Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

CALIFORNIA ENERGY PETROLEUM FUELSPETROLEUM FUELS  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION PETROLEUM FUELSPETROLEUM FUELS SET-ASIDE PROGRAMSET-ASIDE PROGRAM for administering the Petroleum Fuels Set-Aside Program (Fuels Set-Aside Program). During a proclaimed state of emergency, intrastate petroleum and petroleum product stocks that are essential to life, property

2

Trends of petroleum fuels  

SciTech Connect

Trends in properties of motor gasolines for the years 1942 through 1984; diesel fuels for the years 1950 through 1983; aviation fuels for the years 1947 through 1983; and heating oils for the years 1955 through 1984, have been evaluated based upon data contained in surveys prepared and published by the National Institute for Petroleum and Energy Research (NIPER) formerly the Bartlesville Energy Technology Center (BETC). The surveys for motor gasolines were conducted under a cooperative agreement with the Coordinating Research Council (CRC) and the Bureau of Mines from 1935 through 1948 and in cooperation with the American Petroleum Institute (API) since 1948 for all surveys. The motor gasoline surveys have been published twice annually since 1935 describing the properties of motor gasolines throughout the country. Other surveys prepared in cooperation with API and the Bureau of Mines, the Energy Research and Development Administration, the Department of Energy, and currently NIPER were aviation gasolines beginning in 1947, diesel fuels in 1950, aviation turbine fuels in 1951, and heating oils, formerly burner fuel oils, in 1955. Various companies throughout the country obtain samples of motor gasolines from retail outlets and refinery samples for the other surveys, and analyze the samples using American Society for Testing and Materials (ASTM) procedures. The analytical data are sent to the Bartlesville Center for survey preparation and distribution. A summary report has been assembled from data in 83 semiannual surveys for motor gasolines that shows trends throughout the entire era from winter 19

Shelton, E.M.; Woodward, P.W.

1985-02-01T23:59:59.000Z

3

Alternative Fuels Data Center: Petroleum Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Petroleum Reduction Petroleum Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Petroleum Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Petroleum Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Petroleum Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Petroleum Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Petroleum Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Petroleum Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Petroleum Reduction Requirements The Wisconsin Department of Administration's fleet management policy

4

Advanced Petroleum Based Fuels Research at NREL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Impacts on Current and Emerging Engines Goals and Objectives * VTP Task 3: Petroleum displacing fuels and fuel blending components - Study combustion and emissions...

5

Alternative Fuels Data Center: Petroleum Reduction Initiative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Petroleum Reduction Petroleum Reduction Initiative to someone by E-mail Share Alternative Fuels Data Center: Petroleum Reduction Initiative on Facebook Tweet about Alternative Fuels Data Center: Petroleum Reduction Initiative on Twitter Bookmark Alternative Fuels Data Center: Petroleum Reduction Initiative on Google Bookmark Alternative Fuels Data Center: Petroleum Reduction Initiative on Delicious Rank Alternative Fuels Data Center: Petroleum Reduction Initiative on Digg Find More places to share Alternative Fuels Data Center: Petroleum Reduction Initiative on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Petroleum Reduction Initiative The Petroleum Savings and Independence Advisory Commission (Commission) was established to provide recommendations and monitor programs designed to

6

Advanced Petroleum Based Fuels Research at NREL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Based Fuels Research at NREL Brad Zigler (PI) with Robb Barnitt, Greg Bogin, Wendy Clark, John Ireland, Doug Lawson, Jon Luecke, Dan Pedersen, Matt Ratcliff, and Matt...

7

1989 annual book of ASTM standards. Section 5: Petroleum products, lubricants and fossil fuels  

SciTech Connect

This volume of standards pertains to petroleum products and lubricants and to catalysts. The standards presented include: Standard test method for estimation of net and gross heat of combustion of petroleum fuels; Standard guide for generation and dissipation of static electricity in petroleum fuel systems; and Standard test method for solidification point of petroleum wax.

Not Available

1989-01-01T23:59:59.000Z

8

Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference...

9

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...  

Open Energy Info (EERE)

- Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle...

10

Non-Petroleum-Based Fuel Effects on Advanced Combustion | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non-Petroleum-Based Fuel Effects on Advanced Combustion Non-Petroleum-Based Fuel Effects on Advanced Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

11

Advanced Petroleum Based Fuels Research at NREL | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Based Fuels Research at NREL Advanced Petroleum Based Fuels Research at NREL 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer...

12

Advanced Petroleum Based Fuel Effects in HCCI (Agreement 13415...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Petroleum Based Fuel Effects in HCCI (Agreement 13415) Advanced Petroleum Based Fuel Effects in HCCI (Agreement 13415) Presentation from the U.S. DOE Office of Vehicle...

13

DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council Briefing DOE Hydrogen and Fuel Cell Overview: January 2011 National Petroleum Council Briefing Presentation...

14

Advanced Petroleum-Based Fuels Research at NREL | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum-Based Fuels Research at NREL Advanced Petroleum-Based Fuels Research at NREL 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation...

15

Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Petroleum Liquefied Petroleum Gas (Propane) License to someone by E-mail Share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Facebook Tweet about Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Twitter Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Google Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Delicious Rank Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Digg Find More places to share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Liquefied Petroleum Gas (Propane) License

16

Alternative Fuels Data Center: Petroleum Reduction Planning Tool  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Petroleum Reduction Planning Tool Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Petroleum Reduction Planning Tool Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Petroleum Reduction Planning Tool Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Petroleum Reduction Planning Tool Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Petroleum Reduction Planning Tool Assumptions and Methodology on Delicious Rank Alternative Fuels Data Center: Petroleum Reduction Planning Tool Assumptions and Methodology on Digg Find More places to share Alternative Fuels Data Center: Petroleum

17

Alternative Fuels Data Center: Vehicle Acquisition and Petroleum Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Acquisition Vehicle Acquisition and Petroleum Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Vehicle Acquisition and Petroleum Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Vehicle Acquisition and Petroleum Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Vehicle Acquisition and Petroleum Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Vehicle Acquisition and Petroleum Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Vehicle Acquisition and Petroleum Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Vehicle Acquisition and Petroleum Reduction Requirements on AddThis.com... More in this section...

18

Alternative Fuels Data Center: State Agency Petroleum Reduction Plan  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Petroleum State Agency Petroleum Reduction Plan to someone by E-mail Share Alternative Fuels Data Center: State Agency Petroleum Reduction Plan on Facebook Tweet about Alternative Fuels Data Center: State Agency Petroleum Reduction Plan on Twitter Bookmark Alternative Fuels Data Center: State Agency Petroleum Reduction Plan on Google Bookmark Alternative Fuels Data Center: State Agency Petroleum Reduction Plan on Delicious Rank Alternative Fuels Data Center: State Agency Petroleum Reduction Plan on Digg Find More places to share Alternative Fuels Data Center: State Agency Petroleum Reduction Plan on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Agency Petroleum Reduction Plan All state agencies must reduce their fleets' petroleum consumption by

19

Non-Petroleum-Based Fuels: Effects on Emissions Controls (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non-Petroleum-Based Fuels: Effects on Emissions Controls (Agreement Number 13425)NPBF Effects on PM OxidationNPBF Effects on EGR System Performance Non-Petroleum-Based Fuels:...

20

Non-Petroleum Based Fuel Effects on Advanced Combustion (Agreement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Petroleum Based Fuel Effects on Advanced Combustion (Agreement 13425) Non-Petroleum Based Fuel Effects on Advanced Combustion (Agreement 13425) Presentation from the U.S. DOE...

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Petroleum Based Fuels Research at NREL | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum Based Fuels Research at NREL Advanced Petroleum Based Fuels Research at NREL Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

22

The Non-Petroleum Based Fuel Initiative - NPBF | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Non-Petroleum Based Fuel Initiative - NPBF The Non-Petroleum Based Fuel Initiative - NPBF 2003 DEER Conference Presentation: Oak Ridge National Laboratory deer2003bunting1.pd...

23

Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

May 18-22, 2009 -- Washington D.C. ft07sluder.pdf More Documents & Publications Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies Non-Petroleum-Based Fuels:...

24

Alternative Fuels Data Center: Petroleum and Emission Reduction Planning  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool to someone by E-mail Share Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool on Facebook Tweet about Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool on Twitter Bookmark Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool on Google Bookmark Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool on Delicious Rank Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool on Digg Find More places to share Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool on AddThis.com... Petroleum Reduction Planning Tool

25

Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Knoxville Utilities Knoxville Utilities Board Reduces Petroleum Use to someone by E-mail Share Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum Use on Facebook Tweet about Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum Use on Twitter Bookmark Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum Use on Google Bookmark Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum Use on Delicious Rank Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum Use on Digg Find More places to share Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum Use on AddThis.com... Jan. 22, 2011 Knoxville Utilities Board Reduces Petroleum Use F ind out how the Knoxville Utilities Board is displacing more than 46,000

26

Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Plan to Reduce State Plan to Reduce Petroleum Consumption to someone by E-mail Share Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Facebook Tweet about Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Twitter Bookmark Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Google Bookmark Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Delicious Rank Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Digg Find More places to share Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Plan to Reduce Petroleum Consumption

27

Alternative Fuels Data Center: Supply of Petroleum Products for Blending  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Supply of Petroleum Supply of Petroleum Products for Blending with Biofuels to someone by E-mail Share Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Facebook Tweet about Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Twitter Bookmark Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Google Bookmark Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Delicious Rank Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Digg Find More places to share Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on AddThis.com... More in this section... Federal

28

Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Petroleum Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity to someone by E-mail Share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Facebook Tweet about Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Twitter Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Google Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Delicious Rank Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Digg Find More places to share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on

29

Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

30

Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

understood and accounted for, they can be introduced at higher blending levels. * Non-petroleum based fuels are relatively new and not fully understood. * Current vehicles are...

31

Chemical Kinetic Modeling of Non-Petroleum Based Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ft010pitz2011o.pdf More Documents & Publications Chemical Kinetic Modeling of Non-Petroleum Based Fuels Chemical Kinetic Modeling of Fuels Simulation of High Efficiency Clean...

32

Advanced Petroleum-Based Fuels Research at NREL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum-Based Fuels Research at NREL Bradley Zigler(PI) With Wendy Clark, Xin He, Jon Luecke, and Matt Ratcliff Vehicle Technologies Program Merit Review Fuels Technologies June...

33

Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 -- Washington D.C. ft007sluder2010o.pdf More Documents & Publications Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies Fuel Effects on Emissions...

34

The Non-Petroleum Based Fuel Initiative - NPBF  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DEER 2003 1 Office of FreedomCAR and Vehicle Technologies THE NON-PETROLEUM BASED FUEL INITIATIVE --NPBF-- summarized from DOE EERE Fuels Technologies 5 year plan * Bruce G....

35

Chemical Kinetic Modeling of Non-Petroleum Based Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ft010pitz2012o.pdf More Documents & Publications Chemical Kinetic Modeling of Non-Petroleum Based Fuels Chemical Kinetic Modeling of Fuels Chemical Kinetic Research on HCCI &...

36

Petroleum Products and Alternative Fuels Tax Law (Tennessee) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Products and Alternative Fuels Tax Law (Tennessee) Petroleum Products and Alternative Fuels Tax Law (Tennessee) Petroleum Products and Alternative Fuels Tax Law (Tennessee) < Back Eligibility Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Transportation Utility Program Info State Tennessee Program Type Fees Rebate Program Siting and Permitting Provider Tennessee Department of Revenue The Petroleum Products and Alternative Fuels Tax Law is relevant to all natural gas and/or biofuel projects. Compressed Natural Gas CNG, petroleum product and/or alternative dealers must apply for and obtain a permit from the Tennessee Department of Revenue. The permit authorizes the dealer to collect and remit taxes on CNG delivered to motor vehicles by means of a

37

Petroleum Reduction Strategies to Use Alternative Fuels in Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

For reducing greenhouse gas emissions, the table below describes strategies to reduce petroleum through the use of alternative fuels in vehicles, as well as guidance and best practices for each strategy.

38

Petroleum Reduction Strategies to Use Alternative Fuels in Vehicles |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Use Alternative Fuels in Vehicles Use Alternative Fuels in Vehicles Petroleum Reduction Strategies to Use Alternative Fuels in Vehicles October 7, 2013 - 11:55am Addthis YOU ARE HERE: Step 3 For reducing greenhouse gas emissions, the table below describes strategies to reduce petroleum through the use of alternative fuels in vehicles, as well as guidance and best practices for each strategy. Table 1. Determining When and How to Promote the Use of Strategies to Use Alternative Fuels Strategy When Applicable Best Practices Use E85, CNG, LNG, LPG and other alternative fuels that require dedicated infrastructure Vehicles are dedicated or dual-fuel vehicles capable of using E85, CNG, LNG, or LPG. Vehicles are garaged within 5 miles of existing dedicated alternative fuel infrastructure. High use locations (i.e., annual gasoline turnover rate of 100,000 gallons or greater) where alternative fuel stations are planned in the near-term

39

Alternative Fuel Vehicle Resources  

Energy.gov (U.S. Department of Energy (DOE))

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

40

Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improve Vehicle Fuel Efficiency Improve Vehicle Fuel Efficiency Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency October 7, 2013 - 11:53am Addthis YOU ARE HERE: Step 3 For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy. Table 1. Determining When and How to Promote the Use of Strategies to Improve Fuel Efficiency Strategy When Applicable Best Practices Acquiring higher fuel economy vehicles Applicable to all types of vehicles, regardless of ownership or vehicle and fuel type Mission and geographical (e.g., terrain, climate) constraints should be evaluated when acquiring new vehicles Use a VAM to ensure vehicles are right-sized to their intended mission.

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels  

SciTech Connect

A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fuIly synthetic jet fuel in the place of petroleum-derived fueL

Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2008-01-01T23:59:59.000Z

42

Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels  

SciTech Connect

A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber a-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile a-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2009-01-01T23:59:59.000Z

43

Reforming petroleum-based fuels for fuel cell vehicles : composition-performance relationships.  

SciTech Connect

Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior. Components which may be beneficial for ICEs for their octane enhancing value were detrimental to reforming. Fuels with high aromatic and naphthenic content were more difficult to reform. Aromatics were also found to have an impact on the kinetics for reforming of paraffins. The effects of sulfur impurities were dependent on the catalyst. Sulfur was detrimental for Ni, Co, and Ru catalysts. Sulfur was beneficial for reforming with Pt catalysts, however, the effect was dependent on the sulfur concentration.

Kopasz, J. P.; Miller, L. E.; Ahmed, S.; Devlin, P. R.; Pacheco, M.

2001-12-04T23:59:59.000Z

44

Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

About About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now to someone by E-mail Share Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Facebook Tweet about Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Twitter Bookmark Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Google Bookmark Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Delicious Rank Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Digg Find More places to share Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on AddThis.com...

45

Petroleum Coke: A Viable Fuel for Cogeneration  

E-Print Network (OSTI)

; buy sulfur dioxide credits on the open market; install FGD; or switch to clean coal technology such as circulating fluidized bed combustion and gasification. Current trends in utility modernization are to utilize new clean coal technologies..., such as fluidized bed combustion or gasification, and install FGD technology. Regardless of which modernization method is used, it will feature high-sulfur fuel capability. In summary, public utilities are looking at low-sulfur fuel as a means to comply...

Dymond, R. E.

46

Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

DOD-DOE Aircraft DOD-DOE Aircraft Petroleum Use Reduction Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction Workshop on Facebook Tweet about Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction Workshop on Twitter Bookmark Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction Workshop on Google Bookmark Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction Workshop on Delicious Rank Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction Workshop on Digg Find More places to share Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications

47

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005  

Open Energy Info (EERE)

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model [1] NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model This model calculates the 2005 national average life cycle greenhouse gas emissions for petroleum-based fuels sold or distributed in the United

48

Comparison of Real-World Fuel Use and Emissions for Dump Trucks Fueled with B20 Biodiesel Versus Petroleum Diesel  

E-Print Network (OSTI)

Versus Petroleum Diesel By H. Christopher Frey, Ph.D. Professor Department of Civil, Construction-world in-use on-road emissions of selected diesel vehicles, fueled with B20 biodiesel and petroleum diesel was tested for one day on B20 biodiesel and for one day on petroleum diesel. On average, there were 4.5 duty

Frey, H. Christopher

49

Characterization of polar extracts from two petroleum-derived fuels  

SciTech Connect

Petroleum fuels of marginal stability have been used as a source of nitrogen-rich polar extracts. Polar compounds were isolated by mild acid extraction followed by silica gel adsorption. The extracts were characterized and identified by combined capillary column GC/MS. Both fuels were studied by two methods under accelerated storage conditions, bottle tests and oxygen overpressure. Bottle tests were conducted at 80/sup 0/C for 14 days and the oxygen overpressure at both 65 and 43/sup 0/C for 6 days and 4 weeks respectively. Filterable insolubles and adherent gum were measured for both methods. Peroxide numbers were determined by ASTM D3703-85 for both stressed and original fuel samples.

Mushrush, G.W.; Beal, E.J.; Morris, R.E.; Cooney, J.V.; Hazlett, R.N.; Watkins, J.M.

1989-01-01T23:59:59.000Z

50

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels.  

E-Print Network (OSTI)

??In the wake of global warming and fossil fuel depletion, renewed attention has been paid to shifting away from the use of petroleum based fuels.… (more)

Esquivel, Jason

2010-01-01T23:59:59.000Z

51

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

special fuels. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition,...

52

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Special Fuel Definitions The definition of alternative fuel includes liquefied petroleum gas (propane). Special fuel is defined as all combustible gases and liquids that are...

53

The use of solid petroleum fuel blocks for cold protection in Texas citrus orchards  

E-Print Network (OSTI)

THE USE OF SOLID PETROLEUM FUEL BLOCKS FOR COLD PROTECTION IN TEXAS CITRUS ORCHARDS A Thesis By MORRIS ADRIAN BAILEY, JR. Submitted to the Graduate College of the Texas Afd6 University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE January 1966 Major Subject: Horticulture THE USE OF SOLID PETROLEUM FUEL BLOCKS FOR COLD PROTECTION IN TEXAS CITRUS ORCHARDS A Thesis By MORRIS ADRIAN BAILEY, JR. Approved as to style and content by: (C 'rm of Committee) (Head...

Bailey, Morris Adrian

2012-06-07T23:59:59.000Z

54

Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

DOD-DOE Aircraft Petroleum Use Reduction Workshop DOD-DOE Aircraft Petroleum Use Reduction Workshop The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office and the U.S. Department of Defense (DOD) held a workshop on September 30, 2010, in Washington, DC, to discuss the potential for fuel cells to reduce aircraft petroleum use. Workshop objectives were to discuss collaboration across DOD and DOE in keeping with the DOD-DOE Memorandum of Understanding (MOU), to motivate RD&D for auxiliary power unit (APU) applications and identify R&D challenges, and to identify next steps and potential collaboration opportunities. Workshop Agenda Aircraft Petroleum Use Reduction Workshop Agenda Workshop Proceedings Report of the DOD-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan

55

Petroleum supply monthly, August 1993  

SciTech Connect

This publication the Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report, (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. Data presented are divided into Summary Statistics and Detailed Statistics.

Not Available

1993-09-01T23:59:59.000Z

56

Measurement of Petroleum Fuel Contamination in Water by Solid-Phase Microextraction with Direct Raman Spectroscopic Detection  

Science Journals Connector (OSTI)

A method is described for determining petroleum fuel contamination in water based on solid-phase microextraction and Raman spectroscopy (SPME/Raman). In this method, contaminants are...

Jager, Michael J; McClintic, Daniel P; Tilotta, David C

2000-01-01T23:59:59.000Z

57

Diesel vehicle performance on unaltered waste soybean oil blended with petroleum fuels  

Science Journals Connector (OSTI)

Interest in using unaltered vegetable oil as a fuel in diesel engines has experienced an increase due to uncertainty in the crude oil market supply and the detrimental effects petroleum fuels have on the environment. Unaltered vegetable oil blended with petroleum fuels is less expensive, uses less energy to produce and is more environmentally friendly compared to petroleum diesel or biodiesel. Here we investigate the engine performance of unaltered waste soybean oil blended with petroleum diesel and kerosene for three vehicles. Five biofuel blends ranging from 15% to 50% oil by volume were tested on a 2006 Jeep Liberty CRD, a 1999 Mercedes E300 and a 1984 Mercedes 300TD. A DynoJet 224x chassis dynamometer was used to test vehicle engine performance for horsepower and torque through a range of RPMs. Results for the Jeep showed a modest decrease in horsepower and torque compared to petroleum diesel ranging from 0.9% for the 15% oil blend to 5.0% lower for the 50% oil blend. However, a 30% oil blend showed statistically better performance (P < 0.05) compared to petroleum diesel. For the 1999 Mercedes, horsepower performance was 1.1% lower for the 15% oil blend to 6.4% lower for the 50% oil blend. Engine performance for a 30% blend was statistically the same (P < 0.05) compare to diesel. Finally, horsepower performance was 1.1% lower for the 15% oil blend to 4.7% lower for the 50% oil blend for the 1984 Mercedes. Overall, the performance on these oil blended fuels was excellent and, on average 1.1% lower than petroleum diesel for blends containing 40% or lower waste soybean oil content. The more significant decrease in power between the 40% and 50% oil blends indicates that oil content in these blended fuels should be no more than 40%.

Eugene P. Wagner; Patrick D. Lambert; Todd M. Moyle; Maura A. Koehle

2013-01-01T23:59:59.000Z

58

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuels include liquid non-petroleum based fuel that can be placed in motor vehicle fuel tanks and used to operate on-road vehicles, including all forms of fuel commonly or...

59

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG)....

60

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Alternative fuels subject to the New Mexico excise tax include liquefied petroleum gas (propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The...

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Rapid Separation of Petroleum Fuels by Hydrocarbon Type  

Science Journals Connector (OSTI)

......various fuels such as gasoline and jet fuel into...cleaning solvent and straight-run distillate have...various fuels such as gasoline and jet fuel into...cleaning solvent and straight-run distillate have...aromatic content of gasoline usually in- creases......

Robert Stevenson

1971-05-01T23:59:59.000Z

62

Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

63

Model for Gasification of Residual Fuels from Petroleum Refineries Using the Equation Oriented (EO) Approach  

Science Journals Connector (OSTI)

An attractive way to use residual fuels from petroleum refineries (vacuum residue and petcoke) is their gasification to produce syngas, which contains mainly H2, CO and small quantities of CH4, CO2, as well as nitrogen and sulfur compounds. ... Vacuum residue and petroleum coke (petcoke) are, respectively, heavy liquid and solid byproducts from crude oil refining, they are often used as fuel in boilers for power production, natural gas has been more commonly used in the past few years in power generation; reducing the market for both vacuum residue and petcoke. ... Regarding petroleum refinery residuals Uson et al.(1) developed a model for cogasification of coal, petcoke and biomass, based on reaction kinetics. ...

Jorge E. Marin-Sanchez; Miguel A. Rodriguez-Toral

2010-07-29T23:59:59.000Z

64

Rapid Separation of Petroleum Fuels by Hydrocarbon Type  

Science Journals Connector (OSTI)

......below) . A comparison of two turbine fuels is presented in Figure...MIN Figure 3. Comparison of Turbine Fuels. Elution order: satu...constructed. A synthetic sample of turbine fuel was prepared from pure...coefficient characterizing efficiency of the fractionation. In contrast......

