Landing, NY (United States)] [and others

1994-08-01T23:59:59.000Z

252

U.S. DOE FE Fuel Cell Program DOE Hydrogen and Fuel Cells  

E-Print Network [OSTI]

Vision 21 fuel cell /turbine hybrids and V21 zero emissions concepts; and conduct system studies material Total, FE 51,274 56,678 60,603 44,500 Fuel Cell and Hydrogen Crosscut (dollars in thousands Electrical Efficiency (LHV) 3000 hrs.3000 hrs.Maintenance Interval turbine)

253

SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS  

SciTech Connect (OSTI)

ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materials in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.

Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

2010-11-01T23:59:59.000Z

254

Overview of the NETL Onsite Fuel Cell R&D Program  

SciTech Connect (OSTI)

Onsite fuel cell R&D at the National Energy Technology Laboratory (NETL) has been ongoing since the late 1990's. The objective of the onsite program is to support development efforts of the fuel cell technology-related product lines and conduct fundamental research of advanced fuel cell technology. Of special focus is NETL's new 10-yr, multimillion dollar development program call the Solid State Energy Conversion Alliance (SECA). This program is aimed at developing low-cost mass manufactured solid oxide fuel cell technology for a wide variety of applications. In addition to SECA, there are a variety of other products/programs at NETL that can be supported by the onsite R&D group. Vision 21 is one such program and is the U. S. Department of Energy's initiative to deploy high efficiency, ultra-clean co-production coal conversion power plants in the twenty-first century. These plants will consist of power and coproduction modules, which are integrated to meet specific power and chemical markets. In response to these program initiatives, NETL's onsite R&D group is developing significant capability and focusing current activity on the following areas: (1) High-Temperature Fuel Cell Test & Characterization; (2) Integrated Fuel Processing; (3) Fuel Cell Component and Systems Modeling; and (4) Sensors, Controls, and Instrumentation. This report discusses plans and ongoing activities in each of these areas.

Berry, David A.; Gemmen, Randall S.

2001-11-06T23:59:59.000Z

255

Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982  

SciTech Connect (OSTI)

The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

none,

1982-01-01T23:59:59.000Z

256

Steam System Management Program Yields Fuel Savings for Refinery  

E-Print Network [OSTI]

The Phillips refinery at Borger, Texas, determined the need to develop a utility monitoring system. Shortly after this commitment was made, the refinery was introduced to a flowsheet modeling program that could be used to model and optimize steam...

Gaines, L. D.; Hagan, K. J.

1983-01-01T23:59:59.000Z

257

1 | Fuel Cell Technologies Program Source: US DOE 3/3/2011 eere.energy.gov FUEL CELL TECHNOLOGIES PROGRAM  

E-Print Network [OSTI]

& Delivery Infrastructure * Targets and Metrics are being updated in 2010 . Market Transformation Assisting by independent panel** As stack costs are reduced, balance-of-plant components arebalance of plant components.energy.gov #12;The Program has reduced PGM content, increased power density, and simplifiedThe Program has

258

How to utilize hedging and a fuel surcharge program to stabilize the cost of fuel  

E-Print Network [OSTI]

This paper looks at some of these travails as well as the common tools used to approach a volatile priced commodity, diesel fuel. It focuses on the impacts of hedging for companies that are directly impacted through the ...

Shehadi, Charles A., III (Charles Anthony)

2010-01-01T23:59:59.000Z

259

EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)  

SciTech Connect (OSTI)

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2008/fiscal year 2009.

Not Available

2010-06-01T23:59:59.000Z

260

Vehicle Technologies Office Merit Review 2014: Southeast Regional Alternative Fuels Market Initiatives Program  

Broader source: Energy.gov [DOE]

Presentation given by Center for Transportation and the Environment, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

U.S. Department of Energy Fuel Cell Technologies Program: 18th...  

Broader source: Energy.gov (indexed) [DOE]

Nancy Garland at the 18th World Hydrogen Energy Conference on May 17, 2010, in Essen, Germany. U.S. Department of Energy Fuel Cell Technologies Program More Documents &...

262

New York State-wide Alternative Fuel Vehicle Program for Vehicles and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |Million DOEYellow SchoolNew York

263

New York State-wide Alternative Fuel Vehicle Program for Vehicles and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |Million DOEYellow SchoolNew

264

FUEL CELL TECHNOLOGIES PROGRAM Highlights from U.S.  

E-Print Network [OSTI]

) Hydrogen Secure Data Center (HSDC) has established data reporting protocols with each of the project teams) has already shown over 99.7% reliability of the fuel cells. Since the beginning of the projects cell manufacturing, installation, maintenance, and support services.1 Grants were awarded to develop

265

Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except for all the other forms"  

E-Print Network [OSTI]

: diesel; thermal efficiency 52%. #12;2 charge reciprocating piston engines; diesel-fueled nonpremixed). Also, electric motors are not heat engines and thus not internal combustion engines. Turboshaft All

266

Improving low temperature properties of synthetic diesel fuels derived from oil shale. Alternative fuels utilization program  

SciTech Connect (OSTI)

The ability of additives to improve the cold flow properties of shale oil derived fuels boiling in the diesel fuel range was evaluated. Because a commercial shale oil industry did not exist to provide actual samples of finished fuels, a representative range of hydroprocessed shale oil fractions was prepared for use in the additive testing work. Crude oil shale from Occidental Shale Company was fractionated to give three liquids in the diesel fuel boiling range. The initial boiling point in each case was 325/sup 0/F (163/sup 0/C). The final boiling points were 640/sup 0/F (338/sup 0/C), 670/sup 0/F (354/sup 0/C) and 700/sup 0/F (371/sup 0/F). Each fraction was hydrotreated to three different severities (800, 1200 and 1500 psi total pressure) over a Shell 324 nickel molybdate on alumina catalyst at 710 to 750/sup 0/F to afford 9 different model fuels. A variety of commercial and experimental additives were evaluated as cold flow improvers in the model fuels at treat levels of 0.04 to 0.4 wt %. Both the standard pour point test (ASTM D97) and a more severe low temperature flow test (LTFT) were employed. Reductions in pour points of up to 70/sup 0/F and improvements in LTFT temperatures up to 16/sup 0/F were achieved. It is concluded that flow improver additives can play an important role in improving the cold flow properties of future synthetic fuels of the diesel type derived from oil shale.

Frankenfeld, J.W.; Taylor, W.F.

1980-11-01T23:59:59.000Z

267

Fissile material disposition program final immobilization form assessment and recommendation  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations.

Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H. [Westinghouse Savannah River Co., Aiken, SC (United States)

1997-10-03T23:59:59.000Z

268

DoD Fuel Cell Demonstration Program: Energy Savings and Emissions Reductions to Date  

E-Print Network [OSTI]

Under the Department of Defense (DoD) Fuel Cell Demonstration Program managed by the U.S. Army Construction Engineering Research Laboratories (USACERL), 200 kW Phosphoric Acid Fuel Cell (PAFC) power plants have been installed and made operational...

Holcomb, F. H.; Binder, M. J.; Taylor, W. R.

269

Advanced Coal-Fueled Gas Turbine Program. Final report  

SciTech Connect (OSTI)

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

270

Support for DOE program in mineral waste-form development  

SciTech Connect (OSTI)

This research investigation relates to sintered simulation ceramic waste forms of the generic SYNROC compositional type. Though they have been formulated with simulated wastes only, they serve as prototypes for potential hot, processed, crystalline waste forms whose combined thermodynamic stability and physical integrity are considered to render them capable of long-term imobilization of high-level radwastes under deep geologic disposal conditions. The problems involved are nontrivial, largely because of the very complex nature of the radwastes: a typical waste stream would contain more than 31 cation species. When the stabilizing matrix constituents are included, the final batch composition must successfully account (and find substitutional homes for some 35 different cation species. One of the important objectives of this study thus has been to develop a computer-based method for simulating these complex ion substitutions, and for calculating the resultant phase demands and batch formulations. Primary goals of the study have been (1) use of that computer simulation capability to incorporate rationally the radwaste ions from a specific waste stream (PW-7a) into the available SYNROC lattice sites and (2) utilization of existing ceramic processing and sintering methodologies to assure (and to understand) the attainment of high density, fine microstructure, full phase development and other features of the sintered product which are known to relate directly to its integrity and leach resistance. Though improved resistance to leaching has been a continuing goal, time and budget constraints have precluded initiation of any leachability studies of these new compositions during this contract period. 27 references, 15 figures, 6 tables.

Palmour, H. III; Hare, T.M.; Russ, J.C.; Batchelor, A.D.; Paisley, M.J.; Freed, L.E.

1982-09-01T23:59:59.000Z

271

US RERTR Program, its fuel development activities, and application in the KUHFR  

SciTech Connect (OSTI)

The goals, structure, and accomplishments to date of the Reduced-Enrichment Research and Test Reactor (RERTR) Program are described in detail. Plans and schedules for future program activities are outlined with the effect these activities may potentially have on the research reactor community. The fuel development activities of the program are discussed in detail, with particular emphasis on the new low-enrichment, high uranium density fuels the RERTR Program is developing for application in research reactors in the near future. The results of a joint study program between the RERTR Program and the Kyoto University Research Reactor Institute (KURRI), aimed at converting the Kyoto University High-Flux reactor (KUHFR) to the use of reduced-enrichment uranium, are presented.

Travelli, A. (Argonne National Lab., IL); Stahl, D.; Shibata, T.

1981-01-01T23:59:59.000Z

272

US RERTR program, its fuel-development activities, and application in the KUHFR  

SciTech Connect (OSTI)

The goals, structure, and accomplishments to date of the Reduced Enrichment Research and Test Reactor (RERTR) Program are described in detail. Plans and schedules for future program activities are outlined with the effect which these activities may potentially have on the research-reactor community. The fuel-development activities of the program are discussed in detail, with particular emphasis on the new low-enrichment, high-uranium-density fuels which the RERTR Program is developing for application in research reactors in the near future. The results of a joint study program between the RERTR Program and the Kyoto University Research Reactor Institute (KURRI), aimed at converting the Kyoto University High-Flux Reactor (KUHFR) to the use of reduced-enrichment uranium, are presented. It is shown that the study has resulted in a positive decision and in a cooperative, well-structured plan for the KUHFR conversion.

Travelli, A.; Stahl, D.

1981-01-01T23:59:59.000Z

273

Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration  

SciTech Connect (OSTI)

In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

NONE

1995-06-01T23:59:59.000Z

274

MJG:TTM, 3/01 Plasma Fueling Program FIRE Fueling and Pumping Design  

E-Print Network [OSTI]

DRIVE (3X) D-T LIQUIFIER SCREW EXTRUDER HEAT SHIELD BARREL GUARD VACUUM GUN BLOCK PELLET CUTTER FAST 80 K 20 K SINGLE- STAGE CRYO- COOLER 2-STAGE CRYO- COOLER D-T FEED VACUUM PROPELLANT GAS EXTRUDER/DIII-D injector ·Employing new cryocooler and continuous extruder technology #12;PWF:6/6/01 Review Plasma Fueling

275

Chemical Engineering Division fuel cycle programs. Quarterly progress report, October-December 1978  

SciTech Connect (OSTI)

In the program on pyrochemical and dry processing methods (PDPM) for nuclear fuel, tungsten crucibles were successfully spun for use in laboratory-scale experiments. Corrosion testing of refractory metals and alloys in PDPM environments was done. Ceramic substrates were successfully coated with tungsten. Solubility measurements were made to determine Cd/Mg alloy composition and temperature at which dissolved Th will precipitate. Experiments were started to study the reduction of high-fired ThO/sub 2/ with Ca in a molten metal-molten salt system. Work on the fused salt electrolysis of CaO was started. Equipment for determining phase diagrams for U-Cu-Mg system was set up. The reaction of UO/sub 2/ with molten equimolar NaNO/sub 3/-KNO/sub 3/ was studied as part of a project to identify chemically feasible nonaqueous fuel reprocessing methods. Work was continued on development of a flowsheet for reprocessing actinide oxides by extracting actinides into ammonium chloro-aluminate (and alternative salts) from a bismuth solution. Preparation of Th, U, and Pu nitrides after dissolution of spent fuel elements in molten tin is being studied. Leach rates of glass beads, pulverized beads, and beads encapsulated in a lead matrix with no protective envelope were studied. A method (employing no pressure or vacuum systems) of encapsulating various solid wastes in a lead metal matrix was developed and tested. A preliminary integration was made of earlier data on effects of impacts on metal-matrix waste forms.Leach migration experiments were compared with conventional infiltration experiments as methods of evaluating geologic formations as barriers to nuclide migration. The effect of the streaming potential on the rates of transport of radioactive I/sup -/ and Na/sup +/ through kaolinite columns was measured, as well as adsorption of iodide and iodate by several compounds; implications of the results upon the disposal of radioactive iodine are discussed.

Steindler, M J; Ader, M; Barletta, R E

1980-01-01T23:59:59.000Z

276

Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary.  

SciTech Connect (OSTI)

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) and supported by both the U.S. Department of Energy and the Nuclear Regulatory Commission.

Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Mo, Tin (U.S. Nuclear Regulatory Commission, Washington, DC); Billone, Michael C. (Argonne National Laboratory, Argonne, IL); Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Young, F. I. (U.S. Nuclear Regulatory Commission, Washington, DC); Coats, Richard Lee; Burtseva, Tatiana (Argonne National Laboratory, Argonne, IL); Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Thompson, Nancy Slater (U.S. Department of Energy, Washington, DC); Hibbs, Russell S. (U.S. Department of Energy, Washington, DC); Gregson, Michael Warren; Lange, Florentin (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Molecke, Martin Alan; Tsai, Han-Chung (Argonne National Laboratory, Argonne, IL)

2005-07-01T23:59:59.000Z

277

Spring 2013 SEMESTER OU/SPC CAREER EXPERIENCE PROGRAM APPLICATION FORM  

E-Print Network [OSTI]

Spring 2013 SEMESTER OU/SPC CAREER EXPERIENCE PROGRAM APPLICATION FORM OVERVIEW The Storm Prediction Center (SPC) and OU School of Meteorology (SoM) Career Experience Program is an unpaid, "for. The student will spend between 8-10 hours per week (3 credit hours of METR 3890) at the SPC working

278

Spring 2012 SEMESTER OU/SPC CAREER EXPERIENCE PROGRAM APPLICATION FORM  

E-Print Network [OSTI]

Spring 2012 SEMESTER OU/SPC CAREER EXPERIENCE PROGRAM APPLICATION FORM OVERVIEW The Storm Prediction Center (SPC) and OU School of Meteorology (SoM) Career Experience Program is an unpaid, "for. The student will spend between 8-10 hours per week (3 credit hours of METR 3890) at the SPC working

279

Fall 2012 SEMESTER OU/SPC CAREER EXPERIENCE PROGRAM APPLICATION FORM  

E-Print Network [OSTI]

Fall 2012 SEMESTER OU/SPC CAREER EXPERIENCE PROGRAM APPLICATION FORM OVERVIEW The Storm Prediction Center (SPC) and OU School of Meteorology (SoM) Career Experience Program is an unpaid, "for credit between 8-10 hours per week (3 credit hours of METR 3890) at the SPC working on a research project related

280

Driving the Nation Toward a Clean Energy Future: Fuels Utilization Program Fact Sheet  

SciTech Connect (OSTI)

The transportation market in the United States is evolving. As the number of vehicles and miles traveled on American roadways continues to grow, the nation is looking toward advanced vehicles and fuels to meet the increasing demand for more energy efficient, environmentally friendly modes of transport. At the National Renewable Energy Laboratory, the Center for Transportation Technologies and Systems' Fuel Utilization Program is doing its part. We're developing and demonstrating engine and fuel technologies that allow alternative and advanced petroleum fuels to compete with their conventional counterparts.

Thomas, J.

2000-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogen and Fuel Cells Program Overview: 2012 Annual Merit Review and Peer  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013DepartmentAgenda for theTrucksEvaluation

282

Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells Program and  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-ScaleofLabReport |Motors R&D Annual

283

Optimization of High-Volume Warm Forming for Lightweight Sheet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of High-Volume Warm Forming for Lightweight Sheet Alloys 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

284

Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices  

SciTech Connect (OSTI)

The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

NONE

1997-06-01T23:59:59.000Z

285

Finance Program Retention for FALL 2014 Instructions for Transcript Review Form  

E-Print Network [OSTI]

Finance Program ­ Retention for FALL 2014 Instructions for Transcript Review Form College of Business at Northern Illinois University The Department of Finance Transcript Review Form should in the finance core). All NIU students are eligible to declare a major in Finance; however, students must meet

Kostic, Milivoje M.

286

Data collection plan for Phase 2 Alternative Fuels Bus Data Collection Program. Final report  

SciTech Connect (OSTI)

This document constitutes the plan for collecting and reporting data associated with a special set of transit bus demonstrations to be conducted under the Urban Bus Program of the Alternative Motor Fuels Act (AMFA) of 1988. This program, called the Phase 2 Bus Data Collection Program, serves as an adjunct to the Phase I Bus Data Collection Program, collecting detailed data on just a few buses to augment and enhance the Phase 1 data in fulfilling the urban bus requirements of AMFA. Demonstrations will be conducted at a few transit system locations throughout the US and will use alternative fuels and associated technologies to reduce undesirable transit bus exhaust emissions. Several organizations will be involved in the data collection; NREL will manage the program, analyze and store vehicle data, and make these data available through the Alternative Fuels Data Center. This information will enable transit agencies, equipment manufacturers, fuel suppliers, and government policy makers to make informed decisions about buying and using alternative fuels.

Krenelka, T. [Battelle Columbus Labs., OH (United States)] [Battelle Columbus Labs., OH (United States)

1993-07-01T23:59:59.000Z

287

forms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungCleanJournalMachine Control

288

OPT -Academic Advisor's Statement of Program Completion Form Academic Advisor: This form provides the International Student & Scholar Services office with information  

E-Print Network [OSTI]

OPT - Academic Advisor's Statement of Program Completion Form Academic Advisor: This form provides/day/year): ________________________________________________________ Note to advisor: This date cannot go beyond the end date of the current semester. The student to start your OPT. Advisor's Signature

Rock, Chris

289

Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.  

SciTech Connect (OSTI)

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage--aerosol test program, performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission, had significant inputs from, and is strongly supported and coordinated by both the U.S. and international program participants in Germany, France, and the U.K., as part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC.

Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T. (Argonne National Laboratory, USA); Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

2006-10-01T23:59:59.000Z

290

Project Information Form Project Title Assessment of Critical Barriers to Alternative and Renewable Fuel and  

E-Print Network [OSTI]

Fuel and Vehicle Deployment University UC Davis Principal Investigator Amy Jaffe Andrew Burke PI and clean fuels and ensure that associated infrastructure becomes available at a sufficient pace and scale to meet AB118/AB8 goals. Our research in this area will consider the synergies of incumbent fueling

California at Davis, University of

291

Spent nuclear fuel as a waste form for geologic disposal: Assessment and recommendations on data and modeling needs  

SciTech Connect (OSTI)

This study assesses the status of knowledge pertinent to evaluating the behavior of spent nuclear fuel as a waste form in geologic disposal systems and provides background information that can be used by the DOE to address the information needs that pertain to compliance with applicable standards and regulations. To achieve this objective, applicable federal regulations were reviewed, expected disposal environments were described, the status of spent-fuel modeling was summarized, and information regarding the characteristics and behavior of spent fuel was compiled. This compiled information was then evaluated from a performance modeling perspective to identify further information needs. A number of recommendations were made concerning information still needed to enhance understanding of spent-fuel behavior as a waste form in geologic repositories. 335 refs., 22 figs., 44 tabs.

Van Luik, A.E.; Apted, M.J.; Bailey, W.J.; Haberman, J.H.; Shade, J.S.; Guenther, R.E.; Serne, R.J.; Gilbert, E.R.; Peters, R.; Williford, R.E.

1987-09-01T23:59:59.000Z

292

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description  

SciTech Connect (OSTI)

The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

Not Available

1980-06-01T23:59:59.000Z

293

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect (OSTI)

In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

Levins, W.P.; Ternes, M.P.

1994-10-01T23:59:59.000Z

294

High Purity Americium-241 for Fuel Cycle R&D Program  

SciTech Connect (OSTI)

Previously the U.S. Department of Energy released Am-241 for various applications such as smoke detectors and Am-Be neutron sources for oil wells. At this date there is a shortage of usable, higher purity Am-241 in metal and oxide form available in the United States. Recently, the limited source of Am-241 has been from Russia with production being contracted to existing customers. The shortage has resulted in the price per gram rising dramatically over the last few years. DOE-NE currently has need for high purity Am-241 metal and oxide to fabricate fuel pellets for reactor testing in the Fuel Cycle R&D program. All the available high purity americium has been gathered from within the DOE system of laboratories. However, this is only a fraction of the projected needs of FCRD over the next 10 years. Therefore, FCR&D has proposed extraction and purification concepts to extract Am-241 from a mixed AmO2-PuO2 feedstock stored at the Savannah River Site. The most simple extraction system is based upon high temperature reduction using lanthanum metal with concurrent evaporation and condensation to produce high purity Am metal. Metallic americium has over a four order of magnitude higher vapor pressure than plutonium. Results from small-scale reduction experiments are presented. These results confirm thermodynamic predictions that at 1000 deg C metallic lanthanum reduces both PuO2 and AmO2. Faster kinetics are expected for temperatures up to about 1500 deg C.

Dr. Paul A. Lessing

2011-07-01T23:59:59.000Z

295

CERCA LEU fuel assemblies testing in Maria Reactor - safety analysis summary and testing program scope.  

SciTech Connect (OSTI)

The presented paper contains neutronic and thermal-hydraulic (for steady and unsteady states) calculation results prepared to support annex to Safety Analysis Report for MARIA reactor in order to obtain approval for program of testing low-enriched uranium (LEU) lead test fuel assemblies (LTFA) manufactured by CERCA. This includes presentation of the limits and operational constraints to be in effect during the fuel testing investigations. Also, the scope of testing program (which began in August 2009), including additional measurements and monitoring procedures, is described.

Pytel, K.; Mieleszczenko, W.; Lechniak, J.; Moldysz, A.; Andrzejewski, K.; Kulikowska, T.; Marcinkowska, A.; Garner, P. L.; Hanan, N. A.; Nuclear Engineering Division; Institute of Atomic Energy (Poland)

2010-03-01T23:59:59.000Z

296

Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.  

SciTech Connect (OSTI)

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and coordinated by both the U.S. and international program participants in Germany, France, and others, as part of the International Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC).

Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Klennert, Lindsay A.; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

2008-03-01T23:59:59.000Z

297

Forms | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors ProgramEnergy FallFastForms Forms DOE Forms

298

Air Force program tests production of aviation turbine fuels from Utah and Kentucky bitumens  

SciTech Connect (OSTI)

Ashland Petroleum Company and Sun Refining and Marketing participated in a US Air Force program to determine the costs, yields, physical characteristics, and chemical properties of aviation turbine fuels, Grades JP-4 and JP-8, produced from Kentucky and Utah bitumens. The processes used by both are summarized; Ashland used a different approach for each bitumen; Sun's processing was the same for both, but different from Ashland's. Chemical and physical properties are tabulated for the two raw bitumens. Properties of the eight fuels produced are compared with specification for similar type aviation turbine fuels.

Not Available

1986-09-01T23:59:59.000Z

299

Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program  

SciTech Connect (OSTI)

The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

Adrian Miron; Joshua Valentine; John Christenson; Majd Hawwari; Santosh Bhatt; Mary Lou Dunzik-Gougar: Michael Lineberry

2009-10-01T23:59:59.000Z

300

RECS Fuel Oil Usage Form_v1 (Draft).xps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001 Media Contact: Rick30

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Overview of the U.S. DOE Accident Tolerant Fuel Development Program  

SciTech Connect (OSTI)

The United States Fuel Cycle Research and Development Advanced Fuels Campaign has been given the responsibility to conduct research and development on enhanced accident tolerant fuels with the goal of performing a lead test assembly or lead test rod irradiation in a commercial reactor by 2022. The Advanced Fuels Campaign has defined fuels with enhanced accident tolerance as those that, in comparison with the standard UO2-Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations and operational transients, as well as design-basis and beyond design-basis events. This paper provides an overview of the FCRD Accident Tolerant Fuel program. The ATF attributes will be presented and discussed. Attributes identified as potentially important to enhance accident tolerance include reduced hydrogen generation (resulting from cladding oxidation), enhanced fission product retention under severe accident conditions, reduced cladding reaction with high-temperature steam, and improved fuel-cladding interaction for enhanced performance under extreme conditions. To demonstrate the enhanced accident tolerance of candidate fuel designs, metrics must be developed and evaluated using a combination of design features for a given LWR design, potential improvements to that design, and the design of an advanced fuel/cladding system. The aforementioned attributes provide qualitative guidance for parameters that will be considered for fuels with enhanced accident tolerance. It may be unnecessary to improve in all attributes and it is likely that some attributes or combination of attributes provide meaningful gains in accident tolerance, while others may provide only marginal benefits. Thus, an initial step in program implementation will be the development of quantitative metrics. A companion paper in these proceedings provides an update on the status of establishing these quantitative metrics for accident tolerant LWR fuel.1 The United States FCRD Advanced Fuels Campaign has embarked on an aggressive schedule for development of enhanced accident tolerant LWR fuels. The goal of developing such a fuel system that can be deployed in the U.S. LWR fleet in the next 10 to 20 years supports the sustainability of clean nuclear power generation in the United States.

Jon Carmack; Frank Goldner; Shannon M. Bragg-Sitton; Lance L. Snead

2013-09-01T23:59:59.000Z

302

Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary  

SciTech Connect (OSTI)

The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

NONE

1997-03-01T23:59:59.000Z

303

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

SciTech Connect (OSTI)

The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

Weakley, Steven A.; Brown, Scott A.

2011-09-29T23:59:59.000Z

304

Characterization program management plan for Hanford K basin spent nuclear fuel  

SciTech Connect (OSTI)

The program management plan for characterization of the K Basin spent nuclear fuel was revised to incorporate corrective actions in response to SNF Project QA surveillance 1K-FY-99-060. This revision of the SNF Characterization PMP replaces Duke Eng.

TRIMBLE, D.J.

1999-07-19T23:59:59.000Z

305

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

SciTech Connect (OSTI)

The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

Weakley, Steven A.

