Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel Cell Technologies Office: Fuel Cells for Portable Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Portable Power Workshop to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells for Portable Power Workshop on Facebook Tweet about Fuel Cell Technologies...

2

Fuel Cycle Comparison for Distributed Power Technologies  

Fuel Cell Technologies Publication and Product Library (EERE)

This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

3

Fuel Cell Backup Power Technology Validation (Presentation)  

DOE Green Energy (OSTI)

Presentation about fuel cell backup power technology validation activities at the U.S. Department of Energy's National Renewable Energy Laboratory.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.

2012-10-01T23:59:59.000Z

4

Fuel Cell Technologies Office: Fuel Cells for Portable Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Session - Fuel Cell Portable Power Perspectives End User Perspective - Industry Consumer Electronics Power (PDF 1.51 MB) Jerry Hallmark, Motorola Portable Power Sources (above...

5

Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Procuring Fuel Cells Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Google Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Delicious Rank Fuel Cell Technologies Office: Procuring Fuel Cells for

6

Fuel cycle comparison of distributed power generation technologies.  

DOE Green Energy (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

7

Phantom Power: The Status of Fuel Cell Technology Markets  

E-Print Network (OSTI)

Fuel cells have been touted as one of the most reliable and environmentally sound methods of producing high-quality electricity for use in the industrial sector. Fuel cell developers are racing to produce larger quantities of fuel cells at lower prices. While the power densities of fuel-cell stacks have been increasing, fuel cell technologies have unfortunately remained uneconomical for the majority of industrial customers. The growth of the fuel cell market has not increased at the rate at which developers and marketers would like us to believe. With stricter federal air regulations coming into effect in 2007 and more urban/industrial areas falling into non-attainment for pollutants such as NOx operators of distributed generation systems may begin to consider fuel cells a more viable option. In this paper we will explore the potential of various fuel cell technologies for providing on-site generation at industrial facilities. Our analysis will include brief technical descriptions of the various fuel cell technologies as well as a description of applicable end-use applications for the various technologies. We will determine which technologies hold the most potential for providing reliable power and heat for processes as well as estimates of technically and economically feasible industrial fuel cell capacity between now and 2020. The manufacturing service infrastructure, technical and market barriers to increased demand, and regulatory, permitting, and siting issues will be explored. We will outline the various factors that play in the technical and economic diffusion and offer sample diffusion curves for the various fuel cell technologies.

Shipley, A. M.; Elliott, R. N.

2003-05-01T23:59:59.000Z

8

Fuel Cell Comparison of Distributed Power Generation Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than...

9

Fuel Cycle Comparison of Distributed Power Generation Technologies  

E-Print Network (OSTI)

, as well as for coal and natural gas grid-generation technologies, are provided as baseline cases Cycle Power Plants 14.9 33.1 Natural Gas Turbine, Combined Cycle Power Plants 18.3 46.0 Coal comparable to the total energy use associated with the natural gas and coal grid-generation technologies

Argonne National Laboratory

10

Fuel Cell Technologies Office: Transportation and Stationary Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation and Stationary Power Integration Workshop Transportation and Stationary Power Integration Workshop On October 27, 2008, more than 55 participants from industry, state and federal government, utilities, national laboratories, and other groups met to discuss the topic of integrating stationary fuel cell combined heat and power (CHP) systems and hydrogen production infrastructure for vehicles. The workshop was co-hosted by the U.S. Department of Energy, the U.S. Fuel Cell Council, and the National Renewable Energy Laboratory, and was held in conjunction with the Fuel Cell Seminar in Phoenix, Arizona. Plenary presentations provided an overview of the integration concept and perspective on the opportunity from federal, state and industry organizations. Workshop participants met in breakout sessions to consider the potential to leverage early hydrogen vehicle refueling infrastructure requirements by co-producing hydrogen in stationary fuel cell CHP applications at select facilities (e.g., military bases, postal facilities, airports, hospitals, etc.). The efficiency, reliability, and emissions benefits of these CHP systems have the potential to offset the up-front capital costs and financial risks associated with producing hydrogen for early vehicle markets.

11

Customizable Fuel Processor Technology Benefits Fuel Cell ...  

Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry (ANL-IN-00-030) Argonne National Laboratory. Contact ANL About This ...

12

Solid Oxide Fuel Cell Technology Stationary Power Application Project  

DOE Green Energy (OSTI)

The objectives of this program were to: (1) Develop a reliable, cost-effective, and production-friendly technique to apply the power-enhancing layer at the interface of the air electrode and electrolyte of the Siemens SOFC; (2) Design, build, install, and operate in the field two 5 kWe SOFC systems fabricated with the state-of-the-art cylindrical, tubular cell and bundle technology and incorporating advanced module design features. Siemens successfully demonstrated, first in a number of single cell tests and subsequently in a 48-cell bundle test, a significant power enhancement by employing a power-enhancing composite interlayer at the interface between the air electrode and electrolyte. While successful from a cell power enhancement perspective, the interlayer application process was not suitable for mass manufacturing. The application process was of inconsistent quality, labor intensive, and did not have an acceptable yield. This program evaluated the technical feasibility of four interlayer application techniques. The candidate techniques were selected based on their potential to achieve the technical requirements of the interlayer, to minimize costs (both labor and material), and suitably for large-scale manufacturing. Preliminary screening, utilizing lessons learned in manufacturing tubular cells, narrowed the candidate processes to two, ink-roller coating (IRC) and dip coating (DC). Prototype fixtures were successfully built and utilized to further evaluate the two candidate processes for applying the interlayer to the high power density Delta8 cell geometry. The electrical performance of interlayer cells manufactured via the candidate processes was validated. Dip coating was eventually selected as the application technique of choice for applying the interlayer to the high power Delta8 cell. The technical readiness of the DC process and product quality was successfully and repeatedly demonstrated, and its throughput and cost are amenable to large scale manufacturing. Two 5 kWe-class SOFC power systems were built and installed for the purpose of testing and evaluating state-of-the-art tubular cell and bundle technologies, advanced generator and module design features, balance-of-plant components, and cost reduction measures. Installed at the Phipps Conservatory and Botanical Gardens, a system operated for more than 17,500 hrs, delivering electrical power to the on-site grid and thermal energy in form of hot water for onsite utilization. Operation was typically autonomous, requiring minimal operator intervention, and achieved an overall availability of greater than 85%. Outages were primarily due to an unstable local grid, two weather related outages were experienced, and very few reliability issues were encountered despite harsh operating conditions. No repairs to the stack, module, or balance-of-plant were required. A second system was designed, built, delivered, and installed at a Siemens facility in Charlotte, North Carolina. Operational issues associated with the balance-of-plant were encountered during startup and prevented the system from operating.

Joseph Pierre

2009-03-05T23:59:59.000Z

13

Fuels Technology - Capabilities - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Fuels Technology Advanced petroleum-based fuels Fuel-borne reductants On-board reforming Alternative fuels...

14

Abstract--Environmentally friendly technologies such as photovoltaics and fuel cells are DC sources. In the current power  

E-Print Network (OSTI)

Abstract--Environmentally friendly technologies such as photovoltaics and fuel cells are DC sources, fuel cells and photovoltaics, produce direct current (DC). Currently, power system infrastructures that wish to incorporate fuel cells and photovoltaics must first convert the DC power produced

Tolbert, Leon M.

15

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Conference Proceedings (OSTI)

Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

Yusibani, Elin [Research Center for Hydrogen Industrial Use and Storage, AIST (Japan); Department of Physics, Universitas Syiah Kuala (Indonesia); Kamil, Insan; Suud, Zaki [Department of Physics, Institut Teknologi Bandung (Indonesia)

2010-06-22T23:59:59.000Z

16

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

17

Fuel Cell Technologies Office: Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Technology Validation to someone by E-mail Share Fuel Cell Technologies Office: Technology Validation on Facebook Tweet about Fuel Cell Technologies...

18

Fuel Cell Technologies Program - Clean, Efficient, and Reliable Heat and Power for the 21st Century  

Fuel Cell Technologies Publication and Product Library (EERE)

This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential.

19

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

20

Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologie...  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption of Fuel Cell Technologies Federal Facilities Guide Read Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers for step-by-step guidance...

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network (OSTI)

.eere.energy.gov/informationcenter hydrogen and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially

22

Fuel Cell Technologies Office: Past Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

used. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Fuel Cell Hybrid Electric Medium Duty Trucks, Roof-top Backup Power, and Advanced Hydrogen...

23

Vehicle Technologies Office: Fuels and Lubricants Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels and Lubricants Fuels and Lubricants Research to someone by E-mail Share Vehicle Technologies Office: Fuels and Lubricants Research on Facebook Tweet about Vehicle Technologies Office: Fuels and Lubricants Research on Twitter Bookmark Vehicle Technologies Office: Fuels and Lubricants Research on Google Bookmark Vehicle Technologies Office: Fuels and Lubricants Research on Delicious Rank Vehicle Technologies Office: Fuels and Lubricants Research on Digg Find More places to share Vehicle Technologies Office: Fuels and Lubricants Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

24

Fuel Cell Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Fuel Cell Technologies Office: News on Google Bookmark Fuel Cell Technologies Office: News on Delicious Rank Fuel Cell Technologies...

25

Program on Technology Innovation: Programmatic Risk Assessment Future Fossil- and Biomass-Fueled Power Generation System Configurations  

Science Conference Proceedings (OSTI)

Recent and upcoming regulatory activities will have a major impact on power plant design over the next few decades. To address various environmental concerns, including climate change, emissions of specific air toxics and waste-to-energy goals, a number of different power plant configurations have been proposed involving differences in fuel type, boiler designs and emissions control technology. The Electric Power Research Institute (EPRI) commissioned Gradient to evaluate risks associated with ...

2012-12-20T23:59:59.000Z

26

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: November 2012 on Facebook Tweet about Fuel Cell Technologies...

27

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletter Archives to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter Archives on Facebook Tweet about Fuel Cell Technologies...

28

Fuel Cell Technologies Office: Subscribe to the Fuel Cell Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to the Fuel Cell Technologies Office Newsletter to someone by E-mail Share Fuel Cell Technologies Office: Subscribe to the Fuel Cell Technologies Office Newsletter on...

29

Fuel Cell Technologies Office: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells...

30

Technology development goals for automotive fuel cell power systems. Final report, Appendix B-2  

DOE Green Energy (OSTI)

Directed Technologies, Inc. has previously submitted a detailed technical assessment and concept design for a mid-size, five-passenger fuel cell electric vehicle (FCEV), under contract to the Argonne National Laboratory. As a supplement to that contract, DTI has reviewed the literature and conducted a preliminary evaluation of two energy carriers for the FCEV: hydrogen and methanol. This report compares the estimated fuel efficiency, cost of producing and delivering the fuel, and the resultant life cycle costs of the FCEV when fueled directly by hydrogen and when fueled by methanol with on-board reforming to produce the required hydrogen-rich gas for the fuel cell. This work will be supplemented and expanded under the Ford contract with the Department of Energy to develop the FCEV and its fuel infrastructure.

Thomas, C.E.; James, B.D.

1995-07-01T23:59:59.000Z

31

Fuel Cell Technologies Office: Fuel Cell Animation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Animation to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Animation on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Animation on...

32

Fuel Cell Technologies Office: Technology Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Technology Validation Search Search Help Technology Validation EERE Fuel Cell Technologies Office Technology Validation Printable Version Share this resource...

33

Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation  

SciTech Connect

The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

2007-12-01T23:59:59.000Z

34

Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation  

SciTech Connect

The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

2007-12-01T23:59:59.000Z

35

Hybrid Fuel Cell Technology Overview  

SciTech Connect

For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

None available

2001-05-31T23:59:59.000Z

36

Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies to someone by E-mail Share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Facebook Tweet about Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Twitter Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Google Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Delicious Rank Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Digg Find More places to share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on AddThis.com... Early Adoption of Fuel Cells Early Market Applications for Fuel Cells

37

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter to someone by E-mail Share Fuel...

38

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: January 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell...

39

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: January 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell...

40

Fuel Cell Technologies Office: Webinars  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Webinars to someone by E-mail Share Fuel Cell Technologies Office: Webinars on Facebook Tweet about Fuel Cell Technologies Office: Webinars on Twitter Bookmark Fuel Cell...

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuel Cell Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Workshop Hydrogen Production Workshop Sara Dillich U.S Department of Energy Office of Energy Efficiency & Renewable Energy Fuel Cell Technologies Office National Renewable Energy Laboratory Golden, Colorado September 24, 2013 2 Hydrogen and Fuel Cells Program Overview Nearly 300 projects currently funded at companies, national labs, and universities/institutes Mission: Enable widespread commercialization of a portfolio of hydrogen and fuel cell technologies through applied research, technology development and demonstration, and diverse efforts to overcome institutional and market challenges. Key Goals : Develop hydrogen and fuel cell technologies for early markets (stationary power, lift trucks, portable power), mid-term markets (CHP, APUs, fleets and buses), and long-term markets (light duty vehicles).

42

Fuel Cell Technologies Office: Fuel Cell Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

43

Analysis of using fuel cell technology for autonomous underwater vehicle power supply  

Science Conference Proceedings (OSTI)

Nowadays underwater robotics aims at semi or whole autonomous underwater vehicles. Autonomy of underwater robots depends on their control systems usually based on artificial intelligence methods and capacity of supply sources mounted on their boards. ... Keywords: fuel cell, underwater vehicle power supply

Grzegorz Grzeczka; Piotr Szymak

2009-05-01T23:59:59.000Z

44

Technology development goals for automotive fuel cell power systems. Final report  

Science Conference Proceedings (OSTI)

This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

James, B.D.; Baum, G.N.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1994-08-01T23:59:59.000Z

45

Power Plant and Industrial Fuel Use Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Electricity Advisory Committee Technology Development Electricity Policy Coordination and...

46

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

47

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

48

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2012 to someone by E-mail September 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

49

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

50

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2013 to someone by E-mail August 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

51

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2012 to someone by E-mail October 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

52

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2012 to someone by E-mail April 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives

53

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

54

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

55

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

September/October 2013 to someone by E-mail September/October 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on AddThis.com... Publications

56

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2012 to someone by E-mail August 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

57

Oxy-fuel Combustion and Integrated Pollutant Removal as Retrofit Technologies for Removing CO2 from Coal Fired Power Plants  

Science Conference Proceedings (OSTI)

One third of the US installed capacity is coal-fired, producing 49.7% of net electric generation in 20051. Any approach to curbing CO2 production must consider the installed capacity and provide a mechanism for preserving this resource while meeting CO2 reduction goals. One promising approach to both new generation and retrofit is oxy-fuel combustion. Using oxygen instead of air as the oxidizer in a boiler provides a concentrated CO2 combustion product for processing into a sequestration-ready fluid.... Post-combustion carbon capture and oxy-fuel combustion paired with a compression capture technology such as IPR are both candidates for retrofitting pc combustion plants to meet carbon emission limits. This paper will focus on oxy-fuel combustion as applied to existing coal power plants.

Ochs, T.L.; Oryshchyn, D.B.; Summers, C.A.; Gerdemann, S.J.

2001-01-01T23:59:59.000Z

58

Thorium-Fueled Underground Power Plant Based on Molten Salt Technology  

Science Conference Proceedings (OSTI)

This paper addresses the problems posed by running out of oil and gas supplies and the environmental problems that are due to greenhouse gases by suggesting the use of the energy available in the resource thorium, which is much more plentiful than the conventional nuclear fuel uranium. We propose the burning of this thorium dissolved as a fluoride in molten salt in the minimum viscosity mixture of LiF and BeF{sub 2} together with a small amount of {sup 235}U or plutonium fluoride to initiate the process to be located at least 10 m underground. The fission products could be stored at the same underground location. With graphite replacement or new cores and with the liquid fuel transferred to the new cores periodically, the power plant could operate for up to 200 yr with no transport of fissile material to the reactor or of wastes from the reactor during this period. Advantages that include utilization of an abundant fuel, inaccessibility of that fuel to terrorists or for diversion to weapons use, together with good economics and safety features such as an underground location will diminish public concerns. We call for the construction of a small prototype thorium-burning reactor.

Moir, Ralph W.; Teller, Edward [Lawrence Livermore National Laboratory (United States)

2005-09-15T23:59:59.000Z

59

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Products Supported by the Fuel Cell Technologies Office, finds DOE funding has led to more than 360 hydrogen and fuel cell patents, 36 commercial...

60

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research, Development and Demonstration Plan* to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Multi-Year Research, Development and...

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

62

Coal fueled diesel system for stationary power applications-technology development  

DOE Green Energy (OSTI)

The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

NONE

1995-08-01T23:59:59.000Z

63

Monolithic solid oxide fuel cell technology advancement for coal-based power generation  

DOE Green Energy (OSTI)

The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

Not Available

1992-04-14T23:59:59.000Z

64

Fuel Cell Technologies Office: Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

65

Fuel Cell Technologies Office: Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

66

Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

States Energy Advisory Board (STEAB) States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities Outline 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel cells - convert chemical energy directly into electrical energy, bypassing inefficiencies associated with thermal energy conversion. Available energy is equal to the Gibbs free energy. Combustion Engines - convert chemical energy into thermal energy and

67

Fuel Cell Power Plant Experience Naval Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

clean clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. FuelCell Energy, Inc. * Premier developer of fuel cell technology - founded in 1969 * Over 50 power installations in North America, Europe, and Asia * Industrial, commercial, utility

68

NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

National Fuel Cell Technology Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. The NFCTEC is designed for secure management, storage, and processing of proprietary data from industry. Access to the off-network NFCTEC is limited to NREL's Technology Validation Team, which analyzes detailed data and reports on fuel cell technology status, progress, and technical challenges. Graphic representing NREL's Hydrogen Secure Data Center and the variety of applications from which it gathers data, including fuel cell (FC) stacks, FC backup power, FC forklifts, FC cars, FC buses, and FC prime power, and hydrogen infrastructure.

69

Fuel Cell Technologies Office: Educational Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Publications Educational Publications Increase your H2IQ Access easy-to-understand fact sheets and other information designed to introduce hydrogen and fuel cell technologies to non-technical audiences. DOE Hydrogen and Fuel Cells Program Fact Sheets Fuel Cell Technologies Office Fact Sheet Progress and Accomplishments in Hydrogen and Fuel Cells Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects World's First Tri-Generation Energy Station - Fountain Valley Fuel Cell Financing for Tax-Exempt Entities Jobs in Fuel Cell Technologies Hydrogen Fuel Cells Hydrogen Production Hydrogen Distribution and Delivery Hydrogen Market Transformation Hydrogen Storage Hydrogen Safety Hydrogen Technology Validation Comparison of Fuel Cell Technologies Hydrogen-Powered Buses

70

Argonne TDC: Fuel Cell Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

71

Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994  

DOE Green Energy (OSTI)

This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

Not Available

1994-05-01T23:59:59.000Z

72

Fuel Cell Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary to someone by Glossary to someone by E-mail Share Fuel Cell Technologies Office: Glossary on Facebook Tweet about Fuel Cell Technologies Office: Glossary on Twitter Bookmark Fuel Cell Technologies Office: Glossary on Google Bookmark Fuel Cell Technologies Office: Glossary on Delicious Rank Fuel Cell Technologies Office: Glossary on Digg Find More places to share Fuel Cell Technologies Office: Glossary on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Glossary

73

Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994  

Science Conference Proceedings (OSTI)

Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

NONE

1995-10-01T23:59:59.000Z

74

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

offices, including Fuel Cell Technologies. Funding Opportunities SBIRSTTR Phase I Release 1 Technical Topics Announced for FY14-Hydrogen and Fuel Cell Topics Include...

