Sample records for fuels life cycle

  1. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model AgencyCompany Organization: National Energy Technology...

  2. LIFE Materials: Fuel Cycle and Repository Volume 11

    SciTech Connect (OSTI)

    Shaw, H; Blink, J A

    2008-12-12T23:59:59.000Z

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of the repository design. (4) A simple, but arguably conservative, estimate for the dose from a repository containing 63,000 MT of spent LIFE fuel would have similar performance to the currently planned Yucca Mountain Repository. This indicates that a properly designed 'LIFE Repository' would almost certainly meet the proposed Nuclear Regulatory Commission standards for dose to individuals, even though the waste in such a repository would have produced 20-30 times more generated electricity than the reference case for Yucca Mountain. The societal risk/benefit ratio for a LIFE repository would therefore be significantly better than for currently planned repositories for LWR fuel.

  3. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01T23:59:59.000Z

    Unfortunately, life cycle assessment (LCA) is as much art asFuel Standard use Life Cycle Assessment (LCA) to estimatethat rely on life cycle assessment (LCA) to quantify the

  4. LIFE vs. LWR: End of the Fuel Cycle

    SciTech Connect (OSTI)

    Farmer, J C; Blink, J A; Shaw, H F

    2008-10-02T23:59:59.000Z

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources [International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of LIFE are expected to result in a more straightforward licensing process and are also expected to improve the public perception of risk from nuclear power generation, transportation of nuclear materials, and nuclear waste disposal. Waste disposal is an ongoing issue for LWRs. The conventional (once-through) LWR fuel cycle treats unburned fuel as waste, and results in the current fleet of LWRs producing about twice as much waste in their 60 years of operation as is legally permitted to be disposed of in Yucca Mountain. Advanced LWR fuel cycles would recycle the unused fuel, such that each GWe-yr of electricity generation would produce only a small waste volume compared to the conventional fuel cycle. However, the advanced LWR fuel cycle requires chemical reprocessing plants for the fuel, multiple handling of radioactive materials, and an extensive transportation network for the fuel and waste. In contrast, the LIFE engine requires only one fueling for the plant lifetime, has no chemical reprocessing, and has a single shipment of a small amount of waste per GWe-yr of electricity generation. Public perception of the nuclear option will be improved by the reduction, for LIFE engines, of the number of shipments of radioactive material per GWe-yr and the need to build multiple repositories. In addition, LIFE fuel requires neither enrichment nor reprocessing, eliminating the two most significant pathways to proliferation from commercial nuclear fuel to weapons programs.

  5. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications by Richard J Friedman Fall 2010 #12;Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications Copyright 2010 by Richard J. Plevin #12;1 Abstract Life Cycle Regulation of Transportation Fuels

  6. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23T23:59:59.000Z

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

  7. Life-Cycle Analysis of Transportation Fuels and Vehicle Technologies

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    -cycle modeling for light-duty vehicles GREET CCLUB CCLUB: Carbon Calculator for Land Use Change from Biofuels, and black carbon (in a new release) CO2e of the three (with their global warming potentials) Criteria

  8. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    All but two Life-Cycle Assessment (LCA) studies make nofuels. The term “life-cycle assessment” (LCA) is used toInput-Output Life Cycle Assessment (EIO-LCA) US 2002 (428)

  9. Conceptual design study of small long-life PWR based on thorium cycle fuel

    SciTech Connect (OSTI)

    Subkhi, M. Nurul [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung, Indonesia) and Physics Dept., Faculty of Science and Technology, State Islamic University of Sunan Gunung (Indonesia); Su'ud, Zaki; Waris, Abdul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung) (Indonesia)

    2014-09-30T23:59:59.000Z

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  10. A Mathematical Model for Predicting the Life of PEM Fuel Cell Membranes Subjected to Hydration Cycling

    E-Print Network [OSTI]

    Burlatsky, S F; O'Neill, J; Atrazhev, V V; Varyukhin, A N; Dmitriev, D V; Erikhman, N S

    2013-01-01T23:59:59.000Z

    Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used...

  11. Life cycle assessment of greenhouse gas emissions and non-CO? combustion effects from alternative jet fuels

    E-Print Network [OSTI]

    Stratton, Russell William

    2010-01-01T23:59:59.000Z

    The long-term viability and success of a transportation fuel depends on both economic and environmental sustainability. This thesis focuses specifically on assessing the life cycle greenhouse gas (GHG) emissions and non-CO ...

  12. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31T23:59:59.000Z

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  13. Environmental Life Cycle Implications of Fuel Oxygenate Production from California Biomass

    SciTech Connect (OSTI)

    Kadam, K. L. (National Renewable Energy Laboratory); Camobreco, V. J.; Glazebrook, B. E. (Ecobalance Inc.); Forrest, L. H.; Jacobson, W. A. (TSS Consultants); Simeroth, D. C. (California Air Resources Board); Blackburn, W. J. (California Energy Commission); Nehoda, K. C. (California Department of Forestry and Fire Protection)

    1999-05-20T23:59:59.000Z

    Historically, more than 90% of the excess agricultural residue produced in California (approximately 10 million dry metric tons per year) has been disposed through open-field burning. Concerns about air quality have prompted federal, state, and local air quality agencies to tighten regulations related to this burning and to look at disposal alternatives. One use of this biomass is as an oxygenated fuel. This report focuses on quantifying and comparing the comprehensive environmental flows over the life cycles of two disposal scenarios: (1) burning the biomass, plus producing and using MTBE; and (2) converting and using ETBE.

  14. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    Water Reuse, Part I. Oil & Gas Journal 1992, 90 (38), 86,Journal of Life Cycle Assessment 1997, 2 (4), 217-222. Profile of the Oil and Gas

  15. A Mathematical Model for Predicting the Life of PEM Fuel Cell Membranes Subjected to Hydration Cycling

    E-Print Network [OSTI]

    S. F. Burlatsky; M. Gummalla; J. O'Neill; V. V. Atrazhev; A. N. Varyukhin; D. V. Dmitriev; N. S. Erikhman

    2013-06-19T23:59:59.000Z

    Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.

  16. Quantifying Variability in Life Cycle Greenhouse Gas Inventories of Alternative Middle Distillate Transportation Fuels

    E-Print Network [OSTI]

    Stratton, Russell William

    The presence of variability in life cycle analysis (LCA) is inherent due to both inexact LCA procedures and variation of numerical inputs. Variability in LCA needs to be clearly distinguished from uncertainty. This paper ...

  17. Life-Cycle Costs of Alternative Fuels: Is Biodiesel Cost Competitve for Urban Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienert namedLifeProducts

  18. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  19. Photovoltaics Life Cycle Analysis

    E-Print Network [OSTI]

    (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center Brookhaven National Laboratory www.clca.columbia.edu www.pv.bnl.gov #12;2 The Life Cycle of PVThe Life Cycle

  20. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    U.S. Electricity Generation Refining Fuel Transportation,Region Electricity Generation Refining Fuel Transportation,Region Electricity Generation Refining Fuel Transportation,

  1. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    to increase non-petroleum fuel production significantly.given that petroleum fuel production makes up just a fewPlains Aquifer. Petroleum fuel production pathways result in

  2. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    results for Miscanthus-to-Ethanol fuel production pathway.results for Miscanthus-to-Ethanol fuel production pathway.withdrawals in cellulosic ethanol fuel production pathways,

  3. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01T23:59:59.000Z

    4.4.9. Fuel ethanol production . . . . . .2008 motor gasoline and fuel ethanol use for transportation123. Pimentel, D. (1991). Ethanol fuels - energy security,

  4. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01T23:59:59.000Z

    Municipal Sewage Sludge to Produce Synthetic Fuels, reportMunicipal Sewage Sludge to Produce Synthetic Fuels, report

  5. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    Cycle Water Consumption for WECC NERC Region ElectricityCycle Water Withdrawals for WECC NERC Region ElectricityTRE TS&D USDA USGS VC W WECC WSI International Organization

  6. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01T23:59:59.000Z

    comes from char and fuel gas combustion. Over 89% of the GHGparts (kg CO 2 e) Fuel gas combustion (kg CO 2 e) Productoutput (MJ) Fuel gas combustion (MJ) Char combustion (MJ)

  7. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01T23:59:59.000Z

    Conversion of Natural Gas to Transportation Fuels via theTransportation Total energy Fossil fuel Coal Natural gastransportation and distribution Total energy Fossil energy Coal Natural gas

  8. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuelDepartmentPotawatomi

  9. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01T23:59:59.000Z

    iii 3.4. Co-products of biofuels . . . . . .CYCLE GHG EMISSION ESTIMATES FOR BIOFUELS 3.1. Purpose and10.3.1. Low-GWI biofuels required to meet a 12-state

  10. GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL ENVIRONMENTALnaturalGENII2Department ofGREET

  11. GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergyGE-Prolec CCEATVDepartment

  12. Life cycle assessment

    SciTech Connect (OSTI)

    Curran, M.A. [Environmental Protection Agency, Cincinnati, OH (United States)

    1994-12-31T23:59:59.000Z

    Life-Cycle Assessment (LCA) is a technical, data-based and holistic approach to define and subsequently reduce the environmental burdens associated with a product, process, or activity by identifying and quantifying energy and material usage and waste discharges, assessing the impact of those wastes on the environment, and evaluating and implementing opportunities to effect environmental improvements. The assessment includes the entire life-cycle of the product, process or activity encompassing extraction and processing of raw materials, manufacturing, transportation and distribution, use/reuse, recycling and final disposal. LCA is a useful tool for evaluating the environmental consequences of a product, process, or activity, however, current applications of LCA have not been performed in consistent or easily understood ways. This inconsistency has caused increased criticism of LCA. The EPA recognized the need to develop an LCA framework which could be used to provide consistent use across the board. Also, additional research is needed to enhance the understanding about the steps in the performance of an LCA and its appropriate usage. This paper will present the research activities of the EPA leading toward the development of an acceptable method for conducting LCA`s. This research has resulted in the development of two guidance manuals. The first manual is intended to be a practical guide to conducting and interpreting the life-cycle inventory. A nine-step approach to performing a comprehensive inventory is presented along with the general issues to be addressed. The second manual addresses life-cycle design.

  13. IFR fuel cycle

    SciTech Connect (OSTI)

    Battles, J.E.; Miller, W.E. (Argonne National Lab., IL (United States)); Lineberry, M.J.; Phipps, R.D. (Argonne National Lab., Idaho Falls, ID (United States))

    1992-01-01T23:59:59.000Z

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation.

  14. IFR fuel cycle

    SciTech Connect (OSTI)

    Battles, J.E.; Miller, W.E. [Argonne National Lab., IL (United States); Lineberry, M.J.; Phipps, R.D. [Argonne National Lab., Idaho Falls, ID (United States)

    1992-04-01T23:59:59.000Z

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation.

  15. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01T23:59:59.000Z

    methane reformer FTR: Fischer-Tropsch reactor LCA: life3–8, 17 Mark E. Dry, The Fischer–Tropsch process: 1950–2000,From the internet, Fischer–Tropsch process Wikipedia site:

  16. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ConocoPhillips and Nexant Corporatin 2004deerabbott.pdf More Documents & Publications Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects...

  17. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    Photovoltaic Produced Water Renewable Fuels Association ReliabilityFirst Corporation Reverse Osmosis Steam Assisted Gravity Drainage Soybean Meal Synthetic Crude Oil SERC Reliability

  18. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEF Advisors LLC Jump to:

  19. Life Cycle Inventory of a CMOS Chip

    E-Print Network [OSTI]

    Boyd, Sarah; Dornfeld, David; Krishnan, Nikhil

    2006-01-01T23:59:59.000Z

    are shown. Keywords- Life Cycle Assessment (LCA); Life Cycleindustry, and Life Cycle Assessment (LCA) is emerging as a

  20. Transportation Center Seminar... Life-Cycle Analysis of Transportation Fuels and Vehicle

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    to evaluation of hydrogen production pathways, biofuel production pathways, and advanced vehicle technologies more than 22,000 registered users worldwide. LCA results of vehicle/fuel systems are determined

  1. Life-cycle assessment of Greenhouse Gas emissions from alternative jet fuels

    E-Print Network [OSTI]

    Wong, Hsin Min

    2008-01-01T23:59:59.000Z

    The key motivation for this work was the potential impact of alternative jet fuel use on emissions that contribute to global climate change. This work focused on one specific aspect in examining the feasibility of using ...

  2. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01T23:59:59.000Z

    of Municipal Sewage Sludge to Produce Synthetic Fuels,5.4 million dry metric tons of sludge annually or 47pounds of sewage sludge (dry weight basis) for every

  3. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01T23:59:59.000Z

    to the American Clean Energy and Security Act of 2009 (H.R.to the American Clean Energy And Security Act of 2009 (H.R.National security, energy security, and a low carbon fuel

  4. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    Impact Analysis for a Shale Oil Complex at Parachute Creek,of Paraho Crude Shale Oil Into Military Specification Fuels.CO, 1974; An Assessment of Oil Shale Technologies. Office of

  5. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA FewA LIMITED LIABILITYA

  6. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  7. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11T23:59:59.000Z

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  8. The Energy Return on Energy Investment (EROI) of Photovoltaics: Methodology and Comparisons with Fossil Fuel Life Cycles

    E-Print Network [OSTI]

    , 08003 Barcelona, Spain 2 Center for Life Cycle Analysis, Columbia University, New York, NY 10027, USA 3 of that energy (or its equivalent from some other source) is required to extract, grow, etc., a new unit1 The Energy Return on Energy Investment (EROI) of Photovoltaics: Methodology and Comparisons

  9. [Page Intentionally Left Blank] Life Cycle Greenhouse Gas Emissions from

    E-Print Network [OSTI]

    Reuter, Martin

    ..........................................................................11 4.2 Conventional Jet Fuel from Crude Oil2 June #12;[Page Intentionally Left Blank] #12;Life Cycle Greenhouse Gas Emissions from Alternative .......................................5 3.1 Life cycle Greenhouse Gas Emissions

  10. Recycling and Life Cycle Issues

    SciTech Connect (OSTI)

    Das, Sujit [ORNL

    2010-01-01T23:59:59.000Z

    This chapter addresses recycling and life cycle considerations related to the growing use of lightweight materials in vehicles. The chapter first addresses the benefit of a life cycle perspective in materials choice, and the role that recycling plays in reducing energy inputs and environmental impacts in a vehicle s life cycle. Some limitations of life cycle analysis and results of several vehicle- and fleet-level assessments are drawn from published studies. With emphasis on lightweight materials such as aluminum, magnesium, and polymer composites, the status of the existing recycling infrastructure and technological challenges being faced by the industry also are discussed.

  11. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    SciTech Connect (OSTI)

    NONE

    1995-01-31T23:59:59.000Z

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  12. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-10-14T23:59:59.000Z

    (The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

  13. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect (OSTI)

    Monado, Fiber, E-mail: fiber.monado@gmail.com [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia and Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Ariani, Menik [Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung (Indonesia); Aziz, Ferhat [National Nuclear Energy Agency of Indonesia (BATAN) (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, O-okoyama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-02-12T23:59:59.000Z

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  14. Process system optimization for life cycle improvement

    SciTech Connect (OSTI)

    Marano, J.J.; Rogers, S.

    1999-12-31T23:59:59.000Z

    Life Cycle Assessment (LCA) is an analytic tool for quantifying the environmental impacts of all processes used in converting raw materials into a final product. The LCA consists of three parts. Life cycle inventory quantifies all material and energy use, and environmental emissions for the entire product life cycle, while impact assessment evaluates actual and potential environmental and human health consequences of the activities identified in the inventory phase. Most importantly, life cycle improvement aims at reducing the risk of these consequences occurring to make the product more benign. when the LCA is performed in conjunction with a technoeconomic analysis, the total economic and environmental benefits and shortcomings of a product or process can be quantified. A methodology has been developed incorporating process performance, economics, and life cycle inventory data to synthesize process systems, which meet life cycle impact-improvement targets at least cost. The method relies on a systematic description of the product life cycle and utilizes successive Linear Programming to formulate and optimize the non-linear, constrained problem which results. The practicality and power of this approach have been demonstrated by examining options for the reduction of emissions of the greenhouse gas CO{sub 2} from petroleum-based fuels.

  15. Life Cycle Inventory of a CMOS Chip

    E-Print Network [OSTI]

    Boyd, Sarah; Dornfeld, David; Krishnan, Nikhil

    2006-01-01T23:59:59.000Z

    Reichl, H. “Life cycle inventory analysis and identificationAllen, D.T. ; “Life cycle inventory development for waferLife Cycle Inventory of a CMOS Chip Sarah Boyd and David

  16. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    yield. A hybrid life cycle assessment (LCA) model is used;more accurate life-cycle assessment (LCA) of electronicthe purposes of life-cycle assessment (LCA). While it may be

  17. Fuel cycle code, "FUELMOVE III"

    E-Print Network [OSTI]

    Sovka, Jerry Alois

    1963-01-01T23:59:59.000Z

    Further modifications to the fuel cycle code FUELMOVE are described which were made in an attempt to obtain results for reflected reactors operated under batch, outin, and bidirectional fueling schemes. Numerical methods ...

  18. Life Cycle Assessment of microalgal basedbiofuel

    E-Print Network [OSTI]

    Boyer, Edmond

    Antipolis Cedex, France Abstract Fossil fuel depletion and attempts of global warming mitigation have motivated the development of biofuels. Several feedstock and transformation pathways into biofuel have been, several Life Cycle Assessments have been realised to evaluate the energetic benefit and Global Warming

  19. Nuclear fuel cycle information workshop

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US.

  20. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h y d rSiCNEAC Fuel

  1. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    Environmental Impacts . . . . . . . . . . . . . . . . . . . . . .Abatement Environmental impactLife-cycle Environmental Impacts . . . . . . . LCA of

  2. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    SemiconductorThe Semiconductor Industry: Size, Growth andSemiconductor Life-cycle Environmental Impacts . . . . . . .

  3. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h y d rSiC

  4. Sustainability Features of Nuclear Fuel Cycle Options

    E-Print Network [OSTI]

    Passerini, Stefano

    The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC) is the current fuel cycle implemented in the United States; in which an ...

  5. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D. [Institute for the Environment, University of North Carolina, Chapel Hill (United States); Yim, M.S. [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  6. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01T23:59:59.000Z

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  7. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  8. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  9. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  10. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01T23:59:59.000Z

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  11. Life Cycle Assessment of Reclaimed Asphalt Pavement

    E-Print Network [OSTI]

    Minnesota, University of

    Life Cycle Assessment of Reclaimed Asphalt Pavement to Improve Asphalt Pavement Sustainability By Pavement (RAP) Courtesy of http://myconstructionphotos.smugmug.com/ RAP #12;Transport Back to the Plant-melt old binder on the RAP #12;Life Cycle Assessment (LCA) · #12;Asphalt Pavement Life Cycle Road

  12. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mary Lou Dunzik-Gougar; Christopher A. Juchau

    2010-08-01T23:59:59.000Z

    A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

  13. Geographically Differentiated Life-cycle Impact Assessment of Human Health

    E-Print Network [OSTI]

    Humbert, Sebastien

    2009-01-01T23:59:59.000Z

    indicators in life-cycle assessment (LCA). Human Ecologicalindicators in life-cycle assessment (LCA). Human EcologicalI explore how life-cycle assessment (LCA) results can

  14. Importance of life cycle assessment

    SciTech Connect (OSTI)

    Bridges, J.S.

    1994-06-16T23:59:59.000Z

    The paper presents Life Cycle Assessment (LCA) as a tool to assist the waste professional with integrated waste management. LCA can be the connection between the waste professional and designer/producer to permit the waste professional to encourage the design of products so material recovery is most efficient and markets can be better predicted. The waste professional can better monitor the involvement of the consumer in waste management by using LCA and looking upstream at how the consumer actually reacts to products and packaging. LCA can also help the waste professional better understand the waste stream.

  15. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01T23:59:59.000Z

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  16. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01T23:59:59.000Z

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  17. Rethinking the light water reactor fuel cycle

    E-Print Network [OSTI]

    Shwageraus, Evgeni, 1973-

    2004-01-01T23:59:59.000Z

    The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

  18. Fuel cycles for the 80's

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base.(DMC)

  19. Development Plan for the Fuel Cycle Simulator

    SciTech Connect (OSTI)

    Brent Dixon

    2011-09-01T23:59:59.000Z

    The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

  20. Answering Key Fuel Cycle Questions

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

    2003-10-01T23:59:59.000Z

    The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we plan for? · Should we separate uranium? · If we separate uranium, should we recycle it, store it or dispose of it? · Is it practical to plan to fabricate and handle “hot” fuel? · Which transuranic elements (TRU) should be separated and transmuted? · Of those TRU separated, which should be transmuted together? · Should we separate and/or transmute Cs and Sr isotopes that dominate near-term repository heating? · Should we separate and/or transmute very long-lived Tc and I isotopes? · Which separation technology? · What mix of transmutation technologies? · What fuel technology best supports the above decisions?

  1. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01T23:59:59.000Z

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  2. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    SciTech Connect (OSTI)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal,; Monado, Fiber; Sekimoto, Hiroshi [Department of Physics Bandung Institute of Technology Jl. Ganesha 10, Bandung 40134, Physics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan (Indonesia); Department of Physics Bandung Institute of Technology Jl. Ganesha 10, Bandung 40134 (Indonesia); Department of Physics Bandung Institute of Technology Jl. Ganesha 10, Bandung 40134, Physics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan (Indonesia); Reserach of Laboratory for Nuclear Reactors, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152 (Japan)

    2012-06-06T23:59:59.000Z

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  3. Advanced Fuel Cycle Economic Sensitivity Analysis

    SciTech Connect (OSTI)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01T23:59:59.000Z

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  4. Fuel Cycle System Analysis Handbook

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01T23:59:59.000Z

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty diagrams, which show at a glance combined uncertainty information, section 9.2 has a new set of simpler graphs that show the impact on fuel cycle costs for once through, 1-tier, and 2-tier scenarios as a function of key input parameters.

  5. TRACKING THE LIFE CYCLE OF CONSTRUCTION STEEL: THE DEVELOPMENT OF A RESOURCE LOOP

    E-Print Network [OSTI]

    Liu, Lanfang

    2009-12-17T23:59:59.000Z

    product have in its life span and how each material flows along with a product’s life cycle. At each stage, there are always materials flowing in or flow out of products’ life cycles. Materials could be chemicals, raw materials, fossil fuels... production Loss in fuel conversion at power plants Transmission and distribution losses Fuel extraction, processing and delivery Energy consumption delivering fuel for use in power plants, transport equipment and industrial plants Process heat Fuel...

  6. C-26 and the nuclear fuel cycle

    SciTech Connect (OSTI)

    Trahey, N.M.; Platt, A.M.

    1983-03-01T23:59:59.000Z

    The activities of Committee C-26 on the nuclear fuel cycle are discussed. To date, Committee C-26 has issued some 35 standards with 12 more in various stages of development at the working group and sub-committee levels. C-26 has undertaken standards responsibility for all fuel and related materials represented in the nuclear fuels cycle.

  7. Fuel cycle cost study with HEU and LEU fuels

    SciTech Connect (OSTI)

    Matos, J.E.; Freese, K.E.

    1984-01-01T23:59:59.000Z

    Fuel cycle costs are compared for a range of /sup 235/U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors.

  8. Life cycle evolution and systematics of Campanulariid hydrozoans

    E-Print Network [OSTI]

    Govindarajan, Annette Frese, 1970-

    2004-01-01T23:59:59.000Z

    The purpose of this thesis is to study campanulariid life cycle evolution and systematics. The Campanulariidae is a hydrozoan family with many life cycle variations, and provide an excellent model system to study life cycle ...

  9. Life-cycle assessment of NAND flash memory

    E-Print Network [OSTI]

    Boyd, Sarah; Horvath, A; Dornfeld, David

    2010-01-01T23:59:59.000Z

    this possibility, a life-cycle assessment (LCA) of NAND ?ashstudy presents a life-cycle assessment (LCA) of ?ash memoryInput- Output Life Cycle Assessment (EIO-LCA), US 1997

  10. Evalua&ng Forest Biomaterials with Environmental Life Cycle Assessment

    E-Print Network [OSTI]

    : Environmental Life cycle assessment (LCA) to understand impacts of forest productsEvalua&ng Forest Biomaterials with Environmental Life Cycle Assessment Hosted in the industrial sphere, with addiKonal effects 6 #12;Life Cycle Assessment Method

  11. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    global warming intensity of electricity (at the locations of productionproduction as a result of the high global warming intensity of electricityelectricity mix at the production site on total life-cycle global warming

  12. Life Cycle Cost Analysis for Sustainable Buildings

    Broader source: Energy.gov [DOE]

    To help facility managers make sound decisions, FEMP provides guidance and resources on applying life cycle cost analysis (LCCA) to evaluate the cost-effectiveness of energy and water efficiency investments.

  13. Techno-Economics & Life Cycle Assessment (Presentation)

    SciTech Connect (OSTI)

    Dutta, A.; Davis, R.

    2011-12-01T23:59:59.000Z

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  14. Insurance and Taxation over the Life Cycle

    E-Print Network [OSTI]

    Werning, Ivan

    We consider a dynamic Mirrlees economy in a life-cycle context and study the optimal insurance arrangement. Individual productivity evolves as a Markov process and is private information. We use a first-order approach in ...

  15. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03T23:59:59.000Z

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  16. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13T23:59:59.000Z

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  17. Fuel-cycle cost comparisons with oxide and silicide fuels

    SciTech Connect (OSTI)

    Matos, J.E.; Freese, K.E.