2012-09-28T23:59:59.000Z

306

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network [OSTI]

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

307

1 | Source: US DOE 12/2010 hydrogenandfuelcells.energy.gov FUEL CELL TECHNOLOGIES PROGRAM  

E-Print Network [OSTI]

#12;4 | hydrogenandfuelcells.energy.gov · Carbon Fiber ­ ORNL pursuing low cost precursors for high-strength CF ­ Multiple fibers with matched strength/modulus would allow optimization of fiber use on tanks1 | Source: US DOE 12/2010 hydrogenandfuelcells.energy.gov FUEL CELL TECHNOLOGIES PROGRAM Hydrogen

308

Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage  

E-Print Network [OSTI]

Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage "TriShield" tank technology (see Fig. 1) meets the percent weight, energy density, and specific energy reductions are possible with further optimization. Fig. 1 TriShieldTM Type IV Tank The 5,000 and 10,000 psi

309

Coupling the core analysis program DeCART to the fuel performance application BISON  

SciTech Connect (OSTI)

The 3D neutron transport and core analysis program DeCART was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the method of characteristics) to a high fidelity fuel performance program, both of which can simulate 3D problems. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during burnup or a fast transient. BISON implicitly solves coupled thermomechanical equations for the fuel on a sub-millimeter level finite element mesh. A method was developed for mapping the fission rate density and fast neutron flux from DeCART to BISON. Multiple depletion cases were run with one-way data transfer from DeCART to BISON. The one-way data transfer of fission rate density is shown to agree with the fission rate density obtained from an internal Lassman-style model in BISON. One-way data transfer was also demonstrated in a 3D case in which azimuthal asymmetry was induced in the fission rate density profile of a fuel rod modeled in DeCART. Two-way data transfer was established by mapping the temperature distribution from BISON to DeCART. A Picard iterative algorithm was developed for the loose coupling with two-way data transfer. (authors)

Gleicher, F. N.; Spencer, B.; Novascone, S.; Williamson, R.; Martineau, R. C. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States); Rose, M.; Downar, T. J.; Collins, B. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48105 (United States)

2013-07-01T23:59:59.000Z

310

Approval Process New Study Abroad Programs 1. Departments must use existing forms available at OIE for the creation of new programs. See  

E-Print Network [OSTI]

Approval Process ­ New Study Abroad Programs 1. Departments must use existing forms available at OIE for the creation of new programs. See: http://international.uga.edu/all_forms_and_documents// Scroll down to: "FACULTY AND STAFF" at "Starting an Education Abroad Program" In order to ensure maximum

Arnold, Jonathan

311

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413  

SciTech Connect (OSTI)

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

312

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model  

SciTech Connect (OSTI)

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

2013-02-01T23:59:59.000Z

313

SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM  

SciTech Connect (OSTI)

This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

Unknown

2003-06-01T23:59:59.000Z

314

Clean, Efficient, and Reliable Heat and Power for the 21st Century, Fuel Cell Technologies Program (FCTP) (Fact Sheet)  

SciTech Connect (OSTI)

This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential. The program focuses on research and development of fuel cell systems for diverse applications in the stationary power, portable power, and transportation sectors. It works to reduce costs and improve technologies to advance fuel cell uses in areas such as combined heat and power, auxiliary power units, portable power systems, and stationary and backup power. To help ensure that fuel cell advances are realized, the program rigorously analyzes energy efficiency, economic, and environmental benefits of fuel cells and seeks to optimize synergies among fuel cell applications and other renewable technologies.

Not Available

2010-05-01T23:59:59.000Z

315

DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option

316

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total...

317

Method for forming nuclear fuel containers of a composite construction and the product thereof  

DOE Patents [OSTI]

An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

Cheng, Bo-Ching (Fremont, CA); Rosenbaum, Herman S. (Fremont, CA); Armijo, Joseph S. (Saratoga, CA)

1984-01-01T23:59:59.000Z

318

Model for incorporating fuel swelling and clad shrinkage effects in diffusion theory calculations (LWBR Development Program)  

SciTech Connect (OSTI)

A model has been devised for incorporating into the thermal feedback procedure of the PDQ few-group diffusion theory computer program the explicit calculation of depletion and temperature dependent fuel-rod shrinkage and swelling at each mesh point. The model determines the effect on reactivity of the change in hydrogen concentration caused by the variation in coolant channel area as the rods contract and expand. The calculation of fuel temperature, and hence of Doppler-broadened cross sections, is improved by correcting the heat transfer coefficient of the fuel-clad gap for the effects of clad creep, fuel densification and swelling, and release of fission-product gases into the gap. An approximate calculation of clad stress is also included in the model.

Schick, W.C. Jr.; Milani, S.; Duncombe, E.

1980-03-01T23:59:59.000Z

319

Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle-Based  

E-Print Network [OSTI]

,931.44 Total Project Cost $98,931.44 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates November 1Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle, 2014 ­ October 31, 2015 Brief Description of Research Project Current greenhouse gas emissions

California at Davis, University of

320

ACADEMIC ADVISOR'S RECOMMENDATION FORM FOR EXTENSION OF TIME LIMITATION FOR A PROGRAM OF STUDY  

E-Print Network [OSTI]

ACADEMIC ADVISOR'S RECOMMENDATION FORM FOR EXTENSION OF TIME LIMITATION FOR A PROGRAM OF STUDY the extension period? Fall __ Spring ___ Summer Current U. S. Address: Home Country Address: (ADVISOR'S SECTION ON REVERSE) #12;Only Advisors may complete the following section (all information requested is required

Suzuki, Masatsugu

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Accelerator Physics Accelerators form the backbone of SLAC's on-site experimental program. Research at SLAC  

E-Print Network [OSTI]

#12;Accelerator Physics Accelerators form the backbone of SLAC's on-site experimental program. Research at SLAC is continually improving accelerators, both here and at other laboratories, and paving the way for a new generation of particle acceleration technology. SLAC's famous linear accelerator

Wechsler, Risa H.

322

1 | Fuel Cell Technologies Program Source: US DOE 12/5/2012 eere.energy.gov National Fuel Cell and Hydrogen  

E-Print Network [OSTI]

-haul trucks) Advantages of Batteries and Fuel Cells: · For shorter distances, batteries are more effective Power System Mass vs. Vehicle Range SOURCE: General Motors, Inc. 3 | Fuel Cell Technologies Program: For a projected state of technologies in 2035-2045. Ultra-low carbon renewable electricity includes wind, solar

323

Summary of national and international fuel cycle and radioactive waste management programs, 1984  

SciTech Connect (OSTI)

Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-07-01T23:59:59.000Z

324

Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program  

SciTech Connect (OSTI)

This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

Nguyen Minh

2006-07-31T23:59:59.000Z

325

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 6.0 Program Management  

Broader source: Energy.gov [DOE]

Program Management section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated August 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

326

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 2.0 Program Benefits  

Broader source: Energy.gov [DOE]

Program Benefits section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated August 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

327

PON08010 American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program  

E-Print Network [OSTI]

and Renewable Fuel and Vehicle Technology Program Questions and Answers 4/27/09 to 5/1/09 Two questions (How far's solicitation "seek and obtain an award" through a federal ARRA solicitation. 3) May a project producing bio and Renewable Fuel and Vehicle Technology Program. The Energy Commission recommends that you submit a pre

328

Forms | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors ProgramEnergy FallFastForms Forms DOE

329

1 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Overview of Hydrogen &  

E-Print Network [OSTI]

and Workshops · Analysis Update · Recent HTAC Input & Future Needs Agenda #12;3 | Fuel Cell Technologies Program density and reduce fuel cell system cost by >45% since 2007. "Whiskerettes" of Pt grow off sides/07 ­ Carbon-Neutral Energy Research of Kyushu University · MotorWeek: PBS to air a fuel cell vehicle episode

330

LANL Fuel Cell Research 1HFCIT Program Kick-off Meeting, Arlington, VA, February 13-14, 2007  

E-Print Network [OSTI]

physicochemical characterization, electrochemical and fuel cell testing · Optimize catalysts, supportsLANL Fuel Cell Research 1HFCIT Program Kick-off Meeting, Arlington, VA, February 13-14, 2007 Laboratory Hydrogen, Fuel Cells and Infrastructure Technologies Radoslav Adzic Paolina Atanassova Cabot

331

University Programs of the U.S. Advanced Fuel Cycle Initiative  

SciTech Connect (OSTI)

As the Advanced Accelerator Applications (AAA) Program, which was initiated in fiscal year 2001 (FY01), grows and transitions to the Advanced Fuel Cycle (AFC) Program in FY03, research for its underlying science and technology will require an ever larger cadre of educated scientists and trained technicians. In addition, other applications of nuclear science and engineering (e.g., proliferation monitoring and defense, nuclear medicine, safety regulation, industrial processes, and many others) require increased academic and national infrastructure and even larger student populations. Because of the recognition of these current and increasing requirements, the DOE began a multi-year program to involve university faculty and students in various phases of these Projects to support the infrastructure requirements of nuclear energy, science and technology fields as well as the special needs of the DOE transmutation program. Herein I summarize the goals and accomplishments of the university programs that have supported the AAA and AFC Programs during FY02, including the involvement of 120 students at more than 30 universities in the U.S. and abroad. I also highlight contributions to academic research from LANL, which hosted students from and sponsored research at more than 18 universities by more than 50 students and 20 faculty members, investing about 10% of its AFC budget.

Beller, D. E. (Denis E.)

2003-01-01T23:59:59.000Z

332

Liquefied gaseous fuels safety and environmental control assessment program: third status report  

SciTech Connect (OSTI)

This Status Report contains contributions from all contractors currently participating in the DOE Liquefied Gaseous Fuels (LG) Safety and Environmental Control Assessment Program and is presented in two principal sections. Section I is an Executive Summary of work done by all program participants. Section II is a presentation of fourteen individual reports (A through N) on specific LGF Program activities. The emphasis of Section II is on research conducted by Lawrence Livermore National Laboratory (Reports A through M). Report N, an annotated bibliography of literature related to LNG safety and environmental control, was prepared by Pacific Northwest Laboratory (PNL) as part of its LGF Safety Studies Project. Other organizations who contributed to this Status Report are Aerojet Energy Conversion Company; Applied Technology Corporation; Arthur D. Little, Incorporated; C/sub v/ International, Incorporated; Institute of Gas Technology; and Massachusetts Institute of Technology. Separate abstracts have been prepared for Reports A through N for inclusion in the Energy Data Base.

Not Available

1982-03-01T23:59:59.000Z

333

Project Information Form Project Title Accelerating Commercialization of Alternative and Renewable Fuels and  

E-Print Network [OSTI]

or organization) CEC $344,546 Total Project Cost $344,546 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Accelerating Commercialization of Alternative and Renewable and End Dates June 30, 2014 to June 30, 2016 Brief Description of Research Project Alternative

California at Davis, University of

334

Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy  

SciTech Connect (OSTI)

For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through cradle-to-grave case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

none,

2013-07-01T23:59:59.000Z

335

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

Not Available

1994-06-01T23:59:59.000Z

336

General-purpose heat source project and space nuclear safety and fuels program. Progress report  

SciTech Connect (OSTI)

Studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two /sup 238/PuO/sub 2/ pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported.

Maraman, W.J.

1980-02-01T23:59:59.000Z

337

1 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov Fuel Cell Technologies Office  

E-Print Network [OSTI]

% Canada 2% Taiwan 2% France 2% Germany 6% Korea 7% Japan 33% Fuel Cell Patents Geographic Distribution and Biogas New World Trade Center will use 12 fuel cells totaling 4.8MW Critical Loads- e.g. banks, hospitals

338

RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel  

SciTech Connect (OSTI)

This report presents the technical details of RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, interactive program that can be run on an IBM or equivalent personal computer under the Windows{trademark} environment. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incident-free models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionuclide inventory and dose conversion factors. In addition, the flexibility of the models allows them to be used for assessing any accidental release involving radioactive materials. The RISKIND code allows for user-specified accident scenarios as well as receptor locations under various exposure conditions, thereby facilitating the estimation of radiological consequences and health risks for individuals. Median (50% probability) and typical worst-case (less than 5% probability of being exceeded) doses and health consequences from potential accidental releases can be calculated by constructing a cumulative dose/probability distribution curve for a complete matrix of site joint-wind-frequency data. These consequence results, together with the estimated probability of the entire spectrum of potential accidents, form a comprehensive, probabilistic risk assessment of a spent nuclear fuel transportation accident.

Yuan, Y.C. [Square Y Consultants, Orchard Park, NY (US); Chen, S.Y.; Biwer, B.M.; LePoire, D.J. [Argonne National Lab., IL (US)

1995-11-01T23:59:59.000Z

339

1 | Fuel Cell Technologies Program Source: US DOE 4/3/2012 eere.energy.gov Fuel Cell Technologies Overview  

E-Print Network [OSTI]

States 47% Germany 7% Korea 5% Canada 3% Taiwan 2% Great Britain 1% France 1% Other 3% Japan 31% Fuel by Application 2008 2009 2010 USA Japan South Korea Germany Other (MW) Fuel cell market continues to grow · ~36 fuel cell / turbine) · > 80% (with CHP) · 35­50%+ reductions for CHP systems (>80% with biogas) · 55

340

Core materials development for the fuel cycle R&D program  

SciTech Connect (OSTI)

The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels fast reactor core materials (cladding and duct) must be able to withstand very high doses (>300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350 750 C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress (400 MPa) and a large increase in DBTT (up to 230 C) for specimens irradiated at 383 C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous oxide dispersions.

Toloczko, M [Pacific Northwest National Laboratory (PNNL); Maloy, S [Los Alamos National Laboratory (LANL); Cole, James I. [Idaho National Laboratory (INL); Byun, Thak Sang [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Core Materials Development for the Fuel Cycle R&D Program  

SciTech Connect (OSTI)

The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels fast reactor core materials (cladding and duct) must be able to withstand very high doses (greater than 300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350-750 C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress ({approx}400 MPa) and a large increase in DBTT (up to 230 C) for specimens irradiated at 383 C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous oxide dispersions.

S. A. Maloy; M. Toloczko; J. Cole; T. S. Byun

2011-08-01T23:59:59.000Z

342

Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction  

SciTech Connect (OSTI)

The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

Andile B. Mzinyati [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2007-09-15T23:59:59.000Z

343

CRC fuel rating program: road octane performance of oxygenates in 1982 model cars  

SciTech Connect (OSTI)

Because of the widespread interest in the use of alcohols and ethers as gasoline blending components, this program was conducted to evaluate the effects of several oxygenates on gasoline octane performance and to evaluate the effects of car design features such as engine and transmission type. Five oxygenates were evaluated at two nominal concentrations, 5 and 10 volume%, at both regular- and premium-grade octane levels: methanol (MeOH), ethanol (ETOH), isopropanol (IPA), tertiary butanol (TBA), and methyl tertiary butyl ether (MTBE). A blend of 5% MeOH and 5 percent TBA was also tested at both octane levels. Twenty-eight unleaded fuels, including four hydrocarbon fuels, two hydrocarbon fuels plus toluene, and twenty-two oxygenated fuels, were rated in duplicate in thirty-eight cars using the Modified Uniontown Technique (CRC Designation F-28-75 described in Appendix C), plus some additional instructions. All testing was done on chassis dynamometers. Ratings were obtained at full throttle with all thirty-eight cars, and at the most critical part-throttle condition (occurring with manifold vacuum of 4 in. Hg (13.5 kPa) or greater above the full-throttle vacuum) with nine cars.

