Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

International Fuel Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Fuel Technology Inc Fuel Technology Inc Jump to: navigation, search Name International Fuel Technology Inc Place St. Louis, Missouri Zip 63105 Product Supplier of environmentally friendly surfactant-based fuel additives designed to significantly reduce harmful emissions produced from internal combustion engines. References International Fuel Technology Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. International Fuel Technology Inc is a company located in St. Louis, Missouri . References ↑ "International Fuel Technology Inc" Retrieved from "http://en.openei.org/w/index.php?title=International_Fuel_Technology_Inc&oldid=347044" Categories: Clean Energy Organizations

2

EIA - International Energy Outlook 2008-Liquid Fuels  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Chapter 2 - Liquid Fuels World liquids consumption increases from 84 million barrels per day in 2005 to 99 million barrels per day in 2030 in the IEO2008 high price case. In the reference case, which reflects a price path that departs significantly from prices prevailing in the first 8 months of 2008, liquids use rises to 113 million barrels per day in 2030. Figure 26. World Liquids Production in the Reference Case, 1990-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800.

3

EIA - International Energy Outlook 2008-Liquid Fuels Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Figure 26. World Liquids Production in the Reference Case, 1990-2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 28. World Liquids Consumption by Sector, 2005-2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 29. World Liquids Consumption by Region and Country Group, 2005 and 2030 Figure 29 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 30. Nominal World Oil Prices in three Cases, 1980-2030 Figure 30 Data. Need help, contact the National Energy Information Center at 202-586-8800.

4

International Fuel Services and Commercial Engagement | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Fuel Services and Commercial Engagement International Fuel Services and Commercial Engagement The Office of International Nuclear Energy Policy and Cooperation...

5

International WoodFuels LLC | Open Energy Information  

Open Energy Info (EERE)

WoodFuels LLC WoodFuels LLC Jump to: navigation, search Name International WoodFuels LLC Place Portland, Maine Zip 4101 Product Maine-based pellet producer and installer of commercial wood pellet heating systems. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

International Atomic Energy Agency (IAEA) activities on spent fuel management options  

SciTech Connect (OSTI)

Many countries have in the past several decades opted for storage of spent fuel for undefined periods of time. They have adopted the 'wait and see' strategy for spent fuel management. A relatively small number of countries have adopted reprocessing and use of MOX fuel as part of their strategy in spent fuel management. From the 10, 000 tonnes of heavy metal that is removed annually from nuclear reactors throughout the world, only approximately 30 % is currently being reprocessed. Continuous re-evaluation of world energy resources, announcement of the Global Nuclear Energy Partnership (GNEP) and the Russian initiative to form international nuclear centers, including reprocessing, are changing the stage for future development of nuclear energy. World energy demand is expected to more than double by 2050, and expansion of nuclear energy is a key to meeting this demand while reducing pollution and greenhouse gases. Since its foundation, the International Atomic Energy Agency (IAEA) has served as an interface between countries in exchanging information on the peaceful development of nuclear energy and at the same time guarding against proliferation of materials that could be used for nuclear weapons. The IAEA's Department of Nuclear Energy has been generating technical documents, holding meetings and conferences, and supporting technical cooperation projects to facilitate this exchange of information. This paper focuses on the current status of IAEA activities in the field of spent fuel management being carried out by the Division of Nuclear Fuel Cycle and Waste Technology. Information on those activities could be found on the web site link www.iaea.org/OurWork/ST/NE/NEFW/nfcms. To date, the IAEA has given priority in its spent fuel management activities to supporting Member States in their efforts to deal with growing accumulations of spent power reactor fuel. There is technical consensus that the present technologies for spent fuel storage, wet and dry, provide adequate protection to people and environment. As storage durations grow, the IAEA has expanded its work related to the implications of extended storage periods. Operation and maintenance of containers for storage and transport have also been investigated related to long term storage periods. In addition, as international interest in reprocessing of spent fuel increases, the IAEA continues to serve as a crossroads for sharing the latest developments in spent fuel treatment options. A Coordinated Research Project is currently addressing spent fuel performance assessment and research to evaluate long term effects of storage on spent fuel. The effect of increased burnup and mixed oxide fuels on spent fuel management is also the focus of interest as it follows the trend in optimizing the use of nuclear fuel. Implications of damaged fuel on storage and transport as well as burnup credit in spent fuel applications are areas that the IAEA is also investigating. Since spent fuel management considerations require social stability and institutional control, those aspects are taken into account in most IAEA activities. Data requirements and records management as storage durations extend were also investigated as well as the potential for regional spent fuel storage facilities. Spent fuel management activities continue to be coordinated with others in the IAEA to ensure compliance and consistency with efforts in the Department of Safety and Security and the Department of Safeguards, as well as with activities related to geologic disposal. Either disposal of radioactive waste or spent fuel will be an ultimate consideration in all spent fuel management options. Updated information on spent fuel treatment options that include fuel reprocessing as well as transmutation of minor actinides are investigated to optimize the use of nuclear fuel and minimize impact on environment. Tools for spent fuel management economics are also investigated to facilitate assessment of industrial applicability for these options. Most IAEA spent fuel management activities will ultimately be reported in o

Lovasic, Z.; Danker, W. [International Atomic Energy Agency (IAEA) Vienna (Austria)

2007-07-01T23:59:59.000Z

7

Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads  

SciTech Connect (OSTI)

The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

NONE

2013-07-01T23:59:59.000Z

8

Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Hydrogen International Hydrogen Fuel and Pressure Vessel Forum to someone by E-mail Share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Facebook Tweet about Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Twitter Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Google Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Delicious Rank Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Digg Find More places to share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on AddThis.com... Publications Program Publications Technical Publications

9

DOE Hydrogen and Fuel Cell Overview: ASME 2011 5th International Conference on Energy Sustainability  

Broader source: Energy.gov [DOE]

Plenary presentation by Sunita Satyapal at the ASME 2011 5th International Conference on Energy Sustainability on August 8, 2011, in Washington, DC.

10

International Hydrogen Fuel and Pressure Vessel Forum  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) and Tsinghua University in Beijing co-hosted the International Hydrogen Fuel and Pressure Vessel Forum on September 2729, 2010 in Beijing, China. High pressure...

11

International Energy Statistics  

Gasoline and Diesel Fuel Update (EIA)

> Countries > International Energy Statistics > Countries > International Energy Statistics International Energy Statistics Petroleum Production| Annual Monthly/Quarterly Consumption | Annual Monthly/Quarterly Capacity | Bunker Fuels | Stocks | Annual Monthly/Quarterly Reserves | Imports | Annual Monthly/Quarterly Exports | CO2 Emissions | Heat Content Natural Gas All Flows | Production | Consumption | Reserves | Imports | Exports | Carbon Dioxide Emissions | Heat Content Coal All Flows | Production | Consumption | Reserves | Imports | Exports | Carbon Dioxide Emissions | Heat Content Electricity Generation | Consumption | Capacity | Imports | Net Imports | Exports | Distribution Losses | Heat Content Renewables Electricity Generation| Electricity Consumption | Biofuels Production | Biofuels Consumption | Heat Content Total Energy

12

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

Graphic Data Graphic Data International Energy Outlook 2006 Figure 1. World Marketed Energy Consumption by Region, 1980-2030 Figure 1 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 2. World Delivered Energy Consumption by End-Use Sector, 2003-2030 Figure 2 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 3. World Marketed Energy Use by Energy Type, 1980-2030 Figure 3 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 4. Fuel Shares of World Marketed Energy Use, 2003, 2015, and 2030 Figure 4 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 5. World Energy Consumption for Electricity Generation by Fuel Type, 2003, 2015, and 2030 Figure 5 Data. Need help, contact the National Energy Information Center at 202-586-8800.

13

International Energy Outlook 2000  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Today, the Energy Information Administration (EIA) releases its mid-term projections of international energy use and carbon emissions, published in the International Energy Outlook 2000 (IEO2000). The IEO2000 report provides an assessment of world energy markets with projections of regional energy consumption, energy consumption by primary fuel, electricity consumption, carbon emissions, nuclear generating capacity, international coal trade flows, and energy use in the transportation sector. World oil production projections are also included in the report. The report is an extension of EIA's Annual Energy Outlook (AEO), and the U.S. projections that appear in the IEO are consistent with those published in the AEO. World energy consumption in this year's IEO2000 is projected to

14

International Energy Outlook 1999  

Gasoline and Diesel Fuel Update (EIA)

ieo99cvr.gif (8385 bytes) ieo99cvr.gif (8385 bytes) Preface This report presents international energy projections through 2020, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. The International Energy Outlook 1999 (IEO99) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2020. The report is an extension of EIA’s Annual Energy Outlook 1999 (AEO99), which was prepared using the National Energy Modeling System (NEMS). U.S. projections appearing in IEO99 are consistent with those published in AEO99. IEO99 is provided as a statistical service to energy managers and analysts, both in government and in the private

15

International Energy Outlook 2000  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 with projections to 2020 March 16, 2000 Jay E. Hakes Energy Information Administration Next slide Back to first slide View graphic version Notes: Today, the Energy Information Administration (EIA) releases its mid-term projections of international energy use and carbon emissions, published in the International Energy Outlook 2000 (IEO2000). The IEO2000 report provides an assessment of world energy markets with projections of regional energy consumption, energy consumption by primary fuel, electricity consumption, carbon emissions, nuclear generating capacity, international coal trade flows, and energy use in the transportation sector. World oil production projections are also included in the report. The report is an extension of EIA's Annual Energy Outlook (AEO),

16

Alternative Fuels Data Center: Alternative Fuel Definition - Internal  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Definition - Internal Revenue Code to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition - Internal Revenue Code on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition - Internal Revenue Code on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition - Internal Revenue Code on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition - Internal Revenue Code on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition - Internal Revenue Code on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition - Internal Revenue Code on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

17

DOE Hydrogen and Fuel Cells Program: International Partnerships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnerships Partnerships Roadmaps and R&D Status Cooperative R&D Projects U.S. Department of Energy Search help Home > International > International Partnerships Printable Version International Partnerships Bilateral and multilateral hydrogen and fuel cell technology R&D cooperation and collaboration will be a central tool in advancing hydrogen and fuel cells. Two key multilateral international partnerships that are facilitating cooperative R&D efforts are: International Partnership for Hydrogen and Fuel Cells in the Economy International Energy Agency Hydrogen and Fuel Cell Implementing Agreements International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE) At the April 2003 International Energy Agency Ministerial, U.S. Secretary of Energy Spencer Abraham called for the establishment of the International

18

Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Fuel and Pressure Vessel Forum Hydrogen Fuel and Pressure Vessel Forum The U.S. Department of Energy (DOE) and Tsinghua University in Beijing co-hosted the International Hydrogen Fuel and Pressure Vessel Forum on September 27-29, 2010 in Beijing, China. High pressure vessel experts gathered to share lessons learned from compressed natural gas (CNG) and hydrogen vehicle deployments, and to identify R&D needs to aid the global harmonization of regulations, codes and standards to enable the successful deployment of hydrogen and fuel cell technologies. The forum also included additional discussion resulting from the DOE and U.S. Department of Transportation (DOT) co-sponsored International Workshop on Compressed Natural Gas and Hydrogen Fuels held on December 10-11, 2009 in Washington, D.C.

19

International Energy Outlook - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface International Energy Outlook 2004 Preface This report presents international energy projections through 2025, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity and the environment. The International Energy Outlook 2004 (IEO2004) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2025. U.S. projections appearing in IEO2004 are consistent with those published in EIA’s Annual Energy Outlook 2004 (AEO2004), which was prepared using the National Energy Modeling System (NEMS). IEO2004 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Department of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO2004 projections are based on U.S. and foreign government laws in effect on October 1, 2003.

20

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 23 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 International Energy Module The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the NEMS IEM computes world oil prices, provides a supply curve of world crude-like liquids, generates a worldwide oil supply- demand balance with regional detail, and computes quantities of crude oil and light and heavy petroleum products imported into

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

International energy outlook 1999  

SciTech Connect (OSTI)

This report presents international energy projections through 2020, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. The report begins with a review of world trends in energy demand. The historical time frame begins with data from 1970 and extends to 1996, providing readers with a 26-year historical view of energy demand. The IEO99 projections covers a 24-year period. The next part of the report is organized by energy source. Regional consumption projections for oil, natural gas, coal, nuclear power, and renewable energy (hydroelectricity, geothermal, wind, solar, and other renewables) are presented in the five fuel chapters, along with a review of the current status of each fuel on a worldwide basis. The third part of the report looks at energy consumption in the end-use sectors, beginning with a chapter on energy use for electricity generation. New to this year`s outlook are chapters on energy use in the transportation sector and on environmental issues related to energy consumption. 104 figs., 87 tabs.

NONE

1999-03-01T23:59:59.000Z

22

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

energy consumption is projected to increase by 71 percent from 2003 to 2030. energy consumption is projected to increase by 71 percent from 2003 to 2030. Fossil fuels continue to supply much of the energy used worldwide, and oil remains the dominant energy source. In the International Energy Outlook 2006 (IEO2006) ref- erence case, world marketed energy consumption increases on average by 2.0 percent per year from 2003 to 2030. Although world oil prices in the reference case, which remain between $47 and $59 per barrel (in real 2004 dollars), dampen the growth in demand for oil, total world energy use continues to increase as a result of robust economic growth. Worldwide, total energy use grows from 421 quadrillion British thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and 722 quadrillion Btu in 2030 (Figure 1). The most rapid growth in energy demand from 2003 to 2030 is projected for nations outside the Organization

23

International energy outlook 1996  

SciTech Connect (OSTI)

This International Energy Outlook presents historical data from 1970 to 1993 and EIA`s projections of energy consumption and carbon emissions through 2015 for 6 country groups. Prospects for individual fuels are discussed. Summary tables of the IEO96 world energy consumption, oil production, and carbon emissions projections are provided in Appendix A. The reference case projections of total foreign energy consumption and of natural gas, coal, and renewable energy were prepared using EIA`s World Energy Projection System (WEPS) model. Reference case projections of foreign oil production and consumption were prepared using the International Energy Module of the National Energy Modeling System (NEMS). Nuclear consumption projections were derived from the International Nuclear Model, PC Version (PC-INM). Alternatively, nuclear capacity projections were developed using two methods: the lower reference case projections were based on analysts` knowledge of the nuclear programs in different countries; the upper reference case was generated by the World Integrated Nuclear Evaluation System (WINES)--a demand-driven model. In addition, the NEMS Coal Export Submodule (CES) was used to derive flows in international coal trade. As noted above, foreign projections of electricity demand are now projected as part of the WEPS. 64 figs., 62 tabs.

NONE

1996-05-01T23:59:59.000Z

24

International energy annual, 1993  

SciTech Connect (OSTI)

This document presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 200 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy includes hydroelectric, geothermal, solar and wind electric power and alcohol for fuel. The data were largely derived from published sources and reports from US Embassy personnel in foreign posts. EIA also used data from reputable secondary sources, industry reports, etc.

NONE

1995-05-08T23:59:59.000Z

25

International Energy Outlook 2006 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface International Energy Outlook 2006 Preface This report presents international energy projections through 2030, prepared by the Energy Information Administration, including outlooks for major energy fuels and associated carbon dioxide emissions. The International Energy Outlook 2006 (IEO2006) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2006 are consistent with those published in EIA’s Annual Energy Outlook 2006 (AEO2006), which was prepared using the National Energy Modeling System (NEMS). IEO2006 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade

26

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 International Energy Module The NEMS International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the NEMS IEM computes oil prices, provides a supply curve of world crude-like liquids, generates a worldwide oil supply- demand balance with regional detail, and computes quantities of crude oil and light and heavy petroleum products imported into the United States by export region. Changes in the oil price (WTI), which is defined as the price of light, low-sulfur crude oil delivered to Cushing, Oklahoma in

27

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

28

Energy 101: Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cells Energy 101: Fuel Cells Addthis Description Learn everything you need to know about fuel cells. Topic Hydrogen & Fuel Cells...

29

International Fuel Services and Commercial Engagement | Department of  

Broader source: Energy.gov (indexed) [DOE]

International Fuel Services and Commercial Engagement International Fuel Services and Commercial Engagement International Fuel Services and Commercial Engagement The Office of International Nuclear Energy Policy and Cooperation (INEPC) primary mission is to oversee and manage the Department's international commercial nuclear fuel management initiatives, and to support Departmental/USG initiatives supporting advocacy for U.S. nuclear exports, including the Team USA initiative. INEPC also supports advancing international civil nuclear policy through the development of innovative approaches to used fuel storage and permanent disposition, including commercially-based comprehensive fuel services and financing vehicles. Program Focuses To achieve these goals, INEPC has taken a leadership role in the following: Leading U.S. government engagement to advance CFS as an option for

30

International Atomic Energy Agency support of research reactor highly enriched uranium to low enriched uranium fuel conversion projects  

SciTech Connect (OSTI)

The IAEA has been involved for more than twenty years in supporting international nuclear non- proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly assisted efforts to convert research reactors from HEU to LEU fuel. HEU to LEU fuel conversion projects differ significantly depending on several factors including the design of the reactor and fuel, technical needs of the member state, local nuclear infrastructure, and available resources. To support such diverse endeavours, the IAEA tailors each project to address the relevant constraints. This paper presents the different approaches taken by the IAEA to address the diverse challenges involved in research reactor HEU to LEU fuel conversion projects. Examples of conversion related projects in different Member States are fully detailed. (author)

Bradley, E.; Adelfang, P.; Goldman, I.N. [Research Reactors Unit, Division of Nuclear Fuel Cycle and Waste Technology, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna (Austria)

2008-07-15T23:59:59.000Z

31

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Sector Industrial Sector Energy Sector International Energy Outlook 2010 Graphic Data - Industrial Sector Energy Sector Figure 82. Annual changes in world industrial and all other end-use energy consumption from previous year, 2006-2010 Figure 83. World delivered energy consumption in the industral and all other end-use sectors, 2005-2035 Figure 84. OECD and Non-OECD industrial sector energy consumption, 2007-2035 Figure 85. World industrial sector energy consumption by fuel, 2007 and 2035 Figure 86. World industrial sector energy consumption by major energy-intensive industry shares, 2007 Figure 87. OECD and Non-OECD major steel producers, 2008 Figure 88. OECD industrial sector energy consumption by fuel, 2007 and 2035 Figure 89. Non-OECD industrial sector energy consumption by fuel, 2007 and 2035

32

International Energy Outlook 2001 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

World Energy Consumption World Energy Consumption picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents the Energy Information Administration (EIA) outlook for world energy markets to 2020. Current trends in world energy markets are discussed in this chapter, followed by a presentation of the IEO2001 projections for energy consumption by primary energy source and for carbon emissions by fossil fuel. Uncertainty in the forecast is highlighted by an examination of alternative assumptions about economic growth and their impacts on the

33

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel  

Broader source: Energy.gov (indexed) [DOE]

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services GNEP would build and strengthen a reliable international fuel services consortium under which "fuel supplier nations" would choose to operate both nuclear power plants and fuel production and handling facilities, providing reliable fuel services to "user nations" that choose to only operate nuclear power plants. This international consortium is a critical component of the GNEP initiative to build an improved, more proliferation-resistant nuclear fuel cycle that recycles used fuel, while Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services More Documents & Publications

34

Fuel Cells | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells Fuel Cells Fuel cells are an important enabling technology for the nation's energy portfolio and have the potential to revolutionize the way we power our nation,...

35

Hydrogen and Fuel Cell Activities: 5th International Conference...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer...

36

International Stationary Fuel Cell Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STATIONARY FUEL CELL DEMONSTRATION STATIONARY FUEL CELL DEMONSTRATION John Vogel, Plug Power Inc. Yu-Min Tsou, PEMEAS E-TEK 14 February, 2007 Clean, Reliable On-site Energy SAFE HARBOR STATEMENT This presentation contains forward-looking statements, including statements regarding the company's future plans and expectations regarding the development and commercialization of fuel cell technology. All forward-looking statements are subject to risks, uncertainties and assumptions that could cause actual results to differ materially from those projected. The forward-looking statements speak only as of the date of this presentation. The company expressly disclaims any obligation or undertaking to release publicly any updates or revisions to any such statements to reflect any change in the company's expectations or any change in

37

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

Leigh, I.W.

1992-05-01T23:59:59.000Z

38

Distributed Energy Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Fuel Cells Energy Fuel Cells DOE Hydrogen DOE Hydrogen and and Fuel Cells Fuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi Epping Kathi Epping Objectives & Barriers Distributed Energy OBJECTIVES * Develop a distributed generation PEM fuel cell system operating on natural gas or propane that achieves 40% electrical efficiency and 40,000 hours durability at $400-750/kW by 2010. BARRIERS * Durability * Heat Utilization * Power Electronics * Start-Up Time Targets and Status Integrated Stationary PEMFC Power Systems Operating on Natural Gas or Propane Containing 6 ppm Sulfur 40,000 30,000 15,000 Hours Durability 750 1,250 2,500 $/kWe Cost 40 32 30 % Electrical Efficiency Large (50-250 kW) Systems 40,000 30,000 >6,000 Hours Durability 1,000 1,500 3,000

39

International Energy Outlook 2001 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2020. The report is an extension of the EIA’s Annual Energy Outlook 2001 (AEO2001), which was prepared using the National Energy Modeling System (NEMS). U.S. projections appearing in the IEO2001 are consistent with those published in the AEO2001. IEO2001 is provided as a statistical service to energy managers and analysts, both in

40

Used Fuel Disposition Campaign International Activities Implementation Plan  

Broader source: Energy.gov (indexed) [DOE]

International Activities International Activities Implementation Plan Used Fuel Disposition Campaign International Activities Implementation Plan The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

World Energy Demand and Economic Outlook World Energy Demand and Economic Outlook International Energy Outlook 2010 Graphic Data - World Energy Demand and Economic Outlook Figure 12. World marketed energy consumption, 1990-2035 Figure 13. World marketed energy consumption:OECD and Non-OECD, 1990-2035 Figure 14. Shares of world energy consumption in the United States, China, and India, 1990-2035 Figure 15. Marketed energy use in the Non-OECD economies by region, 1990-2035 Figure 16. World marketed energy use by fuel type, 1990-2035 Figure 17. Coal consumption in selected world regions, 1990-2035 Figure 18. World electricity generation by fuel, 2007-2035 Figure 19. Renewable electricity generation in China by energy source, 2007-2035 Figure 20. World nuclear generating capacity by region, 2007 and 2035

42

International Energy Forum Ministerial | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International Energy Forum Ministerial International Energy Forum Ministerial International Energy Forum Ministerial April 24, 2006 - 10:27am Addthis Remarks Prepared for Energy Secretary Bodman Thank you. And let me take this opportunity to thank our hosts for their hospitality, as well as their efforts in arranging this meeting of the International Energy Forum. Let me also thank my fellow panelists and the panel Chair Minister Naimi, who I look forward to seeing again in Washington next week. These are challenging times in the energy world--demand and supply are roughly in balance, spare capacity is very slim, and continued strong economic growth around the world is fueling increasing demand. I believe that we can meet the challenge if both consumers and producers act responsibly; if we all implement policies that encourage stability,

43

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate many national fuel markets in developing Asia. World coal consumption has been in a period of generally slow growth since the late 1980s, a trend that is projected to continue. Although total world consumption of coal in 2001, at 5.26 billion short tons,12 was more than 27 percent higher than the total in 1980, it was 1 percent below the 1989 peak of 5.31 billion short tons (Figure 56). The International Energy Outlook 2003 (IEO2003) reference case projects some growth in coal use between 2001 and 2025, at an average annual rate of 1.5 percent (on a tonnage basis), but with considerable variation among regions.

44

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H13. World net liquids-fired electricity generation by region and country, 2010-2040 (billion kilowatthours) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 93 74 68 66 64 62 60 -1.5 United States a 37 20 17 18 18 18 18 -2.3 Canada 7 7 6 6 6 5 5 -1.0 Mexico/Chile 49 47 45 42 40 38 36 -1.0 OECD Europe 77 73 70 66 63 60 57 -1.0 OECD Asia 112 157 102 97 92 87 83 -1.0 Japan 92 137 83 79 75 71 68 -1.0 South Korea 18 17 16 15 15 14 13 -1.0 Australia/New Zealand 3 3 3 3 2 2 2 -1.0 Total OECD 282 303 239 229 219 209 200 -1.1 Non-OECD Non-OECD Europe and Eurasia

45

BioFuels Energy LLC | Open Energy Information  

Open Energy Info (EERE)

BioFuels Energy, LLC BioFuels Energy, LLC Place Encinitas, California Zip 92024 Sector Renewable Energy Product Encinitas-based renewable energy project developer. References BioFuels Energy, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. BioFuels Energy, LLC is a company located in Encinitas, California . References ↑ "BioFuels Energy, LLC" Retrieved from "http://en.openei.org/w/index.php?title=BioFuels_Energy_LLC&oldid=342819" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

46

International Energy Outlook 2006 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2006 Highlights World energy consumption is projected to increase by 71 percent from 2003 to 2030. Fossil fuels continue to supply much of the energy used worldwide, and oil remains the dominant energy source. Figure 1. World Marketed Energy Consumption by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2006 (IEO2006) reference case, world marketed energy consumption increases on average by 2.0 percent per year from 2003 to 2030. Although world oil prices in the reference case, which remain between $47 and $59 per barrel (in real 2004 dollars), dampen the growth in demand for oil, total world energy use continues to increase as a

47

DOE Expands International Effort to Develop Fuel-Efficient Trucks |  

Broader source: Energy.gov (indexed) [DOE]

Expands International Effort to Develop Fuel-Efficient Trucks Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the cooperative program will be extended for three more years. An additional $9 million over three years in DOE funds will be matched by $9 million in Swedish government funds and $18 million from Volvo Group. When added with the existing $12 million commitment from the United States, Sweden and the Volvo Group the overall value of the cooperation will be $48

48

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Reference case projections for Reference case projections for electricity capacity and generation by fuel This page inTenTionally lefT blank 259 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H1. World total installed generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 1,248 1,316 1,324 1,379 1,456 1,546 1,669 1.0 United States a 1,033 1,080 1,068 1,098 1,147 1,206 1,293 0.8 Canada 137 144 152 163 174 185 198 1.2 Mexico/Chile 78 93 104 118 135 155 177 2.8 OECD Europe 946 1,028 1,096 1,133 1,159 1,185 1,211 0.8 OECD Asia 441 444 473 489 501 516 524 0.6 Japan 287 275 293 300 304 309 306 0.2 South Korea 85 93 100 107 114

49

Overview of Hydrogen and Fuel Cell Activities: 6th International...  

Broader source: Energy.gov (indexed) [DOE]

Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell...

50

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

> Graphic data - Highlights > Graphic data - Highlights International Energy Outlook 2010 Graphic data - Highlights Figure 1. World marketed energy consumption, 2007-2035 Figure 2. World marketed energy use by fuel type, 1990-2035 Figure 3. World liquids production, 1990-2035 Figure 4. Net change in world natural gas production by region, 2007-2035 Figure 5. World coal consumption by region, 1990-2035 Figure 6. World net electricity generation by fuel, 2007-2035 Figure 7. World renewable electricity generation by energy source excluding world and hydropower, 2007-2035 Figure 8. World delivered energy consumption in the industrial sector, 2007-2035 Figure 9. World delivered energy consumption in the transportation sector, 2005-2035 Figure 10. World energy-related carbon dioxide emissions, 2007-2035

51

International Energy Outlook 2013 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Release Date: July 25, 2013 | Next Release Date: July 2014 (See release cycle changes) | correction | Report Number: DOE/EIA-0484(2013) Correction/Update July 27th A stray "2010" was left in the middle of Figure 1. August 1st Figure title changes (PDF only): Figure 10. World energy-related carbon dioxide emissions by fuel type, 2010-2040 (billion metric tons) This should actually be: Figure 10. World energy-related carbon dioxide emissions by fuel type, 1990-2040 (billion metric tons) Figure 11. OECD and non-OECD carbon intensities, 1990-2040 (metric tons carbon dioxide emitted per million 2010 dollars of gross domestic product) This should actually be: Figure 11. OECD and non-OECD carbon intensities, 1990-2040 (metric tons

52

International Energy Outlook 2001 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Use Transportation Energy Use picture of a printer Printer Friendly Version (PDF) Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for almost 57 percent of total world oil consumption by 2020. Transportation fuel use is expected to grow substantially over the next two decades, despite oil prices that hit 10-year highs in 2000. The relatively immature transportation sectors in much of the developing world are expected to expand rapidly as the economies of developing nations become more industrialized. In the reference case of the International Energy Outlook 2001 (IEO2001), energy use for transportation is projected to increase by 4.8 percent per year in the developing world, compared with

53

International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings Proceedings from the forum, which took...

54

FUEL CELLS SOLID OXIDE FUEL CELLS | Internal and External Reformation  

Science Journals Connector (OSTI)

Three basic concepts of solid oxide fuel cell (SOFC) systems operating on hydrocarbon fuels, with external, internal, and partial prereforming, respectively, are presented and discussed. Internal reforming of methane is advantageously used for additional cooling of the SOFC stack, thus increasing system efficiency. Basic thermodynamics, catalysis, and kinetics of the methane steam reforming process are presented. Examples of SOFC stacks operating on internal reforming of methane and simulated partial prereforming of mine gas and natural gas are discussed. The latter is used to illustrate the effect of internal methane reforming on heat management in SOFC stacks.

L.G.J. de Haart; R. Peters

2009-01-01T23:59:59.000Z

55

Global Fuel Economy Initiative | Open Energy Information  

Open Energy Info (EERE)

Global Fuel Economy Initiative Global Fuel Economy Initiative Jump to: navigation, search Tool Summary Name: Global Fuel Economy Initiative Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.globalfueleconomy.org/ The Global Fuel Economy Initiative has launched the 50by50 challenge to facilitate large reductions of greenhouse gas emissions and oil use through improvements in automotive fuel economy. The website provides access to working papers, a map showing countries with fuel economy standards, and other related information. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel

56

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Emissions Emissions International Energy Outlook 2010 Graphic Data - Emissions Figure 103. World energy-related carbon dioxide emissions, 2007-2035 Figure 104. World energy-related carbon dioxide emissions by fuel type, 1990-2035 Figure 105. U.S.energy-related carbon dioxide emissions by fuel in IEO2009 and IEO2010, 2007, 2015, and 2035 Figure 106. Average annual growth in energy-related carbon dioxide emissions in OECD economies, 2007-2035 Figure 107. Average annual growth in energy-related carbon dioxide emissions in the Non-OECD economies, 2007-2035 Figure 108. World carbon dioxide emissions from liquids combustion, 1990-2035 Figure 109. World carbon dioxide emissions from natural gas combustion, 1990-2035 Figure 110. World carbon dioxide emissions from coal combustion, 1990-2035

57

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F13. Delivered energy consumption in China by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 1.2 1.1 1.1 1.1 1.0 1.0 0.9 -1.0 Natural gas 0.9 1.6 2.5 3.5 4.7 5.9 7.1 7.2 Coal 3.0 2.9 3.0 3.0 3.0 3.0 2.9 -0.2 Electricity 1.8 2.7 3.8 5.0 6.3 7.8 9.2 5.7 Total 6.9 8.3 10.3 12.5 15.0 17.7 20.0 3.6 Commercial Liquids 1.1 1.0 1.0 1.0 1.0 0.9 0.8 -0.8 Natural gas 0.2 0.4 0.6 0.9 1.2 1.5 1.8 7.1 Coal 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1 Electricity 0.7 1.0 1.4 1.9 2.6 3.5 4.4 6.5 Total 2.5 2.8 3.5 4.3 5.3 6.4 7.6 3.8 Industrial Liquids 8.4 10.2 11.4 12.2 12.7 13.0 13.0 1.5 Natural gas 1.8 2.5 3.2 3.8 4.2 4.5

58

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

F F Reference case projections by end-use sector and country grouping This page inTenTionally lefT blank 225 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F1. Total world delivered energy consumption by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 9.5 9.5 9.1 8.9 8.7 8.5 8.3 -0.4 Natural gas 19.9 20.8 22.6 24.8 27.1 29.0 30.8 1.5 Coal 4.6 4.4 4.5 4.5 4.4 4.4 4.3 -0.3 Electricity 17.6 20.1 23.1 26.4 30.0 33.9 38.0 2.6 Total 52.0 55.1 59.8 65.0 70.8 76.3 81.8 1.5 Commercial Liquids 4.5 4.2 4.2 4.2 4.1 4.0 3.9 -0.4 Natural gas 8.4 8.8 9.4 10.2 11.1 11.8 12.4 1.3 Coal 1.2 1.2 1.2 1.3 1.3 1.4 1.4 0.5 Electricity 14.8

59

Fuel cell generator energy dissipator  

DOE Patents [OSTI]

An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

60

Coal fuel slurry for internal combustion engines  

Science Journals Connector (OSTI)

A technoeconomic study of the production of coal-water fuel slurry for internal combustion engines and thermal power plants was performed. Based on the accumulated experimental data, it was found that, in the ...