75

Fuel Cell Technologies Office: Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations to Presentations to someone by E-mail Share Fuel Cell Technologies Office: Presentations on Facebook Tweet about Fuel Cell Technologies Office: Presentations on Twitter Bookmark Fuel Cell Technologies Office: Presentations on Google Bookmark Fuel Cell Technologies Office: Presentations on Delicious Rank Fuel Cell Technologies Office: Presentations on Digg Find More places to share Fuel Cell Technologies Office: Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells

76

DOE Fuel Cell Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

500 2007 2013 Cumulative Number of Patents Fuel Cells ProductionDelivery Storage * DOE funding has led to 40 commercial hydrogen and fuel cell technologies and 65 emerging...

77

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Bus Workshop Fuel Cell Bus Workshop The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) held a Fuel Cell Bus Workshop on June 7, 2010 in Washington, D.C. in conjunction with the DOE Hydrogen and Fuel Cell Program Annual Merit Review. The workshop plenary and breakout session brought together technical experts from industry, end users, academia, DOE national laboratories, and other government agencies to address the status and technology needs of fuel cell powered buses. Meeting Summary Joint Fuel Cell Bus Workshop Summary Report Presentations Fuel Cell Bus Workshop Overview & Purpose, Dimitrios Papageorgopoulos, DOE Users Perspective on Advanced Fuel Cell Bus Technology, Nico Bouwkamp, CaFCP and Leslie Eudy, NREL Progress and Challenges for PEM Transit Fleet Applications, Tom Madden, UTC Power, LLC

78

Fuel Cells as Power Quality Solutions  

Science Conference Proceedings (OSTI)

Fuel cell systems are advancing beyond conventional bulk power applications. Now, technological approaches are allowing dynamic responses that can solve short-term power quality problems, specifically voltage sags and momentary interruptions. In addition to solving short-term problems, fuel cells also can provide long-term back-up and stepped-load changes using traditional, clean, natural gas fuel. This report describes the need for and applications of advanced fuel cell systems for end-use customers.

1999-10-20T23:59:59.000Z

79

Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

4/3/2012 4/3/2012 eere.energy.gov Fuel Cell Technologies Overview Flow Cell Workshop Washington, DC Dr. Sunita Satyapal & Dr. Dimitrios Papageorgopoulos U.S. Department of Energy Fuel Cell Technologies Program 3/7/2011 Flow Cells for Energy Storage Workshop Purpose To understand the applied research and development needs and the grand challenges for the use of flow cells as energy-storage devices. Objectives 1. Understand the needs for applied research from stakeholders. 2. Gather input for future development of roadmaps and technical targets for flow cells for various applications. 3. Identify grand challenges and prioritize R&D needs. Flow cells combine the unique advantages of batteries and fuel cells and can offer benefits for multiple energy storage applications.

80

Power from the Fuel Cell  

E-Print Network (OSTI)

Power for Buildings Using Fuel-Cell Cars,” Proceedings ofwell as to drive down fuel-cell system costs through productis most likely to be the fuel-cell vehicle. Fuel cells are

Lipman, Timothy E.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel Cell Power Plants Renewable and Waste Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plants Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. g Product Line Based on Stack Building Block Cell Package and Stack Four-Stack Module DFC3000 Two 4-Stack Modules 2.8 MW Single-Stack Module Single Stack Module DFC1500 One 4-Stack Module 1.4 MW DFC300

82

Fuel Cell Technologies Office: Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency and Renewable Energy Fuel Cell Technologies Office Databases The Fuel Cell Technologies Office is developing databases to make it easier for users to find up-to-date...

83

Fuel Cell Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Events to someone by E-mail Share Fuel Cell Technologies Office: Events on Facebook Tweet...

84

Fuel Cell Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

85

Fuel Cell Portable Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Power Department of Energy Workshop January 17, 2002 2 Portable Markets - Table of Contents 1. Opportunity Summary for Portable Markets 2. Commercialization Path and Resource Map 3. Value Chain Issues 4. Ballard "State of the Art" 5. Fuel Options and Issues 6. Where can the D.O.E. Help 3 Opportunity Summary - Portable Markets Infrequent Frequent Typical Applications Backup - Batteries & Gensets Peaking power and seasonal use; mobile power Preferred Fuels Hydrocarbon & Hydrogen Hydrocarbon (H2?) Total Available Market Large - But Fractured into many apps Moderate Price Target Low (Pockets willing to pay high $ for certain attributes) Moderate (Lifecycle) Environmental Impact Low Moderate Timing Short term Mid term 4 Technical Challenge Low High Micro Markets H2 Backup Power HC Frequent

86

Alternative Fuels Data Center: Alternative Fuel and Advanced Technology  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Technology Vehicle Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on AddThis.com... More in this section... Federal

87

Status of Molten Carbonate Fuel Cell Technology  

Science Conference Proceedings (OSTI)

Fuel cell technology development and commercialization continues to be a major thrust in the alternative energy sector of distributed generation (DG). Second generation, molten carbonate fuel cell technology (MCFC) is now entering a critical commercialization phase. Given recent MCFC developments and advances in other distributed generation technologies, an assessment and update on the prospects for MCFC power systems is needed to guide future utility investments.

2003-01-22T23:59:59.000Z

88

Fuel Cell Technologies Office: 2012 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Webinar Archives 2 Webinar Archives Increase your H2IQ Learn about Fuel Cell Technologies Office webinars and state and regional initiatives webinars held in 2012 through the descriptions and linked materials below. Also view webinar archives from other years. Webinars presented in 2012: DOE Updates JOBS and economic impacts of Fuel Cells (JOBS FC 1.1) Model Hydrogen and Fuel Cell Manufacturing R&D Opportunities Fuel Cell Mobile Lighting California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems Material Characterization of Storage Vessels for Fuel Cell Forklifts Fuel Cells for Portable Power BNL's Low-Platinum Electrocatalysts for Fuel Cell Electric Vehicles (FCEVs)

89

Biogas-Fueled Electric Power: An Assessment of Systems and Technologies  

Science Conference Proceedings (OSTI)

This report summarizes the practice of generating electric power from biogas, a mixture of methane and carbon dioxide with trace contaminants, produced as a byproduct of biological treatment of organic waste under anaerobic (no oxygen) conditions. Biogas is commonly produced during treatment of municipal solid waste in sealed landfills and anaerobic digestion of wastewater treatment plant sludge, animal manure, and organic industrial waste. Power generation from biogas is distributed generation as it is ...

2005-05-24T23:59:59.000Z

90

Fuel Cell Technologies Office: Reversible Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversible Fuel Cells Reversible Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Facebook Tweet about Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Twitter Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Google Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Delicious Rank Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Digg Find More places to share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

91

Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Biodiesel and Improving Biodiesel and Other Fuels' Quality to someone by E-mail Share Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Facebook Tweet about Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Twitter Bookmark Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Google Bookmark Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Delicious Rank Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Digg Find More places to share Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines

92

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

93

Fuel Cycle Technology Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Technology Documents Fuel Cycle Technology Documents January 11, 2013 Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Issued on January 11, 2013, the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. October 30, 2012 2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security

94

Fuel Cell Technologies Program Record 12012: Fuel Cell Bus Targets  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Program Record Fuel Cell Technologies Program Record Record #: 12012 Date: March 2, 2012 Title: Fuel Cell Bus Targets Originator: Jacob Spendelow and Dimitrios Papageorgopoulos Approved by: Sunita Satyapal * Date: September 12, 2012 Item: Performance, cost, and durability targets for fuel cell transit buses are presented in Table 1. These market-driven targets represent technical requirements needed to compete with alternative technologies. They do not represent expectations for the status of the technology in future years. Table 1. Performance, cost, and durability targets for fuel cell transit buses. Units 2012 Status 2016 Target Ultimate Target Bus Lifetime years/miles 5/100,000 1 12/500,000 12/500,000 Power Plant Lifetime 2,3 hours 12,000 18,000 25,000

95

Fuel Cell Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Fuel Cell Technologies Office About the Fuel Cell Technologies Office The Fuel Cell Technologies Office conducts comprehensive efforts to overcome the technological, economic, and institutional barriers to the widespread commercialization of hydrogen and fuel cells. The office is aligned with the strategic vision and goals of the U.S. Department of Energy (DOE). The office's efforts will help secure U.S. leadership in clean energy technologies and advance U.S. economic competitiveness and scientific innovation. What We Do DOE is the lead federal agency for directing and integrating activities in hydrogen and fuel cell R&D as authorized in the Energy Policy Act of 2005. The Fuel Cell Technologies Office is responsible for coordinating the R&D activities for DOE's Hydrogen and Fuel Cells Program, which includes activities within four DOE offices (Office of Energy Efficiency and Renewable Energy [EERE], Office of Fossil Energy, Office of Nuclear Energy, and Office of Science).

96

Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

International Hydrogen International Hydrogen Fuel and Pressure Vessel Forum to someone by E-mail Share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Facebook Tweet about Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Twitter Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Google Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Delicious Rank Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Digg Find More places to share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on AddThis.com... Publications Program Publications Technical Publications

97

Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivery and Delivery and Fueling (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on AddThis.com... Publications Program Publications

98

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Technical Cell Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technical Publications on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technical Publications on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards Market Analysis Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

99

Fuel Cell Technologies Office: Early Market Applications for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies to someone by E-mail Share Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Facebook Tweet about Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Twitter Bookmark Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Google Bookmark Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Delicious Rank Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Digg Find More places to share Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on AddThis.com...

100

Power Technologies Data Book  

SciTech Connect

This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts and comparisons, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, conversion factors, and selected congressional questions and answers.

Goldstein, L.

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Year Research, Development and Demonstration Plan* The Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration (MYRD&D) Plan* describes the goals,...

102

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletter: August 2013 The August 2013 issue of the Fuel Cell Technologies Office newsletter includes stories in these categories: In the News Funding Opportunities Webinars and...

103

Fuel Cells as an Emerging Technology  

E-Print Network (OSTI)

The United States Department of Energy (DOE) has been directing a fuel cell research and development program since 1976. The intention of this program is to pursue improvements in utilization of domestic natural gas, coal, and alternate fuels to produce electric power as a part of the National Energy Plan. The goal of this program is to develop the technology base required to enable private sector commercialization of this new energy option for power generation to take place. Under sponsorship of DOE and other Government and private agencies, fuel cell technology has evolved from limited applications for alkaline fuel cells in the space program of the 1960's to large multikilowatt and multimegawatt power plants capable of utilization by the industrial sector in many types of applications. This paper will briefly examine the technical progress and status of this technology.

Jewell, D. M.

1986-06-01T23:59:59.000Z

104

Fuel Cell Technologies Office: Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

uses of fuel cell technologies. MotorWeek H2 on the Horizon Video Learn how car makers, energy suppliers, and the government are bringing fuel cell electric vehicles and hydrogen...

105

Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)  

DOE Green Energy (OSTI)

Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

Not Available

2009-04-01T23:59:59.000Z

106

Liquid fossil fuel technology  

Science Conference Proceedings (OSTI)

Progress reports are presented under the following headings: (1) extraction (technology assessment, oil research, gas research); (2) liquid processing (characterization, thermodynamics, processing technology); (3) utilization (energy conservation); and (4) project integration and technology transfer. BETC publications are also listed. Some of the highlights for this period are: the Bartlesville Energy Technology Center was converted into NIPER, the National Institute for Petroleum and Energy Research on October 1, 1983; modelling of enthalpies, heat capacities and volumes of aqueous surfactant solutions began using a mass action model; a series of experiments were run on upgrading by hydrogenation SRC-II coal liquid at different degrees of severity and the products have been analyzed; heavy crude oil extracts were separated into fraction with high performance liquid chromatography by Lawrence Berkeley Laboratory and the mass spectra and electron spin resonance were determin ed; and particulates from exhaust gases of diesel engines using fire fuel types are being collected and will be analyzed by chemical methods and results will be compared with those obtained by biological assay. (ATT)

Not Available

1983-01-01T23:59:59.000Z

107

Fuel processor for fuel cell power system  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

108

Fuel processing for fuel cell powered vehicles.  

DOE Green Energy (OSTI)

A number of auto companies have announced plans to have fuel cell powered vehicles on the road by the year 2004. The low-temperature polymer electrolyte fuel cells to be used in these vehicles require high quality hydrogen. Without a hydrogen-refueling infrastructure, these vehicles need to convert the available hydrocarbon fuels into a hydrogen-rich gas on-board the vehicle. Earlier analysis has shown that fuel processors based on partial oxidation reforming are well suited to meet the size and weight targets and the other performance-related needs of on-board fuel processors for light-duty fuel cell vehicles (1).

Ahmed, S.; Wilkenhoener, R.; Lee, S. H. D.; Carter, J. D.; Kumar, R.; Krumpelt, M.

1999-01-22T23:59:59.000Z

109

Fuel Cell Technologies Office: Education  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Offices | Consumer Information Education Search Search Help Education EERE Fuel Cell Technologies Office Education Printable Version Share this resource Send a link...

110

EERE Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Results will be documented in a report by Pacific Northwest National Lab: "Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and...

111

Fuel Cell Technologies Office: Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office - Education Students learn about solar energy. DOE supports demonstrations and commercialization by providing technically accurate and objective...

112

Solid Oxide Fuel Cell Power Generation Systems  

Science Conference Proceedings (OSTI)

An increasing worldwide demand for premium power, emerging trend towards electric utility deregulation and distributed power generation, global environmental concerns and regulatory controls have accelerated the development of advanced fuel cell based power generation systems. Fuel cells convert chemical energy to electrical energy through electrochemical oxidation of gaseous and/or liquid fuels ranging from hydrogen to hydrocarbons. Electrochemical oxidation of fuels prevents the formation of Nox, while the higher efficiency of the systems reduces carbon dioxide emissions (kg/kWh). Among various fuel cell power generation systems currently being developed for stationary and mobile applications, solid oxide fuel cells (SOFC) offer higher efficiency (up to 80% overall efficiency in hybrid configurations), fuel flexibility, tolerance to CO poisoning, modularity, and use of non-noble construction materials of low strategic value. Tubular, planar, and monolithic cell and stack configurations are currently being developed for stationary and military applications. The current generation of fuel cells uses doped zirconia electrolyte, nickel cermet anode, doped Perovskite cathode electrodes and predominantly ceramic interconnection materials. Fuel cells and cell stacks operate in a temperature range of 800-1000 *C. Low cost ($400/kWe), modular (3-10kWe) SOFC technology development approach of the Solid State Energy Conversion Alliance (SECA) initiative of the USDOE will be presented and discussed. SOFC technology will be reviewed and future technology development needs will be addressed.

Singh, Prabhakar; Pederson, Larry R.; Simner, Steve P.; Stevenson, Jeffry W.; Viswanathan, Vish V.

2001-05-12T23:59:59.000Z

113

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network (OSTI)

- tions, distributed power generation, and cogeneration (in which excess heat released during electricity the imported petroleum we currently use in our cars and trucks. Why Fuel Cells? Fuel cells directly convert the chemical energy in hydrogen to electricity, with pure water and potentially useful heat as the only

114

2007 Fuel Cell Technologies Market Report  

SciTech Connect

The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

McMurphy, K.

2009-07-01T23:59:59.000Z

115

National Energy Technology Laboratory Publishes Solid Oxide Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell Studies National Energy...

116

Fuel Cell Technologies Office: 2010 New Fuel Cell Projects Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 New Fuel Cell Projects Meeting to someone by E-mail Share Fuel Cell Technologies Office: 2010 New Fuel Cell Projects Meeting on Facebook Tweet about Fuel Cell Technologies...

117

Fuel Cell Technologies Office: 2009 New Fuel Cell Projects Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

09 New Fuel Cell Projects Meeting to someone by E-mail Share Fuel Cell Technologies Office: 2009 New Fuel Cell Projects Meeting on Facebook Tweet about Fuel Cell Technologies...

118

Fuel Cell Technologies Office: Biogas and Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogas and Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Biogas and Fuel Cells Workshop on Facebook Tweet about Fuel Cell Technologies Office:...

119

An Overview of Stationary Fuel Cell Technology  

DOE Green Energy (OSTI)

Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

DR Brown; R Jones

1999-03-23T23:59:59.000Z

120

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

IEA HIA Hydrogen Safety Stakeholder IEA HIA Hydrogen Safety Stakeholder Workshop Bethesda, Maryland Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 10/2/2012 2 | Fuel Cell Technologies Program eere.energy.gov Overview Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. * Nearly double the second place holder, solar, which has ~540 patents. [1] http://cepgi.typepad.com/files/cepgi-4th-quarter-2011-1.pdf United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Distribution 2002-2011 Top 10 companies: GM, Honda, Samsung,

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conservation Technologies thrust area supports initiatives that enhance the core competencies of the Lawrence Livermore National Laboratory (LLNL) Engineering Directorate in the area of solid-state power electronics. Through partnerships with LLNL programs, projects focus on the development of enabling technologies for existing and emerging programs that have unique power conversion requirements. This year, a multi-disciplinary effort was supported which demonstrated solid-state, high voltage generation by using a dense, monolithic photovoltaic array. This effort builds upon Engineering's strengths in the core technology areas of power conversion, photonics, and microtechnologies.

Haigh, R E

1998-01-01T23:59:59.000Z

122

NREL: Advanced Power Electronics - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Technology Basics Graphic of a small hydrogen-fueled fuel cell vehicle. Check out the interactive graphic of the power electronic components of a hydrogen-fueled fuel cell vehicle. If you drive a car, use a computer, cook with a microwave oven, talk on any type of telephone, listen to a stereo, or use a cordless drill, you use power electronics. Thanks to power electronics, the electricity that runs the things we use every day is processed, filtered, and delivered with maximum efficiency and minimum size and weight. Inside a vehicle's electronic power steering system, power electronics control motors and help move the steering rack. This translates into improved steering response and lower energy consumption. In broad terms, power electronics control the flow of electric power via

123

Design considerations for vehicular fuel cell power plants  

DOE Green Energy (OSTI)

Fuel cells show great promise as an efficient, nonpolluting vehicular power source that can operate on nonpetroleum fuel. As with other power sources, design tradeoffs can be made that either improve vehicle performance or reduce the size and cost of the fuel cell power system. To evaluate some of these tradeoffs, a number of phosphoric acid fuel cell power plant designs have been studied to determine the performance level they would provide, both for a compact passenger vehicle and a 40-ft city bus. The fuel is steam reformed methanol. The analyses indicate that 1978 fuel cell technology can provide a 22 to 50% improvement in fuel economy over the 1980 EPA estimate for the conventionally powered General Motors X car. With this technology the city bus can meet the DOT acceleration, gradability, and top speed requirements. A reasonable advance in fuel cell technology improves performance and fuel consumption of both vehicles substantially.