Not Available

1985-07-01T23:59:59.000Z

344

Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell Technologies Program (FCTP) (Fact Sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen Telescope Looks to Ends101BurbankBus'

345

An underground characterization program for a nuclear fuel waste disposal vault in plutonic rock  

SciTech Connect (OSTI)

The Canadian Nuclear Fuel Waste Management Program (CNFWMP) is developing a concept for disposing of nuclear fuel waste that involves placing and sealing it in a disposal vault excavated 500 to 1,000 m deep in the stable plutonic rock of the Canadian Shield. In this concept, engineered and natural barriers serve to isolate the waste from the biosphere. Since 1983, underground characterization and testing in support of the CNFWMP has been ongoing at the Underground Research Laboratory (URL) in southeastern Manitoba. This paper draws on experience gained at the URL to recommend an approach to underground characterization that would provide the necessary information to make design decisions for a disposal vault in plutonic rock.

Thompson, P.M.; Everitt, R.A. [AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.

1993-12-31T23:59:59.000Z

346

V1FY 2013 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jean St-Pierre (Primary Contact), Yunfeng Zhai,  

E-Print Network [OSTI]

V­1FY 2013 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jean St-Pierre (Primary applications, 80-kWe (net) integrated transportation fuel cell power systems operating on direct hydrogen-Pierre ­ Hawaii Natural Energy InstituteV.E Fuel Cells / Impurities V­2DOE Hydrogen and Fuel Cells Program FY 2013

347

General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980  

SciTech Connect (OSTI)

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-05-01T23:59:59.000Z

348

Measurements for the JASPER program In-Vessel Fuel Storage experiment  

SciTech Connect (OSTI)

The In-Vessel-Fuel-Storage (IVFS) experiment was conducted at the Oak Ridge National Laboratory`s (ORNL) Tower Shielding Facility (TSF) during the first nine months of 1991 as part of the continuing series of eight experiments planned for the Japanese-American Shielding Program for Experimental Research (JASPER) that was started in 1986. This is the fourth in a series of eight experiments that were planned, all of which are intended to provide support in the development of current reactor shield designs proposed for liquid metal reactor (LMR) systems both in Japan and the United States. The program is a cooperative effort between the United States Department of Energy (US DOE) and the Japanese Power Reactor and Nuclear Development Corporation (PNC). This document provides a description of the instrumentation and experimental configuration, test data, and data analysis.

Muckenthaler, F.J.; Spencer, R.R.; Hunter, H.T.; Hull, J.L. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); Shono, A. [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)] [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

1992-01-01T23:59:59.000Z

349

Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes  

SciTech Connect (OSTI)

The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

Harmon, K.M.; Johnson, A.B. Jr.

1984-04-01T23:59:59.000Z

350

PHOTOREDUCTIVE SEQUESTRATION OF CO2 TO FORM C1 PRODUCTS AND FUEL  

SciTech Connect (OSTI)

Analytical methods for determining formic, acetic and oxalic acids, formaldehyde, and methanol have been evaluated and/or optimized for measuring products from photoreduction of CO{sub 2} in illuminated, aqueous suspensions of photocatalysts. An electrophoresis anion separation method (CIA) can detect aqueous formate and oxalate ions at 22 and 17 {micro}M (1 ppm), respectively. Recalibration of the Nash formaldehyde determination shows that as little as 10 {micro}M (0.3 ppm) can be detected spectrally. Several experiments using suspensions of Pt/TiO{sub 2}, SrTiO{sub 3}, and SrTiO{sub 3} with Cr and Sb were illuminated in CO{sub 2} saturated solutions. No acids were detected in most experiments using CIA; however, ion chromatography (IC) was able to detect formate and acetate at low {micro}M (sub ppm) concentrations in several experiments using Pt/TiO{sub 2} and SrTiO{sub 3} in sunlight and with xenon uv light. Analysis for methanol by gas chromatography showed that not more than 2 ppm methanol could have formed and probably less. Adding 0.6 mM 2-propanol to an irradiated CO{sub 2}/TiO{sub 2} suspension led to formation of 550 {micro}M formate, but no formaldehyde, probably because re-oxidation of formate by semiconductor holes was competitively blocked. Loss of C{sub 1} products at higher concentrations by re-oxidation may be an important process, limiting the accumulation of products. Preliminary estimates were made of the physical size of a solar CO{sub 2} photoreduction unit large enough to reduce the CO{sub 2} produced from a 1000 MW coal-fired electricity plant. A perfectly efficient system could be as small as 2 to 3 km{sup 2}.

Theodore Mill; Haruthai Tungudomwongsa

2003-08-25T23:59:59.000Z

351

U.S. Department of Energy Hydrogen and Fuel Cells Program 2011 Annual Merit Review and Peer Evaluation Report  

SciTech Connect (OSTI)

This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the FY 2011 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 9-13, 2011 in Arlington, Virginia

Satypal, S.

2011-09-01T23:59:59.000Z

352

Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report  

SciTech Connect (OSTI)

The Assistant Secretary for Environment has responsibility for identifying, characterizing, and ameliorating the environmental, health, and safety issues and public concerns associated with commercial operation of specific energy systems. The need for developing a safety and environmental control assessment for liquefied gaseous fuels was identified by the Environmental and Safety Engineering Division as a result of discussions with various governmental, industry, and academic persons having expertise with respect to the particular materials involved: liquefied natural gas, liquefied petroleum gas, hydrogen, and anhydrous ammonia. This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in Fiscal Year (FY)-1979 and early FY-1980. Volume 1 (Executive Summary) describes the background, purpose and organization of the LGF Program and contains summaries of the 25 reports presented in Volumes 2 and 3. Annotated bibliographies on Liquefied Natural Gas (LNG) Safety and Environmental Control Research and on Fire Safety and Hazards of Liquefied Petroleum Gas (LPG) are included in Volume 1.

Not Available

1980-10-01T23:59:59.000Z

353

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Grants and Rebates The Arkansas Alternative Fuels Development Program (Program) provides grants to alternative fuel producers, feedstock processors, and...

354

Light-water-reactor safety fuel systems research programs. Quarterly progress report, January-March 1984. [Fuel and cladding problems  

SciTech Connect (OSTI)

This progress report summarizes work performed by the Materials Science and Technology Division of Argonne National Laboratory during January, February, and March 1984 on water reactor safety problems related to fuel and cladding. The research and development areas covered are Transient Fuel Response and Fission Product Release and Clad Properties for Code Verification.

Not Available

1984-09-01T23:59:59.000Z

355

Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures  

SciTech Connect (OSTI)

This report describes the data gathering and analysis procedures that support the US Department of Energy`s implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

none,

1992-07-01T23:59:59.000Z

356

1 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel Cell Technologies Overview  

E-Print Network [OSTI]

(>80% with biogas) · 55­90% reductions for light- duty vehicles · > 60% (electrical) · > 70% reduction in criteria pollutants for CHP systems Fuel Flexibility · Clean fuels -- including biogas Year in Review from http://cepgi.typepad.com/heslin_rothenberg_farley_/ United States 47% Germany 7

357

The Enbridge Consumers Gas "Steam Saver" Program ("As Found" Performance and Fuel Saving Projects from Audits of 30 Steam Plants)  

E-Print Network [OSTI]

energy efficiency program called "Steam Saver". This program is aimed at these 400 customers. The heart of this program is the boiler plant audit and performance test. This paper describes the fuel saving results for more than 30 medium and large... manufacturing companies (larger than 50 employees) it can be compared in size and industrial output with Michigan or Ohio. All major industrial sectors are represented. The automotive, pulp and paper and steel industries are particulary large energy...

Griffin, B.

358

Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report  

SciTech Connect (OSTI)

An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

NONE

1995-06-30T23:59:59.000Z

359

Consolidated Fuel-Reprocessing Program. Progress report, April 1 to June 30, 1983  

SciTech Connect (OSTI)

All research and development on fuel reprocessing in the United States is managed under the Consolidated Fuel Reprocessing Program. Technical progress is reported in overview fashion. Conceptual studies for the proposed Breeder Reprocessing Engineering Test (BRET) have continued. Studies to date have confirmed the feasibility of modifying an existing DOE facility at Hanford, Washington. A study to measure the extent of plutonium polymerization during steam-jet transfers of nitric acid solutions indicated polymer would appear only after several successive transfers at temperatures of 75/sup 0/C or higher. Fast-Flux Test Facility fuel was processed for the first time in the Solvent Extraction Test Facility. Studies of krypton release from pulverized sputter-deposited Ni-Y-Kr matrices have shown that the release rate is inversely proportional to the particle radius at 200/sup 0/C. Preparation of the initial 500-g batch of mixed oxide gel-spheres was completed. Fabrication processing at HEDL of mixed oxide gel-spheres (DIPRES process) was initiated. Operational testing of both 8 packs of the centrifugal contactor has been completed. Fabrication of both the prototypical disassembly system and the prototypical shear system has been initiated. Planning for FY 1984 installation and modification work in the integrated equipment list facility was completed. Acceptance tests of the original Integrated Process Demonstration system have been completed. Instrumentation and controls work with the prototype multiwavelength uranium photometer was successful and has been expanded to continuously and simultaneously monitor three process streams (raffinate, aqueous feed, and organic strip) in the secondary extraction cycle. Major efforts of the environmental, safeguards, and waste management areas were directed toward providing data for BRET.

Not Available

1983-08-01T23:59:59.000Z

360

2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review Presentation COST AND PERFORMANCE ENHANCEMENTS FOR A PEM FUEL CELL TURBOCOMPRESSOR  

SciTech Connect (OSTI)

The objective is to assist the Department of Energy in the development of a low cost, reliable and high performance air compressor/expander. Technical Objective 1: Perform a turbocompressor systems PEM fuel cell trade study to determine the enhanced turbocompressor approach. Technical Objective 2: Using the results from technical objective 1, an enhanced turbocompressor will be fabricated. The design may be modified to match the flow requirements of a selected fuel cell system developer. Technical Objective 3: Design a cost and performance enhanced compact motor and motor controller. Technical Objective 4: Turbocompressor/motor controller development.

Mark K. Gee

2004-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Spent Nuclear Fuel Project document control and Records Management Program Description  

SciTech Connect (OSTI)

The Spent Nuclear Fuel (SNF) Project document control and records management program, as defined within this document, is based on a broad spectrum of regulatory requirements, Department of Energy (DOE) and Project Hanford and SNF Project-specific direction and guidance. The SNF Project Execution Plan, HNF-3552, requires the control of documents and management of records under the auspices of configuration control, conduct of operations, training, quality assurance, work control, records management, data management, engineering and design control, operational readiness review, and project management and turnover. Implementation of the controls, systems, and processes necessary to ensure compliance with applicable requirements is facilitated through plans, directives, and procedures within the Project Hanford Management System (PHMS) and the SNF Project internal technical and administrative procedures systems. The documents cited within this document are those which directly establish or define the SNF Project document control and records management program. There are many peripheral documents that establish requirements and provide direction pertinent to managing specific types of documents that, for the sake of brevity and clarity, are not cited within this document.

MARTIN, B.M.

2000-05-18T23:59:59.000Z

362

The thermionic fuel element verification program: Technical progress and future plans  

SciTech Connect (OSTI)

The goal of the Thermionic Fuel Element Verification Program (TFEVP) is to demonstrate the technological readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor having an electric power output in the 0.5- to 5-MWe range and a full-power life of seven years. The TFEVP has made significant progress in developing components capable of withstanding the required neutron fluence (4[times]10[sup 22] n/cm[sup 2], E[gt]0.1 MeV) and the required burnup (5.3%). Technology developed under the TFEVP also supports the 5- to 40-kWe thermionic systems currently of interest to the Strategic Defense Initiative Organization and the United States Air Force. The fast-neutron flux in certain 5- to 40-kWe systems is up to a factor of five less than that in 0.5- to 5-MWe system. Component technology that has been developed for 0.5- to 5-MWe systems will thus be suitable for use in long-life, high-performance, 5- to 40-kWe systems. Components that are being developed by the TFEVP include insulator seals, sheath insulators, fueled emitters, cesium reservoirs, and interconnective TFE components. In addition, the TFEVP has created a preliminary 2-MWe-system design and is presently evaluating converter performance under various conditions. Prototypic TFEs are also being tested. The TFEVP has encountered and surmounted problems in developing and testing long-life TFEs. The emphasis of the US thermionic reactor development effort is shifting to the development of a 40-kWe thermionic space nuclear power supply. The TFEVP will be closed out by the end of fiscal year 1994, with the close-out optimized for yielding the maximum overall program benefit-to-cost ratio. Information gained during the close-out will be very useful to the development of the 40-kWe thermionic system.

Houts, M.G. (Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States)); Wharton, W.R. Jr. (Department of Energy, Office of Defence Energy Projects NE-52, MS B-435, Germantown, Maryland 20874 (United States)); Begg, L.L. (General Atomics, P.O. Box 85608, San Diego, California 92138-5608 (United States)); Lawrence, L.A. (Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States))

1993-01-20T23:59:59.000Z

363

NRC Technical Research Program to Evaluate Extended Storage and Transportation of Spent Nuclear Fuel - 12547  

SciTech Connect (OSTI)

Any new direction proposed for the back-end of spent nuclear fuel (SNF) cycle will require storage of SNF beyond the current licensing periods. The Nuclear Regulatory Commission (NRC) has established a technical research program to determine if any changes in the 10 CFR part 71, and 72 requirements, and associated guidance might be necessary to regulate the safety of anticipated extended storage, and subsequent transport of SNF. This three part program of: 1) analysis of knowledge gaps in the potential degradation of materials, 2) short-term research and modeling, and 3) long-term demonstration of systems, will allow the NRC to make informed regulatory changes, and determine when and if additional monitoring and inspection of the systems is necessary. The NRC has started a research program to obtain data necessary to determine if the current regulatory guidance is sufficient if interim dry storage has to be extended beyond the currently approved licensing periods. The three-phased approach consists of: - the identification and prioritization of potential degradation of the components related to the safe operation of a dry cask storage system, - short-term research to determine if the initial analysis was correct, and - a long-term prototypic demonstration project to confirm the models and results obtained in the short-term research. The gap analysis has identified issues with the SCC of the stainless steel canisters, and SNF behavior. Issues impacting the SNF and canister internal performance such as high and low temperature distributions, and drying have also been identified. Research to evaluate these issues is underway. Evaluations have been conducted to determine the relative values that various types of long-term demonstration projects might provide. These projects or follow-on work is expected to continue over the next five years. (authors)

Einziger, R.E.; Compton, K.; Gordon, M.; Ahn, T.; Gonzales, H. [United States Nuclear Regulatory Commission, Rockville, Maryland 20852 (United States); Pan, Y. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX 78238 (United States)

2012-07-01T23:59:59.000Z

364

U.S. Department of Energy Hydrogen and Fuel Cells Program, 2013 Annual Merit Review and Peer Evaluation Report (Book)  

SciTech Connect (OSTI)

The fiscal year (FY) 2013 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from May 13-16, 2013, at the Crystal City Marriott and Crystal Gateway Marriott in Arlington, Virginia. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE).