Robert Stevenson

1971-05-01T23:59:59.000Z

65

Fuel cell repeater unit including frame and separator plate  

DOE Patents (OSTI)

An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

2013-11-05T23:59:59.000Z

66

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 137 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

67

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

This page inTenTionally lefT blank 135 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Administration for

68

Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumption to the Annual Energy Outlook Petroleum Market Module Figure 8. Petroleum Administration for Defense Districts. Having problems, call our National Energy Information Center at 202-586-8800 for help. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohols, ethers, and bioesters natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining

69

An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels  

Science Journals Connector (OSTI)

Abstract The renewable and non-renewable exergy and CO2 costs of petroleum derived fuels produced in Brazil are evaluated using exergoeconomy to rationally distribute the exergy costs and the CO2 emitted in processes with more than one product. An iterative procedure is used to take into account the cyclic interactions of the processed fuels. The renewable and non-renewable exergy costs together with the CO2 cost provide a reasonable way to compare different fuels and can be used to assess an enormous quantity of processes that make use of petroleum derived products. The system considers Brazilian typical processes and distances: offshore oil and gas production, transportation by shuttle tankers and pipelines, and refining. It was observed that the renewable exergy cost contribution in the total exergy cost of petroleum derived fuels is negligible. On average, the refining process is responsible, for 85% of the total unit exergy cost. Total unit exergy costs of gasoline, liquefied petroleum gas, natural gas and fuel oil were found to be: 1.081 MJ/MJ, 1.074 MJ/MJ, 1.064 MJ/MJ, 1.05 MJ/MJ, respectively. The hydrotreatment process increases diesel cost from 1.038 MJ/MJ to 1.11 MJ/MJ in order to decrease its sulphur content. The CO2 cost reflects the extent of processing as well as the C/H ratio of the used fuel. Hence, coke followed by hydrotreated diesel have the largest CO2 cost among the fuels, 91 gCO2/MJ and 79 gCO2/MJ, respectively.

J.A.M. Silva; D. Flórez-Orrego; S. Oliveira Jr.

2014-01-01T23:59:59.000Z

70

Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ft007sluder2011...

71

Advanced Petroleum Based Fuel Effects in HCCI (Agreement 13415...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

John Storey Research supported by DOE Fuel Technology Program, Kevin Stork and Dennis Smith are DOE management team THIS PRESENTATION DOES NOT CONTAIN ANY PROPRIETARY OR...

72

Petroleum systems including unconventional reservoirs in intrusive igneous rocks (sills and laccoliths)  

Science Journals Connector (OSTI)

...formation. Suggested reading Geothermic of petroleum systems: Implications...Economic geology, geology of energy sources Applied geophysics...Schuelke James prefacer Devon Energy United States Soldo Juan prefacer Petrobras Brazil Devon Energy United States Petrobras Brazil...

Daniel H. Delpino; Adriana M. Bermúdez

73

Fuels Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D activities, including fuels for advanced combustion engines, advanced petroleum-based and non-petroleum based fuels, and biofuels. deer08stork.pdf More Documents &...

74

Non-Petroleum-Based Fuel Effects on Advanced Combustion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Consumers experience 25-30% drop in fuel economy with FFV's, attributable to lower energy content 7 Managed by UT-Battelle for the U.S. Department of Energy FT008: NPBF...

75

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe » Italy Western Europe » Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

76

Biomass Potentials from California Forest and Shrublands Including Fuel  

E-Print Network (OSTI)

Biomass Potentials from California Forest and Shrublands Including Fuel Reduction Potentials-04-004 February 2005 Revised: October 2005 Arnold Schwarzenegger, Governor, State of California #12;Biomass Tiangco, CEC Bryan M. Jenkins, University of California #12;Biomass Potentials from California Forest

77

Life Cycle Inventory Energy Consumption and Emissions for Biodiesel versus Petroleum Diesel Fueled Construction Vehicles  

Science Journals Connector (OSTI)

Life Cycle Inventory Energy Consumption and Emissions for Biodiesel versus Petroleum Diesel Fueled Construction Vehicles ... In general, LCI emissions of HC and CO are lower if NSPS-compliant soyoil plants are used. ... The purpose of this study is to demonstrate a methodology for characterizing at high resolution the energy use and emissions of a plug-in parallel-hybrid diesel-electric school bus (PHSB) to support assessments of sensitivity to driving cycles and ... ...

Shih-Hao Pang; H. Christopher Frey; William J. Rasdorf

2009-07-16T23:59:59.000Z

78

Petroleum marketing monthly, November 1994  

SciTech Connect

The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane.

Not Available

1994-11-21T23:59:59.000Z

79

Petroleum marketing monthly, December 1994  

SciTech Connect

The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane.

Not Available

1994-12-07T23:59:59.000Z

80

Method of producing a colloidal fuel from coal and a heavy petroleum fraction  

DOE Patents (OSTI)

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300.degree.-550.degree. C. The slurry is heated to a temperature of 400.degree.-500.degree. C. for a limited time of only about 1-5 minutes before cooling to a temperature of less than 300.degree. C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, James R. (Columbus, OH)

1983-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Petroleum marketing monthly  

SciTech Connect

The Petroleum Marketing Monthly (PMM) is designed to give information and statistical data about a variety of crude oils and refined petroleum products. The publication provides statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Sales data for motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane are presented.

Not Available

1992-03-01T23:59:59.000Z

82

Petroleum supply monthly, October 1993  

SciTech Connect

The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

Not Available

1993-10-26T23:59:59.000Z

83

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative fuels include natural gas, liquefied petroleum gas (propane), ethanol, methanol, biodiesel, electricity, and hydrogen. (Reference Oklahoma Statutes 74-130.2 and 74-78...

84

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

85

1989 annual book of ASTM standards. Section 5: Petroleum products, lubricants, and fossil fuels  

SciTech Connect

This standards volume covers test methods for rating motor, diesel, and aviation fuels. The standards include: Standard test method for knock characteristics of motor and aviation fuels by the motor method and Standard test method for knock characteristics of motor fuels by the research method.

Not Available

1989-01-01T23:59:59.000Z

86

In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents  

DOE Patents (OSTI)

An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

1998-05-19T23:59:59.000Z

87

In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents  

DOE Patents (OSTI)

An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

Taylor, Robert T. (Livermore, CA); Jackson, Kenneth J. (San Leandro, CA); Duba, Alfred G. (Livermore, CA); Chen, Ching-I (Danville, CA)

1998-01-01T23:59:59.000Z

88

Definition: Petroleum | Open Energy Information  

Open Energy Info (EERE)

Petroleum Petroleum A broadly defined class of liquid hydrocarbon mixtures. Included are crude oil, lease condensate, unfinished oils, refined products obtained from the processing of crude oil, and natural gas plant liquids.[1] View on Wikipedia Wikipedia Definition Petroleum is a naturally occurring flammable liquid consisting of a complex mixture of hydrocarbons of various molecular weights and other liquid organic compounds, that are found in geologic formations beneath the Earth's surface. The name Petroleum covers both naturally occurring unprocessed crude oils and petroleum products that are made up of refined crude oil. A fossil fuel, it is formed when large quantities of dead organisms, usually zooplankton and algae, are buried underneath sedimentary rock and undergo intense heat and pressure. Petroleum is recovered mostly

89

SBIR/STTR FY15 Release 1 Awards Announced-Includes Fuel Cell...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FY15 Release 1 Awards Announced-Includes Fuel Cell Catalyst and Hydrogen Contamination Detection R&D SBIRSTTR FY15 Release 1 Awards Announced-Includes Fuel Cell Catalyst and...

90

SBIR/STTR Release 2 Topics Announced-Includes Hydrogen and Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Release 2 Topics Announced-Includes Hydrogen and Fuel Cells SBIRSTTR Release 2 Topics Announced-Includes Hydrogen and Fuel Cells October 31, 2014 - 12:05pm Addthis The 2015 Small...

91

EIA - Assumptions to the Annual Energy Outlook 2010 - Petroleum Market  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2010 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. Figure 9. Petroleum Administration for Defense Districts. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Area Defense Districts (PADDs) (Figure 9),

92

Petroleum marketing monthly, December 1998 with data for September 1998  

SciTech Connect

The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. Monthly statistics on purchases of crude oil and sales of petroleum products are presented in the Petroleum Marketing Monthly in five sections: summary statistics; crude oil prices; prices of petroleum products; volumes of petroleum products; and prime supplier sales volumes of petroleum products for local consumption. 7 figs., 50 tabs.

NONE

1998-12-01T23:59:59.000Z

93

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

2 PM)" 2 PM)" "Rhode Island" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Petroleum (cents per million Btu)1",359,241,195,320,254,413,479,"-","-","-",730,802,1407,"-",1931,1649,934,1561 " Average heat value (Btu per gallon)",152445,151507,152617,150388,151314,139562,140390,"-","-","-",140564,140562,135160,"-",138571,141786,145243,140864 " Average sulfur Content (percent)",0.93,0.91,1,0.97,0.97,0.03,0.14,"-","-","-",0.14,0.09,0.03,"-",0.15,0.3,0.46,0.25 "Natural Gas (cents per million Btu)",217,198,213,239,222,185,223,326,329,455,650,680,951,734,781,1028,488,538

94

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "South Dakota" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",115,113,113,110,108,103,94,92,93,94,99,103,130,134,139,142,151,156,174,176,195 " Average heat value (Btu per pound)",6096,6025,6034,6057,6049,6972,9034,8687,8728,8630,8464,8540,8550,8560,8523,8711,8534,8530,8391,8386,8327 " Average sulfur Content (percent)",0.9,0.87,0.92,0.9,0.91,0.87,0.52,0.63,0.72,0.6,0.31,0.33,0.37,0.33,0.34,0.31,0.32,0.3,0.31,0.31,0.33 "Petroleum (cents per million Btu)1",565,488,"-",467,"-","-",598,"-","-","-","-","-","-",804,822,1245,1546,"-",1985,1248,1808

95

Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel  

Science Journals Connector (OSTI)

Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil bio petroleum fuel and diesel which can be an energy source.

Mustafa Hamid Al-abbas; Wan Aini Wan Ibrahim; Mohd. Marsin Sanagi

2012-01-01T23:59:59.000Z

96

Petroleum Marketing Monthly  

Reports and Publications (EIA)

Provides information and statistical data on a variety of crude oils and refined petroleum products, including statistics on crude oil costs and refined petroleum products sales.

2014-01-01T23:59:59.000Z

97

Petroleum marketing monthly, May 1992  

SciTech Connect

The Petroleum Marketing Monthly (PMM) is designed to give information and statistical data about a variety of crude oils and refined petroleum products. The publication provides statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiner`s acquisition cost of crude oil. Sales data for motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane are presented.

Not Available

1992-05-19T23:59:59.000Z

98

Petroleum marketing monthly, August 1992  

SciTech Connect

The Petroleum Marketing Monthly is designed to give information and statistical data about a variety of crude oils and refined petroleum products. The publication provides statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o. b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Sales data for motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane are presented.

Not Available

1992-08-10T23:59:59.000Z

99

Petroleum marketing monthly, July 1992  

SciTech Connect

The Petroleum Marketing Monthly (PMM) is designed to give information and statistical data about a variety of crude oils and refined petroleum products. The publication provides statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquistion cost of crude oil. Sales data for motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane are presented.

Not Available

1992-07-09T23:59:59.000Z

100

Petroleum marketing monthly, February 1992  

SciTech Connect

The Petroleum Marketing Monthly (PMM) is designed to given information and statistical data about a variety of crude oils and refined petroleum products. The publications provides statistics on crude oil costs and refined petroleum product sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Sales data for motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane are presented.

Not Available

1992-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Petroleum marketing monthly, April 1992  

SciTech Connect

The Petroleum Marketing Monthly (PMM) is designed to give information and statistical data about a variety of crude oils and refined petroleum products. The publication provides statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Sales data for motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane are presented.

Not Available

1992-04-16T23:59:59.000Z

102

Petroleum marketing monthly, June 1992  

SciTech Connect

The Petroleum Marketing Monthly (PMM) is designed to give information and statistical data about a variety of crude oils and refined petroleum products. The publication provides statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Sales data for motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane are presented.

Not Available

1992-06-08T23:59:59.000Z

103

Petroleum marketing monthly, January 1992  

SciTech Connect

The Petroleum Marketing Monthly (PMM) is designed to give information and statistical data about a variety of crude oils and refined petroleum products. The publication provides statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Sales data for motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane are presented.

Not Available

1992-01-15T23:59:59.000Z

104

EIA - Assumptions to the Annual Energy Outlook 2008 - Petroleum Market  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2008 Petroleum Market Module Figure 9. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining

105

A non-isothermal PEM fuel cell model including two water transport mechanisms in the  

E-Print Network (OSTI)

A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane K Freiburg Germany A dynamic two-phase flow model for proton exchange mem- brane (PEM) fuel cells and the species concentrations. In order to describe the charge transport in the fuel cell the Poisson equations

Münster, Westfälische Wilhelms-Universität

106

As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Structural Studies of Catalytically Stabilized Industrial Hydrotreating Catalysts Myriam Perez De la Rosa 1 , Gilles Berhault 2 , Apurva Mehta 3 , Russell R. Chianelli 1 1 University of Texas at El Paso, Materials Research Technology Institute, El Paso, TX 2 Institut de Recherches sur la Catalyse, CNRS, Villeurbanne cedex, France 3 Stanford Synchrotron Radiation Laboratory, Menlo Park, CA Figure 1: MoS 2 layered structure. As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises. The rising price of fuel has another consequence: refiners tend to purchase cheaper fuels of poorer quality. These poor quality fuels contain increasing amounts of sulfur and other pollutants leading to a decline

107

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "Alabama" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",184,181,173,176,167,156,154,154,157,148,141,141,142,147,152,179,211,206,271,268,282 " Average heat value (Btu per pound)",12094,12107,12061,12092,12088,11861,11794,11584,11519,10963,10951,10990,10828,10977,10878,10950,10879,10644,10659,10507,10633 " Average sulfur Content (percent)",1.51,1.4,1.43,1.33,1.3,1.2,1.24,1.13,1.13,1.02,0.91,0.92,0.94,0.95,0.84,0.97,0.94,0.88,0.89,0.92,0.99 "Petroleum (cents per million Btu)1",507,512,460,425,402,376,446,405,288,326,652,552,509,560,754,1148,1327,1107,1672,1249,1589 " Average heat value (Btu per gallon)",130098,137126,137164,137671,137864,138276,139383,139645,139510,139140,137395,144286,140588,141395,142757,141012,140469,143452,140050,137243,137733

108

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Nebraska" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",75,75,75,75,77,75,72,59,59,55,56,57,58,60,66,71,80,88,90,133,142 " Average heat value (Btu per pound)",8561,8542,8553,8561,8571,8594,8599,8595,8584,8498,8632,8585,8654,8673,8574,8570,8514,8511,8496,8544,8547 " Average sulfur Content (percent)",0.35,0.35,0.37,0.35,0.35,0.33,0.34,0.32,0.27,0.3,0.3,0.31,0.3,0.29,0.32,0.31,0.3,0.31,0.31,0.31,0.28 "Petroleum (cents per million Btu)1",703,457,465,248,402,224,511,450,333,432,649,656,555,457,712,1343,1534,1669,1772,1056,1711 " Average heat value (Btu per gallon)",138043,137600,137586,107945,137640,103081,137621,137567,132550,137671,137750,138571,138043,138040,136976,138119,138124,138007,139452,140500,137895

109

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Louisiana" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",170,165,153,158,154,155,151,148,143,140,132,131,127,134,138,151,166,185,210,204,216 " Average heat value (Btu per pound)",8194,8223,8122,8092,8136,8110,8171,8102,8097,8149,7933,8030,8095,8023,8146,8136,8205,8246,8183,8201,8114 " Average sulfur Content (percent)",0.49,0.49,0.5,0.52,0.51,0.58,0.57,0.64,0.56,0.58,0.63,0.74,0.52,0.5,0.51,0.54,0.49,0.39,0.41,0.39,0.39 "Petroleum (cents per million Btu)1",371,413,388,223,269,348,327,302,222,204,459,519,63,247,286,427,300,196,425,195,296 " Average heat value (Btu per gallon)",144962,143214,141950,152148,147869,141543,147221,153519,153400,154469,149843,145238,140393,145807,147379,147057,142607,139310,140002,136969,136986

110

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

7 PM)" 7 PM)" "North Carolina" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",178,178,173,170,168,163,148,143,144,144,143,159,176,178,200,240,269,274,326,359,352 " Average heat value (Btu per pound)",12544,12506,12456,12465,12416,12461,12422,12368,12398,12450,12448,12380,12422,12423,12345,12309,12268,12374,12243,12333,12270 " Average sulfur Content (percent)",0.96,0.94,0.92,0.96,0.95,0.86,0.89,0.9,0.89,0.85,0.82,0.86,0.85,0.87,0.86,0.88,0.91,1.01,1.01,1.04,1.01 "Petroleum (cents per million Btu)1",512,473,441,405,384,382,468,428,311,398,616,584,467,623,715,997,1356,1042,1513,1014,1433 " Average heat value (Btu per gallon)",138229,138317,138450,138610,138238,138148,138298,138264,138167,138169,138360,145952,144098,140848,141338,142869,139114,146617,146483,146243,144814

111

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

9 PM)" 9 PM)" "Wisconsin" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",136,136,133,121,121,114,106,109,107,102,102,105,112,112,118,129,150,170,198,206,218 " Average heat value (Btu per pound)",9642,9643,9725,9490,9565,9351,9222,9375,9299,9115,9165,9500,9089,9006,9030,9088,8975,8967,9025,8920,8964 " Average sulfur Content (percent)",0.81,0.81,0.71,0.49,0.51,0.46,0.46,0.5,0.46,0.39,0.35,0.37,0.41,0.38,0.39,0.38,0.36,0.36,0.37,0.38,0.4 "Petroleum (cents per million Btu)1",526,312,310,153,221,177,193,180,83,81,88,146,111,108,109,150,203,204,356,222,240 " Average heat value (Btu per gallon)",139200,113495,110433,92736,103860,95883,91924,90760,75079,73869,74440,139048,133712,134343,135093,135238,134333,134845,136126,134033,131245

112

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Indiana" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",136,134,131,127,127,125,119,116,112,111,108,114,117,120,121,140,152,161,193,202,214 " Average heat value (Btu per pound)",10562,10569,10628,10539,10535,10338,10357,10461,10517,10620,10604,10540,10593,10550,10601,10756,10638,10588,10486,10470,10498 " Average sulfur Content (percent)",2.06,1.98,1.88,1.78,1.76,1.57,1.59,1.61,1.63,1.58,1.51,1.43,1.48,1.5,1.53,1.72,1.61,1.74,1.71,1.73,1.76 "Petroleum (cents per million Btu)1",191,297,218,365,390,298,198,150,184,170,245,220,208,311,330,803,1394,1337,2002,1002,1571 " Average heat value (Btu per gallon)",89740,105529,96317,126976,137426,115914,90057,81174,100264,90095,90071,149762,142836,138660,135267,139405,139621,140607,139538,139436,139390

113

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Texas" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",145,150,149,144,135,134,129,126,124,120,123,133,126,125,131,129,139,149,162,168,184 " Average heat value (Btu per pound)",7291,7225,7234,7284,7346,7346,7440,7423,7509,7506,7548,7635,7677,7605,7641,7611,7665,7681,7759,7787,7705 " Average sulfur Content (percent)",0.74,0.75,0.76,0.75,0.73,0.77,0.71,0.75,0.71,0.65,0.65,0.67,0.68,0.78,0.77,0.74,0.67,0.6,0.56,0.61,0.61 "Petroleum (cents per million Btu)1",517,471,399,179,211,283,473,342,113,96,617,556,200,423,171,248,267,240,312,213,423 " Average heat value (Btu per gallon)",141838,139760,140129,112764,120681,117555,138383,114810,99067,80493,135419,141905,140340,139979,137700,137955,137876,136814,136638,136569,135686

114

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "Missouri" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",135,134,134,124,110,98,95,93,92,93,92,96,90,92,93,101,111,133,151,153,159 " Average heat value (Btu per pound)",10400,10298,10321,9860,9718,9216,9063,8994,8938,8948,8913,8940,8875,8865,8838,8854,8808,8825,8837,8802,8801 " Average sulfur Content (percent)",2.01,1.84,1.8,1.02,1.03,0.57,0.58,0.47,0.37,0.34,0.3,0.36,0.36,0.37,0.38,0.37,0.36,0.38,0.38,0.38,0.36 "Petroleum (cents per million Btu)1",280,230,210,113,101,110,183,292,118,88,263,134,118,348,279,1236,1457,1713,1829,1022,1607 " Average heat value (Btu per gallon)",107890,131371,136233,83795,79640,79069,95638,123143,89640,76829,94214,136667,136381,137769,139288,137693,137188,137476,137340,137948,137655

115

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

0 PM)" 0 PM)" "Iowa" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",112,110,110,101,99,99,94,94,88,82,82,81,89,89,93,98,105,108,127,134,142 " Average heat value (Btu per pound)",8892,8890,8867,8660,8783,8678,8658,8662,8636,8581,8626,9000,8648,8705,8665,8668,8612,8619,8605,8657,8585 " Average sulfur Content (percent)",0.7,0.67,0.67,0.52,0.57,0.49,0.45,0.45,0.44,0.4,0.35,0.37,0.39,0.43,0.44,0.42,0.44,0.41,0.41,0.42,0.37 "Petroleum (cents per million Btu)1",518,355,158,127,144,96,117,141,141,399,643,617,579,635,459,1077,474,603,1023,1038,878 " Average heat value (Btu per gallon)",137943,123305,84117,83079,86795,77324,78400,83517,88176,139340,138731,139524,139667,139171,137162,139200,134952,135219,133214,136726,133860

116

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

50 PM)" 50 PM)" "Georgia" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",179,180,180,178,169,167,158,159,155,155,154,166,168,172,180,218,240,261,307,362,390 " Average heat value (Btu per pound)",11893,11936,12039,12148,11774,11576,11581,11755,11750,11740,11559,11730,11686,11668,11024,11058,10994,10983,10947,10933,10891 " Average sulfur Content (percent)",1.63,1.63,1.68,1.37,1.05,0.81,0.83,0.84,0.85,0.8,0.76,0.81,0.79,0.82,0.78,0.81,0.82,0.78,0.78,0.76,0.78 "Petroleum (cents per million Btu)1",486,474,434,347,396,378,431,421,328,390,691,668,549,268,289,433,356,537,838,552,667 " Average heat value (Btu per gallon)",139812,138000,140514,142390,138483,139631,140676,140471,138495,138495,138498,145714,138348,134648,136533,141855,135864,141493,138081,138371,137129