N. I. Redkina; G. S. Khodakov; E. G. Gorlov

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fuel Cell Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to revolutionize our transportation system. They are more efficient than conventional internal combustion engine vehicles and produce no harmful tailpipe exhaust-their only emission is water. Fuel cell vehicles and the hydrogen infrastructure to fuel them are in an early stage of development. The U.S. Department of Energy is leading government and industry efforts to make hydrogen-powered vehicles an affordable, environmentally friendly, and safe transportation option. Visit the Alternative Fuels and Advanced Vehicles Data Center to learn more

62

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F1. Total world delivered energy consumption by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 9.5 9.5 9.1 8.9 8.7 8.5 8.3 -0.4 Natural gas 19.9 20.8 22.6 24.8 27.1 29.0 30.8 1.5 Coal 4.6 4.4 4.5 4.5 4.4 4.4 4.3 -0.3 Electricity 17.6 20.1 23.1 26.4 30.0 33.9 38.0 2.6 Total 52.0 55.1 59.8 65.0 70.8 76.3 81.8 1.5 Commercial Liquids 4.5 4.2 4.2 4.2 4.1 4.0 3.9 -0.4 Natural gas 8.4 8.8 9.4 10.2 11.1 11.8 12.4 1.3 Coal 1.2 1.2 1.2 1.3 1.3 1.4 1.4 0.5 Electricity 14.8 16.5 18.6 21.3 24.3 27.5 31.1 2.5 Total 28.9 30.8 33.6 37.1 40.9 44.8 49.0 1.8 Industrial Liquids 57.2 61.6 66.4 70.1 74.2 78.2 82.1 1.2 Natural gas 45.5 48.8 54.3 59.0 63.4

63

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F9. Delivered energy consumption in Australia/New Zealand by end-use sector and fuel, 2008-2035 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Natural gas 0.1 0.1 0.2 0.2 0.2 0.2 0.2 1.5 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.2 0.3 0.3 0.3 0.3 0.3 0.3 1.0 Total 0.4 0.5 0.5 0.5 0.5 0.5 0.6 1.1 Commercial Liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.2 0.3 0.3 0.3 0.3 0.4 0.4 1.6 Total 0.3 0.4 0.4 0.4 0.4 0.4 0.5 1.2 Industrial Liquids 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.4 Natural gas 0.8 0.8 1.0 1.0 1.1 1.2 1.2 1.4 Coal 0.3 0.2 0.3 0.3 0.3 0.3 0.3 -0.1 Electricity

64

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F3. Delivered energy consumption in the United States by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 1.1 1.1 1.0 1.0 0.9 0.9 0.9 -1.0 Natural gas 4.9 4.8 4.6 4.5 4.5 4.3 4.2 -0.5 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.6 Electricity 4.9 4.7 4.8 5.1 5.4 5.7 6.0 0.7 Total 11.4 11.0 11.0 11.0 11.2 11.4 11.6 0.1 Commercial Liquids 0.7 0.7 0.7 0.6 0.6 0.6 0.6 -0.3 Natural gas 3.2 3.4 3.4 3.4 3.5 3.6 3.7 0.5 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -0.7 Electricity 4.5 4.5 4.7 5.0 5.2 5.5 5.7 0.8 Total 8.6 8.8 8.9 9.2 9.5 9.9 10.2 0.6 Industrial Liquids 8.4 8.2 8.7 8.7 8.6 8.6 8.7 0.1 Natural gas 8.0 8.7 9.6 9.8 9.9 10.1 10.4 0.9 Coal 1.6 1.6 1.6 1.6 1.6 1.6

65

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F5. Delivered energy consumption in Mexico and Chile by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.4 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 Electricity 0.2 0.3 0.4 0.5 0.5 0.6 0.7 4.0 Total 0.6 0.7 0.8 0.8 1.0 1.1 1.2 2.4 Commercial Liquids 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 Natural gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.1 0.2 0.2 0.3 0.4 0.5 0.6 5.5 Total 0.2 0.3 0.3 0.4 0.5 0.6 0.7 4.0 Industrial Liquids 1.1 1.2 1.4 1.6 1.8 2.1 2.4 2.6 Natural gas 1.4 1.5 1.7 1.9 2.2 2.6 3.0 2.5 Coal 0.1 0.1 0.2 0.2 0.2 0.2 0.3 3.1 Electricity

66

MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas  

SciTech Connect (OSTI)

This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

John Frey

2009-02-22T23:59:59.000Z

67

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2010 Graphic Data - Electricity Figure 67. Growth in world electric power generation and total energy consumption, 1990-2035 Figure 68. World net electricity generation by region, 1990-2035 Figure 69. Non-OECD net electricity generation by region, 1990-2035 Figure 70. World net electricity generation by fuel, 2006-2035 Figure 71. World net electricity generation from nuclear power by region, 2007-2030 Figure 72. Net electricity generation in North America, 1990-2035 Figure 73. Net electricity generation in North America by Fuel, 2007 and 2035 Figure 74. Net electricity generation in OECD Europe by fuel, 2007-2035 Figure 75. Net electricity generation in OECD Asia, 2007-2035 Figure 76. Net electricity generation in Non-OECD Europe and Eurasia, 2007-2035

68

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. With little competition from alternative fuels, at least at the present time, oil is expected to remain the primary energy source for fueling transportation around the globe in the International Energy Outlook 2000 (IEO2000) projections. In the reference case, the share of total world oil consumption that goes to the transportation sector increases from 49 percent in 1997 to 55 percent in 2020 (Figure 84). The IEO2000 projections group transportation energy use into three travel modes—road, air, and other (mostly rail but also including pipelines, inland waterways, and

69

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H5. World installed nuclear generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 115 119 123 130 133 130 135 0.5 United States a 101 104 111 114 114 109 113 0.4 Canada 13 13 11 13 16 16 16 0.7 Mexico/Chile 1 2 2 3 4 5 6 5.1 OECD Europe 132 124 128 142 143 143 142 0.3 OECD Asia 67 45 65 71 79 80 82 0.7 Japan 49 20 34 35 36 37 37 -0.9 South Korea 18 25 32 36 43 43 45 3.2 Australia/New Zealand 0 0 0 0 0 0 0 -- Total OECD 314 288 316 343 355 352 359 0.5 Non-OECD Non-OECD Europe and Eurasia 42 49 58 65 73 80 85 2.4 Russia 24 28 35 40 45 50 55 2.8 Other 17 20 23 25 27 29 29 1.8 Non-OECD Asia 21

70

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H21. World net solar electricity generation by region and country, 2010-2040 (billion kilowatthours) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 4 33 38 42 48 63 101 11.1 United States a 4 32 37 40 46 62 99 11.2 Canada 0 1 1 1 1 1 1 -- Mexico/Chile 0 0 0 0 0 1 1 -- OECD Europe 23 78 85 89 94 98 102 5.1 OECD Asia 5 12 22 33 39 50 50 8.1 Japan 4 7 14 23 29 39 39 8.1 South Korea 1 1 2 2 2 2 2 3.6 Australia/New Zealand 0 4 6 8 8 9 9 -- Total OECD 32 123 145 165 181 211 253 7.1 Non-OECD Non-OECD Europe and Eurasia 0 0 1 1 1 1 1 -- Russia 0 0 0 0 0 0 0 -- Other 0 0 1 1 1 1 1 -- Non-OECD Asia 1 31 76 94 107 120 129 17.2 China 1 26 67 79 90 100 105 17.0 India 0 3 7 13 14 17

71

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H11. World installed other renewable generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 38 40 41 42 43 45 47 0.7 United States a 35 38 39 39 40 41 43 0.7 Canada 2 2 2 2 2 2 2 0.6 Mexico/Chile 1 1 1 1 1 1 2 1.3 OECD Europe 73 75 76 77 78 79 80 0.3 OECD Asia 33 36 36 36 36 36 37 0.3 Japan 27 27 27 27 27 27 27 0.1 South Korea 4 6 6 6 6 6 6 1.2 Australia/New Zealand 2 3 3 3 3 3 3 1.4 Total OECD 144 151 153 155 158 160 163 0.4 Non-OECD Non-OECD Europe and Eurasia 4 4 4 4 4 4 5 0.2 Russia 1 1 1 1 1 1 1 0.3 Other 3 3 3 3 3 3 3 0.2 Non-OECD Asia 26 36 45 54 63 69 73 3.4 China 20 27 36 45 53 59 61 3.9 India 3 4 4 4

72

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

5 5 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H7. World installed hydroelectric generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 170 177 181 190 201 214 228 1.0 United States a 78 78 79 79 79 80 81 0.1 Canada 75 78 80 85 93 101 109 1.3 Mexico/Chile 17 20 22 25 29 33 38 2.8 OECD Europe 151 155 169 176 183 189 195 0.9 OECD Asia 37 39 40 40 40 40 41 0.3 Japan 22 24 24 24 24 25 25 0.3 South Korea 2 2 2 2 2 2 2 0.3 Australia/New Zealand 13 13 13 13 14 14 14 0.3 Total OECD 358 371 389 405 424 443 464 0.9 Non-OECD Non-OECD Europe and Eurasia 87 91 99 103 110 118 125 1.2 Russia 47 49 54 58 62 66 69 1.3 Other 41 42 45 45 48 52 56 1.1 Non-OECD Asia

73

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H3. World installed natural-gas-fired generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 402 435 461 505 568 631 697 1.9 United States a 350 379 390 420 472 519 566 1.6 Canada 20 19 26 28 29 32 35 1.9 Mexico/Chile 31 36 45 56 68 80 95 3.8 OECD Europe 217 219 213 204 218 234 252 0.5 OECD Asia 128 134 140 144 148 157 163 0.8 Japan 83 90 96 97 100 101 101 0.7 South Korea 27 26 26 28 29 35 38 1.1 Australia/New Zealand 18 18 18 19 20 22 23 1.0 Total OECD 746 787 814

74

Internal baffling for fuel injector  

DOE Patents [OSTI]

A fuel injector includes a fuel delivery tube; a plurality of pre-mixing tubes, each pre-mixing tube comprising at least one fuel injection hole; an upstream tube support plate that supports upstream ends of the plurality of pre-mixing tubes; a downstream tube support plate that supports downstream ends of the plurality of pre-mixing tubes; an outer wall connecting the upstream tube support plate and the downstream tube support plate and defining a plenum therewith; and a baffle provided in the plenum. The baffle includes a radial portion. A fuel delivered in the upstream direction by the fuel delivery tube is directed radially outwardly in the plenum between the radial portion of the baffle and the downstream tube support plate, then in the downstream direction around an outer edge portion of the radial portion, and then radially inwardly between the radial portion and the upstream tube support plate.

Johnson, Thomas Edward; Lacy, Benjamin; Stevenson, Christian

2014-08-05T23:59:59.000Z

75

International Energy Agency  

SciTech Connect (OSTI)

The growing need for international cooperation in energy led to the establishment of the International Energy Agency (IEA) in 1974 as a forum for the 21 participating countries to coordinate their energy planning. The IEA provides a framework within the cooperating efforts of its participating countries which reinforce one another and improve the overall energy situation. This brief report reviews the objectives of the IEA and the activities of the Advisory Council.

Taylor, N.R.

1983-01-01T23:59:59.000Z

76

ORYXE Energy International Inc | Open Energy Information  

Open Energy Info (EERE)

ORYXE Energy International Inc ORYXE Energy International Inc Jump to: navigation, search Name ORYXE Energy International Inc Place Irvine, California Zip 92618 Sector Carbon, Hydro Product ORYXE Energy International Inc develops, certifies, and distributes bio-additives that improve fuel performance and reduce toxic emissions from the combustion of hydrocarbons, such as diesel fuel and gasoline. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

he International Energy Module determines changes in the world oil price and the supply prices of crude he International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(06), (Washington, DC, February 2006).

78

International Nuclear Fuel Cycle Fact Book. Revision 5  

SciTech Connect (OSTI)

This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1985-01-01T23:59:59.000Z

79

International nuclear fuel cycle fact book. Revision 4  

SciTech Connect (OSTI)

This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-03-01T23:59:59.000Z

80

EIA - International Energy Outlook 2007 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface International Energy Outlook 2007 Preface This report presents international energy projections through 2030, prepared by the Energy Information Administration, including outlooks for major energy fuels and associated carbon dioxide emissions. The International Energy Outlook 2007 (IEO2007) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2007 are consistent with those published in EIA’s Annual Energy Outlook 2007 (AEO2007), which was prepared using the National Energy Modeling System (NEMS). IEO2007 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIA - International Energy Outlook 2008-Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface International Energy Outlook 2008 Preface This report presents international energy projections through 2030, prepared by the Energy Information Administration, including outlooks for major energy fuels and associated carbon dioxide emissions. The International Energy Outlook 2008 (IEO2008) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2008 are consistent with those published in EIA’s Annual Energy Outlook 2008 (AEO2008), which was prepared using the National Energy Modeling System (NEMS). IEO2008 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade

82

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F15. Delivered energy consumption in Other Non-OECD Asia by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.3 Natural gas 0.4 0.4 0.6 0.7 0.8 0.9 1.1 3.7 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 Electricity 1.1 1.3 1.5 1.8 2.1 2.4 2.8 3.2 Total 2.1 2.3 2.7 3.1 3.5 4.0 4.6 2.7 Commercial Liquids 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.7 Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.2 2.5 Coal 0.0 0.0 0.0 0.0 0.0 0.1 0.1 -- Electricity 0.9 1.1 1.3 1.6 1.9 2.4 2.9 3.9 Total 1.3 1.4 1.7 2.0 2.4 2.9 3.4 3.3 Industrial Liquids 4.8 4.7 5.5 6.2 7.1 8.2 9.6 2.4 Natural gas 3.3 3.3 3.7 4.1 4.6 5.2

83

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F19. Delivered energy consumption in Other Central and South America by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.3 0.4 0.3 0.3 0.3 0.3 0.3 -0.1 Natural gas 0.4 0.5 0.6 0.7 0.8 1.0 1.1 3.2 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.9 Total 1.2 1.4 1.5 1.7 1.9 2.1 2.3 2.0 Commercial Liquids 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.5 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.4 0.4 0.5 0.5 0.6 0.6 0.7 2.4 Total 0.5 0.5 0.6 0.7 0.8 0.8 0.9 2.2 Industrial Liquids 2.1 2.2 2.2 2.1 2.2 2.3 2.4 0.5 Natural gas 2.6 2.7

84

Nuclear Fuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Fuels Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel assembly consists of hundreds of thousands of uranium pellets, stacked and encapsulated within tubes called fuel rods or fuel pins which are then bundled together in various geometric arrangements. There are many design considerations for the material composition and geometric configuration of the various components comprising a nuclear fuel system. Future designs for the fuel and the assembly or packaging of fuel will contribute to cleaner, cheaper and safer nuclear energy. Today's process for developing and testing new fuel systems is resource and time intensive. The process to manufacture the fuel, build an assembly,

85

Nuclear Fuel Cycle | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycle Fuel Cycle Nuclear Fuel Cycle GC-52 provides legal advice to DOE regarding research and development of nuclear fuel and waste management technologies that meet the nation's energy supply, environmental, and energy security needs. GC-52 also advises DOE on issues involving support for international fuel cycle initiatives aimed at advancing a common vision of the necessity of the expansion of nuclear energy for peaceful purposes worldwide in a safe and secure manner. In addition, GC-52 provides legal advice to DOE regarding the management and disposition of excess uranium in DOE's uranium stockpile. GC-52 attorneys participate in meetings of DOE's Uranium Inventory Management Coordinating Committee and provide advice on compliance with statutory requirements for the sale or transfer of uranium.

86

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

B B World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal-computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product [GDP]) and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and

87

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | International Energy Outlook 2013 Projections of liquid fuels and other petroleum production in five cases Table G7. World petroleum and other liquids production by region and country, Low Oil Price case, 2010-2040 (million barrels per day) Region/country History (estimates) Projections Average annual percent change, 2010-2040 2010 2011 2015 2020 2025 2030 2035 2040 OPEC a 34.9 35.1 37.6 43.9 47.5 50.7 56.3 61.5 1.9 Middle East 23.8 25.4 25.5 30.7 33.6 36.1 40.5 44.7 2.1 North Africa 3.8 2.4 3.7 3.7 3.9 4.0 4.4 4.6 0.7 West Africa 4.4 4.3 5.2 5.8 6.1 6.5 6.8 7.1 1.6 South America 2.9 3.0 3.1 3.6 3.9 4.2 4.6 5.1 2.0 Non-OPEC 51.6 51.6 55.5 56.8 57.8 59.2 58.9 59.6 0.5 OECD 21.2 21.2 23.5 23.2 22.5 22.0 21.6 22.0 0.1

88

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | International Energy Outlook 2013 Projections of liquid fuels and other petroleum production in five cases Table G1. World petroleum and other liquids production by region and country, Reference case, 2010-2040 (million barrels per day) Region/country History (estimates) Projections Average annual percent change, 2010-2040 2010 2011 2015 2020 2025 2030 2035 2040 OPEC a 34.9 35.1 36.1 38.4 40.0 42.5 45.7 48.9 1.1 Middle East 23.8 25.4 24.5 26.7 28.2 30.4 33.1 35.8 1.4 North Africa 3.8 2.4 3.5 3.3 3.3 3.5 3.8 4.0 0.2 West Africa 4.4 4.3 5.1 5.3 5.5 5.6 5.8 5.9 0.9 South America 2.9 3.0 3.0 3.1 3.1 3.0 3.1 3.3 0.4 Non-OPEC 51.8 51.7 55.8 58.2 60.3 61.9 63.7 66.0 0.8 OECD 21.4 21.4 23.9 23.9 23.4 23.0 23.8 24.8 0.5 OECD Americas

89

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Projections of liquid fuels and other petroleum production in five cases Table G3.World nonpetroleum liquids production by region and country, Reference case, 2010-2040 (million barrels per day) Region/country History (estimates) Projections Average annual percent change, 2010-2040 2010 2011 2015 2020 2025 2030 2035 2040 OPEC a 0.0 0.1 0.2 0.2 0.3 0.3 0.3 0.3 12.5 Biofuels b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Coal-to-liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Gas-to-liquids 0.0 0.1 0.2 0.2 0.3 0.3 0.3 0.3 12.5 Non-OPEC 1.6 1.6 1.9 2.3 2.8 3.3 3.8 4.3 3.5 OECD 0.8 0.9 1.0 1.2 1.2 1.3 1.4 1.7 2.4 Biofuels b 0.8 0.9 1.0 1.1 1.1 1.1 1.2 1.4 1.8 Coal-to-liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 15.0 Gas-to-liquids

90

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | International Energy Outlook 2013 Projections of liquid fuels and other petroleum production in five cases Table G5. World petroleum production by region and country, High Oil Price case, 2010-2040 (million barrels per day) Region/country History (estimates) Projections Average annual percent change, 2010-2040 2010 2011 2015 2020 2025 2030 2035 2040 OPEC a 34.8 35.0 33.9 34.2 36.5 39.3 42.8 45.3 0.9 Middle East 23.8 25.3 23.0 23.6 25.4 27.9 30.8 33.0 1.1 North Africa 3.8 2.4 3.3 3.0 3.1 3.2 3.6 3.7 -0.1 West Africa 4.4 4.3 4.7 4.7 5.0 5.1 5.3 5.3 0.6 South America 2.9 3.0 2.9 3.0 3.0 3.0 3.1 3.3 0.4 Non-OPEC 50.1 50.0 54.1 55.9 56.8 59.5 62.2 65.7 0.9 OECD 20.4 20.3 23.1 23.6 23.4 23.4 24.2 25.2 0.7 OECD Americas 15.2

91

International energy outlook 2006  

SciTech Connect (OSTI)

This report presents international energy projections through 2030, prepared by the Energy Information Administration. After a chapter entitled 'Highlights', the report begins with a review of world energy and economic outlook, followed by energy consumption by end-use sector. The next chapter is on world oil markets. Natural gas, world coal market and electricity consumption and supply are then discussed. The final chapter covers energy-related carbon dioxide emissions.

NONE

2006-06-15T23:59:59.000Z

92

ALL Fuels Energy | Open Energy Information  

Open Energy Info (EERE)

ALL Fuels Energy ALL Fuels Energy Jump to: navigation, search Name ALL Fuels & Energy Place Iowa Zip 50131 Product Ethanol plant developer based in Iowa, US. References ALL Fuels & Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. ALL Fuels & Energy is a company located in Iowa . References ↑ "ALL Fuels & Energy" Retrieved from "http://en.openei.org/w/index.php?title=ALL_Fuels_Energy&oldid=342009" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

93

International Energy Agency  

Broader source: Energy.gov [DOE]

The International Energy Agency (IEA) provides a mechanism for member countries to task- and cost-share research activities through two agreementsone supporting hydrogen activities and another...

94

INTERNATIONAL ENERGY AND ENVIRONMENT  

E-Print Network [OSTI]

in a heat pump cooling system, thereby alleviating peak electricity consumption and associated emissions substituting for banned fluorocarbon refrigerants, coping with carbon costing and reducing water consumptionINTERNATIONAL ENERGY AND ENVIRONMENT FOUNDATION Computational Fluid Dynamics Modeling

95

International Energy Outlook 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 International Energy Outlook 1997 April 1997 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting; Arthur T. Andersen (202/586-1441), Director, Energy Demand and Integration Division;

96

International Energy Outlook 1995  

Gasoline and Diesel Fuel Update (EIA)

5) 5) Distribution Category UC-950 International Energy Outlook 1995 May 1995 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting; Arthur T. Andersen (202/586-1441), Director, Energy Demand and Integration Division;

97

International Energy Agency  

Broader source: Energy.gov [DOE]

DOE's market transformation efforts have reached to European and other countries who are part of the international distributed and decentralized energy community. Through its partnership with DOE, the combined heat and power (CHP) program of the International Energy Agency (IEA) conducts research and analysis of CHP markets and deployment efforts around the world and has used lessons learned from U.S. research, development, and deployment efforts to recommend market transformation activities and policies that will lead to new CHP installations worldwide.

98

International Partnership for Hydrogen and Fuel Cells in the...  

Energy Savers [EERE]

Partnership for Hydrogen and Fuel Cells in the Economy International Partnership for Hydrogen and Fuel Cells in the Economy The United States is a founding member of the...

99

Fuel Cell Vehicle Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Basics Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to revolutionize our transportation system. They are more efficient than conventional internal combustion engine vehicles and produce no harmful tailpipe exhaust-their only emission is water. Fuel cell vehicles and the hydrogen infrastructure to fuel them are in an early stage of development. The U.S. Department of Energy is leading government and industry efforts to make hydrogen-powered vehicles an affordable, environmentally friendly, and safe transportation option. Visit the Alternative Fuels and Advanced Vehicles Data Center to learn more

100

Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FORUM AGENDA FORUM AGENDA U.S. Department of Energy and Tsinghua University International Hydrogen Fuel and Pressure Vessel Forum Tsinghua University Beijing, PRC September 27 - 29, 2010 The U.S. Department of Energy (DOE) and Tsinghua University in Beijing co-hosted the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010 in Beijing, China. High pressure vessel experts gathered to share lessons learned from CNG and hydrogen vehicle deployments, and to identify R&D needs to aid the global harmonization of regulations, codes and standards to enable the successful deployment of hydrogen and fuel cell technologies. Forum Objectives: * Address and share data and information on specific technical topics discussed at the workshop in

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 (IEO2006) presents an assessment by the Energy Information Administra- tion (EIA) of the outlook for international energy mar- kets through 2030. U.S. projections appearing in IEO2006 are consistent with those published in EIA's Annual Energy Outlook 2006 (AEO2006), which was pre- pared using the National Energy Modeling System (NEMS). IEO2006 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade associa- tions, and other planners and decisionmakers. They are published pursuant to the Department of Energy Orga- nization Act of 1977 (Public Law 95-91), Section 205(c). IEO2006 focuses exclusively on marketed energy. Non- marketed energy sources, which continue to play an important role in some developing countries, are not included

102

Alternative Fuels Data Center: State Energy Plan Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Energy Plan State Energy Plan Alternative Fuel Requirements to someone by E-mail Share Alternative Fuels Data Center: State Energy Plan Alternative Fuel Requirements on Facebook Tweet about Alternative Fuels Data Center: State Energy Plan Alternative Fuel Requirements on Twitter Bookmark Alternative Fuels Data Center: State Energy Plan Alternative Fuel Requirements on Google Bookmark Alternative Fuels Data Center: State Energy Plan Alternative Fuel Requirements on Delicious Rank Alternative Fuels Data Center: State Energy Plan Alternative Fuel Requirements on Digg Find More places to share Alternative Fuels Data Center: State Energy Plan Alternative Fuel Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

103

International energy outlook 1994  

SciTech Connect (OSTI)

The International Energy Outlook 1994 (IEO94) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets between 1990 and 2010. The report is provided as a statistical service to assist energy managers and analysts, both in government and in the private sector. These forecasts are used by international agencies, Federal and State governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Depart. of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO94 projections are based on US and foreign government policies in effect on October 1, 1993-which means that provisions of the Climate Change Action Plan unveiled by the Administration in mid-October are not reflected by the US projections.

Not Available

1994-07-01T23:59:59.000Z

104

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Hydroelectricity and Other Renewable Resources Hydroelectricity and Other Renewable Resources While renewable energy sources are not expected to gain market share, they are expected to retain an 8-percent share of world energy use through 2020. Regional Activity World events and low fossil fuel prices in 1997 have had mixed effects on the markets for hydroelectricity and other renewable energy sources. World oil prices have fallen from $24 per barrel in 1996 to the 1997 price of $17per barrel, and they are expected to remain below $23 per barrel through 2020 (prices in 1996 U.S. dollars). Low fossil fuel prices will continue to make it difficult for renewable energy sources to compete for market share. On the other hand, the climate change protocol developed in Kyoto, Japan, in 1997 increases interest in the potential role of renewables, inasmuch as

105

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

System for the Analysis of Global Energy Markets (SAGE) System for the Analysis of Global Energy Markets (SAGE) The projections of world energy consumption appearing in IEO2006 are based on EIA's international energy modeling tool, SAGE. SAGE is an integrated set of regional models that provide a technology-rich basis for estimating regional energy consumption. For each region, reference case estimates of 42 end-use energy service demands (e.g., car, commercial truck, and heavy truck road travel; residential lighting; steam heat requirements in the paper industry) are developed on the basis of economic and demographic projections. Pro- jections of energy consumption to meet the energy demands are estimated on the basis of each region's existing energy use patterns, the existing stock of energy-using equipment, and the characteristics of available new technologies, as well as new sources of primary energy supply.

106

Check Burner Air to Fuel Ratios (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #2c  

SciTech Connect (OSTI)

This English/Chinese international tip sheet provides information for optimizing efficiency of industrial process heating systems and includes measurements in metric units.

Not Available

2010-10-01T23:59:59.000Z

107

CALIFORNIA ENERGY PETROLEUM FUELSPETROLEUM FUELS  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION PETROLEUM FUELSPETROLEUM FUELS SET-ASIDE PROGRAMSET-ASIDE PROGRAM for administering the Petroleum Fuels Set-Aside Program (Fuels Set-Aside Program). During a proclaimed state of emergency, intrastate petroleum and petroleum product stocks that are essential to life, property

108

Energy 101: Fuel Cell Technology  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

109

Integrated international safeguards concepts for fuel reprocessing  

SciTech Connect (OSTI)

This report is the fourth in a series of efforts by the Los Alamos National Laboratory and Sandia National Laboratories, Albuquerque, to identify problems and propose solutions for international safeguarding of light-water reactor spent-fuel reprocessing plants. Problem areas for international safeguards were identified in a previous Problem Statement (LA-7551-MS/SAND79-0108). Accounting concepts that could be verified internationally were presented in a subsequent study (LA-8042). Concepts for containment/surveillance were presented, conceptual designs were developed, and the effectiveness of these designs was evaluated in a companion study (SAND80-0160). The report discusses the coordination of nuclear materials accounting and containment/surveillance concepts in an effort to define an effective integrated safeguards system. The Allied-General Nuclear Services fuels reprocessing plant at Barnwell, South Carolina, was used as the reference facility.

Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.; Camp, A.L.; Cameron, C.P.; Bleck, M.E.; Ellwein, L.B.

1981-12-01T23:59:59.000Z

110

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2004 Highlights World energy consumption is projected to increase by 54 percent from 2001 to 2025. Much of the growth in worldwide energy use is expected in the developing world in the IEO2004 reference case forecast. Figure 2. World Marketed Energy Consumption, 1970-2025 (Quadrillion Btu). Having Problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 3. World Marketed Energy Consumption by Region, 1970-2025 (Quadrillion Btu). Having problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 4. Comparison of 2003 and 2004 World Oil Price Projections, 1970-2025 (2002 Dollars per Barrel). Figure Data Figure 5. World Marketed Energy Consumption by Energy Source, 1970-2025 (Quadrilliion Btu). Need help, call the National Energy Information Center at 202-596-8600.

111

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 (IEO2007) presents an assessment by the Energy Information Admin- istration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2007 are consistent with those published in EIA's Annual Energy Outlook 2007 (AEO2007), which was pre- pared using the National Energy Modeling System (NEMS). IEO2007 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade associa- tions, and other planners and decisionmakers. They are published pursuant to the Department of Energy Orga- nization Act of 1977 (Public Law 95-91), Section 205(c). Projections in IEO2007 are divided according to Organi- zation for Economic Cooperation and Development members (OECD) and non-members (non-OECD). There are

112

Alternative Fueling Station Locator | Department of Energy  

Energy Savers [EERE]

your browser to a new version. U.S. Department of Energy Energy Efficiency and Renewable Energy Source: Alternative Fuels Data Center Find alternative fueling stations near an...

113

Clean Energy Fuels | OpenEI Community  

Open Energy Info (EERE)

by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

114

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

115

Forum Agenda: International Hydrogen Fuel and Pressure Vessel Forum  

Broader source: Energy.gov [DOE]

Agenda for the International Hydrogen Fuel and Pressure Vessel Forum held Sept. 27-29, 2010, in Beijing, China

116

Alternative Fuels Group | Open Energy Information  

Open Energy Info (EERE)

Alternative Fuels Group Place: Maryland Sector: Renewable Energy Product: US-based producer of renewable fuels. References: Alternative Fuels Group1 This article is a stub. You...

117

Reversible Fuel Cells Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reversible Fuel Cells Workshop Reversible Fuel Cells Workshop The National Renewable Energy Laboratory hosted a workshop addressing the current state-of-the-art of reversible fuel...

118

Regenerative Fuel Cells for Energy Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regenerative Fuel Cells for Energy Storage Regenerative Fuel Cells for Energy Storage Presentation by Corky Mittelsteadt, Giner Electrochemical Systems, at the NREL Reversible Fuel...

119

Energy Information Administration (EIA) - International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2006 International Energy Outlook 2006 International Energy Outlook 2006 The International Energy Outlook 2006 (IEO2006) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2006 are consistent with those published in EIA's Annual Energy Outlook 2006 (AEO2006), which was prepared using the National Energy Modeling System (NEMS). Projection Tables Appendix A: Reference Case Appendix B: High Economic Growth Case Appendix C: Low Economic Growth Case Appendix D: Reference Case Projections by End-Use Sector and Region Appendix E: Projections of Oil Production Capacity and Oil Production in Three Cases Appendix F: Reference Case Projections for Electricity Capacity and Generation by Fuel

120

Renewable Energy Institute International REII | Open Energy Information  

Open Energy Info (EERE)

Institute International REII Institute International REII Jump to: navigation, search Name Renewable Energy Institute International (REII) Place McClellan, California Zip 95652 Sector Renewable Energy Product California-based non-profit that supports research, development, demonstration, and deployment programmes on renewable energy and alternative fuels in collaboration with government, industry, academia, institutes and non-government organizations. References Renewable Energy Institute International (REII)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Institute International (REII) is a company located in McClellan, California . References ↑ "Renewable Energy Institute International (REII)"

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

International Energy Outlook 2004  

Gasoline and Diesel Fuel Update (EIA)

4) 4) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 4 April 2004 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222),

122

International Energy Outlook 2003  

Gasoline and Diesel Fuel Update (EIA)

3) 3) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 3 May 2003 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director,

123

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the...