Lynn, D.K.; McCormick, J.B.; Bobbett, R.E.; Srinivasan, S.; Huff, J.R.

1981-03-31T23:59:59.000Z

124

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Projects Funded for Fuel Cell Market Transformation Act Projects Funded for Fuel Cell Market Transformation Following the fuel cell funding announcement, DOE funded the fuel cell market transformation projects listed below. These projects focus on fuel cell systems in emergency backup power, material handling, and combined heat and power applications, with the goal of improving the potential of fuel cells to provide power in stationary, portable, and specialty vehicles. The Fuel Cell Technologies Office is collecting and analyzing data from these projects to show potential adopters the benefits and real-world performance of fuel cells. These data are aggregated across industries and sites as composite data products to provide relevant technology status results and fuel cell performance data without revealing proprietary information. These publicly available data products build the business case for fuel cells and help fuel cell developers understand the state of technologies while identifying ways to improve them.

125

NREL Power Technologies Energy Data Book (2006): Technology Profiles |  

Open Energy Info (EERE)

Power Technologies Energy Data Book (2006): Technology Profiles Power Technologies Energy Data Book (2006): Technology Profiles Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. The technologies covered are: biomass, geothermal, concentrating solar power (CSP), wind, hydro, solar buildings, reciprocating engines, microturbines, fuel cells, batteries, advanced energy storage, and super conducting power technology. Depending on the technology, data may go as far back as 1980 and projections may go as far into the future as 2020.

126

Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies SHARE Fuel Cell and Hydrogen Technologies Oak Ridge National Laboratory pursues activities that address the barriers facing the development and deployment of hydrogen and fuel cells, with the ultimate goals of decreasing our dependence on oil, reducing carbon emissions, and enabling clean, reliable power generation. Through collaborative research and development, ORNL is developing materials and processes for fuel cell systems and for the practical generation, storage, and delivery of hydrogen as an energy carrier. The lab's Fuel Cell Technologies Program conducts its research and development activities in seven interrelated areas: Hydrogen Production and Delivery - Production of hydrogen from domestic resources and minimizing environmental impacts and distribution of

127

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

Newton, M. A.

1997-02-01T23:59:59.000Z

128

Cyclone Power Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Cyclone Power Technologies Inc Cyclone Power Technologies Inc Jump to: navigation, search Name Cyclone Power Technologies Inc Place Pompano Beach, Florida Zip 33064 Product Florida-based research and development company. The Company holds exclusive commercial rights to the Schoell Cycle Engine, an external combustion, heat-regenerative engine capable of running on any fuel source. References Cyclone Power Technologies Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cyclone Power Technologies Inc is a company located in Pompano Beach, Florida . References ↑ "Cyclone Power Technologies Inc" Retrieved from "http://en.openei.org/w/index.php?title=Cyclone_Power_Technologies_Inc&oldid=344013

129

Fuel Cells for Portable Power Workshop Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells for Portable Power Fuel Cells for Portable Power JoAnn Milliken Office of Transportation Technologies Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 202-586-2480 JoAnn.Milliken@ee.doe.gov January 15-17, 2002 Phoenix, AZ Presentation Outline * Why are we here? * DOE Transportation Fuel Cell Program * Workshop Objectives * Guidelines for Workshop Product * What have past DOE workshops achieved? Why are we here? Goal 300 10,000 Cost in $/kW 50kW system Today's low volume cost (1 unit) 2002 2010 Gasoline System Cost 50 Today's high volume cost (500,000 units) 1990 3,000 Government: Cost - the primary barrier to commercialization of PEMFCs for automobiles Industry: Business plans include fuel cells or fuel cell powered products

130

Fuel Cell Technologies Office: Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Integration to someone by E-mail Share Fuel Cell Technologies Office: Systems Integration on Facebook Tweet about Fuel Cell Technologies Office: Systems Integration on...

131

Fuel Cell Technologies Office: Durability Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Durability Working Group to someone by E-mail Share Fuel Cell Technologies Office:...

132

Fuel Cell Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress Reports to someone by E-mail Share Fuel Cell Technologies Office: Annual Progress Reports on Facebook Tweet about Fuel Cell Technologies Office: Annual Progress Reports on...

133

Fuel Cell Technologies Office: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

134

Fuel Cell Technologies Office: Hydrogen Infrastructure Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

135

Fuel Cell Technologies Office: Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

136

Fuel Cell Technologies Office: Related Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

137

Fuel Cell Technologies Office: Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

138

Fuel Cell Technologies Office: 2013 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

139

Fuel Cell Technologies Office: Market Analysis Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy - Energy Efficiency and Renewable Energy Fuel Cell Technologies Office Market Analysis Reports Reports about fuel cell and hydrogen technology market analysis...

140

Fuel Cell Technologies Office: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fuel Cell Technologies Office: IPHE Infrastructure Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

IPHE Infrastructure Workshop to someone by E-mail Share Fuel Cell Technologies Office: IPHE Infrastructure Workshop on Facebook Tweet about Fuel Cell Technologies Office: IPHE...

142

Fuel Cell Technologies Office: Educational Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

143

EERE: Fuel Cell Technologies Office Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

144

EERE: Fuel Cell Technologies Office - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Printable Version Share this resource Send a link to EERE: Fuel Cell Technologies Office - Webmaster to someone by E-mail Share EERE: Fuel Cell Technologies Office -...

145

EERE: Fuel Cell Technologies Office - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Printable Version Share this resource Send a link to EERE: Fuel Cell Technologies Office - Contacts to someone by E-mail Share EERE: Fuel Cell Technologies Office -...

146

Vehicles and Fuels Technologies - Energy Innovation Portal  

Vehicles and Fuels Technology Marketing Summaries Here you’ll find marketing summaries of advanced vehicle and fuel technologies available for licensing from U.S ...

147

Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels  

E-Print Network (OSTI)

for Safety and Grid Interface Direct Fuel Cell Module: FuelCell Energy, the FuelCell Energy logo, Direct Fuel generation of combined heat andcombined heat and power ­Clean Power with natural gas f lfuel ­Renewable Power with biofuels ·Grid connected power generationgeneration ­High Efficiency Grid support

148

Fuels & Lubricant Technologies- FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels & Lubricants Technology Fuels & Lubricants Technology Fuels and lubricants research at FEERC involves study of the impacts of fuel and lubricant properties on advanced combustion processes as well as on emissions and emission control strategies and devices. The range of fuels studied includes liquid fuels from synthetic and renewable sources as well as conventional and unconventional fossil-based sources. Combustion and emissions studies are leveraged with relevant single and multi-cylinder engine setups in the FEERC and access to a suite of unique diagnostic tools and a vehicle dynamometer laboratory. ORNL/DOE research has been cited by EPA in important decisions such as the 2006 diesel sulfur rule and the 2010/2011 E15 waiver decision. Major program categories and examples

149

Fuel Cell Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Recent news stories and press releases related to the Fuel Cell Technologies Office are presented below. To see past news items, refer to the news archives for 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, and 2003. Subscribe to Fuel Cell Technologies Office updates. January 10, 2014 Upcoming Live Discussion on Energy 101: Fuel Cells Join the Energy Department at 2:00 p.m. ET on Thursday, January 16 for the first Energy 101 Google+ Hangout, which will focus on fuel cells. More January 10, 2014 Help Design the Hydrogen Fueling Station of Tomorrow The Energy Department posted a blog yesterday about the Hydrogen Education Foundation's Hydrogen Student Design Contest. More December 20, 2013 Your Holidays...Brought to You by Fuel Cells

150

Solid Oxide Fuel Cell Auxiliary Power Unit  

SciTech Connect

Solid Oxide Fuel Cell (SOFC) is an attractive, efficient, clean source of power for transportation, military, and stationary applications. Delphi has pioneered its application as an auxiliary Power Unit (APU) for transportation. Delphi is also interested in marketing this technology for stationary applications. Its key advantages are high efficiency and compatibility with gasoline, natural gas and diesel fuel. It's consistent with mechanizations that support the trend to low emissions. Delphi is committed to working with customers and partners to bring this novel technology to market.

J. Weber

2001-12-12T23:59:59.000Z

151

Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects to someone by E-mail Share Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Facebook Tweet about Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Twitter Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Google Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Delicious Rank Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Digg Find More places to share Fuel Cell Technologies Office: Financial

152

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Joint Fuel Cell Bus Joint Fuel Cell Bus Workshop to someone by E-mail Share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Facebook Tweet about Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Twitter Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Google Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Delicious Rank Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Digg Find More places to share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars

153

Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Annual report, October 1991--September 1992  

DOE Green Energy (OSTI)

The program is being conducted by a team consisting of AlliedSignal Aerospace Systems & Equipment (ASE) (formerly AiResearch Los Angeles Division) and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

Not Available

1993-05-01T23:59:59.000Z

154

Fuel Cell Technologies Office: Market Analysis Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Market Analysis Reports to someone by E-mail Share Fuel Cell Technologies Office: Market Analysis Reports on Facebook Tweet about Fuel Cell Technologies Office: Market Analysis Reports on Twitter Bookmark Fuel Cell Technologies Office: Market Analysis Reports on Google Bookmark Fuel Cell Technologies Office: Market Analysis Reports on Delicious Rank Fuel Cell Technologies Office: Market Analysis Reports on Digg Find More places to share Fuel Cell Technologies Office: Market Analysis Reports on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards Market Analysis Educational Publications Newsletter

155

Fuel Cell Technologies Office: Hydrogen Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Hydrogen Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Google Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Delicious Rank Fuel Cell Technologies Office: Hydrogen Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards

156

Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Fuel Cell Pre-Solicitation Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation Workshop on Facebook Tweet about Fuel Cell...

157

Fuel Cell Technologies Office: Fuel Cells for Buildings Roadmap...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells for Buildings Roadmap Workshop to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells for Buildings Roadmap Workshop on Facebook Tweet about Fuel Cell...

158

Technology Commercialization Showcase 2008: Hydrogen, Fuel ...  

Hydrogen, Fuel Cells & Infrastructure Technologies Program Sunita Satyapal ... fossil, nuclear, and renewable sources. 14%. Technology Validation. Validate complete

159

Fuel Cell Technologies Office: Transportation and Stationary...  

NLE Websites -- All DOE Office Websites (Extended Search)

HOME ABOUT PROGRAM AREAS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES TECHNOLOGIES MARKET TRANSFORMATION NEWS EVENTS EERE Fuel Cell Technologies Office Information...

160

Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet)  

DOE Green Energy (OSTI)

This NREL Hydrogen and Fuel Cell Technical Highlight describes a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. The map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publicly available annual summaries of electric disturbance events.

Not Available

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Energy Technology Laboratory Publishes Solid Oxide Fuel National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell Studies National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell Studies July 23, 2013 - 1:07pm Addthis National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell Studies What does this project do? For more information on DOE's efforts to make solid oxide fuel cells an efficient and economically compelling option, please visit: The NETL Solid Oxide Fuel Cells Program Webpage Solid oxide fuel cells are among the cleanest, most efficient power-generating technologies now being developed. They provide excellent electrical efficiencies and are capable of operating on a wide variety of fuels, from coal and natural gas to landfill waste and hydrogen. And with continued advancements, solid oxide fuel cells can provide clean

162

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas Compressed Natural Gas and Hydrogen Fuels Workshop to someone by E-mail Share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Facebook Tweet about Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Twitter Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Google Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Delicious Rank Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Digg Find More places to share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications

163

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies Program Overview Program Overview Richard Farmer Richard Farmer Acting Acting Program Program Manager Manager Acting Acting Program Program Manager Manager 2010 Annual Merit Review and Peer Evaluation Meeting 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010) (7 June 2010) The Administration's Clean Energy Goals 9 9 Double Renewable Double Renewable Energy Capacity by 2012 9 Invest $150 billion over ten years i in energy R&D to transition to a clean energy economy clean energy economy 9 Reduce GHG emissions 83% by 2050 2 t t Æ Æ F l ll ff hi hl ffi i di f l d Fuel Cells Address Our Key Energy Challenges Increasing Energy Increasing Energy Ef ficiency and Resource Diversity Efficiency and Resource Diversity Æ Æ Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

164

Table Commercial Industrial Vehicle Fuel Electric Power  

U.S. Energy Information Administration (EIA)

State Residential Commercial Industrial Vehicle Fuel Electric Power ... Form EIA?886, “Annual Survey of Alternative Fueled Vehicles”; ...

165

RE fuel Technology Ltd | Open Energy Information  

Open Energy Info (EERE)

RE fuel Technology Ltd Jump to: navigation, search Name RE-fuel Technology Ltd Place Wiltshire, United Kingdom Sector Efficiency Product RE-Fuel is developing high efficiency redox...

166

Fuel Cell Technologies Office: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: NewsDetail on Twitter Bookmark Fuel Cell Technologies Office: NewsDetail on Google Bookmark Fuel Cell Technologies Office: NewsDetail on Delicious Rank Fuel Cell...

167

Fuel Cell Technologies Office: 2011 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Webinar Archives 2011 Webinar Archives to someone by E-mail Share Fuel Cell Technologies Office: 2011 Webinar Archives on Facebook Tweet about Fuel Cell Technologies Office: 2011 Webinar Archives on Twitter Bookmark Fuel Cell Technologies Office: 2011 Webinar Archives on Google Bookmark Fuel Cell Technologies Office: 2011 Webinar Archives on Delicious Rank Fuel Cell Technologies Office: 2011 Webinar Archives on Digg Find More places to share Fuel Cell Technologies Office: 2011 Webinar Archives on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Archives Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

168

Fuel Cell Technologies Office: Catalysis Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis Working Catalysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Catalysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Catalysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Google Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Delicious Rank Fuel Cell Technologies Office: Catalysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Catalysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis

169

Fuel Cell Technologies Office: 2012 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Webinar Archives 2 Webinar Archives to someone by E-mail Share Fuel Cell Technologies Office: 2012 Webinar Archives on Facebook Tweet about Fuel Cell Technologies Office: 2012 Webinar Archives on Twitter Bookmark Fuel Cell Technologies Office: 2012 Webinar Archives on Google Bookmark Fuel Cell Technologies Office: 2012 Webinar Archives on Delicious Rank Fuel Cell Technologies Office: 2012 Webinar Archives on Digg Find More places to share Fuel Cell Technologies Office: 2012 Webinar Archives on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Archives Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

170

Fuel Cell Technologies Office: Photoelectrochemical Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Photoelectrochemical Working Group to someone by E-mail Share Fuel Cell Technologies Office: Photoelectrochemical Working Group on Facebook Tweet about Fuel Cell Technologies Office: Photoelectrochemical Working Group on Twitter Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Google Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Delicious Rank Fuel Cell Technologies Office: Photoelectrochemical Working Group on Digg Find More places to share Fuel Cell Technologies Office: Photoelectrochemical Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts

171

Fuel Cell Technologies Office: Program Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Presentations Program Presentations to someone by E-mail Share Fuel Cell Technologies Office: Program Presentations on Facebook Tweet about Fuel Cell Technologies Office: Program Presentations on Twitter Bookmark Fuel Cell Technologies Office: Program Presentations on Google Bookmark Fuel Cell Technologies Office: Program Presentations on Delicious Rank Fuel Cell Technologies Office: Program Presentations on Digg Find More places to share Fuel Cell Technologies Office: Program Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

172

Fuel Cell Technologies Office: Past Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Past Financial Opportunities to someone by E-mail Share Fuel Cell Technologies Office: Past Financial Opportunities on Facebook Tweet about Fuel Cell Technologies Office: Past Financial Opportunities on Twitter Bookmark Fuel Cell Technologies Office: Past Financial Opportunities on Google Bookmark Fuel Cell Technologies Office: Past Financial Opportunities on Delicious Rank Fuel Cell Technologies Office: Past Financial Opportunities on Digg Find More places to share Fuel Cell Technologies Office: Past Financial Opportunities on AddThis.com... Current Opportunities Past Opportunities Recovery Act Selected Awards Requests for Information Related Opportunities

173

Engineered Sequestration and Advanced Power Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia Sequestration and Advanced Power Technologies. Klaus Lackner, Columbia University. Predictions of innovative energy technologies for the next century usually include everything from fusion to photovoltaics with the one notable exception of fossil fuels. Because of fears of diminishing supplies, pollution and climate change, the public is reluctant to consider these hydrocarbon fuels for the energy needs of the twenty- first century. An energy strategy for the new century, however, cannot ignore fossil fuels. Contrary to popular belief, they are plentiful and inexpensive. While it is true that fossil fuels are limited by their environmental impact, new technologies to eliminate environmental concerns are currently being developed. Managing the emission of

174

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and fuel cells offer great  

E-Print Network (OSTI)

and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary fuel cell technol vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated in addition to hydrogen fuel for local demonstration fuel cell vehicles. As advanced vehicles begin to enter

175

Fuel Cell Power Electronics – Status & Challenges Tejinder ...  

Science Conference Proceedings (OSTI)

... Fuel cell powered critical refrigeration loads, preventing ... Ref. CL&P Connecticut Outage Map for October 2011 Fuel Cells: Power Through the Storm ...

2012-07-27T23:59:59.000Z

176

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Hydrogen Storage to Fuel Cell Technologies Office: Hydrogen Storage to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts On-board hydrogen storage for transportation applications continues to be

177

Alternative Fuels Data Center: Technology Bulletins  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Technology Bulletins Technology Bulletins to someone by E-mail Share Alternative Fuels Data Center: Technology Bulletins on Facebook Tweet about Alternative Fuels Data Center: Technology Bulletins on Twitter Bookmark Alternative Fuels Data Center: Technology Bulletins on Google Bookmark Alternative Fuels Data Center: Technology Bulletins on Delicious Rank Alternative Fuels Data Center: Technology Bulletins on Digg Find More places to share Alternative Fuels Data Center: Technology Bulletins on AddThis.com... Technology Bulletins The Alternative Fuels Data Center provides technology bulletins to inform transportation industry decision makers about technological breakthroughs, issues, and news about alternative fuels and advanced vehicles. For more information, read: E15 Approved for Use in 2001 and Newer Vehicles Updated 2/11

178

Fuel Cell Technologies Office: Hydrogen and Fuel Cell Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Manufacturing R&D Workshop to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen and Fuel Cell Manufacturing R&D Workshop on Facebook Tweet...

179

Fuel Cell Technologies Office: DOE Hydrogen and Fuel Cells Coordinatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Coordination Meeting to someone by E-mail Share Fuel Cell Technologies Office: DOE Hydrogen and Fuel Cells Coordination Meeting on Facebook Tweet about...