117

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

0 PM)" 0 PM)" "Arizona" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",143,141,137,135,137,139,144,142,133,133,124,125,126,127,130,141,144,159,174,181,180 " Average heat value (Btu per pound)",10482,10356,10303,10271,10281,10274,10232,10159,10186,10257,10229,10145,10232,10081,10211,10088,10011,9946,9828,9712,9685 " Average sulfur Content (percent)",0.49,0.51,0.51,0.49,0.51,0.53,0.55,0.54,0.55,0.55,0.56,0.58,0.6,0.64,0.57,0.57,0.57,0.57,0.59,0.65,0.66 "Petroleum (cents per million Btu)1",446,499,467,511,428,510,539,532,429,480,860,706,654,767,859,1403,1625,1671,2102,1300,1807 " Average heat value (Btu per gallon)",142831,139662,140379,140533,142148,139933,142293,140336,138850,138690,138607,143333,139567,139550,133595,140912,139114,140914,138424,135340,135993

118

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

0 PM)" 0 PM)" "Pennsylvania" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",152,155,148,144,143,136,138,136,135,130,115,121,125,122,137,159,172,175,210,230,241 " Average heat value (Btu per pound)",12241,12302,12399,12443,12368,12315,12321,12279,12323,12552,12670,11240,12111,11733,11615,11741,11459,11400,11079,10940,11063 " Average sulfur Content (percent)",2.16,2.14,2.12,2.07,2.11,2.12,2.09,2.13,2.19,2.15,2.26,2.12,1.95,1.95,2,1.94,2.09,2.08,2.09,2.21,2.39 "Petroleum (cents per million Btu)1",322,247,236,236,249,224,289,225,184,186,292,373,464,467,451,746,762,916,1181,762,1484 " Average heat value (Btu per gallon)",140462,137574,132824,141621,141245,128574,132045,126590,121550,112919,125114,146429,145976,144660,144343,146174,139310,139290,138850,138731,139112

119

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

47 PM)" 47 PM)" "Florida" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",185,186,182,177,178,179,174,173,165,159,157,172,176,176,192,231,256,256,297,339,347 " Average heat value (Btu per pound)",12364,12351,12370,12332,12293,12296,12193,12122,12144,12299,12330,12105,12263,12281,12249,12227,12142,12116,11929,11957,12024 " Average sulfur Content (percent)",1.73,1.73,1.68,1.57,1.6,1.47,1.55,1.59,1.55,1.53,1.59,1.54,1.55,1.44,1.44,1.38,1.37,1.35,1.38,1.45,1.67 "Petroleum (cents per million Btu)1",302,225,242,220,226,247,278,254,193,236,409,339,324,389,392,581,568,712,1003,727,856 " Average heat value (Btu per gallon)",151010,151217,151471,151660,151248,150633,148417,143486,143812,147529,147162,150000,149657,148431,148183,147510,146124,147276,146433,144745,143138

120

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Virginia" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",155,152,147,147,145,145,142,139,138,134,133,159,169,167,195,233,245,249,277,308,328 " Average heat value (Btu per pound)",12714,12768,12830,12817,12778,12743,12597,12554,12603,12702,12814,12730,12845,12826,12713,12650,12592,12531,12492,12501,12476 " Average sulfur Content (percent)",0.96,1,1.03,1,0.99,1.03,0.99,1.01,0.97,1.3,0.98,1.02,1.16,0.97,0.94,1,1.04,0.94,0.92,1,1.02 "Petroleum (cents per million Btu)1",384,223,247,213,216,251,290,282,204,230,424,357,380,499,497,761,875,922,1380,978,1315 " Average heat value (Btu per gallon)",146360,146626,148881,150319,149743,146179,146988,148219,150157,150660,151002,148810,149779,149367,150757,149019,150090,148238,147390,145531,145626

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Minnesota" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",125,126,119,113,114,114,107,109,107,110,111,102,106,108,107,113,122,150,169,164,174 " Average heat value (Btu per pound)",8788,8802,8838,8844,8821,8828,8914,8895,8883,8883,8929,8930,8860,8895,8914,8909,8911,8853,8902,8878,8812 " Average sulfur Content (percent)",0.51,0.48,0.45,0.44,0.46,0.47,0.45,0.45,0.44,0.44,0.43,0.47,0.45,0.46,0.44,0.44,0.44,0.45,0.46,0.46,0.43 "Petroleum (cents per million Btu)1",93,88,83,80,85,85,90,78,74,76,54,65,60,85,110,157,152,444,941,1210,1568 " Average heat value (Btu per gallon)",73719,72052,72467,71631,73031,73310,74050,72267,72781,71055,72531,132857,131267,133093,134967,133848,134976,132929,136357,139955,140595

122

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "Washington" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",158,155,137,136,136,144,157,163,149,156,169,146,140,143,133,154,173,217,216,227 " Average heat value (Btu per pound)",8135,8014,8189,8125,8400,8267,7936,8043,8215,8224,8310,8014,8052,8151,8131,8532,9211,8366,8403,8391 " Average sulfur Content (percent)",0.7,0.66,0.66,0.71,0.65,0.69,0.71,0.62,0.59,0.75,0.73,1.01,1,0.93,0.75,0.69,0.34,0.32,0.33,0.34 "Petroleum (cents per million Btu)1",511,573,466,469,472,485,509,499,405,479,664,241,325,412,562,1629,663,1229,965,1383 " Average heat value (Btu per gallon)",140948,140176,139924,139936,139933,139952,139931,139943,139907,140000,140000,137098,145438,139331,137340,142807,138598,139040,139905,130674

123

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

7 PM)" 7 PM)" "West Virginia" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",147,152,147,142,139,127,125,124,122,118,120,125,121,125,135,153,167,173,222,254,239 " Average heat value (Btu per pound)",12452,12505,12524,12489,12468,12418,12378,12398,12305,12361,12281,12085,12103,12166,12061,11976,11967,12046,11897,11959,12034 " Average sulfur Content (percent)",1.89,1.92,2.05,1.94,1.87,1.98,1.93,1.95,1.86,1.84,1.42,1.19,1.71,1.69,1.75,1.78,1.79,2.04,2,2.13,2.4 "Petroleum (cents per million Btu)1",572,537,484,462,442,439,529,464,371,463,721,666,543,725,785,959,901,1063,2146,1434,1738 " Average heat value (Btu per gallon)",139293,139090,139486,139229,139324,138988,138655,138883,139186,139100,139324,137143,122840,140526,140943,141667,143471,143817,135557,137855,138536

124

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

32 PM)" 32 PM)" "Wyoming" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",84,83,76,80,80,82,82,81,79,76,78,77,79,82,87,95,100,105,117,120,132 " Average heat value (Btu per pound)",8811,8756,8840,8779,8766,8738,8716,8787,8794,8784,8803,8880,8759,8826,8826,8814,8708,8684,8769,8791,8806 " Average sulfur Content (percent)",0.54,0.51,0.52,0.51,0.52,0.5,0.52,0.54,0.53,0.51,0.5,0.48,0.49,0.49,0.48,0.49,0.51,0.49,0.51,0.51,0.53 "Petroleum (cents per million Btu)1",527,494,479,473,444,445,546,517,406,476,724,707,553,714,950,1317,1628,1772,2146,1369,1736 " Average heat value (Btu per gallon)",138848,139167,139150,139060,138986,139281,139171,138821,139138,139102,139219,146905,139448,139593,139338,139638,139333,139448,139926,139824,139238

125

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

3 PM)" 3 PM)" "Delaware" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",181,178,173,169,162,162,159,157,156,159,152,217,178,190,220,281,308,286,352,334,355 " Average heat value (Btu per pound)",13035,13053,13064,13027,12954,13085,13020,13062,12962,12935,12995,11495,12858,12803,12530,12222,12401,12524,12452,12567,12550 " Average sulfur Content (percent)",0.97,0.96,1.03,0.94,0.92,1,1.01,0.99,0.98,0.97,1.01,0.67,0.91,0.9,0.83,0.67,0.74,0.73,0.74,0.8,0.77 "Petroleum (cents per million Btu)1",278,238,242,230,259,261,321,278,215,244,446,380,406,576,611,863,1351,1304,1811,1120,1624 " Average heat value (Btu per gallon)",151269,151483,150760,151286,149733,152012,151900,151464,150957,150998,150486,148095,148964,147895,146312,147248,139117,144114,143781,137938,136498

126

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

9 PM)" 9 PM)" "New Jersey" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",180,178,173,177,182,178,175,176,159,145,139,227,187,180,205,218,273,289,333,401,416 " Average heat value (Btu per pound)",13429,13402,13465,13397,13341,13282,12993,13084,13113,13150,13153,13000,13137,13056,12868,12644,12770,11890,12073,11491,11758 " Average sulfur Content (percent)",1.16,1.27,1.29,1.29,1.29,1.21,1.36,1.24,1.13,1.14,1.13,1.57,1.23,1.11,1.58,1.14,1.17,0.88,1.03,0.9,1.05 "Petroleum (cents per million Btu)1",360,302,303,268,290,286,359,299,242,288,484,454,468,604,602,985,970,1147,1547,1011,1495 " Average heat value (Btu per gallon)",148298,148469,148864,149283,148376,149310,147321,148488,148655,149295,149557,141667,143162,139250,135095,134802,141505,136271,138217,136595,139952

127

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "New York" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",161,159,149,150,145,141,143,142,143,145,149,142,155,159,176,213,240,241,257,273,305 " Average heat value (Btu per pound)",12846,12923,12978,12914,12959,13051,13013,13105,13052,13034,13117,13025,13019,12545,12063,11832,11584,11382,11248,11187,10982 " Average sulfur Content (percent)",1.84,1.77,1.65,1.55,1.71,1.79,1.8,1.8,1.75,1.67,1.12,1.97,1.78,1.8,1.66,1.4,1.36,1.37,1.43,1.29,1.31 "Petroleum (cents per million Btu)1",360,272,264,257,251,263,319,284,203,237,431,350,366,493,486,731,800,799,1390,811,1144 " Average heat value (Btu per gallon)",150036,150812,150898,151012,149567,148624,149671,150326,150740,150569,151162,149286,149371,149998,149024,148914,150136,151036,148410,146824,144319

128

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

2 PM)" 2 PM)" "New Mexico" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",132,138,132,137,141,142,143,134,131,133,138,147,153,143,148,151,156,179,199,190,206 " Average heat value (Btu per pound)",9117,9092,9013,8991,9043,9033,9116,9069,9082,9132,9206,9250,9444,9164,9225,9173,9282,9198,9173,9226,8963 " Average sulfur Content (percent)",0.79,0.8,0.81,0.81,0.82,0.8,0.8,0.81,0.8,0.8,0.8,0.72,0.73,0.73,0.72,0.79,0.76,0.77,0.75,0.77,0.75 "Petroleum (cents per million Btu)1",525,535,516,506,465,490,587,575,439,502,758,631,614,754,956,1293,1695,1879,2353,1526,1942 " Average heat value (Btu per gallon)",138098,136000,135676,136000,136000,136000,136000,136000,136000,136000,136000,139524,136000,136048,136007,136252,136024,136026,134186,134086,134219

129

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "Kentucky" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",119,118,116,117,116,111,106,105,106,106,102,110,119,123,137,152,170,175,214,217,226 " Average heat value (Btu per pound)",11558,11552,11620,11697,11683,11625,11536,11571,11579,11582,11604,11425,11464,11498,11550,11620,11568,11661,11534,11472,11460 " Average sulfur Content (percent)",2.59,2.53,2.44,2.39,2.34,2.42,2.47,2.5,2.37,2.27,2.29,2.15,2.16,2.12,2.09,2.21,2.23,2.22,2.33,2.54,2.58 "Petroleum (cents per million Btu)1",575,505,479,204,153,318,310,361,278,275,559,567,465,227,127,117,127,127,203,168,217 " Average heat value (Btu per gallon)",138943,138998,138993,90574,87876,118024,105736,116976,115748,110888,125371,139286,137640,132664,131967,132710,132305,134155,134110,134810,135140

130

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "United States" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",145,145,141,139,136,132,129,127,125,122,120,123,125,128,136,154,169,177,207,221,227 " Average heat value (Btu per pound)",10465,10378,10395,10315,10338,10248,10263,10275,10241,10163,10115,10200,10168,10137,10074,10107,10063,10028,9947,9902,9843 " Average sulfur Content (percent)",1.35,1.3,1.29,1.18,1.17,1.08,1.1,1.11,1.06,1.01,0.93,0.89,0.94,0.97,0.97,0.98,0.97,0.96,0.97,1.01,1.04 "Petroleum (cents per million Btu)1",335,253,251,237,242,257,303,273,202,236,418,369,334,433,429,644,623,717,1087,702,954 " Average heat value (Btu per gallon)",149536,150093,150293,149983,149324,149371,149367,149838,149736,149407,149857,147857,147902,147086,147286,146481,143883,144545,142205,141321,140598

131

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

3 PM)" 3 PM)" "Kansas" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",124,123,118,102,102,102,99,102,98,95,98,105,98,101,103,112,119,123,141,143,151 " Average heat value (Btu per pound)",8948,8998,8900,8654,8708,8730,8827,8766,8696,8628,8672,8700,8571,8619,8626,8569,8607,8582,8545,8526,8569 " Average sulfur Content (percent)",0.58,0.59,0.49,0.43,0.49,0.43,0.49,0.48,0.45,0.43,0.42,0.43,0.44,0.48,0.44,0.44,0.45,0.41,0.39,0.4,0.38 "Petroleum (cents per million Btu)1",540,432,438,402,397,212,412,282,266,319,400,336,273,362,407,556,485,340,711,428,569 " Average heat value (Btu per gallon)",138176,138367,139117,138633,138890,104067,141940,154117,144688,147607,154871,154286,157186,156948,156855,155174,144821,137017,136552,137645,137600

132

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

5 PM)" 5 PM)" "Illinois" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",175,171,174,170,161,163,163,155,156,144,115,119,119,116,115,119,126,134,158,165,170 " Average heat value (Btu per pound)",10789,10721,10666,10362,10181,9970,9878,9781,9700,9560,9690,9555,9253,9176,9120,9015,8937,8962,8892,8876,8896 " Average sulfur Content (percent)",2.07,2,1.91,1.63,1.46,1.14,1.16,1.17,1.1,1.03,1.11,1.1,0.7,0.66,0.65,0.62,0.53,0.52,0.5,0.48,0.5 "Petroleum (cents per million Btu)1",395,309,304,297,280,232,298,309,234,291,324,579,524,540,464,1286,1465,1744,2432,1505,1765 " Average heat value (Btu per gallon)",148831,149029,149843,148693,148945,124129,128245,126779,130829,130367,96874,153333,140345,147876,143595,137405,141102,137319,137310,137181,137507

133

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "Mississippi" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",165,167,160,164,157,153,151,155,154,155,152,163,159,154,169,210,231,271,301,301,289 " Average heat value (Btu per pound)",12543,12555,12507,12338,11312,11221,11023,10486,10569,11062,11549,11670,9723,9235,9087,8993,8961,9290,9276,8541,8519 " Average sulfur Content (percent)",1.64,1.56,1.69,1.41,1.02,1.04,0.93,0.68,0.75,0.74,0.85,0.7,0.63,0.59,0.57,0.57,0.6,0.59,0.55,0.53,0.69 "Petroleum (cents per million Btu)1",243,216,200,176,164,374,224,269,199,154,333,377,428,412,465,651,830,763,1042,1193,1076 " Average heat value (Btu per gallon)",151229,151257,152595,153436,152705,139507,154381,156867,157169,157967,155569,154524,145986,155336,155638,155064,155619,154738,149826,142902,151357

134

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "New Hampshire" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",178,174,169,161,152,159,161,163,161,152,148,167,180,170,202,244,256,290,353,366,380 " Average heat value (Btu per pound)",13303,13247,13260,13179,13032,13111,13146,13054,13133,13133,13114,13050,13245,13262,13199,13087,13196,13109,12886,12849,12922 " Average sulfur Content (percent)",1.81,1.43,1.61,1.62,1.52,1.38,1.56,1.42,1.4,1.35,1.34,1.34,1.17,1.09,1.16,1.32,1.29,1.51,1.2,1.44,1.44 "Petroleum (cents per million Btu)1",227,180,186,184,200,233,254,264,187,214,345,337,371,374,406,595,782,914,1069,717,1345 " Average heat value (Btu per gallon)",154329,156712,156757,154129,153464,154402,154517,152621,151850,153221,153740,151190,152400,152724,152883,154024,155071,152450,152379,151240,146800

135

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

9 PM)" 9 PM)" "Montana" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",67,67,71,69,69,67,71,68,67,73,92,95,61,62,64,71,85,93,102,107,111 " Average heat value (Btu per pound)",8564,8522,8576,8496,8500,8520,8439,8426,8433,8435,6618,8380,8482,8515,8504,8447,8428,8426,8347,8409,8375 " Average sulfur Content (percent)",0.63,0.65,0.66,0.65,0.66,0.68,0.68,0.72,0.72,0.73,0.52,0.53,0.64,0.62,0.63,0.66,0.66,0.61,0.69,0.67,0.69 "Petroleum (cents per million Btu)1",543,472,509,526,463,491,565,529,466,491,"-","-",219,746,948,1274,173,90,135,83,73 " Average heat value (Btu per gallon)",141000,141000,141000,141000,141000,141000,141000,141000,141000,140100,"-","-",137148,136574,137064,126095,130833,137343,136819,139021,138571

136

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "Nevada" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",149,141,146,147,143,131,137,139,130,129,126,126,134,142,136,154,173,188,220,222,244 " Average heat value (Btu per pound)",11122,11121,11051,11012,11291,11075,11140,11169,11199,11257,11211,11210,11284,11120,11118,11176,11495,11151,10664,10505,10626 " Average sulfur Content (percent)",0.53,0.5,0.49,0.49,0.49,0.48,0.49,0.5,0.47,0.46,0.47,0.51,0.53,0.5,0.54,0.53,0.54,0.46,0.44,0.42,0.47 "Petroleum (cents per million Btu)1",314,393,331,358,329,337,552,508,380,453,722,585,600,601,473,990,1270,"-",2360,1382,1751 " Average heat value (Btu per gallon)",148233,147538,147779,148545,148195,146667,136898,138760,138845,139110,139110,151667,139110,138548,149914,141760,140610,"-",138938,138386,138452

137

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

2 PM)" 2 PM)" "Ohio" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",152,148,144,141,144,142,134,132,136,136,146,131,123,121,133,154,170,171,205,239,224 " Average heat value (Btu per pound)",11882,11945,11983,12049,12052,12122,12056,11891,11913,11918,11823,11550,12143,12160,12098,12097,11525,11495,11444,11768,11563 " Average sulfur Content (percent)",2.44,2.63,2.57,2.39,2.34,1.89,2.08,2.01,2.01,1.98,1.92,2.07,1.98,2.14,2.25,2.16,1.68,1.7,1.96,2.2,2.28 "Petroleum (cents per million Btu)1",459,381,233,187,197,349,347,426,202,348,635,601,532,731,777,1291,1224,1619,591,488,760 " Average heat value (Btu per gallon)",142917,131114,93026,81274,82224,128733,105121,135936,105736,128624,133586,142143,125426,137810,137986,138193,138150,138026,134567,136305,136052

138

Petroleum marketing monthly with data for October 1996  

SciTech Connect

This publication presents statistical data on crude oil costs and refined petroleum products sales. Data on petroleum include the domestic first purchase price, landed cost of imported crude oil, and the refiner`s acquisition cost of crude oil. Sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane.

NONE

1997-01-01T23:59:59.000Z

139

Updated estimation of energy efficiencies of U.S. petroleum refineries.  

SciTech Connect

Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

Palou-Rivera, I.; Wang, M. Q. (Energy Systems)

2010-12-08T23:59:59.000Z

140

Chemical Kinetic Modeling of Fuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

petroleum based fuels * Non-petroleum based fuels: - Biodiesel and new generation biofuels - Fischer-Tropsch (F-T) fuels - Oil sand derived fuels Reduce mechanisms for...

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations  

SciTech Connect

Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.

Johnson, C.; Hettinger, D.; Mosey, G.

2011-05-01T23:59:59.000Z

142

Weekly Petroleum Status Report  

U.S. Energy Information Administration (EIA) Indexed Site

based on both current weekly data and data published in the most recent month of the Petroleum Supply Monthly. Natural Gas Plant Liquids Production, Other Renewable Fuels and...

143

Petroleum Marketing Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Marketing Annual 2009 Petroleum Marketing Annual 2009 Released: August 6, 2010 Monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Notice: Changes to EIA Petroleum Data Program Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Previous Issues --- Previous reports are available on the historical page. Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner Acquisition Cost of Crude Oil by PAD Districts HTML PDF TXT 2 U.S. Refiner Prices of Petroleum Products to End Users HTML PDF TXT 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF TXT Motor Gasoline to End Users HTML Residual Fuel Oil and No. 4 Fuel to End Users HTML Other Petroleum Products to End Users HTML

144

Clean Cities 2009 Petroleum Displacement Awards | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2009 Petroleum Displacement Awards Clean Cities 2009 Petroleum Displacement Awards 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review...

145

Assumptions to the Annual Energy Outlook 2001 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

146

Assumptions to the Annual Energy Outlook 1999 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

petroleum.gif (4999 bytes) petroleum.gif (4999 bytes) The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below. 75

147

Assumptions to the Annual Energy Outlook 2002 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for

148

Catalyst for Improving the Combustion Efficiency of Petroleum...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines 2005 Diesel...

149

SBIR/STTR Release 2 Topics Announced—Includes Hydrogen and Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

The 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 topics include fuel cell-battery electric hybrid trucks and in-line quality control devices for polymer electrolyte membrane (PEM) fuel cells.

150

Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000  

SciTech Connect

The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

Das, S.

1991-12-01T23:59:59.000Z

151

Further investigation of the impact of the co-combustion of tire-derived fuel and petroleum coke on the petrology and chemistry of coal combustion products  

SciTech Connect

A Kentucky cyclone-fired unit burns coal and tire-derived fuel, sometimes in combination with petroleum coke. A parallel pulverized combustion (pc) unit at the same plant burns the same coal, without the added fuels. The petrology, chemistry, and sulfur isotope distribution in the fuel and resulting combustion products was investigated for several configurations of the fuel blend. Zinc and Cd in the combustion products are primarily contributed from the tire-derived fuel, the V and Ni are primarily from the petroleum coke, and the As and Hg are probably largely from the coal. The sulfur isotope distribution in the cyclone unit is complicated due to the varying fuel sources. The electrostatic precipitator (ESP) array in the pc unit shows a subtle trend towards heavier S isotopic ratios in the cooler end of the ESP.

Hower, J.C.; Robertson, J.D.; Elswick, E.R.; Roberts, J.M.; Brandsteder, K.; Trimble, A.S.; Mardon, S.M. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

2007-07-01T23:59:59.000Z

152

AMO Issues Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications  

Energy.gov (U.S. Department of Energy (DOE))

The AMO seeks information on mid-Technology Readiness Level R&D needs, market challenges, supply chain challenges, and shared facility needs addressing clean energy manufacturing topics, including the fuel cell and hydrogen sectors.