Not Available

2013-10-01T23:59:59.000Z

365

Status and Path Forward for the Department of Energy Used Fuel Disposition Storage and Transportation Program - 12571  

SciTech Connect (OSTI)

The U.S. Department of Energy, Office of Nuclear Energy (DOE/NE) has sponsored a program since Fiscal Year (FY) 09 to develop the technical basis for extended dry storage of used fuel. This program is also working to develop the transportation technical basis for the transport of used fuel after the extended storage period. As this program has progressed, data gaps associated with dry storage systems (e.g., fuel, cask internals, canister, closure, overpack, and pad) have been identified that need to be addressed to develop the technical bases for extended storage and transportation. There has also been an initiation of experimental testing and analyses based on the identified data gaps. The technical aspects of the NE program are being conducted by a multi-lab team made up of the DOE laboratories. As part of this program, a mission objective is to also collaborate closely with industry and the international sector to ensure that all the technical issues are addressed and those programs outside the DOE program can be leveraged, where possible, to maximize the global effort in storage and transportation research. The DOE/NE program is actively pursuing the development of the technical basis to demonstrate the feasibility of storing UNF for extended periods of time with subsequent transportation of the UNF to its final disposition. This program is fully integrated with industry, the U.S. regulator, and the international community to assure that programmatic goals and objectives are consistent with a broad perspective of technical and regulatory opinion. As the work evolves, assessments will be made to ensure that the work continues to focus on the overall goals and objectives of the program. (authors)

Sorenson, Ken [Sandia National Laboratories (United States); Williams, Jeffrey [U.S. Department of Energy, Office of Nuclear Energy (United States)

2012-07-01T23:59:59.000Z

366

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Section 2.0: Program Benefits  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings | DepartmentCaseEnergyDepartment|Benefits

367

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 6.0 Program Management  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and Standards

368

E-Print Network 3.0 - alcohol fuels program Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Summary: Alternative Fuel Educational Overview NC State University North Carolina Solar Center Biofuels... fuels. Biofuels are renewable sources of energy because more can...

369

E-Print Network 3.0 - alternative fuels program Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air quality: alternative fuels. Existing law imposes various limitations... the use of alternative fuels, as ... Source: California Energy Commission Collection: Energy Storage,...

370

E-Print Network 3.0 - alternative fuel program Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air quality: alternative fuels. Existing law imposes various limitations... the use of alternative fuels, as ... Source: California Energy Commission Collection: Energy Storage,...

371

Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation (2003)  

SciTech Connect (OSTI)

This report presents the results of the 2003 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

J. R. Newkirk; F. J. Borst, CHP

2004-02-01T23:59:59.000Z

372

Official Master's of Public Health Environmental Health Science Program of Study Form  

E-Print Network [OSTI]

REQUIRED PROGRAM CONCENTRATION COURSES ­ 21 credits ENVH 7231 AIR QUALITY 3 ENVH 7232 WATER QUALITY

Hutcheon, James M.

373

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

Not Available

1994-06-01T23:59:59.000Z

374

Energy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program  

E-Print Network [OSTI]

Energy Conversion Devices Fuel cells are a critical component in the Ovonic total hydrogen system approach. #12 catalysts for air electrodes for the ORFC * Ovonic Regenerative Fuel Cell #12;Texaco Ovonic Fuel Cell Ovonic Fuel Cell Company, LLC non-precious metal catalysts regenerative braking energy absorption

375

Overview of FreedomCAR & Fuels Partnership/DOE Delivery Program |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009

376

2013 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker Registry Summary 2013Evaluation Report Posted |

377

2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review Proceedings  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker RegistryDepartment2014 Building

378

2014 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker RegistryDepartment2014 BuildingEvaluation Report

379

Hydrogen and Fuel Cells Program Overview: 2011 Annual Merit Review and Peer  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFactEducation

380

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment DOEDepartment ofWorkshop |Hydrogen

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Process Modeling Phase I Summary Report for the Advanced Gas Reactor Fuel Development and Qualification Program  

SciTech Connect (OSTI)

This report summarizes the results of preliminary work at Oak Ridge National Laboratory (ORNL) to demonstrate application of computational fluid dynamics modeling to the scale-up of a Fluidized Bed Chemical Vapor Deposition (FBCVD) process for nuclear fuels coating. Specifically, this work, referred to as Modeling Scale-Up Phase I, was conducted between January 1, 2006 and March 31, 2006 in support of the Advanced Gas Reactor (AGR) Program. The objective was to develop, demonstrate and "freeze" a version of ORNL's computational model of the TRI ISOtropic (TRISO) fuel-particle coating process that can be specifically used to assist coater scale-up activities as part of the production of AGR-2 fuel. The results in this report are intended to serve as input for making decisions about initiating additional FBCVD modeling work (referred to as Modeling Scale-Up Phase II) in support of AGR-2. The main computational tool used to implement the model is the general-purpose multiphase fluid-dynamics computer code known as MFIX (Multiphase Flow with Interphase eXchanges), which is documented in detail on the DOE-sponsored website http://www.mfix.org. Additional computational tools are also being developed by ORNL for post-processing MFIX output to efficiently summarize the important information generated by the coater simulations. The summarized information includes quantitative spatial and temporal measures (referred to as discriminating characteristics, or DCs) by which different coater designs and operating conditions can be compared and correlated with trends in product quality. The ORNL FBCVD modeling work is being conducted in conjunction with experimental coater studies at ORNL with natural uranium CO (NUCO) and surrogate fuel kernels. Data are also being obtained from ambient-temperature, spouted-bed characterization experiments at the University of Tennessee and theoretical studies of carbon and silicon carbide chemical vapor deposition kinetics at Iowa State University. Prior to the current scale-up activity, considerable effort has gone in to adapting the MFIX code to incorporate the unique features of fuel coating reactors and also in validating the resulting simulation features with experimental observations. Much of this work is documented in previous AGR reports and publications (Pannala et al., 2004, Pannala et al., 2005, Boyalakuntla et al., 2005a, Boyalakuntla et al., 2005b and Finney et al., 2005). As a result of the previous work described above, the ORNL coater model now has the capability for simulating full spatio-temporal details of the gas-particle hydrodynamics and gas-particle heat and mass transfer in the TRISO coater. This capability provides a great deal of information about many of the processes believed to control quality, but the model is not yet sufficiently developed to fully predict coating quality for any given coater design and/or set of operating conditions because the detailed chemical reaction kinetics needed to make the model fully predictive are not yet available. Nevertheless, the model at its current stage of development already provides the most comprehensive and detailed quantitative information available about gas flows, solid flows, temperatures, and species inside the coater during operation. This level of information ought to be highly useful in expediting the scale-up process (e.g., in correlating observations and minimizing the number of pilot-scale tests required). However, previous work had not yet demonstrated that the typical design and/or operating changes known to affect product quality at the lab scale could be clearly discriminated by the existing model. The Modeling Scale-Up Phase I work was initiated to produce such a demonstration, and two detailed examples are discussed in this report.

Pannala, Sreekanth [ORNL; Daw, C Stuart [ORNL; Boyalakuntla, Dhanunjay S [ORNL; FINNEY, Charles E A [ORNL

2006-09-01T23:59:59.000Z

382

1 | Fuel Cell Technologies Program Source: US DOE 3/3/2011 eere.energy.gov Overview of Hydrogen and  

E-Print Network [OSTI]

Public Awareness & Acceptance Hydrogen Supply & Delivery Infrastructure Hydrogen Cost Target*: $2 ­ 41 | Fuel Cell Technologies Program Source: US DOE 3/3/2011 eere.energy.gov Overview of Hydrogen Power Systems Portable Power Primary Power Systems--Including CHP Auxiliary Power Units

383

American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program.  

E-Print Network [OSTI]

and other matching funds instead of federal dollars, does this exclude us from the process? Will the Energy and Renewable Fuel and Vehicle Technology Program. Questions and Answers as of 4/27/09 1 1) Our county is working on a joint proposal for American Recovery and Reinvestment Act (ARRA) funds with other agencies

384

RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel  

SciTech Connect (OSTI)

This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors.

Yuan, Y.C. [Square Y, Orchard Park, NY (United States); Chen, S.Y.; LePoire, D.J. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Rothman, R. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

1993-02-01T23:59:59.000Z

385

Low NO/sub x/ heavy fuel combustor concept program. Final report, 23 Oct 1979 - Jul 1981  

SciTech Connect (OSTI)

A gas turbine technology program to improve and optimize the staged rich lean low NOx combustor concept is described. Subscale combustor tests to develop the design information for optimization of the fuel preparation, rich burn, quick air quench, and lean burn steps of the combustion process were run. The program provides information for the design of high pressure full scale gas turbine combustors capable of providing environmentally clean combustion of minimally of minimally porcessed and synthetic fuels. It is concluded that liquid fuel atomization and mixing, rich zone stoichiometry, rich zone liner cooling, rich zone residence time, and quench zone stoichiometry are important considerations in the design and scale up of the rich lean combustor.

Russell, P.; Beal, G.; Hinton, B.

1981-10-01T23:59:59.000Z

386

Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference?  

SciTech Connect (OSTI)

The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. A large-scale market for automotive fuel cells appears to be several years away and in any case will require a long-term, coordinated commitment by government and industry to insure the co-evolution of hydrogen infrastructure and fuel cell vehicles (Greene et al., 2008). The market for non-automotive PEM fuel cells, on the other hand, may be much closer to commercial viability (Stone, 2006). Cost targets are less demanding and manufacturers appear to be close, perhaps within a factor of two, of meeting them. Hydrogen supply is a significant obstacle to market acceptance but may not be as great a barrier as it is for hydrogen-powered vehicles due to the smaller quantities of hydrogen required. PEM fuel cells appear to be potentially competitive in two markets: (1) Backup power (BuP) supply, and (2) electrically-powered MHE (Mahadevan et al., 2007a, 2007b). There are several Original Equipment Manufacturers (OEMs) of PEM fuel cell systems for these applications but production levels have been quite low (on the order of 100-200 per year) and cumulative production experience is also limited (on the order of 1,000 units to date). As a consequence, costs remain above target levels and PEM fuel cell OEMs are not yet competitive in these markets. If cost targets can be reached and acceptable solutions to hydrogen supply found, a sustainable North American PEM fuel cell industry could be established. If not, the industry and its North American supply chain could disappear within a year or two. The Hydrogen Fuel Cell and Infrastructure Technologies (HFCIT) program of the U.S. Department of Energy (DOE) requested a rapid assessment of the potential for a government acquisition program to bootstrap the market for non-automotive PEM fuel cells by driving down costs via economies of scale and learning-by-doing. The six week study included in-depth interviews of three manufacturers, visits to two production facilities, review of the literature on potential markets in North America and potential federal government procurements, development of a cost model reflecting economies of scale and learning-by-doing, and estimation of the impact of federal PEM fuel cell procurements on fuel cell system costs and the evolution of private market demand. This report presents the findings of that study. Section 2 outlines the status of the industry and describes potential markets based on interviews of manufacturers and the existing literature. Section 3 describes the modeling methodology including key premises and assumptions, and presents estimates of market evolution under four scenarios: (1) Base Case with no federal government procurement program, (2) Scenario 1, an aggressive program beginning with less than 200 units procured in 2008 ramping up to more than 2,000 units in 2012, (3) Scenario 2 which is identical to Scenario 1 except that the private market is assumed to be twice as sensitive to price, and (4) Scenario 3, a delayed, smaller federal procurement program beginning in 2011 increasing to a maximum of just over 1,000 units per year in 2012. The analysis suggests that the aggressive program of Scenario 1 would likely stimulate a sustainable, competitive North American non-automotive PEM fuel cell industry. Given plausible assumptions about learning rates and scale economies, the procurements assumed in Scenario 1 appear to be sufficient to drive down costs to target levels. These findings are conditional on the evolution of acceptable hydrogen supply strategies, which were not explicitly analyzed in this study. Success is less certain under Scenarios 2 and 3, and there appears to be a strong probability that existing OEMs would not survive until 2011. In the Base Case, no program, a viable North American industry does not emerge before 2020.

Greene, David L [ORNL; Duleep, Dr. K. G. [Energy and Environmental Analysis, Inc., an ICF Company

2008-10-01T23:59:59.000Z

387

Light Water Breeder Reactor fuel rod design and performance characteristics (LWBR Development Program)  

SciTech Connect (OSTI)

Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percent of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.

Campbell, W.R.; Giovengo, J.F.

1987-10-01T23:59:59.000Z

388

Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0 ACellgov FUEL

389

PEMFC R&D at the DOE Fuel Cell Technologies Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the DOE Fuel

390

Fuel Cell Technologies Program Overview: 2010 Annual Merit Review and Peer  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuel Cell

391

Fuels for Schools Program Uses Leftover Wood to Warm Buildings | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and07-01-3994Fueling the Nextof

392

Assessment of capital requirements for alternative fuels infrastructure under the PNGV program  

SciTech Connect (OSTI)

This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.