    1982-01-01T23:59:59.000Z

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed.

  18. World nuclear fuel cycle requirements 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-10T23:59:59.000Z

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  19. NREL: Energy Analysis - Life Cycle Assessment Harmonization Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results and Findings Life Cycle Greenhouse Gas Emissions from Electricity Generation (Factsheet) Cover of the Life Cycle Greenhouse Gas Emissions from Electricity...

  20. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated...

    Energy Savers [EERE]

    Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used...

  1. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM Materials Program Overview...

  2. Federal Register Notice for Life Cycle Greenhouse Gas Perspective...

    Energy Savers [EERE]

    Federal Register Notice for Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Federal Register Notice for Life Cycle Greenhouse Gas...

  3. Physics challenges for advanced fuel cycle assessment

    SciTech Connect (OSTI)

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01T23:59:59.000Z

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  4. Uncertainty Analyses of Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12T23:59:59.000Z

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  5. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    N. R. Soelberg

    2010-08-01T23:59:59.000Z

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  6. Life cycle assessment of a rock crusher

    SciTech Connect (OSTI)

    Landfield, A.H.; Karra, V.

    1999-07-01T23:59:59.000Z

    Nordberg, Inc., a capital equipment manufacturer, performed a Life Cycle Assessment study on its rock crusher to aid in making decisions on product design and energy improvements. Life Cycle Assessment (LCA) is a relatively new cutting edge environmental tool recently standardized by ISO that provides quantitative environmental and energy data on products or processes. This paper commences with a brief introduction to LCA and presents the system boundaries, modeling and assumptions for the rock crusher study. System boundaries include all life major cycle stages except manufacturing and assembly of the crusher. Results of the LCA show that over 99% of most of the flows into and out of the system may be attributed to the use phase of the rock crusher. Within the use phase itself, over 95% of each environmental inflow and outflow (with some exceptions) are attributed to electricity consumption, and not the replacement of spares/wears or lubricating oil over the lifetime of the crusher. Results tables and charts present selected environmental flows, including CO{sub 2} NOx, SOx, particulate matter, and energy consumption, for each of the rock crusher life cycle stages and the use phase. This paper aims to demonstrate the benefits of adopting a rigorous scientific approach to assess energy and environmental impacts over the life cycle of capital equipment. Nordberg has used these results to enhance its engineering efforts toward developing an even more energy efficient machine to further progress its vision of providing economic solutions to its customers by reducing the crusher operating (mainly electricity) costs.

  7. Nuclear Weapons Life Cycle | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecoveryNuclearLife Cycle | National

  8. Life Cycle Assessment of Coal-fired Power Production

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE89 002669Life Cycle

  9. Building Life-Cycle Cost (BLCC) Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBostonBridgerBuckeye Power,energyGHGsLife-Cycle

  10. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  11. Full-fuel-cycle modeling for alternative transportation fuels

    SciTech Connect (OSTI)

    Bell, S.R.; Gupta, M. [Univ. of Alabama, Tuscaloosa, AL (United States); Greening, L.A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1995-12-01T23:59:59.000Z

    Utilization of alternative fuels in the transportation sector has been identified as a potential method for mitigation of petroleum-based energy dependence and pollutant emissions from mobile sources. Traditionally, vehicle tailpipe emissions have served as sole data when evaluating environmental impact. However, considerable differences in extraction and processing requirements for alternative fuels makes evident the need to consider the complete fuel production and use cycle for each fuel scenario. The work presented here provides a case study applied to the southeastern region of the US for conventional gasoline, reformulated gasoline, natural gas, and methanol vehicle fueling. Results of the study demonstrate the significance of the nonvehicle processes, such as fuel refining, in terms of energy expenditure and emissions production. Unique to this work is the application of the MOBILE5 mobile emissions model in the full-fuel-cycle analysis. Estimates of direct and indirect greenhouse gas production are also presented and discussed using the full-cycle-analysis method.

  12. Sandia Energy - Nuclear Fuel Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows JerryNuclear Energy

  13. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01T23:59:59.000Z

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  14. Life-Cycle Analysis of Geothermal Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartmentLife With

  15. Life Cycle Cost Housing Need and Sustainability

    E-Print Network [OSTI]

    Life Cycle Cost Housing Need and Sustainability Abstract: Jordan is actually facing a rapid urban became difficult to sustain especially concerning the slum areas and the environmental pollution due which could contribute to increase the productivity and sustainability taking into consideration

  16. Life cycle cost report of VHLW cask

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This document, the Life Cycle Cost Report (LCCR) for the VHLW Cask, presents the life cycle costs for acquiring, using, and disposing of the VHLW casks. The VHLW cask consists of a ductile iron cask body, called the shielding insert, which is used for storage and transportation, and ultimately for disposal of Defense High Level Waste which has been vitrified and placed into VHLW canisters. Each ductile iron VHLW shielding insert holds one VHLW canister. For transportation, the shielding insert is placed into a containment overpack. The VHLW cask as configured for transportation is a legal weight truck cask which will be licensed by NRC. The purpose of this LCCR is to present the development of the life cycle costs for using the VHLW cask to transport VHLW canisters from the generating sites to a disposal site. Life cycle costs include the cost of acquiring, operating, maintaining, and ultimately dispositioning the VHLW cask and its associated hardware. This report summarizes costs associated with transportation of the VHLW casks. Costs are developed on the basis of expected usage, anticipated source and destination locations, and expected quantities of VHLW which must be transported. DOE overhead costs, such as the costs associated with source and destination facility handling of the VHLW, are not included. Also not included are costs exclusive to storage or disposal of the VHLW waste.

  17. Farinon microwave end of life cycle

    SciTech Connect (OSTI)

    Poe, R.C.

    1996-06-24T23:59:59.000Z

    This engineering report evaluates alternatives for the replacement of the Farinon microwave radio system. The system is beyond its expected life cycle and has decreasing maintainability. Principal applications supported by the Farinon system are two electrical utility monitor and control systems, the Integrated Transfer Trip System (ITTS), and the Supervisory Control and Data Acquisition (SCADA) system.

  18. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    A Mathematical Analysis of Full Fuel Cycle Energy Use. ”of Policy for Adopting Full-Fuel-Cycle Analyses Into Energyof Policy for Adopting Full-Fuel-Cycle Analyses Into Energy

  19. Nuclear fuel cycles for mid-century development

    E-Print Network [OSTI]

    Parent, Etienne, 1977-

    2003-01-01T23:59:59.000Z

    A comparative analysis of nuclear fuel cycles was carried out. Fuel cycles reviewed include: once-through fuel cycles in LWRs, PHWRs, HTGRs, and fast gas cooled breed and burn reactors; single-pass recycle schemes: plutonium ...

  20. Influence of Nuclear Fuel Cycles on Uncertainty of Long Term...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and implementation of future advanced fuel cycles including those that recycle fuel materials, use advanced fuels different from current fuels, or partition and...

  1. alternate fuel cycles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 2 Impact of alternative nuclear fuel cycle...

  2. Transportation implications of a closed fuel cycle.

    SciTech Connect (OSTI)

    Bullard, Tim (University of Nevada - Reno); Bays, Samuel (Idaho National Laboratory); Dennis, Matthew L.; Weiner, Ruth F.; Sorenson, Ken Bryce; Dixon, Brent (Idaho National Laboratory); Greiner, Miles (University of Nevada - Reno)

    2010-10-01T23:59:59.000Z

    Transportation for each step of a closed fuel cycle is analyzed in consideration of the availability of appropriate transportation infrastructure. The United States has both experience and certified casks for transportation that may be required by this cycle, except for the transport of fresh and used MOX fuel and fresh and used Advanced Burner Reactor (ABR) fuel. Packaging that had been used for other fuel with somewhat similar characteristics may be appropriate for these fuels, but would be inefficient. Therefore, the required neutron and gamma shielding, heat dissipation, and criticality were calculated for MOX and ABR fresh and spent fuel. Criticality would not be an issue, but the packaging design would need to balance neutron shielding and regulatory heat dissipation requirements.

  3. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Energy Savers [EERE]

    nuclear fuel cycle technology development, meet the need for advanced nuclear energy production and help to close the nuclear fuel cycle in the United States. "Today's awards...

  4. NREL: Energy Analysis: Life Cycle Assessment Harmonization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomasYiminGeospatialLife

  5. Nuclear Fuel Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from the ConsumerNuclearCycle Nuclear

  6. 2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV

    E-Print Network [OSTI]

    Tolbert, Leon M.

    2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV John W. McKeever, Sujit or voltage level, life cycle costs were calculated based on the components required to execute simulated drive schedules. These life cycle costs include the initial manufacturing cost of components, fuel cost

  7. -Successful Integration of Life Cycle Assessment in to Civil Engineering Course -CIVL 498C Life Cycle Analysis of UBC Buildings

    E-Print Network [OSTI]

    to teaching the science-based environmental impact assessment method of Life Cycle Analysis (LCA). Through, through being capable of; · Completing a Life Cycle Assessment (LCA) study in accordance with ISO 14040- Successful Integration of Life Cycle Assessment in to Civil Engineering Course - CIVL 498C Life

  8. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect (OSTI)

    Ottinger, K.; Maldonado, G.I. [University of Tennessee, 311 Pasqua Engineering Building, Knoxville, TN 37996-2300 (United States)

    2013-07-01T23:59:59.000Z

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  9. IFR fuel cycle--pyroprocess development

    SciTech Connect (OSTI)

    Laidler, J.J.; Miller, W.E.; Johnson, T.R.; Ackerman, J.P.; Battles, J.E.

    1992-11-01T23:59:59.000Z

    The Integral Fast Reactor (IFR) fuel cycle is based on the use of a metallic fuel alloy, with nominal composition U-2OPu-lOZr. In its present state of development, this fuel system offers excellent high-burnup capabilities. Test fuel has been carried to burnups in excess of 20 atom % in EBR-II irradiations, and to peak burnups over 15 atom % in FFTF. The metallic fuel possesses physical characteristics, in particular very high thermal conductivity, that facilitate a high degree of passive inherent safety in the IFR design. The fuel has been shown to provide very large margins to failure in overpower transient events. Rapid overpower transient tests carried out in the TREAT reactor have shown the capability to withstand up to 400% overpower conditions before failing. An operational transient test conducted in EBR-II at a power ramp rate of 0.1% per second reached its termination point of 130% of normal power without any fuel failures. The IFR metallic fuel also exhibits superior compatibility with the liquid sodium coolant. Equally as important as the performance advantages offered by the use of metallic fuel is the fact that this fuel system permits the use of an innovative reprocessing method, known as ``pyroprocessing,`` featuring fused-salt electrorefining of the spent fuel. Development of the IFR pyroprocess has been underway at the Argonne National Laboratory for over five years, and great progress has been made toward establishing a commercially-viable process. Pyroprocessing offers a simple, compact means for closure of the fuel cycle, with anticipated significant savings in fuel cycle costs.

  10. IFR fuel cycle--pyroprocess development

    SciTech Connect (OSTI)

    Laidler, J.J.; Miller, W.E.; Johnson, T.R.; Ackerman, J.P.; Battles, J.E.

    1992-01-01T23:59:59.000Z

    The Integral Fast Reactor (IFR) fuel cycle is based on the use of a metallic fuel alloy, with nominal composition U-2OPu-lOZr. In its present state of development, this fuel system offers excellent high-burnup capabilities. Test fuel has been carried to burnups in excess of 20 atom % in EBR-II irradiations, and to peak burnups over 15 atom % in FFTF. The metallic fuel possesses physical characteristics, in particular very high thermal conductivity, that facilitate a high degree of passive inherent safety in the IFR design. The fuel has been shown to provide very large margins to failure in overpower transient events. Rapid overpower transient tests carried out in the TREAT reactor have shown the capability to withstand up to 400% overpower conditions before failing. An operational transient test conducted in EBR-II at a power ramp rate of 0.1% per second reached its termination point of 130% of normal power without any fuel failures. The IFR metallic fuel also exhibits superior compatibility with the liquid sodium coolant. Equally as important as the performance advantages offered by the use of metallic fuel is the fact that this fuel system permits the use of an innovative reprocessing method, known as pyroprocessing,'' featuring fused-salt electrorefining of the spent fuel. Development of the IFR pyroprocess has been underway at the Argonne National Laboratory for over five years, and great progress has been made toward establishing a commercially-viable process. Pyroprocessing offers a simple, compact means for closure of the fuel cycle, with anticipated significant savings in fuel cycle costs.

  11. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Analysis of Energy, Environmental and Life...

  12. Dynamic Analysis of Fuel Cycle Transitioning

    SciTech Connect (OSTI)

    Brent Dixon; Steve Piet; David Shropshire; Gretchen Matthern

    2009-09-01T23:59:59.000Z

    This paper examines the time-dependent dynamics of transitioning from a once-through fuel cycle to a closed fuel cycle. The once-through system involves only Light Water Reactors (LWRs) operating on uranium oxide fuel UOX), while the closed cycle includes both LWRs and fast spectrum reactors (FRs) in either a single-tier system or two-tier fuel system. The single-tier system includes full transuranic recycle in FRs while the two-tier system adds one pass of mixed oxide uranium-plutonium (MOX U-Pu) fuel in the LWR. While the analysis primarily focuses on burner fast reactors, transuranic conversion ratios up to 1.0 are assessed and many of the findings apply to any fuel cycle transitioning from a thermal once-through system to a synergistic thermal-fast recycle system. These findings include uranium requirements for a range of nuclear electricity growth rates, the importance of back end fuel cycle facility timing and magnitude, the impact of employing a range of fast reactor conversion ratios, system sensitivity to used fuel cooling time prior to recycle, impacts on a range of waste management indicators, and projected electricity cost ranges for once-through, single-tier and two-tier systems. The study confirmed that significant waste management benefits can be realized as soon as recycling is initiated, but natural uranium savings are minimal in this century. The use of MOX in LWRs decouples the development of recycle facilities from fast reactor fielding, but also significantly delays and limits fast reactor deployment. In all cases, fast reactor deployment was significantly below than predicted by static equilibrium analyses.

  13. International nuclear fuel cycle fact book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1988-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  14. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I W; Mitchell, S J

    1990-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  15. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  16. U.S. Life Cycle Inventory Database Roadmap (Brochure)

    SciTech Connect (OSTI)

    Deru, M.

    2009-08-01T23:59:59.000Z

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  17. Geographically Differentiated Life-cycle Impact Assessment of Human Health

    E-Print Network [OSTI]

    Humbert, Sebastien

    2009-01-01T23:59:59.000Z

    Life-cycle assessment of coal fly ash disposal: Influence ofto the case of coal fly ash disposal. The influence ofLife-cycle assessment of coal fly ash disposal: Influence of

  18. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to inform its decisions regarding the life cycle greenhouse gas (GHG) emissions of U.S. LNG exports for use in electric power generation. The LCA GHG Report compares life cycle...

  19. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Environmental Management (EM)

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A...

  20. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity

    E-Print Network [OSTI]

    1 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity of Photovoltaic Electricity #12;IEA-PVPS-TASK 12 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME Methodology

  1. An ideal sealed source life-cycle

    SciTech Connect (OSTI)

    Tompkins, Joseph Andrew [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    In the last 40 years, barriers to compliant and timely disposition of radioactive sealed sources have become apparent. The story starts with the explosive growth of nuclear gauging technologies in the 1960s. Dozens of companies in the US manufactured sources and many more created nuclear solutions to industrial gauging problems. Today they do not yet know how many Cat 1, 2, or 3 sources there are in the US. There are, at minimum, tens of thousands of sources, perhaps hundreds of thousands of sources. Affordable transportation solutions to consolidate all of these sources and disposition pathways for these sources do not exist. The root problem seems to be a lack of necessary regulatory framework that has allowed all of these problems to accumulate with no national plan for solving the problem. In the 1960s, Pu-238 displaced Pu-239 for most neutron and alpha source applications. In the 1970s, the availability of inexpensive Am-241 resulted in a proliferation of low energy gamma sources used in nuclear gauging, well logging, pacemakers, and X-ray fluorescence applications for example. In the 1980s, rapid expansion of worldwide petroleum exploration resulted in the expansion of Am-241 sources into international locations. Improvements of technology and regulation resulted in a change in isotopic distribution as Am-241 made Pu-239 and Pu-238 obsolete. Many early nuclear gauge technologies have been made obsolete as they were replaced by non-nuclear technoogies. With uncertainties in source end of life disposition and increased requirements for sealed source security, nuclear gauging technology is the last choice for modern process engineering gauging solutions. Over the same period, much was learned about licensing LLW disposition facilities as evident by the closure of early disposition facilities like Maxey Flats. The current difficulties in sealed source disposition start with adoption of the NLLW policy act of 1985, which created the state LLW compact system they we have today. This regulation created a new regulatory framework seen as promising at the time. However, now they recognize that, despite the good intentions, the NIJWP/85 has not solved any source disposition problems. The answer to these sealed source disposition problems is to adopt a philosophy to correct these regulatory issues, determine an interim solution, execute that solution until there is a minimal backlog of sources to deal with, and then let the mechanisms they have created solve this problem into the foreseeable future. The primary philosophical tenet of the ideal sealed source life cycle follows. You do not allow the creation (or importation) of any source whose use cannot be justified, which cannot be affordably shipped, or that does not have a well-delinated and affordable disposition pathway. The path forward dictates that we fix the problem by embracing the Ideal Source Life cycle. In figure 1, we can see some of the elements of the ideal source life cycle. The life cycle is broken down into four portions, manufacture, use, consolidation, and disposition. These four arbitrary elements allow them to focus on the ideal life cycle phases that every source should go through between manufacture and final disposition. As we examine the various phases of the sealed source life cycle, they pick specific examples and explore the adoption of the ideal life cycle model.

  2. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2008-01-01T23:59:59.000Z

    A Life-Cycle Model of an Automobile, Environmental Science &Cycle Assessment of Automobile/Fuel Options, EnvironmentalCycle Energy Analysis for Automobiles, Society of Automotive

  3. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  4. Emerging approaches, challenges and opportunities in life cycle assessment

    E-Print Network [OSTI]

    Napp, Nils

    of goods--have global environmental impacts. Life Cycle Assessment (LCA) aims to track these impacts of Life Cycle Assessment (LCA), a method to quantitatively assess the environmental impacts of goodsREVIEW Emerging approaches, challenges and opportunities in life cycle assessment Stefanie Hellweg1

  5. Environmental assessment of electricity scenarios with Life Cycle Assessment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    been assessed with Life Cycle Assessment (LCA) studies [1], [2], [3] and [4]. However environmentalEnvironmental assessment of electricity scenarios with Life Cycle Assessment Touria Larbi1 impacts assessment of scenarios is very rarely evaluated through a life cycle perspective partly because

  6. Fuel-cycle assessment of selected bioethanol production.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31T23:59:59.000Z

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel, farming consumes most of the fossil fuel in the life cycle of corn stover-based ethanol.

  7. Design study of long-life PWR using thorium cycle

    SciTech Connect (OSTI)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul [Physics.Dept., Bandung Institute of Technology.Ganesha 10, Bandung (Indonesia)

    2012-06-06T23:59:59.000Z

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/k and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.

  8. Life-Cycle Cost Reduction for High Speed Turbomachinery Utilizing Aerothermal - Mechanical Conditioning Monitoring Techniques

    E-Print Network [OSTI]

    Boyce, M. P.; Meher-Homji, C.; Bowman, J. C.

    1982-01-01T23:59:59.000Z

    The Life Cycle Costs (LCC) for high performance, centrifugal and axial flow turbomachinery such as gas turbines, compressors and pumps is very strongly influenced by fuel (energy) consumption and by maintenance costs. Additionally, the penalty costs...

  9. Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production

    E-Print Network [OSTI]

    Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

  10. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    Dornfeld, Chair Life cycle assessment (LCA) is a powerful1 Introduction Life cycle assessment (LCA) aids consumers inDefinition Life cycle assessment (LCA) is a holistic method

  11. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    E-Print Network [OSTI]

    Hellweg, Stefanie

    2010-01-01T23:59:59.000Z

    currently done in Life Cycle Assessment (LCA), may result inexposure models; Life Cycle Assessment; LCA; intake fractionneglected in Life Cycle Assessment (LCA). Such an omission

  12. An Indigenous Application for Estimating Carbon footprint of academia library systems based on life cycle assessment

    E-Print Network [OSTI]

    Garg, Saurabh; David Dornfeld

    2008-01-01T23:59:59.000Z

    a thorough Life Cycle Assessment (LCA) of all the componentsWarming Potential (GWP), Life Cycle Assessment (LCA), Carbonbe calculated using a Life Cycle Assessment (LCA) method, or

  13. A Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing

    E-Print Network [OSTI]

    Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Dornfeld, David

    2008-01-01T23:59:59.000Z

    existing process life cycle assessment (LCA) databases andfew years, life cycle assessment (LCA) has been increasinglyInput-Output Life Cycle Assessment (EIO-LCA). http://

  14. Embedded Temporal Difference in Life Cycle Assessment: Case Study on VW Golf A4 Car

    E-Print Network [OSTI]

    Yuan, Chris; Simon, Rachel; Natalie Mady; Dornfeld, David

    2009-01-01T23:59:59.000Z

    may alter Life Cycle Assessment (LCA) results that wereLife Cycle Impact Assessment,” International Journal of LCAsystem for life cycle assessment. The LCA temporal space

  15. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect (OSTI)

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01T23:59:59.000Z

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  16. Application of life cycle assessment methodology at Ontario Hydro

    SciTech Connect (OSTI)

    Reuber, B.; Khan, A. [Ontario Hydro, Ontario (Canada)

    1996-12-31T23:59:59.000Z

    Ontario Hydro is an electrical utility located in Ontario, Canada. In 1995, Ontario Hydro adopted Sustainable Energy Development Policy and Principles that include the governing principle: {open_quotes}Ontario Hydro will integrate environmental and social factors into its planning, decision-making, and business practices.{close_quotes} Life cycle assessment was identified as a useful tool for evaluating environmental impacts of products and processes in support of decision-making. Ontario Hydro has developed a methodology for life cycle assessment (LCA) that is consistent with generally accepted practices, practical, and suitable for application in Ontario Hydro Business Units. The methodology is based on that developed by the Society of Environmental Toxicology and Chemistry (SETAC) but follows a pragmatic and somewhat simplified approach. In scoping an LCA, the breadth and depth of analysis are compatible with and sufficient to address the stated goal of the study. The depth of analysis is tied to (i) the dollar value of the commodity, process or activity being assessed, (ii) the degree of freedom available to the assessor to make meaningful choices among options, and (iii) the importance of the environmental or technological issues leading to the evaluation. A pilot study was completed to apply the methodology to an LCA of the light vehicle fleet (cars, vans and light pick-up trucks) at Ontario Hydro. The objective of the LCA was to compare the life cycle impacts of alternative vehicle fuel cycles: gasoline, diesel, natural gas, propane, and alcohol; with particular focus on life cycle emissions, efficiency and cost. The study concluded that for large vehicles (1/2 ton and 3/4 ton) that travel more than 35000 km/year, natural gas and propane fuelling offer both cost reduction and emissions reduction when compared to gasoline vehicles.

  17. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect (OSTI)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01T23:59:59.000Z

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  18. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by...

  19. Overview of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Leuze, R.E.

    1981-01-01T23:59:59.000Z

    The use of nuclear reactors to provide electrical energy has shown considerable growth since the first nuclear plant started commercial operation in the mid 1950s. Although the main purpose of this paper is to review the fuel cycle capabilities in the United States, the introduction is a brief review of the types of nuclear reactors in use and the world-wide nuclear capacity.

  20. World nuclear fuel cycle requirements 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-26T23:59:59.000Z

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

  1. Current Comparison of Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Steven J. Piet; B. W. Dixon; A. Goldmann; R. N. Hill; J. J. Jacobson; G. E. Matthern; J. D. Smith; A. M. Yacout

    2006-03-01T23:59:59.000Z

    The nuclear fuel cycle includes mining, enrichment, nuclear power plants, recycling (if done), and residual waste disposition. The U.S. Advanced Fuel Cycle Initiative (AFCI) has four program objectives to guide research on how best to glue these pieces together, as follows: waste management, proliferation resistance, energy recovery, and systematic management/economics/safety. We have developed a comprehensive set of metrics to evaluate fuel cycle options against the four program objectives. The current list of metrics is long-term heat, long-term dose, radiotoxicity and weapons usable material. This paper describes the current metrics and initial results from comparisons made using these metrics. The data presented were developed using a combination of “static” calculations and a system dynamic model, DYMOND. In many cases, we examine the same issue both dynamically and statically to determine the robustness of the observations. All analyses are for the U.S. reactor fleet. This work aims to clarify many of the issues being discussed within the AFCI program, including Inert Matrix Fuel (IMF) versus Mixed Oxide (MOX) fuel, single-pass versus multi-pass recycling, thermal versus fast reactors, and the value of separating cesium and strontium. The results from a series of dynamic simulations evaluating these options are included in this report. The model interface includes a few “control knobs” for flying or piloting the fuel cycle system into the future. The results from the simulations show that the future is dark (uncertain) and that the system is sluggish with slow time response times to changes (i.e., what types of reactors are built, what types of fuels are used, and the capacity of separation and fabrication plants). Piloting responsibilities are distributed among utilities, government, and regulators, compounding the challenge of making the entire system work and respond to changing circumstances. We identify four approaches that would increase our chances of a sustainable fuel cycle system: (1) have a recycle strategy that could be implemented before the 2030-2050 approximate period when current reactors retire so that replacement reactors fit into the strategy, (2) establish an option such as multi-pass blended-core IMF as a downward Pu control knob and accumulate waste management benefits early, (3) establish fast reactors with flexible conversion ratio as a future control knob that slowly becomes available if/when fast reactors are added to the fleet, and (4) expand exploration of heterogeneous assemblies and cores, which appear to have advantages such as increased agility. Initial results suggest multi-pass full-core MOX appears to be a less effective way than multi-pass blended core IMF to manage the fuel cycle system because it requires higher TRU throughput while accruing waste management benefits at a slower rate. Single-pass recycle approaches for LWRs do not meet AFCI program objectives and could be considered a “dead end.” We did not study the Very High Temperature Reactor (VHTR). Fast reactors appear to be effective options but a significant number of fast reactors must be deployed before the benefit of such strategies can be observed.