153

Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

other refinery inputs including alcohols, ethers, bioesters, other refinery inputs including alcohols, ethers, bioesters, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining activities in the five Petroleum Area Defense Districts (PADDs) (Figure 9). The model is created by aggregating individual refineries into one linear programmming representation for each PADD. This representation provides the marginal costs of production for a number of conventional and new petroleum products. In order to interact with other NEMS modules with different regional representations, certain PMM inputs and outputs are converted from PADD regions to other regional structures and vice versa. The linear programming results are used to determine

154

Assumptions to the Annual Energy Outlook 2000 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below.100

155

New Hydrodesulfurization Catalyst for Petroleum-Fed Fuel Cell Vehicles and Cogenerations  

Science Journals Connector (OSTI)

Petroleum fractions are hydrodesulfurized using conventional Co(Ni)?Mo/Al2O3 catalysts in the refinery; however, gasoline or kerosene still contains 30?70 wt ppm of residual sulfur. ... Therefore, CDSC-2 is considered as operable for 1 year sufficiently under the practical LHSV (0.25 h-1). ...

Kinya Tawara; Takeshi Nishimura; Hikoichi Iwanami; Tokuyoshi Nishimoto; Takashi Hasuike

2001-04-21T23:59:59.000Z

156

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

157

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

158

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

159

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rates A special excise tax rate of 2% is imposed on the sale of propane (liquefied petroleum gas) and a tax of 0.04 per gallon is imposed on all special fuels sales, including...

160

Phillips Petroleum  

Office of Legacy Management (LM)

Phillips Petroleum Phillips Petroleum -Q-Y SPERT at NRTS - Scope and purpose is to subject heterogeneous reactor cores of differing designs. to power excurstons of increasing magnitude to determine the safe upper limit of avaIlable excess re- activity and the rates at which this ex- cess may safely be added. Of pfbrticuler interest also is the mechanism of the physic81 reactions which result in core damsge, i.e., movements and possible oc- currence of chemical reactions between fuel elements and coolants. SPERT I is still in operation with core A. However, they are now Working With 8 nine foot head of water in place of the original tvo foot head of water. Core B will be 8 core with physical design such that the pl8tes of the fuel elements may be variably spaced.

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EIA-Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2007 Petroleum Market Module Figure 9. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, and bioesters), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining

162

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

163

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

164

SBIR/STTR Phase I Release 2 Technical Topics Announced for FY14 Fuel Cell Topics Included  

Energy.gov (U.S. Department of Energy (DOE))

Phase I Release 2 technical topics include prototype fuel cell-battery electric hybrid trucks for waste transportation and novel membranes and non-platinum group metal catalysts for direct methanol as well as hydrogen fuel cells.

165

Mutagenicity of diesel exhaust particle extracts: Influence of non-petroleum fuel extenders  

Science Journals Connector (OSTI)

The mutagenicity of dichloromethane extracts of diesel participate exhaust, collected while the engine was running at steady state on diesel fuel alone was higher than when 10% ... in higher estimates of mutageni...

Charles R. Clark Ph.D.; Roger O. McClellan…

1982-11-01T23:59:59.000Z

166

Constituents of potential concern for human health risk assessment of petroleum fuel releases  

Science Journals Connector (OSTI)

...investigation in affected environmental media, such as soil, groundwater, surface...linkages between the affected environmental media and people living or working at or near...fuel constituent in each environmental medium (soil, soil gas or water) was assumed...

Richard L. Bowers; Jonathan W. N. Smith

167

Weekly Petroleum Status Report  

U.S. Energy Information Administration (EIA) Indexed Site

On-Highway Diesel Fuel Prices, January 2013 to Present Note: See Appendix B, Weekly Petroleum Price Surveys, page 40 for more information about the data in this graph. Source:...

168

The potential for low petroleum gasoline  

SciTech Connect

The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

Hadder, G.R.; Webb, G.M.; Clauson, M.

1996-06-01T23:59:59.000Z

169

Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same  

DOE Patents (OSTI)

The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

Shafer, Scott F. (Morton, IL)

2002-01-01T23:59:59.000Z

170

Puget Sound Clean Cities Petroleum Reduction Project | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Puget Sound Clean Cities Petroleum Reduction Project Puget Sound Clean Cities Petroleum Reduction Project 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

171

Puget Sound Clean Cities Petroleum Reduction Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puget Sound Clean Cities Petroleum Reduction Project Puget Sound Clean Cities Petroleum Reduction Project 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

172

Petroleum Market Model of the National Energy Modeling System. Part 1  

SciTech Connect

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.

NONE

1997-12-18T23:59:59.000Z

173

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Alaska" "Fuel, Quality",1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",203,141,148 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",8698,8520,8278 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",0.33,0.5,0.71

174

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Maine" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-",241,237,262,266,327,319,367,506,619 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-",13138,13124,12854,12823,12784,13171,12979,12779,13011 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-",0.71,0.69,0.77,0.78,0.7,0.65,0.72,0.82,0.72

175

A comparative assessment of the economics of plutonium disposition including comparison with other nuclear fuel cycles  

SciTech Connect

DOE has been evaluating three technologies for the disposition of approximately 50 metric tons of surplus plutonium from defense-related programs: reactors, immobilization, and deep boreholes. As part of the process supporting an early CY 1997 Record of Decision (ROD), a comprehensive assessment of technical viability, cost, and schedule has been conducted. Oak Ridge National Laboratory has managed and coordinated the life-cycle cost (LCC) assessment effort for this program. This paper discusses the economic analysis methodology and the results prior to ROD. Other objectives of the paper are to discuss major technical and economic issues that impact plutonium disposition cost and schedule. Also to compare the economics of a once-through weapons-derived MOX nuclear fuel cycle to other fuel cycles, such as those utilizing spent fuel reprocessing. To evaluate the economics of these technologies on an equitable basis, a set of cost estimating guidelines and a common cost-estimating format were utilized by all three technology teams. This paper also includes the major economic analysis assumptions and the comparative constant-dollar and discounted-dollar LCCs.

Williams, K.A.; Miller, J.W.; Reid, R.L.

1997-05-01T23:59:59.000Z

176

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Hawaii" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-","-","-",303,296,188,175,281,309,358,297,279 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-","-","-",11536,11422,11097,10975,10943,10871,10669,10640,10562 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-","-","-",0.32,0.44,0.49,0.55,0.51,0.47,0.66,0.65,0.62

177

PETROLEUM PLANTATIONS  

E-Print Network (OSTI)

Science 198, 942 (1977). Petroleum Plantations (continued)Diu is ion, Ext. 6782 PETROLEUM PLANT AT I ONs''e MelvinJapan April 1, 1978 PETROLEUM PLANTATIONS Melvin Calvin

Calvin, Melvin

2011-01-01T23:59:59.000Z

178

Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods  

DOE Patents (OSTI)

Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

Mariani, Robert Dominick

2014-09-09T23:59:59.000Z

179

Naval Petroleum Reserves | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Petroleum Reserves For much of the 20th century, the Naval Petroleum and Oil Shale Reserves served as a contingency source of fuel for the Nation's military. All that...

180

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Petroleum marketing monthly, October 1991. [Contains glossary  

SciTech Connect

This report is designed to give information and statistical data about a variety of crude oils and refined petroleum products. The publication provides statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiner's acquisition cost of crude oil. Sales data for motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane are presented. 12 figs., 55 tabs.

Not Available

1991-10-10T23:59:59.000Z

182

Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2008-09-15T23:59:59.000Z

183

Annual book of ASTM Standards 2005. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The standard part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrographic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2005-09-15T23:59:59.000Z

184

Chapter 3 - Fuels for Fuel Cells  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with various types of liquid fuels and the relevant chemical and physical properties of these fuels as a means of comparison to the fuels of the future. It gives an overview of the manufacture and properties of the common fuels as well as a description of various biofuels. A fuel mixture usually contains a wide range of organic compounds (usually hydrocarbons). The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, and a host of other properties. Depending on the application (stationary, central power, remote, auxiliary, transportation, military, etc.), there are a wide range of conventional fuels, such as natural gas, liquefied petroleum gas, light distillates, methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-rich synthesis gas) to power fuel cells. Fossils fuels include gaseous fuels, gasoline, kerosene, diesel fuel, and jet fuels. Gaseous fuels include natural gas and liquefied petroleum gas. Types of gasoline include automotive gasoline, aviation gasoline, and gasohol. Some additives added into gasoline are antioxidants, corrosion inhibitors, demulsifiers, anti-icing, dyes and markers, drag reducers, and oxygenates.

James G. Speight

2011-01-01T23:59:59.000Z

185

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Petroleum Reduction Plan All state agencies must reduce their fleets' petroleum consumption by increasing vehicle fuel economy and operating efficiency and reducing...

186

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

individual produces each year are exempt from the motor vehicle fuel excise tax, the petroleum inspection fee, and any petroleum inspection requirements not required under federal...

187

Definition: Fossil fuels | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Fossil fuels Jump to: navigation, search Dictionary.png Fossil fuels Fuels formed in the Earth's crust over millions of years from decomposed organic matter. Common fossil fuels include petroleum, coal, and natural gas.[1][2] View on Wikipedia Wikipedia Definition Fossil fuels are fuels formed by natural processes such as anaerobic decomposition of buried dead organisms. The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years. Fossil fuels contain high percentages of carbon and include coal, petroleum, and natural gas. They range from volatile materials with low carbon:hydrogen ratios like methane, to liquid petroleum

188

Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue  

DOE Patents (OSTI)

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, J.R.

1981-11-13T23:59:59.000Z

189

Evaluation of immunoassay-based field test kits for the detection of petroleum fuel hydrocarbons in soil  

SciTech Connect

The objectives of this project are to identify, experimentally evaluate and implement the use of alternative field screening methods that are specific for environmental contaminants of interest and concern to the Department of Energy. Immunochemical techniques are rapidly becoming a significant component in the arsenal of field screening methods. Analytical results obtained by immunoassay have been shown to correlate well with those obtained by traditional laboratory methods. Also, the use of immunoassay-based field screening methods can significantly reduce the cost and time required for environmental assessment. The authors are currently evaluating the effectiveness of several immunoassay-based test kits for detecting petroleum fuel hydrocarbons in soil. Evaluations of two kits, one a semiquantitative assay and the other a quantitative assay, have been completed. The samples analyzed were either solvent or soil spiked with either a mixture of benzene, toluene, ethylbenzene and the three isomers of xylene (BTEX), or gasoline. The kits performed well and according to the manufacturers` claims. Of the 50 assays made with the semiquantitative test, the concentrations of 44 samples were correctly determined. The other six samples were determined to be false positives. A soil matrix effect was observed that could account for some of the false positive results. Experimental results using the quantitative test with BTEX (68 assays) correlated well with those expected; R{sup 2} of 0.976 to 0.983 with slopes of 0.94 to 0.97. With gasoline (38 assays) R{sup 2} values of 0.957 to 0.987 and slopes of 0.76 to 0.78 were obtained. The lower slopes with gasoline are indicative of the lower immunoreactivity of that particular sample of gasoline relative to BTEX.

Waters, L.C.; Palausky, M.A.; Counts, R.W.; Jenkins, R.A.

1995-04-01T23:59:59.000Z

190

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

alternative fuel vehicles (AFVs) capable of operating on natural gas or liquefied petroleum gas (propane), or bi-fuel vehicles capable of operating on conventional fuel or...

191

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient...

192

Petroleum supply monthly, August 1994  

SciTech Connect

Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

Not Available

1994-08-26T23:59:59.000Z

193

2008 Annual Merit Review Results Summary - 10. Fuels Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

enable high fuel economy, deliver lower emissions, and contribute to petroleum displacement. Activities aim to identify advanced petroleum- and non-petroleum-based...

194

Petroleum Analysis  

Science Journals Connector (OSTI)

A comprehensive review of fluorescence techniques used for the analysis of crude petroleum oils encompasses both industrial and research applications of optical techniques routinely applied to oil applications. ... fractions of heavy petroleums were examd. ...

Ryan P. Rodgers; Amy M. McKenna

2011-04-29T23:59:59.000Z

195

Upgrading petroleum and petroleum fractions  

SciTech Connect

A method is described for neutralizing the organic naphthenic acids acidity present in petroleum and petroleum fractions to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the petroleum and petroleum fractions with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized petroleum and petroleum fractions at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

Ferguson, S.; Reese, D.D.

1988-06-21T23:59:59.000Z

196

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network (OSTI)

Torque Performance Curve. ...............35 Figure 9: Torque versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads....................................................................................36 Figure 10: Cycle fuel flow... versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads...........................................................................38 Figure 11: BSFC versus engine speed for conventional diesel fuel for 20%, 60%, and 75% load...

Esquivel, Jason

2010-01-16T23:59:59.000Z

197

Reducing Petroleum Consumption from Transportation  

E-Print Network (OSTI)

The United States consumed more petroleum-based liquid fuel per capita than any other OECD- high-income country- 30 percent more than the second-highest country (Canada) and 40 percent more than the third-highest (Luxemburg). ...

Knittel, Christopher R.

2011-12-01T23:59:59.000Z

198

Reducing Petroleum Consumption from Transportation  

E-Print Network (OSTI)

The United States consumes more petroleum-based liquid fuel per capita than any other OECD high-income country—30 percent more than the second-highest country (Canada) and 40 percent more than the third-highest (Luxembourg). ...

Knittel, Christopher Roland

2012-01-01T23:59:59.000Z

199

Petroleum Market Model of the National Energy Modeling System  

SciTech Connect

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions. The production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. This report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; Appendix E, Data Quality; Appendix F, Estimation methodologies; Appendix G, Matrix Generator documentation; Appendix H, Historical Data Processing; and Appendix I, Biofuels Supply Submodule.

NONE

1997-01-01T23:59:59.000Z

200

Diesel fuel oils, 1980  

SciTech Connect

Properties of diesel fuels produced during 1980 were submitted for study and compilation under a cooperative agreement between the Department of Energy, Bartlesville Energy Technology Center, Bartlesville, Oklahoma and the American Petroleum Institute. Tests of 192 samples of diesel fuel oils from 95 refineries throughout the country were made by 28 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960-1980. Summaries of the results of the 1980 survey, compared with similar data for 1979, are shown.

Shelton, E.M.

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel reforming for fuel cell application.  

E-Print Network (OSTI)

??Fossil fuels, such as natural gas, petroleum, and coal are currently the primary source of energy that drives the world economy. However, fossil fuel is… (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

202

Petroleum Supply Monthly - July 1995 Data  

Gasoline and Diesel Fuel Update (EIA)

Accuracy of Petroleum Supply Data Accuracy of Petroleum Supply Data by Tammy G. Heppner and Carol L. French Overview Petroleum supply data collected by the Petroleum Supply Division (PSD) of the Energy Information Administration (EIA) were on the right track in 1994. These data are tracked through a series of PSD publications: the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report (WFR), the Petroleum Supply Monthly (PSM), and the Petroleum Supply Annual (PSA). For the major petroleum products, weekly estimates in the WPSR and WFR are the first values available. As illustrated in Figure FE1, the PSA data represents the "finish line" or "true" values. The PSM data are closer to the mark; whereas the monthly-from-weekly (MFW) data are close behind in terms of accuracy. For 1994, 59 petroleum supply

203

Clean Cities: Building Partnerships to Reduce Petroleum Use in Transportation (Brochure)  

SciTech Connect

This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country. The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum consumption in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Clean Cities overarching goal is to reduce U.S. petroleum use by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: (1) Replace petroleum with alternative and renewable fuels, including natural gas, propane, electricity, ethanol, biodiesel, and hydrogen; (2) Reduce petroleum consumption through smarter driving practices and fuel economy improvements; and (3) Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices.

Not Available

2012-03-01T23:59:59.000Z

204

Petroleum Supply Monthly, July 1990  

SciTech Connect

Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 states and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

Not Available

1990-09-28T23:59:59.000Z

205

1991 international petroleum encyclopedia  

SciTech Connect

There is no other petroleum industry publication quite like the International Petroleum Encyclopedia. With a timely, accurate combination of global industry coverage and analysis, detailed statistical surveys, cutting-edge reports on technological advancements and the ever-popular atlas maps, the 1991 International Petroleum Encyclopedia is a smart buy for professionals whose business is oil and gas, as well as for those whose business is affected by the industry's trends and developments. Written by a professional staff of Oil and Gas Journal petroleum experts, the 1991 IPE gives you the all important global perspective for constructing sound business strategies for the 90's. The petroleum industry is scrambling for information that will help it survive this volitile period. This book reports on the topics in the petroleum industry the latest developments in horizontal drilling, world refining (the latest information on reformulated fuels), and predictions about the post-war Persian Gulf industry. PULS, discussions on changes in the Gulf of Mexico, developments in the LNG trade, and crude oil tanker supply/.demand curves.

Not Available

1991-01-01T23:59:59.000Z

206

SBIR/STTR Phase I Release 1 Award Winners Announced, Includes Four Hydrogen and Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

The US Department of Energy (DOE) recently announced the FY 2014 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 award winners, including four hydrogen and fuel cell projects in Arizona, Massachusetts, and South Carolina.

207

SBIR/STTR Phase II Release 1 Award Winners Announced, Includes Two Hydrogen and Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

The US Department of Energy (DOE) recently announced the FY 2014 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase II Release 1 award winners, including two hydrogen and fuel cell projects in Colorado and New Jersey.

208

Petroleum supply monthly, September 1991  

SciTech Connect

The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administrations for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 states and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics. 65 tabs.

Not Available

1991-09-30T23:59:59.000Z

209

Petroleum Supply Monthly, August 1990  

SciTech Connect

The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) district movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics.

Not Available

1990-10-30T23:59:59.000Z

210

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 393 - - - - 330 -111 -46 4 562 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 406 0 2 15 -333 - - 0 20 9 61 Pentanes Plus .................................................. 58 0 - - - -33 - - 0 6 9 10 Liquefied Petroleum Gases .............................. 348 - - 2 15 -299 - -

211

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 23. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,197 - - - - 1,186 - -47 -4 2,340 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 14 4 - - - -60 83 20 43 Pentanes Plus .................................................. 32 0 - - - - - - -1 26 2 5 Liquefied Petroleum Gases .............................. 37 - - 14 4 - - - -59

212

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 7. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 24 - - - - 854 -10 42 -28 935 3 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 42 0 27 67 119 - - -30 26 1 259 Pentanes Plus .................................................. 7 0 - - - - - - 0 - 0 7 Liquefied Petroleum Gases .............................. 35 - - 27 67 119 - - -30 26

213

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 20. PAD District 4 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 511 - - - - 289 -169 -49 4 579 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 316 0 13 11 -264 - - 2 16 15 44 Pentanes Plus .................................................. 50 0 - - 0 -38 - - 0 6 13 -7 Liquefied Petroleum Gases ..............................

214

New Directions in Engines and Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuels New Directions in Engines and Fuels Mobility based predominately on petroleum faces severe and imminent constraints as petroleum production and deliverability are...

215

Fuels Performance Group: Center for Transportation Technologies and Systems  

SciTech Connect

Describes R&D and analysis in advanced petroleum-based and non-petroleum-based transportation fuels done by NREL's Fuels Performance Group.

Not Available

2008-08-01T23:59:59.000Z

216

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

blend being sold. The labeling must follow established labeling specifications for petroleum-based fuels. An alternative fuel producer may provide the retailer with a label...

217

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied natural gas (LNG), or liquefied petroleum gas (propane) as a motor fuel...

218

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

medium- and heavy-duty vehicles must implement strategies to reduce petroleum consumption and emissions by using alternative fuels and improving vehicle fleet fuel...

219

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuel. Liquefied petroleum gas (propane) is exempt from LCFS requirements, as are non-biomass-based alternative fuels that are supplied in California for use in transportation at...

220

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

deadline. Fueling equipment for natural gas, liquefied petroleum gas (propane), electricity, E85, or diesel fuel blends containing a minimum of 20% biodiesel installed between...

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chemical and Petroleum Engineering Petroleum Engineering Minor  

E-Print Network (OSTI)

Chemical and Petroleum Engineering Petroleum Engineering Minor Students their skills by taking a minor in petroleum engineering. Energy is the largest global industry at $3 trillion annually, and petroleum supplies 60 percent

Calgary, University of

222

US Dependence on Petroleum  

Gasoline and Diesel Fuel Update (EIA)

PETROLEUM DIVISION DIRECTOR PETROLEUM DIVISION DIRECTOR ENERGY INFORMATION ADMINISTRATION BEFORE THE COMMITTEE ON ENERGY AND NATURAL RESOURCES U.S. SENATE FEBRUARY 24, 2000 Increases in Crude Oil, Distillate Fuels and Gasoline Prices I wish to thank the Committee for the opportunity to testify on behalf of Jay Hakes, Administrator of the Energy Information Administration, who regrets that he was unable to be here today. I will focus on the status of the current crude oil market and its effects on the heating oil, diesel, and gasoline markets and prices. As I will explain, world demand exceeded crude oil production in 1999, largely as a result of the decline in production by the Organization of Petroleum Exporting Countries (OPEC) and several other exporting countries. Inventories were used to meet the excess

223

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

or pipeline. Tertiary inventories are held by end users and include fuel in vehicle tanks, heating oil in residential tanks, fuel oil held by utilities, jet fuel stored in...

224

Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery  

DOE Patents (OSTI)

A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

2011-10-18T23:59:59.000Z

225

Propane, Liquefied Petroleum Gas (LPG)  

NLE Websites -- All DOE Office Websites (Extended Search)

Propane: Liquefied Petroleum Gas (LPG) Propane: Liquefied Petroleum Gas (LPG) Ford F-150 (Dual-Fuel LPG) Propane or liquefied petroleum gas (LPG) is a clean-burning fossil fuel that can be used to power internal combustion engines. LPG-fueled vehicles can produce significantly lower amounts of some harmful emissions and the greenhouse gas carbon dioxide (CO2). LPG is usually less expensive than gasoline, it can be used without degrading vehicle performance, and most LPG used in U.S. comes from domestic sources. The availability of LPG-fueled light-duty passenger vehicles is currently limited. A few light-duty vehicles-mostly larger trucks and vans-can be ordered from a dealer with a prep-ready engine package and converted to use propane. Existing conventional vehicles can also be converted for LPG use.

226

The Naval Petroleum and Oil Shale Reserves | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserves To ensure sufficient fuel for the fleet, the Government began withdrawing probable oil-bearing...

227

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

228

Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof  

DOE Patents (OSTI)

Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.

Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O'Brien, James E.

2013-03-05T23:59:59.000Z

229

Remaining useful life estimates of a PEM fuel cell stack by including characterization-induced disturbances in a particle filter model  

E-Print Network (OSTI)

Remaining useful life estimates of a PEM fuel cell stack by including characterization- induced Besançon, France rgourive@ens2m.fr ABSTRACT: Proton Exchange Membrane Fuel Cells (PEMFC) are available, Prognostics, Remaining Useful life, Particle filter 1. Introduction Proton Exchange Membrane Fuel Cells

Paris-Sud XI, Université de

230

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

231

Petroleum Supply Monthly Archives  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Supply Monthly Petroleum Supply Monthly Petroleum Supply Monthly Archives With Data for December 2011 | Release Date: February 29, 2012 Changes to Table 26. "Production of Crude Oil by PAD District and State": Current State-level data are now included in Table 26, in addition to current U.S. and PAD District sums. State offshore production for Louisiana, Texas, Alaska, and California, which are included in the State totals, are no longer reported separately in a "State Offshore Production" category. Previously, State-level values lagged 2 months behind the U.S. and PAD District values. Beginning with this publication, they will be on the same cycle. Also included in this publication are two additional pages for Table 26 that provide October and November data. With the release of

232

DOE Brings Together Private-Sector Leaders to Reduce Petroleum Use  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brings Together Private-Sector Leaders to Reduce Petroleum Use Brings Together Private-Sector Leaders to Reduce Petroleum Use The National Clean Fleets Partnership is helping America's largest commercial fleets speed the adoption of alternative fuels, electric vehicles, and fuel economy improvements. In April 2011, President Barack Obama announced the launch of the National Clean Fleets Partnership - an initiative to reduce the country's dependence on imported oil. Less than a year later, the partnership has grown to include 14 of the nation's largest private-sector fleets (noted in sidebar). Together, the partners operate more than 1 million vehicles across the nation and

233

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

SciTech Connect

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.

Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

1999-09-01T23:59:59.000Z

234

This Week In Petroleum Printer-Friendly Version  

NLE Websites -- All DOE Office Websites (Extended Search)

February. A lengthy decline in crude oil inputs would reduce refinery production of major petroleum products such as gasoline, heating oil, and diesel fuel. Last week's data showed...

235

This Week In Petroleum Printer-Friendly Version  

NLE Websites -- All DOE Office Websites (Extended Search)

If so, a prolonged decline in crude oil inputs would reduce refinery production of major petroleum products, such as gasoline, heating oil, and diesel fuel. Last week's data...

236

This Week In Petroleum Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

inventories of petroleum heating fuels to meet winter needs. The discussion noted that propane markets had overcome the effects of Hurricanes Katrina and Rita with near-record...

237

This Week In Petroleum Printer-Friendly Version  

Annual Energy Outlook 2012 (EIA)

Petroleum Status Report. Residential Heating Fuel Prices: Heating Oil Decreases While Propane Rises Residential heating oil prices decreased for the period ending October 10,...

238

This Week In Petroleum Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

inventories such that all major petroleum product inventories (with the exception of propane which is detailed below) are below levels seen last year, with distillate fuel...

239

This Week In Petroleum Summary Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

and reflects EIA's lower price forecast for Brent crude oil, which petroleum product prices in the Northeast track, along with narrower crack spreads for distillate fuel. The...

240

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Do alternative fuel vehicles Do alternative fuel vehicles (AFVs) improve air quality? How does the use of alternative fuels affect smog formation? You may find answers to these and other questions through the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC)-the nation's most com- prehensive repository of perfor- mance data and general informa- tion on AFVs. To date, more than 600 vehi- cles-including light-duty cars, trucks, vans, transit buses, and heavy-duty trucks-have been tested on various alternative and conventional fuels with the goal of identifying the potential for alter- native fuels to displace petroleum and improve our nation's air quality. Although comparing regu- lated emissions between fuels may seem straightforward, evaluating emissions is complicated by

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Petroleum Institute Scholarly Publications  

E-Print Network (OSTI)

Abu Dhabi The Petroleum Institute Scholarly Publications 2008 #12.. AAkkgguunn Petroleum Engineering SS.. MMoorraadd Petroleum Geosciences RR.. NNuunnnn &&SS indicate Petroleum Institute faculty who are attached to the program shown. Every effort has been made

242

Petroleum Institute Scholarly Publications  

E-Print Network (OSTI)

Abu Dhabi The Petroleum Institute Scholarly Publications 2009 #12 Mechanical Engineering HHaaddii BBeellhhaajj Petroleum Engineering SSaaddoooonn MMoorraadd Petroleum LLaannggiillllee Advanced University Placement Editors' notes: Names in bold in citations indicate Petroleum

243

Alternative Fuels Data Center: Biodiesel Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blends on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blends on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blends on Google Bookmark Alternative Fuels Data Center: Biodiesel Blends on Delicious Rank Alternative Fuels Data Center: Biodiesel Blends on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blends on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Blends Biodiesel can be blended and used in many different concentrations, including B100 (pure biodiesel), B20 (20% biodiesel, 80% petroleum diesel),

244

Alternative Fuels Data Center: Biodiesel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Biodiesel Specifications to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Specifications on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Specifications on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Specifications on Google Bookmark Alternative Fuels Data Center: Biodiesel Specifications on Delicious Rank Alternative Fuels Data Center: Biodiesel Specifications on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Specifications Biodiesel produced or sold in the state, including for the purpose of blending with petroleum diesel, must meet ASTM specification D6751.

245

Petroleum Institute Scholarly Publications  

E-Print Network (OSTI)

Abu Dhabi The Petroleum Institute Scholarly Publications 2010 #12;#12;The Petroleum Institute Belhaj Petroleum Engineering Sadoon Morad Petroleum Geosciences Sivakumar Sivasubramaniam College of Arts departments within the Petroleum Institute. Names in bold show Petroleum Institute faculty who are attached

246

Fuel oil and kerosene sales 1993  

SciTech Connect

This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1994-10-03T23:59:59.000Z

247

With petroleum productio on the cusp of decline, the  

E-Print Network (OSTI)

With petroleum productio on the cusp of decline, the world must find a new fuel to power its with the flight of the Wright brothers in 1903 and the production of the Ford Model T in 1908, petroleum came products. And from an engineer's point of view, petroleum is a marvel: it has a very high energy density

Kandlikar, Satish

248

Energy Information Administration/Petroleum Marketing Annual  

Gasoline and Diesel Fuel Update (EIA)

Taxes Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 4. U.S. Refiner Wholesale Petroleum Product Prices 0 20 40 60 80 100 120 J F M A M J J A S O N D 1999 Cents...

249

Energy Information Administration/Petroleum Marketing Annual  

Annual Energy Outlook 2012 (EIA)

per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Motor Gasoline 62.0% No. 2 Distillate 24.6% Other 0.9%...

250

Energy Information Administration/Petroleum Marketing Annual  

Gasoline and Diesel Fuel Update (EIA)

Taxes Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 4. U.S. Refiner Wholesale Petroleum Product Prices 0 20 40 60 80 100 120 J F M A M J J A S O N D 1998 Cents...

251

Energy Information Administration/Petroleum Marketing Annual  

Annual Energy Outlook 2012 (EIA)

per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Motor Gasoline 62.4% No. 2 Distillate 24.4% Other 1.0%...

252

Reformulated diesel fuel and method  

DOE Patents (OSTI)

A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-08-22T23:59:59.000Z

253

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1.PDF 1.PDF Table 11. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 36,593 - - - - 31,429 - 4,534 890 71,666 - 0 55,877 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,154 -11 1,013 192 - - - -786 2,587 629 918 3,544 Pentanes Plus .................................................. 1,013 -11 - - - - - - -35 842 110 85 36 Liquefied Petroleum Gases ..............................

254

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 8. PAD District 1 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 32 - - - - 843 -1 230 8 1,061 35 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 71 0 45 40 77 - - 1 16 10 205 Pentanes Plus .................................................. 12 0 - - 1 0 - - 0 0 2 9 Liquefied Petroleum Gases ..............................

255

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 5,877 - - - - 8,716 83 -218 14,841 53 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,351 -20 372 252 - - -417 566 206 2,600 Pentanes Plus .................................................. 296 -20 - - 78 - - 37 172 71 75 Liquefied Petroleum Gases .............................. 2,055 - - 372 174 - - -454 394 135 2,525

256

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 5. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 751 - - - - 26,471 -300 1,308 -869 28,999 100 0 9,902 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,313 -7 839 2,091 3,702 - - -929 816 33 8,018 7,618 Pentanes Plus .................................................. 225 -7 - - - - - - 3 - 11 204 31 Liquefied Petroleum Gases

257

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1. TABLE1.PDF 1. TABLE1.PDF Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases

258

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2.PDF 2.PDF Table 12. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,180 - - - - 1,014 - 146 29 2,312 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 33 6 - - - -25 83 20 30 Pentanes Plus .................................................. 33 0 - - - - - - -1 27 4 3 Liquefied Petroleum Gases .............................. 37 - - 33 6 - - - -24 56 17 27 Ethane/Ethylene

259

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 233,810 - - - - 237,344 8,334 7,688 468,825 2,975 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 81,196 -552 19,023 4,020 - - 3,027 16,794 13,937 69,929 189,672 Pentanes Plus .................................................. 11,167 -552 - - 772 - - -700 5,666 2,989 3,432 18,036 Liquefied Petroleum Gases

260

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 182,188 - - - - 270,188 2,576 -6,767 460,074 1,646 0 1,026,829 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 72,869 -607 11,545 7,801 - - -12,921 17,534 6,391 80,604 128,709 Pentanes Plus .................................................. 9,170 -607 - - 2,421 - - 1,146 5,321 2,200 2,317 17,598 Liquefied Petroleum Gases

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 17. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,175 - - - - 10,226 -3,426 -1,436 132 17,407 1 0 15,969 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,584 -10 52 460 -10,314 - - -12 611 282 1,891 1,375 Pentanes Plus .................................................. 1,788 -10 - - - -1,036 - - -15 174 273 310 180 Liquefied Petroleum Gases

262

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 15. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 3,327 - - - - 4,646 -720 39 -191 7,482 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,380 -1 304 84 227 - - -113 306 108 1,693 Pentanes Plus .................................................. 155 -1 - - 77 -58 - - 35 106 1 31 Liquefied Petroleum Gases ..............................

263

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 16. PAD District 3 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 4,354 - - - - 3,718 -413 345 75 7,905 24 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,615 0 454 39 170 - - 62 282 267 1,666 Pentanes Plus .................................................. 195 0 - - 36 -65 - - 15 113 4 35 Liquefied Petroleum Gases

264

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE9.PDF TABLE9.PDF Table 9. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,961 - - - - 10,783 -3,879 896 2,868 17,893 0 0 18,695 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,770 -9 127 502 -11,116 - - -50 621 280 1,423 1,326 Pentanes Plus .................................................. 1,484 -9 - - - -1,152 - - 7 122 264 -70 187 Liquefied Petroleum Gases

265

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 3. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 734 - - - - 26,368 419 -1,209 627 25,554 130 0 10,529 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,314 -6 923 1,606 2,621 - - -1,556 707 53 7,254 6,409 Pentanes Plus .................................................. 213 -6 - - - - - - 3 5 6 193 34 Liquefied Petroleum Gases ..............................

266

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 7,340 - - - - 7,778 239 25 15,229 104 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,516 -18 716 175 - - 133 465 434 2,358 Pentanes Plus .................................................. 340 -18 - - 38 - - 20 168 134 38 Liquefied Petroleum Gases .............................. 2,176 - - 716

267

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

30 30 September 2013 Table 24. PAD District 5 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,101 - - - - 1,091 - 115 -14 2,320 1 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 65 0 67 5 - - - 13 63 14 47 Pentanes Plus .................................................. 29 0 - - - - - - 1 21 4 3 Liquefied Petroleum Gases ..............................

268

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 2. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 6,133 - - - - 8,527 205 413 14,374 78 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,384 -19 421 224 - - -366 512 268 2,595 Pentanes Plus .................................................. 285 -19 - - 55 - - -26 160 89 98 Liquefied Petroleum Gases .............................. 2,099 - - 421 169 - - -340 353 179 2,497 Ethane/Ethylene

269

Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics  

Science Journals Connector (OSTI)

? Marathon Petroleum Company, Main Street, Findlay, Ohio, 45840 ... We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oil streams (used automotive and transformer oils). ...

Charles J. Mueller; William J. Cannella; Thomas J. Bruno; Bruce Bunting; Heather D. Dettman; James A. Franz; Marcia L. Huber; Mani Natarajan; William J. Pitz; Matthew A. Ratcliff; Ken Wright

2012-05-22T23:59:59.000Z

270

Petroleum Reduction Planning Tool | Open Energy Information  

Open Energy Info (EERE)

Petroleum Reduction Planning Tool Petroleum Reduction Planning Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Petroleum Reduction Planning Tool Agency/Company /Organization: National Renewable Energy Laboratory, United States Department of Energy Sector: Energy Focus Area: Biomass, Energy Efficiency, Fuels & Efficiency, Hydrogen, Transportation Phase: Prepare a Plan Topics: Analysis Tools, Pathways analysis Resource Type: Software/modeling tools User Interface: Website Complexity/Ease of Use: Not Available Website: www.afdc.energy.gov/afdc/prep/index.php OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Equivalent URI: cleanenergysolutions.org/content/petroleum-reduction-planning-tool Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation

271

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

for sale fuel labeled as pure biodiesel unless the fuel contains no other type of petroleum product, is registered as biodiesel fuel with the federal government, and meets all...

272

Aviation turbine fuels, 1980  

SciTech Connect

Properties of some aviation turbine fuels marketed in the United States during 1980 are presented in this report. The samples represented are typical 1980 production and were analyzed in the laboratories of 17 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 98 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5 and commercial type Jet A.

Shelton, E.M.

1981-03-01T23:59:59.000Z

273

Aviation turbine fuels, 1982  

SciTech Connect

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

274

Aviation turbine fuels, 1979  

SciTech Connect

Properties of some aviation turbine fuels marketed in the United States during 1979 are presented in this report. The samples represented are typical 1979 production and were analyzed in the laboratories of 17 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 93 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A.

Shelton, E.M.

1980-05-01T23:59:59.000Z

275

Aviation turbine fuels, 1981  

SciTech Connect

Properties of some aviation turbine fuels marketed in the United States during 1981 are presented in this report. The samples represented are typical 1981 production and were analyzed in the laboratories of 15 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 95 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A.

Shelton, E.M.

1982-04-01T23:59:59.000Z

276

Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Petroleum Pipeline Eminent Domain Permit Procedures serve to protect Georgia's natural and environmental resources by requiring permits be issued by the Director of the Environmental Protection Division prior to any petroleum or petroleum product pipe company acquiring property or interests by eminent domain. Monitoring conditions will be issued with

277

Chapter 3 - Hydrocarbons from Petroleum  

Science Journals Connector (OSTI)

Publisher Summary Petroleum products (in contrast to petrochemicals) are those hydrocarbon fractions that are derived from petroleum and have commercial value as a bulk product. A major group of hydrocarbon products from petroleum (petrochemicals) are the basis of a major industry. They are, in the strictest sense, different to petroleum products insofar as the petrochemicals are the basic building blocks of the chemical industry. The specific gravity of product gases, including liquefied petroleum gas, may be determined conveniently by a number of methods and a variety of instruments. The heat value of gases is generally determined at constant pressure in a flow calorimeter in which the heat released by the combustion of a definite quantity of gas is absorbed by a measured quantity of water or air. A continuous recording calorimeter is available for measuring heat values of natural gases.

James G. Speight

2011-01-01T23:59:59.000Z

278

ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bandwidth for Petroleum Refining Processes ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes bandwidth.pdf More Documents & Publications ITP Petroleum...

279

Price Competitive Sale of Strategic Petroleum Reserve Petroleum...  

Energy Savers (EERE)

Price Competitive Sale of Strategic Petroleum Reserve Petroleum; Standard Sales Provisions; Final Rule Price Competitive Sale of Strategic Petroleum Reserve Petroleum; Standard...

280

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

9 9 Decemer 2011 Appendix D Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 September 2013 Appendix D Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy

282

Weekly Petroleum Status Report  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Appendix C Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy

283

Petroleum supply monthly, October 1991. [Contains glossary  

SciTech Connect

Data presented in this report describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importer, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics 14 figs., 56 tabs.

Not Available

1991-10-30T23:59:59.000Z

284

Petroleum Supply Monthly, September 1990. [Contains glossary  

SciTech Connect

Data presented in this PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. 12 figs., 46 tabs.

Whited, D.; Jacobus, P. (eds.)

1990-11-28T23:59:59.000Z

285

This Week In Petroleum Printer-Friendly Version  

Annual Energy Outlook 2012 (EIA)

distillates, kerosene-jet fuel, residual fuel oil, and propane in the Weekly Petroleum Status Report (WPSR), could be tempted to read too much into the week-to-week fluctuations...

286

Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment  

Energy.gov (U.S. Department of Energy (DOE))

As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

287

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator Alternative Fueling Station Locator Alternative Fueling Station Locator Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles 12,782 alternative fuel stations in the United States Excluding private stations

288

Weekly Petroleum Status Report  

U.S. Energy Information Administration (EIA) Indexed Site

Table 1. U.S. Petroleum Balance Sheet, Week Ending 12/13/2013 Petroleum Stocks (Million Barrels) Current Week Week Ago Year Ago 12/6/13 Difference Percent Change 12/14/12 Difference Percent Change 12/13/13 Crude Oil .................................................... 1,068.3 1,071.2 -2.9 -0.3 1,066.6 1.7 0.2 Commercial (Excluding SPR) 1 ............... 372.3 375.2 -2.9 -0.8 371.6 0.7 0.2 Strategic Petroleum Reserve (SPR) 2 ..... 696.0 696.0 0.0 0.0 695.0 1.0 0.1 Total Motor Gasoline .................................. 220.5 219.1 1.3 0.6 219.3 1.2 0.5 Reformulated .......................................... 0.0 0.0 0.0 2.3 0.0 0.0 25.7 Conventional ........................................... 41.4 41.5 -0.1 -0.2 55.6 -14.2 -25.5 Blending Components ............................ 179.0 177.6 1.4 0.8 163.7 15.3 9.4 Fuel Ethanol

289

Petroleum Supply Annual 1997, Volume 1  

Gasoline and Diesel Fuel Update (EIA)

7, Volume 1 7, Volume 1 Entire . The entire report as a single file. PDF 1.0MB . . Front Matter . Cover Page, Contacts, Preface, and Table of Contents Page PDF . . Summary Statistics . Summary Statistics Tables S1 Crude Oil and Petroleum Products Overview, 1981-Present PDF S2 Crude Oil Supply and Disposition, 1981-Present PDF S3 Crude Oil and Petroleum Product Imports, 1981-Present PDF S4 Finished Motor Gasoline Supply and Disposition PDF S5 Distillate Fuel Oil Supply and Disposition, 1981-Present PDF S6 Residual Fuel Oil Supply and Disposition, 1981-Present PDF S7 Jet Fuel Supply and Disposition, 1981-Present PDF S8 Propane/Propylene Supply and Disposition, 1981-Present PDF S9 Liquefied Petroleum Gases Supply and Disposition, 1981-Present PDF S10 Other Petroleum Products Supply and Disposition, 1981-Present PDF

290

Life-cycle analysis of alternative aviation fuels in GREET  

SciTech Connect

The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

2012-07-23T23:59:59.000Z

291

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

292

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

refund taxes paid on compressed natural gas, liquefied natural gas, and liquefied petroleum gas (propane) when the fuel is used to operate buses capable of carrying seven or...

293

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and prescribed methods for the inspection and testing of alcohol blended fuels, petroleum products, biodiesel, and biodiesel blends; Labeling requirements for devices...

294

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blending Equipment Tax Exemption Qualified equipment used for storing and blending petroleum-based fuel with biodiesel, ethanol, or other biofuel is exempt from state property...

295

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

owners to install electric vehicle supply equipment (EVSE) as well as liquefied petroleum gas (propane), compressed natural gas, and liquefied natural gas fueling...

296

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

per gallon on a gasoline gallon equivalent basis with the exception of liquefied petroleum gas (propane), which is taxed on a diesel gallon equivalent basis. Special fuels...

297

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Code The Internal Revenue Service (IRS) defines alternative fuels as liquefied petroleum gas (propane), compressed natural gas, liquefied natural gas, liquefied hydrogen,...

298

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to cover the incremental cost of purchasing biodiesel as compared to the cost of petroleum diesel fuel. If in any fiscal year, insufficient funds are available to provide...

299

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Vehicle Labeling Requirement Vehicles powered by liquefied petroleum gas (propane) or compressed natural gas (CNG) must visibly display identifying decals, as...

300

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG) are subject to excise tax imposed on a per gallon basis as...

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

from renewable biomass that yields at least a 60% reduction in lifecycle greenhouse gas (GHG) emissions relative to the average lifecycle GHG emissions for petroleum-based fuel...

302

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, electricity, and fuels containing at least 85% ethanol, methanol, ether, or another alcohol....

303

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 35. Percent Yield of Petroleum Products by PAD and Refining Districts, September 2013 Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 2.2 1.0 2.1 4.3 1.3 2.0 3.4 Finished Motor Gasoline 1 ......................................... 46.0 35.4 45.2 51.1 50.3 48.6 50.4 Finished Aviation Gasoline 2 ..................................... - - - - 1.2 - 0.1 Kerosene-Type Jet Fuel ........................................... 7.4 - 6.8 7.6 6.9 3.6 6.6 Kerosene .................................................................. 0.3 - 0.2 0.0 - 0.1 0.0 Distillate Fuel Oil .......................................................

304

After Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuels Feedstocks Biomass x Coal Methane Oil Sands Oil Shale Ethanol Resource and Use 0.126 MBDOE* of ethanol produced in 2004 (from 11...

305

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents (OSTI)

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

306

Diesel fuel oils, 1982  

SciTech Connect

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

307

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

308

Petroleum Marketing Monthly  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Refi ner wholesale petroleum product volumes U.S. Energy Information Administration | Petroleum Marketing Monthly 13 December 2014...

309

Petroleum Marketing Monthly  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Refi ner retail petroleum product volumes U.S. Energy Information Administration | Petroleum Marketing Monthly 9 December 2014...

310

Petroleum Marketing Monthly  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Refi ner retail petroleum product prices U.S. Energy Information Administration | Petroleum Marketing Monthly 7 December 2014...

311

CALIFORNIA ENERGY PETROLEUM INDUSTRY INFORMATION  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT (PIIRA) PROGRAM REPORTING PETROLEUM AND NON-PETROLEUM ................................................... 40 PRODUCT DEFINITIONS Major Petroleum Product Storer and Terminal Weekly Report Major petroleum product storers, terminal

312

Gaseous-fuel safety assessment. Status report  

SciTech Connect

The Los Alamos National Laboratory, in support of studies sponsored by the Office of Vehicle and Engine Research and Development in the US Department of Energy, has undertaken a safety assessment of selected gaseous fuels for use in light automotive transportation. The purpose is to put into perspective the hazards of these fuels relative to present day fuels and delineated criteria for their safe handling. Fuels include compressed and liquified natural gas (CNG and LNG), liquefied petroleum gas (LPG), and for reference gasoline and diesel. This paper is a program status report. To date, physicochemical property data and general petroleum and transportation information were compiled; basic hazards defined; alternative fuels were safety-ranked based on technical properties alone; safety data and vehicle accident statistics reviewed; and accident scenarios selected for further analysis. Methodology for such analysis is presently under consideration.

Krupka, M.C.; Edeskuty, F.J.; Bartlit, J.R.; Williamson, K.D. Jr.