124

International Energy Outlook - Electicity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2004 Electricity Electricity consumption nearly doubles in the IEO2004 projections. Developing nations in Asia are expected to lead the increase in world electricity use. Figure 60. World Net Electricity Consumptin, 2001-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 61. World Net Electricity Consumptin by Region, 2001-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World net electricity consumption is expected nearly double to over the next two decades, according to the International Energy Outlook 2004 (IEO2004) reference case forecast. Total demand for electricity is projected to increase on average by 2.3 percent per year, from 13,290

125

A Planar Anode -Supported Solid Oxide Fuel Cell Model with Internal Reforming of Natural Gas  

E-Print Network [OSTI]

1 A Planar Anode - Supported Solid Oxide Fuel Cell Model with Internal Reforming of Natural Gas of natural gas has been developed. The model simultaneously solves mass, energy transport equations emission level, and multiple fuel utilization. SOFC can operate with various kinds of fuels such as natural

Boyer, Edmond

126

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

the coming decades, actions to limit greenhouse gas emissions the coming decades, actions to limit greenhouse gas emissions could affect patterns of energy use around the world and alter the level and composition of energy-related carbon dioxide emissions by energy source. Carbon dioxide is one of the most prevalent greenhouse gases in the atmosphere. Anthropogenic (human- caused) emissions of carbon dioxide result primarily from the combustion of fossil fuels for energy, and as a result world energy use has emerged at the center of the climate change debate. In the IEO2006 reference case, world carbon dioxide emissions increase from 25,028 million metric tons in 2003 to 33,663 million metric tons in 2015 and 43,676 million metric tons in 2030 (Figure 65). 14 The Kyoto Protocol, which requires participating "Annex I" countries to reduce their greenhouse gas emissions collectively to an annual

127

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

7) 7) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 7 May 2007 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Ener- gy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti, Director, Office of

128

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

The IEO2006 projections indicate continued growth in world energy use, despite The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last year's outlook. Energy resources are thought to be adequate to support the growth expected through 2030. The International Energy Outlook 2006 (IEO2006) projects strong growth for worldwide energy demand over the 27-year projection period from 2003 to 2030. Despite world oil prices that are 35 percent higher in 2025 than projected in last year's outlook, world economic growth continues to increase at an average annual rate of 3.8 percent over the projection period, driving the robust increase in world energy use. Total world consumption of marketed energy expands from 421 quadrillion Brit- ish thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and then to 722 quadrillion Btu in

129

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

6) 6) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 6 June 2006 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Ener- gy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti (john.conti@eia.doe.gov,

130

International Energy Outlook 2008  

Gasoline and Diesel Fuel Update (EIA)

8) 8) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 8 September 2008 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Ener- gy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti, Director, Office

131

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights Growth in energy use is projected worldwide through 2020. The demand for electricity in homes, business, and industry is growing in all regions, as is the demand for petroleum-powered personal transportation. The International Energy Outlook 1998 (IEO98) reference case forecast indicates that by 2020, the world will consume three times the energy it consumed 28 years ago in 1970 (Figure 2). Much of the projected growth in energy consumption is attributed to expectations of rapid increases in energy use in the developing world—especially in Asia. Although the economic downturn in Asia that began in mid-1997 and continues into 1998 has lowered expectations for near-term growth in the region, the forecast still suggests that almost half the world’s projected increase in energy

132

International Energy Outlook 1999  

Gasoline and Diesel Fuel Update (EIA)

contacts.gif (2957 bytes) contacts.gif (2957 bytes) The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting, or Arthur T. Andersen, Director, International, Economic, and Greenhouse Gases Division. Specific questions about the report should be referred to Linda E. Doman (202/586-1041) or the following analysts: Report Contact World Energy Consumption Linda E. Doman - 202/586-1041 linda.doman@eia.doe.gov World Oil Markets G. Daniel Butler - 202/586-9503 gbutler@eia.doe.gov Stacy MacIntyre - 202/586-9795- (Consumption) stacy.macintyre@eia.doe.gov Natural Gas Linda E. Doman - 202/586-1041

133

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting, or Arthur T. Andersen (202/586-1441), Director, International, Economic, and Greenhouse Gases Division. Specific questions about the report should be referred toLinda E. Doman (202/586-1041) or the following analysts: World Energy Consumption Arthur Andersen (art.andersen@eia.doe.gov, 202/586-1441) Linda E. Doman (linda.doman@eia.doe.gov, 202/586-1041) World Oil Markets G. Daniel Butler (george.butler@eia.doe.gov, 202/586-9503) Perry Lindstrom (perry.lindstrom@eia.doe.gov, 202/586-0934) Reformulated Gasoline

134

International Activities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International Activities International Activities International Activities International Activities The International Program assists the DOE Office of Environmental Management (EM) in identifying technologies and strategies for waste processing, groundwater and soil remediation, spent nuclear fuel and surplus nuclear material disposition, and facility deactivation and decommissioning. The International Program seeks to transform advances in science and engineering into practical solutions for environmental remediation. Collaboration with governmental, academic, and industrial organizations in other countries expands the technical depth of the EM program. Working with the international community offers the opportunity to develop consensus on approaches to science, technology and policy for environmental

135

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas By 2020, the world’s annual consumption of natural gas is projected to be more than double the 1995 level. Much of the growth is expected to fuel electricity generation worldwide. Reserves Regional Activity Natural gas is expected to be the fastest-growing primary energy source in the world over the next 25 years. In the IEO98 reference case, gas consumption grows by 3.3 percent annually through 2020, as compared with 2.1-percent annual growth for oil and renewables and 2.2 percent for coal. By 2020, the world’s consumption of natural gas is projected to equal 172 trillion cubic feet, more than double the 1995 level (Figure 43). Much of the growth is expected to fuel electricity generation worldwide (Figure 44), but resource availability, cost, and environmental considerations will

136

International Energy Outlook 2001 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal picture of a printer Printer Friendly Version (PDF) Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. World coal consumption has been in a period of generally slow growth since the late 1980s, a trend that is expected to continue. Although 1999 world consumption, at 4.7 billion short tons,9 was 15 percent higher than coal use in 1980, it was lower than in any year since 1984 (Figure 51). The International Energy Outlook 2001 (IEO2001) reference case projects some growth in coal use between 1999 and 2020, at an average annual rate of 1.5 percent, but with considerable variation among regions.

137

Hydrogen and Fuel Cells Program Overview: Hydrogen and Fuel Cells 2011 International Conference  

Broader source: Energy.gov [DOE]

Presentation by Sunita Satyapal at the Hydrogen and Fuel Cells 2011 International Conference on May 17, 2011.

138

Distributed Energy Fuel Cells Electricity Users  

E-Print Network [OSTI]

& Barriers Distributed Energy OBJECTIVES · Develop a distributed generation PEM fuel cell system operating of Stationary PEM Fuel Cell Power System Development of Back-up Fuel Cell Power System Development of Materials of PEM Fuel Cell Systems #12;

139

How Fuel Cells Work | Department of Energy  

Energy Savers [EERE]

Fuel Cells Work How Energy Works 30 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and...

140

Fuel Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Fuel Economy Fuel Economy Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel. Featured New Investment in Energy-Efficient Manufacturing The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility.

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Transportation Fuel Basics - Propane | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

142

Energy 101: Fuel Cell Technology  

SciTech Connect (OSTI)

Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

None

2014-03-11T23:59:59.000Z

143

Energy 101: Fuel Cell Technology  

ScienceCinema (OSTI)

Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

None

2014-06-06T23:59:59.000Z

144

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

Natural gas trails coal as the fastest growing primary energy source in IEO2006. Natural gas trails coal as the fastest growing primary energy source in IEO2006. The natural gas share of total world energy consumption increases from 24 percent in 2003 to 26 percent in 2030. Consumption of natural gas worldwide increases from 95 trillion cubic feet in 2003 to 182 trillion cubic feet in 2030 in the IEO2006 reference case (Figure 34). Although natural gas is expected to be an important fuel source in the electric power and industrial sectors, the annual growth rate for natural gas consumption in the projec- tions is slightly lower than the growth rate for coal con- sumption-in contrast to past editions of the IEO. Higher world oil prices in IEO2006 increase the demand for and price of natural gas, making coal a more econom- ical fuel source in the projections. Natural gas consumption worldwide increases at an average rate of 2.4 percent

145

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 58 percent from 2001 to 2025. Much of the growth in worldwide energy use is expected in the developing world in the IEO2003 reference case forecast. In the International Energy Outlook 2003 (IEO2003) reference case, world energy consumption is projected to increase by 58 percent over a 24-year forecast horizon, from 2001 to 2025. Worldwide, total energy use is projected to grow from 404 quadrillion British thermal units (Btu) in 2001 to 640 quadrillion Btu in 2025 (Figure 2). As in past editions of this report, the IEO2003 reference case outlook continues to show robust growth in energy consumption among the developing nations of the world (Figure 3). The strongest growth is projected for developing Asia, where demand for energy is expected to more than double over the forecast period. An average annual growth rate of 3 percent is projected for energy use in developing Asia, accounting for nearly 40 percent of the total projected increment in world energy consumption and 69 percent of the increment for the developing world alone.

146

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A8. World nuclear energy consumption by region, Reference case, 2009-2040 (billion kilowatthours) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 894 899 932 978 1,032 1,054 1,030 1,066 0.6 United States a 799 807 820 885 912 908 875 903 0.4 Canada 86 86 99 81 99 117 118 118 1.0 Mexico/Chile 10 6 12 12 21 29 37 46 7.3 OECD Europe 840 867 892 929 1,045 1,065 1,077 1,073 0.7 OECD Asia 406 415 301 447 490 551 557 576 1.1 Japan 266 274 103 192 200 206 209 209 -0.9 South Korea 140 141 198 255 291 346 348 367 3.2 Australia/NewZealand 0 0 0 0 0 0 0 0 -- Total OECD 2,140 2,181 2,124 2,354 2,567 2,670 2,664 2,715 0.7 Non-OECD Non-OECD Europe and Eurasia 272 274 344 414 475 533 592 630 2.8 Russia

147

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

Comparisons With Other Forecasts, and Performance of Past IEO Forecasts for 1990, 1995, and 2000 Forecast Comparisons Energy Consumption by Region Three organizations provide forecasts comparable with the projections in IEO2006, which extend to 2030 for the first time. The International Energy Agency (IEA) pro- vides "business as usual" projections to 2030 in its World Energy Outlook 2004; Petroleum Economics, Ltd. (PEL) publishes world energy projections to 2025; and Petro- leum Industry Research Associates (PIRA) provides projections to 2020. For comparison, 2002 is used as the base year for all the projections. Comparisons between IEO2006 and IEO2005 extend only to 2025, the last year of the IEO2005 projections. Regional breakouts vary among the different projec- tions, complicating the comparisons. For example, IEO2006, PIRA, and IEA

148

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Natural gas is the fastest growing primary energy source in the IEO2003 forecast. Consumption of natural gas is projected to nearly double between 2001 and 2025, with the most robust growth in demand expected among the developing nations. Natural gas is expected to be the fastest growing component of world primary energy consumption in the International Energy Outlook 2003 (IEO2003) reference case. Consumption of natural gas worldwide is projected to increase by an average of 2.8 percent annually from 2001 to 2025, compared with projected annual growth rates of 1.8 percent for oil consumption and 1.5 percent for coal. Natural gas consumption in 2025, at 176 trillion cubic feet, is projected to be nearly double the 2001 total of 90 trillion cubic feet (Figure 40). The natural gas share of total energy consumption is projected to increase from 23 percent in 2001 to 28 percent in 2025.

149

Hydrogen Fuel Cell Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Your H2IQ Hydrogen Fuel Cell Basics Hydrogen Fuel Cell Basics Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. The fuel...

150

Swell Fuel | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Swell Fuel Place Houston, Texas Zip 77072 Sector Marine and Hydrokinetic Product Texas-based developer of small-scale wave energy devices. Website http://www.swellfuel.com References Swell Fuel LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Technologies: Lever Operated Pivoting Float Swell Fuel This article is a stub. You can help OpenEI by expanding it. Swell Fuel is a company located in Houston, Texas . References Retrieved from "http://en.openei.org/w/index.php?title=Swell_Fuel&oldid=680057" Categories: Clean Energy Organizations Companies Organizations Stubs MHK Companies

151

MicroEnergy International | Open Energy Information  

Open Energy Info (EERE)

MicroEnergy International MicroEnergy International Jump to: navigation, search Name MicroEnergy International Place Berlin, Germany Zip D-10587 Sector Renewable Energy Product Promotes renewable energy technologies in the developing countries. References MicroEnergy International[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. MicroEnergy International is a company located in Berlin, Germany . References ↑ "MicroEnergy International" Retrieved from "http://en.openei.org/w/index.php?title=MicroEnergy_International&oldid=348787" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

152

International Nuclear Fuel Cycle Fact Book. Revision 12  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

Leigh, I.W.

1992-05-01T23:59:59.000Z

153

International trade and waste and fuel managment issue, 2008  

SciTech Connect (OSTI)

The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: A global solution for clients, by Yves Linz, AREVA NP; A safer, secure and economical plant, by Andy White, GE Hitachi Nuclear; Robust global prospects, by Ken Petrunik, Atomic Energy of Canada Limited; Development of NPPs in China, by Chen Changbing and Li Huiqiang, Huazhong University of Science and Technology; Yucca Mountain update; and, A class of its own, by Tyler Lamberts, Entergy Nuclear. The Industry Innovation articles in this issue are: Fuel assembly inspection program, by Jim Lemons, Tennessee Valley Authority; and, Improved in-core fuel shuffle for reduced refueling duration, by James Tusar, Exelon Nuclear.

Agnihotri, Newal (ed.)

2008-01-15T23:59:59.000Z

154

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A12. World carbon dioxide emissions from natural gas use by region, Reference case, 2009-2040 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 1,511 1,563 1,686 1,793 1,888 1,987 2,114 2,233 1.2 United States a 1,222 1,266 1,357 1,404 1,431 1,468 1,528 1,570 0.7 Canada 170 162 171 199 223 240 255 271 1.7 Mexico/Chile 119 135 158 190 234 279 331 392 3.6 OECD Europe 1,024 1,082 1,086 1,123 1,144 1,215 1,277 1,348 0.7 OECD Asia 347 377 408 438 478 505 539 561 1.3 Japan 205 215 242 257 276 288 293 293 1.0 South Korea 72 90 91 98 110 117 136 148 1.7 Australia/NewZealand 70 71 75 83 91 101 110 119 1.7 Total OECD 2,882 3,022 3,180 3,353 3,510

155

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2009 Chapter 2 - Liquid Fuels World liquids consumption in the IEO2009 reference case increases from 85 million barrels per day in 2006 to 107 million barrels per day in 2030. Unconventional liquids, at 13.4 million barrels per day, make up 12.6 percent of total liquids production in 2030. Figure 25. World Liquids Consumption by Region and Country Group, 2006 and 2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 26. World Liquids Supply in Three Cases, 2006 and 2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 27. World Production of Unconventional Liquid Fuels, 2006-2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800.

156

Solar Cookers International | Open Energy Information  

Open Energy Info (EERE)

Cookers International Cookers International Jump to: navigation, search CooKit Each group of items costs 75 Kenya Shillings (about US$1) as does the pile of charcoal shown. By using a CooKit or other solar cooker, people can buy food instead of fuel. TODO: add references Solar Cookers International (SCI) is a 501(c)(3) nonprofit, non-governmental organization that spreads solar cooking awareness and skills worldwide, particularly in areas with plentiful sunshine and diminishing sources of cooking fuel. SCI has enabled 30,000 families in Africa to cook with the sun's energy, freeing women and children from the burdens of gathering wood and carrying it for miles. Tens of thousands of individuals and organization from all over the world have learned about solar cooking through SCI's international programs, education resources,

157

Fuel Cells & Alternative Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and...

158

International District Energy Association  

Broader source: Energy.gov [DOE]

Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA performs industry research and market analysis to foster high impact projects and help transform the U.S. energy industry. IDEA was an active participant in the original Vision and Roadmap process and has continued to partner with DOE on combined heat and power (CHP) efforts across the country.

159

International District Energy Association | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International District Energy Association International District Energy Association International District Energy Association November 1, 2013 - 11:40am Addthis International District Energy Association logo Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA

160

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts Contacts The International Energy Outlook is prepared by the Office of Integrated Analysis and Forecasting (OIAF). General questions concerning the contents of the report should be referred to John Conti, Director, International, Economic and Greenhouse Gases Division (202/586-4430). Specific questions about the report should be referred to Linda E. Doman (202/586-1041 or linda.doman@eia.doe.gov) or the following analysts: Macroeconomic Assumptions Nasir Khilji (nasir.khilji@eia.doe.gov, 202/586-1294) World Oil Markets G. Daniel Butler (george.butler@eia.doe.gov, 202/586-9503) Natural Gas Phyllis Martin (phyllis.martin@eia.doe.gov, 202/586-9592) Justine Bardin (justine.baren@eia.doe.gov 202/586-3508) Coal Michael Mellish (michael.mellish@eia.doe.gov,

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

International Energy Agency (IEA) | Open Energy Information  

Open Energy Info (EERE)

International Energy Agency, headquartered in Paris, France, acts as an energy policy advisor for the governments of its 28 member countries including: Australia, Austria,...

162

Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except for all the other forms"  

E-Print Network [OSTI]

Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except of Southern California, Los Angeles, CA 90089-1453 Introduction Hydrocarbon-fueled internal combustion engines. For the purposes of this paper: An internal combustion engine is a heat engine (a device in which thermal energy

163

LBNL International Energy Studies | Open Energy Information  

Open Energy Info (EERE)

LBNL International Energy Studies LBNL International Energy Studies (Redirected from International Energy Studies) Jump to: navigation, search Logo: International Energy Studies Name International Energy Studies Agency/Company /Organization Lawrence Berkeley National Laboratory Sector Energy, Land Focus Area Energy Efficiency, Forestry Topics Implementation, GHG inventory, Policies/deployment programs, Resource assessment, Pathways analysis, Background analysis Resource Type Dataset Website http://ies.lbl.gov References IES Homepage[1] Abstract The International Energy Studies (IES) Group has been active for more than 25 years and is composed of scientists active on the world forum in the areas of energy, forestry, and climate research. Recently LBNL and UC Berkeley also initiated a new program on India the Berkeley India Joint Leadership on Energy and Environment (BIJLEE).

164

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2007 reference case, natural gas consumption in the non-OECD countries grows In the IEO2007 reference case, natural gas consumption in the non-OECD countries grows more than twice as fast as in the OECD countries. Production increases in the non-OECD region account for more than 90 percent of the growth in world production from 2004 to 2030. Consumption of natural gas worldwide increases from 100 trillion cubic feet in 2004 to 163 trillion cubic feet in 2030 in the IEO2007 reference case (Figure 40). By energy source, the projected increase in natural gas consump- tion is second only to coal. Natural gas remains a key fuel in the electric power and industrial sectors. In the power sector, natural gas is an attractive choice for new generating plants because of its relative fuel efficiency. Natural gas also burns more cleanly than coal or petro- leum products, and as more governments begin imple- menting national or

165

Biomass IBR Fact Sheet: Renewable Energy Institute International  

Broader source: Energy.gov [DOE]

The Renewable Energy Institute International, in collaboration with Red Lion Bio-Energy and Pacific Renewable Fuels, is demonstrating a pilot, pre-commercial-scale integrated biorefinery for the production of high-quality, synthetic diesel fuels from agriculture and forest residues using advanced thermochemical and catalytic conversion technologies.

166

Used fuel disposition campaign international activities implementation plan.  

SciTech Connect (OSTI)

The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted regarding long-term storage and the potential disposal of UNF and HLW in different geolo

Nutt, W. M. (Nuclear Engineering Division)

2011-06-29T23:59:59.000Z

167

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet | Open Energy  

Open Energy Info (EERE)

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Vehicles Topics: Best Practices Website: www.unep.org/transport/gfei/autotool/ This tool is designed to provide policymakers and interested individuals and groups with overviews of policy tools and approaches to improving fleet-wide automobile fuel efficiency and promote lower CO2 and non-CO2 emissions from cars, along with case studies that depict these approaches from developed and developing countries. How to Use This Tool

168

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Between 1995 and 2020, the world’s annual consumption of electricity is projected to rise from 12 trillion kilowatthours to 23 trillion kilowatthours. The greatest increases are expected in developing Asia and in Central and South America. Primary Fuel Use The Financing of Electric Power Expansion Public Policy Reform in the Electricity Industry Regional Highlights Throughout the world, electricity is and will continue to be the fastest growing component of energy demand. Between 1995 and 2020, total world electricity demand is expected to rise from 12 trillion kilowatthours to 23 trillion kilowatthours (Table 25). Demand growth will be slowest in the industrialized countries; but even in the advanced economies, which currently account for about 60 percent of world electricity use, absolute

169

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

The World Oil Market The World Oil Market Oil prices are expected to remain relatively low, and resources are not expected to constrain substantial increases in oil demand through 2020. Oil usecontinues to dominate transportation energy markets. Oil Demand Growth in Industrialized Countries Oil Demand Growth in Nonindustrialized Countries Oil Demand and Transportation The Composition of World Oil Supply Worldwide Petroleum Trade in the Reference Case World Oil Price Projections Other Views of Prices and Production Policies To Lessen Environmental Damage from Transportation Fuel Use In the early 1990s, oil demand was relatively flat: oil consumption worldwide was only 1 million barrels per day higher in 1993 than it was in 1989. Since 1993, however, the world’s demand for oil has risen by almost

170

Third international symposium on alcohol fuels technology  

SciTech Connect (OSTI)

At the opening of the Symposium, Dr. Sharrah, Senior Vice President of Continental Oil Company, addressed the attendees, and his remarks are included in this volume. The Symposium was concluded by workshops which addressed specific topics. The topical titles are as follows: alcohol uses; production; environment and safety; and socio-economic. The workshops reflected a growing confidence among the attendees that the alcohols from coal, remote natural gas and biomass do offer alternatives to petroleum fuels. Further, they may, in the long run, prove to be equal or superior to the petroleum fuels when the aspects of performance, environment, health and safety are combined with the renewable aspect of the biomass derived alcohols. Although considerable activity in the production and use of alcohols is now appearing in many parts of the world, the absence of strong, broad scale assessment and support for these fuels by the United States Federal Government was a noted point of concern by the attendees. The environmental consequence of using alcohols continues to be more benign in general than the petroleum based fuels. The exception is the family of aldehydes. Although the aldehydes are easily suppressed by catalysts, it is important to understand their production in the combustion process. Progress is being made in this regard. Of course, the goal is to burn the alcohols so cleanly that catalytic equipment can be eliminated. Separate abstracts are prepared for the Energy Data Base for individual presentations.

none,

1980-04-01T23:59:59.000Z

171

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal In the IEO2007 reference case, world coal consumption increases by 74 percent from 2004 to 2030, international coal trade increases by 44 percent from 2005 to 2030, and coal's share of world energy consumption increases from 26 percent in 2004 to 28 percent in 2030. In the IEO2007 reference case, world coal consumption increases by 74 percent over the projection period, from 114.4 quadrillion Btu in 2004 to 199.0 quadrillion Btu in 2030 (Figure 54). Coal consumption increases by 2.6 per- cent per year on average from 2004 to 2015, then slows to an average increase of 1.8 percent annually from 2015 to 2030. World GDP and primary energy consumption also grow more rapidly in the first half than in the second half of the projections, reflecting a gradual slowdown of economic growth in non-OECD Asia. Regionally, increased use of coal in non-OECD

172

International Energy Agency | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International Energy Agency International Energy Agency International Energy Agency November 1, 2013 - 11:40am Addthis International Energy Agency logo DOE's market transformation efforts have reached to European and other countries who are part of the international distributed and decentralized energy community. Through its partnership with DOE, the combined heat and power (CHP) program of the International Energy Agency (IEA) conducts research and analysis of CHP markets and deployment efforts around the world and has used lessons learned from U.S. research, development, and deployment efforts to recommend market transformation activities and policies that will lead to new CHP installations worldwide. Addthis Related Articles International District Energy Association Related Links U.S. Clean Heat and Power Association

173

Washington International Renewable Energy Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International Renewable Energy Conference International Renewable Energy Conference Washington International Renewable Energy Conference March 4, 2008 - 10:52am Addthis Remarks as Prepared For Delivery by Secretary Bodman Thank you very much, Hermann, for that kind introduction. I'm quite pleased to be a part of this important conference, and I want to thank everyone who worked so hard to put it together. Renewable energy is helping us bring about a new energy future, one that is cleaner, more sustainable, more affordable, more secure and less reliant on carbon-based fossil fuels. While there is no "silver bullet" that will solve the world's energy problems, it is clear that renewable energy and efficiency technologies are an indispensable component of the solution. We must continue to aggressively pursue their development and widespread

174

Washington International Renewable Energy Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Washington International Renewable Energy Conference Washington International Renewable Energy Conference Washington International Renewable Energy Conference March 4, 2008 - 10:52am Addthis Remarks as Prepared For Delivery by Secretary Bodman Thank you very much, Hermann, for that kind introduction. I'm quite pleased to be a part of this important conference, and I want to thank everyone who worked so hard to put it together. Renewable energy is helping us bring about a new energy future, one that is cleaner, more sustainable, more affordable, more secure and less reliant on carbon-based fossil fuels. While there is no "silver bullet" that will solve the world's energy problems, it is clear that renewable energy and efficiency technologies are an indispensable component of the solution. We must continue to aggressively pursue their development and widespread

175

International energy indicators  

SciTech Connect (OSTI)

Extensive data are compiled for energy on the international scene and for the US. Data are indicated from the date given and into 1980 as far as available. Data are given for the international scene on: world crude oil production, 1975-to date; Iran: crude oil capacity, production, and shut-in, 1974-to date; Saudi Arabia: crude oil capacity, production, and shut-in, 1974-to date; OPEC (Ex-Iran and Saudi Arabia): capacity, production, and shut-in, 1974-to date; oil stocks: Free World, US, Japan, and Europe (landed), 1973-to date; petroleum consumption by industrial countries, 1973-to date; USSR crude oil production, 1974-to date; Free World and US nuclear generation capacity, 1973-to date. Data are supplied specifically for the US on US gross imports of crude oil and products, 1973-to date; landed cost of Saudi crude in current and 1974 dollars; US trade in bituminous coal, 1973-to date; summary of US merchandise trade, 1976-to date; and energy/GNP ratio.

Bauer, E.K. (ed.)

1981-02-01T23:59:59.000Z

176

AltAir Fuels | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: AltAir Fuels Place: Seattle, Washington Sector: Renewable Energy Product: Seattle-based developer of projects for the production of jet fuel from...

177

Alternative Fuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ethanol Hydrogen Natural Gas Propane Addthis Related Articles Advanced Technology and Alternative Fuel Vehicle Basics Glossary of Energy-Related Terms Natural Gas Fuel Basics...

178

Energy Department Launches Alternative Fueling Station Locator...  

Broader source: Energy.gov (indexed) [DOE]

Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama...

179

International Energy Outlook 1999 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natgas.jpg (4355 bytes) natgas.jpg (4355 bytes) Natural gas is the fastest growing primary energy source in the IEO99 forecast. Because it is a cleaner fuel than oil or coal and not as controversial as nuclear power, gas is expected to be the fuel of choice for many countries in the future. Prospects for natural gas demand worldwide remain bright, despite the impact of the Asian economic recession on near-term development. Natural gas consumption in the International Energy Outlook 1999 (IEO99) is somewhat increased from last year’s outlook, and the fuel remains the fastest growing primary energy source in the forecast period. Worldwide gas use more than doubles in the reference case projection, reaching 174 trillion cubic feet in 2020 from 82 trillion cubic feet in 1996 (Figure

180

CO2 Emissions from Fuel Combustion | Open Energy Information  

Open Energy Info (EERE)

CO2 Emissions from Fuel Combustion CO2 Emissions from Fuel Combustion Jump to: navigation, search Tool Summary Name: CO2 Emissions from Fuel Combustion Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Dataset, Publications Website: www.iea.org/co2highlights/co2highlights.pdf CO2 Emissions from Fuel Combustion Screenshot References: CO2 Emissions from Fuel Combustion[1] Overview "This annual publication contains: estimates of CO2 emissions by country from 1971 to 2008 selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh CO2 emissions from international marine and aviation bunkers, and other relevant information" Excel Spreadsheet References ↑ "CO2 Emissions from Fuel Combustion"

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

2004, non-OECD emissions of carbon dioxide were greater than OECD emissions 2004, non-OECD emissions of carbon dioxide were greater than OECD emissions for the first time. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 57 percent. Carbon dioxide is the most abundant anthropogenic (human-caused) greenhouse gas in the atmosphere. In recent years, atmospheric concentrations of carbon diox- ide have been rising at a rate of about 0.5 percent per year, and because anthropogenic emissions of carbon dioxide result primarily from the combustion of fossil fuels for energy, world energy use has emerged at the center of the climate change debate. In the IEO2007 refer- ence case, world carbon dioxide emissions are projected to rise from 26.9 billion metric tons in 2004 to 33.9 billion metric tons in 2015 and 42.9 billion metric tons in 2030. 17 From 2003 to 2004,

182

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Broader source: Energy.gov (indexed) [DOE]

and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

183

EIA - International Energy Outlook 2008-Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Demand and Economic Outlook Demand and Economic Outlook International Energy Outlook 2008 Figure 9. World Marketed Energy Use: OECD and Non-OECD, 1980-2030 Figure 9 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 10. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 Figure 10 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 11. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 Figure 11 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 12. World Marketed Energy Use by Fuel Type,1990-2030 Figure 12 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 13. Coal Consumption in Selected World Regions,1980-2030 Figure 13 Data. Need help, contact the National Energy Information Center at 202-586-8800.

184

EIA - International Energy Outlook 2007-Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Data Data International Energy Outlook 2007 Figure 1. World Marketed Energy Consumption by Region, 2004-2030 Figure 1 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 2. Average Annual Growth in Delivered Energy Consumption by Region and End-Use Sector, 2004-2030 Figure 2 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 3. Industrial Sector Delivered Energy Consumption by Region, 2004-2030 Figure 3 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 4. World Marketed Energy Use by Fuel Type, 1980-2030 Figure 4 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 5. World Liquids Production, 2004-2030 Figure 5 Data. Need help, contact the National Energy Information Center at 202-586-8800.

185

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A1. World total primary energy consumption by region, Reference case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 121.3 126.1 129.7 132.9 137.2 143.6 0.6 United States a 94.9 97.9 97.3 100.5 101.8 102.3 103.9 107.2 0.3 Canada 13.7 13.5 14.2 14.8 15.6 16.5 17.3 18.2 1.0 Mexico/Chile 8.4 8.8 9.9 10.9 12.3 14.1 16.0 18.2 2.5 OECD Europe 80.0 82.5 82.1 85.5 88.6 90.9 92.8 94.6 0.5 OECD Asia 37.7 39.6 40.6 43.0 44.3 45.4 46.1 46.4 0.5 Japan 21.0 22.1 21.7 22.5 23.0 23.0 22.9 22.2 0.0 South Korea 10.1 10.8 11.8 13.0 13.8 14.7 15.3 15.9 1.3 Australia/NewZealand 6.7 6.7 7.0 7.4 7.5 7.7 8.0 8.2 0.7 Total OECD 234.7 242.3 244.1 254.6 262.7

186

Fuel Cells - Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Basics Fuel Cells - Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as...