  2. Concepts associated with a unified life cycle analysis

    SciTech Connect (OSTI)

    Whelan, Gene; Peffers, Melissa S.; Tolle, Duane A.; Brebbia, C. A.; Almorza Gomar, D.; Klapperich, H.

    2002-01-01T23:59:59.000Z

    There is a risk associated with most things in the world, and all things have a life cycle unto themselves, even brownfields. Many components can be described by a''cycle of life.'' For example, five such components are life-form, chemical, process, activity, and idea, although many more may exist. Brownfields may touch upon several of these life cycles. Each life cycle can be represented as independent software; therefore, a software technology structure is being formulated to allow for the seamless linkage of software products, representing various life-cycle aspects. Because classes of these life cycles tend to be independent of each other, the current research programs and efforts do not have to be revamped; therefore, this unified life-cycle paradigm builds upon current technology and is backward compatible while embracing future technology. Only when two of these life cycles coincide and one impacts the other is there connectivity and a transfer of information at the interface. The current framework approaches (e.g., FRAMES, 3MRA, etc.) have a design that is amenable to capturing (1) many of these underlying philosophical concepts to assure backward compatibility of diverse independent assessment frameworks and (2) linkage communication to help transfer the needed information at the points of intersection. The key effort will be to identify (1) linkage points (i.e., portals) between life cycles, (2) the type and form of data passing between life cycles, and (3) conditions when life cycles interact and communicate. This paper discusses design aspects associated with a unified life-cycle analysis, which can support not only brownfields but also other types of assessments.

  3. Life cycle analysis of energy systems: Methods and experience

    SciTech Connect (OSTI)

    Morris, S.C.

    1992-08-01T23:59:59.000Z

    Fuel-cycle analysis if not the same as life-cycle analysis, although the focus on defining a comprehensive system for analysis leads toward the same path. This approach was the basis of the Brookhaven Reference Energy System. It provided a framework for summing total effects over an explicitly defined fuel cycle. This concept was computerized and coupled with an extensive data base in ESNS -- the Energy Systems Network Simulator. As an example, ESNS was the analytical basis for a comparison of health and environmental effects of several coal conversion technologies. With advances in computer systems and methods, however, ESNS has not been maintained at Brookhaven. The RES approach was one of the bases of the OECD COMPASS Project and the UNEP comparative assessment of environmental impacts of energy sources. An RES model alone has limitations in analyzing complex energy systems, e.g., it is difficult to handle feedback in the network. The most recent version of a series of optimization models is MARKAL, a dynamic linear programming model now used to assess strategies to reduce greenhouse gas emissions from the energy system. MARKAL creates an optimal set of reference energy systems over multiple time periods, automatically incorporating dynamic feedback and allowing fuel switching and end-use conservation to meet useful energy demands.

  4. Life cycle analysis of energy systems: Methods and experience

    SciTech Connect (OSTI)

    Morris, S.C.

    1992-01-01T23:59:59.000Z

    Fuel-cycle analysis if not the same as life-cycle analysis, although the focus on defining a comprehensive system for analysis leads toward the same path. This approach was the basis of the Brookhaven Reference Energy System. It provided a framework for summing total effects over an explicitly defined fuel cycle. This concept was computerized and coupled with an extensive data base in ESNS -- the Energy Systems Network Simulator. As an example, ESNS was the analytical basis for a comparison of health and environmental effects of several coal conversion technologies. With advances in computer systems and methods, however, ESNS has not been maintained at Brookhaven. The RES approach was one of the bases of the OECD COMPASS Project and the UNEP comparative assessment of environmental impacts of energy sources. An RES model alone has limitations in analyzing complex energy systems, e.g., it is difficult to handle feedback in the network. The most recent version of a series of optimization models is MARKAL, a dynamic linear programming model now used to assess strategies to reduce greenhouse gas emissions from the energy system. MARKAL creates an optimal set of reference energy systems over multiple time periods, automatically incorporating dynamic feedback and allowing fuel switching and end-use conservation to meet useful energy demands.

  5. Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs 2012...

  6. ads fuel cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recycle schemes: plutonium ... Parent, Etienne, 1977- 2003-01-01 8 IAEA-TECDOC-1450 Thorium fuel cycle --Potential Physics Websites Summary: IAEA-TECDOC-1450 Thorium fuel cycle...

  7. advanced fuel cycle potential: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 IAEA-TECDOC-1450 Thorium fuel cycle --Potential Physics Websites Summary: IAEA-TECDOC-1450 Thorium fuel cycle --...

  8. International nuclear fuel cycle fact book. Revision 6

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01T23:59:59.000Z

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  9. Estimation and Analysis of Life Cycle Costs of Baseline Enhanced...

    Open Energy Info (EERE)

    Estimation and Analysis of Life Cycle Costs of Baseline Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  10. asexual life cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an easyEnvironmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU-...

  11. arabidopsis life cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an easyEnvironmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU-...

  12. automotive life cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an easyEnvironmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU-...

  13. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via WindElectrolysis: Milestone Completion...

  14. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Water Use in the Development and Operation of Geothermal Power Plants Water...

  15. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Open Energy Info (EERE)

    Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source...

  16. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Principal Investigator: Y.-X. Tao Florida International...

  17. On-Going Comparison of Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Steven J. Piet; Ralph G. Bennett; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mark Roth; J. D. Smith; Robert Hill; James Laidler; Kemal Pasamehmetoglu

    2004-10-01T23:59:59.000Z

    The Advanced Fuel Cycle Initiative (AFCI) program is addressing key issues associated with critical national needs. This paper compares the major options with these major “outcome” objectives - waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety as well as “process” objectives associated with readiness to proceed and adaptability and robustness in the face of uncertainties. Working together, separation, transmutation, and fuel technologies provide complete energy systems that can improve waste management compared to the current “once-through/no separation” approach. Future work will further increase confidence in potential solutions, optimize solutions for the mixtures of objectives, and develop attractive development and deployment paths for selected options. This will allow the nation to address nearer-term issues such as avoiding the need for additional geological repositories while making nuclear energy a more sustainable energy option for the long-term. While the Generation IV Initiative is exploring multiple reactor options for future nuclear energy for both electricity generation and additional applications, the AFCI is assessing fuel cycles options for either a continuation or expansion of nuclear energy in the United States. This report compares strategies and technology options for managing the associated spent fuel. There are four major potential strategies, as follows: · The current U.S. strategy is once through: standard nuclear power plants, standard fuel burnup, direct geological disposal of spent fuel. Variants include higher burnup fuels in water-cooled power plants, once-through gas-cooled power plants, and separation (without recycling) of spent fuel to reduce the number and cost of geological waste packages. · The second strategy is thermal recycle, recycling some fuel components in thermal reactors. This strategy extends the useful life of the geologic repository, producing energy from the fissile transuranics in spent fuel while reducing plutonium. · The third strategy is thermal+fast recycle. The difference from the second strategy is that more components of spent fuel can be recycled to reduce both fissile and non-fissile transuranics, but at the cost of developing and deploying at least one fast reactor or accelerator driven system. A mix of thermal and fast reactors would implement this strategy. · The fourth strategy is pure fast recycle; fuel would not be recycled in thermal reactors, which would be phased out in favor of deploying fast spectrum power reactors.

  18. ASSESSING A RECLAIMED CONCRETE UP-CYCLING SCHEME THROUGH LIFE-CYCLE ANALYSIS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ASSESSING A RECLAIMED CONCRETE UP-CYCLING SCHEME THROUGH LIFE-CYCLE ANALYSIS Sylvain Guignot1 Concrete, aggregate, electro-fragmentation, recycling, life-cycle analysis Abstract The present study evaluates the environmental impacts of a recycling scheme for gravels from building concretes wastes

  19. Comprehensive Fuel Cycle - Community Perspective - 13093

    SciTech Connect (OSTI)

    McLeod, Richard V. [Savannah River Community Reuse Organization, P.O. Box 696, Aiken, SC 29802 (United States)] [Savannah River Community Reuse Organization, P.O. Box 696, Aiken, SC 29802 (United States); Frazier, Timothy A. [Dickstein Shapiro LLP, 1825 Eye Street NW, Washington, DC, 20006-5403 (United States)] [Dickstein Shapiro LLP, 1825 Eye Street NW, Washington, DC, 20006-5403 (United States)

    2013-07-01T23:59:59.000Z

    Should a five-county region surrounding the Department of Energy's Savannah River Site ('SRS') use its assets to help provide solutions to closing the nation's nuclear fuel cycle? That question has been the focus of a local ad hoc multi-disciplinary community task force (Tier I) that has been at work in recent months outlining issues and identifying unanswered questions to determine if assuming a leadership role in closing the nuclear fuel cycle is in the community's interest. If so, what are the terms and conditions under which we the community would agree to participate? Our starting point was the President's Blue Ribbon Commission on America's Nuclear Future ('Commission') which made a total of eight (8) recommendations in its final report. There are several recommendations that are directly relevant to the Tier I group and potential efforts of the Region. These are the 'consent-based approach', the creation of an independent nuclear waste management entity funded from the existing nuclear waste fee; the 'prompt efforts to develop one or more consolidated storage facilities', and 'continued U.S. innovation in nuclear energy technology and for workforce development'. (authors)

  20. Uncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal

    E-Print Network [OSTI]

    Jaramillo, Paulina

    and transport, to compare its environmental impact with other fuels. Until recent years, LCA studies environmental impacts between two competing fuels/products are small. This study builds upon an existingUncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal Aranya Venkatesh

  1. Assessment of transition fuel cycle performance with and without a modified-open fuel cycle

    SciTech Connect (OSTI)

    Feng, B.; Kim, T. K.; Taiwo, T. A. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2012-07-01T23:59:59.000Z

    The impacts of a modified-open fuel cycle (MOC) option as a transition step from the current once-through cycle (OTC) to a full-recycle fuel cycle (FRC) were assessed using the nuclear systems analysis code DANESS. The MOC of interest for this study was mono-recycling of plutonium in light water reactors (LWR-MOX). Two fuel cycle scenarios were evaluated with and without the MOC option: a 2-stage scenario with a direct path from the current fleet to the final FRC, and a 3-stage scenario with the MOC option as a transition step. The FRC reactor (fast reactor) was assumed to deploy in 2050 for both scenarios, and the MOC reactor in the 3-stage scenario was assumed to deploy in 2025. The last LWRs (using either UOX or MOX fuels) come online in 2050 and are decommissioned by 2110. Thus, the FRC is achieved after 2110. The reprocessing facilities were assumed to be available 2 years prior to the deployment of the MOC and FRC reactors with maximum reprocessing capacities of 2000 tHM/yr and 500 tHM/t for LWR-UOX and LWR-MOX used nuclear fuels (UNFs), respectively. Under a 1% nuclear energy demand growth assumption, both scenarios were able to sustain a full transition to the FRC without delay. For the 3-stage scenario, the share of LWR-MOX reactors reaches a peak of 15% of installed capacity, which resulted in 10% lower cumulative uranium consumption and SWU requirements compared to the 2-stage scenario during the transition period. The peak UNF storage requirement decreases by 50% in the 3-stage scenario, largely due to the earlier deployment of the reprocessing plants to support the MOC fuel cycle. (authors)

  2. Discovering Life Cycle Assessment Trees from Impact Factor Databases

    E-Print Network [OSTI]

    Ramakrishnan, Naren

    environmental impacts of a product, across its entire life cycle ­ from creation to use to discard. The key environmental category is a linear combination of the impacts of the children in that category. LCA has its life cycle as its children. Each node of the tree is associated with various environmental impact

  3. THE SYSTEM DEVELOPMENT LIFE CYCLE (SDLC) Shirley Radack, Editor

    E-Print Network [OSTI]

    THE SYSTEM DEVELOPMENT LIFE CYCLE (SDLC) Shirley Radack, Editor Computer Security Division the maintenance and disposal of the system, is called the System Development Life Cycle (SDLC). The Information general guide that helps organizations plan for and implement security throughout the SDLC. The revised

  4. Comparison of Life Cycle Costs for LLRW Management in Texas

    SciTech Connect (OSTI)

    Baird, R. D.; Rogers, B. C.; Chau, N.; Kerr, Thomas A

    1999-08-01T23:59:59.000Z

    This report documents a comparison of life-cycle costs of an assured isolation facility in Texas versus the life-cycle costs for a traditional belowground low-level radioactive waste disposal facility designed for the proposed site near Sierra Blanca, Texas.

  5. Life-cycle assessment (LCA) methodology applied to energetic materials

    SciTech Connect (OSTI)

    Reardon, P.T.

    1995-03-01T23:59:59.000Z

    The objective of the Clean Agile Manufacturing of Propellants, Explosives, and pyrotechnics (CAMPEP) program is to develop and demonstrate the feasibility of using modeling, alternate materials and processing technology to reduce PEO life-cycle pollution by up to 90%. Traditional analyses of factory pollution treat the manufacturing facility as the singular pollution source. The life cycle of a product really begins with raw material acquisition and includes all activities through ultimate disposal. The life cycle thus includes other facilities besides the principal manufacturing facility. The pollution generated during the product life cycle is then integrated over the total product lifetime, or represents a ``cradle to grave`` accounting philosophy. This paper addresses a methodology for producing a life-cycle inventory assessment.

  6. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    SciTech Connect (OSTI)

    Forsberg, C. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 24-207A Cambridge, MA 02139 (United States); Miller, W.F. [Texas A.M. University System, MS 3133 College Station, TX 77843-3133 (United States)

    2013-07-01T23:59:59.000Z

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that states will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.

  7. The Life-cycle of Operons

    SciTech Connect (OSTI)

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2005-11-18T23:59:59.000Z

    Operons are a major feature of all prokaryotic genomes, but how and why operon structures vary is not well understood. To elucidate the life-cycle of operons, we compared gene order between Escherichia coli K12 and its relatives and identified the recently formed and destroyed operons in E. coli. This allowed us to determine how operons form, how they become closely spaced, and how they die. Our findings suggest that operon evolution is driven by selection on gene expression patterns. First, both operon creation and operon destruction lead to large changes in gene expression patterns. For example, the removal of lysA and ruvA from ancestral operons that contained essential genes allowed their expression to respond to lysine levels and DNA damage, respectively. Second, some operons have undergone accelerated evolution, with multiple new genes being added during a brief period. Third, although most operons are closely spaced because of a neutral bias towards deletion and because of selection against large overlaps, highly expressed operons tend to be widely spaced because of regulatory fine-tuning by intervening sequences. Although operon evolution seems to be adaptive, it need not be optimal: new operons often comprise functionally unrelated genes that were already in proximity before the operon formed.

  8. The Life-cycle of Operons

    SciTech Connect (OSTI)

    Price, Morgan N.; Arkin, Adam P.; Alm, Eric J.

    2007-03-15T23:59:59.000Z

    Operons are a major feature of all prokaryotic genomes, buthow and why operon structures vary is not well understood. To elucidatethe life-cycle of operons, we compared gene order between Escherichiacoli K12 and its relatives and identified the recently formed anddestroyed operons in E. coli. This allowed us to determine how operonsform, how they become closely spaced, and how they die. Our findingssuggest that operon evolution may be driven by selection on geneexpression patterns. First, both operon creation and operon destructionlead to large changes in gene expression patterns. For example, theremoval of lysA and ruvA from ancestral operons that contained essentialgenes allowed their expression to respond to lysine levels and DNAdamage, respectively. Second, some operons have undergone acceleratedevolution, with multiple new genes being added during a brief period.Third, although genes within operons are usually closely spaced becauseof a neutral bias toward deletion and because of selection against largeoverlaps, genes in highly expressed operons tend to be widely spacedbecause of regulatory fine-tuning by intervening sequences. Althoughoperon evolution may be adaptive, it need not be optimal: new operonsoften comprise functionally unrelated genes that were already inproximity before the operon formed.

  9. Life cycle assessment: A stewardship tool

    SciTech Connect (OSTI)

    Not Available

    1992-12-09T23:59:59.000Z

    As the chemical industry searches for tools to practice product stewardship. it is getting more involved in life cycle assessment (LCA) techniques, which examine the full environmental impact of a product or process over its lifetime and identify areas for improvement. The industry views LCA as a component of product stewardship,' says James P. Mieure, Monsanto's product safety director/chemicals group, who is the liaison between the Chemical manufacturers Association's (CMA; Washington) LCA and product stewardship work groups. Product stewardship includes examining energy used and waste produced as key parameters to consider when developing a new product or process or in modifying an existing one, Mieure says, which is part of what an LCA does. The work being done by the LCA group at CMA, cautions Mieure, doesn't lend itself to practical applications. The group hopes to help companies implement LCA when the time is right, he says. The time is not right yet, Mieure adds, mostly because of the slowness with which the impact analysis stage is progressing. Although the LCA concept has been around for more than 20 years, activity in applying it in industry has taken off since 1990.

  10. The principles of life-cycle analysis

    SciTech Connect (OSTI)

    Hill, L.J.; Hunsaker, D.B.; Curlee, T.R.

    1996-05-01T23:59:59.000Z

    Decisionmakers representing government agencies must balance competing objectives when deciding on the purchase and sale of assets. The goal in all cases should be to make prudent or financially {open_quotes}cost-effective{close_quotes} decisions. That is, the revenues from the purchase or sale of assets should exceed any out-of-pocket costs to obtain the revenues. However, effects external to these financial considerations such as promoting environmental quality, creating or maintaining jobs, and abiding by existing regulations should also be considered in the decisionmaking process. In this paper, we outline the principles of life-cycle analysis (LCA), a framework that allows decisionmakers to make informed, balanced choices over the period of time affected by the decision, taking into account important external effects. Specifically, LCA contains three levels of analysis for any option: (1) direct financial benefits (revenues) and out-of-pocket costs for a course of action; (2) environmental and health consequences of a decision; and (3) other economic and socio-institutional effects. Because some of the components of LCA are difficult to value in monetary terms, the outcome of the LCA process is not generally a yes-no answer. However, the framework allows the decisionmaker to at least qualitatively consider all relevant factors in analyzing options, promoting sound decisionmaking in the process.

  11. Fuel cycle centers revisited: Consolidation of fuel cycle activities in a few countries

    SciTech Connect (OSTI)

    Kratzer, M.B. [Kratzer (Myron B.), Annapolis, MD (United States)

    1996-07-01T23:59:59.000Z

    Despite varied expressions, the general impression remains that the international fuel cycle center concept, whatever its merits, is visionary. It also is quite possibly unattainable in light of strong national pressures toward independence and self-sufficiency in all things nuclear. Is the fuel cycle center an idea that has come and gone? Is it an idea whose time has not yet come? Or is it, as this paper suggests, an idea that has already arrived on the scene, attracting little attention or even acknowledgement of its presence? The difficult in answering this questions arises, in part, from the fact that despite its long and obvious appeal, there has been very little systematic analysis of the concept itself. Such obvious questions as how many and where fuel cycle centers should be located; what characteristics should the hot country or countries possess; and what are the institutional forms or features that endow the concept with enhanced proliferation protection have rarely been seriously and systematically addressed. The title of this paper focuses on limiting the geographic spread of fuel cycle facilities, and some may suggest that doing so does not necessarily call for any type of international or multinational arrangements applicable to those that exist. It is a premise of this paper, however, that a restriction on the number of countries possessing sensitive fuel cycle facilities necessarily involves some degree of multinationalization. This is not only because in every instance a nonproliferation pledge and international or multinational safeguards, or both, will be applied to the facility, but also because a restriction on the number of countries possessing these facilities implies that those in existence will serve a multinational market. This feature in itself is an important form of international auspices. Thus, the two concepts--limitation and multinationalization--if not necessarily one and the same, are at least de facto corollaries.

  12. Indirect-fired gas turbine dual fuel cell power cycle

    DOE Patents [OSTI]

    Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

    1996-01-01T23:59:59.000Z

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  13. Why reconsider the thorium fuel cycle?

    SciTech Connect (OSTI)

    Krahn, S.; Croff, A.; Ault, T.; Wymer, R. [Vanderbilt University: 2301 Vanderbilt Place/PMB 351831, Nashville, TN, 37235 (United States)

    2013-07-01T23:59:59.000Z

    In this paper we have endeavored to present the available technical information on the potential use of Th in nuclear fuel cycle (FC) applications as compared to U without subjective evaluations. Where helpful, we have compared the technical attributes of Th-232 as a fertile isotope and U-233 as a fissile isotope with other similar isotopes (i.e., U-238, and U-235 and Pu-239, respectively). In addition, we have summarized (a) experience gained to-date with fabricating and reprocessing of Th-232/U-233 fuels, (b) factors concerning Th fuel irradiation in both test reactors and power reactors, and (c) differences in the backend of the FC with emphasis on repository risks. As might be expected, many technical aspects of Th vs. U have not changed since the sixties. However, there are some factors elaborated in this paper that have changed. Changes potentially encouraging Th use are: (a) the ability to recover large amounts of Th as a byproduct with small attendant costs and environmental impacts, (b) the potential to produce fewer minor actinides (MA) and less Pu during power production, and (c) increased concerns about proliferation which might be somewhat mitigated by the high radioactivity and amenability to isotopic dilution of U-233. Changes challenging Th utilization are: (a) obtaining sufficient experience handling Th/U-233 fuels, (b) the existence of large inventories of depleted U and continuing discovery of large U resources, and (c) recognition that the extent to which U-233 might mitigate proliferation concerns is not as large as originally hoped.

  14. World nuclear fuel cycle requirements 1985

    SciTech Connect (OSTI)

    Moden, R.; O'Brien, B.; Sanders, L.; Steinberg, H.

    1985-12-05T23:59:59.000Z

    Projections of uranium requirements (both yellowcake and enrichment services) and spent fuel discharges are presented, corresponding to the nuclear power plant capacity projections presented in ''Commercial Nuclear Power 1984: Prospects for the United States and the World'' (DOE/EIA-0438(85)) and the ''Annual Energy Outlook 1984:'' (DOE/EIA-0383(84)). Domestic projections are provided through the year 2020, with foreign projections through 2000. The domestic projections through 1995 are consistent with the integrated energy forecasts in the ''Annual Energy Outlook 1984.'' Projections of capacity beyond 1995 are not part of an integrated energy foreccast; the methodology for their development is explained in ''Commercial Nuclear Power 1984.'' A range of estimates is provided in order to capture the uncertainty inherent in such forward projections. The methodology and assumptions are also stated. A glossary is provided. Two appendixes present additional material. This report is of particular interest to analysts involved in long-term planning for the disposition of radioactive waste generated from the nuclear fuel cycle. 14 figs., 18 tabs.

  15. On-Going Comparison of Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Piet, S.J.; Bennett, R.G.; Dixon, B.W.; Herring, J.S.; Shropshire, D.E.; Roth, M.; Smith, J.D.; Finck, P.; Hill, R.; Laidler, J.; Pasamehmetoglu, K.

    2004-10-03T23:59:59.000Z

    This paper summarizes the current comprehensive comparison of four major fuel cycle strategies: once-through, thermal recycle, thermal+fast recycle, fast recycle. It then proceeds to summarize comparison of the major technology options for the key elements of the fuel cycle that can implement each of the four strategies - separation processing, transmutation reactors, and fuels.

  16. Fuel cycle analysis of once-through nuclear systems.

    SciTech Connect (OSTI)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10T23:59:59.000Z

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium (LEU) fuels. Examples of systems in this class include the small modular reactors being considered internationally; e.g. 4S [Tsuboi 2009], Hyperion Power Module [Deal 2010], ARC-100 [Wade 2010], and SSTAR [Smith 2008]. (2) Systems for Resource Utilization - In recent years, interest has developed in the use of advanced nuclear designs for the effective utilization of fuel resources. Systems under this class have generally utilized the breed and burn concept in which fissile material is bred and used in situ in the reactor core. Due to the favorable breeding that is possible with fast neutrons, these systems have tended to be fast spectrum systems. In the once-through concepts (as opposed to the traditional multirecycle approach typically considered for fast reactors), an ignition (or starter) zone contains driver fuel which is fissile material. This zone is designed to last a long time period to allow the breeding of sufficient fissile material in the adjoining blanket zone. The blanket zone is initially made of fertile depleted uranium fuel. This zone could also be made of fertile thorium fuel or recovered uranium from fuel reprocessing or natural uranium. However, given the bulk of depleted uranium and the potentially large inventory of recovered uranium, it is unlikely that the use of thorium is required in the near term in the U.S. Following the breeding of plutonium or fissile U-233 in the blanket, this zone or assembly then carries a larger fraction of the power generation in the reactor. These systems tend to also have a long cycle length (or core life) and they could be with or without fuel shuffling. When fuel is shuffled, the incoming fuel is generally depleted uranium (or thorium) fuel. In any case, fuel is burned once and then discharged. Examples of systems in this class include the CANDLE concept [Sekimoto 2001], the traveling wave reactor (TWR) concept of TerraPower [Ellis 2010], the ultra-long life fast reactor (ULFR) by ANL [Kim 2010], and the BNL fast mixed spectrum reactor (FMSR) concept [Fisher 1979]. (3) Thermal systems for resource extensio

  17. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  18. The nuclear fuel cycle: Reminiscences, observations and expectations

    SciTech Connect (OSTI)

    Wymer, R.G.