1982-01-01T23:59:59.000Z

313

Clean Cities: East Tennessee Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tennessee Clean Fuels Coalition Tennessee Clean Fuels Coalition The East Tennessee Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. East Tennessee Clean Fuels coalition Contact Information Jonathan Overly 865-974-3625 jonathan@etcleanfuels.org Coalition Website Clean Cities Coordinator Jonathan Overly Photo of Jonathan Overly Jonathan Overly founded the East Tennessee Clean Fuels Coalition (ETCleanFuels) in 2002 and has managed it since its inception. He has spoken to thousands of people across east Tennessee including over 100 companies and organizations about partnering to expand alternative fuel use in the area. Many government and industry fleets are coalition members. Although biodiesel was an early lead fuel for the coalition, more recently

314

Clean Cities: Southeast Louisiana Clean Fuels Partnership coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Clean Fuels Partnership Coalition Louisiana Clean Fuels Partnership Coalition The Southeast Louisiana Clean Fuels Partnership coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southeast Louisiana Clean Fuels Partnership coalition Contact Information Rebecca Otte 504-483-8513 slcfp@norpc.org Coalition Website Clean Cities Coordinator Rebecca Otte Photo of Rebecca Otte Rebecca Otte is the Environmental Programs Coordinator at the Regional Planning Commission (RPC) which includes five parishes (counties) in southeast Louisiana: Orleans, Jefferson, Plaquemines, St. Bernard and St. Tammany. Otte has served as the coordinator for the Southeast Louisiana Clean Fuel Partnership since 2007. In addition, she manages the Brownfield

315

After Petroleum  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

316

FE Petroleum Reserves News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Reserves News Petroleum Reserves News FE Petroleum Reserves News RSS April 10, 2013 President Requests $638.0 Million for Fossil Energy Programs President Obama's FY 2014 budget seeks $638.0 million for the Office of Fossil Energy (FE) to advance technologies related to the reliable, efficient, affordable and environmentally sound use of fossil fuels as well as manage the Strategic Petroleum Reserve and Northeast Home Heating Oil Reserve to provide strategic and economic security against disruptions in U.S. oil supplies. November 9, 2012 Energy Department Provides Additional Emergency Fuel Loan to Department of Defense as Part of Hurricane Sandy and Nor'easter Recovery As part of the government-wide response and recovery effort for Hurricane Sandy and the Nor'easter, the Energy Department is providing the

317

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

4.PDF 4.PDF Table 34. Stocks of Crude Oil and Petroleum Products by PAD District, January 2012 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Crude Oil ....................................................................... 10,529 95,547 858,776 18,695 55,877 1,039,424 Refinery ...................................................................... 9,549 12,590 42,259 2,422 25,335 92,155 Tank Farms and Pipelines (Includes Cushing, OK) .... 875 79,613 102,575 12,976 27,151 223,190 Cushing, Oklahoma ................................................ - 31,118 - - - - Leases ........................................................................ 105 3,344 17,991 3,297 854 25,591 Strategic Petroleum Reserve 1 .................................... - - 695,951 - - 695,951 Alaskan In Transit .......................................................

318

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 September 2013 Table 55. Stocks of Crude Oil and Petroleum Products by PAD District, September 2013 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Crude Oil ....................................................................... 10,326 102,610 882,207 19,287 52,719 1,067,149 Refinery ...................................................................... 8,139 12,920 44,531 2,484 22,704 90,778 Tank Farms and Pipelines (Includes Cushing, OK) .... 2,033 84,878 122,497 12,956 26,534 248,898 Cushing, Oklahoma ................................................ - 33,017 - - - 33,017 Leases ........................................................................ 154 4,812 19,210 3,847 678 28,701 Strategic Petroleum Reserve 1 .................................... - - 695,969 - - 695,969 Alaskan In Transit

319

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

320

Petroleum Institute Scholarly Publications  

E-Print Network (OSTI)

Abu Dhabi The Petroleum Institute Scholarly Publications January 1st ­ December 31st 2007 #12;The Petroleum Institute Scholarly Publications January 1st ­ December 31st 2007 v #12;- 2 - Scholarly Publications 2007 | The Petroleum Institute #12;- 3 - Scholarly Publications 2007 | The Petroleum Institute

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Institute of Petroleum  

E-Print Network (OSTI)

The Institute of Petroleum Engineering The Institute of Petroleum Engineering (IPE) is a world leading, specialised centre in research, training and teaching, with the largest petroleum engineering and teaching. Our vision is to be the international institute of choice for research and teaching in petroleum

Painter, Kevin

322

Petroleum Marketing Monthly  

NLE Websites -- All DOE Office Websites (Extended Search)

Crude oil prices U.S. Energy Information Administration | Petroleum Marketing Monthly 3 December 2014...

323

Diesel fuel oils, 1981  

SciTech Connect

Properties of diesel fuels produced during 1981 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 160 samples of diesel fuel oils from 77 refineries throughout the country were made by 26 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1981. Summaries of the results of the 1981 survey, compared with similar data for 1980, are shown.

Shelton, E.M.

1981-12-01T23:59:59.000Z

324

Fact #561: March 9, 2009 All Sectors' Petroleum Gap  

Energy.gov (U.S. Department of Energy (DOE))

Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

325

This Week In Petroleum Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

continuing into mid-March 2006, prices for wholesale and residential heating oil and propane will be included in This Week In Petroleum as well as in the Weekly Petroleum Status...

326

This Week In Petroleum Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

continuing into mid-March 2009, prices for wholesale and residential heating oil and propane will be included in This Week In Petroleum, as well as in the Weekly Petroleum Status...

327

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Decals An individual may place alternative fuel (defined as liquefied petroleum gas or propane) into the fuel tank of a motor vehicle only if the vehicle has a valid alternative...

328

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

engines. A biodiesel blend is defined as any fuel produced by blending biodiesel with petroleum-based diesel to produce a fuel suitable for use in diesel engines. (Reference Idaho...

329

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Use Requirement At least 50% of state vehicles using petroleum diesel fuel must use a minimum blend of 5% biodiesel (B5) or other biofuel approved by the U.S....

330

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

(AFV) Tax All licensed on-road vehicles fueled by compressed natural gas or liquefied petroleum gas (propane) are subject to a special fuels tax through the Excise Taxes Division...

331

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

332

ITP Petroleum Refining: Technology Roadmap for the Petroleum...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Roadmap for the Petroleum Industry ITP Petroleum Refining: Technology Roadmap for the Petroleum Industry petroleumroadmap.pdf More Documents & Publications ITP Aluminum:...

333

ITP Petroleum Refining: Profile of the Petroleum Refining Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Profile of the Petroleum Refining Industry in California: California Industries of the Future Program ITP Petroleum Refining: Profile of the Petroleum Refining Industry in...

334

SBIR/STTR FY15 Release 1 Awards Announced—Includes Fuel Cell Catalyst and Hydrogen Contamination Detection R&D  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 Awards, including projects focusing on non-platinum catalysts for fuel cells and detection of contaminants in hydrogen.

335

Norwegian petroleum guide  

SciTech Connect

This is about the comprehensive guide to Norwegian oil and gas activities, very useful to anyone in the industry. Material includes political guidelines, control institutions, work possibilities and licenses, working environment law, employer and employee organizations, national insurance, taxes, communication, rescue operations and standby. Contents: Oil and the economy; Petroleum technology research; Responsibilities of different authorities; The Labour Inspection Directorate; The Health Directorate Offshore Office; The Coastal Directorate; Helicopter traffic; The Norwegian Petroleum Directorate; The Maritime Directorate; Det norske Veritas; The Norwegian Waterways and Electricity Board; The State Institute for Radiation Hygiene; The State Explosive Inspection; Work possibilities in the North Sea; Working environment legislation on the Continental Shelf; Collective bargaining agreements, labor conflicts and the right to organize; Taxation Rules; National health insurance and the petroleum activity; Occupational injuries on the Norwegian Continental Shelf; Company insurances; The private pension scheme; Other types of insuracne common among oil companies; The rescue service in Norway; Oganizations within the oil industry offshore and onshore; and Law of aliens admission to the Kindgom.

Christie, H.B.

1984-01-01T23:59:59.000Z

336

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

337

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

338

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 10. PAD District 2 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 366,285 - - - - 501,418 159,175 -109,633 -12,929 918,349 11,825 0 102,610 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 122,918 -4,579 37,556 21,926 4,444 - - 15,132 24,244 34,819 108,070 58,830 Pentanes Plus ..................................................

339

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

20 20 September 2013 Table 14. PAD District 3 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 1,188,751 - - - - 1,015,091 -112,708 94,064 20,399 2,158,191 6,608 0 882,207 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 440,766 -88 123,986 10,625 46,383 - - 16,960 76,972 72,880 454,860 114,138 Pentanes Plus ..................................................

340

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 2. U.S. Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,003,948 - - - - 2,123,490 65,265 6,899 4,157,486 28,318 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 686,936 -4,909 195,516 47,812 - - 36,219 127,051 118,364 643,721 189,672 Pentanes Plus .................................................. 92,842 -4,909 - - 10,243 - -

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE7.PDF TABLE7.PDF Table 7. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 109,919 - - - - 142,073 -20,272 -3,481 6,003 222,236 - 0 858,776 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 43,678 -17 9,648 1,838 7,546 - - -2,299 8,340 4,663 51,989 65,215 Pentanes Plus .................................................. 4,840 -17 - - 1,688 -3,010 - -

342

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 September 2013 Table 22. PAD District 5 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 300,668 - - - - 297,837 - 31,342 -3,713 633,292 267 0 52,719 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 17,739 -73 18,288 1,401 - - - 3,536 17,170 3,791 12,858 8,270 Pentanes Plus .................................................. 7,914

343

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 6. PAD District 1 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 8,672 - - - - 230,125 -359 62,824 2,069 289,586 9,606 0 10,326 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 19,329 -83 12,151 10,808 21,118 - - 168 4,287 2,821 56,047 6,541 Pentanes Plus ..................................................

344

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1.PDF 1.PDF Table 21. Blender Net Production of Petroleum Products by PAD Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Finished Motor Gasoline ........................................... 70,877 4,650 75,527 32,247 6,563 2,707 41,517 Reformulated ........................................................ 32,914 - 32,914 8,133 1,466 955 10,554 Reformulated Blended with Fuel Ethanol ......... 32,914 - 32,914 8,133 1,466 955 10,554 Reformulated Other .......................................... - - - - - - - Conventional ......................................................... 37,963 4,650 42,613 24,114 5,097 1,752 30,963

345

US Dependence on Petroleum  

Gasoline and Diesel Fuel Update (EIA)

MARK J. MAZUR MARK J. MAZUR ACTING ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION BEFORE THE COMMITTEE ON COMMERCE SUBCOMMITTEE ON ENERGY AND POWER U.S. HOUSE OF REPRESENTATIVES SEPTEMBER 28, 2000 Summary We are in the midst of a year of volatility for crude oil, refined products, and natural gas. As we begin the winter heating season, prices for all heating fuels are higher than last year, and inventories are low. Although increased world crude production should begin to help markets build inventories back toward normal levels, the process likely will be slow, and petroleum inventories worldwide are likely to remain low into 2001. With low inventories for crude oil and refined products, unexpected supply disruptions or demand changes can cause disproportionate product price movements.

346

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

January 2012 January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases .............................. 65,081 - - 13,044 5,236 - - -10,530 10,937 5,559 77,395 101,248 Ethane/Ethylene

347

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

6 6 December 2011 Table 33. Blender Net Production of Petroleum Products by PAD District, December 2011 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Finished Motor Gasoline ........................................... 76,926 5,149 82,075 34,411 7,021 3,047 44,479 Reformulated ........................................................ 35,878 - 35,878 8,794 1,568 1,086 11,448 Reformulated Blended with Fuel Ethanol ......... 35,878 - 35,878 8,794 1,568 1,086 11,448 Reformulated Other .......................................... - - - - - - - Conventional ......................................................... 41,048 5,149 46,197 25,617 5,453

348

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 9. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,019 - - - - 52,699 26,041 2,973 12 109,175 1,544 0 93,189 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 14,079 -560 812 2,541 -423 - - -6,605 4,051 2,114 16,889 48,197 Pentanes Plus .................................................. 1,354 -560 - - 21 2,843 - - 110 1,049

349

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE5.PDF TABLE5.PDF Table 5. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,902 - - - - 53,695 23,732 5,619 2,406 108,247 2,295 0 95,547 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 13,989 -544 1,333 2,797 949 - - -6,644 3,628 2,687 18,853 41,545 Pentanes Plus .................................................. 1,274 -544 - - 11 4,162 - - 233 966

350

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 18. PAD District 4 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 139,573 - - - - 79,019 -46,108 -13,333 1,073 158,068 10 0 19,287 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 86,184 -86 3,535 3,052 -71,945 - - 423 4,378 4,054 11,885 1,893 Pentanes Plus ..................................................

351

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2012 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,374,021 - - - - 3,120,755 53,567 34,134 5,489,516 24,693 0 1,060,764 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 881,306 -6,534 230,413 62,192 - - 23,894 186,270 115,054 842,159 153,268 Pentanes Plus .................................................. 116,002 -6,534 - - 10,680 - - -4,857 63,596 43,136 18,273 12,739 Liquefied Petroleum Gases .............................. 765,304 - - 230,413 51,512 - - 28,751 122,674 71,918

352

Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)  

Reports and Publications (EIA)

Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

2010-01-01T23:59:59.000Z

353

Petroleum Refining | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum Refining Petroleum Refining Maintaining the viability of the U.S. petroleum refining industry requires continuous improvement in productivity and energy efficiency. The...

354

Vehicle Technologies Office: Fuels and Lubricants Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels and Lubricants Research Fuels and Lubricants Research As transportation accounts for two-thirds of the nearly $1 billion the U.S. spends daily on foreign oil, it is vital to increase our use of alternative fuels. Increasing the fuels available to drivers reduces price volatility, supports domestic industries, and increases environmental sustainability. The DOE's Alternative Fuels Data Center provides basic information on alternative fuels, including Biodiesel, Ethanol, Natural Gas, Propane, and Hydrogen. The Vehicle Technologies Office (VTO) supports research to improve how vehicles use these many of these fuels in the future, as well as activities to increase their availability today. It also researches how new petroleum-based fuels affect advanced combustion systems and how lubricants can improve the efficiency of vehicles currently on the road.

355

PETROLEUM, PAST, PRESENT AND FUTURE  

Science Journals Connector (OSTI)

...quality of motor fuel is concerned is octane...composition of its fuels; it can also be...large, parallels the engine builder's increase...obtained per unit of fuel. As a result of...States and their consumption of gasoline. of...fuel oil (includes Diesel and other gas oil...

PER K. FROLICH

1943-11-26T23:59:59.000Z

356

Homeowners: Respond to Fuel Shortages | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Homeowners: Respond to Fuel Shortages Homeowners: Respond to Fuel Shortages Homeowners: Respond to Fuel Shortages Homeowners: Respond to Fuel Shortages Natural disasters and other hazards can impact the energy industry's ability to produce and distribute petroleum products, including gasoline, diesel fuel, and heating oil. At the same time, the demand for fuel may spike due to evacuations, or because consumers are buying more fuel to power backup generators during electrical outages. All these factors may lead to fuel shortages, which will prompt local authorities and fuel suppliers to prioritize getting fuel to key assets such as emergency operations centers, hospitals, food supply dealers, water supply plants, and telecommunication networks. Homeowners should keep the following tips in mind:

357

Fuels Performance: Navigating the Intersection of Fuels and Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs....

358

Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels  

SciTech Connect

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-03-01T23:59:59.000Z

359

IGS Petroleum Well Symbols--Explanation 12/8/2010 p 1/1 IGS Petroleum Well Symbols--Explanation 6/10/2010 p 1/1  

E-Print Network (OSTI)

IGS Petroleum Well Symbols--Explanation 12/8/2010 p 1/1 IGS Petroleum Well Symbols--Explanation 6/10/2010 p 1/1 The following symbols include all of the primary Petroleum Well Symbols used by the Indiana of the Petroleum Symbol Set. Trenton well; only available information is an uncertain location Symbol Modifiers

Polly, David

360

Clean Cities Tools: Tools to Help You Drive Smarter, Use Less Petroleum, and Reduce Emissions (Brochure)  

SciTech Connect

Clean Cities hosts a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

Not Available

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Modeling, control, and power management of a power electrical system including two distributed generators based on fuel cell and supercapacitor  

Science Journals Connector (OSTI)

This paper focuses on Distributed Generator (DG) integration in Power Electrical System (PES) for dispersed nodes. The main objective of the DG use can be classified into two aspects: a load following service and ancillary service systems. In this study the DG system contains a Fuel cell and a Supercapacitor storage device. A gas turbine system is modeled in order to estimate the PES frequency behavior under a variable power demand. The main goal of this work is to develop a DG control strategy with the aim to smooth the frequency and the voltage peak variations. To assess the different management stages the power flow exchanged between DGs and PES is depicted and discussed for different power demand variations. The results found with the DGs integration strategy confirm the frequency and voltage regulations and also prove the well power flow management.

L. Krichen

2013-01-01T23:59:59.000Z

362

Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D...  

Energy Savers (EERE)

Office: 2010 Fuel Technologies R&D Annual Progress Report Fuel Effects on Emissions Control Technologies Non-Petroleum-Based Fuels: Effects on Emissions Control...

363

Sorption of petroleum products by carbon sorbents  

SciTech Connect

A comparative study of the adsorption of petroleum products by micro- and macroporous carbon sorbents was performed. For this purpose, four carbon sorbent samples prepared from various raw materials by various processing techniques were used. The following raw materials were used: (1) fuel mill from the Mezinoskoe deposit; (2) wood waste, shaving and sawdust in ratio (%) of 50:50; and (3) low-caking gas coal of the 2G group from the mine im.Kirova in the Kuznetsk Basin. The pore structures and adsorption capacities of these sorbents for petroleum products were studied. It was found that the adsorption of petroleum products on porous and nonporous carbon sorbents occurred in different manners. In this case, macroporous sorbents with a weakly developed structure of sorbing micro- and mesopores exhibited a maximum capacity for petroleum products.

M.A. Perederii; Y.I. Kurakov; I.N. Malikov; S.V. Molchanov [Institute for Fossil Fuels, Moscow (Russian Federation)

2009-07-01T23:59:59.000Z

364

100% petroleum house  

E-Print Network (OSTI)

I am designing a Case Study House to be sponsored by Royal Dutch Shell which utilizes the by-product of oil extraction, petroleum gas, to produce a zero waste, 100% petroleum based house. The motivation of the Case Study ...

Costanza, David (David Nicholas)

2013-01-01T23:59:59.000Z

365

Petroleum Marketing Annual 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Released: August 6, 2010 Notice: Price data for petroleum products will be changed from cents per gallon to dollars per gallon later this year for the 2010 data. Petroleum...

366

Petroleum Marketing Annual  

U.S. Energy Information Administration (EIA) Indexed Site

9 Entire . The entire report as a single file. PDF 1.2MB . Front Matter . Petroleum Marketing Annual Cover Page, Preface, and Table of Contents PDF . Highlights . Petroleum...

367

Petroleum Marketing Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Refi ner wholesale petroleum product prices Source: U.S. Energy Information Administration, Form EIA-782A, "Refi ners'Gas Plant Operators' Monthly Petroleum Product Sales...

368

Petroleum Marketing Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 Entire . The entire report as a single file. PDF 1.2MB . Front Matter . Petroleum Marketing Annual Cover Page, Preface, and Table of Contents PDF . Highlights . Petroleum...

369

MECS 2006- Petroleum Refining  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturing Energy and Carbon Footprint for Petroleum Refining (NAICS 324110) Sector with Total Energy Input, October 2012 (MECS 2006)

370

US Dependence on Petroleum  

Gasoline and Diesel Fuel Update (EIA)

MARK J. MAZUR MARK J. MAZUR ACTING ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION BEFORE THE COMMITTEE ON ENERGY AND NATURAL RESOURCES U.S. SENATE SEPTEMBER 26, 2000 I want to thank the Committee for the opportunity to testify this morning. I will review the status of the current crude oil, heating and transportation fuel markets as well as the Energy Information Administration's (EIA's) short-term forecast for these markets. Today, as we face the upcoming heating season, inventories for heating fuels are generally low and heating fuel prices are relatively high. What we are seeing in the wholesale or spot markets for heating fuels includes: Spot No. 2 heating fuel oil (New York Harbor) averaging a little over $1.00 per gallon for the first two weeks in September. This is about

371

This Week In Petroleum Summary Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

- due primarily to lower demand for petroleum products and the addition of new refining capacity in emerging markets as reasons behind the closure. As an oil-fueled refinery,...

372

liquefied petroleum gas | OpenEI  

Open Energy Info (EERE)

3 3 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288523 Varnish cache server liquefied petroleum gas Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol

373

This Week In Petroleum Printer-Friendly Version  

Annual Energy Outlook 2012 (EIA)

fuels, including distillate fuel (used as both heating oil and diesel fuel) and propane. Following last winters mild weather, inventories of both distillate fuel oil and...

374

The National Energy Modeling System: An Overview 2000 - Petroleum Market  

Gasoline and Diesel Fuel Update (EIA)

petroleum market module (PMM) represents domestic refinery operations and the marketing of petroleum products to consumption regions. PMM solves for petroleum product prices, crude oil and product import activity (in conjunction with the international energy module and the oil and gas supply module), and domestic refinery capacity expansion and fuel consumption. The solution is derived, satisfying the demand for petroleum products and incorporating the prices for raw material inputs and imported petroleum products, the costs of investment, and the domestic production of crude oil and natural gas liquids. The relationship of PMM to other NEMS modules is illustrated in Figure 17. petroleum market module (PMM) represents domestic refinery operations and the marketing of petroleum products to consumption regions. PMM solves for petroleum product prices, crude oil and product import activity (in conjunction with the international energy module and the oil and gas supply module), and domestic refinery capacity expansion and fuel consumption. The solution is derived, satisfying the demand for petroleum products and incorporating the prices for raw material inputs and imported petroleum products, the costs of investment, and the domestic production of crude oil and natural gas liquids. The relationship of PMM to other NEMS modules is illustrated in Figure 17. Figure 17. Petroleum Market Module Structure PMM is a regional, linear-programming representation of the U.S. petroleum market. Refining operations are represented by a three-region linear programming formulation of the five Petroleum Administration for Defense Districts (PADDs) (Figure 18). PADDs I and V are each treated as single regions, while PADDs II, III, and IV are aggregated into one region. Each region is considered as a single firm where more than 30 distinct refinery processes are modeled. Refining capacity is allowed to expand in each region, but the model does not distinguish between additions to existing refineries or the building of new facilities. Investment criteria are developed exogenously, although the decision to invest is endogenous.

375

GREET 1.0 -- Transportation fuel cycles model: Methodology and use  

SciTech Connect

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-06-01T23:59:59.000Z

376

U.S. Virgin Islands Transportation Petroleum Reduction Plan  

SciTech Connect

This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks the projects according to cost, petroleum reduction, time frame, and popularity.

Johnson, C.

2011-09-01T23:59:59.000Z

377

Mobile Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a trip to that location. Some stations in our database have addresses that could not be located by the Station Locator application. This may result in the station appearing in the center of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at

378

aviation fuels | OpenEI  

Open Energy Info (EERE)

aviation fuels aviation fuels Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated Unknown Keywords aviation fuels diesel fuel oil oil petrol Data application/vnd.ms-excel icon annual production, imports, and exports of all oil products (xls, 294.9 KiB) application/vnd.ms-excel icon quarterly production of oil products by fuel type (xls, 272.4 KiB) application/vnd.ms-excel icon total petrol (xls, 155.1 KiB) application/vnd.ms-excel icon premium unleaded petrol (xls, 95.2 KiB) application/vnd.ms-excel icon regular unleaded petrol (xls, 119.3 KiB) application/vnd.ms-excel icon diesel (xls, 151 KiB)

379

Microalgae biodiesel as a substitute for jet fuel.  

