Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Alternative Fuel Development and Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Development and Deployment Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

2

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

3

NREL: Technology Deployment - Alternative Fuels Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuels Data Center Alternative Fuels Data Center NREL developed and manages the Alternative Fuels Data Center (AFDC), the U.S. Department of Energy's comprehensive clearinghouse of information and data related to the deployment of alternative fuels, advanced vehicles, and energy efficiency in transportation for fleets, fuel providers, policymakers, and other stakeholders working to reduce petroleum use in transportation. Interactive Transportation Deployment Tools NREL's large suite of free online tools assist fleets and drivers in selecting and deploying the technologies and strategies that will best help them meet their environmental and energy goals. Fleets and drivers can use calculators, interactive maps, and data searches to evaluate, select, and deploy alternative fuels and advanced vehicles as

4

NREL: Technology Deployment - Project Development  

NLE Websites -- All DOE Office Websites (Extended Search)

policies and making recommendations on federal fleet mandates, local electric vehicle incentives, solar permitting standards, and more. Project Financing Alternatives We can...

5

NREL: Technology Deployment - Project Development Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Development Model Project Development Model NREL developed the Project Development Model to evaluate the risks and investment decisions required for successful renewable energy project development. The two-phase iterative model includes elements in project fundamentals and project development based off commercial project development practices supported by tools such as pro formas and checklists. Project Fundamentals or BEPTC(tm) Renewable Energy Project Development Tool For help with the BEPTC phase of your project, check out the Renewable Energy Project Development Tool, developed by NREL for U.S. Department of Energy's Community Renewable Energy Deployment effort. The tool helps you quickly establish the key motivators and feasibility of your project. Strong project fundamentals and an understanding of how a project fits

6

Alternative Fuels Data Center: Alternative Fuel Project Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Energy Harvest Grant seeks to deploy cleaner energy sources by providing funding for alternative energy projects, including those involving clean, alternative fuels for...

7

Greensburg, Kansas, Deployment Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg, Kansas, Deployment Project Greensburg, Kansas, Deployment Project Greensburg, Kansas, Deployment Project November 13, 2013 - 10:40am Addthis The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have helped Greensburg, Kansas, rebuild as a model green community. On May 4, 2007, a tornado destroyed or damaged 95% of the town's homes and businesses. Greensburg turned disaster into opportunity and created a plan to rebuild as a sustainable community with the help of a diverse group of experts, including DOE and NREL. To help make Greensburg's vision of rebuilding green a reality, DOE and NREL focused on the specific areas listed below. You can also read more in the fact sheet: A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities.

8

Why the Time is Right to Deploy Alternative Fuels (Presentation)  

SciTech Connect

Presentation outlines industry trends and statistics that show why now is the time to deploy alternative fuels and vehicles.

Harrow, G.

2007-09-14T23:59:59.000Z

9

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

10

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

11

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

12

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

13

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

14

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

15

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

16

NREL: Technology Deployment - Project Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Success Stories Project Success Stories NREL's technology deployment best practices, project support, and technical assistance, and technology acceleration activities are resulting in successful renewable energy and energy efficiency implementation in numerous locations. View success stories highlighting NREL's work with: Cities and Communities Greensburg, Kansas Greensburg: Photo of wind turbines in a green field. An International Inspiration for Green Disaster Recovery For 3 years after a devastating tornado struck Greensburg, Kansas, NREL technical experts helped the town rebuild as a model green community completely powered by a 12.5 megawatt wind farm and surrounded by the highest per-capita concentration of LEED-certified buildings in the United States-13 of which are saving $200,000 annually. Learn more.