180

Fuel Cell Technologies Office: Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

supporting the role that fuel cells play in our nation's energy portfolio. Through its market transformation efforts, the Fuel Cell Technologies Office seeks to accelerate the...

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fuel Cell Technologies Office: Hydrogen Sensor Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

CSA Standards DOE Fuel Cell Technologies Office Element One, Inc. EmersonTherm-O-Disc FM Global Fuel Cell & Hydrogen Energy Association H2scan Honeywell Analytics Intelligent...

182

Fuel Cell Technologies Office: Program Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations The Fuel Cell Technologies Office staff members give presentations about fuel cells and hydrogen at a variety of conferences. Some of their presentations are below....

183

Technology Validation: Fuel Cell Bus Evaluations (Poster)  

DOE Green Energy (OSTI)

Poster discusses hydrogen fuel cell transit bus evaluations conducted for the Hydrogen, Fuel Cells, & Infrastructure Technologies Program (HFCIT). It was presented at the 2006 HFCIT Program Review.

Eudy, L.

2006-05-01T23:59:59.000Z

184

EERE: Fuel Cell Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

The Fuel Cell Technologies Office is a comprehensive portfolio of activities that address the full range of barriers facing the development and deployment of hydrogen and fuel...

185

State-of-the-Art of Fuel Cell Technologies for Distributed Power: Technical and Strategic Assessment of Products, Markets, and Retai l Competitiveness  

Science Conference Proceedings (OSTI)

Fuel cell technology has been undergoing rapid advancements in performance improvement and cost reduction the past few years. This second annual report will inform member utilities about the fast changing developments in emerging fuel cell technologies that could serve retail markets and have a major impact on the utility industry.

1997-09-14T23:59:59.000Z

186

DOE Hydrogen and Fuel Cells Program: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office FY2014 Budget Request Briefing on April 12 Apr 9, 2013 The Fuel Cell Technologies Office will hold a budget briefing for stakeholders on Friday, April...

187

Fuel Cell Technologies Office: Educational Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Educational Publications to someone by E-mail Share Fuel Cell Technologies Office: Educational Publications on Facebook Tweet about Fuel Cell Technologies Office: Educational Publications on Twitter Bookmark Fuel Cell Technologies Office: Educational Publications on Google Bookmark Fuel Cell Technologies Office: Educational Publications on Delicious Rank Fuel Cell Technologies Office: Educational Publications on Digg Find More places to share Fuel Cell Technologies Office: Educational Publications on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage

188

Fuel Cell Technologies Office: November 2013 Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

November 2013 November 2013 Newsletter to someone by E-mail Share Fuel Cell Technologies Office: November 2013 Newsletter on Facebook Tweet about Fuel Cell Technologies Office: November 2013 Newsletter on Twitter Bookmark Fuel Cell Technologies Office: November 2013 Newsletter on Google Bookmark Fuel Cell Technologies Office: November 2013 Newsletter on Delicious Rank Fuel Cell Technologies Office: November 2013 Newsletter on Digg Find More places to share Fuel Cell Technologies Office: November 2013 Newsletter on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery

189

Fuel Cell Powers Up Festivities at Secretary Chu's Holiday Party |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Powers Up Festivities at Secretary Chu's Holiday Party Fuel Cell Powers Up Festivities at Secretary Chu's Holiday Party Fuel Cell Powers Up Festivities at Secretary Chu's Holiday Party December 16, 2011 - 11:25am Addthis A clean, efficient fuel cell powered the tree lights at the 2011 Energy Department holiday party. | Energy Department file photo. A clean, efficient fuel cell powered the tree lights at the 2011 Energy Department holiday party. | Energy Department file photo. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program How does it work? Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. Employees at the Energy Department's annual holiday party were greeted with many familiar sights - festive decorations, sugar cookies, and a

190

Fuel Cell Technologies Office: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Photo of hydrogen researcher. Hydrogen can be produced using diverse, domestic resources including fossil fuels, such as natural gas and coal (with carbon sequestration); nuclear; biomass; and other renewable energy technologies, such as wind, solar, geothermal, and hydro-electric power. The overall challenge to hydrogen production is cost reduction. For cost-competitive transportation, a key driver for energy independence, hydrogen must be comparable to conventional fuels and technologies on a per-mile basis in order to succeed in the commercial marketplace. Learn more about DOE's hydrogen cost goal and the analysis used in projecting the future cost of hydrogen. The U.S. Department of Energy supports the research and development of a wide range of technologies to produce hydrogen economically and in environmentally friendly ways.

191

Proceedings: Impacts of Fuel Quality on Power Production  

Science Conference Proceedings (OSTI)

A conference on the Impacts of Fuel Quality on Power Production highlighted the challenges facing power producers using such established power technologies as fluidized bed, sub-critical boilers, and incinerations as well as emerging technologies such as Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized Bed Combustion (PFBC), super- and ultrasuper-critical boilers, and oxy-fuel systems. Presentations reported industry experience in the United States and Europe with an emphasis on minim...

2007-03-09T23:59:59.000Z

192

Fuel Cell Technologies Office: International Partnership for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership for Hydrogen and Fuel Cells in the Economy to someone by E-mail Share Fuel Cell Technologies Office: International Partnership for Hydrogen and Fuel Cells in the...

193

Fueling the Next Generation of Vehicle Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District's wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department.

194

Fuel Cell Technologies Office: Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities to Key Activities to someone by E-mail Share Fuel Cell Technologies Office: Key Activities on Facebook Tweet about Fuel Cell Technologies Office: Key Activities on Twitter Bookmark Fuel Cell Technologies Office: Key Activities on Google Bookmark Fuel Cell Technologies Office: Key Activities on Delicious Rank Fuel Cell Technologies Office: Key Activities on Digg Find More places to share Fuel Cell Technologies Office: Key Activities on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Key Activities The Fuel Cell Technologies Office conducts work in several key areas to

195

EERE: Fuel Cell Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Printable Version Share this resource Send a link to EERE: Fuel Cell Technologies Office Home Page to someone by E-mail Share EERE: Fuel Cell Technologies Office Home Page...

196

SECA Core Technology Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 June 3, 2003 National Energy Technology Laboratory Office of Fossil Energy SECA Core Technology IAPG, GPPD-DWC 4/30/03 SECA CORE TECHNOLOGY PROGRAM W. Nernst "Electrical Glow-Light" U.S. Patent 623,811 April 25, 1899 C C IAPG, GPPD-DWC 4/30/03 SECA SECA Program Structure Program Management Research Topics Needs Industry Integration Teams Technology Transfer Small Business University National Lab Industry Power Electronics Modeling & Simulation Materials Controls & Diagnostics Fuel Processing Fuel Processing Manufacturing Modeling & Simulation Power Electronics Controls & Diagnostics Manufacturing Materials Core Technology Program Fuel Cell Core Technology Project Management Industry Input IAPG, GPPD-DWC 4/30/03 Core Technology Program Powering All Ships Siemens Westinghouse

197

Energy Department Launches National Fuel Cell Technology Evaluation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance...

198

2008 FUEL CELL TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

electricity and hot water from a 400 kW fuel cell. Gills Onions' processing facility captures waste biogas2008 FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2010 #12;2008 FUEL CELL TECHNOLOGIES MARKET REPORT i and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland, and the staff

199

Fuel Cell Technologies Office: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

200

Fuel Cell Technologies Office: Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Current Technology R&D Activities Quick Links Hydrogen Production Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

202

AN ANALYSIS OF POWER REACTOR FUEL REPROCESSING  

SciTech Connect

This report presents an analysis of the projected economies and processing capacity requirements for a power reactor fuel reprocessing industry based on the recovery of fertile and fissionable materials from presently proposed power reactors within tbe confines of the continental United 8tates for the next five to ten years. An analysis of the present general state of development of a technology required for such an Industry is given. A summary of results of power reactor reprocessing chemical and engineering development at Oak Ridge National Laboratory from July 1955 through December 1956 is given. (auth)

Culler, F.L. Jr.; Blanco, R.E.; Goeller, H.E.; Watson, C.D.

1957-03-27T23:59:59.000Z

203

Vehicles and Fuels Technologies Available for Licensing ...  

Vehicles and Fuels Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have ...

204

Fuel Cell Technologies Office: Program Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis...

205

Fuel Cell Portable Power Workshop Attendees  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Workshop Power Workshop January 15-17, 2002 Attendees NAME E-MAIL Anthony Androsky, US Fuel Cell Council androsky@usfcc.com Larry Blair, U.S. Department of Energy larry.blair@ee.doe.gov Adam Briggs, Millennium Cell, Inc. briggs@millenniumcell.com Linnea Brush, Darnell.com, Inc. linnea@darnell.com Richard Canepa, Donaldson Co. Inc. canepa@mail.donaldson.com Deryn Chu, U.S. Army Research Laboratory dchu@arl.army.mil Erin Cready, SENTECH, Inc. ecready@sentech.org Mark Daugherty, DCH Technology/Enable Fuel Cell mdaugherty@enablefuelcell.com Ken Davis, Motorola Labs ken.davis@motorola.com Patrick Davis, DOE, EE-32 patrick.davis@ee.doe.gov Gregory Dolan, Methanol Institute gdolan@methanol.org Nancy Dunlop, MTI MicroFuel Cells Inc. ndunlop@mechtech.com

206

Fuel Cell Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary This glossary contains terms and acronyms related to hydrogen and fuel cell technologies. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z - Acronyms A AC Generator (or Alternator) An electric device that produces an electric current that reverses direction many times per second. Also called a synchronous generator. Adsorption The adhesion of the molecules of gases, dissolved substances, or liquids to the surface of the solids or liquids with which they are in contact. Air The mixture of oxygen, nitrogen, and other gases that, with varying amounts of water vapor, forms the atmosphere of the earth. Alkaline Fuel Cell (AFC) A type of hydrogen/oxygen fuel cell in which the electrolyte is concentrated potassium hydroxide (KOH) and the hydroxide ions (OH-) are transported from the cathode to the anode.

207

International Fuel Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Fuel Technology Inc Fuel Technology Inc Jump to: navigation, search Name International Fuel Technology Inc Place St. Louis, Missouri Zip 63105 Product Supplier of environmentally friendly surfactant-based fuel additives designed to significantly reduce harmful emissions produced from internal combustion engines. References International Fuel Technology Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. International Fuel Technology Inc is a company located in St. Louis, Missouri . References ↑ "International Fuel Technology Inc" Retrieved from "http://en.openei.org/w/index.php?title=International_Fuel_Technology_Inc&oldid=347044" Categories: Clean Energy Organizations

208

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels. Fuel cells have the potential to replace the internal-combustion engine in...

209

Fuel Cell Technologies Office: Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

The tool estimates the number of jobs created by deploying fuel cells in forklifts, backup power, and prime power applications. JOBS FC is a spreadsheet model that estimates...

210

NREL: Vehicles and Fuels Research - Advanced Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map The electric drive system is the technology foundation for hybrid electric and fuel cell vehicles. That's why NREL's Advanced Power Electronics project supports and promotes the design, development, and demonstration of power electronic components and systems that will overcome major technical barriers to the commercialization of hybrid, advanced internal combustion, and fuel cell vehicle technologies. In support of DOE's Vehicle Technologies Office, our researchers focus on developing advanced power electronics and electric machinery technologies that improve reliability, efficiency, and ruggedness, and dramatically decrease systems costs for advanced vehicles. Key components for these vehicles include the motor controller, DC to DC converters, and inverters

211

Doing better with less energy [fuel-efficient power generation  

Science Conference Proceedings (OSTI)

The authors describe how many fuel-efficient coal-fired power generation technologies can be adopted at reduced net cost, but argue that, unless barriers to innovation are removed, their adoption will be far from automatic

J. Sathbye; J. Sinton; T. Heller

1999-12-01T23:59:59.000Z

212

Fuel Cell Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

variety of other fuels, including natural gas and renewable fuels such as methanol or biogas. Hydrogen and fuel cells can provide these benefits and address critical challenges in...

213

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

failure modes. (4) DOE targets are for real-world applications; refer to Hydrogen, Fuel Cells, & Infrastructure Technologies Program Plan. 3 On Road Durability Through the...

214

Molten carbonate fuel cell technology improvement  

DOE Green Energy (OSTI)

This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, Molten Carbonate Fuel Cell Technology Improvement.'' This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

Not Available

1991-06-01T23:59:59.000Z

215

NREL: Hydrogen and Fuel Cells Research - Fuel Cell and Hydrogen Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation Previous Next Pause/Resume Animated Map Correlates Fuel Cell Usage for Backup Power with Grid Outages Snapshot graphic of a U.S. map that shows the location and operational status of backup power fuel cells systems as well as the location of grid outages. Learn how NREL developed the time-lapse geographical visualization map or view the animation, which covers January 2010 to August 2013. Learning Demonstration Validates Hydrogen Fuel Cell Vehicles and Infrastructure in a Real-World Setting Two icons depict a fuel cell car (left) and hydrogen infrastructure (right). The cars icon is a drawing of a car with a water droplet at the gas tank. The infrastructure icon is a drawing of a hydrogen fueling nozzle. NREL analyzed seven years of real-world validation data, validated key DOE

216

Fuel Cell Technologies Office: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Act Pie chart diagram shows the breakdown of how cost-sharing funds related to the American Recovery and Reinvestment Act from industry participants, totaling $54 million (for a grand total of $96 million), are allocated within the Fuel Cell Technologies Office, updated September 2010. The diagram shows that $18.5 million is allocated to backup power, $9.7 million is allocated to lift truck, $7.6 million is allocated to portable power, $3.4 million is allocated to residential and commercial CHP, and $2.4 million is allocated to auxiliary power research. The American Recovery and Reinvestment Act of 2009 (Recovery Act) presents opportunities with potential for hydrogen and fuel cell technologies. Signed into law by President Obama on February 17, 2009, the Recovery Act is an unprecedented effort to jumpstart our economy, create or save millions of jobs, and put a down payment on addressing long-neglected challenges so our country can thrive in the twenty-first century.

217

Fuel Cell Technologies Office: Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities Key Activities The Fuel Cell Technologies Office conducts work in several key areas to advance the development and commercialization of hydrogen and fuel cell technologies. Research, Development, and Demonstration Key areas of research, development, and demonstration (RD&D) include the following: Fuel Cell R&D, which seeks to improve the durability, reduce the cost, and improve the performance of fuel cell systems, through advances in fuel cell stack and balance of plant components Hydrogen Fuel R&D, which focuses on enabling the production of low-cost hydrogen fuel from diverse renewable pathways and addressing key challenges to hydrogen delivery and storage Manufacturing R&D, which works to develop and demonstrate advanced manufacturing technologies and processes that will reduce the cost of fuel cell systems and hydrogen technologies

218

2008 Fuel Cell Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL CELL TECHNOLOGIES FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2010 2008 FUEL CELL TECHNOLOGIES MARKET REPORT i Authors This report was written primarily by Bill Vincent of the Breakthrough Technologies Institute in Washington, DC, with significant assistance from Jennifer Gangi, Sandra Curtin, and Elizabeth Delmont. Acknowledgments This report was the result of hard work and valuable contributions from government staff and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland, and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance in the preparation of this report. The authors also wish to thank Robert Rose and Bud DeFlaviis of the U.S. Fuel Cell Council; Lisa Callaghan-Jerram of Fuel Cell Today; Alison Wise and Rachel Gelman

219

Hydrogen and Fuel Cell Technologies Program: Storage Fact Sheet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FUEL CELL TECHNOLOGIES PROGRAM FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 mi between fills. This is a challenging goal because hydrogen has physical characteristics that make it difficult to store in large quantities without taking up a significant amount of space. Where and How Will Hydrogen be Stored? Hydrogen storage will be required

220

Fuel Cell Technologies Program: Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Hydrogen is an energy carrier, not an energy source-hydrogen stores and delivers energy in a usable form, but it must be produced from hydrogen containing compounds. Hydrogen can be produced using diverse, domestic resources including fossil fuels, such as coal (preferentially with carbon sequestration), natural gas, and biomass or using nuclear energy and renewable energy sources, such as wind, solar, geothermal, and hydroelectric power to split water. This great potential for diversity of supply is an important reason why hydrogen is such a promising energy carrier. Hydrogen can be produced at large central plants, semi-centrally, or in small distributed units located at or very near the point of use, such as at refueling stations or stationary power

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fuel Cells - The Reality of a High Technology  

E-Print Network (OSTI)

A fuel cell power plant is an energy conversion device which can continuously transform the chemical energy of natural gas into utility grade electricity and usable heat. The characteristics of high electrical conversion efficiencies (40 to 55%), potentially high fuel utilization efficiencies (>80%), excellent AC power quality, environmental compatibility, modular design, and good reliability are some of the reasons why fuel cells have the potential to be one of the best cogeneration devices available. This paper will emphasize the status of phosphoric acid fuel cell technology focusing in on the field test results to date with small 40 Kilowatt (kW) onsite fuel cell power plants being designed, developed, and field tested principally under the support of the Gas Utility Industry. Over 40 units are being installed by 30 gas and combination utility companies throughout the United States to evaluate the operating experience of onsite fuel cell technology. In addition, the paper will briefly provide the status of a similar project, funded by the electric utility industry, to demonstrate multimegawatt-sized fuel cell power plants. Lastly, the paper will try to bring into focus the status of the more advanced carbonate and solid oxide fuel cell technologies.

Cuttica, J. J.

1984-01-01T23:59:59.000Z

222

2007 Fuel Cell Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

membrane R&D research and development RD&D research, development, and demonstration SOFC solid oxide fuel cell UPS uninterruptible power supply USFCC U.S. Fuel Cell Council 2...

223

`Capture ready' regulation of fossil fuel power plants Betting the UK's carbon emissions on promises of future technology  

E-Print Network (OSTI)

preparation. In contrast, the Combined Heat and Power (CHP) plant in Seal Sands licensed in 2008 has not been CCGT Centrica Yes 05/02/09 Pembroke, South West Wales CCGT RWE npower Yes 28/08/08 Seal Sands, Teesside-leakage to boiler Design air ducts and fans for re-use for flue gas recycle FGD design that copes with different gas

Haszeldine, Stuart

224

Program on Technology Innovation: Projecting Future Fossil- and Biomass-Fueled Power Generation System Configurations: Year 2030  

Science Conference Proceedings (OSTI)

The generation mix in the year 2030 will likely look somewhat different from the present, as growth in generating capacity and regulatory initiatives to reduce emissions lead to changes in the U.S. power generation fleet. Chemical pollutants emitted from this future generation mix are likely to differ from those at present, including changes to the characteristics and amounts of chemicals released to air, wastewater, and solid waste streams. This report presents interim results of a project to predict he...