Stork, K.; Singh, M.; Wang, M.; Vyas, A.

1998-12-31T23:59:59.000Z

393

Program Planning & Management Forms (5000-5999) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D)REPORTServices

394

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Fuel Cell Technologies Publication and Product Library (EERE)

This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies

395

DOE Fuel Cell Technologies Program Record Record #: 12020 Date: August 21, 2012  

E-Print Network [OSTI]

their 2011 cost analysis of an 80-kWnet direct hydrogen PEM automotive fuel cell system, based on 2012 to higher pressures. Figure 1. Modeled cost of an 80-kWnet PEM fuel cell system based on projection to high membrane (PEM) fuel cell system based on 2012 technology1 and operating on direct hydrogen is projected

396

Status of the Norwegian thorium light water reactor (LWR) fuel development and irradiation test program  

SciTech Connect (OSTI)

Thorium based fuels offer several benefits compared to uranium based fuels and should thus be an attractive alternative to conventional fuel types. In order for thorium based fuel to be licensed for use in current LWRs, material properties must be well known for fresh as well as irradiated fuel, and accurate prediction of fuel behavior must be possible to make for both normal operation and transient scenarios. Important parameters are known for fresh material but the behaviour of the fuel under irradiation is unknown particularly for low Th content. The irradiation campaign aims to widen the experience base to irradiated (Th,Pu)O{sub 2} fuel and (Th,U)O{sub 2} with low Th content and to confirm existing data for fresh fuel. The assumptions with respect to improved in-core fuel performance are confirmed by our preliminary irradiation test results, and our fuel manufacture trials so far indicate that both (Th,U)O{sub 2} and (Th,Pu)O{sub 2} fuels can be fabricated with existing technologies, which are possible to upscale to commercial volumes.

Drera, S.S.; Bjork, K.I.; Kelly, J.F.; Asphjell, O. [Thor Energy AS: Sommerrogaten 13-15, Oslo, NO255 (Norway)

2013-07-01T23:59:59.000Z

397

Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, January-March 1979  

SciTech Connect (OSTI)

In the program on pyrochemical and dry processing methods (PDPM) for nuclear fuel, corrosion testing of refractory metals and alloys, graphite, and SiC in PDPM environments was done. A tungsten-metallized Al/sub 2/O/sub 3/-3% Y/sub 2/O/sub 3/ crucible was successfully fabricated. Tungsten microstructure of a plasma-sprayed tungsten crucible was stabilized by nickel infiltration and heat treatment. Solubility measurements of Th in Cd and Cd-Mg alloys were continued, as were experiments to study the reduction of high-fired ThO/sub 2/. Work on the fused salt electrolysis of CaO also was continued. The method of coprocessing of U and Pu by a salt transport process was modified. Tungsten-coated molybdenum crucibles were fabricated. The proliferation resistance of chloride volatility processing of thorium-based fuels is being evaluated by studying the behavior of fission product elements during chlorination of U and Th. Thermodynamic analysis of the phase relationships in the U-Pu-Zn system was initiated. The Pyro-Civex reprocessing method is being reviewed. Reactivity of UO/sub 2/ and PuO/sub 2/ with molten equimolar NaNO/sub 3/-KNO/sub 3/ is being studied along with the behavior of selected fission product elements. Work was continued on the reprocessing of actinide oxides by extracting the actinides from a bismuth solution. Rate of dissolution of UO/sub 2/ microspheres in LiCl/AlCl/sub 3/ was measured. Nitriding rates of Th and U dissolved in molten tin were measured. In work on the encapsulation of radioactive waste in metal, leach rates of a simulated waste glass were studied. Rates of dissolution of metals (potential barrier materials) in aqueous media are being studied. In work on the transport properties of nuclear waste in geologic media, the adsorption of iodate by hematite as a function of pH and iodate concentration was measured. The migration behavior of cesium in limestone was studied in relation to the cesium concentration and pH of simulated groundwater solutions.

Steindler, M J; Ader, M; Barletta, R E

1980-01-01T23:59:59.000Z

398

Fuel Cell Technologies Program FY 2013 Budget Request Rollout to Stakeholders  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0 ACellgov

399

Overview of Indian Hydrogen Program and Key Safety Issues of Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009EnergyActivitiesgov|

400

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow Your EnergyTechnology to Market Commercial

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652Grow Your EnergyTechnology to Market Commercial2

402

The Department of Energy Hydrogen and Fuel Cells Program Plan | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeThe 21stCELLS THEEnergyof Energy

403

2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergy back_cover.pdf MoreReview Report:2of 201111

404

Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel Economy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1: March 9,3: June0:Improvement |

405

Dr. Piotr Zelenay - Speaker Bio for the Fuel Cell Technologies Program Webinar  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW AreaJuneDonnaBrian KalkDr.Dr.Lyons

406

Hydrogen and Fuel Cells Program Overview: 2013 Annual Merit Review and Peer  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFactEducationEvaluation Meeting |

407

Hydrogen and Fuel Cells Program Overview: 2014 Annual Merit Review and Peer  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy EmbrittlementFactEducationEvaluation Meeting

408

Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings | DepartmentCaseEnergyDepartment| Department of

409

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Appendix E: Acronyms  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings | DepartmentCaseEnergyDepartment|BenefitsPageE -

410

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Executive Summary  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings | DepartmentCaseEnergyDepartment|BenefitsPageE

411

Review of the Research Program of the FreedomCAR and Fuel Partnership:  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge AndREII JumpInformationLLCReunionRevere,Third

412

SECA Fuel Cell Program Moves Two Key Projects Into Next Phase | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT. NO. 14-98-LNG NFTA SCT&ESEBof

413

U.S. Department of Energy Fuel Cell Technologies Program: 18th World  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeed Families" |Hydrogen Energy

414

Oak Ridge National Laboratory (ORNL): Industrial Collaborations with the Fuel Cell Technologies Program: Accelerating Widespread Commercialization  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC Order No. EA-178-A1ORAUSiteDepartmentFCTO T2M Event at

415

NYSERDA's RPS Customer Sited Tier Fuel Cell Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADA SPARKSNV Energy RFP NV Energy RFP

416

Spent nuclear fuels project: FY 1995 multi-year program plan, WBS {number_sign}1.4  

SciTech Connect (OSTI)

The mission of the Spent Nuclear Fuel (SNF) program is to safely, reliably, and efficiently manage, condition, transport, and store Department of Energy (DOE)-owned SNF, so that it meets acceptance criteria for disposal in a permanent repository. The Hanford Site Spent Nuclear Fuel strategic plan for accomplishing the project mission is: Establish near-term safe storage in the 105-K Basins; Complete national Environmental Policy Act (NEPA) process to obtain a decision on how and where spent nuclear fuel will be managed on the site; Define and establish alternative interim storage on site or transport off site to support implementation of the NEPA decision; and Define and establish a waste package qualified for final disposition. This report contains descriptions of the following: Work Breakdown Structure; WBS Dictionary; Responsibility Assignment Matrix; Program Logic Diagrams; Program Master Baseline Schedule; Program Performance Baseline Schedule; Milestone List; Milestone Description Sheets; Cost Baseline Summary by Year; Basis of Estimate; Waste Type Data; Planned Staffing; and Fiscal Year Work Plan.

Denning, J.L.

1994-09-01T23:59:59.000Z

417

U.S. Department of Energy Hydrogen and Fuel Cells Program 2012 Annual Merit Review and Peer Evaluation Report: May 14-18, 2012, Arlington, VA  

SciTech Connect (OSTI)

This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the fiscal year (FY) 2012 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 14-18, 2012, in Arlington, VA.

Not Available

2012-09-01T23:59:59.000Z

418

Krakow clean fossil fuels and energy efficiency program. Phase 1 report  

SciTech Connect (OSTI)

Krakow is one of the largest and oldest cities in Poland. It is situated in the south of the country on the banks of the Vistula River. From the 11th until the 17th centuries, it was the capital of Poland. Today, Krakow is a city of 750,000 residents, one of the largest centers of higher education, an important industrial center, and is of particular importance because of the number and kinds of historic buildings and sites. For this reason, Krakow was included by the UNESCO in the list of the world`s cultural heritages. For about three decades, significant air pollution has been one of Krakow`s most serious problems. Because the city is situated in the Vistula River valley, it is poorly ventilated and experiences a high concentration of air pollutants. The quality of air in Krakow is affected mainly by industry (Sendzimir Steelworks, energy industry, chemical plants), influx from the Silesian industrial region (power plants, metallurgy), transboundary pollution (Ostrava - Czech Republic), and local sources of low pollution, i.e. more than 1,000 boiler houses using solid fuels and more than 100,000 coal-fired home stoves. These local sources, with low stacks and almost no pollution-control equipment, are responsible for about 35-40% of the air pollution. This report presents phase I results of a program to reduce pollution in krakow. Phase I was to gather information on emissions and costs, and to verify assumptions on existing heating methods and alternatives.

Butcher, T.; Pierce, B. [eds.

1995-06-01T23:59:59.000Z

419

1 | Fuel Cell Technologies Program Source: US DOE 9/27/2011 eere.energy.gov H2 and FC Technologies Manufacturing R&D Workshop  

E-Print Network [OSTI]

with Hydrogen Storage Ned T. Stetson, Ph.D. Team Lead, Hydrogen Storage Fuel Cell Technologies Program U.S. Dept.energy.gov Status Fuel Cells - A Potential Timeline 4 As the cost of fuel cells comes down (through technological) Backup Power Systems Portable Power Primary Power Systems--Including CHP Auxiliary Power Units

420

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fuel development activities of the US RERTR Program. [Reduced Enrichment Research and Test Reactor  

SciTech Connect (OSTI)

Progress in the development and irradiation testing of high-density fuels for use with low-enriched uranium in research and test reactors is reported. Swelling and blister-threshold temperature data obtained from the examination of miniature fuel plates containing UAl/sub x/, U/sub 3/O/sub 8/, U/sub 3/Si/sub 2/, or U/sub 3/Si dispersed in an aluminum matrix are presented. Combined with the results of metallurgical examinations, these data show that these four fuel types will perform adequately to full burnup of the /sup 235/U contained in the low-enriched fuel. The exothermic reaction of the uranium-silicide fuels with aluminum has been found to occur at about the same temperature as the melting of the aluminum matrix and cladding and to be essentially quenched by the melting endotherm. A new series of miniature fuel plate irradiations is also discussed.

Snelgrove, J.L.; Domagala, R.F.; Wiencek, T.C.; Copeland, G.L.

1983-01-01T23:59:59.000Z

422

Consolidated Fuel Reprocessing Program progress report, 1 October-31 December 1979. [HEF  

SciTech Connect (OSTI)

Progress is reported in four areas: process research and development, engineering research, engineering systems, technical support, and HTGR fuel reprocessing. (DLC)

Unger, W.E. (comp.)

1980-05-01T23:59:59.000Z

423

Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program (Wyoming)  

Broader source: Energy.gov [DOE]

Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

424

Air Force Achieves Fuel Efficiency through Industry Best Practices (Brochure), Federal Energy Management Program (FEMP)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval of Federally Fundedhighest

425

DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese areDepartment ofPrivacy Issues

426

DOE Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese areDepartment ofPrivacy

427

DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese areDepartment ofPrivacyCell

428

Federal Alternative Motor Fuels Programs Fifth Annual Report to Congress - 1996  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO)  EIA expects that the Brent87693This

429

Forms Management Guide for use with DOE O 200.1, Information Management Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Provides guidance for the development, analysis, approval, and management of forms in the U.S. Department of Energy (DOE). No cancellations.

2000-05-08T23:59:59.000Z

430

Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

2013-07-03T23:59:59.000Z

431

Current status of research and development program for characterizing fuel debris at Fukushima Daiichi NPS by JAEA  

SciTech Connect (OSTI)

Japan Government and TEPCO submitted a research road map for decommissioning Fukushima Daiichi Nuclear Power Plant. Two projects about debris are in progress: 'Assessment of simulated fuel debris characteristics' and 'Development of technologies for the processing of fuel debris'. The major results concerning the first project are the following 4 points. First, it was suggested that typical phase of oxide of fuel debris is (U,Zr)O{sub 2} and that of metal is Fe{sub 2}(Zr,U) by thermodynamic calculation. Secondly, important properties of fuel debris for developing defueling tools were identified as shape, size, density, hardness, elastic modulus, fracture toughness, thermal conductivity, specific heat (heat capacity), and melting point. Thirdly, the influence of seawater salt and B{sub 4}C/SUS to characteristics of debris was found, such as deposition of magnesium oxide crystal on the surface of fuel debris. The Influence of Pu to thermal properties of fuel debris was found, such as the increase of melting point. Concerning the second project, the major results are the following. First, a draft of the whole image of scenarios was developed. Secondly, the alkaline resolution method using Na{sub 2}O{sub 2} is most likely to be applied as a part of analysis technologies. Thirdly, it was shown that a part of fuel debris rich in U might be soluble in nitric acid. Fourthly, it was shown that all pyrochemical processes examined have potential to be applied for treating fuel debris. The results of the projects will contribute to the decommissioning program.