17

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 1 2012 Composite Data Products - Deployment (Presentation)  

SciTech Connect

This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). Quarter 1 2012 Composite Data Products - Deployment March 8, 2012.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-06-01T23:59:59.000Z

18

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); November 2011 Composite Data Products - Deployment (Presentation)  

SciTech Connect

This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). November 2011 Composite Data Products - Deployment November 30, 2011.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-06-01T23:59:59.000Z

19

Community Renewable Energy Deployment Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment Projects Deployment Projects Community Renewable Energy Deployment Projects The selected DOE Community Renewable Energy Deployment (CommRE) projects receive technical assistance from DOE's National Renewable Energy Laboratory in the areas of concepts, best practices, planning, financial approaches, and policy guidance to help achieve specific goals. More than $20.5 million in total Recovery Act funding will be leveraged with approximately $167 million in local government and private industry funding to complete the following projects. City of Montpelier, Montpelier, Vermont Forest County Potawatomi Community, Milwaukee, Wisconsin Haxtun Wind, Phillips County, Colorado Sacramento Municipal Utility District, Sacramento, California University of California at Davis, Davis, California

20

China-International Industrial Energy Efficiency Deployment Project | Open  

Open Energy Info (EERE)

China-International Industrial Energy Efficiency Deployment Project China-International Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name China-International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China Eastern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

International Industrial Energy Efficiency Deployment Project | Open Energy  

Open Energy Info (EERE)

Industrial Energy Efficiency Deployment Project Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China, India Eastern Asia, Southern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

22

NETL: News Release - DOE, Industry Consortium Project Deploys...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 , 2006 DOE, Industry Consortium Project Deploys New Stripper Well Tool Novel Technology Boosts Oil and Gas Production and Efficiency at 200 Sites Nationwide WASHINGTON, DC - A...

23

More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)  

DOE Green Energy (OSTI)

This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports on the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.

Not Available

2012-07-01T23:59:59.000Z

24

Los Alamos National Laboratory Tritium Technology Deployments Large Scale Demonstration and Deployment Project  

Science Conference Proceedings (OSTI)

This paper describes the organization, planning and initial implementation of a DOE OST program to deploy proven, cost effective technologies into D&D programs throughout the complex. The primary intent is to accelerate closure of the projects thereby saving considerable funds and at the same time being protective of worker health and the environment. Most of the technologies in the ''toolkit'' for this program have been demonstrated at a DOE site as part of a Large Scale Demonstration and Deployment Project (LSDDP). The Mound Tritium D&D LSDDP served as the base program for the technologies being deployed in this project but other LSDDP demonstrated technologies or ready-for-use commercial technologies will also be considered. The project team will evaluate needs provided by site D&D project managers, match technologies against those needs and rank deployments using a criteria listing. After selecting deployments the project will purchase the equipment and provide a deployment engineer to facilitate the technology implementation. Other cost associated with the use of the technology will be borne by the site including operating staff, safety and health reviews etc. A cost and performance report will be prepared following the deployment to document the results.

McFee, J.; Blauvelt, D.; Stallings, E.; Willms, S.

2002-02-26T23:59:59.000Z

25

NREL: Technology Deployment - Fuels, Vehicles, and Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

in-depth information about biodiesel, electricity, ethanol, hydrogen, natural gas, and propane, as well as the vehicles that use these fuels and the infrastructure used to deliver...

26

Community Renewable Energy Deployment: City of Montpelier Project | Open  

Open Energy Info (EERE)

Montpelier Project Montpelier Project Jump to: navigation, search Name Community Renewable Energy Deployment: City of Montpelier Project Agency/Company /Organization Department of Energy Focus Area Buildings, Energy Efficiency - Central Plant, Energy Efficiency - Utility, Energy Efficiency, Greenhouse Gas, Renewable Energy, Biomass Phase Evaluate Options, Get Feedback, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly Available Publication Date 1/1/2011 Website http://www1.eere.energy.gov/co Locality Montpelier, Vermont References Community Renewable Energy Deployment: City of Montpelier Project[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 References Overview This case study describes Montpelier, Vermont's efforts under the