2009-12-28T23:59:59.000Z

225

2010 Annual Progress Report for Fuels Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

annual progress report 2010 Fuels Technologies i FY 2010 Progress Report Fuels Technologies Approved by Kevin Stork Team Leader, Fuels Technologies Vehicle Technologies Program FY 2010 Progress rePort For Fuels technologies Energy Efficiency and Renewable Energy Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 February 2011 DOE-FT-2010AR ii Fuels Technologies FY 2010 Progress Report Acknowledgement We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the programs and all the

226

Fuel Cell Technologies Office: Photoelectrochemical Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Standards and Methods Development to someone by E-mail Share Fuel Cell Technologies Office: Photoelectrochemical Research Standards and Methods Development on Facebook...

227

Fuel Cell Technologies Office: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

delivery, storage, and fuel cell technologies. In carrying out this mission, the DOE FCT Office selects research and development and other projects through open and...

228

Vehicles and Fuels Technologies Available for Licensing ...  

Site Map; Printable Version; Share this resource. Send a link to Vehicles and Fuels Technologies Available for Licensing - Energy Innovation Portalto ...

229

Fuel Cell Technologies Office: Program Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

within the EERE Fuel Cell Technologies Office and the DOE offices of Nuclear Energy, Fossil Energy, and Science. It describes the Program's activities, the specific obstacles...

230

Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

cell systems and for the practical generation, storage, and delivery of hydrogen as an energy carrier. The lab's Fuel Cell Technologies Program conducts its research and...

231

Solid Oxide Fuel Cell Technologies: Improved Electrode ...  

They are highly fuel-efficient and almost non-polluting, making them an attractive alternative for energy generation. ... Energy Innovation Portal Technologies.

232

Energy Basics: Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen and Fuel Cell Technologies Photo of a woman scientist using a machine that is purifying biological catalysts for hydrogen production. Hydrogen is the...

233

Fuel Cell Technologies Office: Systems Analysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Systems Analysis Search Search Help Systems Analysis EERE Fuel Cell Technologies Office Systems Analysis Printable Version Share this resource Send...

234

Fuel Cell Technologies Office: Hydrogen Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Hydrogen Storage Search Search Help Hydrogen Storage EERE Fuel Cell Technologies Office Hydrogen Storage Printable Version Share this resource Send...

235

Fuel Cell Technologies Office: Hydrogen Delivery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Hydrogen Delivery Search Search Help Hydrogen Delivery EERE Fuel Cell Technologies Office Hydrogen Delivery Printable Version Share this resource...

236

Fuel Cell Technologies Office: Hydrogen Compression, Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Compression, Storage, and Dispensing Cost...

237

Fuel Cell Technologies Office: Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

codes and standards; and hydrogen and fuel cell technology market analysis. This information is provided in documents such as technical and project reports, conference...

238

2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies Annual Review Meeting Transaction Fuel Cycle Technologies Annual Review Meeting Transaction Report 2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. In order to continue or expand the role for nuclear power in our long- term energy platform, the United States must: Continually improve the safety and security of nuclear energy and its associated technologies worldwide. Develop solutions for the transportation, storage, and long-term disposal of used nuclear fuel and associated wastes.

239

Liquid-fueled SOFC power sources for transportation  

DOE Green Energy (OSTI)

Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.

Myles, K.M.; Doshi, R.; Kumar, R.; Krumpelt, M.

1994-11-01T23:59:59.000Z

240

Fuel cell powered irrigation system  

SciTech Connect

Set out herein is a fuel cell power plant for use with irrigation systems wherein the fuel cell is utilized to generate electric current to drive a pump motor. This pump motor drives a first water pump which receives water for distribution through a traveling irrigation system, the output of the first pump first conveyed into a condenser heat exchanger connected to a steam engine or turbine cycle. The fuel cell itself is contained within a boiler assembly and the heat of production of the electric power is used to generate steam which is sent to the steam engine. In the course of cooling the condenser gases of the steam engine the irrigating water is passed through a second pump driven by the steam engine and it is through this second pump that the pressure is raised sufficiently to allow for the necessary spraying fans. To improve the condenser efficiency part of the condensate or the ullage thereof is connected to one of the spray heads on the irrigation system in a venturi nozzle which thereby lowers the back pressure thereof. The lower portion of the condenser or the liquid part thereof is fed back through yet another condenser pump to the boiler to be regenerated into steam.

Jacobi, E.F.; Madden, M.R.

1982-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fuel Cell Technologies Office: Education  

NLE Websites -- All DOE Office Websites (Extended Search)

& Local Governments For Early Adopters For Students & Educators Careers in Hydrogen & Fuel Cells Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells...

242

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

DOE Green Energy (OSTI)

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

243

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

SciTech Connect

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

244

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics Power Electronics The power electronics activity focuses on research and development (R&D) for flexible, integrated, modular power electronics for power conditioning and control, including a power switch stage capable of running a variety of motors and loads. Efforts are underway to reduce overall system costs for these vehicles through the elimination of additional cooling loops to keep the power electronics within their safe operation ranges. These challenges are being met within the program through research in: Silicon carbide and Gallium Nitride semiconductors, which can be operated at much higher temperatures than current silicon semiconductors; Packaging innovations for higher temperature operation; Improved thermal control technologies; and

245

Nuclear Power Technology for the Future  

DOE Green Energy (OSTI)

Ensuring sufficient energy for electricity, fresh water and transportation represents a major challenge for this century. Energy demand will increase dramatically as developing countries improve their standards of living. Nuclear power will become an increasingly important source of energy for production of electricity, fresh water and hydrogen as transportation fuel. Hydrocarbon sources of energy are not acceptable in the long term because of global warming and uneven supply. To ensure that nuclear power can meet this challenge, improved technologies are required to address the problems of nuclear waste, management of nuclear materials and safety as many more nuclear plants are built. These technologies are being developed at Argonne National Laboratory as part of the DOE international program of Generation IV reactors. Essential to meeting these challenges is the development of fast-spectrum nuclear reactors for which fuel and fission products are recycled to the reactor to be 'burned'. I will discuss work on fast-spectrum reactor and fuel-cycle design. The technologies discussed will be 'passively safe' reactor design and 'pyroprocessing' for fuel reprocessing.

Sackett, John I. (ANL)

2003-07-23T23:59:59.000Z

246

NETL: News Release - Enabling Turbine Technologies for Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

September 8, 2005 September 8, 2005 Enabling Turbine Technologies for Hydrogen Fuels Turbine Program Advances Ultra-Clean, Coal-Based Systems WASHINGTON, DC - The Department of Energy's Office of Fossil Energy Turbine Technology R&D Program was recently expanded with the selection of 10 new projects valued at $130 million. The new program will advance turbines and turbine subsystems for integrated gasification combined cycle (IGCC) power plants, and address the use of hydrogen in small-scale turbines for industrial applications. Resulting technologies will operate cleanly and efficiently when fueled with coal-derived hydrogen or synthesis gas. Turbines can generate electrical power on a large scale-in central power stations sized 250 megawatts and larger-or on a small scale-in local, industrial power systems sized 1-100 megawatts. Small-scale systems also produce mechanical power for jet engines, compressors, heating systems, and other applications.

247

2011 Fuel Cell Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 FUEL CELL 2011 FUEL CELL TECHNOLOGIES MARKET REPORT ii Authors This report was a collaborative effort by staff of the Breakthrough Technologies Institute, Inc., in Washington, DC. Acknowledgement The authors relied upon the hard work and valuable contributions of many men and women in government and in the fuel cell industry. The authors especially wish to thank Sunita Satyapal and the staff of the US Department of Energy's Fuel Cell Technologies Program for their support and guidance. The authors also wish to thank Rachel Gelman of the National Renewable Energy Laboratory and the many others who made this report possible. iii Contents List of Figures .....................................................................................................................................................v

248

Hydrogen and Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

9/9/2011 9/9/2011 eere.energy.gov FUEL CELL TECHNOLOGIES PROGRAM MANUFACTURING WORKSHOP Hydrogen and Fuel Cell Technologies Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Manager 8/11/2011 2 | Fuel Cell Technologies Program Source: US DOE 9/9/2011 eere.energy.gov Purpose * Identify and prioritize challenges and barriers to manufacture of hydrogen and fuel cell systems and components * Identify and prioritize R&D activities that government can support to overcome the barriers Workshop Objectives Workshop Output: * Preliminary list of R&D needs for hydrogen and fuel cell manufacturing * Report of workshop proceedings including plenary presentations and summary of participant input (to be made available online) Post-Workshop Output:

249

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell devices to charge electronics such as cell phones and audio players. EERE funding for hydrogen and fuel cells has led to more than 450 patents, 60 commercial...

250

PEM fuel cells for transportation and stationary power generation applications  

Science Conference Proceedings (OSTI)

We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

1996-05-01T23:59:59.000Z

251

Biomass power: An old resource for a new technology  

DOE Green Energy (OSTI)

As many as 50,000 MW of electricity could be generated by biomass power plants in the year 2010 with advanced technologies and improved feedstock supplies. This pamphlet describes the current status and capacity of biomass power plants in the US, advanced technologies under development, a way to guarantee a dedicated fuel supply, and sources for further information.

NONE

1995-05-01T23:59:59.000Z

252

Technology Assessment of Residential Power Systems for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

Significant research and development (R&D) investments in fuel cell technology have led to functioning prototypes of residential fuel power systems operating on natural gas. Efforts by at least four leading companies are expected to lead to early field trials of residential power systems in 2000 and early 2001, followed by pre-commercial prototypes during 2001-2002, and commercial introduction in the 2002-2005 time frame. Other technology companies are expected to follow suit.

2000-12-12T23:59:59.000Z

253

Hybrid solar-fossil fuel power generation  

E-Print Network (OSTI)

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

254

Fuel cell power supply with oxidant and fuel gas switching  

DOE Patents (OSTI)

This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

McElroy, James F. (Hamilton, MA); Chludzinski, Paul J. (Swampscott, MA); Dantowitz, Philip (Peabody, MA)

1987-01-01T23:59:59.000Z

255

Fuel cell power supply with oxidant and fuel gas switching  

DOE Patents (OSTI)

This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

1987-04-14T23:59:59.000Z

256

Development of internal reforming carbonate fuel cell stack technology  

DOE Green Energy (OSTI)

Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

Farooque, M.

1990-10-01T23:59:59.000Z

257

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

258

Fuel Cell Technologies Program Overview  

E-Print Network (OSTI)

Cell TypesFuel Cell Types Note: ITSOFC is intermediate temperature SOFC and TSOFC is tubular SOFC #12

259

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation to someone by E-mail Share Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Facebook Tweet about Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Twitter Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Google Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Delicious Rank Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Digg

260

2011 Fuel Cycle Technologies Annual Review Meeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Fuel Cycle Technologies Annual Review Meeting 1 Fuel Cycle Technologies Annual Review Meeting 2011 Fuel Cycle Technologies Annual Review Meeting As the largest domestic source of low-carbon energy, nuclear power is making major contributions toward meeting our nation's current and future energy demands. The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. To support nuclear energy's continued and expanded role in our energy platform, therefore, the United States must continually improve its knowledge, technology, and policy in order to:

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NREL: Vehicles and Fuels Research - Fuel Cell Electric Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies in the Media Spotlight Vehicle Technologies in the Media Spotlight August 19, 2013 Automakers have made steady progress reducing the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market between 2015 and 2020. A recent Denver Post article highlights the National Renewable Energy Laboratory's contribution to the progress that automakers have made in getting their fuel cell electric vehicles ready for production. "When I started working on fuel cells in the '90s, people said it was a good field because a solution would always be five years away," said Brian Pivovar, who leads NREL's fuel cell research. "Not anymore." The article references a variety of NREL's hydrogen and fuel cell

262

Microbial Fuel Cells Offer Innovative Technology for Oil, Gas ...  

Microbial Fuel Cells Offer Innovative Technology ... where organics and salt contaminate water in significant amounts during fossil fuels production.

263

Increasing Power Plant Efficiency: Lignite Fuel Enhancement ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing Power Plant Efficiency: Lignite Fuel Enhancement (Completed March 31, 2010) Project Description The objectives of this project are to demonstrate a unique system for...

264

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen and fuel cells. This information is provided in documents such as technical and project reports, conference proceedings and journal articles, technical presentations, and...

265

Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the DOE Hydrogen Program (PDF 1.1 MB), JoAnn Milliken, DOE Hydrogen Program Manager SOFC Technology R&D Needs (PDF 1.7 MB), Steven Shaffer, Delphi Chief Engineer, Fuel Cell...

266

Fuel Cell Technologies Office: Fuel Cells Today: Early Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Here (music) Hydrogen and fuel cell technologies are beginning to enter the market and learning demonstrations are spreading to various parts of the country. As you begin to see...

267

Expanding the Use of Biogas with Fuel Cell Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

eere.energy.gov eere.energy.gov Biogas with Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 6/11/2012 Expanding the Use of Biogas with Fuel Cell Technologies U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector Renewable Electric Power Energy 8% Coal 21% Nuclear Energy 9% Industrial Residential & Commercial Petroleum 37% Natural Gas 25% Transportation Total U.S. Energy = 98 Quadrillion Btu/yr Source: Energy Information Administration, Annual Energy Review 2010, Table 1.3 Fuel Cells can apply to diverse sectors Share of Energy Consumed by Major Sectors of the Economy, 2010 Electric Power 29% Residential 16% Commercial 13%

268

DIRECT FUEL/CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

269

DIRECT FUEL/CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

270

Fuel Cell Technologies Office: Hydrogen Codes and Standards Coordinating  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Codes and Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop on Google Bookmark Fuel Cell Technologies Office: Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop on Delicious Rank Fuel Cell Technologies Office: Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop on Digg

271

Fuel Cell Technologies Office: Refueling Infrastructure for Alternative  

NLE Websites -- All DOE Office Websites (Extended Search)

Refueling Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen to someone by E-mail Share Fuel Cell Technologies Office: Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen on Facebook Tweet about Fuel Cell Technologies Office: Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen on Twitter Bookmark Fuel Cell Technologies Office: Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen on Google Bookmark Fuel Cell Technologies Office: Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen on Delicious Rank Fuel Cell Technologies Office: Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen on Digg

272

Fuel Cell Technologies Office: Matching Government Needs with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Government Needs with Energy Efficient Fuel Cells to someone by E-mail Share Fuel Cell Technologies Office: Matching Government Needs with Energy Efficient Fuel Cells on...

273

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Publications Technical Publications Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and Web sites is provided here. General Transportation Stationary/Distributed Power Auxiliary & Portable Power Manufacturing General Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act-This report by Argonne National Laboratory presents estimates of economic impacts associated with expenditures under the American Recovery and Reinvestment Act, also known as the Recovery Act, by the U.S. Department of Energy for the deployment of fuel cells in forklift and backup power applications. (April 2013). An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment-This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. (April 2013).

274

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE hydrogen storage activity focuses primarily on the applied research and development (R&D) of low-pressure, materials-based technologies to allow for a driving range of more than 300 miles (500 km) while meeting packaging, cost, safety, and performance requirements to be competitive with current vehicles. While automakers have recently demonstrated progress with some prototype vehicles traveling more than 300 miles on a single fill, this driving range must be achievable across different vehicle models and without compromising space, performance, or cost. In addition, hydrogen storage will be needed for both other niche vehicular applications and off-board uses such as for stationary power generation and for hydrogen delivery and refueling infrastructure.

275

Vehicle Technologies Office: Fuels and Lubricants Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels and Lubricants Research Fuels and Lubricants Research As transportation accounts for two-thirds of the nearly $1 billion the U.S. spends daily on foreign oil, it is vital to increase our use of alternative fuels. Increasing the fuels available to drivers reduces price volatility, supports domestic industries, and increases environmental sustainability. The DOE's Alternative Fuels Data Center provides basic information on alternative fuels, including Biodiesel, Ethanol, Natural Gas, Propane, and Hydrogen. The Vehicle Technologies Office (VTO) supports research to improve how vehicles use these many of these fuels in the future, as well as activities to increase their availability today. It also researches how new petroleum-based fuels affect advanced combustion systems and how lubricants can improve the efficiency of vehicles currently on the road.

276

Surface Power Technologies | Open Energy Information  

Open Energy Info (EERE)

Surface Power Technologies Jump to: navigation, search Name Surface Power Technologies Place Ireland Sector Solar, Wind energy Product An Irish company supplying solar and...

277

Sentry Power Technology | Open Energy Information  

Open Energy Info (EERE)

Sentry Power Technology Jump to: navigation, search Name Sentry Power Technology Place New Castle, Delaware Zip 19720 Product The company develop and sell battery-driven back up...

278

Argus Power Technology | Open Energy Information  

Open Energy Info (EERE)

Argus Power Technology Jump to: navigation, search Name Argus Power Technology Place Zhengzhou, Henan Province, China Zip 450001 Product China-based company that manufactures...

279

Fueling Program Review May 2000 LRB 1 Fueling Technology  

E-Print Network (OSTI)

Fueling? Fusion power is a strong function of density ­ Pf = nDnTWDT Gas puffing has limited ability at high density e ne-1 (Alcator C, DIII, TFTR) Density Limits Exceeded ­ Gas fueled density limits proposed as improvement mechanism. · Similar scaling seen on DIII with multiple centrifuge pellet injection

280

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network (OSTI)

. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 mi between of cryogenic hydro- gen (cooled to -253°C, at pressures of 6-350 bar) in insulated tanks; and · Storage

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

National Fuel Cell Technology Evaluation Center (NFCTEC) (Revised...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and fuel cell organizations Contact Us If you are interested in working with the National Fuel Cell Technology Evaluation Center, please contact: NREL's Technology...

282

Fossil Energy-Developed Fuel Cell Technology Being Adapted by...  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2013 Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Solid Oxide Fuel Cell Technology Supported by Research Funding...

283

Fuel Cell Technologies Office: Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Share this resource Send a link to Fuel Cell Technologies Office: Hydrogen Pipeline Working Group to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen...

284

Fuel Cell Technologies Office: Storage Systems Analysis Working...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

285

Fuel Cell Technologies Office: FY 2007 Financial Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

286

Fuel Cell Technologies Office: Hydrogen Systems Analysis Workshop...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

287

Fuel Cell Technologies Office: DOE Hydrogen Delivery High-Pressure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

288

Fuel Cell Technologies Office: FY 2006 Financial Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

289

Fuel Cell Technologies Office: Past Events EventsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

290

Fuel Cell Technologies Office: DOE Hydrogen Transition Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

291

Fuel Cell Technologies Office: Joint Meeting on Hydrogen Delivery...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

292

Fuel Cell Technologies Office: DOE Announces New Hydrogen Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

293

Fuel Cell Technologies Office: Organization Chart and Contacts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

294

Fuel Cell Technologies Office: Early Market Applications for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

295

Fuel Cell Technologies Office: Financial Incentives for Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

296

Fuel Cell Technologies Office: Hydrogen Storage Materials Requirements...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage Materials Requirements (Text Version) on Facebook Tweet about Fuel Cell Technologies...

297

Fuel Cell Technologies Office: Hydrogen Storage Workshop Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage Workshop Proceedings on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen...

298

Hydrogen and Fuel Cell Technologies - Energy Innovation Portal  

Hydrogen and Fuel Cell Technology Marketing Summaries Here you’ll find marketing summaries of hydrogen and fuel cell technologies available for licensing from U.S ...