187

International Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International Team International Team International Team The Office of Energy Efficiency and Renewable Energy's (EERE's) International Team advances the progress of EERE's domestic programs and accelerates global deployment of U.S. clean energy products and services through international collaboration. To realize the benefits of international collaboration, we coordinate with other offices in the U.S. Department of Energy and U.S. government agencies to identify, negotiate and actively manage targeted partnerships and projects that help advance our strategic goals. The collaborative research we support is either in the "pre-competitive" space or includes intellectual property issues that have been agreed upon in advance. All funds support U.S.-based project performers or international organizations

188

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 High Oil Price case projections Table D4. World liquids consumption by region, High Oil Price case, 2009-2040 (million barrels per day) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 23.1 23.5 23.4 23.5 23.2 22.9 22.9 23.5 0.0 United States a 18.6 18.9 18.7 18.8 18.4 17.7 17.4 17.5 -0.3 Canada 2.2 2.2 2.2 2.1 2.1 2.1 2.2 2.4 0.2 Mexico/Chile 2.4 2.4 2.5 2.5 2.7 3.0 3.3 3.6 1.4 OECD Europe 15.0 14.8 13.2 13.1 13.1 13.2 13.3 13.4 -0.3 OECD Asia 7.7 7.7 8.0 7.7 7.6 7.6 7.6 7.4 -0.1 Japan 4.4 4.4 4.5 4.2 4.0 3.9 3.8 3.6 -0.7 South Korea 2.2 2.3 2.3 2.4 2.4 2.5 2.6 2.6 0.5 Australia/NewZealand 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 0.3 Total OECD 45.8 46.0 44.6 44.3 43.8 43.6 43.8 44.3 -0.1 Non-OECD Non-OECD Europe and Eurasia

189

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A6. World natural gas consumption by region, Reference case, 2009-2040 (trillion cubic feet) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 28.2 29.2 31.3 33.4 35.1 37.0 39.4 41.6 1.2 United States a 22.9 23.8 25.3 26.3 26.9 27.6 28.7 29.5 0.7 Canada 3.1 2.9 3.1 3.6 4.0 4.3 4.6 4.9 1.7 Mexico/Chile 2.2 2.5 2.9 3.5 4.3 5.1 6.1 7.2 3.6 OECD Europe 18.8 19.8 19.7 20.4 20.8 22.1 23.2 24.5 0.7 OECD Asia 6.1 6.7 7.2 7.8 8.5 9.0 9.5 9.9 1.3 Japan 3.7 3.8 4.3 4.6 4.9 5.1 5.2 5.2 1.0 South Korea 1.2 1.5 1.5 1.7 1.9 2.0 2.3 2.5 1.7 Australia/NewZealand 1.3 1.3 1.4 1.5 1.7 1.8 2.0 2.2 1.7 Total OECD 53.2 55.6 58.2 61.5 64.4 68.0 72.1 76.0 1.0 Non-OECD Non-OECD Europe and Eurasia 19.8 21.8

190

Fuel cell with internal flow control  

SciTech Connect (OSTI)

A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

Haltiner, Jr., Karl J. (Fairport, NY); Venkiteswaran, Arun (Karnataka, IN)

2012-06-12T23:59:59.000Z

191

LBNL International Energy Studies | Open Energy Information  

Open Energy Info (EERE)

Studies Studies Jump to: navigation, search Logo: International Energy Studies Name International Energy Studies Agency/Company /Organization Lawrence Berkeley National Laboratory Sector Energy, Land Focus Area Energy Efficiency, Forestry Topics Implementation, GHG inventory, Policies/deployment programs, Resource assessment, Pathways analysis, Background analysis Resource Type Dataset Website http://ies.lbl.gov References IES Homepage[1] Abstract The International Energy Studies (IES) Group has been active for more than 25 years and is composed of scientists active on the world forum in the areas of energy, forestry, and climate research. Recently LBNL and UC Berkeley also initiated a new program on India the Berkeley India Joint Leadership on Energy and Environment (BIJLEE).

192

European Union Internal Energy Market.  

E-Print Network [OSTI]

??This project is based on the investigations of internal energy market which is one of the common European strategies contributing for creation of more secure (more)

Gulbinaite Simona, Leonaite Augustina

2014-01-01T23:59:59.000Z

193

International Marine Renewable Energy Conference  

Broader source: Energy.gov [DOE]

The International Marine Renewable Energy Conference (IMREC) offers researchers, technology developers, policy makers, NGOs, and industry representatives the opportunity to discuss financing...

194

Alternative Fuels Data Center: Energy Task Force  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Energy Task Force to Energy Task Force to someone by E-mail Share Alternative Fuels Data Center: Energy Task Force on Facebook Tweet about Alternative Fuels Data Center: Energy Task Force on Twitter Bookmark Alternative Fuels Data Center: Energy Task Force on Google Bookmark Alternative Fuels Data Center: Energy Task Force on Delicious Rank Alternative Fuels Data Center: Energy Task Force on Digg Find More places to share Alternative Fuels Data Center: Energy Task Force on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Energy Task Force The Governor's Task Force on Energy Policy is developing a state energy plan to facilitate energy efficiency and the use of alternative and renewable fuels in Tennessee. The energy plan will include a summary of

195

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

E E Low Oil Price case projections * World energy consumption * Gross domestic product This page inTenTionally lefT blank 217 U.S. Energy Information Administration | International Energy Outlook 2013 Low Oil Price case projections Table E1. World total primary energy consumption by region, Low Oil Price case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 122.3 128.2 132.1 135.5 140.0 146.7 0.7 United States a 94.9 97.9 97.9 101.6 102.9 103.6 105.3 108.8 0.4 Canada 13.7 13.5 14.4 15.2 16.2 17.1 17.8 18.6 1.1 Mexico/Chile 8.4 8.8 10.0 11.4 12.9 14.8 16.8 19.3 2.7 OECD Europe 80.0 82.5 83.1 88.0 91.8 94.7 97.4 100.0 0.6 OECD Asia 37.7 39.6 41.1 44.7 46.6 47.9 49.0 49.7 0.8 Japan 21.0 22.1 22.0 23.6 24.3 24.4 24.4 23.9

196

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Low Economic Growth case projections Low Economic Growth case projections * World energy consumption * Gross domestic product This page inTenTionally lefT blank 203 U.S. Energy Information Administration | International Energy Outlook 2013 Low Economic Growth case projections Table C1. World total primary energy consumption by region, Low Economic Growth case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 119.9 122.1 124.1 125.9 129.0 133.9 0.4 United States a 94.9 97.9 95.9 96.4 96.1 95.3 95.7 97.3 0.0 Canada 13.7 13.5 14.2 14.7 15.6 16.5 17.3 18.2 1.0 Mexico/Chile 8.4 8.8 9.8 10.9 12.3 14.1 16.0 18.3 2.5 OECD Europe 80.0 82.5 82.1 85.3 88.0 90.1 91.6 93.0 0.4 OECD Asia 37.7 39.6 40.3 42.7 43.9 44.6 45.0 45.0 0.4 Japan 21.0 22.1 21.6 22.5 22.8 22.6

197

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

D D High Oil Price case projections * World energy consumption * Gross domestic product This page inTenTionally lefT blank 209 U.S. Energy Information Administration | International Energy Outlook 2013 High Oil Price case projections Table D1. World total primary energy consumption by region, High Oil Price case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 119.5 124.2 128.2 131.8 136.7 144.7 0.6 United States a 94.9 97.9 96.0 99.4 100.9 101.4 103.0 107.3 0.3 Canada 13.7 13.5 13.9 14.3 15.3 16.4 17.6 19.0 1.1 Mexico/Chile 8.4 8.8 9.6 10.5 12.0 14.0 16.1 18.5 2.5 OECD Europe 80.0 82.5 80.5 83.3 86.3 88.6 90.5 92.3 0.4 OECD Asia 37.7 39.6 39.3 41.1 42.4 43.5 44.3 44.5 0.4 Japan 21.0 22.1 21.0 21.6 21.9 22.0 21.8 21.0

198

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

High Economic Growth case projections High Economic Growth case projections * World energy consumption * Gross domestic product This page inTenTionally lefT blank 197 U.S. Energy Information Administration | International Energy Outlook 2013 High Economic Growth case projections Table B1. World total primary energy consumption by region, High Economic Growth case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 122.0 129.8 134.8 139.5 146.0 155.6 0.9 United States a 94.9 97.9 97.9 104.2 106.8 108.7 112.5 118.9 0.6 Canada 13.7 13.5 14.2 14.7 15.6 16.5 17.2 18.2 1.0 Mexico/Chile 8.4 8.8 9.8 10.9 12.4 14.3 16.3 18.6 2.5 OECD Europe 80.0 82.5 82.2 85.7 88.9 91.3 93.4 95.4 0.5 OECD Asia 37.7 39.6 40.0 42.1 43.5 44.8 45.9 46.8 0.6 Japan 21.0 22.1 21.3 21.9

199

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Kaya Identity factor projections Kaya Identity factor projections * Carbon dioxide intensity * Energy intensity * GDP per capita * Population This page inTenTionally lefT blank 289 U.S. Energy Information Administration | International Energy Outlook 2013 Kaya Identity factor projections Table J1. World carbon dioxide intensity of energy use by region, Reference case, 2009-2040 (metric tons per billion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 55.1 55.4 53.4 52.5 52.1 51.8 51.5 50.7 -0.3 United States a 57.1 57.3 55.3 54.3 54.1 54.0 54.0 53.1 -0.3 Canada 40.1 40.5 38.8 38.9 37.9 36.8 36.3 35.9 -0.4 Mexico/Chile 57.2 57.4 55.6 55.0 54.2 53.2 52.3 51.6 -0.4 OECD Europe 51.9 51.2 49.4 47.9 46.2 45.7 45.3 45.0 -0.4 OECD Asia 55.3 55.5 56.3 53.5 52.5 51.6 51.3 50.8 -0.3 Japan

200

What's Up With Fuel Cells? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Up With Fuel Cells? Up With Fuel Cells? What's Up With Fuel Cells? June 8, 2010 - 7:30am Addthis Sean Large Intern with the Office of Energy Efficiency and Renewable Energy We hear a lot about renewables like wind and solar these days, but what's the deal with fuel cells and is there a future in them? The truth is, fuel cells have been around for some time now; the idea originated in the 1840's. Though fuel cells come in a variety of forms, they all work in the same general manner: three sandwiched segments - the anode, the electrolyte and the cathode. At each of these segments two different chemical reactions occur. The net result of the two reactions is that fuel is consumed, and an electrical current is created, which can be used to power electrical devices, normally referred to as the load. The only emissions are water or

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | International Energy Outlook 2013 Kaya Identity factor projections Table J3. World gross domestic product (GDP) per capita by region expressed in purchasing power parity, Reference case, 2009-2040 (2005 dollars per person) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 32,959 33,559 36,264 39,848 43,145 46,824 51,175 56,306 1.7 United States a 41,478 42,130 45,224 49,521 53,259 57,343 62,044 67,452 1.6 Canada 34,582 35,285 37,485 40,040 41,910 43,909 46,715 50,028 1.2 Mexico/Chile 12,215 12,750 14,862 16,996 19,460 22,324 25,830 30,192 2.9 OECD Europe 25,770 26,269 27,363 29,924 32,694 35,369 38,368 41,753 1.6 OECD Asia 28,623 29,875 32,912 36,117 39,347 42,264 45,505 48,961 1.7 Japan 29,469 30,827 33,255

202

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A14. World population by region, Reference case, 2009-2040 (millions) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 470 475 499 523 547 569 591 612 0.8 United States a 308 310 325 340 356 372 388 404 0.9 Canada 34 34 36 38 40 42 44 46 1.0 Mexico/Chile 129 131 138 144 150 155 159 162 0.7 OECD Europe 553 556 570 580 588 594 598 601 0.3 OECD Asia 202 203 204 205 204 203 201 199 -0.1 Japan 128 128 127 125 122 119 117 114 -0.4 South Korea 48 48 49 50 50 50 50 49 0.1 Australia/NewZealand 26 27 28 30 32 33 34 35 0.9 Total OECD 1,226 1,234 1,273 1,307 1,339 1,366 1,390 1,411 0.4 Non-OECD Non-OECD Europe and Eurasia 338 338 342 342 342 340 337 334 0.0 Russia 141 140 142 141 139 136 134 131 -0.2 Other 197

203

Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo  

Broader source: Energy.gov [DOE]

This presentation by DOE's Sunita Satyapal was given at the 6th International Hydrogen and Fuel Cell Expo on March 3, 2010.

204

Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells  

Broader source: Energy.gov [DOE]

Plenary presentation by Sunita Satyapal at the 5th International Conference on Polymer Batteries and Fuel Cells on August 4, 2011.

205

Webinar: I2CNER: An International Collaboration to Enable a Carbon-Neutral Energy Economy  

Broader source: Energy.gov [DOE]

Slides presented at the Fuel Cell Technologies Officer webinar "International Institute for Carbon-Neutral Energy Research (I2CNER): An International Collaboration to Enable a Carbon-Neutral Energy Economy" on March 7, 2011.

206

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

8 8 Appendix F Table F14. Delivered energy consumption in India by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.9 1.1 1.0 1.0 1.0 1.0 0.9 -0.1 Natural gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Coal 0.1 0.2 0.2 0.2 0.2 0.2 0.3 2.4 Electricity 0.6 1.0 1.3 1.8 2.4 3.0 3.8 6.4 Total 1.7 2.2 2.6 3.0 3.6 4.2 5.0 3.7 Commercial Liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Natural gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Coal 0.2 0.2 0.2 0.3 0.3 0.4 0.4 3.0 Electricity 0.2 0.4 0.6 0.8 1.0 1.3 1.6 6.5 Total 0.4 0.6 0.8 1.1 1.3 1.7 2.0 5.5 Industrial Liquids 3.2 3.4 4.0 4.5 4.9 5.1 5.1 1.6 Natural gas 1.2 1.3 1.5 1.8 2.0 2.1 2.2 2.0 Coal 4.1 4.4 5.1 5.7 6.2 6.3 6.1 1.4 Electricity 1.5 1.5 1.6 1.8 2.0 2.1 2.3 1.4 Total 11.3 11.9 13.7 15.3 16.7 17.5 17.6 1.5 Transportation Liquids 2.3 2.8 3.6 4.8 6.2 8.1

207

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

2 2 Appendix F Table F8. Delivered energy consumption in South Korea by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Natural gas 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.9 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.2 0.2 0.3 0.3 0.3 0.4 0.4 2.3 Total 0.8 0.8 0.9 1.0 1.0 1.1 1.1 1.2 Commercial Liquids 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -0.6 Natural gas 0.2 0.2 0.2 0.2 0.3 0.3 0.3 2.0 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.5 0.5 0.6 0.7 0.8 1.0 1.1 2.6 Total 0.8 0.9 1.0 1.1 1.2 1.4 1.5 2.1 Industrial Liquids 2.5 2.7 2.9 3.0 3.1 3.1 3.2 0.8 Natural gas 0.3 0.3 0.4 0.4 0.4 0.5 0.5 1.4 Coal 1.0 1.1 1.3 1.3 1.4 1.4 1.5 1.2 Electricity 0.8 0.9 1.0 1.0 1.1 1.1 1.1 1.1 Total 4.7 5.2 5.6 5.9 6.1 6.2 6.3 1.0 Transportation Liquids 1.8 1.8 1.9 1.9 2.0 2.0

208

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

6 6 Appendix F Table F2. Total OECD delivered energy consumption by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 4.3 4.0 3.9 3.8 3.7 3.5 3.4 -0.8 Natural gas 12.0 11.9 12.2 12.5 12.8 12.9 12.9 0.3 Coal 0.8 0.8 0.7 0.7 0.7 0.6 0.6 -1.4 Electricity 10.6 11.1 11.7 12.5 13.2 13.9 14.6 1.1 Total 28.2 28.1 29.0 29.9 30.8 31.3 32.0 0.4 Commercial Liquids 2.6 2.4 2.4 2.3 2.3 2.2 2.2 -0.7 Natural gas 6.8 7.0 7.3 7.6 8.0 8.2 8.4 0.7 Coal 0.2 0.2 0.2 0.2 0.2 0.2 0.2 -0.9 Electricity 10.4 11.2 12.0 12.9 13.9 14.8 15.7 1.4 Total 20.2 20.9 22.0 23.2 24.4 25.5 26.5 0.9 Industrial Liquids 27.4 27.5 29.3 30.3 31.0 31.7 32.6 0.6 Natural gas 19.4 20.2 21.7 22.7 23.5 24.3 25.2 0.9 Coal 8.7 8.7 9.0 9.2 9.2 9.2 9.2 0.2 Electricity 11.0 11.3 12.0 12.4 12.6 12.9 13.2 0.6 Total 71.9 72.9

209

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

2 2 Appendix F Table F18. Delivered energy consumption in Brazil by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0 Natural gas 0.0 0.0 0.0 0.0 0.1 0.1 0.1 -- Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.4 0.5 0.6 0.7 0.8 0.9 1.1 3.1 Total 0.7 0.8 0.9 1.0 1.1 1.3 1.4 2.2 Commercial Liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Natural gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.4 0.5 0.6 0.8 0.9 1.1 1.4 3.9 Total 0.5 0.5 0.7 0.8 1.0 1.2 1.4 3.8 Industrial Liquids 2.0 2.2 2.3 2.3 2.6 2.9 3.3 1.6 Natural gas 0.6 0.7 0.8 0.9 1.0 1.1 1.3 2.4 Coal 0.4 0.4 0.5 0.5 0.6 0.8 0.9 2.5 Electricity 0.7 0.7 0.8 0.8 0.9 1.0 1.2 1.9 Total 6.4 6.5 7.0 7.5 8.3 9.3 10.6 1.7 Transportation Liquids 2.9 3.2 3.4 3.5 3.7 3.8 4.1 1.2

210

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

0 0 Appendix F Table F6. Delivered energy consumption in OECD Europe by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 2.1 1.8 1.8 1.8 1.7 1.7 1.6 -0.8 Natural gas 5.6 5.6 5.9 6.3 6.5 6.6 6.8 0.7 Coal 0.8 0.7 0.7 0.7 0.6 0.6 0.5 -1.3 Electricity 3.3 3.8 4.1 4.4 4.6 4.8 5.0 1.4 Total 11.7 11.9 12.5 13.1 13.5 13.7 13.9 0.6 Commercial Liquids 0.9 0.8 0.8 0.8 0.7 0.7 0.7 -1.0 Natural gas 2.2 2.2 2.4 2.6 2.7 2.8 2.9 0.9 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -1.0 Electricity 3.3 3.8 4.1 4.4 4.7 5.0 5.3 1.7 Total 6.5 6.9 7.4 7.8 8.3 8.6 9.0 1.1 Industrial Liquids 9.6 9.0 9.5 10.1 10.5 10.9 11.3 0.5 Natural gas 6.6 6.3 6.4 6.6 6.7 6.7 6.8 0.1 Coal 3.1 3.0 3.0 3.1 3.1 3.1 3.1 0.0 Electricity 4.4 4.2 4.3 4.4 4.5 4.5 4.6 0.2 Total 25.4 24.1 24.9 25.8 26.3 26.8 27.4 0.3 Transportation Liquids

211

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

6 6 Appendix F Table F12. Delivered energy consumption in Other Non-OECD Europe and Eurasia by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.1 0.2 0.1 0.1 0.1 0.1 0.1 -0.1 Natural gas 1.7 1.7 1.9 2.0 2.2 2.3 2.4 1.2 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -1.4 Electricity 0.5 0.5 0.6 0.7 0.8 0.8 1.0 2.4 Total 2.4 2.5 2.7 2.9 3.2 3.4 3.6 1.3 Commercial Liquids 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -0.3 Natural gas 0.5 0.5 0.6 0.7 0.7 0.8 0.9 1.8 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.0 -0.1 Electricity 0.3 0.3 0.3 0.4 0.5 0.6 0.7 3.4 Total 0.9 1.0 1.1 1.2 1.4 1.5 1.7 2.1 Industrial Liquids 1.4 1.7 1.6 1.5 1.7 1.8 2.0 1.2 Natural gas 2.7 2.6 2.8 3.0 3.2 3.5 3.7 1.1 Coal 1.5 1.5 1.6 1.8 1.9 2.1 2.3 1.4 Electricity 1.0 1.0 1.1 1.2 1.3 1.4 1.5 1.2 Total 6.7 6.9 7.1 7.5 8.2 8.9 9.6 1.2 Transportation

212

Natural Fuel Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Fuel Energy Inc Fuel Energy Inc Jump to: navigation, search Name Natural Fuel & Energy Inc Place Boston, Massachusetts Zip 2100 Product Boston - based biodiesel producer that operates a 113mLpa plant in Houston. Coordinates 42.358635°, -71.056699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358635,"lon":-71.056699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

International symposium on fuel rod simulators: development and application  

SciTech Connect (OSTI)

Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

McCulloch, R.W. (comp.)

1981-05-01T23:59:59.000Z

214

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

215

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 High Oil Price case projections Table D1. World total primary energy consumption by region, High Oil Price case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 119.5 124.2 128.2 131.8 136.7 144.7 0.6 United States a 94.9 97.9 96.0 99.4 100.9 101.4 103.0 107.3 0.3 Canada 13.7 13.5 13.9 14.3 15.3 16.4 17.6 19.0 1.1 Mexico/Chile 8.4 8.8 9.6 10.5 12.0 14.0 16.1 18.5 2.5 OECD Europe 80.0 82.5 80.5 83.3 86.3 88.6 90.5 92.3 0.4 OECD Asia 37.7 39.6 39.3 41.1 42.4 43.5 44.3 44.5 0.4 Japan 21.0 22.1 21.0 21.6 21.9 22.0 21.8 21.0 -0.2 South Korea 10.1 10.8 11.5 12.5 13.3 14.2 14.9 15.7 1.3 Australia/NewZealand 6.7 6.7 6.8 7.0 7.2 7.3 7.5 7.8 0.5 Total OECD 234.7 242.3

216

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | International Energy Outlook 2013 High Economic Growth case projections Table B1. World total primary energy consumption by region, High Economic Growth case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 122.0 129.8 134.8 139.5 146.0 155.6 0.9 United States a 94.9 97.9 97.9 104.2 106.8 108.7 112.5 118.9 0.6 Canada 13.7 13.5 14.2 14.7 15.6 16.5 17.2 18.2 1.0 Mexico/Chile 8.4 8.8 9.8 10.9 12.4 14.3 16.3 18.6 2.5 OECD Europe 80.0 82.5 82.2 85.7 88.9 91.3 93.4 95.4 0.5 OECD Asia 37.7 39.6 40.0 42.1 43.5 44.8 45.9 46.8 0.6 Japan 21.0 22.1 21.3 21.9 22.3 22.5 22.6 22.4 0.0 South Korea 10.1 10.8 11.8 12.9 13.8 14.8 15.6 16.6 1.4 Australia/NewZealand 6.7 6.7 6.9 7.3 7.4 7.6 7.7 7.9 0.6 Total OECD

217

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | International Energy Outlook 2013 Low Economic Growth case projections Table C1. World total primary energy consumption by region, Low Economic Growth case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 119.9 122.1 124.1 125.9 129.0 133.9 0.4 United States a 94.9 97.9 95.9 96.4 96.1 95.3 95.7 97.3 0.0 Canada 13.7 13.5 14.2 14.7 15.6 16.5 17.3 18.2 1.0 Mexico/Chile 8.4 8.8 9.8 10.9 12.3 14.1 16.0 18.3 2.5 OECD Europe 80.0 82.5 82.1 85.3 88.0 90.1 91.6 93.0 0.4 OECD Asia 37.7 39.6 40.3 42.7 43.9 44.6 45.0 45.0 0.4 Japan 21.0 22.1 21.6 22.5 22.8 22.6 22.2 21.4 -0.1 South Korea 10.1 10.8 11.8 12.9 13.7 14.5 15.1 15.8 1.3 Australia/NewZealand 6.7 6.7 6.9 7.2 7.3 7.5 7.7 7.9 0.6 Total OECD 234.7

218

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Kaya Identity factor projections Table J1. World carbon dioxide intensity of energy use by region, Reference case, 2009-2040 (metric tons per billion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 55.1 55.4 53.4 52.5 52.1 51.8 51.5 50.7 -0.3 United States a 57.1 57.3 55.3 54.3 54.1 54.0 54.0 53.1 -0.3 Canada 40.1 40.5 38.8 38.9 37.9 36.8 36.3 35.9 -0.4 Mexico/Chile 57.2 57.4 55.6 55.0 54.2 53.2 52.3 51.6 -0.4 OECD Europe 51.9 51.2 49.4 47.9 46.2 45.7 45.3 45.0 -0.4 OECD Asia 55.3 55.5 56.3 53.5 52.5 51.6 51.3 50.8 -0.3 Japan 52.7 53.2 57.2 54.1 53.3 52.8 52.2 51.8 -0.1 South Korea 52.8 53.7 50.7 48.1 47.2 45.4 46.0 45.8 -0.5 Australia/NewZealand 67.1 66.3 63.1 60.9 60.1 59.5 58.7 58.0 -0.4

219

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | International Energy Outlook 2013 Low Oil Price case projections Table E1. World total primary energy consumption by region, Low Oil Price case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 122.3 128.2 132.1 135.5 140.0 146.7 0.7 United States a 94.9 97.9 97.9 101.6 102.9 103.6 105.3 108.8 0.4 Canada 13.7 13.5 14.4 15.2 16.2 17.1 17.8 18.6 1.1 Mexico/Chile 8.4 8.8 10.0 11.4 12.9 14.8 16.8 19.3 2.7 OECD Europe 80.0 82.5 83.1 88.0 91.8 94.7 97.4 100.0 0.6 OECD Asia 37.7 39.6 41.1 44.7 46.6 47.9 49.0 49.7 0.8 Japan 21.0 22.1 22.0 23.6 24.3 24.4 24.4 23.9 0.3 South Korea 10.1 10.8 12.1 13.6 14.7 15.7 16.5 17.4 1.6 Australia/NewZealand 6.7 6.7 7.0 7.5 7.6 7.9 8.1 8.4 0.8 Total OECD 234.7 242.3

220

International Cooperation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International Cooperation International Cooperation International Cooperation Members at a meeting of the international Carbon Sequestration Leadership Forum (CSLF). The Office of Fossil Energy is the Secretariat for the CSLF. Members at a meeting of the international Carbon Sequestration Leadership Forum (CSLF). The Office of Fossil Energy is the Secretariat for the CSLF. Key Bilateral Activities US-India Energy Dialogue: Coal Working Group The Office of Fossil Energy and India's Ministry of Coal jointly chair the Coal Working Group initiative to exchange information on policies, programs and technologies to promote the efficient and environmentally responsible production and use of coal. US-China Collaboration in Fossil Energy R&D The Office of Fossil Energy and China's Ministry of Science and Technology

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Matching Government Needs with Energy Efficient Fuel Cells |...  

Broader source: Energy.gov (indexed) [DOE]

Government Needs with Energy Efficient Fuel Cells Matching Government Needs with Energy Efficient Fuel Cells The Fuel Cell Technologies Office, Federal Energy Management Program,...

222

Matching National Laboratory Needs with Energy Efficient Fuel...  

Broader source: Energy.gov (indexed) [DOE]

National Laboratory Needs with Energy Efficient Fuel Cells Matching National Laboratory Needs with Energy Efficient Fuel Cells The Fuel Cell Technologies Office, Federal Energy...

223

International Clean Energy Analysis | Open Energy Information  

Open Energy Info (EERE)

International Clean Energy Analysis International Clean Energy Analysis Jump to: navigation, search About ICEA UNIDO small.png NREL small.png The International Clean Energy Analysis (ICEA) gateway promotes increased access to clean energy analysis tools, databases, methods and other technical resources which can be applied in developing countries. This wiki-based dynamic platform allows you to add to the inventory of clean energy organizations, tools, programs and data included on the site. We encourage you to expand the inventory of resources by clicking on "add" below the International Initiatives map. The gateway is organized by Information Toolkits which provide tools and resources to help answer a number of clean energy questions. The International Initiatives map also provides country-specific information on clean energy programs, tools and organizations. Click here to learn more about the ICEA gateway project.

224

Alternative Fuels Data Center: Renewable Energy Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Energy Renewable Energy Grants to someone by E-mail Share Alternative Fuels Data Center: Renewable Energy Grants on Facebook Tweet about Alternative Fuels Data Center: Renewable Energy Grants on Twitter Bookmark Alternative Fuels Data Center: Renewable Energy Grants on Google Bookmark Alternative Fuels Data Center: Renewable Energy Grants on Delicious Rank Alternative Fuels Data Center: Renewable Energy Grants on Digg Find More places to share Alternative Fuels Data Center: Renewable Energy Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Energy Grants The Renewable Energy and Energy-Efficient Technologies Grants Program and Farm to Fuel Grants Program provide matching grants for demonstration,

225

EIA - International Energy Outlook 2009 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2009 Highlights World marketed energy consumption is projected to increase by 44 percent from 2006 to 2030. Total energy demand in the non-OECD countries increases by 73 percent, compared with an increase of 15 percent in the OECD countries. Figure 1. World Marketed Energy Consumption, 2006-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. World Marketed Energy Use by Fuel Type, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. World Oil Prices in the IEO2009 and IEO2008 Reference Cases, 1980-2030 (2007 dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800.

226

EIA - International Energy Outlook 2008 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2008 Highlights World marketed energy consumption is projected to increase by 50 percent from 2005 to 2030.Total energy demand in the non-OECD countries increases by 85 percent,compared with an increase of 19 percent in the OECD countries. Figure 1. World Marketed Energy Consumption, 2005-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. World Marketed Energy Use by Fuel Type, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. World Oil Prices in Two Cases, 1980-2030 (nominal dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800.

227

International Nuclear Energy Policy and Cooperation | Department...  

Office of Environmental Management (EM)

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation Recent Events 6th US-India Civil Nuclear Energy Working Group Meeting 6th...

228

International Energy-Efficiency Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 International Energy-Efficiency Standards Two cost-effective approaches to reducing energy use in buildings are minimum energy standards for appliances and incorporating energy-efficiency principles in building codes. More than two dozen nations already have adopted, will soon adopt, or are considering the adoption of energy-efficiency standards and codes. The Environmental Energy Technologies Division has pooled its resources in the field of energy-efficiency standards with its international activities to create the International Building and Appliance Standards team. The IBAS team convenes regularly to discuss progress in existing international standards activities as well as to identify possible new Berkeley Lab opportunities to support efficiency standards the world over.

229

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A10. World carbon dioxide emissions by region, Reference case, 2009-2040 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 6,448 6,657 6,480 6,627 6,762 6,880 7,070 7,283 0.3 United States a 5,418 5,608 5,381 5,454 5,501 5,523 5,607 5,691 0.0 Canada 548 546 551 574 593 609 628 654 0.6 Mexico/Chile 482 503 548 599 668 748 835 937 2.1 OECD Europe 4,147 4,223 4,054 4,097 4,097 4,151 4,202 4,257 0.0 OECD Asia 2,085 2,200 2,287 2,296 2,329 2,341 2,365 2,358 0.2 Japan 1,105 1,176 1,243 1,220 1,223 1,215 1,194 1,150 -0.1 South Korea 531 581 600 627 653 666 703 730 0.8 Australia/NewZealand 449 443 444 449 452 460 468 478 0.3 Total OECD 12,680

230

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Reference case projections Reference case projections for natural gas production This page inTenTionally lefT blank 283 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for natural gas production Table I1. World total natural gas production by region, Reference case, 2010-2040 (trillion cubic feet) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 28.4 30.4 33.5 36.1 38.2 41.1 44.4 1.5 United States a 21.2 23.9 26.5 28.4 29.7 31.3 33.1 1.5 Canada 5.4 5.0 5.4 5.9 6.4 7.0 7.6 1.1 Mexico 1.8 1.5 1.6 1.6 2.1 2.8 3.5 2.3 Chile 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.7 OECD Europe 10.4 9.0 8.1 8.0 8.6 9.2 9.9 -0.2 North Europe 10.1 8.4 7.4 7.3 7.9 8.5 9.1 -0.3 South Europe 0.3 0.3 0.4 0.4 0.4 0.5 0.5 1.7 Southwest Europe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Turkey/Israel

231

International Energy Outlook 2014  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

20 40 60 80 1990 2000 2010 2020 2030 2040 Europe and Eurasia Central and South America Africa Middle East Other Asia China non-OECD petroleum and other liquid fuels consumption,...