27

New Orleans, Louisiana, Deployment Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orleans, Louisiana, Deployment Project Orleans, Louisiana, Deployment Project New Orleans, Louisiana, Deployment Project November 13, 2013 - 10:45am Addthis The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) are helping New Orleans, Louisiana, incorporate energy efficiency into rebuilding efforts after being devastated by Hurricanes Katrina and Rita. On August 29, 2005, Hurricane Katrina, the single largest catastrophe in U.S. history, struck the Gulf Coast, flooding 80% of New Orleans and causing $89.6 billion in damages. Three weeks later, the city was hit again by Hurricane Rita. DOE and NREL focused their assistance efforts to New Orleans in the specific areas listed below. You can also read more in the fact sheet Rising Above the Water: New Orleans Implements Energy Efficiency and

28

New Orleans, Louisiana, Deployment Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Orleans, Louisiana, Deployment Project New Orleans, Louisiana, Deployment Project New Orleans, Louisiana, Deployment Project November 13, 2013 - 10:45am Addthis The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) are helping New Orleans, Louisiana, incorporate energy efficiency into rebuilding efforts after being devastated by Hurricanes Katrina and Rita. On August 29, 2005, Hurricane Katrina, the single largest catastrophe in U.S. history, struck the Gulf Coast, flooding 80% of New Orleans and causing $89.6 billion in damages. Three weeks later, the city was hit again by Hurricane Rita. DOE and NREL focused their assistance efforts to New Orleans in the specific areas listed below. You can also read more in the fact sheet Rising Above the Water: New Orleans Implements Energy Efficiency and

29

Community Renewable Energy Deployment: Haxtun Wind Project | Open Energy  

Open Energy Info (EERE)

Haxtun Wind Project Haxtun Wind Project Jump to: navigation, search Name Community Renewable Energy Deployment: Haxtun Wind Project Agency/Company /Organization US Department of Energy Focus Area Economic Development, Renewable Energy, Wind Phase Evaluate Options, Get Feedback, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly Available--Free Publication Date 2/7/2011 Website http://www1.eere.energy.gov/co Locality Phillips County, Colorado References Community Renewable Energy Deployment: Haxtun Wind Project[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 Related Tools 5 References Overview This short case study describes Phillips County's Haxtun Wind Project efforts through the Department of Energy's Community Renewable Energy

30

Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Smith Dairy Deploys Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest to someone by E-mail Share Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Facebook Tweet about Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Twitter Bookmark Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Google Bookmark Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Delicious Rank Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Digg

31

Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deployment of Hybrid Deployment of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

32

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles and Hydrogen Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Bill Elrick California Fuel Cell Partnership 3/19/2013 The cars are coming HyundaiTucson ix35 FCEV production launch 2/26/13 Daimler/Nissan/Ford joint development announces 2017 launch of affordable FCEV 1/28/13 Toyota partnership with BMW 1/24/2013 Toyota announces sedan-type FCEV launch in 2015 9/24/12 The buses are coming HyundaiTucson ix35 FCEV production launch 2/26/13 Daimler/Nissan/Ford joint development announces 2017 launch of affordable FCEV 1/28/13 Toyota partnership with BMW 1/24/2013 Toyota announces sedan-type FCEV launch in 2015 9/24/12 Fuel Cell Buses too! * CA Roadmap * National Strategy paper CaFCP 2013 Zero emission vehicles in California ZEV Regulation - (www.arb.ca.gov/msprog/zevprog/zevprog.htm)

33

Challenges with SMUDs Community Renewable Energy Project Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges with SMUD's Community Challenges with SMUD's Community Renewable Energy Project Deployment Elaine Sison-Lebrilla Webinar August 21, 2012 Powering forward. Together. Overview 2  SMUD  Policy Drivers  Renewable Mix  Project Description  Challenges & Status  Lessons Learned 3 Sacramento Municipal Utility District  Publicly Owned Utility, elected Board of Directors  Sacramento County (and Placer County), almost 600,000 customers, 1.4 million population  Aggressive 23.9% Renewable supply by 2010; 37% by 2020  GHG Reductions by 2050 (10% of 1990 levels, <350,000 metric tonnes/year)  California Solar Initiative-125 MW  Feed-In Tariff (100MW in Contracts) 4 Renewable Goals  Aggressive renewable energy goals 4 Program 2010

34

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 3 2012 Composite Data Products  

DOE Green Energy (OSTI)

This report from the U.S. Department of Energy's National Renewable Energy Laboratory includes early fuel cell market composite data products for the third quarter of 2012 for American Recovery and Reinvestment Act (ARRA) and combined (IAA, DLA, ARRA) deployment projects.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.; Post, M.