E-Print Network (OSTI)

??With dwindling petroleum resources, the need for alternate fuel resources has become immense. Any new fuel source needs to be home grown, economically feasible, and… (more)

Sohi, Chandan

2010-01-01T23:59:59.000Z

380

Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Reduction Strategies for Vehicles and Mobile Petroleum Reduction Strategies for Vehicles and Mobile Equipment Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment October 7, 2013 - 11:50am Addthis YOU ARE HERE: Step 3 As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels. These strategies provide a framework for an agency to use when developing a strategic plan that can be specifically tailored to match the agency's fleet profile and meet its mission. Agency fleet managers should evaluate petroleum reduction strategies and tactics for each fleet location, based on an evaluation of site-specific

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Petroleum hydrocarbon resistance in the marine wormNeanthes arenaceodentata (polychaeta: Annelida), induced by chronic exposure to no. 2 fuel oil  

Science Journals Connector (OSTI)

Three successive generations of the marine polychaetous annelidNeanthes arenaceodentata...taken from a laboratory population, were continuously exposed to one of three sublethal concentrations of No. 2 Fuel Oil w...

S. S. Rossi; J. W. Anderson

1978-07-01T23:59:59.000Z

382

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

383

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

384

Fuel oil and kerosene sales 1995  

SciTech Connect

This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

NONE

1996-09-01T23:59:59.000Z

385

Fuel oil and kerosene sales 1996  

SciTech Connect

The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

NONE

1997-08-01T23:59:59.000Z

386

Natural Gas and Other Petroleum Resources Research and Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Annual Plan 2 Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Report to Congress August 2012 United States Department of Energy Washington, DC 20585 Department of Energy I August 2012 Message from the Secretary Fueling our Nation's economy by making the most of America's natural gas and oil resources continues to be an important part of our Nation's overall strategy for energy security and a clean energy economy. The Department continues its work toward safe and responsible · development of fossil fuels, while giving American families and communities high confidence that air and water quality, and public health and safety will not be compromised. The EPACT Section 999 program (including the NETL Complementary Research program)

387

PETROLEUM SOCIETY CANADIAN INSTITUTE OF MINING, METALLURGY & PETROLEUM  

E-Print Network (OSTI)

1 PETROLEUM SOCIETY CANADIAN INSTITUTE OF MINING, METALLURGY & PETROLEUM PAPER 2002-074 Temperature Canada Ltd. This paper is to be presented at the Petroleum Society's Canadian International Petroleum of the meeting. This paper and any discussion filed will be considered for publication in Petroleum Society

Schramm, Laurier L.

388

PETROLEUM SOCIETY CANADIAN INSTITUTE OF MINING, METALLURGY & PETROLEUM  

E-Print Network (OSTI)

1 PETROLEUM SOCIETY CANADIAN INSTITUTE OF MINING, METALLURGY & PETROLEUM PAPER 2002-092 Effects of Alberta This paper is to be presented at the Petroleum Society's Canadian International Petroleum of the meeting. This paper and any discussion filed will be considered for publication in Petroleum Society

Hossain, M. Enamul

389

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

390

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

391

This Week In Petroleum Printer-Friendly Version  

Annual Energy Outlook 2012 (EIA)

main challenge is distributing the product. ULSD moves through the same pipelines and tanks as other petroleum products, including those with very high sulfur content, such as...

392

Petroleum Marketing Annual 1997  

Gasoline and Diesel Fuel Update (EIA)

7 7 Entire . The entire report as a single file. PDF 1.2MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights . Petroleum Marketing Annual Highlights PDF . . Summary Statistics . Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 2 U.S. Refiner Prices of Petroleum Products to End Users PDF TXT 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF TXT 4 U.S. Refiner Prices of Petroleum Products for Resale PDF TXT 5 U.S. Refiner Volumes of Petroleum Products for Resale PDF TXT 6 U.S. Refiner Motor Gasoline Prices by Grade and Sales Type PDF TXT 7 U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type PDF TXT 8 U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type PDF TXT

393

Petroleum Marketing Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

Released: August 6, 2010 Released: August 6, 2010 Notice: Price data for petroleum products will be changed from cents per gallon to dollars per gallon later this year for the 2010 data. Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner Acquisition Cost of Crude Oil by PAD Districts PDF TXT 2 U.S. Refiner Prices of Petroleum Products to End Users PDF TXT 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF TXT 4 U.S. Refiner Prices of Petroleum Products for Resale PDF TXT 5 U.S. Refiner Volumes of Petroleum Products for Resale PDF TXT 6 U.S. Refiner Motor Gasoline Prices by Grade and Sales Type PDF TXT 7 U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type PDF TXT

394

Petroleum Marketing Annual  

Gasoline and Diesel Fuel Update (EIA)

9 9 Entire . The entire report as a single file. PDF 1.2MB . Front Matter . Petroleum Marketing Annual Cover Page, Preface, and Table of Contents PDF . Highlights . Petroleum Marketing Annual Highlights PDF . . Summary Statistics . Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 2 U.S. Refiner Prices of Petroleum Products to End Users PDF TXT 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF TXT 4 U.S. Refiner Prices of Petroleum Products for Resale PDF TXT 5 U.S. Refiner Volumes of Petroleum Products for Resale PDF TXT 6 U.S. Refiner Motor Gasoline Prices by Grade and Sales Type PDF TXT 7 U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type PDF TXT 8 U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type PDF TXT

395

Petroleum Marketing Annual  

Gasoline and Diesel Fuel Update (EIA)

5 5 Entire . The entire report as a single file. PDF 2.9MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights . Petroleum Marketing Annual Highlights PDF . . Summary Statistics . Summary Statistics Tables PDF 1 Crude Oil Prices PDF 2 U.S. Refiner Prices of Petroleum Products to End Users PDF 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF 4 U.S. Refiner Prices of Petroleum Products for Resale PDF 5 U.S. Refiner Volumes of Petroleum Products for Resale PDF 6 U.S. Refiner Motor Gasoline Prices by Grade and Sales Type PDF 7 U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type PDF 8 U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type PDF 9 U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type PDF

396

Petroleum Marketing Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 Entire . The entire report as a single file. PDF 2.9MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights . Petroleum Marketing Annual Highlights PDF . . Summary Statistics . Summary Statistics Tables PDF 1 Crude Oil Prices PDF 2 U.S. Refiner Prices of Petroleum Products to End Users PDF 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF 4 U.S. Refiner Prices of Petroleum Products for Resale PDF 5 U.S. Refiner Volumes of Petroleum Products for Resale PDF 6 U.S. Refiner Motor Gasoline Prices by Grade and Sales Type PDF 7 U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type PDF 8 U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type PDF 9 U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type PDF

397

This Week In Petroleum  

Gasoline and Diesel Fuel Update (EIA)

Release Schedule Release Schedule Sign Up for Email Updates Summary Printer-Friendly Version RSS icon Complete History XLS Analysis Text History RSS feed Summary Crude Oil Gasoline Distillate Propane This Week In Petroleum Charts Scroll over labels below to see different charts. Retail Prices (Dollars per Gallon) Retail Price Graphs. Retail Prices Change From Last 01/13/14 Week Year Gasoline 3.327 values are down -0.005 values are up 0.024 Diesel Fuel 3.886 values are down -0.024 values are down -0.008 Heating Oil 4.002 values are down -0.018 values are down -0.002 Propane 2.861 values are up 0.032 values are up 0.593 Futures Prices (Dollars per Gallon*) Futures Price Graphs. Futures Prices Change From Last 01/10/14 Week Year Crude Oil 92.72 values are down -1.24 values are down -0.84

398

Strategic Petroleum Reserve: Annual/quarterly report  

SciTech Connect

Section 165 of the Energy Policy and Conservation Act (Public Law 94-163), as amended, requires the Secretary of Energy to submit annual and quarterly reports to the President and the Congress on activities of the Strategic Petroleum Reserve. This report combines the fourth quarter 1993 Quarterly Report with the 1993 Annual Report. Key activities described include appropriations; life extension planning; expansion planning; Strategic Petroleum Reserve oil acquisition; the oil stabilization program; and the refined petroleum product reserve test programs. Sections of this report also describe the program mission; the storage facility development program; environmental compliance; budget and finance; and drawdown and distribution.

Not Available

1994-02-16T23:59:59.000Z

399

PETROLEUM BIOREFINING FOR POLLUTION PREVENTION  

SciTech Connect

The objective of this project was to isolate and characterize thermophilic bacterial cultures that can be used for the selective removal of nitrogen, sulfur, and/or metals in the biorefining of petroleum. The project was completed on schedule and no major difficulties were encountered. Significant progress was made on multiple topics relevant to the development of a petroleum biorefining process capable of operating at thermophilic temperatures. New cultures capable of selectively cleaving C-N or C-S bonds in molecules relevant to petroleum were obtained, and the genes encoding the enzymes for these unique biochemical reactions were cloned and sequenced. Genetic tools were developed that enable the use of Thermus thermophilus as a host to express any gene of interest, and information was obtained regarding the optimum conditions for the growth of T. thermophilus. The development of a practical biorefining process still requires further research and the future research needs identified in this project include the development of new enzymes and pathways for the selective cleavage of C-N or C-S bonds that have higher specific activities, increased substrate range, and are capable of functioning at thermophilic temperatures. Additionally, there is a need for process engineering research to determine the maximum yield of biomass and cloned gene products that can be obtained in fed-batch cultures using T. thermophilus, and to determine the best configuration for a process employing biocatalysts to treat petroleum.

John J. Kilbane II

2002-03-01T23:59:59.000Z

400

Clean Cities: Louisiana Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Clean Fuels Coalition Louisiana Clean Fuels Coalition The Louisiana Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Louisiana Clean Fuels coalition Contact Information Ann Vail Shaneyfelt 225-334-8083 ashaneyfelt@louisianacleanfuels.org Lauren Lambert-Tompkins 225-485-2522 llambert@louisianacleanfuels.org Coalition Website Clean Cities Coordinators Coord Ann Vail Shaneyfelt Coord Coord Lauren Lambert-Tompkins Coord Photo of Ann Vail Shaneyfelt Ann Vail Shaneyfelt has served as a marketing professional for over 10 years, joined the Louisiana Clean Fuels (LCF) coalition team in 2012 and was named coordinator in October, 2013. She has worked successfully across a variety of industries including oil and gas exploration, healthcare

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NREL: Vehicles and Fuels Research - Biofuels Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

402

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

0 0 December 2011 Table 59. Movements of Crude Oil and Petroleum Products by Tanker, and Barge Between PAD Districts, December 2011 (Thousand Barrels) Commodity From 1 to From 2 to 2 3 5 1 3 5 Crude Oil ................................................................. 374 533 - 294 1,445 - Petroleum Products ............................................... 143 6 0 1,165 3,822 0 Liquified Petroleum Gases ................................... - - - - - - Unfinished Oils ..................................................... 65 0 - 0 317 - Motor Gasoline Blending Components ................. 41 0 - 643 183 - Reformulated - RBOB ....................................... - - - - - - Conventional ..................................................... 41 0 - 643 183 - CBOB ...........................................................

403

,"Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line Data Collection System",,"Report Period","Due In",,,"Primary","Secondary","Secondary"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line Data Collection System",,"Report Period","Due In",,,"Primary","Secondary","Secondary" Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line Data Collection System",,"Report Period","Due In",,,"Primary","Secondary","Secondary" 2003,,,,,,,"EMS4","Environmental Management System","Fiscal Year (Oct 1 - Sept 30)","November 15",,"Fiscal Year",2009 2004,,,,,,,"FAST","Federal Automotive Statistical Tool","Fiscal Year (Oct 1 - Sept 30)","October 31",,"Department","Department of Energy" 2005,-2.775557562e-17,,,0,0,,"FIMS","Facilities Information Management System","Fiscal Year (Oct 1 - Sept 30)","November 15",,"Program","Office of Legacy Management"

404

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2014 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, October 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field...

405

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 2 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-October 2014 (Thousand Barrels per Day) Commodity Supply...

406

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Table 21. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, October 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks...

407

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

3.PDF Table 23. Percent Yield of Petroleum Products by PAD and Refining Districts, January 2013 Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast...

408

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

5.PDF Table 15. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining Districts, January 2013 (Thousand Barrels) Commodity Production PAD District 1...

409

International petroleum statistics report  

SciTech Connect

This report provides information on current international petroleum production, demand, imports, and stocks. World oil demand and OECD demand data are presented for the years 1970 thru 1995.

NONE

1996-08-01T23:59:59.000Z

410

Petroleum well costs.  

E-Print Network (OSTI)

??This is the first academic study of well costs and drilling times for Australia??s petroleum producing basins, both onshore and offshore. I analyse a substantial… (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

411

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

0.PDF Table 10. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

412

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2.PDF Table 22. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD...

413

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE4.PDF Table 4. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

414

Strategic Petroleum Reserve  

Energy Savers (EERE)

of petroleum products from the Reserve." Due to significant changes in domestic crude oil production, increased imports of Canadian crude oil, and changes to crude oil...

415

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE8.PDF Table 8. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

416

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE6.PDF Table 6. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

417

[National Institute for Petroleum and Energy Research] monthly progress report for June 1992  

SciTech Connect

Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuels research includes; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; and analysis of the U. S. oil resource base and estimate of future recoverable oil.

Not Available

1992-08-01T23:59:59.000Z

418

(National Institute for Petroleum and Energy Research) monthly progress report for June 1992  

SciTech Connect

Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuels research includes; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; and analysis of the U. S. oil resource base and estimate of future recoverable oil.

Not Available

1992-08-01T23:59:59.000Z

419

(National Institute for Petroleum and Energy Research) monthly progress report, July 1992  

SciTech Connect

Accomplishments for the month of July are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplement Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1. unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; analysis of the US oil resource base and estimate of future recoverable oil; DOE education initiative project; and technology transfer to independent producers.

Not Available

1992-09-01T23:59:59.000Z

420

[National Institute for Petroleum and Energy Research] monthly progress report, July 1992  

SciTech Connect

Accomplishments for the month of July are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplement Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1. unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; analysis of the US oil resource base and estimate of future recoverable oil; DOE education initiative project; and technology transfer to independent producers.

Not Available

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Petroleum County Secondary Data Analysis  

E-Print Network (OSTI)

Petroleum County Secondary Data Analysis July 23, 2012 1 Community Health Data, MT Dept American Diabetes Association (2012) Region 3 (South Central) ­ Judith Basin, Fergus, Petroleum* #12; Petroleum County Secondary Data Analysis July 23, 2012 2 Socioeconomic Measures1

Maxwell, Bruce D.

422

Reaping Energy Savings from Petroleum Refining  

E-Print Network (OSTI)

REAPING ENERGY SAVINGS FROM PETROLEUM REFINING Alan Deng, Project Manager, San Francisco, CA, Ron Cascone, Project Manager, White Plains, NY, Nexant, Inc. ABSTRACT The refining industry is one of the largest energy users in Pacific Gas.... Market barriers include lack of standards and perceptions of unproven reliability for new technologies in petroleum refining, lack of understanding of the refining process by energy efficiency professionals, lack of capital investment, high up...

Deng, A.; Cascone, R.

2006-01-01T23:59:59.000Z

423

Carbon dioxide emission index as a mean for assessing fuel quality  

SciTech Connect

Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

2008-07-01T23:59:59.000Z

424

Investigation on Firing Behavior of the Spark-Ignition Engine Fueled with Methanol, Liquefied Petroleum Gas (LPG), and Methanol/LPG During Cold Start  

Science Journals Connector (OSTI)

It can be produced from synthesis gas (a mixture of carbon monoxide (CO) and hydrogen) that is formed by steam reforming of natural gas, by gasification of coal, or from biomass, all of which are available in abundance or renewable. ... Liguang et al.,(16) based on cycle-by-cycle control strategy on an EFI (electronic fuel injection) LPG engine, studied how to control the ignition cycle and performed both single-cycle and multicycle tests. ...

Changming Gong; Baoqing Deng; Shu Wang; Yan Su; Qing Gao; Xunjun Liu

2008-10-04T23:59:59.000Z

425

Definition: Petroleum coke | Open Energy Information  

Open Energy Info (EERE)

coke coke Jump to: navigation, search Dictionary.png Petroleum coke A residue high in carbon content and low in hydrogen that is the final product of thermal decomposition in the condensation process in cracking (breaking of carbon-carbon bonds). This product is reported as marketable coke or catalyst coke.Coke from petroleum has a heating value of 6.024 million Btu per barrel.[1] View on Wikipedia Wikipedia Definition Petroleum coke (often abbreviated Pet coke or petcoke) is a carbonaceous solid derived from oil refinery coker units or other cracking processes. Other coke has traditionally been derived from coal. This coke can either be fuel grade (high in sulphur and metals) or anode grade (low in sulphur and metals). The raw coke directly out of the coker is often

426

Economics and regulation of petroleum futures markets  

SciTech Connect

Because the futures market in petroleum products is a relatively recent phenomenon, the implications of public policies formulated for that market have not yet been fully explored. To provide the Office of Competition of the Department of Energy (DOE) with sufficient information to assess policy alternatives, Resource Planning Associates, Inc. (RPA) was asked to analyze the development of the futures market in No. 2 oil, assess the potential for futures markets in other petroleum products, and identify policy alternatives available to DOE. To perform this analysis, the criteria for a viable futures market was established first. Then, the experience to date with the 18-month-old futures market in No. 2 oil was examined, and the potential for viable futures markets in No. 6 oil, gasoline, jet fuel, and crude oil was assessed. Finally, how existing DOE regulations and prospective actions might affect petroleum futures market development was investigated.

Not Available

1980-08-01T23:59:59.000Z

427

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax For taxation purposes, liquefied petroleum gas (propane) used as a motor vehicle fuel must be converted to gasoline gallon equivalents (GGE) using the conversion factor of 4.24...

428

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

vegetable oils or animal fats, either in pure form or mixed in any combination with petroleum-based diesel fuel. The definition of biodiesel is expanded for purposes of existing...

429

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

that meet ASTM specification D6751. Blended biodiesel is a blend of biodiesel with petroleum diesel fuel so that the volume percentage of biodiesel in the blend is at least 2%...

430

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Propane Fuel Tax The tax imposed on liquefied petroleum gas, or propane, used to operate a motor vehicle is equal to half the tax paid on the sale or use of gasoline, or...

431

Renewable Fuel Standards Resources  

Energy.gov (U.S. Department of Energy (DOE))

Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum...

432

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can...

433

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas (LNG) and Propane Tax and User Permit LNG and liquefied petroleum gas (propane) used as motor fuel are taxed on a per vehicle basis through an annual flat fee...

434

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Vehicle (AFV) Tax Exemption The Arizona use tax does not apply to the following: natural gas or liquefied petroleum gas (propane) used to propel a motor vehicle; AFVs, if...

435

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

D6751 and biofuel is a fuel from non-petroleum plant- or animal-based sources that can be used for the generation of heat or power. (Reference Hawaii Revised Statutes 103D-101...

436

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

20% biodiesel (B20); natural gas; liquefied petroleum gas or propane; hydrogen; electricity; or any fuel that the U.S. Department of Energy determines, by final rule, to be...

437

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

of this mandate, biodiesel is defined as a motor vehicle fuel derived from vegetable oil, animal fat, or other non-petroleum resources, that is designated as B100 and complies...

438

Petroleum Supply Monthly September 2004  

Annual Energy Outlook 2012 (EIA)

Production and Stocks of Petroleum Products by PAD and Refining District PDF TXT . Refinery Operations 28 Refinery Input of Crude Oil and Petroleum Products by PAD and Refining...

439

Petroleum Reserves | Department of Energy  

Office of Environmental Management (EM)

of gasoline for consumers in the northeastern United States. Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserve (NPOSR) has a storied history...

440

Vegetable oil fuel  

SciTech Connect

In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

Bartholomew, D.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Crude Oil and Petroleum Products Movements by Pipeline between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline between PAD Districts Pipeline between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

442

Optical-Engine Study of a Low-Temperature Combustion Strategy Employing a Dual-Row, Narrow-Included-Angle Nozzle and Early, Direct Injection of Diesel Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Insight into mechanisms causing observed sharp emissions increase with diesel fuel injection is gained through experiments in an optical engine employing a similar low-temperature combustion strategy of early, direct injection of diesel fuel.

443

Vanadium catalysts break down biomass for fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum...

444

Petroleum | OpenEI  

Open Energy Info (EERE)

Petroleum Petroleum Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 12, and contains only the reference case. The dataset uses 2009 dollars per gallon. The data is broken down into crude oil prices, residential, commercial, industrial, transportation, electric power and refined petroleum product prices. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Petroleum prices Data application/vnd.ms-excel icon AEO2011: Petroleum Product Prices- Reference Case (xls, 129.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

445

Petroleum Marketing Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: August 29, 2008 Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner Acquisition Cost of Crude Oil by PAD Districts PDF TXT 2 U.S. Refiner Prices of Petroleum Products to End Users PDF TXT 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF TXT 4 U.S. Refiner Prices of Petroleum Products for Resale PDF TXT 5 U.S. Refiner Volumes of Petroleum Products for Resale PDF TXT 6 U.S. Refiner Motor Gasoline Prices by Grade and Sales Type PDF TXT 7 U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type PDF TXT 8 U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type PDF TXT 9 U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type PDF TXT

446

Petroleum Marketing Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: August 27, 2009 Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner Acquisition Cost of Crude Oil by PAD Districts PDF TXT 2 U.S. Refiner Prices of Petroleum Products to End Users PDF TXT 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF TXT 4 U.S. Refiner Prices of Petroleum Products for Resale PDF TXT 5 U.S. Refiner Volumes of Petroleum Products for Resale PDF TXT 6 U.S. Refiner Motor Gasoline Prices by Grade and Sales Type PDF TXT 7 U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type PDF TXT 8 U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type PDF TXT 9 U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type PDF TXT

447

Investigation of materials performances in high moisture environments including corrosive contaminants typical of those arising by using alternative fuels in gas turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

materials performances in high moisture materials performances in high moisture environments including corrosive contaminants typical of those arising by using alternative fuels in gas turbines Gerald Meier, Frederick Pettit and Keeyoung Department of Materials Science and Engineering, Jung University of Pittsburgh Pittsburgh, PA 15260 Peer review Workshop III UTSR Project 04 01 SR116 October 18-20, 2005 Project Approach Task I Selection and Preparation of Specimens Task II Selection of Test Conditions Specimens : GTD111+CoNiCrAlY and Pt Aluminides, N5+Pt Aluminides Deposit : No Deposit, CaO, CaSO 4 , Na 2 SO 4 1150℃ Dry 1150℃ Wet 950℃ Wet 750℃ SO 3 950℃ Dry Selection of Test Temperature, T 1 , Gas Environment and Deposit Composition, D

448

Fact #736: July 16, 2012 Total Petroleum Imports and Net Petroleum...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The Difference is Growing Fact 736: July 16, 2012 Total Petroleum Imports and Net Petroleum Imports: The...