    1987-01-01T23:59:59.000Z

    The author discusses his involvement in the nuclear business and gives a personal perspective on nuclear energy, especially the nuclear fuel cycle.

  19. advanced fuel cycles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - TxSpace Summary: analyzes various advanced AP1000-VHTR fuel cycle scenarios by assessing their TRU destruction and their U consumption minimization capabilities, and by...

  20. advanced fuel cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - TxSpace Summary: analyzes various advanced AP1000-VHTR fuel cycle scenarios by assessing their TRU destruction and their U consumption minimization capabilities, and by...

  1. Life Cycle Assessment of Pavements: A Critical Review of Existing Literature and Research

    E-Print Network [OSTI]

    Santero, Nicholas

    2010-01-01T23:59:59.000Z

    tools related to life- cycle assessment (LCA) applied toaccomplished using a life-cycle assessment (LCA) approach.EIO-LCA (Economic Input-Output Life-Cycle Assessment) model

  2. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    E-Print Network [OSTI]

    Stadel, Alexander

    2013-01-01T23:59:59.000Z

    and use of a new life-cycle assessment (LCA) model forknown as life-cycle assessment (LCA). An LCA employs dataliterature related to life-cycle assessment (LCA) applied to

  3. Consumer-oriented Life Cycle Assessment of Food, Goods and Services

    E-Print Network [OSTI]

    Jones, Christopher M; Kammen, Daniel M; McGrath, Daniel T

    2008-01-01T23:59:59.000Z

    Product-level life cycle assessment (LCA) approaches canInput-Output Life Cycle Assessment (EIO-LCA); Carnegieinput-output life cycle assessment (IO-LCA) tools present a

  4. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  5. Vehicle Technologies Office Merit Review 2015: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Penn State at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy, long cycle life...

  6. Life Cycle Cost Estimate - DOE Directives, Delegations, and Requiremen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chapter discusses life cycle costs and the role they play in planning. g4301-1chp23.pdf -- PDF Document, 52 KB Writer: John Makepeace Subjects: Administration Management...

  7. Improving the quality and transparency of building life cycle assessment

    E-Print Network [OSTI]

    Hsu, Sophia Lisbeth

    2011-01-01T23:59:59.000Z

    Life cycle assessment, or LCA, is a powerful method for measuring and reducing a building's environmental impacts. Its widespread adoption among designers would allow the environmental component of sustainability to gain ...

  8. RESEARCH AND ANALYSIS Comparison of Life-Cycle

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    -output life-cycle assessment (EIO-LCA) model; and SimaPro software equipped with the Franklin database. EIO-LCA model estimated for emis- sions of particulate matter less than 10 micrograms (PM10) resulting from wind

  9. Life-cycle assessment of wastewater treatment plants

    E-Print Network [OSTI]

    Dong, Bo, M. Eng. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

  10. Life Cycle Analysis and Energy Conservation Standards for State Buildings

    Broader source: Energy.gov [DOE]

    In 1995 Ohio passed legislation requiring that all state agencies perform life-cycle cost analyses prior to the construction of new buildings, and energy consumption analyses prior to new leases. ...

  11. Predicting the life cycle of rice varieties in Texas

    E-Print Network [OSTI]

    Gambrell, Stefphanie Michelle

    2006-04-12T23:59:59.000Z

    once it reaches the market. This study develops a regression model, which includes competition and the characteristics of a specific variety, to estimate the life cycle of new varieties and hybrids. In addition, simulation techniques are utilized...

  12. Green Engineering and Life Cycle Assessment at Virginia Tec ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Engineering and Life Cycle Assessment at Virginia Tech Apr 10 2014 03:00 PM - 04:00 PM Sean McGinnis, VT Green Engineering, Oak Ridge Center for Bioenergy and Sustainability...

  13. Life Cycle Cost Analysis of Public Facilities (Iowa)

    Broader source: Energy.gov [DOE]

    All facilities using public funds for construction or renovation must undergo a life cycle analysis, which will consider energy efficiency and on-site energy equipment using the sun, wind, oil,...

  14. Life cycle analysis of hybrid poplar trees for cellulosic ethanol

    E-Print Network [OSTI]

    Huang, Jessica J

    2007-01-01T23:59:59.000Z

    The main purpose of this paper is to assess the energy and environmental benefits of cultivating hybrid poplars as a biomass crop for cellulosic ethanol. A "Life Cycle Assessment" (LCA) methodology is used to systematically ...

  15. Incorporating uncertainty in the Life Cycle Cost Analysis of pavements

    E-Print Network [OSTI]

    Swei, Omar Abdullah

    2012-01-01T23:59:59.000Z

    Life Cycle Cost Analysis (LCCA) is an important tool to evaluate the economic performance of alternative investments for a given project. It considers the total cost to construct, maintain, and operate a pavement over its ...

  16. Life-Cycle Analysis and Energy Efficiency in State Buildings

    Broader source: Energy.gov [DOE]

    Several provisions of Missouri law govern energy efficiency in state facilities. In 1993 Missouri enacted legislation requiring life-cycle cost analysis for all new construction of state buildings...

  17. Nuclear fuel cycle facility accident analysis handbook

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  18. Assessment for advanced fuel cycle options in CANDU

    SciTech Connect (OSTI)

    Morreale, A.C.; Luxat, J.C. [McMaster University, 1280 Main St. W. Hamilton, Ontario, L8S 4L7 (Canada); Friedlander, Y. [AMEC-NSS Ltd., 700 University Ave. 4th Floor, Toronto, Ontario, M5G 1X6 (Canada)

    2013-07-01T23:59:59.000Z

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

  19. Design for, and Evaluation of Life Cycle Performance

    E-Print Network [OSTI]

    Ahner, D. J.; Hall, E. W.

    ?. DESIGN FOR, AND EVALUATION OF LIFE CYCLE PERFORMANCE David J. Ahner Eldon W. Hall GENERAL ELECTRIC COMPANY SCHENECTADY, NEW YORK ABSTRACT EQUIPMENT DEGRADATION Project evaluation necessarily requires performance estimates over... the project life cycle. In contrast to new and clean condi tions, extended 1 ife performance inherently introduces additional complexity and vari ability in developing such estimates, due to changing operating environment, mainte nance policies...

  20. Advanced nuclear fuel cycles - Main challenges and strategic choices

    SciTech Connect (OSTI)

    Le Biez, V. [Corps des Mines, 35 bis rue Saint-Sabin, F-75011 Paris (France); Machiels, A.; Sowder, A. [Electric Power Research Institute, Inc. 3420, Hillview Avenue, Palo Alto, CA 94304 (United States)

    2013-07-01T23:59:59.000Z

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  1. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems - Executive Summary This...

  2. A Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing

    E-Print Network [OSTI]

    Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Dornfeld, David

    2008-01-01T23:59:59.000Z

    and Scope De?nition and Inventory Analysis; Internationalin life- cycle inventories using hybrid approaches. Environ.Reichl, H. Life Cycle Inventory Analysis and Identi?cation

  3. Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities

    E-Print Network [OSTI]

    Lu, Hongyou

    2010-01-01T23:59:59.000Z

    The use of life-cycle assessment (LCA) to understand theIntroduction Life-cycle assessment (LCA) is an important

  4. Guidance on Life-Cycle Cost Analysis Required by Executive Order...

    Energy Savers [EERE]

    Documents & Publications Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2010 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis -...

  5. GREET Life-Cycle Analysis of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL ENVIRONMENTALnaturalGENII2Department

  6. Prospective Life Cycle and Technology Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next >PresentationsNowPromotingDepartmentProspective

  7. Life Cycle Inventory Database | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | Department of EnergyLieko Earlefrom

  8. Emissions Modeling: GREET Life Cycle Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily Knouse About Us Emily2 DOEEmissions

  9. THORIUM FUEL CYCLES: A GRAPHITE-MODERATED MOLTEN SALT REACTOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    THORIUM FUEL CYCLES: A GRAPHITE-MODERATED MOLTEN SALT REACTOR VERSUS A FAST SPECTRUM SOLID FUEL is to compare two main options dedicated to long-term energy production with Thorium: solid fuel with fast its be- haviour until it reaches the 232Th/233U equilibrium from two di erent starting fuels: 232Th

  10. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model

    SciTech Connect (OSTI)

    D. E. Shropshire; W. H. West

    2005-11-01T23:59:59.000Z

    The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  11. Life-cycle assessments: Linking energy, economics, and the environment. Paper No. 571

    SciTech Connect (OSTI)

    Shankle, S.A.

    1994-08-01T23:59:59.000Z

    The Pacific Northwest Laboratory has been involved in a number of life-cycle assessment (LCA) projects that assess the complete lifetime energy, economic, and environmental impacts of alternative technology options. Life-cycle assessments offer one-stop shopping answers to the total energy and environmental implications of alternative technologies, as well as providing employment and income consequences. In one recently completed study, the lifetime impacts of scenarios involving the production and use of biomass ethanol transportation fuels were assessed. In an ongoing study, the lifetime impacts of electric-powered vehicles versus conventional fuels are being assessed. In a proposed study, the impacts of recycled office paper versus office paper from virgin sources would be assessed. A LCA proceeds by developing mass and energy inventories during all phases of the life-cycle. Special attention is given to energy consumption and environmental releases. Economics are incorporated by evaluating the macroeconomic impacts of the alternative policies, such as employment, wages, and output. Economics can also be incorporated by attempting to place values on the damages imposed by the environmental releases associated with alternative scenarios. This paper discusses life-cycle assessment techniques and their application to building energy issues. Life-cycle assessments show great promise for analysis of buildings energy policy questions.

  12. Tropical Cloud Life Cycle and Overlap Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z SiteManhattan ProjectMay

  13. Life cycle assessment and biomass carbon accounting

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocks and the climate

  14. Sensitivity analysis and optimization of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Passerini, S.; Kazimi, M. S.; Shwageraus, E. [Massachusetts Inst. of Technology, Dept. of Nuclear Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02138 (United States)

    2012-07-01T23:59:59.000Z

    A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and in core and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme. (authors)

  15. Environmental Aspects of Advanced Nuclear Fuel Cycles: Parametric Modeling and Preliminary Analysis 

    E-Print Network [OSTI]

    Yancey, Kristina D.

    2010-07-14T23:59:59.000Z

    and reprocessing spent fuel must be incorporated into the nuclear fuel cycle to achieve sustainability....

  16. 2013 Fuel Cycle Technologies Annual Review MeetingTransactions Report

    SciTech Connect (OSTI)

    Not Listed

    2013-11-01T23:59:59.000Z

    The Fuel Cycle Technologies (FCT) program of the Department of Energy (DOE) Office of Nuclear Energy (NE) is charged with identifying promising sustainable fuel cycles and developing strategies for effective disposition of used fuel and high-level nuclear waste, enabling policymakers to make informed decisions about these critical issues. Sustainable fuel cycles will improve uranium resource utilization, maximize energy generation while minimizing waste, improve safety, and limit proliferation risk. To achieve its mission, FCT has initiated numerous activities in each of the technical campaign areas, of which this report provides a sample.

  17. Fuel Cycle Research and Development Presentation Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h y d rSiC Research

  18. Nuclear Fuel Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from the ConsumerNuclear

  19. Fuel Cycle Options for Optimized Recycling of Nuclear Fuel

    E-Print Network [OSTI]

    Aquien, A.

    The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

  20. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    SciTech Connect (OSTI)

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01T23:59:59.000Z

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse, enablement of material accountability, and decreasing material attractiveness.

  1. FULL FUEL CYCLE ASSESSMENT WELL TO WHEELS ENERGY INPUTS,

    E-Print Network [OSTI]

    FULL FUEL CYCLE ASSESSMENT WELL TO WHEELS ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Preparation for the AB 1007 (Pavley) Alternative Transportation Fuels Plan Proceeding Prepared For: California Energy, Project Manager Ray Tuvell, Manager EMERGING FUELS & TECHNOLOGY OFFICE Rosella Shapiro, Deputy Director

  2. FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,

    E-Print Network [OSTI]

    FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For Manager McKinley Addy, Project Manager Ray Tuvell, Manager EMERGING FUELS & TECHNOLOGY OFFICE Rosella Shapiro, Deputy Director FUELS AND TRANSPORTATION DIVISION B.B Blevins Executive Director DISCLAIMER

  3. Life Cycle Cost (LCC) Handbook Final Version 9-30-14 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAMEnergyInvestigativeCogginLES'SiteDepartment ofLife Cycle

  4. Filling Knowledge Gaps with Five Fuel Cycle Studies

    SciTech Connect (OSTI)

    Steven J. Piet; Jess Gehin; William Halsey; Temitope Taiwo

    2010-11-01T23:59:59.000Z

    During FY 2010, five studies were conducted of technology families’ applicability to various fuel cycle strategies to fill in knowledge gaps in option space and to better understand trends and patterns. Here, a “technology family” is considered to be defined by a type of reactor and by selection of which actinides provide fuel. This report summarizes the higher-level findings; the detailed analyses and results are documented in five individual reports, as follows: • Advanced once through with uranium fuel in fast reactors (SFR), • Advanced once through (uranium fuel) or single recycle (TRU fuel) in high temperature gas cooled reactors (HTGR), • Sustained recycle with Th/U-233 in light water reactors (LWRs), • Sustained recycle with Th/U-233 in molten salt reactors (MSR), and • Several fuel cycle missions with Fusion-Fission Hybrid (FFH). Each study examined how the designated technology family could serve one or more designated fuel cycle missions, filling in gaps in overall option space. Each study contains one or more illustrative cases that show how the technology family could be used to meet a fuel cycle mission, as well as broader information on the technology family such as other potential fuel cycle missions for which insufficient information was available to include with an illustrative case. None of the illustrative cases can be considered as a reference, baseline, or nominal set of parameters for judging performance; the assessments were designed to assess areas of option space and were not meant to be optimized. There is no implication that any of the cases or technology families are necessarily the best way to meet a given fuel cycle mission. The studies provide five examples of 1-year fuel cycle assessments of technology families. There is reasonable coverage in the five studies of the performance areas of waste management and uranium utilization. The coverage of economics, safety, and proliferation resistance and physical protection in the five studies was spotty. Some studies did not have existing or past work to draw on in one or more of these areas. Resource constraints limited the amount of new analyses that could be performed. Little or no assessment was done of how soon any of the technologies could be deployed and therefore how quickly they could impact domestic or international fuel cycle performance. There were six common R&D needs, such as the value of advanced fuels, cladding, coating, and structure that would survive high neutron fluence. When a technology family is considered for use in a new fuel cycle mission, fuel cycle performance characteristics are dependent on both the design choices and the fuel cycle approach. For example, the use of the sodium-cooled fast reactor to provide recycle in either breeder or burner mode has been studied for decades, but the SFR could be considered for once-through fuel cycle with the physical reactor design and fuel management parameters changed. In addition, the sustained recycle with Th/U-233 in LWR could be achieved with a heterogeneous assembly and derated power density. Therefore, it may or may not be adjustable for other fuel cycle missions although a reactor intended for one fuel cycle mission is built. Simple parameter adjustment in applying a technology family to a new fuel cycle mission should be avoided and, if observed, the results viewed with caution.

  5. The damage function approach for estimating fuel cycle externalities

    SciTech Connect (OSTI)

    Lee, R.

    1993-10-01T23:59:59.000Z

    This paper discusses the methodology used in a study of fuel cycle externalities sponsored by the US Department of Energy and the Commission of the European Communities. The methodology is the damage function approach. This paper describes that approach and discusses its application and limitations. The fuel cycles addressed are those in which coal, biomass, oil, hydro, natural gas and uranium are used to generate electric power. The methodology is used to estimate the physical impacts of these fuel cycles on environmental resources and human health, and the external costs and benefits of these impacts.

  6. AB 1007 Full Fuel Cycle Analysis (FFCA) Peer Review

    SciTech Connect (OSTI)

    Rice, D; Armstrong, D; Campbell, C; Lamont, A; Gallegos, G; Stewart, J; Upadhye, R

    2007-01-19T23:59:59.000Z

    LLNL is a participant of California's Advanced Energy Pathways (AEP) team funded by DOE (NETL). At the AEP technical review meeting on November 9, 2006. The AB 1007 FFCA team (Appendix A) requested LLNL participate in a peer review of the FFCA reports. The primary contact at the CEC was McKinley Addy. The following reports/presentations were received by LLNL: (1) Full Fuel Cycle Energy and Emissions Assumptions dated September 2006, TIAX; (2) Full Fuel cycle Assessment-Well to Tank Energy Inputs, Emissions, and Water Impacts dated December 2006, TIAX; and (3) Full Fuel Cycle Analysis Assessment dated October 12, 2006, TIAX.

  7. THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS

    SciTech Connect (OSTI)

    Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.; Bathke, Charles G.; Ebbinghaus, Bartley B.; Hase, Kevin R.; Sleaford, Brad W.; Robel, Martin; Smith, Brian W.

    2011-07-17T23:59:59.000Z

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies required to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.

  8. Fuel Cycle Comparison for Distributed Power Technologies

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

  9. Fuel Cycle Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNG |of

  10. Comments on: Comprehensive Fuel Cycle Research Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,CobaltColdin679April

  11. Fuel Cycle Research and Development Presentation Title

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FYWednesday,Newsletter

  12. Fuel Cycle Research and Development Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartmentaboutInformation ResourcesResearch

  13. Fuel Cycle Technology Documents | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartmentaboutInformation

  14. Comprehensive Fuel Cycle Research Study - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCHHydrosilylation Catalysts

  15. Neutronics Design and Fuel Cycle Analysis of a High Conversion BWR with Pu-Th Fuel

    SciTech Connect (OSTI)

    Xu, Yunlin; Downar, T.J. [Purdue University, West Lafayette, IN 47906-1290 (United States); Takahashi, H.; Rohatgi, U.S. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2002-07-01T23:59:59.000Z

    As part of the U.S. Department of Energy's (DOE) Nuclear Energy Research Initiative (NERI), a 'Generation IV' high conversion Boiling Water Reactor design is being investigated at Purdue University and Brookhaven National Laboratory. One of the primary innovative design features of the core proposed here is the use of Thorium as fertile material. In addition to the advantageous nonproliferation and waste characteristics of thorium fuel cycles, the use of thorium is particularly important in a tight pitch, high conversion lattice in order to insure a negative void coefficient throughout the operating life of the reactor. The principal design objective of a high conversion light water reactor is to substantially increase the conversion ratio (fissile atoms produced per fissile atoms consumed) of the reactor without compromising the safety performance of the plant. Since existing LWRs have a relatively low conversion ratio they require relatively frequent refueling which limits the economic efficiency of the plant. Also, the high volume of spent fuel can pose a burden for waste storage and the accumulation of plutonium in the uranium fuel cycle can become a materials proliferation issue. The development of Fast Breeder Reactors (FBR) as an alternative technology to alleviate some of these concerns has been delayed for various reasons. An intermediate solution has been to examine tight pitch light water reactors which can provide significant improvements in the fuel cycle performance of the existing LWRs by taking advantage of the increased conversion ratios from the harder neutron spectrum in the tight pitch lattice, as well as the by taking advantage of the waste and nonproliferation benefits of the thorium fuel cycle. Several High Conversion BWR designs have been proposed by researchers in Japan and elsewhere during the past several years. One of the more promising HCR designs is the Reduced Moderation Water Reactor (RMWR) proposed by JAERI [1]. Their design was based on a uranium fuel cycle and showed significant improvements in the fuel cycle performance compared to conventional BWRs. However, one of the drawbacks of their design was the potential for a positive void coefficient. In order to insure a negative void coefficient, the JAERI researchers designed a 'flat core' and introduced void tube assemblies in order to enhance neutron leakage in the event of core voiding. The use of thorium in the Purdue/BNL HCBWR design proposed here obviates the need for void tubes and makes it possible to increase the core height and improve neutron economy without the risk of a positive void coefficient. The principal reason for the improvement in the void coefficient is because Th-232 has a smaller fast fission cross section and resonance integral than U-238. In the design proposed here, it is possible to eliminate the void tubes in the RMWR design and replace the axial blanket with active fuel to increase the core height and further improve neutron economy. The core analyses in the work here was performed with the Purdue Fuel Management Code System [2] which is based on the Studsvik/Scandpower lattice physics code HELIOS, and the U.S. NRC core neutronics simulator, PARCS, which is coupled to the thermal-hydraulics code RELAP5. All these codes have been well assessed and benchmarked for analysis of light water reactor systems. (authors)

  16. Commissioning tools for life-cycle building performance assurance

    SciTech Connect (OSTI)

    Piette, M.A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-05-01T23:59:59.000Z

    This paper discusses information systems for building life-cycle performance analysis and the use of computer-based commissioning tools within this context. There are many reasons why buildings do not perform in practice as well as intended at the design stage. One reason is the lack of commissioning. A second reason is that design intent is not well documented, and performance targets for building components and systems are not well specified. Thus, criteria for defining verification and functional tests is unclear. A third reason is that critical information is often lost throughout the building life-cycle, which causes problems such as misunderstanding of operational characteristics and sequences and reduced overall performance. The life-cycle building performance analysis tools project discussed in this paper are focused on chillers and cooling systems.

  17. Design and fuel management of PWR cores to optimize the once-through fuel cycle

    E-Print Network [OSTI]

    Fujita, Edward Kei

    The once-through fuel cycle has been analyzed to see if there are substantial prospects for improved uranium ore utilization in current

  18. High efficiency carbonate fuel cell/turbine hybrid power cycle

    SciTech Connect (OSTI)

    Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

    1996-07-01T23:59:59.000Z

    The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

  19. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    SciTech Connect (OSTI)

    R.E. Sweeney

    2001-02-08T23:59:59.000Z

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  20. Economics of nuclear fuel cycles : option valuation and neutronics simulation of mixed oxide fuels

    E-Print Network [OSTI]

    De Roo, Guillaume

    2009-01-01T23:59:59.000Z

    In most studies aiming at the economic assessment of nuclear fuel cycles, a primary concern is to keep scenarios economically comparable. For Uranium Oxide (UOX) and Mixed Oxide (MOX) fuels, a traditional way to achieve ...

  1. Summary and recommendations: Total fuel cycle assessment workshop

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This report summarizes the activities of the Total Fuel Cycle Assessment Workshop held in Austin, Texas, during October 6--7, 1994. It also contains the proceedings from that workshop.

  2. Life Cycle Assessment and Sustainability of Chemical Products

    E-Print Network [OSTI]

    Sahnoune, A.

    2014-01-01T23:59:59.000Z

    Life Cycle Assessment & Sustainability of Chemical Products Abdelhadi Sahnoune ExxonMobil Chemical Company Industrial Energy Technology Conference (IETC 2014) New Orleans, May 20-23, 2014 ESL-IE-14-05-38 Proceedings of the Thrity-Sixth Industrial... Energy Technology Conference New Orleans, LA. May 20-23, 2014 Products in our daily lives Plastics Packaging - Protects and extends shelf life Building & Construction – Insulation, design, flooring Plastics in Automotive Applications - Light weighting...

  3. Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; Jacob J. Jacobson; Gretchen E. Matthern; David E. Shropshire

    2009-04-01T23:59:59.000Z

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe “lessons learned” from dynamic simulations but attempt to answer the “so what” question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  4. International Nuclear Fuel Cycle Fact Book. Revision 5

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01T23:59:59.000Z

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  5. International nuclear fuel cycle fact book. Revision 4

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01T23:59:59.000Z

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  6. The Prospective Role of JAEA Nuclear Fuel Cycle Engineering Laboratories

    SciTech Connect (OSTI)

    Ojima, Hisao; Dojiri, Shigeru; Tanaka, Kazuhiko; Takeda, Seiichiro; Nomura, Shigeo [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan)

    2007-07-01T23:59:59.000Z

    JAEA Nuclear Fuel Cycle Engineering Laboratories was established in 2005 to take over the activities of the JNC Tokai Works. Many kinds of development activities have been carried out since 1959. Among these, the results on the centrifuge for U enrichment, LWR spent fuel reprocessing and MOX fuel fabrication have already provided the foundation of the fuel cycle industry in Japan. R and D on the treatment and disposal of high-level waste and FBR fuel reprocessing has also been carried out. Through such activities, radioactive material release to the environment has been appropriately controlled and all nuclear materials have been placed under IAEA safeguards. The Laboratories has sufficient experience and ability to establish the next generation closed cycle and strives to become a world-class Center Of Excellence (COE). (authors)

  7. A review of nuclear fuel cycle options for developing nations

    SciTech Connect (OSTI)

    Harrison, R.K.; Scopatz, A.M.; Ernesti, M. [The University of Texas at Austin, Pickle Research Campus, Building 159, Austin, TX 78712 (United States)

    2007-07-01T23:59:59.000Z

    A study of several nuclear reactor and fuel cycle options for developing nations was performed. All reactor choices were considered under a GNEP framework. Two advanced alternative reactor types, a nuclear battery-type reactor and a fuel reprocessing fast reactor were examined and compared with a conventional Generation III+ LWR reactor. The burn of nuclear fuel was simulated using ORIGEN 2.2 for each reactor type and the resulting information was used to compare the options in terms of waste produced, waste quality and repository impact. The ORIGEN data was also used to evaluate the economics of the fuel cycles using unit costs, discount rates and present value functions with the material balances. The comparison of the fuel cycles and reactors developed in this work provides a basis for the evaluation of subsidy programs and cost-benefit comparisons for various reactor parameters such as repository impact and proliferation risk versus economic considerations. (authors)

  8. Fuel cycle optimization of thorium and uranium fueled PWR systems

    E-Print Network [OSTI]

    Garel, Keith Courtnay

    1977-01-01T23:59:59.000Z

    The burnup neutronics of uniform PWR lattices are examined with respect to reduction of uranium ore requirements with an emphasis on variation of the fuel-to-moderator ratio

  9. Fuel cycle options for optimized recycling of nuclear fuel

    E-Print Network [OSTI]

    Aquien, Alexandre

    2006-01-01T23:59:59.000Z

    The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

  10. New Tool for Proliferation Resistance Evaluation Applied to Uranium and Thorium Fueled Fast Reactor Fuel Cycles

    E-Print Network [OSTI]

    Metcalf, Richard R.