299

Fuel Cell Technologies Office: Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings to someone by E-mail Share Fuel Cell Technologies Office: Annual Merit Review Proceedings on Facebook Tweet about Fuel Cell Technologies Office: Annual Merit Review...

300

WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM  

DOE Green Energy (OSTI)

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

Allan Jones

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Prospects on fuel economy improvements for hydrogen powered vehicles.  

DOE Green Energy (OSTI)

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

302

Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 5, October 1, 1980-December 31, 1980  

DOE Green Energy (OSTI)

The overall objective of this program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive coal-fired electrical utility central station or industrial cogeneratin power plants. During this quarter, activity continued in all four task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - development of the capability to operate stacks on coal-derived gas.

Not Available

1980-01-01T23:59:59.000Z

303

Fuel Cell Technologies Office: DOE-DOD Shipboard APU Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-DOD Shipboard APU Workshop DOE-DOD Shipboard APU Workshop The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office participated in a Shipboard Auxiliary Power Unit (APU) Workshop hosted by the U.S. Department of Defense's (DOD) Office of Naval Research (ONR) on March 29 in Arlington, Virginia. Workshop objectives were to update the Navy, Military Sea Lift, and Maritime communities on the technical status of fuel cell development applicable to shipboard fuel cells, identify key opportunities for power generation systems, and prioritize associated system characteristics needed for transition. The workshop included an open discussion about user needs, limitations of existing design, and prioritization of next steps. Speakers included Precision Combustion Inc., UTC Power, FuelCell Energy, DOE, DOD, and ONR.

304

Fuel cell systems program for stationary power, 1996  

SciTech Connect

The mission of the fuel cell systems program of the Department of Energy, Office of Fossil Energy, in partnership with its customers and stakeholders, is to foster the creation of a new domestic fuel cell industry. This industry should be capable of commercialization of new, improved fuel cell power generation systems and thereby provide significant economic and environmental benefits. This program is aligned with the Department of Energy`s core mission (business line) of energy resources. The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. This document describes the fuel cell activities of the DOE Office of Fossil Energy.

1996-07-01T23:59:59.000Z

305

Spent Nuclear Fuel Alternative Technology Decision Analysis  

SciTech Connect

The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

Shedrow, C.B.

1999-11-29T23:59:59.000Z

306

2008 Fuel Cell Technologies Market Report  

SciTech Connect

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

DOE

2010-06-01T23:59:59.000Z

307

Codes and Standards Requirements for Deployment of Emerging Fuel Cell Technologies  

DOE Green Energy (OSTI)

The objective of this NREL report is to provide information on codes and standards (of two emerging hydrogen power fuel cell technology markets; forklift trucks and backup power units), that would ease the implementation of emerging fuel cell technologies. This information should help project developers, project engineers, code officials and other interested parties in developing and reviewing permit applications for regulatory compliance.

Burgess, R.; Buttner, W.; Riykin, C.

2011-12-01T23:59:59.000Z

308

Five Kilowatt Fuel Cell Demonstration for Remote Power Applications  

DOE Green Energy (OSTI)

While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

Dennis Witmer; Tom Johnson; Jack Schmid

2008-12-31T23:59:59.000Z

309

MHK Technologies/Oregon State University Columbia Power Technologies Direct  

Open Energy Info (EERE)

State University Columbia Power Technologies Direct State University Columbia Power Technologies Direct Drive Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oregon State University Columbia Power Technologies Direct Drive Point Absorber.jpg Technology Profile Primary Organization Oregon State University OSU Project(s) where this technology is utilized *MHK Projects/OSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description When the coil experiences a changing magnetic field created by the heaving magnets voltage is generated Technology Dimensions

310

FY 2005 Progress Report for Fuels Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Progress Report Progress rePort for fuels technologies Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2005 Progress Report for Fuels Technologies Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen January 2006 Fuels Technologies FY 2005 Progress Report Contents I Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 II Fuels and Lubricants to Enable High Efficiency Engine Operation while Meeting 2007 - 2010 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

311

Hydrogen, Fuel Cells and Infrastructure Technologies Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Christy Cooper Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells, and Infrastructure Technologies Program FORS 5G-064 (202) 586-1885 christy.cooper@ee.doe.gov Education...

312

EERE: Fuel Cell Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Please use this form to send us your comments, report problems, andor ask questions about information on the Fuel Cell Technologies Program Web site. If it regards a...

313

Biogas Technologies and Integration with Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL BIOGAS WORKSHOP NREL BIOGAS WORKSHOP BIOGAS TECHNOLOGIES AND INTEGRATION WITH FUEL CELLS Ian Handley Ros Roca Envirotec USA American Biogas Council SUMMARY * Introduction and Background * Anaerobic Digestion * Biogas Utilization * Biogas Upgrading Technology * Biogas Specification * Biogas to Fuel Cell * Conclusions Promoting the use of Biogas and Anaerobic Digestion O 149 Members from the U.S., Germany, Italy, Canada and the UK O All Industry Sectors Represented Key Industry Goals: O Promote biogas markets, technologies and infrastructure O Achieve policy parity O Promote as a best practice for environmental stewardship and greenhouse gas reduction www.americanbiogascouncil.org Products and technologies for environmental protection Pneumatic waste

314

Comparison of Fuel Cell Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

80C < 1kW-100kW 60% transpor- tation 35% stationary * Backup power * Portable power * Distributed generation * Transporation * Specialty vehicles * Solid electrolyte re- duces...

315

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

316

Hybrid power technology for remote military facilities  

DOE Green Energy (OSTI)

The Department of Defense (DoD) operates hundreds of test, evaluation, and training facilities across the US and abroad. Due to the nature of their missions, these facilities are often remote and isolated from the utility grid. The preferred choice for power at these facilities has historically been manned diesel generators. The DoD Photovoltaic Review Committee, estimates that on the order of 350 million gallons of diesel fuel is burned each year to generate the 2000 GWh of electricity required to operate these remote military facilities. Other federal agencies, including the National Park Service and the USDA Forest Service use diesel generators for remote power needs as well. The generation of power diesel generators is both expensive and detrimental to the environment. The augmentation of power from diesel generators with power processing and battery energy storage enhances the efficiency and utilization of the generator resulting in lower fuel consumption and lower generator run- time in proportion to the amount of renewables added. The hybrid technology can both reduce the cost of power and reduce environmental degradation at remote DoD facilities. This paper describes the expected performance and economics of photovoltaic/diesel hybrid systems. Capabilities and status of systems now being installed at DoD facilities are presented along with financing mechanisms available within DoD.

Chapman, R.N.

1996-09-01T23:59:59.000Z

317

Direct FuelCell/Turbine Power Plant  

SciTech Connect

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

318

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

319

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

2004-09-30T23:59:59.000Z

320

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

2004-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER  

DOE Green Energy (OSTI)

New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell industry is in the role of third party independent testing. In order for tests to be conducted, hardware must be purchased and delivered. The fuel cell industry is still in a pre-commercial state, however. Commercial products are defined as having a fixed set of specifications, fixed price, fixed delivery date, and a warrantee. Negotiations with fuel cell companies over these issues are often complex, and the results of these discussions often reveal much about the state of development of the technology. This work includes some of the results of these procurement experiments. Fuel cells may one day replace heat engines as the source of electrical power in remote areas. However, the results of this program to date indicate that currently available hardware is not developed sufficiently for these environments, and that significant time and resources will need to be committed for this to occur.

Dennis Witmer

2003-12-01T23:59:59.000Z

322

Fuel Cycle Technologies | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in the fossil fuel supply. As the only large-scale source of nearly greenhouse gas-free energy, nuclear power is an essential part of our energy mix, generating about 20...

323

Strategic Analysis of Biomass and Waste Fuels for Electric Power Generation  

Science Conference Proceedings (OSTI)

Biomass, waste fuels, and power technologies based on advanced combustion and gasification show promise for renewable baseload generation. Utilities can use the results of this study to evaluate the potential performance and cost of biomass and waste fuel-fired power plants in their systems and examine fuel use in integrated resource plans.

1994-01-01T23:59:59.000Z

324

Fuel-Cell Technology Overview  

Science Conference Proceedings (OSTI)

...Fuel cell Approximate operating temperature °C °F Polymer electrolyte (PEFC) 80 175 Alkaline (AFC) 100 212 Phosphoric acid (PAFC) 200 390 Molten carbonate (MCFC) 650 1200 Solid oxide (SOFC) 600â??1000 1110â??1830...

325

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

cepgi.typepad.comfilescepgi-4th-quarter-2011-1.pdf United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents...

326

Fuel Cell Technologies Office: Hydrogen Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

nuclear; biomass; and other renewable energy technologies, such as wind, solar, geothermal, and hydro-electric power. The overall challenge to hydrogen production is cost...

327

DIRECT FUEL CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

Hossein Ghezel-Ayagh

2004-11-01T23:59:59.000Z

328

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

Hossein Ghezel-Ayagh

2004-11-01T23:59:59.000Z

329

Fuel Cell Technologies Office: DOE and FreedomCAR and Fuel Partnership...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

330

High efficiency carbonate fuel cell/turbine hybrid power cycle  

Science Conference Proceedings (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

331

Fuel Cells for Critical Communications Backup Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells for Critical Cells for Critical Communications Backup Power Greg Moreland SENTECH, Inc. Supporting the U.S. Department of Energy August 6, 2008 APCO Annual Conference and Expo 2 2 Fuel cells use hydrogen to create electricity, with only water and heat as byproducts Fuel Cell Overview * An individual fuel cell produces about 1 volt * Hundreds of individual cells can comprise a fuel cell stack * Fuel cells can be used to power a variety of applications -Bibliographic Database * Laptop computers (50-100 W) * Distributed energy stationary systems (5-250 kW) * Passenger vehicles (80-150 kW) * Central power generators (1-200 MW) 3 3 Stationary/ Backup Power Transportation Specialty Markets Nuclear Natural Gas (for transition period only) Coal (with carbon sequestration) Renewable

332

Alternative Fuels Data Center: Technology Advancement Funding - South Coast  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Technology Advancement Technology Advancement Funding - South Coast to someone by E-mail Share Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Facebook Tweet about Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Twitter Bookmark Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Google Bookmark Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Delicious Rank Alternative Fuels Data Center: Technology Advancement Funding - South Coast on Digg Find More places to share Alternative Fuels Data Center: Technology Advancement Funding - South Coast on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Technology Advancement Funding - South Coast

333

Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

2: April 3, 2000 2: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy to someone by E-mail Share Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Facebook Tweet about Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Twitter Bookmark Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Google Bookmark Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Delicious Rank Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Digg Find More places to share Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on

334

Ultralow-power SRAM technology  

Science Conference Proceedings (OSTI)

An ultralow-standby-power technology has been developed in both 0.18-µm and 0.13-µm lithography nodes for embedded and standalone SRAM applications. The ultralow-leakage six-transistor (6T) SRAM cell sizes are 4.81 µm2 and ...

R. W. Mann; W. Abadeer; M. J. Breitwisch; O. Bula; J. S. Brown; B. C. Colwill; P. E. Cottrell; W. G. Crocco; S. Furkay; M. J. Hauser; T. B. Hook; D. Hoyniak; J. M. Johnson; C. H. Lam; R. D. Mih; J. Rivard; A. Moriwaki; E. Phipps; C. S. Putnam; B. A. Rainey; J. Toomey; M. I. Younus

2003-09-01T23:59:59.000Z

335

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Validation Technology Validation Multi-Year Research, Development and Demonstration Plan Page 3.6 - 1 3.6 Technology Validation The Technology Validation sub-program tests, demonstrates, and validates hydrogen (production, delivery, storage) and fuel cell systems and their integrated components in real-world environments. Feedback provided to the DOE hydrogen and fuel cell research and development (RD&D) projects, industry partners, and end users helps determine the additional RD&D required to move the technologies forward or to determine whether the technologies are ready for commercialization. Evaluations conducted include the following: * Applications - transportation; primary power; combined heat and power (CHP); combined

336

US fossil fuel technologies for Thailand  

SciTech Connect

The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

1990-10-01T23:59:59.000Z

337

Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Quarterly technical status report, January--March 1992  

DOE Green Energy (OSTI)

The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

Not Available

1992-04-14T23:59:59.000Z

338

Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 9, October 1, 1981-December 31, 1981  

DOE Green Energy (OSTI)

The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, activity continued in three of the four task areas: Task 2-cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - development of the capability to operate stacks on coal-derived gas. Progress is reported. (WHK)

Not Available

1981-01-01T23:59:59.000Z

339

Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Developed Fuel Cell Technology Being Adapted by Navy Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles January 31, 2013 - 12:00pm Addthis An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled central power generation is being adapted to power UUVs. U.S. Navy photo by Mr. John F. Williams/Released. An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled

340

Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fuel and Pressure Vessel Forum Hydrogen Fuel and Pressure Vessel Forum The U.S. Department of Energy (DOE) and Tsinghua University in Beijing co-hosted the International Hydrogen Fuel and Pressure Vessel Forum on September 27-29, 2010 in Beijing, China. High pressure vessel experts gathered to share lessons learned from compressed natural gas (CNG) and hydrogen vehicle deployments, and to identify R&D needs to aid the global harmonization of regulations, codes and standards to enable the successful deployment of hydrogen and fuel cell technologies. The forum also included additional discussion resulting from the DOE and U.S. Department of Transportation (DOT) co-sponsored International Workshop on Compressed Natural Gas and Hydrogen Fuels held on December 10-11, 2009 in Washington, D.C.

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NREL: Technology Deployment - Alternative Fuels Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuels Data Center Alternative Fuels Data Center NREL developed and manages the Alternative Fuels Data Center (AFDC), the U.S. Department of Energy's comprehensive clearinghouse of information and data related to the deployment of alternative fuels, advanced vehicles, and energy efficiency in transportation for fleets, fuel providers, policymakers, and other stakeholders working to reduce petroleum use in transportation. Interactive Transportation Deployment Tools NREL's large suite of free online tools assist fleets and drivers in selecting and deploying the technologies and strategies that will best help them meet their environmental and energy goals. Fleets and drivers can use calculators, interactive maps, and data searches to evaluate, select, and deploy alternative fuels and advanced vehicles as

342

Fuel Cell Technologies Office: Water Electrolysis Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Electrolysis Water Electrolysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Water Electrolysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Water Electrolysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Water Electrolysis Working Group on Google Bookmark Fuel Cell Technologies Office: Water Electrolysis Working Group on Delicious Rank Fuel Cell Technologies Office: Water Electrolysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Water Electrolysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

343

Fuel Cell Technologies Office: Transport Modeling Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Modeling Transport Modeling Working Group to someone by E-mail Share Fuel Cell Technologies Office: Transport Modeling Working Group on Facebook Tweet about Fuel Cell Technologies Office: Transport Modeling Working Group on Twitter Bookmark Fuel Cell Technologies Office: Transport Modeling Working Group on Google Bookmark Fuel Cell Technologies Office: Transport Modeling Working Group on Delicious Rank Fuel Cell Technologies Office: Transport Modeling Working Group on Digg Find More places to share Fuel Cell Technologies Office: Transport Modeling Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

344

Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop to someone by E-mail Share Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Facebook Tweet about Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Twitter Bookmark Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Google Bookmark Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Delicious Rank Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on Digg Find More places to share Clean Cities: Alternative Fuel and Advanced Technology Vehicle Strategy Workshop on AddThis.com...

345

Vehicle Technologies Office: Fact #684: July 18, 2011 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2011 Fuel Economy versus Fuel Savings to someone by E-mail Share Vehicle Technologies Office: Fact 684: July 18, 2011 Fuel Economy versus Fuel Savings on Facebook Tweet about...

346

Fuel cell electric power production  

DOE Patents (OSTI)

A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

1985-01-01T23:59:59.000Z

347

Fuel Cell Technologies Office: Roadmaps  

NLE Websites -- All DOE Office Websites (Extended Search)

This page contains documents that outline U.S. DOE efforts to develop a hydrogen-based energy system. Hydrogen Production Roadmap: Technology Pathways to the Future, published...

348

Gilberton Coal-to-Clean Fuels and Power Co-Production Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Initiative (CCPI) Gilberton Coal-to-Clean Fuels and Power Co-ProduCtion ProjeCt Description WMPI PTY., LLC of Gilberton, Pennsylvania has assembled a leading technology and...

349

Adaptable Inverter for Injection of Fuel Cell and Photovoltaic Power  

E-Print Network (OSTI)

important to apply renewable energies and efficient technologies. For power injection of photovoltaic with different energy sources such as photovoltaic, fuel cell and battery. It is possible to adjust active inverter. These inverters for injection of photovoltaic energy are developed only for this purpose

Kulig, Stefan

350

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

Science Conference Proceedings (OSTI)

For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer the potential for significant reductions in carbon dioxide (CO2) emissions. We examine the break-even value for CCS adoptions, that ... Keywords: accounting, cost--benefit analysis, energy, energy policies, environment, government, natural resources, pollution

Özge ??legen; Stefan Reichelstein

2011-01-01T23:59:59.000Z

351

the Fuels and Power Systems Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

403.9 million to research, develop, and deploy technologies that use the Nation's fossil fuels more cleanly and efficiently. The core research and development (R&D) efforts...

352

Solar powered unitized regenerative fuel cell system  

Science Conference Proceedings (OSTI)

Solar hydrogen system is a unique power system that can meet the power requirement for the energy future demand, in such a system the hydrogen used to be the energy carrier which can produced through electrolysis by using the power from the PV during ... Keywords: electrolyzer, fuel cell, hydrogen, photovoltaic, regenerative, solar hydrogen system

Salwan S. Dihrab; , Kamaruzzaman Sopian; Nowshad Amin; M. M. Alghoul; Azami Zaharim

2008-02-01T23:59:59.000Z

353

Trends in electric power technologies  

SciTech Connect

Research and development (R and D) on power plants is now aimed at increasing plant efficiency and reliability to avoid the high capital costs of new plant construction. The trend toward larger generating plants makes efficiency and reliability even more important. Studies include ways to improve operator judgment and minimize error by feeding continuous in-plant information into models of plant subsystems, efforts to improve fuel conversion efficiency by studying higher-temperature thermodynamics, ways to replace existing generators with superconducting generators, and to meet environmental needs with atmospheric fluidized-bed combustion. As fuel costs rise, the US will shift more toward coal and nuclear plants, with research aimed at optimizing performance. (DCK)

Starr, C.; Lihach, N.

1982-06-01T23:59:59.000Z

354

New DOE program to advance fuel cell central power stations  

SciTech Connect

Recent advances in technology have precipitated movement of fuel cells into the central power area in support of FutureGen (coal-based power plants with near-zero emissions). The idea is being implemented under the Fuel Cell Coal-Based Systems (FCCBS) programs. The Solid State Energy Conversion Alliance (SECA) programme has identified solid oxide fuel cell designs with the most promise for scale-up to central power applications. These could be aggregated into modules, and serve as building blocks for greater than 100 MW FutureGen-type plants. The FCCBS objective is to have a SECA SOFC-based power island that costs $400 kW and can enable 50% efficiency and 90% CO{sub 2} capture in a FutureGen plant by 2015. The project teams have been selected and the three phases of the FCCBS project identified. 3 figs.