Kaji, Naoya; Takano, Masahide; Washiya, Tadahiro; Koyama, Tomozo [Japan Atomic Energy Agency, 4-33 Muramatsu Tokaimura Nakagun Ibaraki 319-1194 (Japan)

2013-07-01T23:59:59.000Z

432

Department of Energy Hydrogen and Fuel Cells Program Plan An Integrated Strategic Plan for the  

E-Print Network [OSTI]

.hydrogen.energy.gov Released September 2011 (second printing April 2012) #12;Department of Energy Hydrogen and Fuel Cells: Improved ICE [internal combustion engine] vehicles coupled with greater use of biofuels, A shifting manufacturing industry in the United States ... Developing and deploying the next generation of fuel cells

433

End-of-life destructive examination of light water breeder reactor fuel rods (LWBR Development Program)  

SciTech Connect (OSTI)

Destructive examination of 12 representative Light Water Breeder Reactor fuel rods was performed following successful operation in the Shippingport Atomic Power Station for 29,047 effective full power hours, about five years. Light Water Breeder Reactor fuel rods were unique in that the thorium oxide and uranium-233 oxide fuel was contained within Zircaloy-4 cladding. Destructive examinations included analysis of released fission gas; chemical analysis of the fuel to determine depletion, iodine, and cesium levels; chemical analysis of the cladding to determine hydrogen, iodine, and cesium levels; metallographic examination of the cladding, fuel, and other rod components to determine microstructural features and cladding corrosion features; and tensile testing of the irradiated cladding to determine mechanical strength. The examinations confirmed that Light Water Breeder Reactor fuel rod performance was excellent. No evidence of fuel rod failure was observed, and the fuel operating temperature was low (below 2580/sup 0/F at which an increased percentage of fission gas is released). 21 refs., 80 figs., 20 tabs.

Richardson, K.D.

1987-10-01T23:59:59.000Z

434

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

435

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

436

Microsoft Word - INL MIS-12-25696 Fuels_LWRS_Program_Plan R1...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QA Quality Assurance QAPD Quality Assurance Program Document R&D Research and Development RIA Reactivity Initiated Accident SAD Selected area diffraction SCC Stress Corrosion...

437

University of New Orleans Page 1 of |____| Office of Research & Sponsored Programs Subrecipient Versus Vendor Form  

E-Print Network [OSTI]

Versus Vendor Form UNO PROJECT/GRANT ID: SPEED KEY: UNO'S PI: PRIME SPONSOR: Proposed Subrecipient/Vendor required. PI Signature Date PI Printed Name ORSP REVIEW: Relationship : Vendor Subrecipient Reviewed by

Kulp, Mark

438

Consolidated fuel reprocessing program. Progress report, July 1-September 30, 1981  

SciTech Connect (OSTI)

Technical progress is reported in overview fashion in the following areas: process development, laboratory R and D, engineering research, engineering systems, integrated equipment test facility (IET) operations, and HTGR fuel reprocessing. (DLC)

None

1981-12-01T23:59:59.000Z

439

Cheyenne Light, Fuel and Power (Gas)- Residential Energy Efficiency Rebate Program (Wyoming)  

Broader source: Energy.gov [DOE]

Cheyenne Light, Fuel and Power offers incentives to gas customers who construct new energy efficient homes or install energy efficient equipment in existing homes. Incentives are available for home...

440

Eighteenth symposium on biotechnology for fuels and chemicals: Program and abstracts  

SciTech Connect (OSTI)

This volume provides the proceedings for the Eighteenth Symposium on Biotechnology for Fuels and Chemicals held May 5-9, 1996 in Gatlinburg, Tennessee. The proceedings contains abstracts for oral and poster presentations.

NONE

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SOLVENT EXTRACTION RESEARCH AND DEVELOPMENT IN THE U.S. FUEL CYCLE PROGRAM  

SciTech Connect (OSTI)

Treatment or processing of used nuclear fuel to recycle uranium and plutonium has historically been accomplished using the well known PUREX process. The PUREX process has been used on an industrial scale for over 60 years in the nuclear industry. Research is underway to develop advanced separation methods for the recovery of other used fuel components, such as the minor actinides (Np, Am, Cm) for possible transmutation in fast spectrum reactors, or other constituents (e.g. Cs, Sr, transition metals, lanthanides) to help facilitate effective waste management options. This paper will provide an overview of new solvent extraction processes developed for advanced nuclear fuel cycles, and summarize recent experimental results. This will include the utilization of new extractants for selective separation of target metals and new processes developed to selectively recover one or more elements from used fuel.

Terry A. Todd

2011-10-01T23:59:59.000Z

442

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2011  

Fuel Cell Technologies Publication and Product Library (EERE)

This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell

443

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2012  

Fuel Cell Technologies Publication and Product Library (EERE)

This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

444

Consolidated fuel-reprocessing program. Progress report, April 1-June 30, 1982  

SciTech Connect (OSTI)

Highlights of progress accomplished during the quarter ending June 30, 1982 are summarized. Discussion is presented under the headings: Process development; Laboratory R and D; Engineering research; Engineering systems; Integrated equipment test facility operation; Instrument development; and HTGR fuel reprocessing.

Burch, W D

1982-09-01T23:59:59.000Z

445

CLIMATE CHANGE FUEL CELL PROGRAM UNITED STATES COAST GUARD AIR STATION CAPE COD BOURNE, MASSACHUSETTS  

SciTech Connect (OSTI)

This report covers the first year of operation of a fuel cell power plant, installed by PPL Spectrum, Inc. (PPL) under contract with the United States Coast Guard (USCG), Research and Development Center (RDC). The fuel cell was installed at Air Station Cape Cod in Bourne, MA. The project had the support of the Massachusetts Technology Collaborative (MTC), the Department of Energy (DOE), and Keyspan Energy. PPL selected FuelCell Energy, Inc. (FCE) and its fuel cell model DFC{reg_sign}300 for the contract. Grant contributions were finalized and a contract between PPL and the USCG for the manufacture, installation, and first year's maintenance of the fuel cell was executed on September 24, 2001. As the prime contractor, PPL was responsible for all facets of the project. All the work was completed by PPL through various subcontracts, including the primary subcontract with FCE for the manufacture, delivery, and installation of the fuel cell. The manufacturing and design phases proceeded in a relatively timely manner for the first half of the project. However, during latter stages of manufacture and fuel cell testing, a variety of issues were encountered that ultimately resulted in several delivery delays, and a number of contract modifications. Final installation and field testing was completed in April and May 2003. Final acceptance of the fuel cell was completed on May 16, 2003. The fuel cell has operated successfully for more than one year. The unit achieved an availability rate of 96%, which exceeded expectations. The capacity factor was limited because the unit was set at 155 kW (versus a nameplate of 250 kW) due to the interconnection with the electric utility. There were 18 shutdowns during the first year and most were brief. The ability of this plant to operate in the island mode improved availability by 3 to 4%. Events that would normally be shutdowns were simply island mode events. The mean time between failure was calculated at 239 hours, or slightly less than 10 days. The fuel cell did run continuously for more than one month on three occasions during the first year. Overall efficiency, including the thermal recovery, was found to be over 60%. Operation for the fuel cell during the first year produced net savings for the Coast Guard of over $18,000.

John K. Steckel Jr

2004-06-30T23:59:59.000Z

446

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents [OSTI]

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2011-01-18T23:59:59.000Z

447

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents [OSTI]

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D.; Dumesic, James A.

2013-04-02T23:59:59.000Z

448

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents [OSTI]

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2012-04-10T23:59:59.000Z

449

HOTEL RESERVATION FORM CSCLP 2009-Annual ERCIM Workshop on Constraint Solving and Constraint Logic Programming  

E-Print Network [OSTI]

Programming June, 15 - 17, 2009 Surname* Name* Country Telephone E-mail* *mandatory fields HOTEL RATES SINGLE-mail: olga@activacongresos.com ACTIVA CONGRESOS, S.L informs you that all your personal data collected by the fulfillment of this document will be stored in an automated processing file of our property registered

Larrosa, Javier

450

Spent fuel sabotage test program, characterization of aerosol dispersal : technical review and analysis supplement.  

SciTech Connect (OSTI)

This project seeks to provide vital data required to assess the consequences of a terrorist attack on a spent fuel transportation cask. One such attack scenario involves the use of conical shaped charges (CSC), which are capable of damaging a spent fuel transportation cask. In the event of such an attack, the amount of radioactivity that may be released as respirable aerosols is not known with great certainty. Research to date has focused on measuring the aerosol release from single short surrogate fuel rodlets subjected to attack by a small CSC device in various aerosol chamber designs. The last series of three experiments tested surrogate fuel rodlets made with depleted uranium oxide ceramic pellets in a specially designed double chamber aerosol containment apparatus. This robust testing apparatus was designed to prevent any radioactive release and allow high level radioactive waste disposal of the entire apparatus following testing of actual spent fuel rodlets as proposed. DOE and Sandia reviews of the project to date identified a number of issues. The purpose of this supplemental report is to address and document the DOE review comments and to resolve the issues identified in the Sandia technical review.

Durbin, Samuel G.; Lindgren, Eric Richard

2009-07-01T23:59:59.000Z

451

Closed-form Solutions to a Subclass of Continuous Stochastic Games via Symbolic Dynamic Programming  

E-Print Network [OSTI]

: a continuous state generalisation of matching pennies, binary option valuation and robust energy production optimisation, a problem for which closed- form solutions are generally unavailable. We present an exact closed stochastic games provide a convenient framework with which to model robust sequential optimisation in ad

Sanner, Scott

452

2005 DOE Hydrogen Program Review PresentationCOST AND PERFORMANCE ENHANCEMENTS FOR A PEM FUEL CELL TURBOCOMPRESSOR  

SciTech Connect (OSTI)

The objectives of the program during the past year was to complete Technical Objectives 2 and 3 and initiate Technical Objective 4 are described. To assist the Department of Energy in the development of a low cost, reliable and high performance air compressor/expander. Technical Objective 1: Perform a turbocompressor systems PEM fuel cell trade study to determine the enhanced turbocompressor approach. Technical Objective 2: Using the results from technical objective 1, an enhanced turbocompressor will be fabricated. The design may be modified to match the flow requirements of a selected fuel cell system developer. Technical Objective 3: Design a cost and performance enhanced compact motor and motor controller. Technical Objective 4: Turbocompressor/motor controller development.

Mark K. Gee

2005-04-01T23:59:59.000Z

453

Seventeenth symposium on biotechnology for fuels and chemicals. Program and abstracts  

SciTech Connect (OSTI)

This volume contains the abstracts of oral and poster presentations made at the Seventeenth Symposium on Biotechnology for Fuels and Chemicals. Session titles include Thermal, Chemical, and Biological Processing; Applied Biological Research; Bioprocessing Research; Special Topics Discussion Groups; Process Economics and Commercialization; and Environmental Biotechnology.

NONE

1995-05-01T23:59:59.000Z

454

1 | Fuel Cell Technologies Program Source: US DOE 2/3/2014 eere.energy.gov Nancy L. Garland, Ph.D.  

E-Print Network [OSTI]

1 | Fuel Cell Technologies Program Source: US DOE 2/3/2014 eere.energy.gov Nancy L. Garland, Ph Source: US DOE 2/3/2014 eere.energy.gov Clean Energy Patents Reflect Emerging Growth Clean Energy Patent://cepgi.typepad.com/heslin_rothenberg_farley_/ #12;3 | Fuel Cell Technologies Program Source: US DOE 2/3/2014 eere.energy.gov Patents and Job

455

General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980  

SciTech Connect (OSTI)

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-04-01T23:59:59.000Z

456

Fuel performance improvement program: description and characterization of HBWR Series H-2, H-3, and H-4 test rods  

SciTech Connect (OSTI)

The fabrication process and as-built characteristics of the HBWR Series H-2 and H-3 test rods, as well as the three packed-particle (sphere-pac) rods in HBWR Series H-4 are described. The HBWR Series H-2, H-3, and H-4 tests are part of the irradiation test program of the Fuel Performance Improvement Program. Fifteen rods were fabricated for the three test series. Rod designs include: (1) a reference dished pellet design incorporating chamfered edges, (2) a chamfered, annular pellet design combined with graphite-coated cladding, and (3) a sphere-pac design. Both the annular-coated and sphere-pac designs include internal pressurization using helium.

Guenther, R.J.; Barner, J.O.; Welty, R.K.

1980-03-01T23:59:59.000Z

457

Automatic Transformation of MPI Programs to Asynchronous, Graph-Driven Form  

SciTech Connect (OSTI)

The goals of this project are to develop new, scalable, high-fidelity algorithms for atomic-level simulations and program transformations that automatically restructure existing applications, enabling them to scale forward to Petascale systems and beyond. The techniques enable legacy MPI application code to exploit greater parallelism though increased latency hiding and improved workload assignment. The techniques were successfully demonstrated on high-end scalable systems located at DOE laboratories. Besides the automatic MPI program transformations efforts, the project also developed several new scalable algorithms for ab-initio molecular dynamics, including new massively parallel algorithms for hybrid DFT and new parallel in time algorithms for molecular dynamics and ab-initio molecular dynamics. These algorithms were shown to scale to very large number of cores, and they were designed to work in the latency hiding framework developed in this project. The effectiveness of the developments was enhanced by the direct application to real grand challenge simulation problems covering a wide range of technologically important applications, time scales and accuracies. These included the simulation of the electronic structure of mineral/fluid interfaces, the very accurate simulation of chemical reactions in microsolvated environments, and the simulation of chemical behavior in very large enzyme reactions.

Baden, Scott B [University of California, San Diego; Weare, John H [University of California, San Diego; Bylaska, Eric J [Pacific Northwest National Laboratory

2013-04-30T23:59:59.000Z

458

Categorical Exclusion Determination Form  

Broader source: Energy.gov (indexed) [DOE]

Proposed Action Title: (0471-1595) Regents of the University of Minnesota - Thermal Fuel: Solar Fuels via Partial Redox Cycles with Heat Recovery Program or Field Office: Advanced...

459

Use of CAP88 PC to infer differences in the chemical form of I-129 emitted from a fuel reprocessing facility  

SciTech Connect (OSTI)

Emissions of 129I from nuclear fuel separations conducted at the Hanford Site in Washington State have been occurring since the 1940s. Fuel separation on the Hanford Site stopped in 1988, but emissions of 129I have continued as venting of the building occurred. In this study, atmospheric measurements of 129I concentrations were coupled with an EPA approved plume dispersion model (CAP-88PC) to evaluate the effectiveness of the dispersion model for estimating ambient concentrations at the Hanford Site. This evaluation led to the hypothesis of different chemical forms of iodine being emitted over the years; this hypothesis was developed as an explanation for the model agreeing with measurements over some time periods, but not over all time periods. The model was then run with modified emissions to simulate the short atmospheric half-life of the suspected reactive chemical form of iodine being emitted. This modification resulted in good agreement between the modeled and measured concentrations over the entire 20 year study period, and provided evidence that the hypothesis of a reactive form of iodine being emitted was correct.