232

International Energy Initiative | Open Energy Information  

Open Energy Info (EERE)

Logo: International energy initiative Name International energy initiative Agency/Company /Organization International Energy Initiative Sector Energy Focus Area Renewable Energy Topics Implementation Resource Type Case studies/examples Website http://www.iei-asia.org/ Country India UN Region South-Eastern Asia Equivalent URI http://iei-asia.org/projects.htm References [1] The international energy initiative (IEI) was founded in 1991, and has active regional programmes in India. IEI focuses on translating sustainable energy analysis into real solutions for developing nations around the world.[2] IEI's mode of working is referred to as INTAAACT, which means integrating information, training, analysis, advocacy, and action into projects. The Asian Regional Energy Initiative under a regional Director, was established

233

International Energy Outlook 2011 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2011 International Energy Outlook 2011 Release Date: September 19, 2011 | Next Scheduled Release Date: June 10, 2013 | Report Number: DOE/EIA-0484(2011) No International Energy Outlook will be released in 2012. The next edition of the report is scheduled for release in Spring 2013 Highlights International Energy Outlook 2011 cover. In the IEO2011 Reference case, which does not incorporate prospective legislation or policies that might affect energy markets, world marketed energy consumption grows by 53 percent from 2008 to 2035. Total world energy use rises from 505 quadrillion British thermal units (Btu) in 2008 to 619 quadrillion Btu in 2020 and 770 quadrillion Btu in 2035 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for

234

International Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

International Energy Outlook 2013 International Energy Outlook 2013 Release Date: July 25, 2013 | Next Release Date: July 2014 (See release cycle changes) | correction | Report Number: DOE/EIA-0484(2013) Highlights International Energy Outlook 2011 cover. The International Energy Outlook 2013 (IEO2013) projects that world energy consumption will grow by 56 percent between 2010 and 2040. Total world energy use rises from 524 quadrillion British thermal units (Btu) in 2010 to 630 quadrillion Btu in 2020 and to 820 quadrillion Btu in 2040 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (OECD),2 known as non-OECD, where demand is driven by strong, long-term economic growth. Energy use in non-OECD countries increases by 90 percent; in OECD countries, the increase

235

International Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International Programs International Programs International Programs The Office of Environmental Management (EM) International Program seeks out international technical experts to support EM's mission of accelerated risk reduction and cleanup of the environmental legacy of the nation's nuclear weapons program and government-sponsored nuclear energy research. To achieve this, EM pursues collaborations with foreign government organizations, educational institutions, and private industry to identify technologies that can address the site cleanup needs of the U.S. Department of Energy. The EM International Program currently works with the Russian Federation and Ukraine through cooperative bilateral arrangements to support EM's accelerated cleanup and closure mission. The EM International Program is also currently evaluating the potential benefits

236

Fuel cells and electrochemical energy storage  

Science Journals Connector (OSTI)

Fuel cells and electrochemical energy storage ... Fuel cells and electrochemical energy storage : types of fuel cells, batteries for electrical energy storage, major batteries presently being investigated, and a summary of present major materials problems in the sodium-sulfur and lithium-alloy metal sulfide battery. ...

Anthony F. Sammells

1983-01-01T23:59:59.000Z

237

Alternative Fuels Data Center: State Energy Plan  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Energy Plan to State Energy Plan to someone by E-mail Share Alternative Fuels Data Center: State Energy Plan on Facebook Tweet about Alternative Fuels Data Center: State Energy Plan on Twitter Bookmark Alternative Fuels Data Center: State Energy Plan on Google Bookmark Alternative Fuels Data Center: State Energy Plan on Delicious Rank Alternative Fuels Data Center: State Energy Plan on Digg Find More places to share Alternative Fuels Data Center: State Energy Plan on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Energy Plan The Virginia Energy Plan assesses the commonwealth's primary energy sources and recommends actions to meet the following goals: make Virginia the energy capital of the East Coast by expanding traditional and alternative

238

Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER)  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Internal...

239

Distributed/Stationary Fuel Cell Systems | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DistributedStationary Fuel Cell Systems DistributedStationary Fuel Cell Systems Photo of stationary fuel cell The Department of Energy (DOE) is developing high-efficiency fuel...

240

Alternative Fuels Data Center: Hydrogen Energy Plan  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Energy Plan Hydrogen Energy Plan to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Energy Plan on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Energy Plan on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Energy Plan on Google Bookmark Alternative Fuels Data Center: Hydrogen Energy Plan on Delicious Rank Alternative Fuels Data Center: Hydrogen Energy Plan on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Energy Plan on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Energy Plan The Minnesota Department of Commerce (DOC), in coordination with the Department of Administration (DOA) and the Pollution Control Agency, must identify opportunities for demonstrating the use of hydrogen fuel cells

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternative Fuels Data Center: Lifecycle Energy Balance  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Lifecycle Energy Balance to someone by E-mail Share Alternative Fuels Data Center: Lifecycle Energy Balance on Facebook Tweet about Alternative Fuels Data Center: Lifecycle Energy Balance on Twitter Bookmark Alternative Fuels Data Center: Lifecycle Energy Balance on Google Bookmark Alternative Fuels Data Center: Lifecycle Energy Balance on Delicious Rank Alternative Fuels Data Center: Lifecycle Energy Balance on Digg Find More places to share Alternative Fuels Data Center: Lifecycle Energy Balance on AddThis.com... More in this section... Lifecycle Energy Balance The fossil "energy balance" of ethanol has been the subject of debate despite the fact that this metric is not as useful to policymakers as

242

EIA - International Energy Outlook 2007-World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

and Economic Outlook and Economic Outlook International Energy Outlook 2007 Figure 8. World Marketed Energy Consumption, 1980-2030 Figure 8 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 9. World Marketed Energy Use: OECD and Non-OECD, 2004-2030 Figure 9 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 10. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 Figure 10 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 11. World Marketed Energy Use by Fuel Type, 1980-2030 Figure 11 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 12. World Coal Consumption by Region, 2004-2030 Figure 12 Data. Need help, contact the National Energy Information Center at 202-586-8800.

243

EIA - International Energy Outlook 2008-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2008 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2005, non-OECD emissions of carbon dioxide exceeded OECD emissions by 7 percent. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 72 percent. Figure 75. World Energy-Related Carbon Dioxide Emissions, 2005-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 76. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 77. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the OECD Economies, 2005-2030 (Percent per Year). Need help, contact the National Energy Information Center at 202-586-8800.

244

International Truck | Open Energy Information  

Open Energy Info (EERE)

Truck Truck Jump to: navigation, search Name International Truck Place Atlanta, GA Website http://www.internationaltruck. References International Truck[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2007 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! International Truck is a company located in Atlanta, GA. References ↑ "International Truck" Retrieved from "http://en.openei.org/w/index.php?title=International_Truck&oldid=381698" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link

245

EIA - 2010 International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Analyses> International Energy Outlook 2010 - Highlights Analyses> International Energy Outlook 2010 - Highlights International Energy Outlook 2010 - Highlights print version PDF Logo World marketed energy consumption increases by 49 percent from 2007 to 2035 in the Reference case. Total energy demand in non-OECD countries increases by 84 percent, compared with an increase of 14 percent in OECD countries. In the IEO2010 Reference case, which does not include prospective legislation or policies, world marketed energy consumption grows by 49 percent from 2007 to 2035. Total world energy use rises from 495 quadrillion British thermal units (Btu) in 2007 to 590 quadrillion Btu in 2020 and 739 quadrillion Btu in 2035 (Figure 1). Figure 1. World marketed energy consumption, 2007-2035 (quadrillion Btu) Chart data

246

National Fuel Cell and Hydrogen Energy Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Fuel Cell and Hydrogen National Fuel Cell and Hydrogen Energy Overview Total Energy USA Houston, Texas Dr. Sunita Satyapal Director, Office of Fuel Cell Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy 11/27/2012 National Support for Clean Energy "We've got to invest in a serious, sustained, all-of- - President Barack Obama "Advancing hydrogen and fuel cell technology is an important part of the Energy Department's efforts to support the President's all-of-the-above energy strategy, helping to diversify America's energy sector and reduce our dependence on foreign oil." - Energy Secretary Steven Chu "Fuel cells are an important part of our energy portfolio...deployments in early markets are helping to drive innovations in fuel cell technologies

247

Alternative Fuels Data Center: Energy Feedstock Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Energy Feedstock Energy Feedstock Program to someone by E-mail Share Alternative Fuels Data Center: Energy Feedstock Program on Facebook Tweet about Alternative Fuels Data Center: Energy Feedstock Program on Twitter Bookmark Alternative Fuels Data Center: Energy Feedstock Program on Google Bookmark Alternative Fuels Data Center: Energy Feedstock Program on Delicious Rank Alternative Fuels Data Center: Energy Feedstock Program on Digg Find More places to share Alternative Fuels Data Center: Energy Feedstock Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Energy Feedstock Program The Hawaii Department of Agriculture established the Energy Feedstock Program to promote and support the production of energy feedstock

248

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

8 8 Appendix E Table E2. World total energy consumption by region and fuel, Low Oil Price case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas Liquids 45.5 46.4 46.5 48.1 48.1 48.4 49.4 51.5 0.3 Natural gas 28.9 29.9 32.0 34.1 36.0 37.8 39.7 41.7 1.1 Coal 21.3 22.5 20.2 20.8 21.2 21.5 22.0 22.4 0.0 Nuclear 9.4 9.5 9.8 10.3 10.9 11.1 10.8 10.9 0.5 Other 11.9 11.9 13.8 14.9 15.9 16.8 18.1 20.3 1.8 Total 117.0 120.2 122.3 128.2 132.1 135.5 140.0 146.7 0.7 OECD Europe Liquids 30.8 30.6 28.4 30.0 30.5 31.2 32.0 32.7 0.2 Natural gas 19.3 20.4 20.6 21.6 22.0 23.5 24.9 26.4 0.9 Coal 11.9 12.2 12.3 12.2 11.9 11.7 11.4 11.1 -0.3 Nuclear 8.6 8.9 9.2 9.6 10.8 11.0 11.1 11.1 0.7 Other 9.4 10.4 12.6 14.7 16.5 17.3 18.0 18.7 2.0 Total 80.0 82.5 83.1 88.0 91.8 94.7 97.4 100.0 0.6 OECD Asia

249

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

0 0 Appendix A Table A2. World total energy consumption by region and fuel, Reference case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas Liquids 45.5 46.4 45.9 46.4 46.0 45.8 46.1 47.0 0.0 Natural gas 28.9 29.9 32.0 34.1 35.9 37.7 40.1 42.3 1.2 Coal 21.3 22.5 19.9 20.3 21.1 21.5 21.9 22.2 0.0 Nuclear 9.4 9.5 9.8 10.3 10.9 11.1 10.8 11.2 0.6 Other 11.9 11.9 13.7 15.0 15.9 16.8 18.3 20.8 1.9 Total 117.0 120.2 121.3 126.1 129.7 132.9 137.2 143.6 0.6 OECD Europe Liquids 30.8 30.6 27.9 28.4 28.4 28.7 28.9 29.1 -0.2 Natural gas 19.3 20.4 20.3 21.0 21.4 22.7 23.9 25.2 0.7 Coal 11.9 12.2 12.2 11.9 11.6 11.3 11.0 10.7 -0.4 Nuclear 8.6 8.9 9.2 9.6 10.8 11.0 11.1 11.1 0.7 Other 9.4 10.4 12.6 14.7 16.4 17.2 17.9 18.5 2.0 Total 80.0 82.5 82.1 85.5 88.6 90.9 92.8 94.6 0.5 OECD Asia Liquids

250

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

0 0 Appendix D Table D2. World total energy consumption by region and fuel, High Oil Price case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas Liquids 45.5 46.4 45.0 44.8 44.1 43.6 43.8 45.0 -0.1 Natural gas 28.9 29.9 31.9 34.0 36.2 38.4 40.7 43.0 1.2 Coal 21.3 22.5 19.3 20.2 21.1 21.7 22.2 22.6 0.0 Nuclear 9.4 9.5 9.8 10.3 10.9 11.1 11.1 12.4 0.9 Other 11.9 11.9 13.6 15.0 15.9 17.0 18.9 21.8 2.0 Total 117.0 120.2 119.5 124.2 128.2 131.8 136.7 144.7 0.6 OECD Europe Liquids 30.8 30.6 27.3 27.1 27.1 27.3 27.6 27.8 -0.3 Natural gas 19.3 20.4 19.9 20.4 20.8 22.1 23.2 24.5 0.6 Coal 11.9 12.2 11.9 11.6 11.3 11.0 10.7 10.4 -0.5 Nuclear 8.6 8.9 9.2 9.6 10.8 11.0 11.1 11.1 0.7 Other 9.4 10.4 12.3 14.6 16.4 17.2 17.9 18.5 2.0 Total 80.0 82.5 80.5 83.3 86.3 88.6 90.5 92.3 0.4 OECD Asia

251

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

8 8 Appendix B Table B2. World total energy consumption by region and fuel, High Economic Growth case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas Liquids 45.5 46.4 46.3 47.9 48.2 48.4 49.4 51.1 0.3 Natural gas 28.9 29.9 32.1 34.8 37.2 39.5 42.0 44.1 1.3 Coal 21.3 22.5 19.7 21.5 22.4 22.7 23.2 23.9 0.2 Nuclear 9.4 9.5 9.8 10.3 10.9 11.2 11.6 13.2 1.1 Other 11.9 11.9 14.0 15.3 16.2 17.7 19.9 23.3 2.3 Total 117.0 120.2 122.0 129.8 134.8 139.5 146.0 155.6 0.9 OECD Europe Liquids 30.8 30.6 28.0 28.5 28.6 28.8 29.2 29.5 -0.1 Natural gas 19.3 20.4 20.3 21.1 21.5 22.8 24.0 25.4 0.7 Coal 11.9 12.2 12.2 11.9 11.6 11.4 11.1 10.8 -0.4 Nuclear 8.6 8.9 9.2 9.6 10.8 11.0 11.1 11.1 0.7 Other 9.4 10.4 12.6 14.7 16.4 17.3 18.0 18.7 2.0 Total 80.0 82.5 82.2 85.7 88.9 91.3 93.4 95.4 0.5 OECD Asia

252

Fuel Economy on the Fly | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Economy on the Fly Fuel Economy on the Fly Fuel Economy on the Fly January 19, 2011 - 5:06pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Fuel Economy information at your fingertips Cross Post from the Energy Savers Blog. Written by Shannon Brescher Shea. With the North American International Auto Show in Detroit kicking off the auto-show circuit last week, manufacturers are unveiling their future models. If you're inspired and in the market for a new car, FuelEconomy.gov can help you pick the most fuel-efficient vehicle for your needs. Although most people don't bring their computer with them to the dealership, you're in luck if you have a smartphone or other mobile internet device. FuelEconomy.gov has a mobile version of its popular Find and Compare Cars

253

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for natural gas production Table I1. World total natural gas production by region, Reference case, 2010-2040 (trillion cubic feet) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 28.4 30.4 33.5 36.1 38.2 41.1 44.4 1.5 United States a 21.2 23.9 26.5 28.4 29.7 31.3 33.1 1.5 Canada 5.4 5.0 5.4 5.9 6.4 7.0 7.6 1.1 Mexico 1.8 1.5 1.6 1.6 2.1 2.8 3.5 2.3 Chile 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.7 OECD Europe 10.4 9.0 8.1 8.0 8.6 9.2 9.9 -0.2 North Europe 10.1 8.4 7.4 7.3 7.9 8.5 9.1 -0.3 South Europe 0.3 0.3 0.4 0.4 0.4 0.5 0.5 1.7 Southwest Europe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Turkey/Israel 0.1 0.3 0.3 0.2 0.2 0.2 0.3 4.5 OECD Asia 2.1 2.8 4.0 5.0 5.7 6.3 6.9 4.0 Japan 0.2 0.1 0.1 0.1 0.1 0.1 0.1

254

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | International Energy Outlook 2013 Low Oil Price case projections Table E4. World liquids consumption by region, Low Oil Price case, 2009-2040 (million barrels per day) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 23.1 23.5 24.2 25.1 25.2 25.2 25.7 26.7 0.4 United States a 18.6 18.9 19.4 20.0 19.8 19.6 19.7 20.2 0.2 Canada 2.2 2.2 2.3 2.3 2.3 2.4 2.4 2.5 0.4 Mexico/Chile 2.4 2.4 2.5 2.8 3.0 3.3 3.6 4.0 1.7 OECD Europe 15.0 14.8 13.7 14.5 14.7 15.1 15.4 15.8 0.2 OECD Asia 7.7 7.7 8.3 8.7 8.9 8.9 9.0 9.1 0.5 Japan 4.4 4.4 4.7 4.8 4.8 4.7 4.6 4.5 0.1 South Korea 2.2 2.3 2.5 2.7 2.9 3.0 3.1 3.2 1.2 Australia/NewZealand 1.1 1.1 1.2 1.2 1.2 1.3 1.3 1.4 0.8 Total OECD 45.8 46.0 46.2 48.3 48.8 49.2 50.2 51.5 0.4 Non-OECD Non-OECD Europe and Eurasia

255

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

5 5 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for natural gas production Table I3. World other natural gas production by region, Reference case, 2010-2040 (trillion cubic feet) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 13.0 11.3 10.7 10.4 10.0 10.1 9.8 -1.0 United States a 8.3 7.5 7.3 7.4 7.1 7.2 6.9 -0.6 Canada 2.9 2.2 1.8 1.5 1.3 1.2 1.2 -2.9 Mexico 1.8 1.5 1.6 1.4 1.5 1.5 1.6 -0.4 Chile 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 OECD Europe 10.4 8.9 7.6 6.6 6.1 5.7 5.6 -2.0 North Europe 10.0 8.3 6.9 6.0 5.5 5.1 5.0 -2.3 South Europe 0.3 0.3 0.4 0.4 0.4 0.4 0.4 1.0 Southwest Europe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Turkey/Israel 0.1 0.3 0.3 0.2 0.2 0.2 0.2 -- OECD Asia 1.9 2.6 2.8 3.0 3.1 3.2 3.3 1.8 Japan 0.2 0.1 0.1 0.1 0.1 0.1 0.1 -1.0

256

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

Petroleum and Other Liquid Fuels Petroleum and Other Liquid Fuels World liquids consumption in the IEO2007 reference case increases from 83 million barrels per day in 2004 to 118 million barrels per day in 2030. Two-thirds of the increment is projected for use in the transportation sector. In the IEO2007 reference case, world consumption of petroleum and other liquid fuels 4 grows from 83 million barrels oil equivalent per day in 2004 to 97 million in 2015 and 118 million in 2030. The demand for liquids increases strongly in the projections, despite world oil prices that remain above $49 per barrel 5 throughout the period. Much of the overall increase in liquids consump- tion is projected for the nations of non-OECD Asia, where strong economic growth is expected. To meet the increase in liquids consumption in the IEO2007 reference case, liquids production is projected to

257

Arbor Fuel | Open Energy Information  

Open Energy Info (EERE)

Fuel Jump to: navigation, search Name: Arbor Fuel Place: Connecticut Zip: CT 06030 Sector: Biomass Product: Arbor Fuel is developing micro-organisms to convert biomass into...

258

Modeling Cascading Diffusion of New Energy Technologies: Case Study of Residential Solid Oxide Fuel Cells in the U.S. and Internationally  

Science Journals Connector (OSTI)

Combining market and cost results, we find that for rapid cost reductions (learning rate = 25%), a modest public subsidy can make SOFC investment profitable for 20160 million households. ... eQuest outputs for a typical home are our business as usual (BAU) case, which uses the electrical grid for household electricity, an electrical air conditioner for cooling, a natural gas furnace for space heating, and a natural gas water heater for DHW. ... In Clean and Safe Energy Forever; Proceedings of the Congress of International Solar Energy, Kobe, Japan, 1989, pp 402 406. ...

Seth Herron; Eric Williams

2013-07-01T23:59:59.000Z

259

Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

260

Alternative Fuels Data Center: Clean Energy Collaborative  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Energy Clean Energy Collaborative to someone by E-mail Share Alternative Fuels Data Center: Clean Energy Collaborative on Facebook Tweet about Alternative Fuels Data Center: Clean Energy Collaborative on Twitter Bookmark Alternative Fuels Data Center: Clean Energy Collaborative on Google Bookmark Alternative Fuels Data Center: Clean Energy Collaborative on Delicious Rank Alternative Fuels Data Center: Clean Energy Collaborative on Digg Find More places to share Alternative Fuels Data Center: Clean Energy Collaborative on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Energy Collaborative The Governor's Clean Energy Technology Collaborative (Collaborative) was created for experts to discuss issues that impact the development of new

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIA - International Energy Outlook 2008-Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2008 Chapter 5 - Electricity World electricity generation nearly doubles in the IEO2008 reference case from 2005 to 2030. In 2030, generation in the non-OECD countries is projected to exceed generation in the OECD countries by 46 percent. Figure 52. Growth in World Electric Power Generation and Total Energy Consumption and Total Energy Consumption, 1990-2030 (Index, 1990 = 1). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 53. World Net Electric Power Generation, 1990-2030 (Trillion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 34. World Electricity Generation by Fuel, 2005-2030 (Trillion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800.

262

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

For Deloitte Oil and Gas Conference November 18, 2014 | Houston, TX By Adam Sieminski, Administrator U.S. Energy Information Administration Renewable energy and nuclear power are...

263

Pilot Application to Nuclear Fuel Cycle Options | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options A Screening Method for Guiding R&D Decisions: Pilot Application to Screen Nuclear Fuel Cycle Options The Department of Energy's Office of Nuclear Energy (DOE-NE) invests in research and development (R&D) to ensure that the United States will maintain its domestic nuclear energy capability and scientific and technical leadership in the international community of nuclear power nations in the years ahead. The 2010 Nuclear Energy Research and Development Roadmap presents a high-level vision and framework for R&D activities that are needed to keep the nuclear energy option viable in the near term and to expand its use in the decades ahead. The roadmap identifies the development

264

Hydrogen and Fuel Cells Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cells Success Stories Hydrogen and Fuel Cells Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in advanced fuel cell...

265

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

System for the Analysis of Global Energy Markets (SAGE) System for the Analysis of Global Energy Markets (SAGE) Projections of world energy consumption and supply in IEO2007 were generated using EIA's SAGE model. SAGE is used to project energy use in detail at the end- use sector level. It is an integrated set of regional models that provide a technology-rich basis for estimating regional energy consumption. For each region, reference case estimates of 42 end-use energy service demands (e.g., car, commercial truck, and heavy truck road travel; residential lighting; steam heat requirements in the paper industry) are developed on the basis of economic and demographic projections. Projections of energy con- sumption to meet the energy demands are estimated on the basis of each region's existing energy use patterns, the existing stock of energy-using equipment, and the characteristics of available new technologies, as well

266

Solar Energy International | Open Energy Information  

Open Energy Info (EERE)

International International Address 76 S. 2nd St. Carbondale, CO 81623 Place Carbondale, Colorado Zip 81623 Website http://www.solarenergy.org/ References http://www.solarenergy.org/ No information has been entered for this organization. Add Organization "For 20 years, Solar Energy International has been dedicated to hands-on and online solar training and renewable energy education in wind, micro-hydro, sustainable building and developing world technologies. Solar Energy International also works with grassroots and development organizations to promote sustainability and improve quality of life worldwide through viable outreach programs. The Renewable Energy for Developing World Workshop intends to explore different applications for renewable energy technologies in developing countries. Participants will

267

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

World Energy Consumption World Energy Consumption IEO98 projects that total annual world energy consumption could be 75 percent higher in 2020 than it was in 1995. Demand for all sources of energy except nuclear power is expected to grow over the projection period. Altenative Growth Cases Trends in Energy Intensity Emissions of Greenhouse Gases and the Kyoto Protocol Carbon Emissions Reference Case Trends in Primary Energy Consumption Forecast Comparisons By 2020 the world is projected to consume three times the amount of energy it used 25 years ago (Figure 11). Despite the recent economic crisis in Southeast Asia, which may reduce expected growth of energy consumption in the short term, EIA believes that almost half of the world’s projected energy increment will occur in developing Asia. Indeed, the IEO98 reference

268

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions for the IEO2006 Kyoto Protocol Case Energy-Related Emissions of Greenhouse Gases The System for the Analysis of Global energy Markets (SAGE)-the model used by EIA to prepare the IEO2006 mid-term projections-does not include non-energy- related emissions of greenhouse gases, which are esti- mated at about 15 to 20 percent of total greenhouse gas emissions, based on inventories submitted to the United Nations Framework Convention on Climate Change (UNFCCC). SAGE models global energy supply and demand and, therefore, does not address agricultural and other non-energy-related emissions. EIA implicitly assumes that percentage reductions of non-energy-related emissions and their associated abatement costs will be similar to those for energy- related emissions. Non-energy-related greenhouse gas emissions are likely to grow faster than energy-related

269

EIA - International Energy Outlook 2009-Appendix I. Comparisons With  

Gasoline and Diesel Fuel Update (EIA)

I. Comparisons With International Energy Agency and IEO2008 Projections I. Comparisons With International Energy Agency and IEO2008 Projections International Energy Outlook 2009 Appendix I. Comparisons With International Energy Agency and IEO2008 Projections Table I1. Comparison of IEO2009 and IEA World Energy Consumption Growth Rates by Region, 2006-2015 (Average Annual Percent Growth). Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table I2. Comparison of IEO2009 and IEA World Energy Consumption Growth Rates by Region, 2015-2030 (Average Annual Percent Growth). Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table I3. Comparison of IEO2009 and IEA World Energy Consumption Growth Rates by Fuel, 2006-2015 (Average Annual Percent Growth). Need help, contact the National Energy Information Center at 202-586-8800.

270

EIA - International Energy Outlook 2007 - Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Relaated Carbon Dioxide Emissions Energy-Relaated Carbon Dioxide Emissions International Energy Outlook 2007 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2004, non-OECD emissions of carbon dioxide were greater than OECD emissions for the first time. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 57 percent. Figure 77. World Energy-Related Carbon Dioxide Emissions by Region, 2003-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center on 202-585-8800. Figure Data Figure 78. World energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy at 202-586-8800. Figure Data Carbon dioxide is the most abundant anthropogenic (human-caused) greenhouse

271

EIA - 2010 International Energy Outlook - Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2010 Energy-Related Carbon Dioxide Emissions In 2007, non-OECD energy-related emissions of carbon dioxide exceeded OECD emissions by 17 percent. In the IEO2010 Reference case, energy-related carbon dioxide emissions from non-OECD countries in 2035 are about double those from OECD countries. Overview Because anthropogenic emissions of carbon dioxide result primarily from the combustion of fossil fuels, world energy use continues to be at the center of the climate change debate. In the IEO2010 Reference case, world energy-related carbon dioxide emissions29 grow from 29.7 billion metric tons in 2007 to 33.8 billion metric tons in 2020 and 42.4 billion metric tons in 2035 (Table 18).30

272

Fuels From Sunlight Hub | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuels From Sunlight Hub Fuels From Sunlight Hub Fuels From Sunlight Hub August 1, 2010 - 4:11pm Addthis Researchers from across disciplines are working together to create energy and fuels directly from sunlight, and create a process that's economically viable. Researchers from across disciplines are working together to create energy and fuels directly from sunlight, and create a process that's economically viable. The Solar Energy-to-Fuels Conversion Challenge Designing highly efficient, non-biological, energy conversion "machines" that generate fuels directly from sunlight, water, and carbon dioxide is both a formidable challenge and an opportunity. Such a process could revolutionize our ability to tap new energy sources that are both renewable and environmentally-friendly while improving energy

273

Alternative Fueling Station Locator | Open Energy Information  

Open Energy Info (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Fuels & Efficiency, Transportation Phase: Evaluate Options, Prepare a Plan Topics: Datasets Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/afdc/locator/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/stations/ Cost: Free OpenEI Keyword(s): Featured References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator The alternative fuel station locator uses an address based search to find

274

Calling All Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Calling All Fuel Cells Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What is a fuel cell? A fuel cell is a device that uses a fuel and oxygen to create electricity by an electrochemical process. A fuel cell can provide energy for systems as large as a utility power station and as small as a laptop computer. During Hurricane Sandy, fuel cells were instrumental in providing backup

275

Calling All Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Calling All Fuel Cells Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What is a fuel cell? A fuel cell is a device that uses a fuel and oxygen to create electricity by an electrochemical process. A fuel cell can provide energy for systems as large as a utility power station and as small as a laptop computer. During Hurricane Sandy, fuel cells were instrumental in providing backup

276

International Nuclear Energy Policy and Cooperation  

Broader source: Energy.gov [DOE]

The Office of International Nuclear Energy Policy and Cooperation (INEPC) collaborates with international partners to support the safe, secure, and peaceful use of nuclear energy. It works both...

277

Google+ Hangout Energy 101: Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Google+ Hangout Energy 101: Fuel Cells Google+ Hangout Energy 101: Fuel Cells Google+ Hangout Energy 101: Fuel Cells Watch a Google+ Hangout on Energy 101: Fuel Cells on Thursday, January 16, at 2 p.m. ET. If the video doesn't start at 2 p.m., you might need to refresh your browser. Join us on Thursday, January 16, at 2 p.m. ET for a Google+ Hangout on Energy 101: Fuel Cells. Whether you want to know about how they work or when fuel cell electric vehicles will hit the road or how much fuel cells could reduce carbon pollution, now is your chance to ask the experts. Joining the live discussion will be: Dr. Sunita Satyapal, Director of the Energy Department's Fuel Cell Technologies Office. Satyapal can answer questions about how fuel cells work, growth in the marketplace and the Energy Department's role in

278

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

7 projections, end-use energy consumption depends on 7 projections, end-use energy consumption depends on resource endowment, economic growth, and other political, social, and demographic factors. One way of looking at the future of world energy mar- kets is to consider trends in energy consumption at the end-use sector level. With the exception of the transpor- tation sector, which is dominated by petroleum-based liquids products at present, the mix of energy use in the residential, commercial, and industrial sectors varies widely by region, depending on a combination of regional factors, such as the availability of energy resources, the level of economic development, and polit- ical, social, and demographic factors. This chapter out- lines IEO2007 reference case projections for delivered energy consumption by end-use sector in the OECD and non-OECD regions. Transportation Sector Energy use in the transportation

279

Alternative Liquid Fuels (ALF) | Open Energy Information  

Open Energy Info (EERE)

Fuels (ALF) Jump to: navigation, search Name: Alternative Liquid Fuels (ALF) Address: P.O. Box 76 Place: McArthur, Ohio Zip: 45651 Sector: Biofuels, Renewable Energy, Services...

280

Hydrogen: The ultimate fuel and energy carrier  

Science Journals Connector (OSTI)

Hydrogen: The ultimate fuel and energy carrier ... Some of the questions include: 1)Why choose hydrogen as a fuel, 2) How is hydrogen produced, 3)Why is this combustion nonpolluting, 4) How is hydrogen stored? ... Hydrogen ...

Gustav P. Dinga

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE International Energy Advisors  

Broader source: Energy.gov [DOE]

DOEs Office of Electricity Delivery and Energy Reliability's (OE) Infrastructure Security and Energy Restoration Division (ISER) has coordinated and executed interagency support agreements with five of the geographic Combatant Commands to assign a DOE representative a DOE Energy Advisor to each of their headquarters.

282

The IAEA international conference on fast reactors and related fuel cycles: highlights and main outcomes  

SciTech Connect (OSTI)

The 'International Conference on Fast Reactors and Related Fuel Cycles', which is regularly held every four years, represents the main international event dealing with fast reactors technology and related fuel cycles options. Main topics of the conference were new fast reactor concepts, design and simulation capabilities, safety of fast reactors, fast reactor fuels and innovative fuel cycles, analysis of past experience, fast reactor knowledge management. Particular emphasis was put on safety aspects, considering the current need of developing and harmonizing safety standards for fast reactors at the international level, taking also into account the lessons learned from the accident occurred at the Fukushima- Daiichi nuclear power plant in March 2011. Main advances in the several key areas of technological development were presented through 208 oral presentations during 41 technical sessions which shows the importance taken by fast reactors in the future of nuclear energy.

Monti, S.; Toti, A. [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, PO Box 100, A-1400 Vienna (Austria)

2013-07-01T23:59:59.000Z

283

Vista International Technologies Inc formerly Nathaniel Energy Corp | Open  

Open Energy Info (EERE)

Inc formerly Nathaniel Energy Corp Inc formerly Nathaniel Energy Corp Jump to: navigation, search Name Vista International Technologies Inc (formerly Nathaniel Energy Corp) Place Englewood, Colorado Zip 80112 Product Using its proprietary patented technology, the Thermal Gasifier, Nathaniel produces electricity, heat and liquid fuels. References Vista International Technologies Inc (formerly Nathaniel Energy Corp)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Vista International Technologies Inc (formerly Nathaniel Energy Corp) is a company located in Englewood, Colorado . References ↑ "Vista International Technologies Inc (formerly Nathaniel Energy Corp)" Retrieved from "http://en.openei.org/w/index.php?title=Vista_International_Technologies_Inc_formerly_Nathaniel_Energy_Corp&oldid=352865

284

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

marketed energy consumption is projected to increase by 57 percent marketed energy consumption is projected to increase by 57 percent from 2004 to 2030. Total energy demand in the non-OECD countries increases by 95 percent, compared with an increase of 24 percent in the OECD countries. In the IEO2007 reference case-which reflects a scenario where current laws and policies remain unchanged throughout the projection period-world marketed energy consumption is projected to grow by 57 percent over the 2004 to 2030 period. Total world energy use rises from 447 quadrillion British thermal units (Btu) in 2004 to 559 quadrillion Btu in 2015 and then to 702 qua- drillion Btu in 2030 (Figure 1). Global energy demand grows despite the relatively high world oil and natural gas prices that are projected to persist into the mid-term outlook. The most rapid growth in energy demand from 2004 to 2030 is projected for nations outside

285

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

6 projections, end-use energy consumption in the 6 projections, end-use energy consumption in the residential, commercial, industrial, and transportation sectors varies widely among regions and from country to country. One way of looking at the future of world energy mar- kets is to consider trends in energy consumption at the end-use sector level. With the exception of the transpor- tation sector, which is almost universally dominated by petroleum products at present, the mix of energy use in the residential, commercial, and industrial sectors varies widely by region, depending on a combination of regional factors, such as the availability of energy resources, the level of economic development, and polit- ical, social, and demographic factors. This chapter out- lines the IEO2006 projections for delivered energy consumption by end-use sector in the OECD and non- OECD regions. Residential Sector

286

EIA - International Energy Outlook 2009-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2009 Chapter 8 - Energy-Related Carbon Dioxide Emissions In 2006, non-OECD energy-related emissions of carbon dioxide exceeded OECD emissions by 14 percent. In 2030, energy-related carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 77 percent. Figure 80. World Energy-Related Carbon Dioxide Emissions, 2006-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 81. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 82. U.S. Energy-Related Carbon Dioxide Emissions by Fuel in IEO2008 and IEO2009, 2006, 2015, and 2030 (billion metric tons). Need help, contact the National Energy Information Center at 202-586-8800.