NONE

2005-09-30T23:59:59.000Z

355

Cheyenne Light, Fuel and Power (Electric) - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program <...

356

AlumiFuel Power Inc | Open Energy Information  

Open Energy Info (EERE)

search Name AlumiFuel Power Inc. Place Philadelphia, Pennsylvania Sector Hydro, Hydrogen Product Philadelphia-based hydrogen gas generator. References AlumiFuel Power Inc.1...

357

Alternative Fuels Data Center: Advanced Technology Vehicle (ATV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Technology Advanced Technology Vehicle (ATV) Manufacturing Incentives to someone by E-mail Share Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Facebook Tweet about Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Twitter Bookmark Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Google Bookmark Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Delicious Rank Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on Digg Find More places to share Alternative Fuels Data Center: Advanced Technology Vehicle (ATV) Manufacturing Incentives on AddThis.com... More in this section...

358

Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Technology Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Technology Weight Exemption

359

Microturbine Power Conversion Technology Review  

SciTech Connect

In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to accept a varying dc voltage source. The study will also look at technical issues pertaining to the interconnection and coordinated/compatible operation of multiple microturbines. It is important to know today if modifications to provide improved operation and additional services will entail complete redesign, selected component changes, software modifications, or the addition of power storage devices. This project is designed to provide a strong technical foundation for determining present technical needs and identifying recommendations for future work.

Staunton, R.H.

2003-07-21T23:59:59.000Z

360

Fuel-cell-powered golf cart  

DOE Green Energy (OSTI)

The implementation of a battery/fuel-cell-powered golf cart test bed designed to verify computer simulations and to gain operational experience with a fuel cell in a vehicular environment is described. A technically untrained driver can easily operate the golf cart because the motor and fuel cell controllers automatically sense and execute the appropriate on/off sequencing. A voltage imbalance circuit and a throttle compress circuit were developed that are directly applicable to electric vehicles in general.

Bobbett, R.E.; McCormick, J.B.; Lynn, D.K.; Kerwin, W.J.; Derouin, C.R.; Salazar, P.H.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel and Power Price Volatilities and Convergence  

Science Conference Proceedings (OSTI)

As more energy is traded in competitive markets, the financial performance of generation companies will be increasingly determined by how well they understand and exploit the price behavior of those markets. How volatile are fuel and power prices? How do they correlate with one another? This report addresses these questions in several wholesale electricity and fuel markets and discusses implications of changing patterns of price behavior to fuel and asset management.

1999-05-27T23:59:59.000Z

362

MHK Technologies/Oregon State University Columbia Power Technologies...  

Open Energy Info (EERE)

Oregon State University Columbia Power Technologies Direct Drive Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oregon State...

363

NREL: Power Technologies Energy Data Book - Technology Cross...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis Center Energy Analysis Newsletter Power Technologies Energy Data Book Home Table of Contents Browse by Technology Biomass Geothermal Hydroelectric Solar Wind...

364

Hydrogen and Fuel Cell Technologies Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Source: US DOE 10/2010 Source: US DOE 10/2010 Hydrogen and Fuel Cell Technologies Update Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel Cell Seminar & Exposition San Antonio, TX October 19, 2010 Agenda * Overview * RD&D Progress * Analysis & Key Publications * Budget Update * Next Steps - DOE Releases Program Plan for Stakeholder Input - Upcoming Workshops & Solicitations Source: US DOE 10/2010 2  Double Renewable Energy Capacity by 2012  Invest $150 billion over ten years in energy R&D to transition to a clean energy economy  Reduce GHG emissions 83% by 2050 Administration's Clean Energy Goals 3 Key Examples US DOE 10/2010 4 Fuel Cells: Addressing Energy Challenges

365

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Nguyen Minh

2004-07-04T23:59:59.000Z

366

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

367

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Nguyen Minh

2004-07-04T23:59:59.000Z

368

Stationary power applications for polymer electrolyte fuel cells  

DOE Green Energy (OSTI)

The benefits provided by Polymer Electrolyte Fuel Cells (PEFC) for power generation (e.g. low operating temperatures, and non-corrosive and stable electrolyte), as well as advances in recent years in lowering their cost and improving anode poisoning tolerance, are stimulating interest in the system for stationary power applications. A significant market potentially exists for PEFCs in certain stationary applications where PEFC technology is a more attractive alternative to other fuel cell technologies. A difficulty with the PEFC is its operation on reformed fuels containing CO, which poisons the anode catalyst. This difficulty can be alleviated in several ways. One possible approach is described whereby the product reformate is purified using a relatively low cost, high-throughput hydrogen permselective separator. Preliminary experiments demonstrate the utility of the concept.

Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S. [Los Alamos National Lab., NM (United States); Landgrebe, A.R. [Dept. of Energy, Washington, DC (United States)

1996-02-01T23:59:59.000Z

369

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

370

Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells: How They Fuel Cells: How They Work and How They're Used (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cells:

371

Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version)  

NLE Websites -- All DOE Office Websites (Extended Search)

MotorWeek Fuel Cell MotorWeek Fuel Cell Video (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Google Bookmark Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Delicious Rank Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

372

Fuel Cell-Fuel Cell Hybrid System Contact NETL Technology Transfer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell-Fuel Cell Hybrid System Contact NETL Technology Transfer Group techtransfer@netl.doe.gov November 2012 Opportunity Research on the patented technology "Fuel Cell-Fuel Cell...

373

High efficiency carbonate fuel cell/turbine hybrid power cycles  

SciTech Connect

Carbonate fuel cells developed in commercial 2.85 MW size, have an efficiency of 57.9%. Studies of higher efficiency hybrid power cycles were conducted to identify an economically competitive system and an efficiency over 65%. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine, and a steam cycle, which generates power at a LHV efficiency over 70%; it is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95% of the fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming the fuel, and flows to a direct carbonate fuel cell system which generates 72% of the power. The portion of fuel cell anode exhaust not recycled, is burned and heat is transferred to compressed air from a gas turbine, heating it to 1800 F. The stream is then heated to 2000 F in gas turbine burner and expands through the turbine generating 13% of the power. Half the gas turbine exhaust flows to anode exhaust burner and the rest flows to the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Studies of the TTC for 200 and 20 MW size plants quantified performance, emissions and cost-of-electricity, and compared the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6%; estimated cost of electricity is 45.8 mills/kWhr. A 20-MW TTC plant has an efficiency of 65.2% and a cost of electricity of 50 mills/kWhr.

Steinfeld, G.

1996-12-31T23:59:59.000Z

374

NREL: Power Technologies Energy Data Book - Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis Center Energy Analysis Newsletter Power Technologies Energy Data Book Home Table of Contents Browse by Technology Calculators Archives 2003 Edition 2002...

375

NREL: Power Technologies Energy Data Book - Calculators  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis Center Energy Analysis Newsletter Power Technologies Energy Data Book Home Table of Contents Browse by Technology Calculators Renewable Energy Conversion...

376

NREL: Power Technologies Energy Data Book - Contact  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis Center Energy Analysis Newsletter Power Technologies Energy Data Book Home Table of Contents Browse by Technology Calculators Archives Contact Us Contact Us...

377

NREL: Concentrating Solar Power Research - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

378

Power Technologies Energy Data Book: Fourth Edition  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Energy Data Book August 2006 * NRELTP-620-39728 Fourth Edition Power Technologies Energy Data Book Fourth Edition Compiled by J. Aabakken Prepared under Task No....

379

Waste generation process modeling and analysis for fuel reprocessing technologies  

SciTech Connect

Estimates of electric power generation requirements for the next century, even when taking the most conservative tack, indicate that the United States will have to increase its production capacity significantly. If the country determines that nuclear power will not be a significant component of this production capacity, the nuclear industry will have to die, as maintaining a small nuclear component will not be justifiable. However, if nuclear power is to be a significant component, it will probably require some form of reprocessing technology. The once-through fuel cycle is only feasible for a relatively small number of nuclear power plants. If we are maintaining several hundred reactors, the once-through fuel cycle is more expensive and ethically questionable.

Kornreich, D. E. (Drew E.); Koehler, A. C. (Andrew C.); Farman, Richard F.

2002-01-01T23:59:59.000Z

380

Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy using Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells Workshop on Facebook Tweet about Fuel Cell...

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy using Fuel Cells Webinar to someone by E-mail Share Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells Webinar on Facebook Tweet about Fuel Cell...

382

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

383

Power Ecalene Fuels Inc | Open Energy Information  

Open Energy Info (EERE)

Ecalene Fuels Inc Ecalene Fuels Inc Jump to: navigation, search Logo: Power Ecalene Fuels Inc Name Power Ecalene Fuels Inc Address 18300 W Highway 72 Place Arvada, Colorado Zip 80007 Sector Biofuels Product Mixed alcohol transportation fuel Website http://www.powerecalene.com/ Coordinates 39.862942°, -105.206509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.862942,"lon":-105.206509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

385

Fuel Cell Technologies Office: National Research Council Reviews...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Research Council Reviews FreedomCAR and Fuel Partnership Research Program to someone by E-mail Share Fuel Cell Technologies Office: National Research Council Reviews...

386

National Energy Technology Laboratory Publishes Solid Oxide Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications News Release Release Date: July 23, 2013 National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell Studies SOFC Solid oxide fuel cells are among the...

387

Fuel Cell Technologies Office: FY 2008 Financial Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: FY 2008 Financial Awards to someone by E-mail Share Fuel Cell...

388

Fuel Cell Technologies Office: Bio-Derived Liquids to Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

on October 24, 2006 Review of Working Group Charter & DOE RD&D Targets for Hydrogen Production from Renewable Liquid Fuels, Arlene Anderson, DOE Fuel Cell Technologies...

389

Fuel Cell Technologies Office: Hydrogen Storage Materials Database...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage Materials Database Demonstration Webinar (Text Version) on Facebook Tweet about Fuel...

390

Economic and Environmental Analysis of Fuel Cell Powered Materials Handling Equipment  

Science Conference Proceedings (OSTI)

This technical update describes an analysis of the economic and environmental attributes of forklift fleets powered by battery and fuel cell power plants. The report first provides background on the fuel cell forklift technology. The fuel cell forklift is then compared to three other technology options: conventional battery-powered forklifts, fast-charge forklifts at 15 kW of charging power, and fast-charge forklifts at 20 kW of charging power. This study develops models of the infrastructure and equipme...

2010-12-31T23:59:59.000Z

391

Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive and MHE Automotive and MHE Fuel Cell System Cost Analysis (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Google Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Delicious Rank Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on AddThis.com...

392

Fuel Cell Technologies Office: Accomplishments and Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments and Progress Accomplishments and Progress The U.S. Department of Energy's (DOE's) efforts have greatly advanced the state of the art of hydrogen and fuel cell technologies-making significant progress toward overcoming many of the key challenges to widespread commercialization. DOE has also made major advances by demonstrating and validating the technologies under real-world conditions, supporting early markets through Recovery Act deployments, and leveraging domestic and international partnerships to advance the pace of commercialization. See the Fuel Cell Technologies Office's accomplishments fact sheet. Reducing the Cost and Improving the Durability and Performance of Fuel Cells Chart showing the cost of the automotive fuel cell system, which is projected to a high-volume manufacturing of 500,000 units per year. In 2002, the cost of the automotive fuel cell system (including balance of plant and stack) was $275/kW. The cost decreased to $108/kW in 2006, to $94/kW in 2007, to $73/kW in 2008, $61/kW in 2009, to $51/kW in 2010, and to $49/kW in 2011. The target cost for 2017 is $30/kW.

393

Pulsed Power Technology and Applications -- Scandinavia  

Science Conference Proceedings (OSTI)

Pulsed power is a new and promising technology with a large number of potential applications. In addition to existing and future pulsed power supply and technology in Scandinavia and Europe, this report also describes present and future applications.

1999-04-19T23:59:59.000Z

394

Assessment of DC Backup Power Technology Options for Nuclear Power Generation Stations  

Science Conference Proceedings (OSTI)

The March 2011 Fukushima nuclear power plant accident in Japan created a renewed industry interest in examining potential improvements for backup power options to support plant accident scenarios in both near-term and long-term implementation time periods. This report assesses technology options that can be considered in improving DC backup power. Options with near-term applicability were considered and reviewed. Certain energy storage systems and hydrogen power fuel cells were identified that could ...

2013-10-15T23:59:59.000Z

395

Fuel Cell Technologies Office: Safety, Codes and Standards Technical  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety, Codes and Safety, Codes and Standards Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Safety, Codes and Standards Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Safety, Codes and Standards Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Safety, Codes and Standards Technical Publications on Google Bookmark Fuel Cell Technologies Office: Safety, Codes and Standards Technical Publications on Delicious Rank Fuel Cell Technologies Office: Safety, Codes and Standards Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Safety, Codes and Standards Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen

396

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Light Duty Vehicle Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Facebook Tweet about Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Twitter Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Google Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Delicious Rank Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Digg Find More places to share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

397

Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Hydrogen Pipeline 2005 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

398

Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas and Natural Gas and Hydrogen Infrastructure Opportunities Workshop to someone by E-mail Share Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Facebook Tweet about Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Twitter Bookmark Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Google Bookmark Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Delicious Rank Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on Digg Find More places to share Fuel Cell Technologies Office: Natural Gas and Hydrogen Infrastructure Opportunities Workshop on AddThis.com...

399

Fuel Cell Technologies Office: National Hydrogen Learning Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

National Hydrogen National Hydrogen Learning Demonstration Status Webinar (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Google Bookmark Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Delicious Rank Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on

400

Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Refueling Hydrogen Refueling Protocols Webinar (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Refueling Protocols Webinar (Text Version) on AddThis.com... Publications Program Publications Technical Publications Educational Publications

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuel Cell Technologies Office: Hydrogen Safety (Text Alternative Version)  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety (Text Safety (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Safety (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Safety (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Safety (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Safety (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Safety (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Safety (Text Alternative Version) on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

402

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Onboard Storage Tank Onboard Storage Tank Workshop to someone by E-mail Share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Facebook Tweet about Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Twitter Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Google Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Delicious Rank Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Digg Find More places to share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

403

Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings to someone by E-mail Share Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Facebook Tweet about Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Twitter Bookmark Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Google Bookmark Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Delicious Rank Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Digg Find More places to share Fuel Cell Technologies Office:

404

Fuel Cell Technologies Office: Biological Hydrogen Production Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Hydrogen Biological Hydrogen Production Workshop to someone by E-mail Share Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Facebook Tweet about Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Twitter Bookmark Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Google Bookmark Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Delicious Rank Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Digg Find More places to share Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

405

Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Hydrogen Pipeline 2007 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

406

Fuel Cell Technologies Office: Non-Platinum Electrocatalysts Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Platinum Non-Platinum Electrocatalysts Workshop to someone by E-mail Share Fuel Cell Technologies Office: Non-Platinum Electrocatalysts Workshop on Facebook Tweet about Fuel Cell Technologies Office: Non-Platinum Electrocatalysts Workshop on Twitter Bookmark Fuel Cell Technologies Office: Non-Platinum Electrocatalysts Workshop on Google Bookmark Fuel Cell Technologies Office: Non-Platinum Electrocatalysts Workshop on Delicious Rank Fuel Cell Technologies Office: Non-Platinum Electrocatalysts Workshop on Digg Find More places to share Fuel Cell Technologies Office: Non-Platinum Electrocatalysts Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings

407

Fuel Cell Technologies Office: Hydrogen Cars (Text Alternative Version)  

NLE Websites -- All DOE Office Websites (Extended Search)

Cars (Text Cars (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Cars (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Cars (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Cars (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Cars (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Cars (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Cars (Text Alternative Version) on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

408

Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version)  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage (Text Storage (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

409

Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies | Open  

Open Energy Info (EERE)

Fuel Systems Technologies Worldwide Inc Quantum Technologies Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place Irvine, California Zip CA 92614 Sector Hydro, Hydrogen, Solar, Vehicles, Wind energy Product A California-based company with new energy activities in powertrains for hybrid vehicles, gas and hydrogen storage equipment manufacturing, and wind and solar energy. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Solid oxide fuel cell distributed power generation  

SciTech Connect

Fuel cells are electrochemical devices that oxidize fuel without combustion to convert directly the fuel`s chemical energy into electricity. The solid oxide fuel cell (SOFC) is distinguished from other fuel cell types by its all solid state structure and its high operating temperature (1,000 C). The Westinghouse tubular SOFC stack is process air cooled and has integrated thermally and hydraulically within its structure a natural gas reformer that requires no fuel combustion and no externally supplied water. In addition, since the SOFC stack delivers high temperature exhaust gas and can be operated at elevated pressure, it can supplant the combustor in a gas turbine generator set yielding a dry (no steam) combined cycle power system of unprecedented electrical generation efficiency (greater 70% ac/LHV). Most remarkably, analysis indicates that efficiencies of 60 percent can be achieved at power plant capacities as low as 250 kWe, and that the 70 percent efficiency level should be achievable at the two MW capacity level. This paper describes the individual SOFC, the stack, and the power generation system and its suitability for distributed generation.

Veyo, S.E.

1997-12-31T23:59:59.000Z

411

Fuel availability in nuclear power.  

E-Print Network (OSTI)

?? Nuclear power is in focus of attention due to several factors these days and the expression “nuclear renaissance” is getting well known. However, concerned… (more)

Söderlund, Karl

2009-01-01T23:59:59.000Z

412

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum gas (LPG, consisting predominantly of propane) or renewable fuels such as biogas from wastewater treatments plants. Fuel cells for auxiliary power units in trucks will...

413

Fuel Technologies: Goals, Strategies, and Top Accomplishments; Vehicle Technologies Program (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet describes the top accomplishments, goals, and strategies of DOE's Fuel Technologies sub program.

Not Available

2009-04-01T23:59:59.000Z

414

The Business Case for Fuel Cells 2012: America's Partner in Power  

NLE Websites -- All DOE Office Websites (Extended Search)

The Business Case for Fuel Cells 2012 The Business Case for Fuel Cells 2012 America's Partner in Power The Business Case for Fuel Cells 2012 Fuel Cells 2000 | Page i Authors and Acknowledgements This report was written and compiled by Sandra Curtin, Jennifer Gangi, and Ryan Skukowski of Fuel Cells 2000, an activity of Breakthrough Technologies Institute in Washington, D.C. Support was provided by the U.S. Department of Energy's Fuel Cell Technologies Program. About This Report This report profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for powering lift trucks and providing combined heat and power to their stores and

415

Fuel Cells Technology Transit | Open Energy Information  

Open Energy Info (EERE)

Technology Transit Technology Transit Jump to: navigation, search Name Fuel Cells Technology Transit Place Clearwater, Florida Zip 33767 Sector Hydro, Hydrogen Product Involved in the development and research of energy models on Hydrogen Energy Fuel Cell within the local and national arena. Coordinates 42.172132°, -98.189096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.172132,"lon":-98.189096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program  

E-Print Network (OSTI)

practices resulting in lifecycle saving of over 52 trillion Btus. Increased funding for technical assistance S, P&D Brookhaven S, FC Idaho National Lab P&D #12;54 | Fuel Cell Technologies Program Source: US

417

Technological implications of fusion power: requirements and status  

SciTech Connect

The major technological requirements for fusion power, as implied by current conceptual designs of fusion power plants, are identified and assessed relative to the goals of existing technology programs. The focus of the discussion is on the tokamak magnetic confinement concept; however, key technological requirements of mirror magnetic confinement systems and of inertial confinement concepts will also be addressed. The required technology is examined on the basis of three general areas of concern: (a) the power balance, that is, the unique power handling requirements associated with the production of electrical power by fusion; (b) reactor design, focusing primarily on the requirements imposed by a tritium-based fuel cycle, thermal hydraulic considerations, and magnet systems; and (c) materials considerations, including radiation damage effects, neutron-induced activation, and resource limitations.