    2010-07-14T23:59:59.000Z

    reactor cycle and one scenario involves theft from a PUREX facility in a LWR cycle. The FBRFC was evaluated with uranium-plutonium fuel and a second time using thorium-uranium fuel. These diversion scenarios were tested with both uniform and expert weights...

  11. Life Cycle Assessment of Biogas from Separated slurry

    E-Print Network [OSTI]

    Life Cycle Assessment of Biogas from Separated slurry Lorie Hamelin, Marianne Wesnæs and Henrik AND ALTERNATIVES 28 2.2.1 Reference Scenario (Scenario A) 28 2.2.2 Biogas from raw pig slurry and fibre fraction from chemical- mechanical separation (Scenario F) 29 2.2.3 Biogas from raw cow slurry and fibre

  12. Environmental life cycle assessment as a decision making tool

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    2011 Environmental impact categories Global warming (99 %) Acidification Ozone depletion Photo oxidant · Environmental Life Cycle Assessment · Operation of the Argentinean Electricity Network · Conclusions #12;PASI minimization 2 1 2 1 2 1 CC)(1Z ** Global criteria method p *** * p *** * C-C CC - Z

  13. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power

    E-Print Network [OSTI]

    . A facility with solar fraction less than 1 is a hybrid operating plant that combusts naturLife Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, more-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

  14. LIFE CYCLE ANALYSIS: COMPARING PLA PLASTIC FOOD USE PRODUCTS

    E-Print Network [OSTI]

    sections--agriculture, manufacture and transport. Energy inputs for each of these sections were determined in the analysis. BFS, however, avoids this energy input by purchasing a starch that is a waste stream from anotherLIFE CYCLE ANALYSIS: COMPARING PLA PLASTIC FOOD USE PRODUCTS ON THE BASIS OF ENERGY CONSUMPTION Sin

  15. Environmental Life Cycle Comparison of Algae to Other Bioenergy

    E-Print Network [OSTI]

    Clarens, Andres

    Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks A N D R E S F . C L A R December 6, 2009. Accepted December 15, 2009. Algae are an attractive source of biomass energy since. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from

  16. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics

    E-Print Network [OSTI]

    Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics Over the last thirty years, hundreds and utility-scale solar photovoltaic (PV) systems. These LCAs have yielded wide-ranging results. Variation of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. ~40 g CO2

  17. Comparative Life-Cycle Air Emissions of Coal, Domestic Natural

    E-Print Network [OSTI]

    Jaramillo, Paulina

    come domestically from the production of synthetic natural gas (SNG) via coal gasification- methanation gasification technologies that use coal to produce SNG. This National Gasification Strategy callsComparative Life-Cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity

  18. A Comparative Life Cycle Assessment of Petroleum and

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    A Comparative Life Cycle Assessment of Petroleum and Soybean-Based Lubricants S H E L I E A . M I L assessment examining soybean and petroleum-based lubricants is compiled using Monte Carlo analysis to assess in this paper suggests that such potential exists. Over two billion gallons (7.5 billion liters) of petroleum

  19. Life Cycle Assessment Practices: Benchmarking Selected European Automobile Manufacturers

    E-Print Network [OSTI]

    Boyer, Edmond

    Life Cycle Assessment Practices: Benchmarking Selected European Automobile Manufacturers Jean in the automobile industry where vehicle manufacturers (OEMs) are launching several new or re- vamped models each year. The automobile industry is therefore a very emblematic sector for best practices of LCA

  20. Fossil fuel combined cycle power system

    DOE Patents [OSTI]

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10T23:59:59.000Z

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  1. Safety aspects of the IFR pyroprocess fuel cycle

    SciTech Connect (OSTI)

    Forrester, R.J.; Lineberry, M.J.; Charak, I.; Tessier, J.H.; Solbrig, C.W.; Gabor, J.D.

    1989-01-01T23:59:59.000Z

    This paper addresses the important safety considerations related to the unique Integral Fast Reactor (IFR) fuel cycle technology, the pyroprocess. Argonne has been developing the IFR since 1984. It is a liquid metal cooled reactor, with a unique metal alloy fuel, and it utilizes a radically new fuel cycle. An existing facility, the Hot Fuel Examination Facility-South (HFEF/S) is being modified and equipped to provide a complete demonstration of the fuel cycle. This paper will concentrate on safety aspects of the future HFEF/S operation, slated to begin late next year. HFEF/S is part of Argonne's complex of reactor test facilities located on the Idaho National Engineering Laboratory. HFEF/S was originally put into operation in 1964 as the EBR-II Fuel Cycle Facility (FCF) (Stevenson, 1987). From 1964--69 FCF operated to demonstrate an earlier and incomplete form of today's pyroprocess, recycling some 400 fuel assemblies back to EBR-II. The FCF mission was then changed to one of an irradiated fuels and materials examination facility, hence the name change to HFEF/S. The modifications consist of activities to bring the facility into conformance with today's much more stringent safety standards, and, of course, providing the new process equipment. The pyroprocess and the modifications themselves are described more fully elsewhere (Lineberry, 1987; Chang, 1987). 18 refs., 5 figs., 2 tabs.

  2. Framework for Modeling the Uncertainty of Future Events in Life Cycle Assessment

    E-Print Network [OSTI]

    Chen, Yi-Fen; Simon, Rachel; Dornfeld, David

    2013-01-01T23:59:59.000Z

    INTRODUCTION Life Cycle Assessment (LCA) is a leadingLife Cycle Assessment by including predictable disruptions to the life cycle, thereby increasing the meaningfulness of LCALife Cycle Assessment is a very important factor to consider in order to ensure the accuracy of estimated emissions and meaningfulness of LCA

  3. World nuclear capacity and fuel cycle requirements, November 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-30T23:59:59.000Z

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

  4. Fusion fuel cycle: material requirements and potential effluents

    SciTech Connect (OSTI)

    Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.

    1980-10-01T23:59:59.000Z

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described.

  5. Fossil fuel combined cycle power generation method

    DOE Patents [OSTI]

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21T23:59:59.000Z

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  6. Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Smith, K.; Markel, T.

    2009-06-01T23:59:59.000Z

    Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

  7. Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group...

    Broader source: Energy.gov (indexed) [DOE]

    Charter of the Generation IV Roadmap Fuel Cycle Crosscut Group (FCCG) is to (1) examine the fuel cycle implications for alternative nuclear power scenarios in terms of Generation...

  8. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  9. Life-cycle energy analyses of electric vehicle storage batteries. Final report

    SciTech Connect (OSTI)

    Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

    1980-12-01T23:59:59.000Z

    The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

  10. Spent fuel storage and waste management fuel cycle optimization using CAFCA

    SciTech Connect (OSTI)

    Brinton, S.; Kazimi, M. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139 (United States)

    2013-07-01T23:59:59.000Z

    Spent fuel storage modeling is at the intersection of nuclear fuel cycle system dynamics and waste management policy. A model that captures the economic parameters affecting used nuclear fuel storage location options, which complements fuel cycle economic assessment has been created using CAFCA (Code for Advanced Fuel Cycles Assessment) of MIT. Research has also expanded to the study on dependency of used nuclear fuel storage economics, environmental impact, and proliferation risk. Three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module which provides an easy to use interface for education on fuel cycle waste management economic impacts. Storage options costs can be compared to literature values with simple variation available for sensitivity study. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (authors)

  11. Regulatory cross-cutting topics for fuel cycle facilities.

    SciTech Connect (OSTI)

    Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott; Louie, David

    2013-10-01T23:59:59.000Z

    This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research&Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas:Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities)Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed:Integrated Security, Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)

  12. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01T23:59:59.000Z

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  13. Effects of cooling time on a closed LWR fuel cycle

    SciTech Connect (OSTI)

    Arnold, R. P.; Forsberg, C. W.; Shwageraus, E. [Massachusetts Inst. of Technology, 401 Shady Ave, Apt B506, Pittsburgh, PA 15206 (United States)

    2012-07-01T23:59:59.000Z

    In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing. (authors)

  14. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    SciTech Connect (OSTI)

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18T23:59:59.000Z

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  15. Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications

    E-Print Network [OSTI]

    Saravanan, R.; Murugavel, V.

    2010-01-01T23:59:59.000Z

    effect from CO2 emission resulting from the combustion of fossil fuels in utility power plants and the use of chlorofluorocarbon refrigerants, which is currently thought to affect depletion of the ozone layer. The ban on fluorocarbon fluids has been...LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS V. Murugavel and R. Saravanan Refrigeration and Air conditioning Laboratory Department of Mechanical Engineering, Anna University...

  16. LIFE CYCLE COST HANDBOOK Guidance for Life Cycle Cost Estimation and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnsonKristina Pflanz About UsT8LES'About Us

  17. Nuclear Fuel Cycle Technologies: Current Challenges and Future Plans - 12558

    SciTech Connect (OSTI)

    Griffith, Andrew [U.S. Department of Energy, Washington, DC (United States)

    2012-07-01T23:59:59.000Z

    The mission of the Office of Nuclear Energy's Fuel Cycle Technologies office (FCT program) is to provide options for possible future changes in national nuclear energy programs. While the recent draft report of the Blue Ribbon Commission on America's Nuclear Future stressed the need for organization changes, interim waste storage and the establishment of a permanent repository for nuclear waste management, it also recognized the potential value of alternate fuel cycles and recommended continued research and development in that area. With constrained budgets and great expectations, the current challenges are significant. The FCT program now performs R and D covering the entire fuel cycle. This broad R and D scope is a result of the assignment of new research and development (R and D) responsibilities to the Office of Nuclear Energy (NE), as well as reorganization within NE. This scope includes uranium extraction from seawater and uranium enrichment R and D, used nuclear fuel recycling technology, advanced fuel development, and a fresh look at a range of disposal geologies. Additionally, the FCT program performs the necessary systems analysis and screening of fuel cycle alternatives that will identify the most promising approaches and areas of technology gaps. Finally, the FCT program is responsible for a focused effort to consider features of fuel cycle technology in a way that promotes nonproliferation and security, such as Safeguards and Security by Design, and advanced monitoring and predictive modeling capabilities. This paper and presentation will provide an overview of the FCT program R and D scope and discuss plans to analyze fuel cycle options and support identified R and D priorities into the future. The FCT program is making progress in implanting a science based, engineering driven research and development program that is evaluating options for a sustainable fuel cycle in the U.S. Responding to the BRC recommendations, any resulting legislative changes, and meeting the needs of the commercial nuclear industry (including developing and evaluating fuel concepts that may enhance accident tolerance in light water reactors while possibly improving fuel performance) are program priorities. Continuing to build partnerships and collaborations with industry, universities, international organizations, and other DOE programs are essential to addressing the challenges facing the FCT program. (authors)

  18. The FIT Model - Fuel-cycle Integration and Tradeoffs

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Meliisa C Teague; Gregory M Teske; Kurt G Vedros

    2010-09-01T23:59:59.000Z

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010] are an initial step by the FCR&D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. The question originally posed to the “system losses study” was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for “minimum fuel treatment” approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

  19. International nuclear fuel cycle fact book. [Contains glossary

    SciTech Connect (OSTI)

    Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

    1987-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  20. International nuclear fuel cycle fact book: Revision 9

    SciTech Connect (OSTI)

    Leigh, I.W.

    1989-01-01T23:59:59.000Z

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

  1. Software Platform Evaluation - Verifiable Fuel Cycle Simulation (VISION) Model

    SciTech Connect (OSTI)

    J. J. Jacobson; D. E. Shropshire; W. B. West

    2005-11-01T23:59:59.000Z

    The purpose of this Software Platform Evaluation (SPE) is to document the top-level evaluation of potential software platforms on which to construct a simulation model that satisfies the requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). See the Software Requirements Specification for Verifiable Fuel Cycle Simulation (VISION) Model (INEEL/EXT-05-02643, Rev. 0) for a discussion of the objective and scope of the VISION model. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies. This document will serve as a guide for selecting the most appropriate software platform for VISION. This is a “living document” that will be modified over the course of the execution of this work.

  2. International Nuclear Fuel Cycle Fact Book. Revision 12

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  3. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08T23:59:59.000Z

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  4. Geothermal completion technology life-cycle cost model (GEOCOM)

    SciTech Connect (OSTI)

    Mansure, A.J.; Carson, C.C.

    1982-01-01T23:59:59.000Z

    GEOCOM is a model developed to evaluate the cost effectiveness of alternative technologies used in the completion, production, and maintenance of geothermal wells. The model calculates the ratio of life-cycle cost to life-cycle production or injection and thus is appropriate for evaluating the cost effectiveness of a geothermal well even when the most economically profitable well completion strategies do not result in lowest capital costs. The project to develop the GEOCOM model included the establishment of a data base for studying geothermal completions and preliminary case/sensitivity studies. The code has the data base built into its structure as default parameters. These parameters include geothermal resource characteristics; costs of geothermal wells, workovers, and equipment; and other data. The GEOCOM model has been written in ANSI (American National Standard Institute) FORTRAN 1966 version.

  5. Process integrated modelling for steelmaking Life Cycle Inventory analysis

    SciTech Connect (OSTI)

    Iosif, Ana-Maria [Arcelor Research, Voie Romaine, BP30320, Maizieres-les-Metz, 57283 (France)], E-mail: ana-maria.iosif@arcelormittal.com; Hanrot, Francois [Arcelor Research, Voie Romaine, BP30320, Maizieres-les-Metz, 57283 (France)], E-mail: francois.hanrot@arcelormittal.com; Ablitzer, Denis [LSG2M, Ecole des Mines de Nancy, Parc de Saurupt, F-54042 Nancy cedex (France)], E-mail: denis.ablitzer@mines.inpl-nancy.fr

    2008-10-15T23:59:59.000Z

    During recent years, strict environmental regulations have been implemented by governments for the steelmaking industry in order to reduce their environmental impact. In the frame of the ULCOS project, we have developed a new methodological framework which combines the process integrated modelling approach with Life Cycle Assessment (LCA) method in order to carry out the Life Cycle Inventory of steelmaking. In the current paper, this new concept has been applied to the sinter plant which is the most polluting steelmaking process. It has been shown that this approach is a powerful tool to make the collection of data easier, to save time and to provide reliable information concerning the environmental diagnostic of the steelmaking processes.

  6. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Cost Analysis - 2015 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2015 Handbook describes the annual supplements to the NIST Handbook 135 and...

  7. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01T23:59:59.000Z

    Area, Chicago, and New York City  are  evaluated  capturing  passenger  transportation  life?cycle  energy Area, Chicago, and New York City are evaluated capturing passenger trans- portation life-cycle energy

  8. Life Cycle Assessment goes to Washington : lessons from a new regulatory design

    E-Print Network [OSTI]

    Edwards, Jennifer Lynn, M. C. P. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Life Cycle Assessment (LCA) is a quantitative tool that measures the bundled impact of an individual product over its entire life cycle, from "cradle-to-grave." LCA has been developed over many decades to improve industry's ...

  9. Life cycle assessment of materials and construction in commercial structures : variability and limitations

    E-Print Network [OSTI]

    Hsu, Sophia Lisbeth

    2010-01-01T23:59:59.000Z

    Life cycle assessment has become an important tool for determining the environmental impact of materials and products. It is also useful in analyzing the impact a structure has over the course of its life cycle. The ...

  10. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2012 Report provides tables of present-value factors for use in the life-cycle cost analysis of capital...

  11. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis-2014 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis-2014 Handbook describes the...

  12. Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current, and In-Stream Hydrokinetic Power Assessment of Projected Life-Cycle Costs for Wave, Tidal, Ocean Current,...

  13. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27T23:59:59.000Z

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  14. Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities

    E-Print Network [OSTI]

    Lu, Hongyou

    2010-01-01T23:59:59.000Z

    system boundary, data sources, data quality assessment, data disaggregation and other elements. The Development of Life Cycle

  15. Life Cycle Assessments Confirm the Need for Hydropower and Nuclear Energy

    SciTech Connect (OSTI)

    Gagnon, L.

    2004-10-03T23:59:59.000Z

    This paper discusses the use of life cycle assessments to confirm the need for hydropower and nuclear energy.

  16. Virtual Community Life Cycle: a Model to Develop Systems with Fluid Requirements Christo El Morr1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Virtual Community Life Cycle: a Model to Develop Systems with Fluid Requirements Christo El Morr1 into the life cycle model needed to develop information systems for group of people with fluid requirements development life cycles can be followed when developing any virtual community. Though, in a fluid environment

  17. U.S. LIFE CYCLE INVENTORY DATABASE Goals of the U.S. LCI Database Project

    E-Print Network [OSTI]

    U.S. LIFE CYCLE INVENTORY DATABASE ROADMAP rsed e #12;Goals of the U.S. LCI Database Project. Vision Statement The U.S. Life Cycle Inventory Database will be the recognized source of U.S.-based, quality, transparent life cycle inventory data and will become an integral part of the rapidly expanding

  18. UBC Social Ecological Economic Development Studies (SEEDS) Student Report LIFE CYCLE ASSESSMENT OF

    E-Print Network [OSTI]

    ­ the UBC LCA Project ­ which aims to support the development of the field of life cycle assessment (LCA This study used Life Cycle Assessment (LCA) to assess the environmental performance of the University at rob.sianchuk@gmail.com #12;2013 CIVL498 C Ian Eddy LIFE CYCLE ASSESSMENT OF THE FOREST SCIENCE CENTER

  19. Towards prospective Life Cycle Assessment: how to identify key parameters inducing most

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of Life Cycle Assessments (LCA) have been undertaken, attempting to give a quantitative assessmentTowards prospective Life Cycle Assessment: how to identify key parameters inducing most Blanc1 MINES ParisTech, O.I.E. center, Sophia Antipolis, France Abstract. Prospective Life Cycle

  20. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment Report

    E-Print Network [OSTI]

    purposes. A life cycle assessment (LCA) was carried out on two of the event arenas built for the 2010UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle AssessmentC: Life Cycle Assessment Report Thunderbird Old Arena Group Members: Dennis Fan, Sean Geyer, Hillary

  1. A Life-Cycle Energy and Inventory Analysis of FinFET Integrated Circuits

    E-Print Network [OSTI]

    Pedram, Massoud

    . Life-Cycle Assessment (LCA) has been increasingly used to assess environmental implicationsA Life-Cycle Energy and Inventory Analysis of FinFET Integrated Circuits Yanzhi Wang, Ying Zhang as the next-generation semiconductor technology. This paper is the first attempt in reporting the life-cycle

  2. UBC Social Ecological Economic Development Studies (SEEDS) Student Report LIFE CYCLE ASSESSMENT -CENTER FOR

    E-Print Network [OSTI]

    to support the development of the field of life cycle assessment (LCA). The information and findingsUBC Social Ecological Economic Development Studies (SEEDS) Student Report JIAN SUN LIFE CYCLE which has one of the largest life cycle inventory database in North America. Assumptions and According

  3. Life Cycle environmental Assessment (LCA) of sanitation systems including sewerage: Case of vertical

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Life Cycle environmental Assessment (LCA) of sanitation systems including sewerage: Case The article presents the application of Life Cycle Assessment (LCA) to a complete sanitation system including of water sanitation systems may be done using the LCA approach (Life Cycle Assessment). Indeed

  4. A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural Health Monitoring

    E-Print Network [OSTI]

    Stanford University

    1 A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural of wind turbines and reducing the life-cycle costs significantly. This paper presents a life-cycle management (LCM) framework for online monitoring and performance assessment of wind turbines, enabling

  5. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    E-Print Network [OSTI]

    Djokic, Denia

    2013-01-01T23:59:59.000Z

    and  electricity  generation  (MWe)  of  the  fuel  cycle  electricity  generation  corresponding  to  each  fuel  the  total  electricity  generation  of  the  entire  fuel  

  6. Estimating Externalities of Hydro Fuel Cycles, Report 6

    SciTech Connect (OSTI)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1994-12-01T23:59:59.000Z

    There are three major objectives of this hydropower study: (1) to implement the methodological concepts that were developed in the background document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles and, by so doing, to demonstrate their application to the hydroelectric fuel cycle (different fuel cycles have unique characteristics that need to be addressed in different ways); (2) to develop, given the time and resources, the best range of estimates of externalities associated with hydroelectric projects, using two benchmark projects at two reference sites in the US; and (3) to assess the state of the information that is available to support the estimation of externalities associated with the hydroelectric fuel cycle and, by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The main consideration in defining these objectives was a desire to have more information about externalities and a better method for estimating them. As set forth in the agreement between the US and the EC, the study is explicitly and intentionally not directed at any one audience. This study is about a methodology for estimating externalities. It is not about how to use estimates of externalities in a particular policy context.

  7. ASSESSING THE PROLIFERATION RESISTANCE OF INNOVATIVE NUCLEAR FUEL CYCLES.

    SciTech Connect (OSTI)

    BARI,R.; ROGLANS,J.; DENNING,R.; MLADINEO,S.

    2003-06-23T23:59:59.000Z

    The National Nuclear Security Administration is developing methods for nonproliferation assessments to support the development and implementation of U.S. nonproliferation policy. This paper summarizes the key results of that effort. Proliferation resistance is the degree of difficulty that a nuclear material, facility, process, or activity poses to the acquisition of one or more nuclear weapons. A top-level measure of proliferation resistance for a fuel cycle system is developed here from a hierarchy of metrics. At the lowest level, intrinsic and extrinsic barriers to proliferation are defined. These barriers are recommended as a means to characterize the proliferation characteristics of a fuel cycle. Because of the complexity of nonproliferation assessments, the problem is decomposed into: metrics to be computed, barriers to proliferation, and a finite set of threats. The spectrum of potential threats of nuclear proliferation is complex and ranges from small terrorist cells to industrialized countries with advanced nuclear fuel cycles. Two general categories of methods have historically been used for nonproliferation assessments: attribute analysis and scenario analysis. In the former, attributes of the systems being evaluated (often fuel cycle systems) are identified that affect their proliferation potential. For a particular system under consideration, the attributes are weighted subjectively. In scenario analysis, hypothesized scenarios of pathways to proliferation are examined. The analyst models the process undertaken by the proliferant to overcome barriers to proliferation and estimates the likelihood of success in achieving a proliferation objective. An attribute analysis approach should be used at the conceptual design level in the selection of fuel cycles that will receive significant investment for development. In the development of a detailed facility design, a scenario approach should be undertaken to reduce the potential for design vulnerabilities. While, there are distinctive elements in each approach, an analysis could be performed that utilizes aspects of each approach.

  8. Estimating Externalities of Natural Gas Fuel Cycles, Report 4

    SciTech Connect (OSTI)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01T23:59:59.000Z

    This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general methodology.

  9. VISION -- A Dynamic Model of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    J. J. Jacobson; A. M. Yacout; S. J. Piet; D. E. Shropshire; G. E. Matthern

    2006-02-01T23:59:59.000Z

    The Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that – if implemented – would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deploy¬ment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential “exit” or “off ramp” approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  10. Moving toward multilateral mechanisms for the fuel cycle

    SciTech Connect (OSTI)

    Panasyuk,A.; Rosenthal,M.; Efremov, G. V.

    2009-04-17T23:59:59.000Z

    Multilateral mechanisms for the fuel cycle are seen as a potentially important way to create an industrial infrastructure that will support a renaissance and at the same time not contribute to the risk of nuclear proliferation. In this way, international nuclear fuel cycle centers for enrichment can help to provide an assurance of supply of nuclear fuel that will reduce the likelihood that individual states will pursue this sensitive technology, which can be used to produce nuclear material directly usable nuclear weapons. Multinational participation in such mechanisms can also potentially promote transparency, build confidence, and make the implementation of IAEA safeguards more effective or more efficient. At the same time, it is important to ensure that there is no dissemination of sensitive technology. The Russian Federation has taken a lead role in this area by establishing an International Uranium Enrichment Center (IUEC) for the provision of enrichment services at its uranium enrichment plant located at the Angarsk Electrolysis Chemical Complex (AECC). This paper describes how the IUEe is organized, who its members are, and the steps that it has taken both to provide an assured supply of nuclear fuel and to ensure protection of sensitive technology. It also describes the relationship between the IUEC and the IAEA and steps that remain to be taken to enhance its assurance of supply. Using the IUEC as a starting point for discussion, the paper also explores more generally the ways in which features of such fuel cycle centers with multinational participation can have an impact on safeguards arrangements, transparency, and confidence-building. Issues include possible lAEA safeguards arrangements or other links to the IAEA that might be established at such fuel cycle centers, impact of location in a nuclear weapon state, and the transition by the IAEA to State Level safeguards approaches.