287

Renewable Energy Resources Inc formerly Internal Hydro International Inc |  

Open Energy Info (EERE)

Internal Hydro International Inc Internal Hydro International Inc Jump to: navigation, search Name Renewable Energy Resources Inc (formerly Internal Hydro International Inc) Place Tampa, Florida Zip 33603 Sector Hydro Product Internal Hydro's technology takes waste, pumped pressures of fluids, gases or the constantly available natural flows of water and extracts power from them via a turbine. References Renewable Energy Resources Inc (formerly Internal Hydro International Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Resources Inc (formerly Internal Hydro International Inc) is a company located in Tampa, Florida . References ↑ "Renewable Energy Resources Inc (formerly Internal Hydro

288

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Contacts Preface Highlights World Energy Consumption The World Oil Market (Errata as of May 13, 1998) Natural Gas Coal Nuclear Power Hydroelectric and Other Renewable Energy Electricity Appendix A-World Energy Consumption, Oil Production, and Carbon Emissions Tables (PDF) Click Here For the HTML Version of Appendix A, Tables A1-A13 Click Here For the HTML Version of Appendix A, Tables A14-A26 Click Here For the HTML Version of Appendix A, Tables A27-A39 Click Here For the HTML Version of Appendix A, Tables A40-A50 Appendix B-World Energy Projection System Appendix C-A Status Report on Developing Transportation for Caspian Basin Oil and Gas Production Preface The Energy Information Administration’s outlook for world energy trends is presented in this report. Model projections now extending to the year 2020 are reported, and regional trends are discussed.

289

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2007 reference case, total world consumption of marketed energy is projected In the IEO2007 reference case, total world consumption of marketed energy is projected to increase by 57 percent from 2004 to 2030. The largest projected increase in energy demand is for the non-OECD region. The IEO2007 reference case-which reflects a scenario where current laws and policies remain unchanged throughout the projection period-projects strong growth for worldwide energy demand from 2004 to 2030. Total world consumption of marketed energy is projected to increase from 447 quadrillion Btu in 2004 to 559 quadrillion Btu in 2015 and then to 702 quadrillion Btu in 2030-a 57-percent increase over the projection period (Table 1 and Figure 8). The largest projected increase in energy demand is for the non-OECD region. Generally, countries outside the OECD 3 have higher projected economic growth rates and more rapid population growth

290

International Energy Outlook 2006 - Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Eneregy-Related Carbon Dioxide Emissions Eneregy-Related Carbon Dioxide Emissions International Energy Outlook 2006 Chapter 7: Energy-Related Carbon Dioxide Emissions In the coming decades, actions to limit greenhouse gas emissions could affect patterns of energy use around the world and alter the level and composition of energy-related carbon dioxide emissions by energy source. Figure 65. World Carbon Dioxide Emissions by Region, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 66. World Carbon Dioxide Emissions by Fuel Type, 1980-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Carbon dioxide is one of the most prevalent greenhouse gases in the

291

Definition: Fuel cell | Open Energy Information  

Open Energy Info (EERE)

Fuel cell Fuel cell Jump to: navigation, search Dictionary.png Fuel cell An electrochemical device that converts chemical energy directly into electricity. View on Wikipedia Wikipedia Definition A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent. Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen/air to sustain the chemical reaction; however, fuel cells can produce electricity continually for as long as these inputs are supplied. In 1838, German physicist Christian Friedrich Schönbein invented the first

292

EIA - International Energy Outlook 2007 - Reference Case Projections for  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2004-2030) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2004-2030) International Energy Outlook 2007 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2004-2030) Formats Data Table Titles (1 to 12 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

293

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2010 Graphic Data - Transportation Sector Energy Consumption Figure 91. World liquids consumption by end-use sector, 2007-2035 Figure 92. OECD and Non-OECD transportation sector liquids consumption, 2007-2035 Figure 93. OECD transportation energy use by region, 2007, 2025, and 2035 Figure 94. North America transportation energy use by country, 2007 and 2035 Figure 95. OECD Asia transportation energy use by country, 2007-2035 Figure 96. OECD Asia transportation energy use by country, 2007-2035 Figure 97. Non-OECD transportation energy use by region, 2007-2035 Figure 98. Non-OECD Asia transportation energy use by country, 2007-2035 Figure 99. Transportation energy use per capita in China and South Korea, 2007-2035

294

Hydrogen Fuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

295

Hydrogen Fuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

296

International Clean Energy Analysis | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Facebook icon Twitter icon » International Clean Energy Analysis (Redirected from International Clean Energy Analysis) Jump to: navigation, search About ICEA UNIDO small.png NREL small.png The International Clean Energy Analysis (ICEA) gateway promotes increased access to clean energy analysis tools, databases, methods and other technical resources which can be applied in developing countries. This wiki-based dynamic platform allows you to add to the inventory of clean energy organizations, tools, programs and data included on the site. We encourage you to expand the inventory of resources by clicking on "add" below the International Initiatives map. The gateway is organized by Information Toolkits which provide tools and resources to help answer a number of clean energy questions. The International Initiatives map also provides country-specific information on clean energy programs, tools and organizations. Click here to learn more about the ICEA gateway project.

297

EIA - International Energy Outlook 2007 - Electricity Chapter  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2007 Chapter 6 - Electricity World electricity generation nearly doubles in the IEO2007 reference case from 2004 to 2030. In 2030, generation in the non-OECD countries is projected to exceed generation in the OECD countries by 30 percent. Figure Data Figure 61. World Electric Power Generation by Region, 1980-2030 (Billion Kilowatthours). Need help, contact the National Energy at 202-586-8800. Figure Data Figure 62. Average Annual Change in End-Use Sector Electricity Demand, 2004-2030 (Percent per Year). Need help, contact the National Energy at 202-586-8800. Figure Data Figure 63. World Electricity Generation by Fuel, 2004 and 2030 (Billion Kilowatthours). Need help, contact the National Energy at 202-586-8800.

298

International Energy Outlook 2001 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas picture of a printer Printer Friendly Version (PDF) Natural gas is the fastest growing primary energy source in the IEO2001 forecast. The use of natural gas is projected to nearly double between 1999 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is expected to be the fastest growing component of world energy consumption in the International Energy Outlook 2001 (IEO2001) reference case. Gas use is projected to almost double, to 162 trillion cubic feet in 2020 from 84 trillion cubic feet in 1999 (Figure 38). With an average annual growth rate of 3.2 percent, the share of natural gas in total primary energy consumption is projected to grow to 28 percent from 23 percent. The largest increments in gas use are expected in Central and

299

U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure Vessel Forum  

Broader source: Energy.gov [DOE]

Presentation at the International Hydrogen Fuel and Pressure Vessel Forum on September 2729, 2010, in Beijing, China.

300

Renewable Fuels | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Renewable Fuels Incentives Retrieved from "http:en.openei.orgwindex.php?titleRenewableFuels&oldid267190...

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Green Fuel | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Green Fuel Green Fuel Below is information about the student activitylesson plan from your search. Grades 9-12 Subject Solar Summary This activity allows students the opportunity...

302

International Energy Outlook 2000 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural gas is the fastest growing primary energy source in the IEO2000 forecast. The use of natural gas is projected to more than double between 1997 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is the fastest growing primary energy source in the IEO2000 forecast. The use of natural gas is projected to more than double between 1997 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. World natural gas consumption continues to grow, increasing its market share of total primary energy consumption. In the International Energy Outlook 2000 (IEO2000), natural gas remains the fastest growing component of world energy consumption. Over the IEO2000 forecast period from 1997 to 2020, gas use is projected to more than double in the reference case, reaching 167 trillion cubic feet in 2020 from the 1997 level of 82 trillion cubic feet (Figure 46). Over the 1997-2020 period, the role of natural gas in energy use is projected to increase in all regions except the Middle

303

Green Energy Resources Inc formerly New York International Log Lumber  

Open Energy Info (EERE)

New York International Log Lumber New York International Log Lumber Company Jump to: navigation, search Name Green Energy Resources Inc (formerly New York International Log & Lumber Company) Place San Antonio, Texas Product GRGR aims to export wood fiber fuel, that is environmentally certified, to overseas power generation utilities. References Green Energy Resources Inc (formerly New York International Log & Lumber Company)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Energy Resources Inc (formerly New York International Log & Lumber Company) is a company located in San Antonio, Texas . References ↑ "Green Energy Resources Inc (formerly New York International Log & Lumber Company)"

304

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

305

EIA - International Energy Outlook 2008-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Chapter 6 - Transportation Sector Energy Consumption In the IEO2008 reference case, transportation energy use in the non-OECD countries increases by an average of 3.0 percent per year from 2005 to 2030, as compared with an average of 0.7 percent per year for the OECD countries. Over the next 25 years, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2008 reference case, the transportation share of total liquids consumption increases from 52 percent in 2005 to 58 percent in 2030. Much of the growth in transportation energy use is projected for the non-OECD nations, where many rapidly expanding economies

306

Research on Fuels & Lubricants | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels lDimethyl Ether Rheology and Materials Studies Natural Oils - The Next Generation of Diesel Engine Lubricants? Combined Heat and Power, Waste Heat, and District Energy...

307

Panda Energy International Inc | Open Energy Information  

Open Energy Info (EERE)

Energy International Inc Energy International Inc Jump to: navigation, search Name Panda Energy International Inc Place Dallas, Texas Zip 75244 Sector Renewable Energy Product Texas-based power asset construction company, investment firm and renewable project developer. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Appendix C Appendix C A Status Report on Developing Transportation for Caspian Basin Oil and Gas Production Prior to the breakup of the Soviet Union, the petroleum transportation networks in Azerbaijan, Kazakhstan, and Turkmenistan were designed to provide petroleum to the internal Soviet economy and, in particular, to meet the Soviet military’s need for petroleum [1]. Investment in the Caspian Basin petroleum transportation system was, however, severely deficient. In order for the producers in the Caspian Sea area to become major petroleum exporters, existing petroleum transport lines, which generally head northward into Russia, will need upgrading. More importantly, new lines will need to be built to transport Caspian Sea oil to export markets, in some combination of westward to the Mediterranean,

309

International trade and waste and fuel management issue, 2009  

SciTech Connect (OSTI)

The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: Innovative financing and workforce planning, by Donna Jacobs, Entergy Nuclear; Nuclear power - a long-term need, by John C. Devine, Gerald Goldsmith and Michael DeLallo, WorleyParsons; Importance of loan guarantee program, by Donald Hintz; EPC contracts for new plants, by Dave Barry, Shaw Power Group; GNEP and fuel recycling, by Alan Hanson, AREVA NC Inc.; Safe and reliable reactor, by Kiyoshi Yamauchi, Mitsubishi Heavy Industries, Ltd.; Safe, small and simple reactors, by Yoshi Sakashita, Toshiba Corporation; Nuclear power in Thailand, by Tatchai Sumitra, Thailand Institute of Nuclear Technology; and, Nuclear power in Vietnam, by Tran Huu Phat, Vietnam Atomic Energy Commission. The Industry Innovation article this issue is Rectifying axial-offset-anomaly problems, by Don Adams, Tennessee Valley Authority. The Plant Profile article is Star of Stars Excellence, by Tyler Lamberts, Entergy Nuclear Operations, Inc.

Agnihotri, Newal (ed.)

2009-01-15T23:59:59.000Z

310

Vista International Inc | Open Energy Information  

Open Energy Info (EERE)

Efficiency, Wind energy Product: Technology holding company, developing products in waste-to-energy gasification, low speed wind generators, alternative fuels, and...

311

International Energy Annual, 1992  

SciTech Connect (OSTI)

This report is prepared annually and presents the latest information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Trade and reserves are shown for petroleum, natural gas, and coal. Prices are included for selected petroleum products. Production and consumption data are reported in standard units as well as British thermal units (Btu) and joules.

Not Available

1994-01-14T23:59:59.000Z

312

Development of an internally cooled annular fuel bundle for pressurized heavy water reactors  

SciTech Connect (OSTI)

A number of preliminary studies have been conducted at Atomic Energy of Canada Limited to explore the potential of using internally cooled annular fuel (ICAF) in CANDU reactors including finite element thermo-mechanical modelling, reactor physics, thermal hydraulics, fabrication and mechanical design. The most compelling argument for this design compared to the conventional solid-rod design is the significant reduction in maximum fuel temperature for equivalent LERs (linear element ratings). This feature presents the potential for power up-rating or higher burnup and a decreased defect probability due to in-core power increases. The thermal-mechanical evaluation confirmed the significant reduction in maximum fuel temperatures for ICAF fuel compared to solid-rod fuel for equivalent LER. The maximum fuel temperature increase as a function of LER increase is also significantly less for ICAF fuel. As a result, the sheath stress induced by an equivalent power increase is approximately six times less for ICAF fuel than solid-rod fuel. This suggests that the power-increase thresholds to failure (due to stress-corrosion cracking) for ICAF fuel should be well above those for solid-rod fuel, providing improvement in operation flexibility and safety.

Hamilton, H.; Armstrong, J.; Kittmer, A.; Zhuchkova, A.; Xu, R.; Hyland, B.; King, M.; Nava-Dominguez, A.; Livingstone, S.; Bergeron, A. [Atomic Energy of Canada, Ltd., Chalk River Laboratories, Chalk River, ON (Canada)

2013-07-01T23:59:59.000Z

313

International Energy Agency (IEA) | Open Energy Information  

Open Energy Info (EERE)

International Energy Agency (IEA) International Energy Agency (IEA) (Redirected from International Energy Agency) Jump to: navigation, search Logo: International Energy Agency (IEA) Name International Energy Agency (IEA) Address 9 rue de la Fédération Place Paris, France Zip 75015 Number of employees 51-200 Year founded 1974 Phone number +33 1 40 57 65 54 Website http://www.iea.org Coordinates 48.8548086°, 2.2905775° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.8548086,"lon":2.2905775,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Department of Energy - Hydrogen & Fuel Cells  

315

Renewable Energy Institute International | Open Energy Information  

Open Energy Info (EERE)

International International Jump to: navigation, search Logo: Renewable Energy Institute International Name Renewable Energy Institute International Address 5022 Bailey Loop Place McClellan, California Zip 95652 Region Bay Area Coordinates 38.657365°, -121.390278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.657365,"lon":-121.390278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

An Energy Evolution:Alternative Fueled Vehicle Comparisons |...  

Broader source: Energy.gov (indexed) [DOE]

An Energy Evolution:Alternative Fueled Vehicle Comparisons An Energy Evolution:Alternative Fueled Vehicle Comparisons Presented at the U.S. Department of Energy Light Duty Vehicle...

317

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

World Coal Markets World Coal Markets In the IEO2006 reference case, world coal consumption nearly doubles from 2003 to 2030, with the non-OECD countries accounting for 81 percent of the increase. Coal's share of total world energy consumption increases from 24 percent in 2003 to 27 percent in 2030. In the IEO2006 reference case, world coal consumption nearly doubles, from 5.4 billion short tons 7 in 2003 to 10.6 billion tons in 2030 (Figure 48). Coal consumption increases by 3.0 percent per year on average from 2003 to 2015, then slows to an average annual increase of 2.0 per- cent annually from 2015 to 2030. World GDP and pri- mary energy consumption also grow more rapidly in the first half than in the second half of the projections, reflecting a gradual slowdown of economic growth in non-OECD Asia. Regionally, increased use of coal in non-OECD countries accounts

318

HighEnergy International  

E-Print Network [OSTI]

Jet Production at HERA Sascha Caron, I. Phys. Institut, RWTH Aachen High­Energy Physics r ) and d?? # e,i = # # n=1 # n s (µ r )C n (µ r ) # extract # s , pdfs? QCD Montpellier 2002, Sascha­jets above E T treshhold. DIS: find jets in ``Breit frame'': 2xP + q = 0 p r q g # maximal separation between

319

2004 Office of Fossil Energy Fuel Cell Program Annual Report  

SciTech Connect (OSTI)

Annual report of fuel cell projects sponsored by Department of Energy, National Energy Technology Laboratory.

NETL

2004-11-01T23:59:59.000Z

320

Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI)  

SciTech Connect (OSTI)

The objective of this INERI project was to develop improved fuel behavior models for gas reactor coated-particle fuels and to explore improved coated-particle fuel designs that could be used reliably at very high burnups and potentially in gas-cooled fast reactors. Project participants included the Idaho National Engineering Laboratory (INEEL), Centre tude Atomique (CEA), and the Massachusetts Institute of Technology (MIT). To accomplish the project objectives, work was organized into five tasks.

David Petti; Philippe Martin; Mayeul Phlip; Ronald Ballinger; Petti does not have NT account

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy 101: Algae-to-Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Algae-to-Fuel Algae-to-Fuel Energy 101: Algae-to-Fuel Addthis Below is the text version for the Energy 101: Algae-to-Fuel video: The video opens with "Energy 101: Algae-to-Fuel." Shots of vehicles driving on highways. We all need fuel to get around. And as America takes steps to improve our energy security, homegrown fuel sources are more important than ever. Close-up shots of algae, followed by a shots of an algae farm and raceway ponds. The Energy Department is researching one of the fuel sources of the future found here: in algae. Have a look at this algae farm. These large, man-made ponds are called raceways, and they cultivate a new crop of algae every few weeks. Various shots of algae in raceway ponds. Text appears on screen: "Microalgae - Up to 60X Oil of Land-Based Plants."

322

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

8) 8) Dis tri bu tion Cate gory UC-950 In ter na tional En ergy Out look 1998 April 1998 En ergy In for ma tion Ad min istra tion Of fice of In te grated Analy sis and Fore cast ing U.S. De part ment of En ergy Wash ing ton, DC 20585 This re port was pre pared by the En ergy In for ma tion Ad min istra tion, the in de pend ent sta tis ti cal and ana lyti cal agency within the De part ment of En ergy. The in for ma tion con tained herein should be at trib uted to the En ergy In for ma tion Ad min istra tion and should not be con strued as ad vo cat ing or re flect ing any pol icy po si tion of the De part ment of En ergy or of any other or gani za tion. Con tacts The Inter na tional Energy Out look is pre pared by the Energy Infor ma tion Admin istra tion (EIA). Gen eral

323

ICF International | Open Energy Information  

Open Energy Info (EERE)

ICF International ICF International Jump to: navigation, search Name ICF International Address 9300 Lee Highway, Fairfax, VA 22031-1207 USA Place Washington, District of Columbia Stock Symbol NASDAQ:ICFI Year founded 1969 Number of employees 1001-5000 References http://www.icfi.com/ No information has been entered for this organization. Add Organization Contents 1 Organization Overview 1.1 Markets 2 Resources 2.1 Programs 3 References Organization Overview "ICF International partners with government and commercial clients to deliver professional services and technology solutions in the energy, environment, and infrastructure; health, social programs, and consumer/financial; and public safety and defense markets." Markets Aviation Climate Community Development Defense Education

324

International energy indicators  

SciTech Connect (OSTI)

Data are compiled and graphs are presented for Iran: Crude Oil Capacity, Production and Shut-in, 1974-1980; Saudi Arabia: Crude Oil Capacity, Production and Shut-in, 1974-1980; OPEC (Ex-Iran and Saudi Arabia): Capacity, Production and Shut-in, 1974-1980; Non-OPEC Free World and US Production of Crude Oil, 1973-1980; Oil Stocks: Free World, US, Japan and Europe (landed), 1973-1980; Petroleum Consumption by Industrial Countries, 1973-1980; USSR Crude Oil Production, 1974-1980; Free World and US Nuclear Generation Capacity, 1973-1980; US Imports of Crude Oil and Products, 1973-1980; Landed Cost of Saudi Crude in Current and 1974 Dollars; US Trade in Bituminous Coal, 1973-1980; Summary of US Merchandise Trade, 1976-1980; and Energy/GNP Ratio.

Bauer, E.K. (ed.)

1980-09-01T23:59:59.000Z

325

International energy indicators  

SciTech Connect (OSTI)

Tabulated data and graphic displays are presented for: world crude oil production for each year since 1974; OPEC crude oil production capacity; world crude oil and refined product inventory level for each year since 1975; oil consumption in OECD Countries for each year since 1975; USSR crude oil production for each year since 1975; and the free world and US nuclear electricity generation for 1973 and the current capacity. Also, tabulated data and graphic displays are included on: US domestic oil supply for each year since 1977; US gross imports of crude oil and products for each year since 1973; landed cost of Saudi crude in current and 1974 dollars; US coal trade for each year since 1975; US natural gas trade for each year since 1975; a summary of US merchandise trade for each year since 1977; and the US energy/GNP ratio in 1972 dollars.

Weiss, R.M. (ed.)

1981-05-01T23:59:59.000Z

326

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

4. World Total Energy Consumption by Region, High Economic Growth 4. World Total Energy Consumption by Region, High Economic Growth Case, 1990-2020 (Quadrillion Btu) Region/Country History Projections Average Annual Percent Change, 1995-2020 1990 1995 1996 2000 2005 2010 2015 2020 Industrialized Countries North America 99.7 108.0 112.2 121.2 132.4 143.4 152.5 161.6 1.6 United Statesa 83.9 90.4 94.0 100.6 108.7 116.9 123.2 129.1 1.4 Canada 10.9 12.2 12.6 13.7 15.1 16.6 18.1 19.7 1.9 Mexico 4.9 5.5 5.6 6.9 8.6 9.9 11.2 12.8 3.4 Western Europe 61.9 64.8 66.7 71.9 78.9 85.6 92.4 99.8 1.7 Industrialized Asia 23.0 26.3 26.9 29.5 32.1 35.1 38.2 41.7 1.9 Japan 18.1 20.8 21.4 23.2 25.2 27.6 30.1 32.9 1.9 Australasia 4.9 5.6 5.5 6.3 6.9 7.5 8.1 8.8 1.8

327

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

. World Total Energy Consumption by Region, Reference Case, . World Total Energy Consumption by Region, Reference Case, 1990-2020 (Quadrillion Btu) Region/Country History Projections Average Annual Percent Change, 1995-2020 1990 1995 1996 2000 2005 2010 2015 2020 Industrialized Countries North America 99.7 108.0 112.2 119.8 128.1 136.5 142.1 147.1 1.2 United Statesa 83.9 90.4 94.0 99.8 105.8 112.2 115.7 118.6 1.1 Canada 10.9 12.2 12.6 13.3 14.3 15.4 16.4 17.5 1.5 Mexico 4.9 5.5 5.6 6.6 8.0 9.0 10.0 11.0 2.8 Western Europe 61.9 64.8 66.7 69.7 74.5 79.0 83.4 88.1 1.2 Industrialized Asia 23.0 26.3 26.9 28.4 30.1 32.1 34.1 36.3 1.3 Japan 18.1 20.8 21.4 22.3 23.5 25.1 26.7 28.5 1.3 Australasia 4.9 5.6 5.5 6.1 6.6 7.0 7.4 7.8 1.4 Total Industrialized 184.7 199.1 205.8 217.9 232.8 247.6 259.6 271.5 1.2

328

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

7. World Total Energy Consumption by Region, Low Economic Growth 7. World Total Energy Consumption by Region, Low Economic Growth Case, 1990-2020 (Quadrillion Btu) Region/Country History Projections Average Annual Percent Change, 1995-2020 1990 1995 1996 2000 2005 2010 2015 2020 Industrialized Countries North America 99.7 108.0 112.2 118.3 123.6 129.3 131.3 132.7 0.8 United Statesa 83.9 90.4 94.0 98.9 102.6 106.9 107.7 107.7 0.7 Canada 10.9 12.2 12.6 12.9 13.6 14.2 14.8 15.5 1.0 Mexico 4.9 5.5 5.6 6.4 7.4 8.2 8.8 9.5 2.2 Western Europe 61.9 64.8 66.7 67.6 70.4 72.9 75.3 77.8 0.7 Industrialized Asia 23.0 26.3 26.9 27.3 28.2 29.4 30.5 31.6 0.7 Japan 18.1 20.8 21.4 21.3 22.0 22.9 23.7 24.6 0.7 Australasia 4.9 5.6 5.5 5.9 6.2 6.5 6.7 7.0 0.9

329

Live Discussion on Energy 101: Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Live Discussion on Energy 101: Fuel Cells Live Discussion on Energy 101: Fuel Cells Live Discussion on Energy 101: Fuel Cells January 16, 2014 - 3:59pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Editor's Note: Thanks to everyone who participated in our Google+ Hangout on Energy 101: Fuel Cells. We got a lot of great questions, and our experts talked about everything from the future of fuel cell vehicles and how they're being used as backup power to the efficiency benefits of fuel cells and how California is making fuel cell innovation a priority. If you missed the Hangout or want to check it out again, you can watch a recording of it above. Join us on Thursday, January 16, at 2 p.m. ET for Energy 101 -- the first in a new series of Google+ Hangouts about energy basics. Pulling together

330

International Solar Consulting | Open Energy Information  

Open Energy Info (EERE)

International Solar Consulting Place: Newport Beach, California Zip: 92660 Sector: Renewable Energy, Solar Product: International Solar Consulting works with large commercial and...

331

Wardell Armstrong International | Open Energy Information  

Open Energy Info (EERE)

Wardell Armstrong International Jump to: navigation, search Name: Wardell Armstrong International Place: Cornwall, United Kingdom Zip: TR3 6EH Sector: Biomass, Geothermal energy,...

332

International trade and waste and fuel managment issue, 2006  

SciTech Connect (OSTI)

The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: HLW management in France, by Michel Debes, EDF, France; Breakthroughs from future reactors, by Jacques Bouchard, CEA, France; 'MOX for peace' a reality, by Jean-Pierre Bariteau, AREVA Group, France; Swedish spent fuel and radwaste, by Per H. Grahn and Marie Skogsberg, SKB, Sweden; ENC2005 concluding remarks, by Larry Foulke, 'Nuclear Technology Matters'; Fuel crud formation and behavior, by Charles Turk, Entergy; and, Plant profile: major vote of confidence for NP, by Martti Katka, TVO, Finland.

Agnihotri, Newal (ed.)

2006-01-15T23:59:59.000Z

333

EIA - 2009 International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2009 The International Energy Outlook 2009 (IEO2009) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2009 are consistent with those published in EIA's Annual Energy Outlook 2009 (AEO2009), (March 2009). A revised, updated AEO2009 reference case projection was released on April 17, 2009. It reflects the impact of provisions in the American Recovery and Reinvestment Act of 2009 (ARRA2009), enacted in mid-February 2009, on U.S. energy markets. The revised AEO2009 reference case includes updates for the U.S. macroeconomic outlook, which has been changing at an unusually rapid rate in recent months. Throughout IEO2009, significant changes to the U.S. outlook relative to the published AEO2009 reference case are noted for the reader's reference. The complete revised AEO2009 reference case results for the United States can be viewed on the EIA web site: http://www.eia.gov/oiaf/aeo.

334

NREL International Program | Open Energy Information  

Open Energy Info (EERE)

(Redirected from International Program at NREL) (Redirected from International Program at NREL) Jump to: navigation, search Name International Program at NREL Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Website http://www.nrel.gov/applying_t References NREL International Program [1] NREL teams with governments, private developers, and international institutions to advance clean energy technology development worldwide through technical expertise and deployment capabilities that support international energy projects and initiatives. Our efforts to promote renewable energy and energy efficiency technology adoption on a global scale include: Multilateral partnerships Bilateral partnerships Climate/environmental initiatives Global energy assessments and knowledge transfer

335

Live Discussion on Energy 101: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE)

Join the Energy Department at 2:00 p.m. ET on Thursday, January 16 for the first Energy 101 Google+ Hangout, which will focus on fuel cells.

336

EMD International AS formerly Energi og Milj data | Open Energy Information  

Open Energy Info (EERE)

EMD International AS formerly Energi og Milj data EMD International AS formerly Energi og Milj data Jump to: navigation, search Name EMD International AS (formerly Energi-og Miljødata) Place Aalborg Ã~, Denmark Zip 9220 Sector Biomass, Wind energy Product An independent software developer supplying companies and institutions worldwide with wind assessment/turbine siting software. Also provides software for gossil fuel and biomass projects. References EMD International AS (formerly Energi-og Miljødata)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. EMD International AS (formerly Energi-og Miljødata) is a company located in Aalborg Ã~, Denmark . References ↑ "[ EMD International AS (formerly Energi-og Miljødata)]"

337

Vehicle and Fuel Use | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle and Fuel Use Vehicle and Fuel Use Vehicle and Fuel Use Mission The team evaluates and incorporates, as deemed appropriate for LM operations, the requirements for vehicle and fuel use as defined in Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, and approved by LM. The Vehicle and Fuel Use Team advocates natural resource sustainability by evaluating vehicle and fuel use. Scope The team evaluates the vehicle and fuel use goals included in Executive Orders 13423 and 13514, establishes metrics, and develops and implements a plan of action to meet these goals. These goals may include increasing

338

V Fuel Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Fuel Pty Ltd Fuel Pty Ltd Jump to: navigation, search Name V-Fuel Pty Ltd Place Victoria, Australia Product Victoria-based company set up by Magnam Technologies to commercialise the vanadium redox battery. References V-Fuel Pty Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. V-Fuel Pty Ltd is a company located in Victoria, Australia . References ↑ "V-Fuel Pty Ltd" Retrieved from "http://en.openei.org/w/index.php?title=V_Fuel_Pty_Ltd&oldid=352699" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

339

Brazil-NETL Advanced Fossil Fuels Partnerships | Open Energy Information  

Open Energy Info (EERE)

Advanced Fossil Fuels Partnerships Advanced Fossil Fuels Partnerships (Redirected from Brazil-NETL Cooperation) Jump to: navigation, search Logo: Brazil-NETL Cooperation Name Brazil-NETL Cooperation Agency/Company /Organization National Energy Technology Laboratory Partner Brazil Sector Energy Topics Background analysis Website http://www.netl.doe.gov/techno Program Start 2007 Program End 2012 Country Brazil South America References NETL Technologies Programs[1] This article is a stub. You can help OpenEI by expanding it. Advanced Fossil Fuels Partnerships with Brazil ORD International Research Agreements Brazilian Coal Gasification and CCS MOUs References ↑ NETL Technologies Programs Retrieved from "http://en.openei.org/w/index.php?title=Brazil-NETL_Advanced_Fossil_Fuels_Partnerships&oldid=375248"

340

Hydrogen and Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen and Fuel Cells Hydrogen and Fuel Cells Hydrogen and Fuel Cells EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of the back of hydrogen fueling stations inside a black fenceline. The U.S. Department of Energy (DOE) is the lead federal agency for applied research and development (R&D) of cutting edge hydrogen and fuel cell technologies. DOE supports R&D that makes it cheaper and easier to produce, deliver, and store hydrogen, while also working to lower the costs of fuel

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Definition: Algae fuel | Open Energy Information  

Open Energy Info (EERE)

fuel fuel Jump to: navigation, search Dictionary.png Algae fuel A specific type of biofuel, made by chemically processing oils from algae.[1][2] View on Wikipedia Wikipedia Definition Algae fuel or Algal biofuel is an alternative to fossil fuel that uses algae as its source of natural deposits. Several companies and government agencies are funding efforts to reduce capital and operating costs and make algae fuel production commercially viable. Harvested algae, like fossil fuel, releases CO2 when burnt but unlike fossil fuel the CO2 is taken out of the atmosphere by the growing of algae and other biofuel sources. The energy crisis and the world food crisis have ignited interest in algaculture (farming algae) for making vegetable oil, biodiesel, bioethanol, biogasoline, biomethanol, biobutanol and other biofuels, using

342

Solid Oxide Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Oxide Fuel Cells Solid Oxide Fuel Cells Solid Oxide Fuel Cells FE researchers at NETL have developed a unique test platform, called the multi-cell array (MCA), to rapidly test multiple fuel cells and determine how they degrade when contaminants exist in the fuel stream, such as might occur when using syngas from a coal gasifier. FE researchers at NETL have developed a unique test platform, called the multi-cell array (MCA), to rapidly test multiple fuel cells and determine how they degrade when contaminants exist in the fuel stream, such as might occur when using syngas from a coal gasifier. Fuel cells are an energy user's dream: an efficient, combustion-less, virtually pollution-free power source, capable of being sited in downtown urban areas or in remote regions that runs almost silently and has few

343

Fuels Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D activities, including fuels for advanced combustion engines, advanced petroleum-based and non-petroleum based fuels, and biofuels. deer08stork.pdf More Documents &...