2013-01-01T23:59:59.000Z

35

Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheets highlights U.S. Department of Energy fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). More than 1,000 fuel cell systems have been deploy

36

Nuclear Fuels Storage & Transportation Planning Project | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown...

37

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects:  

Open Energy Info (EERE)

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Agency/Company /Organization: International Energy Agency (IEA) Sector: Energy Focus Area: Renewable Energy Topics: Finance, Implementation, Policies/deployment programs Resource Type: Publications Website: iea-retd.org/archives/publications/finance-re Cost: Free Language: English Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Screenshot References: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach[1]

38

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)  

NLE Websites -- All DOE Office Websites (Extended Search)

Leading the Nation in Clean Energy Deployment Leading the Nation in Clean Energy Deployment The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agen- cies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions. Disaster Recovery DOE and NREL technical experts have helped communities like Greensburg, Kansas, and New Orleans, Louisiana, successfully rebuild following disaster by providing assistance with sustainable community planning, forward-thinking policy development, and

39

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Nation in Clean Energy Deployment the Nation in Clean Energy Deployment The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agen- cies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions. Disaster Recovery DOE and NREL technical experts have helped communities like Greensburg, Kansas, and New Orleans, Louisiana, successfully rebuild following disaster by providing assistance with sustainable community planning, forward-thinking policy development, and

40

Fuel Cell Technologies Office: 2010 New Fuel Cell Projects Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 New Fuel Cell Projects Meeting to someone by E-mail Share Fuel Cell Technologies Office: 2010 New Fuel Cell Projects Meeting on Facebook Tweet about Fuel Cell Technologies...

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuel Cell Technologies Office: 2009 New Fuel Cell Projects Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

09 New Fuel Cell Projects Meeting to someone by E-mail Share Fuel Cell Technologies Office: 2009 New Fuel Cell Projects Meeting on Facebook Tweet about Fuel Cell Technologies...

42

EA-1890: Reedsport PB150 Deployment and Ocean Test Project, Oregon |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Reedsport PB150 Deployment and Ocean Test Project, Oregon 0: Reedsport PB150 Deployment and Ocean Test Project, Oregon EA-1890: Reedsport PB150 Deployment and Ocean Test Project, Oregon Overview The U.S. Department of Energy has selected Ocean Power Technologies (OPT) for approximately $2.4 million in financial assistance and proposes to authorize the expenditure of federal funding to OPT for the construction, deployment, and ocean testing of a single, full scale 150kW PB150 PowerBuoy. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download August 24, 2011 EA-1890: Finding of No Significant Impact Reedsport PB150 Deployment and Ocean Test Project, Oregon August 24, 2011 EA-1890: DOE Notice of Availability of the Finding of No Significant Impact Ocean Power Technologies, Inc. (OPT), Reedsport PB150 Deployment and Ocean

43

Alaska Fuel Metering Project  

Science Conference Proceedings (OSTI)

... services snow machines, 4-wheelers, generators, and other ... from this a statewide fuel use estimate by ... it to all populations not served by natural gas. ...

2010-10-20T23:59:59.000Z

44

Connecticut Fuel Cell Programs -From Demonstration to Deployment  

E-Print Network (OSTI)

CCEF Goals 6 #12;Clean Energy Technologies Fuel Cells Solar Biomass Hydro Landfill Gas Wave Wind 7 #12

45

NREL: Hydrogen and Fuel Cells Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects NREL's hydrogen and fuel cell research projects focus on developing, integrating, and demonstrating advanced hydrogen production, hydrogen storage, and fuel cell...