Fritz, Brad G.; Phillips, Nathan RJ

2013-06-17T23:59:59.000Z

460

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management  

SciTech Connect (OSTI)

Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

Not Available

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Evaluation of Storage for Transportation Equipment, Unfueled Convertors, and Fueled Convertors at the INL for the Radioisotope Power Systems Program  

SciTech Connect (OSTI)

This report contains an evaluation of the storage conditions required for several key components and/or systems of the Radioisotope Power Systems (RPS) Program at the Idaho National Laboratory (INL). These components/systems (transportation equipment, i.e., type B shipping casks and the radioisotope thermo-electric generator transportation systems (RTGTS), the unfueled convertors, i.e., multi-hundred watt (MHW) and general purpose heat source (GPHS) RTGs, and fueled convertors of several types) are currently stored in several facilities at the Materials and Fuels Complex (MFC) site. For various reasons related to competing missions, inherent growth of the RPS mission at the INL and enhanced efficiency, it is necessary to evaluate their current storage situation and recommend the approach that should be pursued going forward for storage of these vital RPS components and systems. The reasons that drive this evaluation include, but are not limited to the following: 1) conflict with other missions at the INL of higher priority, 2) increasing demands from the INL RPS Program that exceed the physical capacity of the current storage areas and 3) the ability to enhance our current capability to care for our equipment, decrease maintenance costs and increase the readiness posture of the systems.

S. G. Johnson; K. L. Lively

2010-05-01T23:59:59.000Z

462

Self-Generation Incentive Program  

Broader source: Energy.gov [DOE]

Initiated in 2001, the Self-Generation Incentive Program (SGIP) offers incentives to customers who produce electricity with wind turbines, fuel cells, various forms of combined heat and power (CHP)...

463

Fifteenth symposium on biotechnology for fuels and chemicals: Program and abstracts  

SciTech Connect (OSTI)

This collection contains 173 abstracts from presented papers and poster sessions. The five sessions of the conference were on the subjects of: (1) Thermal, Chemical, and Biological Processing, (2) Applied Biological Research, (3) Bioprocessing Research (4), Process Economics and Commercialization, and (5) Environmental Biotechnology. Examples of specific topics in the first session include the kinetics of ripening cheese, microbial liquefaction of lignite, and wheat as a feedstock for fuel ethanol. Typical topics in the second session were synergism studies of bacterial and fungal celluloses, conversion of inulin from jerusalem artichokes to sorbitol and ethanol by saccharomyces cerevisiae, and microbial conversion of high rank coals to methane. The third session entertained topics such as hydrodynamic modeling of a liquid fluidized bed bioreactor for coal biosolubilization, aqueous biphasic systems for biological particle partitioning, and arabinose utilization by xylose-fermenting yeast and fungi. The fourth session included such topics as silage processing of forage biomass to alcohol fuels, economics of molasses to ethanol in India, and production of lactic acid from renewable resources. the final session contained papers on such subjects as bioluminescent detection of contaminants in soils, characterization of petroleum contaminated soils in coral atolls in the south Pacific, and landfill management for methane generation and emission control.

Not Available

1993-07-01T23:59:59.000Z

464

Advanced Fuels Campaign Execution Plan  

SciTech Connect (OSTI)

The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

Kemal Pasamehmetoglu

2011-09-01T23:59:59.000Z

465

Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

Murray, A.M.; Marra, J.E.; Wilmarth, W.R. [Savannah River National Laboratory, Aiken, SC 29808 (United States); McGuire, P.W.; Wheeler, V.B. [Department of Energy-Savannah River Operations Office, Aiken SC 29808 (United States)

2013-07-01T23:59:59.000Z

466

Advanced Combustion and Fuels  

Broader source: Energy.gov (indexed) [DOE]

DOEVTO 2011 - 2015 Multi- Year Program Plan * Inadequate data and predictive tools for fuel property effects on combustion and engine efficiency optimization (Fuels & Lubricants...

467

SEPARATIONS AND WASTE FORMS CAMPAIGN IMPLEMENTATION PLAN  

SciTech Connect (OSTI)

This Separations and Waste Forms Campaign Implementation Plan provides summary level detail describing how the Campaign will achieve the objectives set-forth by the Fuel Cycle Reasearch and Development (FCRD) Program. This implementation plan will be maintained as a living document and will be updated as needed in response to changes or progress in separations and waste forms research and the FCRD Program priorities.

Vienna, John D.; Todd, Terry A.; Peterson, Mary E.

2012-11-26T23:59:59.000Z

468

Advanced Combustion and Fuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combustion and Fuels Advanced Combustion and Fuels 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

469

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

470

Activities to support the liquefied gaseous fuels spill test facility program. Final report  

SciTech Connect (OSTI)

Approximately a hundred years ago the petrochemical industry was in its infancy, while the chemical industry was already well established. Today, both of these industries, which are almost indistinguishable, are a substantial part of the makeup of the U.S. economy and the lifestyle we enjoy. It is difficult to identify a single segment of our daily lives that isn`t affected by these industries and the products or services they make available for our use. Their survival and continued function in a competitive world market are necessary to maintain our current standard of living. The occurrence of accidents in these industries has two obvious effects: (1) the loss of product during the accident and future productivity because of loss of a portion of a facility or transport medium, and (2) the potential loss of life or injury to individuals, whether workers, emergency responders, or members of the general public. A great deal of work has been conducted at the Liquefied Gaseous Fuels Spill test Facility (LGFSTF) on hazardous spills. WRI has conducted accident investigations as well as provided information on the research results via the internet and bibliographies.

Sheesley, D.; King, S.B.; Routh, T.

1997-03-01T23:59:59.000Z

471

DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System  

SciTech Connect (OSTI)

The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

2011-06-30T23:59:59.000Z

472

Application of Diagnostic/Prognostic Methods to Critical Equipment for the Spent Nuclear Fuel Cleanup Program  

SciTech Connect (OSTI)

The management of the Spent Nuclear Fuel (SNF) project at the Hanford K-Basin in the 100 N Area has successfully restructured the preventive maintenance, spare parts inventory requirements, and the operator rounds data requirements. In this investigation, they continue to examine the different facets of the operations and maintenance (O&M) of the K-Basin cleanup project in search of additional reliability and cost savings. This report focuses on the initial findings of a team of PNNL engineers engaged to identify potential opportunities for reducing the cost of O&M through the application of advanced diagnostics (fault determination) and prognostics (residual life/reliability determination). The objective is to introduce predictive technologies to eliminate or reduce high impact equipment failures. The PNNL team in conjunction with the SNF engineers found the following major opportunities for cost reduction and/or enhancing reliability: (1) Provide data routing and automated analysis from existing detection systems to a display center that will engage the operations and engineering team. This display will be operator intuitive with system alarms and integrated diagnostic capability. (2) Change operating methods to reduce major transients induced in critical equipment. This would reduce stress levels on critical equipment. (3) Install a limited sensor set on failure prone critical equipment to allow degradation or stressor levels to be monitored and alarmed. This would provide operators and engineers with advance guidance and warning of failure events. Specific methods for implementation of the above improvement opportunities are provided in the recommendations. They include an Integrated Water Treatment System (IWTS) decision support system, introduction of variable frequency drives on certain pump motors, and the addition of limited diagnostic instrumentation on specified critical equipment.

Casazza, Lawrence O.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Wallace, Dale E.

2002-02-28T23:59:59.000Z

473

Vehiculos de combustible flexible: brindando opciones en combustible renovable (Flexible Fuel Vehicles: Providing a Renewable Fuel Choice), Programa de Technologias de Vehiculos (Vehicle Technologies Program - VTP) (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley wins 2015Mayo 2010 la Junta de

474

Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions  

SciTech Connect (OSTI)

The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

DOE; ORNL; NREL; EMA; MECA

1999-11-15T23:59:59.000Z

475

U.S. Department of Energy Hydrogen and Fuel Cells Program 2014 Annual Merit Review and Peer Evaluation Report: June 16-20, 2014, Washington, D.C.  

SciTech Connect (OSTI)

The fiscal year (FY) 2014 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 16-20, 2014, at the Washington Marriott Wardman Park in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE).

Not Available

2014-10-01T23:59:59.000Z

476

User`s guide to REVERT. A CDC 7600 program for converting Spent Fuel Test - Climax data to engineering units, with corrections  

SciTech Connect (OSTI)

A CDC 7600 computer program, REVERT, can revise Spent Fuel Test - Climax data files using one of several algorithms, depending on the type of data. The algorithms use coefficients from a separate file organized by data type identifiers. REVERT can also make that file of coefficients, using data from tapes made by Hewlett-Packard equipment employed for data acquisition on the spent Fuel Test - Climax at NTS. 12 references.

Hage, G.

1984-10-01T23:59:59.000Z

477

Form Approval:  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for the current8610) Form Approval:

478

Form Approved  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for the current8610) FormApproved

479

Service Forms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminars Seminars at theSequestration ofService Forms

480

Breakthrough Vehicle Development - Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing research and development program for fuel cell power systems for transportation applications.

Note: This page contains sample records for the topic "fuels programs form" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report, Fleet Compliance Results for MY 2009/FY 2010 (Brochure)  

SciTech Connect (OSTI)

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2009/fiscal year 2010.

Not Available

2010-12-01T23:59:59.000Z

482

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock ProgramPublicSchool Bus Retrofit Grant Program The

483

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock ProgramPublicSchool Bus Retrofit Grant Program

484

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |

485

Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings; Industrial Technologies Program (ITP) Save Energy Now (SEN) Case Study  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011Department of

486

RERTR program activities related to the development and application of new LEU fuels. [Reduced Enrichment Research and Test Reactor; low-enriched uranium  

SciTech Connect (OSTI)

The statue of the U.S. Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief outline of RERTR Program objectives and goals, program accomplishments are discussed with emphasis on the development, demonstration and application of new LEU fuels. Most program activities have proceeded as planned, and a combination of two silicide fuels (U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al) holds excellent promise for achieving the long-term program goals. Current plans and schedules project the uranium density of qualified RERTR fuels for plate-type reactors to grow by approximately 1 g U/cm/sup 3/ each year, from the current 1.7 g U/cm/sup 3/ to the 7.0 g U/cm/sup 3/ which will be reached in late 1988. The technical needs of research and test reactors for HEU exports are also forecasted to undergo a gradual but dramatic decline in the coming years.

Travelli, A.

1983-01-01T23:59:59.000Z

487

Resource characterization and residuals remediation, Task 1.0: Air quality assessment and control, Task 2.0: Advanced power systems, Task 3.0: Advanced fuel forms and coproducts, Task 4.0  

SciTech Connect (OSTI)

This report addresses three subtasks related to the Resource Characterization and Residuals Remediation program: (1) sulfur forms in coal and their thermal transformations, (2) data resource evaluation and integration using GIS (Geographic Information Systems), and (3) supplementary research related to the Rocky Mountain 1 (RM1) UCG (Underground Coal Gasification) test program.

Hawthorne, S.B.; Timpe, R.C.; Hartman, J.H. [and others

1994-02-01T23:59:59.000Z

488

Advanced Fuel Cycle Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

489

DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System Cost - 2013 This program record from the U.S. Department of Energy's Fuel Cell...

490

1 | Fuel Cell Technologies Program Source: US DOE 12/5/2012 eere.energy.gov U.S. Department of Energy Fuel Cell Activities  

E-Print Network [OSTI]

); · Nearly 30,000 residential fuel cells deployed (40,000 by April 2013) · Plans for 2 million FCEVs and 1000,000,000] Primary Power Systems --Including CHP [9,000] Auxiliary Power Units for Transportation [20,000] Transit 2010 Outlook, 2MicroCHP, 3Large scale CHP, 4Industry estimate based on refrigerated truck and trailer

491

Fleet Compliance Results for MY 2010/FY 2011, EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)  

SciTech Connect (OSTI)

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2010/fiscal year 2011. The U.S. Department of Energy (DOE) regulates covered state and alternative fuel provider (SFP) fleets under the Energy Policy Act of 1992 (EPAct), as amended. For model year (MY) 2010, the compliance rate for the 2911 covered SFP fleets was 100%. Fleets used either Standard Compliance or Alternative Compliance. The 279 fleets that used Standard Compliance exceeded their aggregate MY 2010 acquisition requirements by 61%. The 12 covered fleets that complied using Alternative Compliance exceeded their aggregate MY 2010 petroleum-use-reduction requirements by 89%. Overall, DOE saw modest decreases from MY 2009 in biodiesel fuel use credits earned and in the number of light-duty vehicles (LDVs) acquired. Compared to years before MY 2009, these rates were far lower. Because covered fleets acquired fewer new vehicles overall in MY 2010, the requirement for alternative fuel vehicles (AFVs), which is proportional to new acquisitions, also dropped.

Not Available

2012-03-01T23:59:59.000Z

492

National Fuel Cell Bus Program: Accelerated Testing Evaluation Report and Appendices, Alameda-Contra Costa Transit District (AC Transit)  

SciTech Connect (OSTI)

This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 through October 2008. Evaluation results include implementation experience, fueling station operation, fuel cell bus operations at Golden Gate Transit, and evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and roadcalls).

Chandler, K.; Eudy, L.

2009-01-01T23:59:59.000Z

493

LMFBR fuel component costs  

SciTech Connect (OSTI)

A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

Epperson, E.M.; Borisch, R.R.; Rice, L.H.

1981-10-29T23:59:59.000Z

494

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program The Hawaii Department ofAlternative Fuel

495

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program The HawaiiDistributionHydrogen and Fuel Cell

496

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program The HawaiiDistributionHydrogen and Fuel

497

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program The HawaiiDistributionHydrogen and FuelClean

498

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program TheProduction TaxAlternative Fuel and

499

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program TheProduction TaxAlternative Fuel

500

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program TheProduction TaxAlternative FuelBiodiesel