344

International Nuclear Energy Research Initiative 2010 Annual Report  

Broader source: Energy.gov (indexed) [DOE]

2010 I-NERI Annual Report 2010 I-NERI Annual Report  | i Foreword The U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), established the International Nuclear Energy Research Initiative (I-NERI) in fiscal year (FY) 2001 to conduct advanced nuclear energy systems research in collaboration with international partners. This annual report provides an update on research and development (R&D) accomplishments which the I-NERI program achieved during FY 2010. I-NERI supports bilateral scientific and engineering collaboration in advanced reactor systems and the nuclear fuel cycle and is linked to two of DOE-NE's primary research programs: Reactor Concepts Research, Development and Demonstration and the Fuel Cycle Research and Development program. I-NERI is designed to foster international partnerships to address key issues

345

International energy indicators  

SciTech Connect (OSTI)

Data are presented in graphs and tables on the following: Iran: crude oil capacity, production, and shut-in, monthly, June 1974 to May 1980; Saudi Arabia: crude oil capacity, production, and shut-in, monthly, March 1974 to May 1980; OPEC (Ex-Iran and Saudi Arabia): capacity, production and shut-in, monthly, June 1974 to April 1980; non-OPEC Free World and US production of crude oil, monthly, January 1973 to March 1980; oil stocks: Free World, US, Japan, and Europe (landed), 1973 to first quarter 1980; petroleum consumption by industrial countries, monthly, January 1973 to December 1979; USSR crude oil production, monthly, January 1974 to May 1980; Free World and US nuclear generation capacity, monthly, January 1973 to April 1980; world crude oil production by area, annually, 1947 to 1979; estimated proved world reserves of crude oil, annually, January 1, 1948 to 1980; world marketed production of natural gas, annually, 1950 to 1979; estimated proved world reserves of natural gas, annually, January 1, 1967 to 1980; US trade in natural gas, 1955 to 1979; US imports of crude oil and products, monthly, January 1973 to May 1980; landed cast of Saudi crude oil in current and 1974 dollars, monthly, April 1974 to March 1980; US trade in coal, monthly, January 1973 to April 1980; summary of US merchandise trade, 1976 to April 1980 and Energy/GNP ratio, annually, 1947 to 1949 and, quarterly, first 1973 to first 1980.

Not Available

1980-06-01T23:59:59.000Z

346

International energy indicators  

SciTech Connect (OSTI)

Data are compiled in tables and graphs on Iran and Saudi Arabia: Crude Oil Capacity, Production, and Shut-in, June 1974 to July 1980; OPEC (Ex-Iran and Saudi Arabia): Capacity, Production, and Shut-in, June 1974 to June 1980; Non-OPEC Free World and US Production of Crude oil, January 1973 to May 1980; Oil Stocks: Free World, US, Japan, and Europe (landed), 1973 - 1st quarter 1980; Petroleum Consumption by Industrial Countries, January 1973 to February 1980; USSR Crude Oil Production, January 1974 to July 1980; Free World and US Nuclear Generation Capacity, January 1973 to June 1980; US Import of Crude Oil and Products, January 1973 to July 1980; Landed Cost of Saudi Crude in Current and 1974 Dollars, April 1974 to May 1980; US trade in Coal, January 1973 to June 1980; Summary of US Merchandise Trade, 1976 to June 1980; and Energy/GNP Ratio, 1974-1st quarter 1980. The highlight of each is summarized very briefly in the Table of Contents.

Bauer, E.K. (ed.)

1980-08-01T23:59:59.000Z

347

Hydrogen & Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Usage » Storage » Hydrogen & Fuel Cells Energy Usage » Storage » Hydrogen & Fuel Cells Hydrogen & Fuel Cells December 19, 2013 Fuel cells, which work like batteries but don't run down or need recharging, are ideal for powering material handling equipment, like forklifts and airport baggage carts, because they reduce recharging time and cut carbon pollution. This is helping them become more mainstream in the U.S., with more than 4,000 vehicles in operation in 2012, and this year, they might even be helping bring you holidays to you. | Photo courtesy of Plug Power, Inc. Your Holidays ... Brought to You by Fuel Cells Next time you're at the airport or at a shop picking up a last-minute gift, you might see speciality vehicles powered by fuel cells, a clean energy technology that is helping bring your holidays to you.

348

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

8 8 Appendix A Table A9. World consumption of hydroelectricity and other renewable energy by region, Reference case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 11.9 11.9 13.7 15.0 15.9 16.8 18.3 20.8 1.9 United States a 6.9 7.0 8.1 8.9 9.3 9.6 10.3 11.9 1.8 Canada 4.2 4.0 4.5 4.8 5.1 5.5 5.9 6.4 1.6 Mexico/Chile 0.8 0.9 1.2 1.3 1.5 1.7 2.1 2.4 3.5 OECD Europe 9.4 10.4 12.6 14.7 16.4 17.2 17.9 18.5 2.0 OECD Asia 2.1 2.3 2.9 3.4 3.7 3.8 3.9 4.0 1.8 Japan 1.3 1.5 1.7 1.9 2.1 2.2 2.3 2.3 1.5 South Korea 0.1 0.1 0.2 0.3 0.3 0.3 0.3 0.4 3.0 Australia/NewZealand 0.7 0.7 1.0 1.2 1.2 1.3 1.3 1.4 2.3 Total OECD 23.4 24.6 29.2 33.0 35.9 37.8 40.1 43.3 1.9 Non-OECD Non-OECD Europe and Eurasia 3.1 3.2 3.5 3.8 4.0 4.3 4.7 5.1 1.5 Russia 1.8 1.8 1.9 2.1 2.3 2.5 2.7 2.8 1.6 Other 1.2 1.5

349

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

90 90 Appendix J Table J2. World energy intensity by region, Reference case, 2009-2040 (thousand Btu per 2005 dollar of GDP) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 7.6 7.5 6.7 6.1 5.5 5.0 4.5 4.2 -2.0 United States a 7.4 7.5 6.6 6.0 5.4 4.8 4.3 3.9 -2.1 Canada 11.7 11.2 10.5 9.7 9.3 8.9 8.4 8.0 -1.1 Mexico/Chile 5.3 5.3 4.8 4.4 4.2 4.1 3.9 3.7 -1.1 OECD Europe 5.6 5.6 5.3 4.9 4.6 4.3 4.0 3.8 -1.3 OECD Asia 6.5 6.5 6.0 5.8 5.5 5.3 5.0 4.8 -1.0 Japan 5.6 5.6 5.2 5.1 5.0 4.9 4.8 4.7 -0.6 South Korea 8.1 8.2 7.4 6.7 6.0 5.6 5.1 4.6 -1.9 Australia/NewZealand 8.7 8.4 7.7 7.3 6.7 6.3 5.8 5.4 -1.5 Total OECD 6.6 6.6 6.0 5.6 5.2 4.8 4.4 4.1 -1.6 Non-OECD Non-OECD Europe and Eurasia 10.1 10.5 9.1 7.8 6.8 6.1 5.5 4.9 -2.5 Russia 13.9 14.7 12.7 11.2 10.3 9.7 9.2 8.8 -1.7 Other 6.9 7.1 6.2 5.1 4.4 3.8 3.3 2.9 -2.9 Non-OECD Asia

350

Renewable Fuel Standard Schedule | Open Energy Information  

Open Energy Info (EERE)

Standard Schedule Standard Schedule Jump to: navigation, search Name Renewable Fuel Standard Schedule Sector Liquid Transportation Fuels Spatial Resolution National Geographic Scope United States Temporal Resolution Annual The United States Environmental Protection Agency, under the National Renewable Fuel Standard program and as required by the Energy Independence and Security Act of 2007 (EISA), periodically revises the volumetric standards for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel that must be used in transportation fuel each year. The table below lists the current RFS2 schedule in billions of gallons: Year Renewable Biofuel Advanced Biofuel Cellulosic Biofuel Biomass-based Diesel Undifferentiated Total 2008 9 9

351

Energy Vision International Florida | Open Energy Information  

Open Energy Info (EERE)

Vision International Florida Vision International Florida Jump to: navigation, search Name Energy Vision International Florida Place Florida, California Sector Geothermal energy, Services Product Provides geothermal heat pumps; and administrative services to EVI subsidiaries. Coordinates 27.9758°, -81.541061° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9758,"lon":-81.541061,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

International Atomic Energy Agency - General Session | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- General Session - General Session International Atomic Energy Agency - General Session September 18, 2006 - 8:53am Addthis Prepared Remarks for Energy Secretary Samuel Bodman Thank you Director General ElBaradei. Congratulations to Mr. Abdul Samad Minty on your election as President of this, the 50th IAEA General Conference. President George W. Bush sends a letter wishing us a productive conference. Let me draw from his message: "My Administration has announced a bold new proposal called the Global Nuclear Energy Partnership. We will work with countries to meet their growing energy needs, dispose of waste safely, advance nonproliferation, and keep nuclear technology out of the hands of terrorist networks and terrorist states. "We will encourage reliable access to nuclear fuel for countries that agree

353

The Department of Energy Hydrogen and Fuel Cells Program Plan...  

Broader source: Energy.gov (indexed) [DOE]

The Department of Energy Hydrogen and Fuel Cells Program Plan The Department of Energy Hydrogen and Fuel Cells Program Plan The Department of Energy Hydrogen and Fuel Cells Program...

354

EIA - 2010 International Energy Outlook - Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2010 Electricity World electricity generation increases by 87 percent from 2007 to 2035 in the IEO2010 Reference case. Non-OECD countries account for 61 percent of world electricity use in 2035. Figure 67. Growth in world electric power generation and total energy consumption, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 68. World net electricity generation by region, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 69. Non-OECD net electricity generation by region, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. World net electricity generation by fuel, 2006-2030. Click to enlarge » Figure source and data excel logo Figure 71. World net electricity generation from nuclear power by region, 2007-2030.

355

Second International Conference on Fuel Cell Science, Engineering and Technology  

E-Print Network [OSTI]

emissions reduction is needed and alternative energy sources such as bio fuels, clean electricity, hydrogen manufacturers demonstrating a car, van or truck. However, the transportation market in many countries, solar energy and other renewable energy sources are being looked at. There is also concern about

Kandlikar, Satish

356

International Energy Outlook 2001 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

To Forecasting Home Page EIA Homepage Highlights picture of a printer Printer Friendly Version (PDF) World energy consumption is projected to increase by 59 percent from 1999 to 2020. Much of the growth in worldwide energy use is expected in the developing world in the IEO2001 reference case forecast. In the reference case projections for the International Energy Outlook 2001 (IEO2001), world energy consumption is projected to increase by 59 percent over a 21-year forecast horizon, from 1999 to 2020. Worldwide energy use grows from 382 quadrillion British thermal units (Btu) in 1999 to 607 quadrillion Btu in 2020 (Figure 2 and Table 1). Many developments in 2000 influenced this year’s outlook, including persistently high world oil prices, stronger than anticipated economic recovery in southeast Asia, and

357

EIA - International Energy Outlook 2007-Low Economic Growth Case Projection  

Gasoline and Diesel Fuel Update (EIA)

Economic Growth Case Projection Tables (1990-2030) Economic Growth Case Projection Tables (1990-2030) International Energy Outlook 2007 Low Economic Growth Case Projection Tables (1990-2030) Formats Data Table Titles (1 to 12 complete) Low Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Low Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table C1 World Total Energy Consumption by Region Table C1. World Total Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table C2 World Total Energy Consumption by Region and Fuel Table C2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

358

EIA - International Energy Outlook 2007-High Economic Growth Case  

Gasoline and Diesel Fuel Update (EIA)

7 > High Economic Growth Case Projection Tables (1990-2030) 7 > High Economic Growth Case Projection Tables (1990-2030) International Energy Outlook 2007 High Economic Growth Case Projection Tables (1990-2030) Formats Data Table Titles (1 to 12 complete) High Economic Growth Case Projection Tables. Need help, contact the National Energy Information Center at 202-586-8800. High World Oil Price Case Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table B1 World Total Primary Energy Consumption by Region Table B1. World Total Primary energy consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table B2 World Total Energy Consumption by Region and Fuel Table B2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

359

EIA - International Energy Outlook 2007-Reference Case Projection Tables  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections Tables (1990-2030) Reference Case Projections Tables (1990-2030) International Energy Outlook 2007 Reference Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

360

EIA - International Energy Outlook 2007-Low World Oil Price Projections  

Gasoline and Diesel Fuel Update (EIA)

Low World Oil Price Case Projections (1990-2030) Low World Oil Price Case Projections (1990-2030) International Energy Outlook 2007 Low World Oil Price Projections Tables (1990-2030) Formats Table Data Titles (1 to 12 complete) Low World Oil Price Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Low World Oil Price Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table E1 World Total Energy Consumption by Region, Low World Oil Price Case Table E1. World Total Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table E2 World Total Energy Consumption by Region and Fuel, Low World Oil Price Case Table E2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

International Energy Outlook - Special Topics  

Gasoline and Diesel Fuel Update (EIA)

A A Energy Information Administration Forecast Channel. If having trouble viewing this page, contact the National Energy Informaiton Center at (202) 586-8800. Return to Energy Information Administration Home Page Home > Environment> International Energy Outlook> Special Topics International Energy Outlook 2004 Converting Gross Domestic Product for Different Countries to U.S. Dollars: Market Exchange Rates and Purchasing Power Parity Rates The world energy forecasts in IEO2004 are based primarily on projections of GDP for different countries and regions, which for purposes of comparison are expressed in 1997 U.S. dollars. First, GDP projections are prepared for the individual countries in terms of their own national currencies and 1997 prices of goods and services. Then, the projections are converted to 1997 U.S. dollars by applying average 1997 foreign exchange rates between the various national currencies and the dollar. The resulting projections of real GDP are thus based on national 1997 prices in each country and the 1997 market exchange rate (MER) for each currency against the U.S. dollar.

362

NREL International Program | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name International Program at NREL Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Website http://www.nrel.gov/applying_t References NREL International Program [1] NREL teams with governments, private developers, and international institutions to advance clean energy technology development worldwide through technical expertise and deployment capabilities that support international energy projects and initiatives. Our efforts to promote renewable energy and energy efficiency technology adoption on a global scale include: Multilateral partnerships Bilateral partnerships Climate/environmental initiatives Global energy assessments and knowledge transfer Researcher-driven collaboration.[1] NREL International Program Presentation

363

American Ag Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Ag Fuels LLC Ag Fuels LLC Jump to: navigation, search Name American Ag Fuels LLC Place Defiance, Ohio Zip 43512 Product Biodiesel producer in Defiance, Ohio. References American Ag Fuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Ag Fuels LLC is a company located in Defiance, Ohio . References ↑ "American Ag Fuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=American_Ag_Fuels_LLC&oldid=342105" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

364

Alternative Fueling Station Locator | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Fueling Station Locator Alternative Fueling Station Locator Alternative Fueling Station Locator Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles 12,782 alternative fuel stations in the United States Excluding private stations

365

No Fossil Fuel - Kingston | Open Energy Information  

Open Energy Info (EERE)

No Fossil Fuel - Kingston No Fossil Fuel - Kingston Jump to: navigation, search Name No Fossil Fuel - Kingston Facility No Fossil Fuel - Kingston Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner No Fossil Fuel LLC Developer No Fossil Fuel LLC Energy Purchaser Net-metered Location Kingston MA Coordinates 41.97388106°, -70.72577477° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.97388106,"lon":-70.72577477,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Fueling Innovation -- 100 MPGe at a Time | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fueling Innovation -- 100 MPGe at a Time Fueling Innovation -- 100 MPGe at a Time Fueling Innovation -- 100 MPGe at a Time August 4, 2010 - 2:48pm Addthis X Prize contenders take part in on-track testing at Michigan International Speedway | Courtesy of Progressive Automotive X Prize X Prize contenders take part in on-track testing at Michigan International Speedway | Courtesy of Progressive Automotive X Prize John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Develops the next generation of automotive engineers Showcases innovative approaches for breaking the 100 MPGe barrier With hybrids becoming more commonplace in auto showrooms and electric cars beginning to break into the mainstream market, on streets across the country you can see that the automotive industry is moving toward energy

367

Fossil Fuel-Generated Energy Consumption Reduction for New Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

368

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...  

Broader source: Energy.gov (indexed) [DOE]

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

369

NREL: Continuum Magazine - Hydrogen: A Promising Fuel and Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen: A Promising Fuel and Energy Storage Solution Issue 4 Print Version Share this resource Hydrogen: A Promising Fuel and Energy Storage Solution Electrolysis-generated...

370

Fuel Cell Technologies Overview: March 2012 State Energy Advisory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Presentation by...

371

1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office  

E-Print Network [OSTI]

1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office Fuel Cell Technologies Office eere.energy.gov This award is being accepted on behalf of the U.S. Department of Energy fuel cell and hydrogen programs Acknowledgements #12;3 | Fuel Cell Technologies Office eere

372

SECA Fuel Processing Fossil Energy Fuel Cell Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 3, 2003 SECA Fuel Processing National Energy Technology Laboratory Office of Fossil Energy Strategic Center for Natural Gas REFORMING * Focus - Heavy hydrocarbons - Minimal use of water - Simplified system - Reduced cost - Sulfur tolerance with conversion to hydrogen sulfide * Challenges - Carbon deposition - Sulfur poisoning - Thermal gradients - Vaporization * Approaches - Metal oxide catalysts - Nobal metal cPox or ATR - Decorated nickel surface - Complete system interactions Tubular cPox Reformer Strategic Center for Natural Gas NETL Fuel Processing Budget Summary Proj. # PROJECT PERSONNEL KEY TASKS COST EST. 1 Diesel Reforming Kinetic Fundamentals *Shekhawat Gardner Berry 1.) Bring Reforming Lab Online 2.) Conduct Diesel Compound Interaction Study 3.) Level 1

373

Entrepreneurs Fueling Innovation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Entrepreneurs Fueling Innovation Entrepreneurs Fueling Innovation Entrepreneurs Fueling Innovation November 18, 2010 - 10:28am Addthis Cathy Zoi is Assistant Secretary for Energy Efficiency and Renewable Energy at the U.S. Department of Energy. Cathy Zoi is Assistant Secretary for Energy Efficiency and Renewable Energy at the U.S. Department of Energy. Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy Ed. Note Cross Posted from the White House Blog. written by Cathy Zoi Earlier this week, I witnessed the next chapter of America's love affair with the automobile here in the nation's capital. I took part in a ribbon cutting at the first public curbside electric vehicle (EV) charging station, made possible by Coulomb Technologies. It looks like a parking

374

Renewable Fuels Consulting | Open Energy Information  

Open Energy Info (EERE)

Consulting Consulting Jump to: navigation, search Name Renewable Fuels Consulting Place Mason City, Iowa Sector Renewable Energy Product RFC specializes in providing technical solutions to renewable energy production plants. References Renewable Fuels Consulting[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Fuels Consulting is a company located in Mason City, Iowa . References ↑ "Renewable Fuels Consulting" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Fuels_Consulting&oldid=350341" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

375

Numerical analysis of an internal methane reforming solid oxide fuel cell with fuel recycling  

Science Journals Connector (OSTI)

The development of solid oxide fuel cell (SOFC) systems capable of direct internal reforming (DIR) of methane is being actively pursued. However, a major challenge with current state-of-the-art nickel-based anodes is their propensity to form deteriorous carbon deposits in DIR, unless excess steam is introduced in the fuel. Reduced fuel humidification levels are desirable from the viewpoints of cell performance, reliability and plant economics. This study explores the use of partial recycling of the anode exhaust as a mitigation strategy against carbon deposits at fuel steam-to-carbon ratios less than unity. Using a detailed computational fluid dynamics (CFD) model which couples momentum, heat, mass and charge transport with electrochemical and chemical reactions, the spatial extent of carbon deposition within a SOFC anode is analyzed by accounting for both the cracking and Boudouard reactions, for several fuel humidification and recycling conditions. At temperatures of approximately 1173K and for inlet fuel molar H2O/CH4 ratios between 0.5 and 1, 50% (mass%) fuel recycling is found to be an effective strategy against carbon deposition. For lower recycling levels at the same fuel compositions, or lower fuel humidification levels (regardless of the recycling level), fuel recycling reduces the risk of coking, but does not eliminate it. The analyses presented suggest that recycling of the anodic fuel stream could help extend the operational range of DIR-SOFCs to lower fuel humidification levels than typically considered, with reduced risks of carbon deposits, while reducing system cost and complexity in terms of steam production. For dry or weakly humidified fuels, additional mitigation strategies would be required.

Valrie Eveloy

2012-01-01T23:59:59.000Z

376

International Energy Outlook 2000 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage HIGHLIGHTS World energy consumption is projected to increase by 60 percent from 1997 to 2020. Recent price developments in world oil markets and economic recovery in Southeast Asia have altered projections relative to last year’s report. In the reference case projections for the International Energy Outlook 2000 (IEO2000), world energy consumption increases by 60 percent over a 23-year forecast period, from 1997 to 2020. Energy use worldwide increases from 380 quadrillion British thermal units (Btu) in 1997 to 608 quadrillion Btu in 2020 (Figure 2 and Table 1). Many developments in 1999 are reflected in this year’s outlook. Shifting short-term world oil markets, the beginnings

377

International Energy Outlook 2006 - Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2006 Chapter 6: Electricity World electricity consumption doubles in the IEO2006 projections from 2003 to 2030. Non-OECD countries account for 71 percent of the projected growth, and OECD countries account for 29 percent. Figure 55. World Net Electricity Consumption, 2003-2030 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 56. World Net Electricity Consumption by Region, 1980-2030 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 57. Net Electricity Consumption in OECD Countries by End-Use Sector, 2003, 2015, and 2030 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800.

378

International Energy Outlook 1999 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

highlights.gif (3388 bytes) highlights.gif (3388 bytes) World energy consumption is projected to increase by 65 percent from 1996 to 2020. The current economic problems in Asia and Russia have lowered projections relative to last year’s report. In the reference case projections for this International Energy Outlook 1999 (IEO99), world energy consumption reaches 612 quadrillion British thermal units (Btu) by 2020 (Figure 2 and Table 1)—an increase of 65 percent over the 24-year projection period. The IEO99 projection for the world’s energy demand in 2020 is about 4 percent (almost 30 quadrillion Btu) lower than last year’s projection. The downward revision is based on events in two parts of the world: Asia and Russia. In Asia, the economic crisis that began in early 1997 persisted throughout 1998, as economic

379

Fueling South Carolina's Clean Energy Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fueling South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy June 6, 2012 - 4:15pm Addthis Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of Flickr user ClatieK. Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of Flickr user ClatieK. Julie McAlpin Communications Liaison, State Energy Program What does this mean for me? Pure Power increased energy efficiency while expanding plant

380

Energy 101 | Algae-to-Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

101 | Algae-to-Fuel 101 | Algae-to-Fuel Energy 101 | Algae-to-Fuel September 5, 2012 - 5:11pm Addthis How Energy Department scientists and researchers produce clean, renewable fuel -- from algae. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Where Can I Watch More Energy 101 Videos? For more energy basics, check out our Energy 101 YouTube Playlist. When you think of algae - what immediately comes to mind? Perhaps it's the color green, or maybe an image of a curious-looking underwater species. Whatever your immediate thought, most likely, it is not related to fuel. But that's exactly what Energy Department scientists and researchers are exploring right now - strategies to produce clean, renewable biofuel from algae. In this edition of our Energy 101 video series, we're taking a

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Range Fuels | Open Energy Information  

Open Energy Info (EERE)

Fuels Fuels Jump to: navigation, search Logo: Range Fuels Name Range Fuels Address 11101 W. 120th Avenue Place Broomfield, Colorado Zip 80021 Sector Biomass Product Uses a thermochemical process to turn biomass into synthetic gas and then fuel Website http://www.rangefuels.com/ Coordinates 39.915572°, -105.122053° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.915572,"lon":-105.122053,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Pearson Fuels | Open Energy Information  

Open Energy Info (EERE)

Pearson Fuels Pearson Fuels Jump to: navigation, search Name Pearson Fuels Address 4067 El Cajon Blvd Place San Diego, California Zip 92105 Sector Biofuels Product Alternative fuel distributor provides ethanol-based fuels Website http://www.pearsonfuels.com/ Coordinates 32.754335°, -117.107501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.754335,"lon":-117.107501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Fuel Type, 1970-2020 Energy Consumption by Fuel Type, 1970-2020 Source: EIA, International Energy Outlook 2000 Previous slide Next slide Back to first slide View graphic version Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by

384

Energy 101: Algae-to-Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Algae-to-Fuel Algae-to-Fuel Energy 101: Algae-to-Fuel August 13, 2013 - 2:53pm Addthis Learn about algae, a fast-growing, renewable resource that holds great promise to become a reliable, homegrown fuel source to reduce our nation's reliance on foreign oil. Algae are a diverse group of primarily aquatic organisms that are capable of using photosynthesis to generate biomass. This biomass can be used as feedstock for transportation fuels. In the near term, algae may also mitigate the effects of carbon dioxide from sources such as power plants - and in the future, they may be used to capture and reuse fossil-fuel-generated carbon dioxide directly from the atmosphere. This edition of Energy 101 shares the benefits of an algae-fueled future. For more information on algal biofuels from the Office of Energy Efficiency

385

Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors  

SciTech Connect (OSTI)

A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

Armstrong, J.; Hamilton, H.; Hyland, B. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

2013-07-01T23:59:59.000Z

386

International Energy Agency (IEA) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » International Energy Agency (IEA) (Redirected from IEA) Jump to: navigation, search Logo: International Energy Agency (IEA) Name International Energy Agency (IEA) Address 9 rue de la Fédération Place Paris, France Zip 75015 Number of employees 51-200 Year founded 1974 Phone number +33 1 40 57 65 54 Website http://www.iea.org Coordinates 48.8548086°, 2.2905775° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.8548086,"lon":2.2905775,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Identifying two steps in the internal wave energy cascade  

E-Print Network [OSTI]

energy transfer from the semidiurnal internal tide at Kaenaof the internal tide can transfer energy from a coher- entthe internal tide was transferring energy to the subharmonic

Sun, Oliver Ming-Teh

2010-01-01T23:59:59.000Z

388

Hydrogen & Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 19, 2011 July 19, 2011 Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations The U.S. Department of Energy (DOE) today announced that as part of an interagency partnership with the U.S. Department of Defense (DOD) to strengthen American energy security and develop new clean energy technologies, DOD will be installing and operating 18 fuel cell backup power systems at eight military installations across the country. The Departments will test how the fuel cells perform in real world operations, identify any technical improvements manufacturers could make to enhance performance, and highlight the benefits of fuel cells for emergency backup power applications. March 10, 2011 Obama Administration Announces Launch of i6 Green Challenge to Promote

389

How Fuel Cells Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma physics and beyond. Learn More How Solar Works 32 likes Every four...

390

International Energy Outlook 1999 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5350 bytes) transportation.gif (5350 bytes) Transportation energy use is projected to constitute more than half of the world’s oil consumption in 2020. Developing nations account for more than half the expected growth in transportation energy use in the IEO99 forecast. The International Energy Outlook 1999 (IEO99) presents a more detailed analysis than in previous years of the underlying factors conditioning long-term growth prospects for worldwide transportation energy demand. A nation’s transportation system is generally an excellent indicator of its level of economic development. In many countries, personal travel still means walking or bicycling, and freight movement often involves domesticated animals. High rates of growth from current levels in developing countries such as China and India still leave their populations

391

Transportation Fuel Basics - Electricity | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

392

International Energy Outlook 2000 - Contacts  

Gasoline and Diesel Fuel Update (EIA)

The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting. Specific questions about the report should be referred to Linda E. Doman (202/586-1041) or the following analysts: Report Contact World Energy Consumption Linda E. Doman - 202/586-1041 linda.doman@eia.doe.gov World Oil Markets G. Daniel Butler - 202/586-9503 gbutler@eia.doe.gov Bruce Bawks - 202/586-6579 bruce.bawks@eia.doe.gov Natural Gas Phyllis Martin - 202/586-9592 phyllis.martin@eia.doe.gov Gas-to-Liquids Technology William Trapmann - 202/586-6408 william.trapmann@eia.doe.gov Coal Michael Mellish - 202/586-2136

393

International Energy Outlook 2001 - Contact  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts Printer Friendly Version (PDF) The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting. Specific questions about the report should be referred to Linda E. Doman (202/586-1041) or the following analysts: World Energy Consumption Linda Doman (linda.doman@eia.doe.gov, 202/586-1041) World Oil Markets G. Daniel Butler (george.butler@eia.doe.gov, 202/586-9503) Bruce Bawks (bruce.bawks@eia.doe.gov, 202/586-6579) Natural Gas Sara Banaszak Phyllis Martin (phyllis.martin@eia.doe.gov, 202/586-9592) Coal Sara Banaszak

394

International Energy Outlook 2002 - Contacts  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting. Specific questions about the report should be referred to Linda E. Doman (202/586-1041) or the following analysts: World Energy Consumption Linda Doman linda.doman@eia.doe.gov, 202/586-1041 World Oil Markets G. Daniel Butler Aloulou Fawzi george.butler@eia.doe.gov aloulou.fawzi@eia.doe.gov 202/586-9503 202/586-7818 Natural Gas Phyllis Martin Bruce Bawks phyllis.martin@eia.doe.gov bruce.bawks@eia.doe.gov 202/586-9592 202/586-6579 China’s West-to-East Pipeline Aloulou Fawzi aloulou.fawzi@eia.doe.gov 202/586-7818

395

Biogas and Fuel Cells Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biogas and Fuel Cells Workshop Biogas and Fuel Cells Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells...

396

Hydrogen & Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 12, 2011 December 12, 2011 Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles The U.S. Department of Energy today announced more than $7 million to fund four projects in California, Washington and Oregon to advance hydrogen storage technologies to be used in fuel cell electric vehicles. December 1, 2011 Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Fuel Cell Lift Trucks: A Grocer's Best Friend How fuel cell powered lift trucks are helping companies like Baldor Specialty Foods ensure that their customers have access to the freshest seasonal produce.

397

Edison International | Open Energy Information  

Open Energy Info (EERE)

Edison International Edison International Place Rosemead, California Zip 91770 Product Utility company and parent of SCE and Edison Mission Energy. Coordinates 34.08072°, -118.076539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.08072,"lon":-118.076539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

International Energy Outlook - Table of Contents  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook International Energy Outlook EIA Glossary International Energy Outlook 2004 Report #: DOE/EIA-0484(2004) Release date: April 2004 Next release date: July 2005 The International Energy Outlook 2004 (IEO2004) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2025. U.S.projections appearing in IEO2004 are consistent with those published in EIA's Annual Energy Outlook 2004 (AEO2004), which was prepared using the National Energy Modeling System (NEMS). Table of Contents Appendixes Highlights World Energy and Economic Outlook Outlook for Primary Energy Consumption Energy End Use Outlook for Carbon Dioxide Emissions World Economic Outlook Alternative Growth Case Trends in Energy Intensity

399

International Energy Outlook 2000 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

The IEO2000 projections indicate continued growth in world energy use, including large increases for the developing economies of Asia and South America. Energy resources are thought to be adequate to support the growth expected through 2020. The IEO2000 projections indicate continued growth in world energy use, including large increases for the developing economies of Asia and South America. Energy resources are thought to be adequate to support the growth expected through 2020. Current Trends Influencing World Energy Demand Changing world events and their effects on world energy markets shape the long-term view of trends in energy demand. Several developments in 1999—shifting short-term world oil markets, the recovery of developing Asian markets, and a faster than expected recovery in the economies of the former Soviet Union— are reflected in the projections presented in this year’s International Energy Outlook 2000 (IEO2000). In 1998, oil prices reached 20-year lows as a result of oil surpluses

400

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Community Fuels | Open Energy Information  

Open Energy Info (EERE)

Fuels Fuels Jump to: navigation, search Name Community Fuels Place Encinitas, California Zip 92024-8707 Product Community Fuels is a California-based biodiesel production company and a trademark of American Biodiesel, Inc. Coordinates 33.045436°, -117.292518° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.045436,"lon":-117.292518,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Awareness Program Fuels Energy Savings Projects  

E-Print Network [OSTI]

AWARENESS PROGRAM FUELS ENERGY SAVINGS PROJECTS ALEKS M. KLIDZEJS Senior Mechanical Engineer 3M Company Saint Paul, Minnesota ABSTRACT Energy awareness concepts were incorporated as part of a plant energy survey and played a major part... in the followup program. Plant manager support was received and multi-disciplinary task group was established to review and recommend energy saving potentials. Beyond instilling traditional benefits of an awareness program, capital expenditure energy savings...