  11. Effect of fuel properties on the first cycle fuel delivery in a Port Fuel Injected Spark Ignition Engine

    E-Print Network [OSTI]

    Lang, Kevin R., 1980-

    2004-01-01T23:59:59.000Z

    Achieving robust combustion while also yielding low hydrocarbon (HC) emissions is difficult for the first cycle of cranking during the cold start of a Port Fuel Injected (PFI) Spark Ignition (SI) engine. Cold intake port ...

  12. Life-Cycle Civil Engineering Biondini & Frangopol (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-46857-2

    E-Print Network [OSTI]

    Lepech, Michael D.

    adopted as a framework for designing and constructing pave- ment systems. Life cycle assessment (LCA, ISBN 978-0-415-46857-2 An integrated life cycle assessment and life cycle analysis model for pavement cycle assessment and life cycle cost analysis model was developed to calculate the environmental impacts

  13. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced

    SciTech Connect (OSTI)

    Kara G. Cafferty; Erin M. Searcy; Long Nguyen; Sabrina Spatari

    2014-11-01T23:59:59.000Z

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  14. Full fuel-cycle comparison of forklift propulsion systems.

    SciTech Connect (OSTI)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05T23:59:59.000Z

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  15. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    SciTech Connect (OSTI)

    Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco; Stromman, Anders H.

    2012-11-15T23:59:59.000Z

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black-Right-Pointing-Pointer Uncertainties and limitations of the proposed methodologies are elaborated.

  16. A New Model for the Organizational Knowledge Life Cycle

    E-Print Network [OSTI]

    Luigi Lella; Ignazio Licata

    2007-05-08T23:59:59.000Z

    Actual organizations, in particular the ones which operate in evolving and distributed environments, need advanced frameworks for the management of the knowledge life cycle. These systems have to be based on the social relations which constitute the pattern of collaboration ties of the organization. We demonstrate here, with the aid of a model taken from the theory of graphs, that it is possible to provide the conditions for an effective knowledge management. A right way could be to involve the actors with the highest betweeness centrality in the generation of discussion groups. This solution allows the externalization of tacit knowledge, the preservation of knowledge and the raise of innovation processes.

  17. A New Model for the Organizational Knowledge Life Cycle

    E-Print Network [OSTI]

    Lella, Luigi

    2010-01-01T23:59:59.000Z

    Actual organizations, in particular the ones which operate in evolving and distributed environments, need advanced frameworks for the management of the knowledge life cycle. These systems have to be based on the social relations which constitute the pattern of collaboration ties of the organization. We demonstrate here, with the aid of a model taken from the theory of graphs, that it is possible to provide the conditions for an effective knowledge management. A right way could be to involve the actors with the highest betweeness centrality in the generation of discussion groups. This solution allows the externalization of tacit knowledge, the preservation of knowledge and the raise of innovation processes.

  18. Background and Reflections on the Life Cycle Assessment Harmonization Project

    SciTech Connect (OSTI)

    Heath, G. A.; Mann, M. K.

    2012-04-01T23:59:59.000Z

    Despite the ever-growing body of life cycle assessment (LCA) literature on electricity generation technologies, inconsistent methods and assumptions hamper comparison across studies and pooling of published results. Synthesis of the body of previous research is necessary to generate robust results to assess and compare environmental performance of different energy technologies for the benefit of policy makers, managers, investors, and citizens. With funding from the U.S. Department of Energy, the National Renewable Energy Laboratory initiated the LCA Harmonization Project in an effort to rigorously leverage the numerous individual studies to develop collective insights. The goals of this project were to: (1) understand the range of published results of LCAs of electricity generation technologies, (2) reduce the variability in published results that stem from inconsistent methods and assumptions, and (3) clarify the central tendency of published estimates to make the collective results of LCAs available to decision makers in the near term. The LCA Harmonization Project's initial focus was evaluating life cycle greenhouse gas (GHG) emissions from electricity generation technologies. Six articles from this first phase of the project are presented in a special supplemental issue of the Journal of Industrial Ecology on Meta-Analysis of LCA: coal (Whitaker et al. 2012), concentrating solar power (Burkhardt et al. 2012), crystalline silicon photovoltaics (PVs) (Hsu et al. 2012), thin-film PVs (Kim et al. 2012), nuclear (Warner and Heath 2012), and wind (Dolan and Heath 2012). Harmonization is a meta-analytical approach that addresses inconsistency in methods and assumptions of previously published life cycle impact estimates. It has been applied in a rigorous manner to estimates of life cycle GHG emissions from many categories of electricity generation technologies in articles that appear in this special supplemental supplemental issue, reducing the variability and clarifying the central tendency of those estimates in ways useful for decision makers and analysts. Each article took a slightly different approach, demonstrating the flexibility of the harmonization approach. Each article also discusses limitations of the current research, and the state of knowledge and of harmonization, pointing toward a path of extending and improving the meta-analysis of LCAs.

  19. Battery energy storage systems life cycle costs case studies

    SciTech Connect (OSTI)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01T23:59:59.000Z

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  20. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect (OSTI)

    Das, Sujit [ORNL

    2014-01-01T23:59:59.000Z

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  1. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of Bioethanol Derived from Corn and Corn Stover

    E-Print Network [OSTI]

    of Bioethanol Derived from Corn and Corn Stover Dora Ip Farbod Ahmadi Diba Derek Pope University of British Farbod Ahmadi Diba Derek Pope 4/16/2010 Life Cycle Assessment of Bioethanol Derived from Corn and Corn Stover #12;2 Abstract This paper follows the growing research of bioethanol fuels produced from farmed

  2. Life Cycle Analysis for the Walter H. Gage Residence The life cycle analysis (LCA) being carried out for this project is one of thirteen

    E-Print Network [OSTI]

    The life cycle analysis (LCA) being carried out for this project is one of thirteen others that are being1 Life Cycle Analysis for the Walter H. Gage Residence Civl 498c Jack Liu #12;Liu 2 Abstract by the UBC Records Department to perform takeoffs for the EIE inputs. The EIE presented the impact assessment

  3. Fuel Cycle Technologies Annual Review Meeting Transactions Report

    SciTech Connect (OSTI)

    Lori Braase; W. Edgar May

    2014-11-01T23:59:59.000Z

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities. FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.

  4. Estimating Externalities of Coal Fuel Cycles, Report 3

    SciTech Connect (OSTI)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1994-09-01T23:59:59.000Z

    The agreement between the US DOE and the EC established the specific objectives of the study: (a) to develop a methodological framework that uses existing data and models to quantify the external costs and benefits of energy; (b) to demonstrate the application of the framework to estimate the externalities of the coal, biomass, oil, natural gas, hydro, nuclear, photovoltaic, and wind fuel cycles (by agreement with the EC, the US addressed the first six of these); and (c) to identify major gaps in the availability of information to quantify impacts, damages, benefits, and externalities of fuel cycles; and to suggest priorities for future research. The main consideration in defining these objectives was a desire to have more information about externalities, and a better method for estimating them.

  5. Enduring Nuclear Fuel Cycle, Proceedings of a panel discussion

    SciTech Connect (OSTI)

    Walter, C. E., LLNL

    1997-11-18T23:59:59.000Z

    The panel reviewed the complete nuclear fuel cycle in the context of alternate energy resources, energy need projections, effects on the environment, susceptibility of nuclear materials to theft, diversion, and weapon proliferation. We also looked at ethical considerations of energy use, as well as waste, and its effects. The scope of the review extended to the end of the next century with due regard for world populations beyond that period. The intent was to take a long- range view and to project, not forecast, the future based on ethical rationales, and to avoid, as often happens, long-range discussions that quickly zoom in on only the next few decades. A specific nuclear fuel cycle technology that could satisfy these considerations was described and can be applied globally.

  6. User's guide for the REBUS-3 fuel cycle analysis capability

    SciTech Connect (OSTI)

    Toppel, B.J.

    1983-03-01T23:59:59.000Z

    REBUS-3 is a system of programs designed for the fuel-cycle analysis of fast reactors. This new capability is an extension and refinement of the REBUS-3 code system and complies with the standard code practices and interface dataset specifications of the Committee on Computer Code Coordination (CCCC). The new code is hence divorced from the earlier ARC System. In addition, the coding has been designed to enhance code exportability. Major new capabilities not available in the REBUS-2 code system include a search on burn cycle time to achieve a specified value for the multiplication constant at the end of the burn step; a general non-repetitive fuel-management capability including temporary out-of-core fuel storage, loading of fresh fuel, and subsequent retrieval and reloading of fuel; significantly expanded user input checking; expanded output edits; provision of prestored burnup chains to simplify user input; option of fixed-or free-field BCD input formats; and, choice of finite difference, nodal or spatial flux-synthesis neutronics in one-, two-, or three-dimensions.

  7. Gas turbine cycles with solid oxide fuel cells. Part 2: A detailed study of a gas turbine cycle with an integrated internal reforming solid oxide fuel cell

    SciTech Connect (OSTI)

    Harvey, S.P.; Richter, H.J. (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering)

    1994-12-01T23:59:59.000Z

    The energy conversion efficiency can be improved if immediate contact of air and fuel is prevented. One means to prevent this immediate contact is the use of fuel cell technology. High-temperature solid oxide fuel cells (SOFC) have many features that make them attractive for utility and industrial applications. However, in view of their high operating temperatures and the incomplete nature of the fuel oxidation process, such fuel cells must be combined with conventional power generation technology to develop power plant configurations that are both functional and efficient. Most fuel cell cycles proposed in the literature use a high-temperature fuel cell running at ambient pressure and a steam bottoming cycle to recover the waste heat generated by the fuel cell. With such cycles, the inherent flexibility and shorter start-up time characteristics of the fuel cell are lost. In Part 1 of this paper, a pressurized cycle using a solid oxide fuel cell and an integrated gas turbine bottoming cycle was presented. The cycle is simpler than most cycles with steam bottoming cycles and more suited to flexible power generation. In this paper, the authors will discuss this cycle in more detail, with an in-depth discussion of all cycle component characteristics and losses. In particular, they will make use of the fuel cell's internal fuel reforming capability. The optimal cycle parameters were obtained based on calculations performed using Aspen Technology's ASPEN PLUS process simulation software and a fuel cell simulator developed by Argonne National Laboratory. The efficiency of the proposed cycle is 68.1%. A preliminary economic assessment of the cycle shows that it should compare favorable with a state-of-the-art combined cycle plant on a cost per MWe basis.

  8. Nuclear Fuel Cycle Reasoner: PNNL FY13 Report

    SciTech Connect (OSTI)

    Hohimer, Ryan E.; Strasburg, Jana D.

    2013-09-30T23:59:59.000Z

    In Fiscal Year 2012 (FY12) PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In Fiscal Year 2013 (FY13) the SNAP demonstration was enhanced with respect to query and navigation usability issues.

  9. Life cycle assessment of bagasse waste management options

    SciTech Connect (OSTI)

    Kiatkittipong, Worapon [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management, Chulalongkorn University, Bangkok 10330 (Thailand); Wongsuchoto, Porntip [National Center of Excellence for Environmental and Hazardous Waste Management, Chulalongkorn University, Bangkok 10330 (Thailand); Pavasant, Prasert [National Center of Excellence for Environmental and Hazardous Waste Management, Chulalongkorn University, Bangkok 10330 (Thailand); Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand)], E-mail: prasert.p@chula.ac.th

    2009-05-15T23:59:59.000Z

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  10. Cycle-to-Cycle Fluctuations of Burned Fuel Mass in Spark Ignition Combustion Engines

    E-Print Network [OSTI]

    M. Wendeker; G. Litak; M. Krupa

    2003-12-28T23:59:59.000Z

    We examine a simple, fuel-air, model of combustion in spark ignition (si) engine with indirect injection. In our two fluid model, variations of fuel mass burned in cycle sequences appear due to stochastic fluctuations of a fuel feed amount. We have shown that a small amplitude of these fluctuations affects considerably the stability of a combustion process strongly depending on the quality of air-fulel mixture. The largest influence was found in the limit of a lean combustion. The possible effect of nonlinearities in the combustion process were also discussed.

  11. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facilty

    SciTech Connect (OSTI)

    Charles Park

    2006-12-01T23:59:59.000Z

    High-Level Functional & Operational Requirements for the AFCF -This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy.

  12. Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    #12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol% of total domestic ethanol production. That is, while the model still covers all alternative fuels and five

  13. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16T23:59:59.000Z

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

  14. Allocation of Energy Use LCA Case Studies LCA Case Studies Allocation of Energy Use in Petroleum Refineries to Petroleum Products Implications for Life-Cycle Energy Use and Emission Inventory of Petroleum Transportation Fuels

    E-Print Network [OSTI]

    Michael Wang; Hanjie Lee; John Molburg

    Aim, Scope, and Background. Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products

  15. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11T23:59:59.000Z

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

  16. The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS

    SciTech Connect (OSTI)

    Sathre, Roger; Masanet, Eric; Cain, Jennifer; Chester, Mikhail

    2011-04-20T23:59:59.000Z

    Life Cycle Assessment (LCA) should be used to assist carbon capture and sequestration (CCS) planners to reduce greenhouse gas (GHG) emissions and avoid unintended environmental trade-offs. LCA is an analytical framework for determining environmental impacts resulting from processes, products, and services. All life cycle stages are evaluated including raw material sourcing, processing, operation, maintenance, and component end-of-life, as well as intermediate stages such as transportation. In recent years a growing number of LCA studies have analyzed CCS systems. We reviewed 50+ LCA studies, and selected 11 studies that compared the environmental performance of 23 electric power plants with and without CCS. Here we summarize and interpret the findings of these studies. Regarding overall climatemitigation effectiveness of CCS, we distinguish between the capture percentage of carbon in the fuels, the net carbon dioxide (CO2) emission reduction, and the net GHG emission reduction. We also identify trade-offs between the climate benefits and the potential increased non-climate impacts of CCS. Emissions of non-CO2 flue gases such as NOx may increase due to the greater throughput of fuel, and toxicity issues may arise due to the use of monoethanolamine (MEA) capture solvent, resulting in ecological and human health impacts. We discuss areas where improvements in LCA data or methods are needed. The decision to implement CCS should be based on knowledge of the overall environmental impacts of the technologies, not just their carbon capture effectiveness. LCA will be an important tool in providing that knowledge.

  17. Estimating Fuel Cycle Externalities: Analytical Methods and Issues, Report 2

    SciTech Connect (OSTI)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1994-07-01T23:59:59.000Z

    The activities that produce electric power typically range from extracting and transporting a fuel, to its conversion into electric power, and finally to the disposition of residual by-products. This chain of activities is called a fuel cycle. A fuel cycle has emissions and other effects that result in unintended consequences. When these consequences affect third parties (i.e., those other than the producers and consumers of the fuel-cycle activity) in a way that is not reflected in the price of electricity, they are termed ''hidden'' social costs or externalities. They are the economic value of environmental, health and any other impacts, that the price of electricity does not reflect. How do you estimate the externalities of fuel cycles? Our previous report describes a methodological framework for doing so--called the damage function approach. This approach consists of five steps: (1) characterize the most important fuel cycle activities and their discharges, where importance is based on the expected magnitude of their externalities, (2) estimate the changes in pollutant concentrations or other effects of those activities, by modeling the dispersion and transformation of each pollutant, (3) calculate the impacts on ecosystems, human health, and any other resources of value (such as man-made structures), (4) translate the estimates of impacts into economic terms to estimate damages and benefits, and (5) assess the extent to which these damages and benefits are externalities, not reflected in the price of electricity. Each step requires a different set of equations, models and analysis. Analysts generally believe this to be the best approach for estimating externalities, but it has hardly been used! The reason is that it requires considerable analysis and calculation, and to this point in time, the necessary equations and models have not been assembled. Equally important, the process of identifying and estimating externalities leads to a number of complex issues that also have not been fully addressed. This document contains two types of papers that seek to fill part of this void. Some of the papers describe analytical methods that can be applied to one of the five steps of the damage function approach. The other papers discuss some of the complex issues that arise in trying to estimate externalities. This report, the second in a series of eight reports, is part of a joint study by the U.S. Department of Energy (DOE) and the Commission of the European Communities (EC)* on the externalities of fuel cycles. Most of the papers in this report were originally written as working papers during the initial phases of this study. The papers provide descriptions of the (non-radiological) atmospheric dispersion modeling that the study uses; reviews much of the relevant literature on ecological and health effects, and on the economic valuation of those impacts; contains several papers on some of the more complex and contentious issues in estimating externalities; and describes a method for depicting the quality of scientific information that a study uses. The analytical methods and issues that this report discusses generally pertain to more than one of the fuel cycles, though not necessarily to all of them. The report is divided into six parts, each one focusing on a different subject area.

  18. Maximizing the life cycle of plastics. Final report

    SciTech Connect (OSTI)

    Hawkins, W. L.

    1980-02-01T23:59:59.000Z

    The Plastics Research Institute has conducted a coordinated research program designed to extend the useful life of plastics. Since feedstock for practically all synthetic plastics is derived from fossil fuel, every effort should be made to obtain the maximum useful life from these materials. Eventually, plastic scrap may be used as a fuel supplement, but this disposal route should be followed only after the scrap is no longer reusable in its polymeric form. The extent to which plastic scrap will be recovered and reused will be affected by the economic situation as well as the available supply of fossil fuel. The Institute's program was conducted at five major universities. Dedicated faculty members were assembled into a research team and met frequently with members of the Institute's Board of Trustees to review progress of the program. The research was conducted by graduate students in partial fulfillment of degree requirements. Summaries are presented of the following research projects: Improved Stabilization; Separation of Mixed Plastic Scrap; Compatibilizing Agents for Mixed Plastic Scrap; Controlled Degradation of Plastic Scrap; and Determination of Compatibility.

  19. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16T23:59:59.000Z

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  20. Back-end of the fuel cycle - Indian scenario

    SciTech Connect (OSTI)

    Wattal, P.K. [Nuclear Recycle Group, Bhabha Atomic Research Centre, Trombay, Mumbai-4000 85 (India)

    2013-07-01T23:59:59.000Z

    Nuclear power has a key role in meeting the energy demands of India. This can be sustained by ensuring robust technology for the back end of the fuel cycle. Considering the modest indigenous resources of U and a huge Th reserve, India has adopted a three stage Nuclear Power Programme (NPP) based on 'closed fuel cycle' approach. This option on 'Recovery and Recycle' serves twin objectives of ensuring adequate supply of nuclear fuel and also reducing the long term radio-toxicity of the wastes. Reprocessing of the spent fuel by Purex process is currently employed. High Level Liquid Waste (HLW) generated during reprocessing is vitrified and undergoes interim storage. Back-end technologies are constantly modified to address waste volume minimization and radio-toxicity reduction. Long-term management of HLW in Indian context would involve partitioning of long lived minor actinides and recovery of valuable fission products specifically cesium. Recovery of minor actinides from HLW and its recycle is highly desirable for the sustained growth of India's NPPs. In this context, programme for developing and deploying partitioning technologies on industrial scale is pursued. The partitioned elements could be either transmuted in Fast Reactors (FRs)/Accelerated Driven Systems (ADS) as an integral part of sustainable Indian NPP. (authors)

  1. Life Cycle Assessment of Vanier Residence in University of British Columbia

    E-Print Network [OSTI]

    cycle assessment (LCA) was conducted on the Vanier Residence. The LCA conducted looks into the lifeLife Cycle Assessment of Vanier Residence in University of British Columbia Building PerformanceOff were used to create an LC model of the Vanier Residence. For this case study, a cradle-to-gate life

  2. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    SciTech Connect (OSTI)

    Parker, Frank L. [Vanderbilt University (United States)

    2012-07-01T23:59:59.000Z

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions), long term care, reduced access to 'dirty' bomb materials, the social and political costs of siting new facilities and the psychological impact of no solution to the nuclear waste problem, were taken into account, the costs would be far lower than those of the present fuel cycle. (authors)

  3. 22.351 Systems Analysis of the Nuclear Fuel Cycle, Spring 2003

    E-Print Network [OSTI]

    Kazimi, Mujid S.

    In-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, ...

  4. Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation

    E-Print Network [OSTI]

    Jaramillo, Paulina

    1 Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity from the LNG life-cycle. Notice that local distribution of natural gas falls outside our analysis boundary. Figure 1S: Domestic Natural Gas Life-cycle. Figure 2S: LNG Life-cycle. Processing Transmission

  5. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of Chemistry Building North Block

    E-Print Network [OSTI]

    ­ the UBC LCA Project ­ which aims to support the development of the field of life cycle assessment (LCA at rob.sianchuk@gmail.com #12;Running head: Life Cycle Assessment of Chemistry Building North Block CIVL 498 ­ Life Cycle Assess Life Cycle Assessment of Chemistry Building North Block Minge Weng November 18

  6. System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

    2010-09-01T23:59:59.000Z

    This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a forcing function, helping the team in this endeavor. Models don’t like “TBD” as an input, forcing us to make assumptions and see if they matter. A major addition in FY 2010 was exploratory analysis of “modified open fuelcycles, employing “minimum fuel treatment” as opposed to full aqueous or electrochemical separation treatment. This increased complexity in our analysis and analytical tool development because equilibrium conditions do not appear sustainable in minimum fuel treatment cases, as was assumed in FY 2009 work with conventional aqueous and electrochemical separation. It is no longer reasonable to assume an equilibrium situation exists in all cases.

  7. ANL/ESD/08-3 Full Fuel-Cycle Comparison

    E-Print Network [OSTI]

    ANL/ESD/08-3 Full Fuel-Cycle Comparison of Forklift Propulsion Systems Energy Systems Division. #12;ANL/ESD/08-3 Full Fuel-Cycle Comparison of Forklift Propulsion Systems by L.L. Gaines, A

  8. Determination of the proper operating range for the CAFCA IIB fuel cycle model

    E-Print Network [OSTI]

    Warburton, Jamie (Jamie L.)

    2007-01-01T23:59:59.000Z

    The fuel cycle simulation tool, CAFCA II was previously modified to produce the most recent version, CAFCA IIB. The code tracks the mass distribution of transuranics in the fuel cycle in one model and also projects costs ...

  9. Sensitivity of economic performance of the nuclear fuel cycle to simulation modeling assumptions

    E-Print Network [OSTI]

    Bonnet, Nicéphore

    2007-01-01T23:59:59.000Z

    Comparing different nuclear fuel cycles and assessing their implications require a fuel cycle simulation model as complete and realistic as possible. In this thesis, methodological implications of modeling choices are ...

  10. The Adoption of Advanced Fuel Cycle Technology Under a Single Repository Policy

    SciTech Connect (OSTI)

    Paul Wilson

    2009-11-02T23:59:59.000Z

    Develops the tools to investiage the hypothesis that the savings in repository space associated with the implementation of advanced nuclear fuel cycles can result in sufficient cost savings to offset the higher costs of those fuel cycles.

  11. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31T23:59:59.000Z

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  12. A Simulation Model for the Waterfall Software Development Life Cycle

    E-Print Network [OSTI]

    Bassil, Youssef

    2012-01-01T23:59:59.000Z

    Software development life cycle or SDLC for short is a methodology for designing, building, and maintaining information and industrial systems. So far, there exist many SDLC models, one of which is the Waterfall model which comprises five phases to be completed sequentially in order to develop a software solution. However, SDLC of software systems has always encountered problems and limitations that resulted in significant budget overruns, late or suspended deliveries, and dissatisfied clients. The major reason for these deficiencies is that project directors are not wisely assigning the required number of workers and resources on the various activities of the SDLC. Consequently, some SDLC phases with insufficient resources may be delayed; while, others with excess resources may be idled, leading to a bottleneck between the arrival and delivery of projects and to a failure in delivering an operational product on time and within budget. This paper proposes a simulation model for the Waterfall development proce...

  13. Life cycle costs for the domestic reactor-based plutonium disposition option

    SciTech Connect (OSTI)

    Williams, K.A.

    1999-10-01T23:59:59.000Z

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

  14. Total Quality Commissioning for HVAC Systems to Assure High Performance Throughout the Whole Life Cycle 

    E-Print Network [OSTI]

    Maisey, G.; Milestone, B.

    2005-01-01T23:59:59.000Z

    TOTAL QUALITY COMMISSIONING FOR HVAC SYSTEMS TO ASSURE HIGH PERFORMANCE THROUGHOUT THE WHOLE LIFE CYCLE By: Grahame E. Maisey, P.E., and Beverly Milestone, LEED AP Building Services Consultants INTRODUCTION Current HVAC systems... not provide a life cycle, high performance assurance program. Continuous commissioning is being used to continually adjust the HVAC systems to regain good performance from the original systems, but again, is not a life cycle, high performance assurance...

  15. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    SciTech Connect (OSTI)

    NONE

    2013-07-01T23:59:59.000Z

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  16. A novel concept of QUADRISO particles Part III : applications to the plutonium-thorium fuel cycle.

    SciTech Connect (OSTI)

    Talamo, A. (Nuclear Engineering Division)

    2009-03-01T23:59:59.000Z

    In the present study, a plutonium-thorium fuel cycle is investigated including the {sup 233}U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing {sup 233}U. The above configuration has been compared with a configuration where fissile (neptunium-plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the {sup 233}U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.

  17. Text Alternative Version: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products" webcast, held March 28, 2013.