Steiner, D.

1978-01-01T23:59:59.000Z

418

Vehicle Technologies Office: Fact #21: March 3, 1997 The Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 1997 The Fuel Savings Benefits of Increasing Fuel Economy to someone by E-mail Share Vehicle Technologies Office: Fact 21: March 3, 1997 The Fuel Savings Benefits of Increasing...

419

Vehicle Technologies Office: Fact #772: March 25, 2013 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2013 Fuel Economy by Speed: Slow Down to Save Fuel to someone by E-mail Share Vehicle Technologies Office: Fact 772: March 25, 2013 Fuel Economy by Speed: Slow Down to Save...

420

Fuel cell and advanced turbine power cycle  

SciTech Connect

Solar has a vested interest in integration of gas turbines and high temperature fuels (particularly solid oxide fuel cells[SOFC]); this would be a backup for achieving efficiencies on the order of 60% with low exhaust emissions. Preferred cycle is with the fuel cell as a topping system to the gas turbine; bottoming arrangements (fuel cells using the gas turbine exhaust as air supply) would likely be both larger and less efficient unless complex steam bottoming systems are added. The combined SOFC and gas turbine will have an advantage because it will have lower NOx emissions than any heat engine system. Market niche for initial product entry will be the dispersed or distributed power market in nonattainment areas. First entry will be of 1-2 MW units between the years 2000 and 2004. Development requirements are outlined for both the fuel cell and the gas turbine.

White, D.J.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vehicle Technologies Office: Fact #170: June 18, 2001 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2001 Fuel Economy Saves to someone by E-mail Share Vehicle Technologies Office: Fact 170: June 18, 2001 Fuel Economy Saves on Facebook Tweet about Vehicle Technologies...

422

Fuel Cell Technologies Office: FY 2003 Financial Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Share this resource Send a link to Fuel Cell Technologies Office: FY 2003 Financial Awards to someone by E-mail Share Fuel Cell Technologies Office: FY 2003 Financial Awards on...

423

Fuel Cell Technologies Office: Hydrogen Manufacturing R&D Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing R&D Workshop to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Manufacturing R&D Workshop on Facebook Tweet about Fuel Cell Technologies Office:...

424

Fuel Cell Technologies Office: DOE-DOD Shipboard APU Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-DOD Shipboard APU Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE-DOD Shipboard APU Workshop on Facebook Tweet about Fuel Cell Technologies Office:...

425

MEMS Fuel Cells – Low Temp – High Power Density  

The miniature fuel-cell technology uses thin-film fuel ... Reduced life cycle cost in comparison to ... for the Department of Energy's National Nuclear Security ...

426

Codes and Standards Outreach for Emerging Fuel Cell Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

technologies. Provide information on hydrogen and fuel cell * technologies codes and standards to code officials, project developers, and other interested parties. Present...

427

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1 Executive Summary The United States pioneered the development of hydrogen and fuel cell technologies, and we continue to lead the way as these technologies emerge from the...

428

1 MW Fuel Cell Project: Test and Evaluation of Five 200 kW Phosphoric Acid Fuel Cell Units Configured as a 1 MW Power Plant  

Science Conference Proceedings (OSTI)

Fuel cell technology can play a potentially significant role as a distributed generation resource at customer facilities. This report describes a demonstration of the new technology that is needed for utility management and control of multiple fuel cell power plants at a single location in an assured power application.

2002-07-10T23:59:59.000Z

429

Fuel Cell Technologies Office: Selected Past Financial Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis...

430

Fuel Cell Technologies Office: Strategic Directions for Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis...

431

Available Technologies: Nanoporous PEM Fuel Cell for Enhanced ...  

IB-2013-081. APPLICATIONS OF TECHNOLOGY: Fuel cells for aerospace, ground transportation, and consumer electronics; Artificial photosynthesis ; ADVANTAGES:

432

Hydrogen and Fuel Cell Technologies Available for Licensing ...  

... Energy Innovation Portal on Google; Bookmark Hydrogen and Fuel Cell Technologies Available for Licensing - Energy Innovation Portal on Delicious ...

433

Fuel Cell Technologies Office: Safety, Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Education Systems Analysis Contacts...

434

Fuel for thought: the hydrogen-powered automobile  

SciTech Connect

A new clean and nondepletable fuel must be found to power automobiles if they are to survive as an economically viable mode of transportation. One such fuel is hydrogen, which was first proposed for internal combustion in 1820. The disadvantages of a hydrogen economy stem from its low boiling points, its not being a primary energy source, and the cost of present conversion technology. Its merits include having the highest energy per unit mass of the chemical fuels, water as its only product, and suitability for a range of applications. New interest in hydrogen buses and passenger cars has prompted some experimentation, but economics will ultimately determine their future. Considerations of safety have already led to guidelines and codes. Production methods include catalytic destruction of hydrocarbon fuels, coal gasification, steam-reforming of natural gas, and splitting the water molecule by electrolysis, thermolysis, or photolysis. 60 references. (DCK)

El-Mallakh, R.S.

1981-04-01T23:59:59.000Z

435

Fuel Cell Technologies Office American Energy and Manufacturing Competitiveness Parternship: Fuel Cell Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

12/19/2013 eere.energy.gov 12/19/2013 eere.energy.gov Fuel Cell Technologies Office American Energy & Manufacturing Competitiveness Partnership http://www.aemcsummit.compete.org/ Fuel Cell Manufacturing Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Dr. Nancy Garland Technology Development Manager, Manufacturing R&D, Fuel Cell Technologies Office 2 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov The Future of Fuel Cell Manufacturing Panel Session * Federal program: DOE Fuel Cell Technologies Office * National trade association: Fuel Cell & Hydrogen Energy Association * State Coalition Example: Ohio Fuel Cell Coalition 3 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov * Clean Energy Patent Growth Index

436

Power-Flow Management - Technology Perspectives  

Science Conference Proceedings (OSTI)

The report provides a technical overview for power-flow management technologies with special emphasis on power electronic-based technologies. This includes both thyristor-based and converter-based technologies. The report thoroughly describes the fundamental relationships of alternating current (AC) power transmission at steady-state and dynamic conditions; the document also describes transmission problems and needs. This overview clearly demonstrates the role of power electronic-based Controllers and th...

2007-11-05T23:59:59.000Z

437

Fuel Cell Technologies Office: 2011 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Webinar Archives 1 Webinar Archives Increase your H2IQ Learn about Fuel Cell Technologies Office webinars and state and regional initiatives webinars held in 2011 through the descriptions and linked materials below. Also view webinar archives from other years. Webinars presented in 2011: Hydrogen Storage Materials Database Demonstration Hydrogen Production by PEM Electrolysis - Spotlight on Giner and Proton Science Magazine Article Highlight: Moving Towards Near Zero Platinum Fuel Cells I2CNER: An International Collaboration to Enable a Carbon-Neutral, Energy Economy Photosynthesis for Hydrogen and Fuels Production Hydrogen Storage Materials Database Demonstration December 13, 2011 The U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) has launched a hydrogen storage materials database to collect and disseminate materials data and accelerate advanced materials research and development. Marni Lenahan of BCS Incorporated demonstrated the functionality of the database including accessing and extracting data, submitting new material property data for inclusion, and performing organized searches.

438

NETL: News Release - Fuel Cell-Powered Ice Resurfacer Smoothes...  

NLE Websites -- All DOE Office Websites (Extended Search)

power-generation system. Fuel cells have the potential to provide America with greater energy security, extend our fossil fuel reserves, and reduce our dependence on imported...

439

Fuel Cell Power (FCPower) Model | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Power (FCPower) Model Fuel Cell Power (FCPower) Model Jump to: navigation, search Tool Summary Name: Fuel Cell Power (FCPower) Model Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen Topics: Finance Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.hydrogen.energy.gov/fc_power_analysis.html Cost: Free OpenEI Keyword(s): EERE tool Fuel Cell Power (FCPower) Model Screenshot References: DOE Fuel Cell Power Analysis[1] Logo: Fuel Cell Power (FCPower) Model The Fuel Cell Power (FCPower) Model is a financial tool for analyzing high-temperature, fuel cell-based tri-generation systems. "The Fuel Cell Power (FCPower) Model is a financial tool for analyzing

440

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The status of fuel cell technology  

DOE Green Energy (OSTI)

This brief status report provides an introduction to what fuel cells are, why they are important, what uses have been made of them to date, the goals and timetables of current programs, and who the players are in this vital technology. Copies of most of the slides presented and additional diagrams are appended to this paper. Further details can be obtained from the comprehensive texts cited in the bibliography. 11 refs., 44 figs.

O'Sullivan, J.B.

1991-02-20T23:59:59.000Z

442

High Specific Power, Direct Methanol Fuel Cell Stack  

NLE Websites -- All DOE Office Websites (Extended Search)

High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. Available for thumbnail of Feynman Center (505) 665-9090 Email High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold

443

Power Technologies Data Book 2003 Edition  

SciTech Connect

The 2003 edition of this report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts and comparisons, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, conversion factors, and selected congressional questions and answers.

Aabakken, J.

2004-06-01T23:59:59.000Z

444

Power Technologies Energy Data Book - Fourth Edition  

Science Conference Proceedings (OSTI)

This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

Aabakken, J.

2006-08-01T23:59:59.000Z

445

Power Technologies Energy Data Book - Third Edition  

SciTech Connect

This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

Aabakken, J.

2005-04-01T23:59:59.000Z

446

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a major achievement by successfully completing 8000 hours of operation at the Billings site. The Alpha sub-MW DF

Hossein Ghezel-Ayagh

2008-09-30T23:59:59.000Z

447

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

Hossein Ghezel-Ayagh

2003-05-23T23:59:59.000Z

448

Journal of Power Sources 140 (2005) 331339 Numerical study of a flat-tube high power density solid oxide fuel cell  

E-Print Network (OSTI)

· Research and development in MCFC, SOFC, PEM and Fuels #12;FuelCell Energy, the FuelCell Energy logo, Direct Electrolyte Anode Cathode Electrolyte FCE SOFC Systems Background SOFC MW Module FCE utilizes VPS (Versa Power Systems) fuel cell technology in FCEs SOFC stack modules and systems. FCE/VPS team is engaged

449

Fuel Cell/Turbine Ultra High Efficiency Power System  

DOE Green Energy (OSTI)

FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will be utilized in the design of a 40-MW high efficiency Vision 21 power plant. Additionally, these tests are providing the valuable insight for DFC/Turbine power plant potential for load following, increased reliability, and enhanced operability.

Hossein, Ghezel-Ayagh

2001-11-06T23:59:59.000Z

450

Fuel Cell Technologies Office: Fuel Cell Operations at Sub-Freezing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Operations at Sub-Freezing Temperatures Workshop to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Operations at Sub-Freezing Temperatures Workshop on...

451

Low Cost High-H2 Syngas Production for Power and Liquid Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost High-H2 Syngas Production for Power and Liquid Fuels Gas Technology Institute (GTI) Project Number: FE0011958 Project Description Proof-of-concept of a metal-polymeric...

452

Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles  

DOE Green Energy (OSTI)

The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1992-08-01T23:59:59.000Z

453

Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles  

DOE Green Energy (OSTI)

The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1992-08-01T23:59:59.000Z

454

Vehicle Technology and Alternative Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn more about exciting technologies and ongoing research in alternative and advanced vehicles-or vehicles that run on fuels other than traditional petroleum. Alternative Vehicles There are a variety of alternative vehicle fuels available. Learn more about: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Also learn about: Vehicle Battery Basics Vehicle Emissions Basics Alternative Fuels There are a number of alternative fuel and advanced technology vehicles. Learn more about the following types of vehicles: Biodiesel Electricity Ethanol Hydrogen Natural Gas

455

Fuel Cycle Science & Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Radiochemical Separation & Processing Recycle & Waste Management Uranium Enrichment Used Nuclear Fuel Storage, Transportation, and Disposal Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Fuel Cycle Science & Technology SHARE Fuel Cycle Science and Technology The ORNL expertise and experience across the entire nuclear fuel cycle is underpinned by extensive facilities and a comprehensive modeling and simulation capability ORNL supports the understanding, development, evaluation and deployment of

456

Alternative Fuels Data Center: Certified Technology Park Designation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Certified Technology Certified Technology Park Designation to someone by E-mail Share Alternative Fuels Data Center: Certified Technology Park Designation on Facebook Tweet about Alternative Fuels Data Center: Certified Technology Park Designation on Twitter Bookmark Alternative Fuels Data Center: Certified Technology Park Designation on Google Bookmark Alternative Fuels Data Center: Certified Technology Park Designation on Delicious Rank Alternative Fuels Data Center: Certified Technology Park Designation on Digg Find More places to share Alternative Fuels Data Center: Certified Technology Park Designation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Certified Technology Park Designation The Indiana Economic Development Corporation (IDEC) may designate an area

457

DIRECT FUEL CELL/TURBINE POWER PLANT  

SciTech Connect

The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

Hossein Ghezel-Ayagh

2003-05-27T23:59:59.000Z

458

Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Transit Buses: Today's Transit Buses: Today's Pioneers in Fuel Cell Transportation to someone by E-mail Share Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Facebook Tweet about Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Twitter Bookmark Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Google Bookmark Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Delicious Rank Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Digg Find More places to share Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on AddThis.com... Transit Buses: Today's Pioneers in Fuel Cell Transportation

459

Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

3: July 26, 2010 3: July 26, 2010 Alternative Fuel Vehicles to someone by E-mail Share Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel Vehicles on Facebook Tweet about Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel Vehicles on Twitter Bookmark Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel Vehicles on Google Bookmark Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel Vehicles on Delicious Rank Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel Vehicles on Digg Find More places to share Vehicle Technologies Office: Fact #633: July 26, 2010 Alternative Fuel Vehicles on AddThis.com... Fact #633: July 26, 2010 Alternative Fuel Vehicles The Energy Information Administration publishes estimates of the number of

460

Program on Technology Innovation: Impact of Wireless Power Transfer Technology  

Science Conference Proceedings (OSTI)

This report presents an overview and analysis of wireless power transmission, also called wireless power transfer (WPT), a means of delivering power from a source to an end-use device without wires or contacts. The recent explosive growth in wireless data applications and the surge in the use of portable electronic devices has dramatically increased the market potential for wireless energy-transfer technologies. Industries are investigating the latest wireless power technologies to improve versatility, r...

2009-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "fuels power technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

FTT:Power : A global model of the power sector with induced technological change and natural resource depletion  

E-Print Network (OSTI)

. The decarbonisation of the global power system depends first and foremost on the rate at which highly emitting technologies based on fossil fuels can be substituted for cleaner ones. While fossil fueled electricity generation technologies are mature and well... determine the 90% confidence level, and the blue curve corresponds to the most probable set of values. Uncertainty in the determination of natural resource avail- ability is notable in the case of fossil fuel reserves and re- sources. Rogner (1997) paints a...

Mercure, Jean-Francois

2011-08-25T23:59:59.000Z

462

Environmental data energy technology characterizations: synthetic fuels  

SciTech Connect

Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides documentation on synthetic fuels (coal-derived and oil shale). The transformation of the energy in coal and oil shale into a more useful form is described in this publication in terms of major activity areas in the synthetic fuel cycles, that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are coal liquefaction, coal gasification, in-situ gasification, and oil shales. These activities represent both well-documented and advanced activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The advanced activity areas examined are those like coal liquefaction and in-situ retorting of oil shale. For these areas, data from pilot or demonstration plants were used where available; otherwise, engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary volume. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

1980-04-01T23:59:59.000Z

463

Fuel Cell Technologies Office: FY 2009 Financial Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: FY 2009 Financial Awards to someone by E-mail Share Fuel Cell Technologies Office: FY 2009 Financial Awards on Facebook Tweet about Fuel Cell Technologies Office: FY 2009 Financial Awards on Twitter Bookmark Fuel Cell Technologies Office: FY 2009 Financial Awards on Google Bookmark Fuel Cell Technologies Office: FY 2009 Financial Awards on Delicious Rank Fuel Cell Technologies Office: FY 2009 Financial Awards on Digg Find More places to share Fuel Cell Technologies Office: FY 2009 Financial Awards on AddThis.com... Current Opportunities Past Opportunities Recovery Act Selected Awards Requests for Information Related Opportunities Quick Links Hydrogen Production

464

Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting to someone by E-mail Share Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Facebook Tweet about Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Twitter Bookmark Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Google Bookmark Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Delicious Rank Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Digg Find More places to share Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on AddThis.com... Publications Program Publications Technical Publications Educational Publications

465

Energy Department Launches National Fuel Cell Technology Evaluation Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches National Fuel Cell Technology Evaluation Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies September 12, 2013 - 12:00pm Addthis Following Energy Secretary Ernest Moniz's visit to the National Renewable Energy Laboratory (NREL), the Energy Department today announced the unveiling of a one-of-its-kind national secure data center dedicated to the independent analysis of advanced hydrogen and fuel cell technologies at the Energy Department's Energy Systems Integration Facility (ESIF) located at NREL in Golden, Colorado. The National Fuel Cell Technology Evaluation Center (NFCTEC) allows industry, academia, and government organizations to submit and review data

466

Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2005 High

467

Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2004 High

468

Fuel Cell Technologies Office: FY 2004 Financial Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2004 Financial FY 2004 Financial Awards to someone by E-mail Share Fuel Cell Technologies Office: FY 2004 Financial Awards on Facebook Tweet about Fuel Cell Technologies Office: FY 2004 Financial Awards on Twitter Bookmark Fuel Cell Technologies Office: FY 2004 Financial Awards on Google Bookmark Fuel Cell Technologies Office: FY 2004 Financial Awards on Delicious Rank Fuel Cell Technologies Office: FY 2004 Financial Awards on Digg Find More places to share Fuel Cell Technologies Office: FY 2004 Financial Awards on AddThis.com... Current Opportunities Past Opportunities Recovery Act Selected Awards Requests for Information Related Opportunities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education

469

Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2010 High

470

Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2007 High

471