449

Petroleum & Other Liquids - Analysis & Projections - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Sales Consumption & Sales Change category... Most Requested Consumption & Sales Crude Reserves & Production Imports/Exports & Movements Prices Projections Refining & Processing Stocks All Reports Filter by: All Data Analysis Projections Heating Oil and Propane Update Weekly residential, wholesale, and spot prices; and production, demand, and stocks of heating fuels. (Weekly heating oil and propane prices are only collected during the heating season which extends from October through March. ) Weekly Petroleum Status Report The petroleum supply situation in the context of historical information and selected prices. (archived versions) Archived Versions Weekly Petroleum Status Report - Archive This Week in Petroleum Data and analysis of recent events affecting the petroleum industry and

450

Petroleum & Other Liquids - Analysis & Projections - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Crude Reserves & Production Crude Reserves & Production Change category... Most Requested Consumption & Sales Crude Reserves & Production Imports/Exports & Movements Prices Projections Refining & Processing Stocks All Reports Filter by: All Data Analysis Projections Heating Oil and Propane Update Weekly residential, wholesale, and spot prices; and production, demand, and stocks of heating fuels. (Weekly heating oil and propane prices are only collected during the heating season which extends from October through March. ) Weekly Petroleum Status Report The petroleum supply situation in the context of historical information and selected prices. (archived versions) Archived Versions Weekly Petroleum Status Report - Archive This Week in Petroleum Data and analysis of recent events affecting the petroleum industry and

451

Petroleum & Other Liquids - Analysis & Projections - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Stocks Stocks Change category... Most Requested Consumption & Sales Crude Reserves & Production Imports/Exports & Movements Prices Projections Refining & Processing Stocks All Reports Filter by: All Data Analysis Projections Heating Oil and Propane Update Weekly residential, wholesale, and spot prices; and production, demand, and stocks of heating fuels. (Weekly heating oil and propane prices are only collected during the heating season which extends from October through March. ) Weekly Petroleum Status Report The petroleum supply situation in the context of historical information and selected prices. (archived versions) Archived Versions Weekly Petroleum Status Report - Archive This Week in Petroleum Data and analysis of recent events affecting the petroleum industry and

452

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

453

Clean Cities Tools: Tools to Help You Drive Smarter, Use Less Petroleum, and Reduce Emissions (Brochure)  

SciTech Connect

Clean Cities' Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

Not Available

2011-06-01T23:59:59.000Z

454

Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)  

SciTech Connect

Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

Not Available

2012-01-01T23:59:59.000Z

455

Weekly Petroleum Status Report Schedule  

Gasoline and Diesel Fuel Update (EIA)

Weekly Petroleum Status Report Weekly Petroleum Status Report Release Schedule The wpsrsummary.pdf, overview.pdf, and Tables 1-14 in CSV and XLS formats, are released to the Web site after 10:30 a.m. (Eastern Time) on Wednesday. All other PDF and HTML files are released to the Web site after 1:00 p.m. (Eastern Time) on Wednesday. Appendix D is produced during the winter heating season, which extends from October through March of each year. For some weeks which include holidays, releases are delayed by one day. Holiday Release Schedule The standard release time and day of the week will be at 10:30 a.m. (Eastern time) on Wednesdays with the following exceptions. All times are Eastern. Data for the week ending Alternate Release Date Release Day Release Time Holiday October 11, 2013 October 21, 2013 Monday 10:30 a.m. Columbus/EIA Closed

456

Welcome Doug MacIntyre, Director, Office of Petroleum and Biofuels Statistics, U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

2012 State Heating Oil and Propane (SHOPP) Webinar 2012 State Heating Oil and Propane (SHOPP) Webinar August 14, 2012 (9:30 am - 12:00 pm, Eastern Time) 9:30 am - 9:45 am Welcome Doug MacIntyre, Director, Office of Petroleum and Biofuels Statistics, U.S. Energy Information Administration Mr. MacIntyre is the Director of the Office of Petroleum and Biofuels Statistics and has a long and varied history with the organization. His purview now includes SHOPP which he is familiar with, having been a presenter at previous SHOPP Conferences. 9:45-10:15 am Heating Fuels Outlook Crude Oil, Heating Fuel, and Propane Tancred Lidderdale, Office of Integrated and International Energy Analysis, U.S. Energy Information Administration Dr. Lidderdale will present highlights from the August Short-Term Energy Outlook, a monthly

457

Third international symposium on alcohol fuels technology  

SciTech Connect

At the opening of the Symposium, Dr. Sharrah, Senior Vice President of Continental Oil Company, addressed the attendees, and his remarks are included in this volume. The Symposium was concluded by workshops which addressed specific topics. The topical titles are as follows: alcohol uses; production; environment and safety; and socio-economic. The workshops reflected a growing confidence among the attendees that the alcohols from coal, remote natural gas and biomass do offer alternatives to petroleum fuels. Further, they may, in the long run, prove to be equal or superior to the petroleum fuels when the aspects of performance, environment, health and safety are combined with the renewable aspect of the biomass derived alcohols. Although considerable activity in the production and use of alcohols is now appearing in many parts of the world, the absence of strong, broad scale assessment and support for these fuels by the United States Federal Government was a noted point of concern by the attendees. The environmental consequence of using alcohols continues to be more benign in general than the petroleum based fuels. The exception is the family of aldehydes. Although the aldehydes are easily suppressed by catalysts, it is important to understand their production in the combustion process. Progress is being made in this regard. Of course, the goal is to burn the alcohols so cleanly that catalytic equipment can be eliminated. Separate abstracts are prepared for the Energy Data Base for individual presentations.

none,

1980-04-01T23:59:59.000Z

458

Clean Cities: Lone Star Clean Fuels Alliance (Central Texas) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Lone Star Clean Fuels Alliance (Central Texas) Coalition Lone Star Clean Fuels Alliance (Central Texas) Coalition The Lone Star Clean Fuels Alliance (Central Texas) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Lone Star Clean Fuels Alliance (Central Texas) coalition Contact Information Stacy Neef 512-773-8794 stacy.neef@lonestarcfa.org Coalition Website Clean Cities Coordinator Stacy Neef Photo of Stacy Neef Stacy Neef has served as the coordinator for Lone Star Clean Fuels Alliance (Austin) (LSCFA) promoting and advancing the use of alternative fuel and vehicles for fleets in central Texas since 2000. The central Texas region includes Bastrop, Caldwell, Hays, Travis, Williamson Counties; Fort Hood and City of Temple, Texas. LSCFA works closely with other Texas Clean

459

Transportation of Natural Gas and Petroleum (Nebraska) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation of Natural Gas and Petroleum (Nebraska) Transportation of Natural Gas and Petroleum (Nebraska) Transportation of Natural Gas and Petroleum (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Oil and Gas Conservation Commission This statute enables and regulates the exercise of eminent domain by persons, companies, corporations, or associations transporting crude oil,

460

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Check Out the New Alternative Fuel Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Check Out the New Alternative Fuel Station Locator Check Out the New Alternative Fuel Station Locator Check Out the New Alternative Fuel Station Locator November 19, 2012 - 2:29pm Addthis Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles

462

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8.PDF 8.PDF Table 38. Movements of Crude Oil and Petroleum Products by Tanker, and Barge Between PAD Districts, January 2012 (Thousand Barrels) Commodity From 1 to From 2 to 2 3 5 1 3 5 Crude Oil ................................................................. 18 141 - 303 1,948 - Petroleum Products ............................................... 137 44 0 855 3,010 0 Liquefied Petroleum Gases .................................. - 0 - 0 0 - Unfinished Oils ..................................................... 36 0 - 0 871 - Motor Gasoline Blending Components ................. 83 0 - 396 158 - Reformulated - RBOB ....................................... - - - - - - Conventional ..................................................... 83 0 - 396 158 - CBOB ........................................................... 0 0 - 396 0 -

463

Definition: Diesel fuel | Open Energy Information  

Open Energy Info (EERE)

Diesel fuel Diesel fuel Jump to: navigation, search Dictionary.png Diesel fuel A liquid fuel produced from petroleum; used in diesel engines.[1] View on Wikipedia Wikipedia Definition Diesel oil and Gazole (fuel) redirect here. Sometimes "diesel oil" is used to mean lubricating oil for diesel engines. Diesel fuel in general is any liquid fuel used in diesel engines. The most common is a specific fractional distillate of petroleum fuel oil, but alternatives that are not derived from petroleum, such as biodiesel, biomass to liquid (BTL) or gas to liquid (GTL) diesel, are increasingly being developed and adopted. To distinguish these types, petroleum-derived diesel is increasingly called petrodiesel. Ultra-low-sulfur diesel (ULSD) is a standard for defining diesel fuel with substantially lowered sulfur contents. As of 2007, almost

464

IN SEARCH OF A PROBABILISTIC MODEL OF PETROLEUM RESOURCE ASSESSMENT  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses a probabilistic model of petroleum resource assessment. At present, petroleum provides the major driving energy for national economies. The foreseen worldwide depletion of petroleum resources in a few decades, at a time of transition to new energy technologies, imposes hardships on many nations but enhances opportunities for those having a petroleum potential. The petroleum prospective areas of the world consist of sedimentary basins and geosynclines not too intensely deformed tectonically, including the continental shelves down to 200 m depth, with a total area under national jurisdictions of about 26.1 million sq mi. Certain oceanic areas beyond the continental shelves—continental rise and continental slope—have petroleum prospects, but their eventual development may be some 10 to 20 years away. The traditional geologic environment for petroleum has been the geosynclinal belt. The larger the tract of undrilled prospective area, the greater is the chances that thick sedimentary pods may occur here and there. Even when a few scattered pieces of evidence may indicate a thin sedimentary cover, prospects for generation and primary migration of petroleum may be enhanced by the large size of a prospective area. The examination of the distribution of petroleum occurrences throughout the world in basins with a significant amount of exploratory drilling indicates that roughly one-half of the prospective basins and geosynclines do not yield any or much petroleum.

B.F. Grossling

1979-01-01T23:59:59.000Z

465

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

466

Accuracy of Petroleum Supply Data  

Gasoline and Diesel Fuel Update (EIA)

Accuracy of Petroleum Supply Data Accuracy of Petroleum Supply Data by Tammy G. Heppner and Carol L. French Overview Petroleum supply data collected by the Petroleum Division (PD) in the Office of Oil and Gas (OOG) of the Energy Information Administration (EIA) showed an improvement in the accuracy of the 2005 data from initial estimates, to interim values, to final values. These data were presented in a series of PD products: the Weekly Petroleum Status Report (WPSR), This Week in Petroleum (TWIP), the Petroleum Supply Monthly (PSM), and the Petroleum Supply Annual (PSA). Weekly estimates in the WPSR and TWIP were the first values available. Figure FE1 illustrates that as reporting and review time passes from the weekly estimates to the interim monthly values to the final petroleum supply values, the EIA is able to produce more accurate petroleum supply data. For the monthly-from-weekly (MFW) data, respondents

467

President's Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

468

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alaska Incentives and Laws Alaska Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Compressed Natural Gas (CNG) Vehicle Promotion Archived: 05/01/2012 To reduce emissions and reliance on imported petroleum, the Alaska Senate urges state and federal agencies to purchase vehicles that can be converted to run on CNG. (Reference Senate Resolution 10, 2010) Global Warming Mitigation Initiative Archived: 05/01/2011 The Alaska Climate Change Sub-Cabinet advises the governor on climate change strategy, including opportunities to reduce greenhouse gas emissions through the use of alternative fuels. (Reference Administrative Order 238,

469

Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Robert Wichert, US Fuel Cell Council, at the DOD-DOE Aircraft Petroleum Use Reduction Workshop, September 30, 2010, in Washington, DC.

470

Assessment of bio-fuel options for solid oxide fuel cell applications.  

E-Print Network (OSTI)

??Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote… (more)

Lin, Jiefeng

2013-01-01T23:59:59.000Z

471

Weekly Petroleum Status Report  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Weekly Petroleum Status Report Data for week ending Dec. 13, 2013 | Release Date: Dec. 18, 2013 | Next Release Date: Dec. 27, 2013 | full report Previous Issues Week: December 18, 2013 December 11, 2013 December 4, 2013 November 27, 2013 November 20, 2013 November 14, 2013 November 6, 2013 October 30, 2013 October 23, 2013 October 21, 2013 October 9, 2013 October 2, 2013 prior issues Go The petroleum supply situation in the context of historical information and selected prices. Released after 10:30 a.m. 1:00 p.m. Highlights Weekly Petroleum Status Report Highlights PDF PDF Data Overview (Combined Table 1 and Table 9) PDF Tables 1 U.S. Petroleum Balance Sheet CSV XLS PDF 2 U.S. Inputs and Production by PAD District CSV XLS PDF

472

Weekly Petroleum Status Report  

U.S. Energy Information Administration (EIA) Indexed Site

4 Figure 7. Daily Crude Oil and Petroleum Product Spot Prices, January 2013 to Present Figure 8. Daily Trans-Atlantic Spot Product Price Differentials: New York Harbor less...

473

Petroleum Marketing Annual  

U.S. Energy Information Administration (EIA) Indexed Site

5 Entire . The entire report as a single file. PDF 2.9MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights ....

474

Petroleum Supply Annual  

Annual Energy Outlook 2012 (EIA)

6.PDF Table 16. Refinery and Blender Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2013 (Thousand Barrels) Commodity PAD District 1 - East...

475

Petroleum Marketing Annual 2007  

U.S. Energy Information Administration (EIA) Indexed Site

7 Released: August 29, 2008 Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner...

476

Petroleum Marketing Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Information Administration, Form EIA-782A, "Refi ners'Gas Plant Operators' Monthly Petroleum Product Sales Report." Source: U. U. U. U S. S S S S E E E Ene ne erg r r y y y In n...

477

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 October 2014 Table 37. Imports of Crude Oil and Petroleum Products by PAD District, October 2014 (Thousand Barrels, Except Where Noted) Commodity PAD Districts U.S. Total 1 2 3 4...

478

Petroleum Marketing Annual 1997  

U.S. Energy Information Administration (EIA) Indexed Site

7 Entire . The entire report as a single file. PDF 1.2MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights ....

479

Petroleum Marketing Annual 2008  

U.S. Energy Information Administration (EIA) Indexed Site

8 Released: August 27, 2009 Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner...

480

Petroleum Marketing Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 Entire . The entire report as a single file. PDF 2.9MB . . Front Matter . Petroleum Marketing Annual Cover Page, Contacts, Preface, and Table of Contents PDF . . Highlights ....

Note: This page contains sample records for the topic "fuels including petroleum" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Petroleum Marketing Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

acquisition cost for crude oil declined 3.34 (3.5 percent), to 92.27 per barrel. Petroleum products Motor gasoline * September monthly average prices for refi ner sales of...

482

Petroleum Supply Monthly  

Annual Energy Outlook 2012 (EIA)

October 2011 Table 55. Stocks of Crude Oil and Petroleum Products by PAD District, October 2011 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Crude Oil...

483

Petroleum Marketing Monthly  

NLE Websites -- All DOE Office Websites (Extended Search)

See footnotes at end of table. U.S. Energy Information Administration | Petroleum Marketing Monthly 14 December 2014 Table 6. U.S. refi ner motor gasoline prices by grade and...

484

Weekly Petroleum Status Report  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Appendix B Explanatory Notes and Detailed Methods Report 1. Overview .................................................................................................................................................................................................... 34 A. The Energy Information Administration's Quality Guidelines ............................................................................................................ 34 B. Concepts of Product Supply and Demand ........................................................................................................................................... 34 2. Weekly Petroleum Supply Surveys ............................................................................................................................................................

485

Petroleum Supply Annual  

Gasoline and Diesel Fuel Update (EIA)

7.PDF Table 37. Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, January 2013 (Thousand Barrels) Commodity From 1 to From 2 to From 3 to 2 3 1 3 4 1...

486

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1.PDF Table 31. Exports of Crude Oil and Petroleum Products by PAD District, January 2013 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude...

487

Liquid fossil fuel technology. Quarterly technical progress report, January-March 1981  

SciTech Connect

The Bartlesville Energy Technology Center's research activities are summarized under the following headings: liquid fossil fuel cycle; extraction which is subdivided into resource assessment and production; liquid processing which includes characterization of liquids from petroleum, coal, shale and other alternate sources, thermodynamics and process technology; utilization; and project integration and technology transfer. (ATT)

Not Available

1981-08-01T23:59:59.000Z

488

NREL: Learning - Alternative Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuels Alternative Fuels Photo of a man standing next to a large heavy-duty truck cab while the truck is being filled with biodiesel at a refueling station. As part of its work for the Clean Cities program, NREL helps people find and use alternative fuels such as biodiesel. Credit: L.L. Bean To reduce our growing dependence on imported oil, our nation's researchers are working with industry to develop several different kinds of alternative fuels. Some of these fuels can either be blended with petroleum while some are alternatives to petroleum. Using alternative fuels can also help to curb exhaust emissions and contribute to a healthier environment. Most of today's conventional cars, vans, trucks, or buses can already run on some alternative fuels, such as blends of gasoline or diesel fuel that

489

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

specifically vehicles that operate using natural gas, liquefied petroleum gas or propane, hydrogen, or electricity, including low-speed vehicles. (Reference Virginia Code 58.1-350...

490

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 42. PAD District 2 - Imports of Crude Oil and Petroleum Products by Country of Origin, September 2013 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 1,083 - - - - - - - - - Algeria ................................ - - - - - - - - - - Angola ................................ - - - - - - - - - - Ecuador .............................. - - - - - - - - - - Iran ..................................... - - - - - - - - - - Iraq ..................................... - - - - - - - - - - Kuwait ................................. - - - - - - - - - - Libya ................................... - - - - - - - - - - Nigeria ................................

491

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 September 2013 Table 46. PAD District 2 - Year-to-Date Imports of Crude Oil and Petroleum Products by Country of Origin, January-September 2013 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 11,451 - - - - - - - - - Algeria ................................ - - - - - - - - - - Angola ................................ - - - - - - - - - - Ecuador .............................. - - - - - - - - - - Iran ..................................... - - - - - - - - - - Iraq ..................................... - - - - - - - - - - Kuwait ................................. 949 - - - - - - - - - Libya ...................................

492

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

58 58 September 2013 Table 41. PAD District 1 - Imports of Crude Oil and Petroleum Products by Country of Origin, September 2013 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 12,102 - - - - - - - 2,112 2,112 Algeria ................................ - - - - - - - - - - Angola ................................ 3,271 - - - - - - - - - Ecuador .............................. - - - - - - - - 160 160 Iran ..................................... - - - - - - - - - - Iraq ..................................... - - - - - - - - - - Kuwait ................................. - - - - - - - - - - Libya ................................... 1,046

493

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 September 2013 Table 44. PAD District 4 and 5 - Imports of Crude Oil and Petroleum Products by Country of Origin, September 2013 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total PAD District 4 OPEC ..................................... - - - - - - - - - - Algeria ................................ - - - - - - - - - - Angola ................................ - - - - - - - - - - Ecuador .............................. - - - - - - - - - - Iran ..................................... - - - - - - - - - - Iraq ..................................... - - - - - - - - - - Kuwait ................................. - - - - - - - - - - Libya ................................... - - -

494

Petroleum basin studies  

SciTech Connect

This book reviews the tectonic setting, basin development and history of exploration of a number of selected petroleum provinces located in a variety of settings in the Middle East, North Sea, Nigeria, the Rocky Mountains, Gabon and China. This book illustrates how ideas and models developed in one area may be applied to other regions. Regional reviews and the reassessment of petroleum provinces are presented.

Shannon, P.M. (Univ. College, Dublin (IE)); Naylor, D. (Westland Exploration Ltd., Dublin (IE))

1989-01-01T23:59:59.000Z

495

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8.PDF 8.PDF Table 28. PAD District 2 - Imports of Crude Oil and Petroleum Products by Country of Origin, January 2012 (Thousand Barrels) Country of Origin Crude Oil 1,2 Pentanes Plus Liquefied Petroleum Gases Unfinished Oils 1 Finished Motor Gasoline Motor Gasoline Blending Components Reform- ulated Conven- tional Total Reform- ulated Conven- tional Total OPEC ..................................... 1,764 - - - - - - - - - Algeria ................................ 1,043 - - - - - - - - - Angola ................................ - - - - - - - - - - Ecuador .............................. - - - - - - - - - - Iran ..................................... - - - - - - - - - - Iraq ..................................... - - - - - - - - - - Kuwait ................................. - - - - - - - - - - Libya ................................... - - - - - - - - - - Nigeria ................................

496

Petroleum & Other Liquids - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Re-release of the Petroleum Supply Annual with data for 2011 Re-release of the Petroleum Supply Annual with data for 2011 Released: September 27, 2013 Petroleum supply data released today (September 27, 2013) by the U.S. Energy Information Administration include the Petroleum Supply Monthly with data for July 2013 as well as the Petroleum Supply Annual with revised monthly data for 2012. In addition, propane imports, propane product supplied, and atmospheric crude oil distillation capacity data were revised in an updated release of the Petroleum Supply Annual with data for 2011. Petroleum Navigator has been updated with revised monthly state-level crude oil production data for from January 2003 to June 2013. Once a year, with release of the Petroleum Supply Annual, EIA revises up to 10 years of historical crude oil production estimates in Petroleum Navigator. On a

497

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Petroleum Use Reduction Petroleum Use Reduction All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 4 results Generated_thumb20131211-30676-7w9hmt Clean Cities Cumulative Petroleum Savings Generated_thumb20131211-30676-7w9hmt Trend of displacement by all fuel and technology types from 1994-2012 Last update December 2013 View Graph Graph Download Data Generated_thumb20131211-30676-1y0adz7 Clean Cities Petroleum Savings by AFV Type

498

Petroleum & Other Liquids - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum & Other Liquids Petroleum & Other Liquids Glossary › FAQS › Overview Data Summary Prices Crude Reserves and Production Refining and Processing Imports/Exports & Movements Stocks Consumption/Sales All Petroleum & Other Liquids Data Reports Analysis & Projections Most Requested Consumption & Sales Crude Reserves & Production Imports/Exports & Movements Prices Projections Refining & Processing Stocks All Reports EIA's latest Short-Term Energy Outlook for crude oil and liquid fuels › image chart of World Liquid Fuels Supply and Demand as described in linked Short-Term Energy Outlook Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. EIA's latest weekly petroleum analysis › Featured chart from This Week in Petroleum using statistics from the Weekly Petroleum Status Report

499

Natural Gas and Other Petroleum  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Annual Plan 3 Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Report to Congress June 2013 United States Department of Energy Washington, DC 20585 Department of Energy |June 2013 Department of Energy |June 2013 Message from the Secretary The Nation needs to deploy American assets, innovation, and technology so that it can safely and responsibly develop more energy here at home and be a leader in the global energy economy. To this end, the Department of Energy (DOE) continues its work toward safe and responsible development of fossil fuels. This means giving American families and communities high confidence that air and water quality, and public health and safety will not be compromised.

500

Natural Gas and Other Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Plan Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Report to Congress June 2013 United States Department of Energy Washington, DC 20585 Department of Energy |June 2013 Department of Energy |June 2013 Message from the Secretary The Nation needs to deploy American assets, innovation, and technology so that it can safely and responsibly develop more energy here at home and be a leader in the global energy economy. To this end, the Department of Energy (DOE) continues its work toward safe and responsible development of fossil fuels. This means giving American families and communities high confidence that air and water quality, and public health and safety will not be compromised.