  18. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01T23:59:59.000Z

    in Life?Cycle  Inventories Using Hybrid Approaches.  EEA 2006] Emission Inventory Guidebook; Activities 080501?I: National Lighting Inventory and  Energy Consumption 

  19. Towards Support for Long-Term Digital Preservation in Product Life Cycle Management

    E-Print Network [OSTI]

    Wilkes, Wolfgang; Brunsmann, Jörg; Heutelbeck, Dominic; Hundsdörfer, Andreas; Hemmje, Matthias; Heidbrink, Hans-Ulrich

    2009-01-01T23:59:59.000Z

    a preservation system and a PLM repository both native andproduct life cycle management (PLM). Investigations revealedwhich is created in early PLM phases, but preservation is

  20. Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Greenhouse gas emissions of biofuels, Improving Life Cycle Assessments by taking into account local.......................................................................................................................................................14 Chapter 1 Biofuels, greenhouse gases and climate change 1 Introduction

  1. Life cycle analysis: Getting the total picture on vehicle engineering alternatives

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This article examines how assessing energy impacts over a vehicle`s life cycle presents a different picture than traditional cost analysis. Life cycle assessment (LCA) aims to identify chances to improve the environmental behavior of the products or systems under consideration. To do this, it is necessary to collect and interpret material and energy flows for all affected processes systematically. With LCA, traditional engineering decision-making processes include environmental aspects. Life cycle engineering, on the other hand, adds environmental protection to the design and development process. The closed-loop nature of life cycle engineering is shown.

  2. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2010 Report describes the 2010 edition of energy price indices and discount factors for performing...

  3. Estimating externalities of biomass fuel cycles, Report 7

    SciTech Connect (OSTI)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01T23:59:59.000Z

    This report documents the analysis of the biomass fuel cycle, in which biomass is combusted to produce electricity. The major objectives of this study were: (1) to implement the methodological concepts which were developed in the Background Document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles, and by so doing, to demonstrate their application to the biomass fuel cycle; (2) to develop, given the time and resources, a range of estimates of marginal (i.e., the additional or incremental) damages and benefits associated with selected impact-pathways from a new wood-fired power plant, using a representative benchmark technology, at two reference sites in the US; and (3) to assess the state of the information available to support energy decision making and the estimation of externalities, and by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The demonstration of methods, modeling procedures, and use of scientific information was the most important objective of this study. It provides an illustrative example for those who will, in the future, undertake studies of actual energy options and sites. As in most studies, a more comprehensive analysis could have been completed had budget constraints not been as severe. Particularly affected were the air and water transport modeling, estimation of ecological impacts, and economic valuation. However, the most important objective of the study was to demonstrate methods, as a detailed example for future studies. Thus, having severe budget constraints was appropriate from the standpoint that these studies could also face similar constraints. Consequently, an important result of this study is an indication of what can be done in such studies, rather than the specific numerical estimates themselves.

  4. A Life Cycle Assessment of a Magnesium Automotive Front End

    SciTech Connect (OSTI)

    Das, Sujit [ORNL; Dubreuil, Alain [Natural Resources Canada; Bushi, Lindita [GreenhouseGasMeasurement.com; Tharumarajah, Ambalavanar [CSIRO/CAST-CRC

    2009-01-01T23:59:59.000Z

    The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobile. The goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North America built 2007 GM-Cadillac CTS with the standard carbon steel based design. This LCA uses the 'cradle-to-grave' approach by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 and ISO 14044:2006. Furthermore, the LCA results for aluminum based front end autopart are presented. While weight savings result in reductions in energy use and carbon dioxide emissions during the use of the car, the impacts of fabrication and recycling of lightweight materials are substantial in regard to steel. Pathways for improving sustainability of magnesium use in automobiles through material management and technology improvements including recycling are also discussed.

  5. Advanced Fuel Cycle Economic Tools, Algorithms, and Methodologies

    SciTech Connect (OSTI)

    David E. Shropshire

    2009-05-01T23:59:59.000Z

    The Advanced Fuel Cycle Initiative (AFCI) Systems Analysis supports engineering economic analyses and trade-studies, and requires a requisite reference cost basis to support adequate analysis rigor. In this regard, the AFCI program has created a reference set of economic documentation. The documentation consists of the “Advanced Fuel Cycle (AFC) Cost Basis” report (Shropshire, et al. 2007), “AFCI Economic Analysis” report, and the “AFCI Economic Tools, Algorithms, and Methodologies Report.” Together, these documents provide the reference cost basis, cost modeling basis, and methodologies needed to support AFCI economic analysis. The application of the reference cost data in the cost and econometric systems analysis models will be supported by this report. These methodologies include: the energy/environment/economic evaluation of nuclear technology penetration in the energy market—domestic and internationally—and impacts on AFCI facility deployment, uranium resource modeling to inform the front-end fuel cycle costs, facility first-of-a-kind to nth-of-a-kind learning with application to deployment of AFCI facilities, cost tradeoffs to meet nuclear non-proliferation requirements, and international nuclear facility supply/demand analysis. The economic analysis will be performed using two cost models. VISION.ECON will be used to evaluate and compare costs under dynamic conditions, consistent with the cases and analysis performed by the AFCI Systems Analysis team. Generation IV Excel Calculations of Nuclear Systems (G4-ECONS) will provide static (snapshot-in-time) cost analysis and will provide a check on the dynamic results. In future analysis, additional AFCI measures may be developed to show the value of AFCI in closing the fuel cycle. Comparisons can show AFCI in terms of reduced global proliferation (e.g., reduction in enrichment), greater sustainability through preservation of a natural resource (e.g., reduction in uranium ore depletion), value from weaning the U.S. from energy imports (e.g., measures of energy self-sufficiency), and minimization of future high level waste (HLW) repositories world-wide.

  6. Nuclear Fuel Cycle Reasoner: PNNL FY12 Report

    SciTech Connect (OSTI)

    Hohimer, Ryan E.; Pomiak, Yekaterina G.; Neorr, Peter A.; Gastelum, Zoe N.; Strasburg, Jana D.

    2013-05-03T23:59:59.000Z

    Building on previous internal investments and leveraging ongoing advancements in semantic technologies, PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In developing this proof of concept prototype, the utility and relevancy of semantic technologies to the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) has been better understood.

  7. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  8. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    SciTech Connect (OSTI)

    Sullivan, John

    2013-06-04T23:59:59.000Z

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  9. Tests of prototype salt stripper system for IFR fuel cycle

    SciTech Connect (OSTI)

    Carls, E.L.; Blaskovitz, R.J.; Johnson, T.R. [Argonne National Lab., IL (United States); Ogata, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1993-09-01T23:59:59.000Z

    One of the waste treatment steps for the on-site reprocessing of spent fuel from the Integral Fast Reactor fuel cycles is stripping of the electrolyte salt used in the electrorefining process. This involves the chemical reduction of the actinides and rare earth chlorides forming metals which then dissolve in a cadmium pool. To develop the equipment for this step, a prototype salt stripper system has been installed in an engineering scale argon-filled glovebox. Pumping trails were successful in transferring 90 kg of LiCl-KCl salt containing uranium and rare earth metal chlorides at 500{degree}C from an electrorefiner to the stripper vessel at a pumping rate of about 5 L/min. The freeze seal solder connectors which were used to join sections of the pump and transfer line performed well. Stripping tests have commenced employing an inverted cup charging device to introduce a Cd-15 wt % Li alloy reductant to the stripper vessel.

  10. Integrating repositories with fuel cycles: The airport authority model

    SciTech Connect (OSTI)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2012-07-01T23:59:59.000Z

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members appointed by the state governor, county governments, and city governments. This structure (1) enables state and local governments to work together to maximize job and tax benefits to local communities and the state, (2) provides a mechanism to address local concerns such as airport noise, and (3) creates an institutional structure with large incentives to maximize the value of the common asset, the runway. A repository site authority would have a similar structure and be the local interface to any national waste management authority. (authors)

  11. A comparative assessment of the economics of plutonium disposition including comparison with other nuclear fuel cycles

    SciTech Connect (OSTI)

    Williams, K.A.; Miller, J.W.; Reid, R.L.

    1997-05-01T23:59:59.000Z

    DOE has been evaluating three technologies for the disposition of approximately 50 metric tons of surplus plutonium from defense-related programs: reactors, immobilization, and deep boreholes. As part of the process supporting an early CY 1997 Record of Decision (ROD), a comprehensive assessment of technical viability, cost, and schedule has been conducted. Oak Ridge National Laboratory has managed and coordinated the life-cycle cost (LCC) assessment effort for this program. This paper discusses the economic analysis methodology and the results prior to ROD. Other objectives of the paper are to discuss major technical and economic issues that impact plutonium disposition cost and schedule. Also to compare the economics of a once-through weapons-derived MOX nuclear fuel cycle to other fuel cycles, such as those utilizing spent fuel reprocessing. To evaluate the economics of these technologies on an equitable basis, a set of cost estimating guidelines and a common cost-estimating format were utilized by all three technology teams. This paper also includes the major economic analysis assumptions and the comparative constant-dollar and discounted-dollar LCCs.

  12. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Brent W. Dixon; Steven J. Piet

    2004-10-01T23:59:59.000Z

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation – Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

  13. NMSS handbook for decommissioning fuel cycle and materials licensees

    SciTech Connect (OSTI)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M. [and others

    1997-03-01T23:59:59.000Z

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

  14. Fuel cycle analysis in a thorium fueled reactor using bidirectional fuel movement : correction to report MIT-2073-1, MITNE-51

    E-Print Network [OSTI]

    Stephen, James D.

    1965-01-01T23:59:59.000Z

    This report corrects an error discovered in the code used in the study "Fuel Cycle Analysis in a Thorium Fueled Reactor Using Bidirectional Fuel Movement," MIT-2073-1, MITNE-51. The results of the correction show considerable ...

  15. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    SciTech Connect (OSTI)

    Powers, J; Abbott, R; Fratoni, M; Kramer, K; Latkowski, J; Seifried, J; Taylor, J

    2010-03-08T23:59:59.000Z

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.

  16. Impact of alternative nuclear fuel cycle options on infrastructure and fuel requirements, actinide and waste inventories, and economics

    E-Print Network [OSTI]

    Guérin, Laurent, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The nuclear fuel once-through cycle (OTC) scheme currently practiced in the U.S. leads to accumulation of uranium, transuranic (TRU) and fission product inventories in the spent nuclear fuel. Various separation and recycling ...

  17. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    None

    2011-12-19T23:59:59.000Z

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  18. 22.251 / 22.351 Systems Analysis of the Nuclear Fuel Cycle, Fall 2005

    E-Print Network [OSTI]

    Kazimi, Mujid S.

    This course provides an in-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, ...

  19. A dynamic fuel cycle analysis for a heterogeneous thorium-DUPIC recycle in CANDU reactors

    SciTech Connect (OSTI)

    Jeong, C. J.; Park, C. J.; Choi, H. [Korea Atomic Energy Research Inst., P.O. Box 150, Yuseong, Daejeon, 305-600 (Korea, Republic of)

    2006-07-01T23:59:59.000Z

    A heterogeneous thorium fuel recycle scenario in a Canada deuterium uranium (CANDU) reactor has been analyzed by the dynamic analysis method. The thorium recycling is performed through a dry process which has a strong proliferation resistance. In the fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides, and fission products of a multiple thorium recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. The analysis results have shown that the heterogeneous thorium fuel cycle can be constructed through the dry process technology. It is also shown that the heterogeneous thorium fuel cycle can reduce the spent fuel inventory and save on the natural uranium resources when compared with the once-through cycle. (authors)

  20. Journal of Power Sources 158 (2006) 679688 Cycle life performance of lithium-ion pouch cells

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Journal of Power Sources 158 (2006) 679­688 Cycle life performance of lithium-ion pouch cells Available online 15 November 2005 Abstract Cycle life studies have been done on lithium-ion pouch cell Elsevier B.V. All rights reserved. Keywords: Capacity fade; Temperature dependence; Lithium-ion pouch cell

  1. ORNL/TM-2006/138 Comparing Life-Cycle Costs of ESPCs

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ORNL/TM-2006/138 Comparing Life-Cycle Costs of ESPCs and Appropriations-Funded Energy Projects Follow-Up on ESPC and Appropriations Comparing Life-Cycle Costs John Shonder, Patrick Hughes, and Erica PROCESSES.........................................................................................3 The ESPC

  2. Incorporating Life Cycle Assessment into the LEED Green Building Rating System

    E-Print Network [OSTI]

    Victoria, University of

    Incorporating Life Cycle Assessment into the LEED Green Building Rating System by Michael Supervisory Committee Incorporating Life Cycle Assessment into the LEED Green Building Rating System and regional product criteria within the LEED Green Building rating system are not based on comprehensive

  3. Interaction between product life cycle management and production management: PLM-MES integration

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Interaction between product life cycle management and production management: PLM-MES integration engineering and manufacturing steps within the Product Life cycle Management (PLM) context. Initially, PLM integrated into the PLM solutions. Actually, there is much to be gained by extending the coverage of PLM

  4. The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment project

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment for Green Technology: life-cycle assessment of a brownfield redevelopment project Thomas Brecheisen1 Online at stacks.iop.org/ERL/8/015038 Abstract The sustainable development of brownfields reflects

  5. A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines

    E-Print Network [OSTI]

    Stanford University

    A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines Kay Abstract. Integrating structural health monitoring into life-cycle management strategies for wind turbines data) can effectively be used to capture the operational and structural behavior of wind turbines

  6. EARTHQUAKE CAUSED RELEASES FROM A NUCLEAR FUEL CYCLE FACILITY

    SciTech Connect (OSTI)

    Charles W. Solbrig; Chad Pope; Jason Andrus

    2014-08-01T23:59:59.000Z

    The fuel cycle facility (FCF) at the Idaho National Laboratory is a nuclear facility which must be licensed in order to operate. A safety analysis is required for a license. This paper describes the analysis of the Design Basis Accident for this facility. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. The hot cell is used to process spent metallic nuclear fuel. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure, temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.

  7. Closing nuclear fuel cycle with fast reactors: problems and prospects

    SciTech Connect (OSTI)

    Shadrin, A.; Dvoeglazov, K.; Ivanov, V. [Bochvar Institute - VNIINM, Moscow (Russian Federation)

    2013-07-01T23:59:59.000Z

    The closed nuclear fuel cycle (CNFC) with fast reactors (FR) is the most promising way of nuclear energetics development because it prevents spent nuclear fuel (SNF) accumulation and minimizes radwaste volume due to minor actinides (MA) transmutation. CNFC with FR requires the elaboration of safety, environmentally acceptable and economically effective methods of treatment of SNF with high burn-up and low cooling time. The up-to-date industrially implemented SNF reprocessing technologies based on hydrometallurgical methods are not suitable for the reprocessing of SNF with high burn-up and low cooling time. The alternative dry methods (such as electrorefining in molten salts or fluoride technologies) applicable for such SNF reprocessing have not found implementation at industrial scale. So the cost of SNF reprocessing by means of dry technologies can hardly be estimated. Another problem of dry technologies is the recovery of fissionable materials pure enough for dense fuel fabrication. A combination of technical solutions performed with hydrometallurgical and dry technologies (pyro-technology) is proposed and it appears to be a promising way for the elaboration of economically, ecologically and socially accepted technology of FR SNF management. This paper deals with discussion of main principle of dry and aqueous operations combination that probably would provide safety and economic efficiency of the FR SNF reprocessing. (authors)

  8. Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; O'Donoughue, P.; Whitaker, M.

    2012-12-01T23:59:59.000Z

    This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

  9. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    SciTech Connect (OSTI)

    Schroeder, Jenna N.

    2014-06-10T23:59:59.000Z

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  10. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  11. Fuel Cycle Scenario Definition, Evaluation, and Trade-offs

    SciTech Connect (OSTI)

    Steven J. Piet; Gretchen E. Matthern; Jacob J. Jacobson; Christopher T. Laws; Lee C. Cadwallader; Abdellatif M. Yacout; Robert N. Hill; J. D. Smith; Andrew S. Goldmann; George Bailey

    2006-08-01T23:59:59.000Z

    This report aims to clarify many of the issues being discussed within the AFCI program, including Inert Matrix Fuel (IMF) versus Mixed Oxide (MOX) fuel, single-pass versus multi-pass recycling, thermal versus fast reactors, potential need for transmutation of technetium and iodine, and the value of separating cesium and strontium. It documents most of the work produced by INL, ANL, and SNL personnel under their Simulation, Evaluation, and Trade Study (SETS) work packages during FY2005 and the first half of FY2006. This report represents the first attempt to calculate a full range of metrics, covering all four AFCI program objectives - waste management, proliferation resistance, energy recovery, and systematic management/economics/safety - using a combination of "static" calculations and a system dynamic model, DYMOND. In many cases, we examine the same issue both dynamically and statically to determine the robustness of the observations. All analyses are for the U.S. reactor fleet. This is a technical report, not aimed at a policy-level audience. A wide range of options are studied to provide the technical basis for identifying the most attractive options and potential improvements. Option improvement could be vital to accomplish before the AFCI program publishes definitive cost estimates. Information from this report will be extracted and summarized in future policy-level reports. Many dynamic simulations of deploying those options are included. There are few "control knobs" for flying or piloting the fuel cycle system into the future, even though it is dark (uncertain) and controls are sluggish with slow time response: what types of reactors are built, what types of fuels are used, and the capacity of separation and fabrication plants. Piloting responsibilities are distributed among utilities, government, and regulators, compounding the challenge of making the entire system work and respond to changing circumstances. We identify four approaches that would increase our ability to pilot the fuel cycle system: (1) have a recycle strategy that could be implemented before the 2030-2050 approximate period when current reactors retire so that replacement reactors fit into the strategy, (2) establish an option such as multi-pass blended-core IMF as a downward plutonium control knob and accumulate waste management benefits early, (3) establish fast reactors with flexible conversion ratio as a future control knob that slowly becomes available if/when fast reactors are added to the fleet, and (4) expand exploration of blended assemblies and cores, which appear to have advantages and agility. Initial results suggest multi-pass full-core MOX appears to be a less effective way than multi-pass blended core IMF to manage the fuel cycle system because it requires higher TRU throughput while more slowly accruing waste management benefits. Single-pass recycle approaches for LWRs (we did not study the VHTR) do not meet AFCI program objectives and could be considered a "dead end". Fast reactors appear to be effective options but a significant number of fast reactors must be deployed before the benefit of such strategies can be observed.

  12. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect (OSTI)

    Mann, M.K.; Spath, P.L.

    1997-12-01T23:59:59.000Z

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  13. National briefing summaries: Nuclear fuel cycle and waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01T23:59:59.000Z

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

  14. National briefing summaries: Nuclear fuel cycle and waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1988-12-01T23:59:59.000Z

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

  15. Nuclear-fuel-cycle facility deployment and price generation

    SciTech Connect (OSTI)

    Andress, D.A.

    1981-04-01T23:59:59.000Z

    The enrichment process and how it is to be modeled in the International Nuclear Model (INM) is described. The details of enrichment production, planning, unit price generation, demand estimation and ordering are examined. The enrichment process from both the producer's and the utility's point of view is analyzed. The enrichment separative-work-unit (SWU) contracts are also discussed. The relationship of the enrichment process with other sectors of the nuclear fuel cycle, expecially uranium mining and milling is considered. There are portions of the enrichment process that are not completely understood at the present time. These areas, which require further study, will be pinpointed in the following discussion. In many cases, e.g., the advent of SMU brokerage activities, the answers will emerge only in time. In other cases, e.g., political trends, uncertainties will always remain. It is possible to cast the uncertainties in a probabilistic framework, but this is beyond the scope of this report. INM, a comprehensive model of the international nuclear industry, simulates the market decision process based on current and future price expectations under a broad range of scenario specifications. INM determines the proper reactor mix as well as the planning, operation, and unit price generation of the attendant nuclear fuel cycle facilities. The level of detail of many of the enrichment activities presented in this report, e.g., the enrichment contracts, is too fine to be incorporated into INM. Nevertheless, they are presented in a form that is ammendable to modeling. The reasons for this are two-fold. First, it shows the level of complexity that would be required to model the entire system. Second, it presents the structural framework for a detailed, stand-alone enrichment model.

  16. Parametric analyses of single-zone thorium-fueled molten salt reactor fuel cycle options

    SciTech Connect (OSTI)

    Powers, J.J.; Worrall, A.; Gehin, J.C.; Harrison, T.J.; Sunny, E.E. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6172 (United States)

    2013-07-01T23:59:59.000Z

    Analyses of fuel cycle options based on thorium-fueled Molten Salt Reactors (MSRs) have been performed in support of fuel cycle screening and evaluation activities for the United States Department of Energy. The MSR options considered are based on thermal spectrum MSRs with 3 different separations levels: full recycling, limited recycling, and 'once-through' operation without active separations. A single-fluid, single-zone 2250 MWth (1000 MWe) MSR concept consisting of a fuel-bearing molten salt with graphite moderator and reflectors was used as the basis for this study. Radiation transport and isotopic depletion calculations were performed using SCALE 6.1 with ENDF/B-VII nuclear data. New methodology developed at Oak Ridge National Laboratory (ORNL) enables MSR analysis using SCALE, modeling material feed and removal by taking user-specified parameters and performing multiple SCALE/TRITON simulations to determine the resulting equilibrium operating conditions. Parametric analyses examined the sensitivity of the performance of a thorium MSR to variations in the separations efficiency for protactinium and fission products. Results indicate that self-sustained operation is possible with full or limited recycling but once-through operation would require an external neutron source. (authors)

  17. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    of electricity generation using different fuels andof fossil fuel production, electricity generation, and other

  18. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

    2011-03-01T23:59:59.000Z

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  19. Long-term global nuclear energy and fuel cycle strategies

    SciTech Connect (OSTI)

    Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1997-09-24T23:59:59.000Z

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  20. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

    2007-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  1. Applying Human Factors during the SIS Life Cycle

    SciTech Connect (OSTI)

    Avery, K.

    2010-05-05T23:59:59.000Z

    Safety Instrumented Systems (SIS) are widely used in U.S. Department of Energy's (DOE) nonreactor nuclear facilities for safety-critical applications. Although use of the SIS technology and computer-based digital controls, can improve performance and safety, it potentially introduces additional complexities, such as failure modes that are not readily detectable. Either automated actions or manual (operator) actions may be required to complete the safety instrumented function to place the process in a safe state or mitigate a hazard in response to an alarm or indication. DOE will issue a new standard, Application of Safety Instrumented Systems Used at DOE Nonreactor Nuclear Facilities, to provide guidance for the design, procurement, installation, testing, maintenance, operation, and quality assurance of SIS used in safety significant functions at DOE nonreactor nuclear facilities. The DOE standard focuses on utilizing the process industry consensus standard, American National Standards Institute/ International Society of Automation (ANSI/ISA) 84.00.01, Functional Safety: Safety Instrumented Systems for the Process Industry Sector, to support reliable SIS design throughout the DOE complex. SIS design must take into account human-machine interfaces and their limitations and follow good human factors engineering (HFE) practices. HFE encompasses many diverse areas (e.g., information display, user-system interaction, alarm management, operator response, control room design, and system maintainability), which affect all aspects of system development and modification. This paper presents how the HFE processes and principles apply throughout the SIS life cycle to support the design and use of SIS at DOE nonreactor nuclear facilities.

  2. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Broader source: Energy.gov (indexed) [DOE]

    185 HP, Port Fuel Injected, V6 Aluminum, 4 Valves per Cylinder, Naturally aspirated (No Turbo)) - Transmission (Front Wheel Drive, Locking Automatic) - Fuel Economy and...

  3. Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2009-03-01T23:59:59.000Z

    With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

  4. A fuel cycle assessment guide for utility and state energy planners

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This guide, one in a series of documents designed to help assess fuel cycles, is a framework for setting parameters, collecting data, and analyzing fuel cycles for supply-side and demand-side management. It provides an automated tool for entering comparative fuel cycle data that are meaningful to state and utility integrated resource planning, collaborative, and regional energy planning activities. It outlines an extensive range of energy technology characteristics and environmental, social, and economic considerations within each stage of a fuel cycle. The guide permits users to focus on specific stages or effects that are relevant to the technology being evaluated and that meet the user`s planning requirements.