Klidzejs, A. M.

403

BioFuel Energy Corp | Open Energy Information  

Open Energy Info (EERE)

Energy Corp Place: Denver, Colorado Zip: 80202 Product: Develops, owns and operates ethanol facilities. References: BioFuel Energy Corp1 This article is a stub. You can help...

404

Alternative Fuels Data Center: Clean Energy Manufacturing Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Energy Clean Energy Manufacturing Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Google Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Delicious Rank Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Energy Manufacturing Grants The Clean Energy Manufacturing Incentive Grant Program provides financial

405

Ynfiniti Engineering Services International | Open Energy Information  

Open Energy Info (EERE)

Ynfiniti Engineering Services International Ynfiniti Engineering Services International Jump to: navigation, search Name Ynfiniti Engineering Services International Place Spain Sector Solar, Wind energy Product Company that specializes in the installation and maintenance of wind farms and solar plants. References Ynfiniti Engineering Services International[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ynfiniti Engineering Services International is a company located in Spain . References ↑ "Ynfiniti Engineering Services International" Retrieved from "http://en.openei.org/w/index.php?title=Ynfiniti_Engineering_Services_International&oldid=353364" Categories: Clean Energy Organizations

406

High performance internal reforming unit for high temperature fuel cells  

DOE Patents [OSTI]

A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

2008-10-07T23:59:59.000Z

407

Hydrogen & Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Planning (Minnesota) Energy Planning (Minnesota) This statute affirms the State's strong interest in the development and use of renewable energy resources, minimizing fossil fuel consumption and diversifying energy sources, as well as the creation of effective energy forecasting, planning, and education programs. The statute sets the energy policy for the State, aiming for a 15 percent reduction in per capita use of fossil fuels by 2015, and for 25 percent of total energy to be derived from renewables by 2025. October 16, 2013 Energy Monitoring Act (Canada) This act requires that every energy enterprise file with the Minister a return setting out statistics and information relating to its ownership and control; financial information; information, including financial, about its

408

International Energy Agency Feed | Open Energy Information  

Open Energy Info (EERE)

Feed Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP) Information for Development Program (infoDev)

409

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

410

International Energy Outlook 1999 - Coal  

Gasoline and Diesel Fuel Update (EIA)

coal.jpg (1776 bytes) coal.jpg (1776 bytes) Coal’s share of world energy consumption falls slightly in the IEO99 forecast. Coal continues to dominate many national fuel markets in developing Asia, but it is projected to lose market share to natural gas in some other areas of the world. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1996. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union. In Western Europe, coal consumption declined by 30

411

International Energy Outlook 2000 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Although coal use is expected to be displaced by natural gas in some parts of the world, Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1997. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union (FSU). In Western Europe, coal consumption declined by 33 percent between 1985 and 1997, displaced in considerable measure by

412

International Energy Outlook - Chapter References  

Gasoline and Diesel Fuel Update (EIA)

Chapter References Chapter References International Energy Outlook 2004 Chapter References World Energy and Economic Outlook 1. D.F. Barnes et al., “Tackling the Rural Energy Problem in Developing Countries,” Finance & Development, Vol. 34, No. 2 (June 1997), pp. 11-15. 2. A. Kirby, “Russia’s Climate Tussle Spins On,” BBC News Online (December 4, 2003). 3. A.C. Revkin, “Into Thin Air: Kyoto Accord May Not Die (or Matter),” The New York Times (December 4, 2003), p. A6. 4. The White House, Office of the Press Secretary, “President Announces Clear Skies & Global Climate Change Initiatives” (Press Release, February 14, 2002), web site www.whitehouse.gov/news/ releases/2002/02/20020214-5.html. 5. Energy Information Administration, Annual Energy Outlook 2004, DOE/EIA-0383(2004) (Washington, DC, January 2004); and Global Insight, Inc., World Overview (Lexington, MA, September 2003). India’s GDP growth rates were adjusted downward, based on the judgment of EIA analysts.

413

International Energy Outlook 1999 - Electricity  

Gasoline and Diesel Fuel Update (EIA)

electricity.gif (3233 bytes) electricity.gif (3233 bytes) Electricity continues to be the most rapidly growing form of energy consumption in the IEO99 projections. The strongest long-term growth in electricity consumption is projected for the developing countries of Asia. Long-term growth in electricity consumption is expected to be strongest in the developing economies of Asia, followed by Central and South America (Figure 64). In the reference case for the International Energy Outlook 1999 (IEO99), the projected growth rates for electricity consumption in the developing Asian nations average nearly 5 percent per year from 1996 to 2020 (Table 17). Electricity consumption growth in Central and South America is projected to exceed 4 percent between 1996 and 2020. The projected increases in electricity use are based on expectations of rapid

414

International Energy Outlook 2000 - Environmental Issues and World Energy  

Gasoline and Diesel Fuel Update (EIA)

In the coming decades, global environmental issues could significantly affect patterns of energy use around the world. Any future efforts to limit carbon emissions are likely to alter the composition of total energy-related carbon emissions by energy source. In the coming decades, global environmental issues could significantly affect patterns of energy use around the world. Any future efforts to limit carbon emissions are likely to alter the composition of total energy-related carbon emissions by energy source. The importance of carbon dioxide emissions as an environmental issue of international concern has grown substantially since 1992, when the United Nations Framework Convention on Climate Change was adopted because of increasing concern over rising atmospheric concentrations of greenhouse gases and their possible adverse effects on the global climate system. World energy use has emerged at the center of the issue. The two major anthropogenic (human-caused) sources of carbon dioxide emissions worldwide are the combustion of fossil fuels and land-use changes

415

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen is a versatile energy car-  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Fuel Cells Hydrogen is a versatile energy car- rier that can be used efficiently capture and use the power of hydrogen -- is the key to making it happen. Stationary fuel cells can and trucks. Why Fuel Cells? Fuel cells directly convert the chemical energy in hydrogen to electricity

416

Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen  

E-Print Network [OSTI]

Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen andand Fuel CellsFuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi EppingKathi Epping #12;Objectives & Barriers Distributed Energy OBJECTIVES · Develop a distributed generation PEM fuel cell system

417

Organic fuels | Open Energy Information  

Open Energy Info (EERE)

fuels fuels Jump to: navigation, search Name Organic fuels Place Houston, Texas Zip 77056 Product Biodiesel producer and distributor Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Innovation Fuels | Open Energy Information  

Open Energy Info (EERE)

Fuels Fuels Jump to: navigation, search Name Innovation Fuels Place Newark, New Jersey Zip 7104 Sector Biofuels Product New Jersey-based biodiesel producer which resulted from the merger of Hampton Biofuels and two other biodiesel project developers. Coordinates 44.690435°, -71.951685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.690435,"lon":-71.951685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop  

Broader source: Energy.gov [DOE]

Presentation by Sunita Satyapal, DOE Fuel Cell Technologies Program, at the Waste-to-Energy Using Fuel Cells Workshop help January 13, 2011.

420

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition  

Broader source: Energy.gov [DOE]

Overview of DOE's Fuel Cell Technologies Office presented by Sunita Satyapal at the 2013 Fuel Cell Seminar and Energy Exposition in Columbus, Ohio.

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

RETScreen International Clean Energy Project Analysis Tool | Open Energy  

Open Energy Info (EERE)

RETScreen International Clean Energy Project Analysis Tool RETScreen International Clean Energy Project Analysis Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: RETScreen International Clean Energy Project Analysis Tool Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: www.retscreen.net/ang/home.php Equivalent URI: cleanenergysolutions.org/content/retscreen-international-clean-energy- Language: String representation "English,Arabic, ... Urdu,Vietnamese" is too long. Policies: Deployment Programs DeploymentPrograms: Training & Education The RETScreen International Clean Energy Project Analysis Software is a unique decision-support tool. The software, provided free-of-charge, can be used worldwide to evaluate the energy production and savings, costs,

422

TEPP - Spent Nuclear Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- Spent Nuclear Fuel - Spent Nuclear Fuel TEPP - Spent Nuclear Fuel This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of spent nuclear fuel. This exercise manual is one in a series of five scenarios developed by the Department of Energy Transportation Emergency Preparedness Program. Responding agencies may include several or more of the following: local municipal and county fire, police, sheriff, and Emergency Medical Services (EMS) personnel; state, local, and federal emergency response teams; emergency response contractors;and other emergency response resources that could potentially be provided by the carrier and the originating facility (shipper). Spent Nuclear Fuel.docx More Documents & Publications

423

Sundrop Fuels Inc | Open Energy Information  

Open Energy Info (EERE)

Sundrop Fuels Inc Sundrop Fuels Inc Jump to: navigation, search Name Sundrop Fuels, Inc. Place Louisville, Colorado Zip 80027 Sector Renewable Energy, Solar Product String representation "Sundrop Fuels i ... portation fuel." is too long. Coordinates 38.25486°, -85.766404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.25486,"lon":-85.766404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Fuel Cycle Technology Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Technology Documents Fuel Cycle Technology Documents January 11, 2013 Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Issued on January 11, 2013, the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. October 30, 2012 2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security

425

Energy Efficiency Projects: Overcoming Internal Barriers to Implementa...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Efficiency Projects: Overcoming Internal Barriers to Implementation Energy Efficiency Projects: Overcoming Internal Barriers to Implementation This presentation discusses...

426

Fuel Cell Buses | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Buses Fuel Cell Buses Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Fuel Cell Buses" held on September 12, 2013. Fuel Cell Buses...

427

Integrated Energy Systems International Ltd | Open Energy Information  

Open Energy Info (EERE)

Energy Systems International Ltd Energy Systems International Ltd Jump to: navigation, search Name Integrated Energy Systems International Ltd Place United Kingdom Zip PR1 2NL Sector Biomass Product UK-based firm which operates in energy technology management and cost control. The firm is working with International Paper on a biomass project. References Integrated Energy Systems International Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Integrated Energy Systems International Ltd is a company located in United Kingdom . References ↑ "Integrated Energy Systems International Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Integrated_Energy_Systems_International_Ltd&oldid=347005"

428

International Conference on Ocean Energy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Conference on Ocean Energy International Conference on Ocean Energy November 4, 2014 1:00PM EST to November 6, 2014 10:00PM EST Halifax, Nova Scotia, Canada http:...

429

Dieselgreen Fuels | Open Energy Information  

Open Energy Info (EERE)

Dieselgreen Fuels Dieselgreen Fuels Jump to: navigation, search Logo: DieselGreen Fuels Name DieselGreen Fuels Place Austin, Texas Sector Biofuels Product Grease collection and biodiesel distribution Year founded 2006 Number of employees 1-10 Company Type For profit Phone number 512-247-3835 Website http://www.dieselgreenfuels.co Coordinates 30.2647°, -97.749151° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2647,"lon":-97.749151,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

International Workshop on Characterization and PIE Needs for Fundamental Understanding of Fuels Performance and Safety  

SciTech Connect (OSTI)

The International Workshop on Characterization and PIE Needs to Support Science-Based Development of Innovative Fuels was held June 16-17, 2011, in Paris, France. The Organization for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA) Working Party on the Fuel Cycle (WPFC) sponsored the workshop to identify gaps in global capabilities that need to be filled to meet projected needs in the 21st century. First and foremost, the workshop brought nine countries and associated international organizations, together in support of common needs for nuclear fuels and materials testing, characterization, PIE, and modeling capabilities. Finland, France, Germany, Republic of Korea, Russian Federation, Sweden, Switzerland, United Kingdom, United States of America, IAEA, and ITU (on behalf of European Union Joint Research Centers) discussed issues and opportunities for future technical advancements and collaborations. Second, the presentations provided a base level of understanding of current international capabilities. Three main categories were covered: (1) status of facilities and near term plans, (2) PIE needs from fuels engineering and material science perspectives, and (3) novel PIE techniques being developed to meet the needs. The International presentations provided valuable data consistent with the outcome of the National Workshop held in March 2011. Finally, the panel discussion on 21st century PIE capabilities, created a unified approach for future collaborations. In conclusion, (1) existing capabilities are not sufficient to meet the needs of a science-based approach, (2) safety issues and fuels behavior during abnormal conditions will receive more focus post-Fukushima; therefore we need to adopt our techniques to those issues, and (3) International collaboration is needed in the areas of codes and standards development for the new techniques.

Not Listed

2011-12-01T23:59:59.000Z

431

Alternative Fueling Station Locator - Mobile | Open Energy Information  

Open Energy Info (EERE)

Fueling Station Locator - Mobile Fueling Station Locator - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator - Mobile Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options, Prepare a Plan Resource Type: Online calculator User Interface: Mobile Device Website: www.afdc.energy.gov/afdc/locator/m/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/m/stations/ Cost: Free References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator - Mobile Find fueling stations for your alternative fuel vehicle on-the-go with the

432

SRI International | Open Energy Information  

Open Energy Info (EERE)

SRI International Jump to: navigation, search Name: SRI International Region: United States Sector: Marine and Hydrokinetic Website: http:www.sri.com This company is listed in...

433

Greenlife International | Open Energy Information  

Open Energy Info (EERE)

Francisco, California Zip: 94111 Product: GreenLife International is a biodiesel manufacturer and equipment saler References: Greenlife International1 This article is a stub....

434

International Partnership for Hydrogen Energy IPHE | Open Energy  

Open Energy Info (EERE)

Partnership for Hydrogen Energy IPHE Partnership for Hydrogen Energy IPHE Jump to: navigation, search Name International Partnership for Hydrogen Energy (IPHE) Place Washington, Washington, DC Zip 20004 Sector Hydro, Hydrogen Product The IPHE serves as a mechanism to organize and implement effective, efficient, and focused international research, development, demonstration and commercial utilization activities related to hydrogen and fuel cell technologies. Coordinates 38.89037°, -77.031959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.89037,"lon":-77.031959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Alternative Fuels Data Center: State Government Energy Initiative  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Government State Government Energy Initiative to someone by E-mail Share Alternative Fuels Data Center: State Government Energy Initiative on Facebook Tweet about Alternative Fuels Data Center: State Government Energy Initiative on Twitter Bookmark Alternative Fuels Data Center: State Government Energy Initiative on Google Bookmark Alternative Fuels Data Center: State Government Energy Initiative on Delicious Rank Alternative Fuels Data Center: State Government Energy Initiative on Digg Find More places to share Alternative Fuels Data Center: State Government Energy Initiative on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Government Energy Initiative The Green Governments Illinois Act (Act) demonstrates the state's

436

Alternative Fuels Data Center: State Agency Energy Plan Transportation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Agency Energy State Agency Energy Plan Transportation Requirements to someone by E-mail Share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Facebook Tweet about Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Twitter Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Google Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Delicious Rank Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Digg Find More places to share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on AddThis.com... More in this section... Federal State Advanced Search

437

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies  

Broader source: Energy.gov [DOE]

Download presentation slides from the DOE Fuel Cell Technologies Office webinar Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies held on August 19, 2014.

438

Fuel Cell Systems Annual Progress Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Progress Report Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cells for Transportation - Research and Development: Program Abstracts...

439

NREL: Energy Analysis - Vehicles and Fuels Research Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

exhaust emissions, and more. Transportation Data and Statistics Tools Alternative Fuels Data Center EERE Energy Analysis Publications Fuel Economy Guide Future U.S. Highway...

440

Department of Energy Awards $15 Million for Nuclear Fuel Cycle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development August 1,...

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Department of Energy Awards Nearly $7 Million to Advance Fuel...  

Energy Savers [EERE]

Million to Advance Fuel Cell and Hydrogen Storage Systems Research Department of Energy Awards Nearly 7 Million to Advance Fuel Cell and Hydrogen Storage Systems Research August...

442

Explore Careers in Hydrogen and Fuel Cells | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cells Explore Careers in Hydrogen and Fuel Cells National energy security, environmental pollution, and climate change are driving the development of cleaner...

443

Fuel Cell Technologies Office American Energy and Manufacturing Competitiveness Parternship: Fuel Cell Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12/19/2013 eere.energy.gov 12/19/2013 eere.energy.gov Fuel Cell Technologies Office American Energy & Manufacturing Competitiveness Partnership http://www.aemcsummit.compete.org/ Fuel Cell Manufacturing Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Dr. Nancy Garland Technology Development Manager, Manufacturing R&D, Fuel Cell Technologies Office 2 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov The Future of Fuel Cell Manufacturing Panel Session * Federal program: DOE Fuel Cell Technologies Office * National trade association: Fuel Cell & Hydrogen Energy Association * State Coalition Example: Ohio Fuel Cell Coalition 3 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov * Clean Energy Patent Growth Index

444

SolarPro Energy International | Open Energy Information  

Open Energy Info (EERE)

SolarPro Energy International SolarPro Energy International Jump to: navigation, search Name SolarPro Energy International Place Granite Bay, California Zip 95746 Sector Solar Product SolarPro Energy installs solar power systems using PV panels for residential and commercial properties. References SolarPro Energy International[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarPro Energy International is a company located in Granite Bay, California . References ↑ "SolarPro Energy International" Retrieved from "http://en.openei.org/w/index.php?title=SolarPro_Energy_International&oldid=351417" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

445

International Low-Carbon Energy Technology Platform | Open Energy  

Open Energy Info (EERE)

International Low-Carbon Energy Technology Platform International Low-Carbon Energy Technology Platform Jump to: navigation, search Tool Summary LAUNCH TOOL Name: International Low-Carbon Energy Technology Platform Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Low emission development planning, Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.iea.org/platform.asp International Low-Carbon Energy Technology Platform Screenshot References: International Low-Carbon Energy Technology Platform[1] Logo: International Low-Carbon Energy Technology Platform "The Technology Platform's central aim is to accelerate and scale-up action for the development and deployment of clean energy technologies. It will do this by creating a forum that:

446

EIA - International Energy Outlook 2007-Highlights Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Graphic Data - Highlights Graphic Data - Highlights International Energy Outlook 2007 Figure 1. World Marketed Energy Consumption by Region, 2004-2030 Figure 1 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 2. Average Annual Growth in Delivered Energy Consumption by Region and End-Use Sector, 2004-2030 Figure 2 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 3. Industrial Sector Delivered Energy Consumption by Region, 2004-2030 Figure 3 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 4. World Marketed Energy Use by Fuel Type, 1980-2030 Figure 4 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 5. World Liquids Production, 2004-2030 Figure 5 Data. Need help, contact the National Energy Information Center at 202-586-8800.

447

Free Energy International Canada | Open Energy Information  

Open Energy Info (EERE)

Canada Canada Jump to: navigation, search Name Free Energy International (Canada) Place Richmond, British Columbia, Canada Sector Geothermal energy, Solar Product British Columbia-based Free Energy is a technology developer focused on the solar thermal, geothermal and waste-to-energy sectors. The company has received government funding in Alberta for a geothermal project it is developing with Borealis GeoPower. Coordinates 37.5407°, -77.433654° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5407,"lon":-77.433654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

International Atomic Energy Agency safeguards  

SciTech Connect (OSTI)

The International Atomic Energy Agency (IAEA) is unique among international organizations in its use of on-site inspections to verify that States are in compliance with the terms of a negotiated agreement. The legal basis for the inspections is agreements between the IAEA and the State, concluded in the framework of the Nuclear Nonproliferation Treaty, for full scope safeguards on all nuclear materials. In addition, other more limited agreements for safeguards on a portion of a State's nuclear material are also concluded with States not party to the Treaty. In either case, the role of the IAEA is to verify compliance with the terms of these agreements by auditing facility operating records and reports submitted to the IAEA by the State; by independent measurement of nuclear materials by IAEA inspectors; and by emplacement of surveillance devices to monitor facility operations in the inspector's absence. Although IAEA safeguards are applied only to peaceful nuclear activities and do not attempt to control or reduce the numbers of nuclear weapons, there are aspects of the IAEA methods and technology that may be applicable to treaty verification for arms control. Among these aspects are: (1) the form of the IAEA's agreements with States; (2) the IAEA approach to inspection planning; and (3) the instrumentation employed by the IAEA for monitoring facility activities and for measuring nuclear material.

Avenhaus, R.; Markin, J.

1985-01-01T23:59:59.000Z

449

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2010 Graphic Data - Natural Gas Figure 36. World natural gas consumption, 2007-2035 Figure 37. Change in world natural gas production by region, 2007 and 2035 Figure 38. Natural gas consumption in North America by country, 2007-2035 Figure 39. Natural gas consumption in OECD Europe by end-use sector, 2007-2035 Figure 40. Natural gas consumption in OECD Asia by country and end-use sector, 2007-2035 Figure 41. Natural gas consumption in Non-OECD Europe and Eurasia, 2007-2035 Figure 42. Natural gas consumption in Non-OECD by Asia by country, 2007-2035 Figure 43. OECD natural gas production by country, 1990-2035 Figure 44. OECD Europe natural gas production, 1990-2035 Figure 45. Middle East natural gas production, 1990-2035

450

EIA - International Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

IEO > Order Information IEO > Order Information International Energy Outlook 2009 Ordering Information This EIA publications may be purchased from the U.S. Government Printing Office via the Internet, phone, fax, postal mail, or teletype. Payment must accompany all orders. Method Reference Internet U.S. Government Online Bookstore Phone DC Metro Area: (202) 512-1800 Toll-Free: (866) 512-1800 7:00 a.m. - 8:00 p.m., Eastern time, M-F Fax (202) 512-2104 Mail Superintendent of Documents P.O. Box 371954 Pittsburgh, PA 15250-7954 For additional information see, U.S. Government Online Bookstore Support Complimentary subscriptions and single issues are available to certain groups of subscribers, such as public and academic libraries; Federal, State, local, and foreign governments; EIA survey respondents; and the

451

International Energy Outlook 2001 - Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity picture of a printer Printer Friendly Version (PDF) Electricity consumption nearly doubles in the IEO2001 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. In the International Energy Outlook 2001 (IEO2001) reference case, worldwide electricity consumption is projected to increase at an average annual rate of 2.7 percent from 1999 to 2020 (Table 20). The most rapid growth in electricity use is projected for developing Asia, at 4.5 percent per year, and by 2020 developing Asia is expected to consume more than twice as much electricity as it did in 1999. China’s electricity consumption is projected to triple, growing by an average of 5.5 percent per year from 1999 to 2020. The expected growth rate for electricity use in

452

INTERNATIONAL SUMMER SCHOOL ON ADVANCED STUDIES OF POLYMER ELECTROLYTE FUEL CELLS  

E-Print Network [OSTI]

4TH INTERNATIONAL SUMMER SCHOOL ON ADVANCED STUDIES OF POLYMER ELECTROLYTE FUEL CELLS YOKOHAMA and with internationally recognized experts in the field of fuel cell research. The lectures include fundamental studies OF THE LECTURES: · PEFC Fundamentals · Hydrogen as Fuel - Fundamentals · Electrochemistry · Measurement Techniques

453

H24 Fuels | Open Energy Information  

Open Energy Info (EERE)

Fuels Fuels Jump to: navigation, search Logo: H24 Name H24 Address 9 Greenmeadows Place Cardiff, UK Sector Biofuels, Hydrogen, Renewable Energy Product H24 is an Environmental Energy Engineering Group providing advanced technologies and energy security solutions, clean fuels, on demand power and environmental controls. H24 Power, H24 Fuels, H24 Hydrogen, H24 Energy Storage Website http://h24fuels.com Coordinates 51.5149865°, -3.1047829° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.5149865,"lon":-3.1047829,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Issues in International Energy Consumption Analysis: Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Usage in India's Housing Sector SERIES: Issues in International Energy Consumption Analysis Electricity Usage in India's Housing Sector Release date: November 7, 2014...

455

Pro Ventum International | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Pro Ventum International Place: Forchheim, Germany Zip: 79362 Sector: Wind energy Product: German-based developer of wind power...

456

EM International Agreements | Department of Energy  

Office of Environmental Management (EM)

EM International Agreements Memorandum of Understanding between the Department of Energy of the United States of America and the National Company of Radioactive Waste of Spain...

457

International Electricity Regulation | Department of Energy  

Office of Environmental Management (EM)

Regulation International Electricity Regulation U.S. trade in electric energy with Canada and Mexico is rising, bringing economic and reliability benefits to the United States and...

458

Aldwych International Ltd | Open Energy Information  

Open Energy Info (EERE)

Product: Aldwych International is an energy company active in the growing economies of Africa and South Asia. Coordinates: 51.506325, -0.127144 Loading map......

459

Gateway:International/About | Open Energy Information  

Open Energy Info (EERE)

International/About International/About Jump to: navigation, search The International Clean Energy Analysis (ICEA) gateway seeks to catalyze the use of renewable energy and energy efficiency decision support tools to inform policy, program, and project development. Through a U.S. Department of Energy (DOE), National Renewable Energy Laboratory (NREL), and United Nations Industrial Development Organization (UNIDO) collaborative initiative, this community web portal will provide outreach and training programs to foster dissemination and application of analysis tools, with special emphasis on developing countries. It complements existing forums that provide technical information on clean energy policies and project development, with a unique focus on analysis tools and methods.

460

Energy Department Applauds World's First Fuel Cell and Hydrogen...  

Office of Environmental Management (EM)

The Fountain Valley tri-generation fuel cell and hydrogen energy station uses biogas from the municipal wastewater treatment plant as the fuel for a fuel cell. The system...

Note: This page contains sample records for the topic "fuels international energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fuel Cell School Buses: Report to Congress | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell School Buses: Report to Congress Fuel Cell School Buses: Report to Congress The Department of Energy (DOE) Hydrogen Program has examined the potential for a fuel cell...

462

USCG Energy Program Resource Management, Fuel Logistics, and Facility Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Program Energy Program Resource Management, Fuel Logistics, and Facility Energy Presented by Daniel Gore USCG Energy Program Manager Office of Resource Management 1 1 2 Presentation Contents * Overview CG Energy Program * Highlights * Interesting Projects for Utilities * Alternatively Financed Projects Discussion 2 3 Overview 3 USCG Energy Program Growth * CG represents 80% of DHS energy consumption * Obligations up 210% from FY 2000 * Energy = 25% of O&M budget 4 4 Energy Program Dynamics Increasing Expenditures Increasing Politics & Mandates Increasing Scrutiny & Reporting Procurement & Credit Card Transformations Accounting System Improvements Organizational Strategic Transformations 5 5 What is CG Energy Management? * Policies impacting $306M annual obligations

463

International nuclear fuel cycle fact book. [Contains glossary  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

1987-01-01T23:59:59.000Z

464

Fuel Cell and Hydrogen Energy Association  

Broader source: Energy.gov (indexed) [DOE]

Banerjee, Shouvik Banerjee, Shouvik Sent: Thursday, April 21, 2011 10:50 AM To: Koonin, Steven; Gopstein, Avi (S4); Holland, Mike (S4); Hopkins, Asa (S4) Subject: FW: Alternative Fuels Quadrennial Review Workshop Follow Up Flag: Follow up Flag Status: Flagged Categories: QTR Transparency From: Banerjee, Shouvik Sent: Thursday, April 21, 2011 10:48 AM To: 'Ruth Cox' Subject: RE: Alternative Fuels Quadrennial Review Workshop Dear Ruth, Thanks for your note, and I understand your concern. Broadly, you should know the QTR is assessing the viability of fuel cells in vehicles, distributed power, and centralized power plants to support the nation's energy goals. The 4/26 workshop is limited to biofuels and alternative fossil fuels for vehicles. A workshop on 5/4 in Knoxville,

465

American Renewable Fuels | Open Energy Information  

Open Energy Info (EERE)

American Renewable Fuels American Renewable Fuels Place Dallas, Texas Zip TX 75201 Sector Renewable Energy Product Developer of commercial scale renewable fuels production plants and subsidiary of Australian Renewable Fuels Pty Ltd (ARF). Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Transportation Fuel Basics - Electricity | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

467

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Worldwide electricity consumption in 2020 is projected to be 76 percent higher than its 1997 level. Long-term growth in electricity consumption is expected to be strongest in the developing economies of Asia, followed by Central and South America. The projected growth rates for electricity consumption in the developing Asian nations are close to 5 percent per year over the International Energy Outlook 2000 (IEO2000) forecast period (Table 20), and the growth rate for Central and South America averages about 4.2 percent per year. As a result, the developing nations in the two regions

468

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network [OSTI]

function of the FFC energy intensity parameters. The FFCand c as the energy intensity of fuel production, defined asrepresenting the energy intensity and material losses at

Coughlin, Katie

2013-01-01T23:59:59.000Z

469

Proceedings of FUELCELL2006 The 4th International Conference on FUEL CELL SCIENCE, ENGINEERING and TECHNOLOGY  

E-Print Network [OSTI]

at the cost of fuel cell efficiency because it oper- ates in a wider current region. When optimizing the fuel, and packaging issues must be considered. 1 Introduction Currently, PEM fuel cells are agreed upon as the mostProceedings of FUELCELL2006 The 4th International Conference on FUEL CELL SCIENCE, ENGINEERING

Papalambros, Panos

470

Energy Return on Investment - Fuel Recycle  

SciTech Connect (OSTI)

This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

Halsey, W; Simon, A J; Fratoni, M; Smith, C; Schwab, P; Murray, P

2012-06-06T23:59:59.000Z

471

International Energy and Climate Initiative - Energy+ | Open Energy  

Open Energy Info (EERE)

Initiative - Energy+ Initiative - Energy+ Jump to: navigation, search Name International Energy and Climate Initiative - Energy+ Agency/Company /Organization Norway Ministry of Foreign Affairs Partner Government of Kenya, Government of Bhutan, Government of Liberia, Government of Ethiopia, Government of Maldives, Government of Senegal, Government of Morocco, Government of Tanzania, Government of Nepal, Government of United Kingdom, Government of France, Government of Denmark, Government of Switzerland, Government of The Netherlands, Government of Republic of Korea, Government of Norway, World Bank, Asian Development Bank, African Development Bank, United Nations Environment Programme (UNEP), United Nations Development Programme (UNDP), United Nations Industrial Development Organization (UNIDO), International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD), Global Village Energy Partnership (GVEP), ECOWAS Regional Centre for Renewable Energy and Energy Efficiency (ECREEE), Latin American Energy Organization (OLADE), International Hydropower Association (IHA), World Business Council for Sustainable Development (WBCSD), United Nations Foundation (UNF), Center for Clean Air Policy (CCAP), World Wildlife Fund, Friends of the Earth Norway, Practical Action UK, World Future Council, Bellona

472

International Energy: Subject Thesaurus. Revision 1  

SciTech Connect (OSTI)

The International Energy Agency: Subject Thesaurus contains the standard vocabulary of indexing terms (descriptors) developed and structured to build and maintain energy information databases. Involved in this cooperative task are (1) the technical staff of the USDOE Office of Scientific and Technical Information (OSTI) in cooperation with the member countries of the International Energy Agency`s Energy Technology Data Exchange (ETDE) and (2) the International Atomic Energy Agency`s International Nuclear Information System (INIS) staff representing the more than 100 countries and organizations that record and index information for the international nuclear information community. ETDE member countries are also members of INIS. Nuclear information prepared for INIS by ETDE member countries is included in the ETDE Energy Database, which contains the online equivalent of the printed INIS Atomindex. Indexing terminology is therefore cooperatively standardized for use in both information systems. This structured vocabulary reflects thscope of international energy research, development, and technological programs. The terminology of this thesaurus aids in subject searching on commercial systems, such as ``Energy Science & Technology`` by DIALOG Information Services, ``Energy`` by STN International and the ``ETDE Energy Database`` by SilverPlatter. It is also the thesaurus for the Integrated Technical Information System (ITIS) online databases of the US Department of Energy.

Not Available

1993-11-01T23:59:59.000Z

473

Electricity Fuel Basics | Department of Energy  

Office of Environmental Management (EM)

Vehicles & Fuels Fuels Electricity Fuel Basics Electricity Fuel Basics August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the...

474

Types of Fuel Cells | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells Current Technology Types of Fuel Cells Types of Fuel Cells Fuel cells are classified primarily by the kind of electrolyte they employ. This classification...