46

Manufacturing Fuel Cell Manhattan Project  

NLE Websites -- All DOE Office Websites (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

47

NREL: Technology Deployment - NREL's Federal Fueling Station Data Supports  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery January 22, 2013 In the aftermath of Superstorm Sandy, millions of Americans remained without electricity as emergency responders, security officials, and regular citizens all experienced a lack of access to vehicle fuels. As fuel shortages spread and lines grew at the few fueling stations that had electricity, officials from General Services Administration (GSA) Fleet and the U.S. Department of Homeland Security's (DHS) National Protection and Programs Directorate contacted the U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) hoping to locate additional fuel provisions from private and federal facilities. FEMP then tapped NREL to provide data on the locations of federally owned fueling infrastructure in

48

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

49

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

50

NREL: Technology Deployment - Integrated Deployment Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Deployment Model Integrated Deployment Model NREL's integrated deployment model provides a framework to focus on the national goal of accelerating market adoption of clean energy technologies through local efforts. With support from the U.S. Department of Energy (DOE), NREL developed and applies the integrated deployment model to select projects including disaster recovery, statewide activities, federal agency support, island activities, and community renewable energy deployment. How the Model Works To address the complex challenges of multi-technology, multi-stakeholder, and multi-fuel deployment, NREL created the integrated deployment model to support each technology area separately but also consider the integration points between the technologies. NREL also identifies the cross-cutting

51

DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed Fuel Cell Backup Power (BuP)  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Date: 09/05/2013 7 Date: 09/05/2013 Title: Industry Deployed Fuel Cell Backup Power (BuP) Originators: Pete Devlin, Jim Alkire, Sara Dillich, Dimitrios Papageorgopoulos Approved by: Rick Farmer and Sunita Satyapal Date: 09/09/13 Item: Table 1: Number of fuel cells deployments (current and planned) for applications in backup power. The funding of 903 Department of Energy (DOE) fuel cell backup power systems has led to over 3,500 industry installations and on-order backup power units with no DOE funding. Data/Assumptions/Calculations: The manufacturers providing the fuel cells for the deployments (current and planned) mentioned in Table 1 above are: Altergy Ballard / Ida Tech Hydrogenics ReliOn, Inc. Total DOE American Recovery and Reinvestment Act (ARRA) investment for these fuel cell

52

LADWP FUEL CELL DEMONSTRATION PROJECT  

SciTech Connect

Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

Thai Ta

2003-09-12T23:59:59.000Z

53

LADWP FUEL CELL DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

Thai Ta

2003-09-12T23:59:59.000Z

54

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC) will deploy its first commercial tidal energy device into Cobscook Bay this summer. The project, which injected $14 million into the local economy and has supported more than 100 local and supply chain jobs, represents the first tidal energy project in the United States with long-term contracts to sell electricity

55

DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE  

SciTech Connect

This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

2012-06-04T23:59:59.000Z

56

Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dept. Reports: U.S. Fuel Cell Market Production and Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth December 19, 2013 - 11:36am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department released three new reports today showcasing strong growth across the U.S. fuel cell and hydrogen technologies market - continuing America's leadership in clean energy innovation and providing U.S. businesses more affordable, cleaner transportation and power options. According to these reports, the United States continues to be one of the world's largest and fastest growing markets for fuel cell and hydrogen technologies. In 2012, nearly 80 percent of total investment in the global fuel cell industry was made in U.S.

57

NREL: Technology Deployment - Wind for Schools Project Gains...  

NLE Websites -- All DOE Office Websites (Extended Search)

January 29, 2013 Pennsylvania is one area where the U.S. Department of Energy Wind Powering America Wind for Schools project is seeing big impact thanks to several projects...