  5. The fuel cycle economics of improved uranium utilization in light water reactors

    E-Print Network [OSTI]

    Abbaspour, Ali Tehrani

    A simple fuel cycle cost model has been formulated, tested satisfactorily (within better than 3% for a wide range of cases)

  6. Life Cycle Energy and Climate Change Implication of Nanotechnologies: A Critical Review Hyung Chul Kim and Vasilis Fthenakis

    E-Print Network [OSTI]

    and health impacts of nano-technologies triggered a recent surge of life cycle assessment (LCA) studies in parallel with the progress of nanotechnologies by employing life-cycle assessment (LCA) that is widely1 Life Cycle Energy and Climate Change Implication of Nanotechnologies: A Critical Review Hyung

  7. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of UBC Faculty of Pharmaceutical Sciences Building

    E-Print Network [OSTI]

    ­ which aims to support the development of the field of life cycle assessment (LCA). The informationUBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment.sianchuk@gmail.com #12;2 | P a g e Life Cycle Assessment of UBC Faculty of Pharmaceutical Sciences Building CIVL 498E

  8. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of the Aquatic Ecosystems Research Laboratory

    E-Print Network [OSTI]

    of life cycle assessment (LCA). The information and findings contained in this report have not been, 2013 Final Report #12;CIVL 498C: Life Cycle Assessment of the Aquatic Ecosystems Research LaboratoryUBC Social Ecological Economic Development Studies (SEEDS) Student Report Daniel Tse Life Cycle

  9. Accepted for publication in the International Journal of Life Cycle Assessment on 13 March 2013 Stochastic and epistemic uncertainty

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2013 #12;4 1. Introduction Life cycle assessment (LCA) aims at modelling complex systems that usually1 Accepted for publication in the International Journal of Life Cycle Assessment on 13 March 2013 of Life Cycle Assessment (2013) 1-10" DOI : 10.1007/s11367-013-0572-6 #12;2 Abstract Purpose: When

  10. The 6th International Conference on Life Cycle Management in Gothenburg 2013 TOWARD A STRUCTURED FUNCTIONAL UNIT DEFINITION

    E-Print Network [OSTI]

    Boyer, Edmond

    Chatenay-Malabry, France. *E-mail: francois.cluzel@ecp.fr Keywords: Life Cycle Assessment (LCA), Goal of comparable product quantities to provide reliable Life Cycle Assessment (LCA) results. Although definition framework. INTRODUCTION Life Cycle Assessment (LCA) is performed in product design to measure

  11. Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans

    E-Print Network [OSTI]

    Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European determinants of life cycle emissions of greenhouse gases linked to the life cycle of biodiesel from European rapeseed and Brazilian soybeans. For biodiesel from European rapeseed and for biodiesel from Brazilian

  12. A Perspective on the U.S. Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Rodwell, Ed; Machiels, Albert [Electric Power Research Institute, Inc. - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States)

    2006-07-01T23:59:59.000Z

    There has been a resurgence of interest in the possibility of processing the US spent nuclear fuel, instead of burying it in a geologic repository. Accordingly, key topical findings from three relevant EPRI evaluations made in the 1990-1995 time-frame are recapped and updated to accommodate a few developments over the subsequent ten years. Views recently expressed by other US entities are discussed. Processing aspects thereby addressed include effects on waste disposal and on geologic repository capacity, impacts on the economics of the nuclear fuel cycle and of the overall nuclear power scenario, alternative dispositions of the plutonium separated by the processing, impacts on the structure of the perceived weapons proliferation risk, and challenges for the immediate future and for the current half-century. Currently, there is a statutory limit of 70,000 metric tons on the amount of nuclear waste materials that can be accepted at Yucca Mountain. The Environmental Impact Statement (EIS) for the project analyzed emplacement of up to 120,000 metric tons of nuclear waste products in the repository. Additional scientific analyses suggest significantly higher capacity could be achieved with changes in the repository configuration that use only geology that has already been characterized and do not deviate from existing design parameters. Conservatively assuming the repository capacity postulated in the EIS, the need date for a second repository is essentially deferrable until that determined by a potential new nuclear plant deployment program. A further increase in technical capacity of the first repository (and further and extensive delay to the need date for a second repository) is potentially achievable by processing the spent fuel to remove the plutonium (and at least the americium too), provided the plutonium and the americium are then comprehensively burnt. The burning of some of the isotopes involved would need fast reactors (discounting for now a small possibility that one of several recently postulated alternatives will prove superior overall). However, adoption of processing would carry a substantial cost burden and reliability of the few demonstration fast reactors built to-date has been poor. Trends and developments could remove these obstacles to the processing scenario, possibly before major decisions on a second repository become necessary, which need not be until mid-century at the earliest. Pending the outcomes of these long-term trends and developments, economics and reliability encourage us to stay with non-processing for the near term at least. Besides completing the Yucca Mountain program, the two biggest and inter-related fuel-cycle needs today are for a nationwide consensus on which processing technology offers the optimum mix of economic competitiveness and proliferation resistance and for a sustained effort to negotiate greater international cooperation and safeguards. Equally likely to control the readiness schedule is development/demonstration of an acceptable, reliable and affordable fast reactor. (authors)

  13. Analyzing the proliferation resistance of advanced nuclear fuel cycles : in search of an assessment methodology for use in fuel cycle simulations

    E-Print Network [OSTI]

    Pierpoint, Lara Marie

    2008-01-01T23:59:59.000Z

    A methodology to assess proliferation resistance of advanced nuclear energy systems is investigated. The framework, based on Multi-Attribute Utility Theory (MAUT), is envisioned for use within early-stage fuel cycle ...

  14. Federal Register Notice for Life Cycle Greenhouse Gas Perspective on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartmentEnergyEnergyDepartmentFLASHExporting Liquefied

  15. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: Increasing

  16. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01T23:59:59.000Z

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  17. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

  18. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Boyd et al. : “Life-cycle energy demand and global warmingLife-Cycle Energy Demand of Computational Logic: From High-to assess the life-cycle energy demand of its products for

  19. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01T23:59:59.000Z

    Methodology iii Life-Cycle Assessment (LCA) . . . . . . .Results 6.1 Life-Cycle Assessment (LCA) . . . . . 6.1.1Analysis (LCEA) 4. Life-Cycle Assessment (LCA) 5. Exergetic

  20. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2007-01-01T23:59:59.000Z

    Life-cycle Assessment (LCA)comprehensive life-cycle assessment (LCA) models to quantifyUCB-ITS-VWP-2007-7 Life-cycle Assessment (LCA) The vehicles,

  1. Simulation of the nuclear fuel cycle with recycling : options and outcomes

    E-Print Network [OSTI]

    Silva, Rodney Busquim e

    2008-01-01T23:59:59.000Z

    A system dynamics simulation technique is applied to generate a new version of the CAFCA code to study the mass flow in the nuclear fuel cycle, and the impact of different options for advanced reactors and fuel recycling ...

  2. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    SciTech Connect (OSTI)

    Leigh R. Martin

    2014-09-01T23:59:59.000Z

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  3. Potential synergy: the thorium fuel cycle and rare earths processing

    SciTech Connect (OSTI)

    Ault, T.; Wymer, R.; Croff, A.; Krahn, S. [Vanderbilt University: 2301 Vanderbilt Place/PMB 351831, Nashville, TN 37235 (United States)

    2013-07-01T23:59:59.000Z

    The use of thorium in nuclear power programs has been evaluated on a recurring basis. A concern often raised is the lack of 'thorium infrastructure'; however, for at least a part of a potential thorium fuel cycle, this may less of a problem than previously thought. Thorium is frequently encountered in association with rare earth elements and, since the U.S. last systematically evaluated the large-scale use of thorium (the 1970's,) the use of rare earth elements has increased ten-fold to approximately 200,000 metric tons per year. Integration of thorium extraction with rare earth processing has been previously described and top-level estimates have been done on thorium resource availability; however, since ores and mining operations differ markedly, what is needed is process flowsheet analysis to determine whether a specific mining operation can feasibly produce thorium as a by-product. Also, the collocation of thorium with rare earths means that, even if a thorium product stream is not developed, its presence in mining waste streams needs to be addressed and there are previous instances where this has caused issues. This study analyzes several operational mines, estimates the mines' ability to produce a thorium by-product stream, and discusses some waste management implications of recovering thorium. (authors)

  4. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    battery technology now under options, excluding the metal/air batteries: zinc/life- Zinc--air batteries. Like the Al/air battery, the Zn/

  5. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01T23:59:59.000Z

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  6. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2008-01-01T23:59:59.000Z

    Life-cycle Assessment (LCA)..comprehensive life-cycle assessment (LCA) models to quantifyat each stage. Life-cycle Assessment (LCA) The vehicles,

  7. Description of Transmutation Library for Fuel Cycle System Analyses

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Edward A. Hoffman

    2010-08-01T23:59:59.000Z

    This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.[Piet2008] The Transmutation Library has the following objectives: • Assemble past and future transmutation cases for system analyses. • For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. • Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. • Provide mass fractions at input (charge) and output (discharge) for each case. • Eliminate the need for either “fission product other” or “actinide other” while conserving mass. Assessments of waste and separation cannot use “fission product other” or “actinide other” as their chemical behavior is undefined. • Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. • Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: • Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. • Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo-Ru-Rh-Pd-other, four other specific TM isotopes, and TM-other. Mo-Ru-Rh-Pd are separated because their content constrains the loading of waste in glass, so we have to know the mass of those elements independent of others. • Rules for collapsing long lists of isotopes (~1000) to the 81 items in the library. For each tracked isotope, we define which short-lived isotopes’ mass (at t=0) is included with the mass of the tracked isotope at t=0, which short-lived radioactive progeny must be accounted for when the tracked isotope decays, and to which of the other 80 items the mass of the tracked isotope goes when it decays. • Explanation of where raw data files can be found on the fuel cycle data portal. • Explanation of generic cross section sets • Explanation of isotope-specific parameters such as heat and dose conversion factors • Explanation of the LWR UOX burnup and FR TRU CR correlations.

  8. LIFE Materails: Molten-Salt Fuels Volume 8

    SciTech Connect (OSTI)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11T23:59:59.000Z

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  9. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  10. Methods for managing uncertainly in material selection decisions : robustness of early stage life cycle assessment

    E-Print Network [OSTI]

    Nicholson, Anna L. (Anna Louise)

    2009-01-01T23:59:59.000Z

    Utilizing alternative materials is an important tactic to improve the environmental performance of products. Currently a growing array of materials candidates confronts today's product designer. While life-cycle assessment ...

  11. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products

    Broader source: Energy.gov [DOE]

    This March 28, 2013 webcast reviewed DOE's recently completed three-part study of the life-cycle energy and environmental impacts of LED lighting products relative to incandescent and CFL...

  12. Energy Price Indices and Discount Factors for Life-Cycle Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NISTIR 85-3273-29 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2014 Annual Supplement to NIST Handbook 135 Amy S. Rushing Joshua D. Kneifel Priya...

  13. Iterative uncertainty reduction via Monte Carlo simulation : a streamlined life cycle assessment case study

    E-Print Network [OSTI]

    Bolin, Christopher E. (Christopher Eric)

    2013-01-01T23:59:59.000Z

    Life cycle assessment (LCA) is one methodology for assessing a product's impact on the environment. LCA has grown in popularity recently as consumers and governments request more information concerning the environmental ...

  14. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01T23:59:59.000Z

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  15. Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy,

    E-Print Network [OSTI]

    California at Berkeley, University of

    Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy and Environmental Engineering Civil Systems Program mchester@cal.berkeley.edu Project Director: Arpad Horvath, Associate Professor University of California, Berkeley Department of Civil and Environmental Engineering

  16. An exploration of materials taxonomies to support streamlined life cycle assessment

    E-Print Network [OSTI]

    Reis, Lynn (Lynn Diana)

    2013-01-01T23:59:59.000Z

    As life cycle assessment (LCA) gains prominence as a reliable method of environmental evaluation, concerns about data availability and quality have become more important. LCA is a resource intensive methodology, and thus ...

  17. Life-cycle Environmental Inventory of Passenger Transportation in the United States

    E-Print Network [OSTI]

    Chester, Mikhail V

    2008-01-01T23:59:59.000Z

    energy  and  GHG performance of Chicago and New York is the Chicago and New York systems where energy and  emissions CO 2 e).  For New York, life?cycle energy and GHG emissions 

  18. Enabling streamlined life cycle assessment : materials-classification derived structured underspecification

    E-Print Network [OSTI]

    Rampuria, Abhishek

    2012-01-01T23:59:59.000Z

    As environmental footprint considerations for companies gain greater importance, the need for quantitative impact assessment tools such as life cycle assessment (LCA) has become a higher priority. Currently, the cost and ...

  19. A Review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs

    E-Print Network [OSTI]

    Kemner, Ken

    ................................................................................................. 8 3.1.1 Lead-Acid Batteries .............................................................................................. 16 3.2.1 Lead-Acid BatteriesA Review of Battery Life-Cycle Analysis: State of Knowledge and Critical Needs ANL/ESD/10-7 Energy

  20. Life cycle assessment of UK pig production systems: the impact of dietary protein source 

    E-Print Network [OSTI]

    Stephen, Katie Louise

    2012-06-22T23:59:59.000Z

    A Life Cycle Assessment (LCA) was developed to evaluate the environmental impacts of producing 1 kg pig live weight. A comparison was made between dietary protein sources, i.e. imported soybean meal with the UK protein ...

  1. Evaluation of probabilistic underspecification as a method for incorporating uncertainty into comparative life cycle assessments

    E-Print Network [OSTI]

    Wildnauer, Margaret T. (Margaret Thea)

    2012-01-01T23:59:59.000Z

    Life cycle assessments are quickly becoming a crucial method through which the environmental impacts of products or processes are evaluated. A concern with current practice, however, is that the use of deterministic values ...

  2. Construction of a classification hierarchy for process underspecification to streamline life-cycle assessment

    E-Print Network [OSTI]

    Cary, Victor E

    2014-01-01T23:59:59.000Z

    Concerns over global warming potential and environmental degradation have created a demand for accurate assessment of the impact of various products and processes. Life cycle assessment (LCA), a quantitative assessment ...

  3. Product Life Cycle, and Market Entry and Exit Decisions Under Uncertainty

    E-Print Network [OSTI]

    Chi, Tailan; Liu, John

    2001-01-01T23:59:59.000Z

    A key characteristic of the product life cycle (PLC) is the depletion of the product’s market potential due to technological obsolescence. Based on this concept, we develop a stochastic model for evaluating market entry and exit decisions during...

  4. System strategies in the management of transit systems towards the end of their life cycle

    E-Print Network [OSTI]

    Kairon, Ajmer Singh

    2007-01-01T23:59:59.000Z

    This thesis explores and evaluates essential strategies needed for the transit authority/operator to deal with end of life cycle challenges of Rapid Transit Systems (RTS) systems. RTS systems are elaborate systems consisting ...

  5. Proceedings: 2003 Workshop on Life Cycle Management Planning for Systems, Structures, and Components

    SciTech Connect (OSTI)

    None

    2003-12-01T23:59:59.000Z

    These proceedings of the 2003 EPRI Life Cycle Management Workshop provide nuclear plant owners with an overview of the state of development of methods and tools for performing long-term planning for maintenance, aging management, and obsolescence management of systems, structures, and components important to a plant's long-term safety, power production, and value in a market-driven industry. The proceedings summarize the results of applying life cycle management at several plants.

  6. Alternative water sources: Desalination model provides life-cycle costs of facility

    E-Print Network [OSTI]

    Supercinski, Danielle

    2009-01-01T23:59:59.000Z

    Story by Danielle Supercinski tx H2O | pg. 8 Alternative water sourcees Desalination model provides life-cycle costs of facility platform and design standards as DESAL ECONOMICS?, but created to analyze con- ventional surface water treatment... to determine the economic and financial life-cycle costs of building and operating four water treatment facilities in South Texas. One facility was the Southmost Regional Water Authority Regional Desalination Plant near Brownsville. Sturdi- vant said...

  7. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Warner, E. S.; Heath, G. A.

    2012-04-01T23:59:59.000Z

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  8. Alternative water sources: Desalination model provides life-cycle costs of facility 

    E-Print Network [OSTI]

    Supercinski, Danielle

    2009-01-01T23:59:59.000Z

    Story by Danielle Supercinski tx H2O | pg. 8 Alternative water sourcees Desalination model provides life-cycle costs of facility platform and design standards as DESAL ECONOMICS?, but created to analyze con- ventional surface water treatment... to determine the economic and financial life-cycle costs of building and operating four water treatment facilities in South Texas. One facility was the Southmost Regional Water Authority Regional Desalination Plant near Brownsville. Sturdi- vant said...

  9. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    SciTech Connect (OSTI)

    Cornet, S.M. [OECD Nuclear Energy Agency, 12 Boulevard des Iles, 92130 Issy-les-Moulineaux (France); McCarthy, K. [Idaho Nat. Lab. - P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Chauvin, N. [CEA Saclay, Nuclear Energy Division, 91191 Gif/Yvette (France)

    2013-07-01T23:59:59.000Z

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  10. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    SciTech Connect (OSTI)

    Farmer, J

    2008-09-08T23:59:59.000Z

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including un-enriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to dive

  11. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    for electric power generation, and for diesel and fuel oil,for electric power generation, and for diesel and fuel oil,

  12. Building Life Cycle Cost Programs File Saving Troubleshooting | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy Building

  13. Building Life Cycle Cost Programs Software Installation Troubleshooting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy BuildingDepartment of Energy

  14. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartment Under Secretary

  15. Life Cycle Assessment of Renewable Hydrogen Production via

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartment Under

  16. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartment UnderEnergy

  17. Life Cycle Modeling of Propulsion Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartment UnderEnergy1 DOE

  18. Life Cycle Modeling of Propulsion Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartment UnderEnergy1 DOE0

  19. Life Cycle Cost Analysis for Sustainable Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | Department of EnergyLieko Earle

  20. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | Department of EnergyLieko Earlefrom the

  1. Life-Cycle Analysis of Geothermal Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | Department of EnergyLiekovii ACRONYMSof

  2. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: IncreasingDepartment of

  3. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: IncreasingDepartment

  4. Study of CANDU Thorium-based Fuel Cycles by Deterministic and Monte Carlo Methods

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Study of CANDU Thorium-based Fuel Cycles by Deterministic and Monte Carlo Methods A. Nuttin1 , P, there is a renewal of interest in self-sustainable thorium fuel cycles applied to various concepts such as Molten here, with a shorter term view, to re-evaluate the economic competitiveness of once-through thorium

  5. Utilization of Used Nuclear Fuel in a Potential Future US Fuel Cycle Scenario - 13499

    SciTech Connect (OSTI)

    Worrall, Andrew [Oak Ridge National Laboratory, P.O. BOX 2008 MS6172, Oak Ridge, TN, 37831-6172 (United States)] [Oak Ridge National Laboratory, P.O. BOX 2008 MS6172, Oak Ridge, TN, 37831-6172 (United States)

    2013-07-01T23:59:59.000Z

    To date, the US reactor fleet has generated approximately 68,000 MTHM of used nuclear fuel (UNF) and even with no new nuclear build in the US, this stockpile will continue to grow at approximately 2,000 MTHM per year for several more decades. In the absence of reprocessing and recycle, this UNF is a liability and needs to be dealt with accordingly. However, with the development of future fuel cycle and reactor technologies in the decades ahead, there is potential for UNF to be used effectively and efficiently within a future US nuclear reactor fleet. Based on the detailed expected operating lifetimes, the future UNF discharges from the existing reactor fleet have been calculated on a yearly basis. Assuming a given electricity demand growth in the US and a corresponding growth demand for nuclear energy via new nuclear build, the future discharges of UNF have also been calculated on a yearly basis. Using realistic assumptions about reprocessing technologies and timescales and which future fuels are likely to be reprocessed, the amount of plutonium that could be separated and stored for future reactor technologies has been determined. With fast reactors (FRs) unlikely to be commercially available until 2050, any new nuclear build prior to then is assumed to be a light water reactor (LWR). If the decision is made for the US to proceed with reprocessing by 2030, the analysis shows that the UNF from future fuels discharged from 2025 onwards from the new and existing fleet of LWRs is sufficient to fuel a realistic future demand from FRs. The UNF arising from the existing LWR fleet prior to 2025 can be disposed of directly with no adverse effect on the potential to deploy a FR fleet from 2050 onwards. Furthermore, only a proportion of the UNF is required to be reprocessed from the existing fleet after 2025. All of the analyses and conclusions are based on realistic deployment timescales for reprocessing and reactor deployment. The impact of the delay in recycling the UNF from the FRs due to time in the core, cooling time, reprocessing, and re-fabrication time is built into the analysis, along with impacts in delays and other key assumptions and sensitivities have been investigated. The results of this assessment highlight how the UNF from future reactors (LWRs and FRs) and the resulting fissile materials (U and Pu) from reprocessing can be effectively utilized, and show that the timings of future nuclear programs are key considerations (both for reactors and fuel cycle facilities). The analysis also highlights how the timings are relevant to managing the UNF and how such an analysis can therefore assist in informing the potential future R and D strategy and needs of the US fuel cycle programs and reactor technology. (authors)

  6. Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life

    E-Print Network [OSTI]

    Zhou, Chongwu

    Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life Mingyuan Ge material in a lithium ion battery. Even after 250 cycles, the capacity remains stable above 2000, 1600 in energy storage has stimulated significant interest in lithium ion battery research. The lithium ion

  7. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01T23:59:59.000Z

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  8. The FIT 2.0 Model - Fuel-cycle Integration and Tradeoffs

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg; Layne F. Pincock; Eric L. Shaber; Gregory M Teske

    2011-06-01T23:59:59.000Z

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010b] are steps by the Fuel Cycle Technology program toward an analysis that accounts for the requirements and capabilities of each fuel cycle component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. This report describes FIT 2, an update of the original FIT model.[Piet2010c] FIT is a method to analyze different fuel cycles; in particular, to determine how changes in one part of a fuel cycle (say, fuel burnup, cooling, or separation efficiencies) chemically affect other parts of the fuel cycle. FIT provides the following: Rough estimate of physics and mass balance feasibility of combinations of technologies. If feasibility is an issue, it provides an estimate of how performance would have to change to achieve feasibility. Estimate of impurities in fuel and impurities in waste as function of separation performance, fuel fabrication, reactor, uranium source, etc.

  9. Evaluation of fuel cycle scenarios on MOX fuel recycling in PWRs and SFRs

    SciTech Connect (OSTI)

    Carlier, B.; Caron-Charles, M.; Van Den Durpel, L. [AREVA, 1 place Jean Millier, Paris La Defense (France); Senentz, G. [AREVA, 33 rue La Lafayette, 75009 Paris (France); Serpantie, J.P. [AREVA, 10 rue Juliette Recamier, Lyon (France)

    2013-07-01T23:59:59.000Z

    Prospects on advanced fuel cycle scenario are considered for achieving a progressive integration of Sodium Fast Reactor (SFR) technology within the current French Pressurized Water Reactor (PWR) nuclear fleet, in a view to benefit from fissile material multi-recycling capability. A step by step process is envisioned, and emphasis is put on its potential implementation through the nuclear mass inventory calculations with the COSAC code. The overall time scale is not optimized. The first step, already implemented in several countries, the plutonium coming from the reprocessing of used Light Water Reactor (LWR) fuels is recycled into a small number of LWRs. The second step is the progressive introduction of the first SFRs, in parallel with the continuation of step 1. This second step lets to prepare the optimized multi recycling of MOX fuel which is considered in step 3. Step 3 is characterized by the introduction of a greater number of SFR and MOX management between EPR reactors and SFRs. In the final step 4, all the fleet is formed with SFRs. This study assesses the viability of each step of the overall scenario. The switch from one step to the other one could result from different constrains related to issues such as resources, waste, experience feedback, public acceptance, country policy, etc.

  10. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    SciTech Connect (OSTI)

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M. (Energy Systems)

    2012-02-08T23:59:59.000Z

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  11. Sandia National Laboratories: Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NESL) Brayton Lab SCO2 Brayton Cycle Technology Videos Heat Exchanger Development Diffusion Bonding Characterization Mechanical Testing Deep Borehole Disposal Nuclear...

  12. What actually is meant by "proliferation resistance" in discussions of advanced nuclear fuel cycles?

    SciTech Connect (OSTI)

    Avens, L. R. (Larry R.); Stanbro, W. D. (William D.); Eller, P. G. (Phillip Gary)

    2004-01-01T23:59:59.000Z

    The term 'proliferation resistance' is used to denote many different things in the context of nuclear fuel cycles. This range of meanings commonly leads to miscommunication between and within the nuclear fuel cycle and safeguards communities. With the hope of adding clarity to the dialogues, this paper describes some of the definitions that have been and are used (explicitly and implicitly) for 'proliferation resistance.' The focus is restricted to fuel cycles involving separations with particular emphasis on the Advanced Fuel Cycle Initiative, and some common fuel cycle paradigms are used to illustrate why imprecise definitions needlessly confuse communication. The evaluation also is limited to international safeguards, where the threat is posed by the State owning the facilities rather than a sub-national group. The authors conclude by urging users of the term 'proliferation resistance' to be explicit in defining the threat scenario(s) to which the term is being applied.

  13. Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program

    SciTech Connect (OSTI)

    Adrian Miron; Joshua Valentine; John Christenson; Majd Hawwari; Santosh Bhatt; Mary Lou Dunzik-Gougar: Michael Lineberry

    2009-10-01T23:59:59.000Z

    The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

  14. Scaling Behavior of the Life Cycle Energy of Residential Buildings and Impacts on Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Hall, Sharon J.

    Scaling Behavior of the Life Cycle Energy of Residential Buildings and Impacts on Greenhouse Gas required for building the structure; and 2) the operational energy required for habitation energy used for space heating and cooling during the life of the building. Similar ratios are found

  15. Supporting the Full BPM Life-Cycle Using Process Mining and Intelligent Redesign

    E-Print Network [OSTI]

    van der Aalst, Wil

    Supporting the Full BPM Life-Cycle Using Process Mining and Intelligent Redesign Wil M.P. van der.aalst,m.netjes,h.a.reijers@tm.tue.nl Abstract. Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life

  16. Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets

    SciTech Connect (OSTI)

    Hai Huang; Ben Spencer; Jason Hales

    2014-10-01T23:59:59.000Z

    A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to the formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.

  17. FUEL CYCLE TECHNOLOGIES QUALITY ASSURANCE PROGRAM DOCUMENT | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in Representative GeologicReportingEnergy3, Supplemental

  18. Performance evaluation of two-stage fuel cycle from SFR to PWR

    SciTech Connect (OSTI)

    Fei, T.; Hoffman, E.A.; Kim, T.K.; Taiwo, T.A. [Nuclear Engineering Division Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL (United States)

    2013-07-01T23:59:59.000Z

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with an average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)

  19. GREET Development and Applications for Life-Cycle Analysis of...

    Broader source: Energy.gov (indexed) [DOE]

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting van002wang2013o.pdf More Documents & Publications...

  20. Building Life Cycle Cost Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSiding RetrofitforCamberlyDepartment BEoptThis1