58

DIGESTER GAS - FUEL CELL - PROJECT  

DOE Green Energy (OSTI)

GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

2002-03-01T23:59:59.000Z

59

NREL: Technology Deployment - Wind for Schools Project Enters...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind for Schools Project Enters 2013 with 124 Turbine Installations March 29, 2013 This past winter, NREL hosted the Sixth Annual Wind for Schools Summit. Forty-six attendees...

60

Fuel Cell Technologies Office: New Fuel Cell Projects Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Agenda (PDF 83 KB) New Fuel Cell Projects Overview (PDF 1.2 MB), P. Davis, DOE New Fuel Cell Projects Overview (PDF 609 KB), N. Garland, DOE Membranes Membranes and MEAs for Dry,...

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Project Assistance  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

About About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Project Assistance to someone by E-mail Share Alternative Fuels Data Center: Project Assistance on Facebook Tweet about Alternative Fuels Data Center: Project Assistance on Twitter Bookmark Alternative Fuels Data Center: Project Assistance on Google Bookmark Alternative Fuels Data Center: Project Assistance on Delicious Rank Alternative Fuels Data Center: Project Assistance on Digg Find More places to share Alternative Fuels Data Center: Project Assistance on AddThis.com... More in this section... Project Assistance News & Features Spanish Resources Contacts Project Assistance Through a nationwide network of local coalitions, Clean Cities provides project assistance to help stakeholders in the public and private sectors

62

Fuel Cell Applied Research Project  

DOE Green Energy (OSTI)

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

63

Fuel Cell Applied Research Project  

SciTech Connect

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

64

NREL: Vehicles and Fuels Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's vehicles and fuels projects focus on developing, evaluating, and demonstrating innovative technologies that reduce the nation's dependence on imported petroleum and improve air quality. We work in partnership with vehicle manufacturers, equipment suppliers, fuel providers, and others to develop and commercialize vehicle and fuel technologies that meet our nation's energy and environmental goals. Advanced Combustion and Fuels Biofuels Electric Vehicle Grid Integration Energy Storage Fleet Test and Evaluation Power Electronics ReFUEL Laboratory Secure Transportation Data Vehicle Ancillary Loads Reduction Vehicle Systems Analysis Printable Version Vehicles & Fuels Research Home Projects Advanced Combustion & Fuels Biofuels Electric Vehicle Grid Integration

65

More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

359 * July 2012 359 * July 2012 More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding Team: Jennifer Kurtz, Keith Wipke, Sam Sprik, Todd Ramsden, Chris Ainscough Accomplishment: Early market end users are operating 1,111 fuel cell units at 301 sites in 20 states funded by the U.S. Department of Energy (DOE) Fuel Cell Technologies (FCT) Program and with analysis by the National Renewable Energy Laboratory (NREL). Context: The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and

66

GridStat Cyber Security and Regional Deployment Project Report  

Science Conference Proceedings (OSTI)

GridStat is a developing communication technology to provide real-time data delivery services to the electric power grid. It is being developed in a collaborative effort between the Electrical Power Engineering and Distributed Computing Science Departments at Washington State University. Improving the cyber security of GridStat was the principle focus of this project. A regional network was established to test GridStats cyber security mechanisms in a realistic environment. The network consists of nodes at Pacific Northwest National Laboratory, Idaho National Laboratory, and Washington State University. Idaho National Laboratory (INL) was tasked with performing the security assessment, the results of which detailed a number or easily resolvable and previously unknown issues, as well as a number of difficult and previously known issues. Going forward we recommend additional development prior to commercialization of GridStat. The development plan is structured into three domains: Core Development, Cyber Security and Pilot Projects. Each domain contains a number of phased subtasks that build upon each other to increase the robustness and maturity of GridStat.

Clements, Samuel L.

2009-02-18T23:59:59.000Z

67

Codes and Standards Requirements for Deployment of Emerging Fuel Cell Technologies  

DOE Green Energy (OSTI)

The objective of this NREL report is to provide information on codes and standards (of two emerging hydrogen power fuel cell technology markets; forklift trucks and backup power units), that would ease the implementation of emerging fuel cell technologies. This information should help project developers, project engineers, code officials and other interested parties in developing and reviewing permit applications for regulatory compliance.

Burgess, R.; Buttner, W.; Riykin, C.

2011-12-01T23:59:59.000Z

68

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

AGENDA AGENDA U. S. Department of Transportation and U.S. Department of Energy Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 10-11, 2009 - Washington, DC A workshop to promote exchange of information among experts on compressed natural gas and hydrogen fuels for vehicles and to share lessons learned from deployment of these vehicles in public transit, fleets, and consumer transportation throughout the world. Workshop Objectives: * To coordinate lessons learned by identifying similarities and critical differences between compressed natural gas and hydrogen properties, including CNG-H2 blends, and their industries and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

69

Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses analysis results for American Recovery and Reinvestment Act early market fuel cell deployments and describes the objective of the project and its relevance to the Department of Energy Hydrogen and Fuel Cells Program; NREL's analysis approach; technical accomplishments including publication of a fourth set of composite data products; and collaborations and future work.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-06-01T23:59:59.000Z

70

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

2012a. Analysis & Projections - Models & Documentation. Projections of Full-Fuel-Cycle Energy and Emissions MetricsGovernment purposes. Projections of Full-Fuel-Cycle Energy

Coughlin, Katie

2013-01-01T23:59:59.000Z

71

Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy Projects (Fact Sheet)  

SciTech Connect

This fact sheet describes the U.S. Department of Energy's Community Renewable Energy Deployment (CommRE) program, which is a more than $20 million effort funded through the American Recovery and Reinvestment Act of 2009, to promote investment in clean energy solutions and provide real-life examples for other local governments, campuses, and small utilities to replicate. Five community-based renewable energy projects received funding from DOE through the CommRE and their progress is detailed.

Not Available

2012-09-01T23:59:59.000Z

72

Fuel Cell Projects Kickoff Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cost-Competitive Fuel Cell Stacks James Cross, Nuvera 4:30 Fuel Cell Fundamentals at Low and Subzero Temperatures Adam Weber, LBNL 4:50 Development and Validation of...

73

Thermochemical Fuel Reformer Development Project  

Science Conference Proceedings (OSTI)

Thermochemical Fuel Reforming (TCFR) is the recovery of internal combustion engine exhaust heat to chemically convert natural gas into a higher calorific flow fuel stream containing a significant concentration of hydrogen. This technique of recycling the engine exhaust heat can reduce fuel use (heat rate). In addition, the hydrogen enhanced combustion also allows stable engine operation at a higher air-fuel ratio (leaner combustion) which results in very low NOx production. This interim report covers two...

2006-12-11T23:59:59.000Z

74

Renewable Hydrogen Generation and Fueling Project  

Science Conference Proceedings (OSTI)

In its efforts to promote hydrogen as an alternative transportation fuel, the New York Power Authority (NYPA) is implementing a renewable hydrogen fueling demonstration project. The project involves hydrogen production by electrolysis using NYPA's large renewable hydropower generating resources. An earlier EPRI report (1014383) provides background and results from a preliminary engineering and feasibility study. This report provides an update on the project and the refueling station bid and procurement p...

2008-03-27T23:59:59.000Z

75

NREL: Vehicles and Fuels Research - Biofuels Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

76

The Accelerated Site Technology Deployment Program/Segmented Gate System Project  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. Funding is provided through the ASTD Program to assist participating site managers in implementing innovative technologies. The program provides technical assistance to the participating DOE sites by coordinating DOE, industry, and regulatory participation in each project; providing finds for optimizing full-scale operating parameters; coordinating technology performance monitoring; and by developing cost and performance reports on the technology applications.

PATTESON,RAYMOND

2000-09-18T23:59:59.000Z

77

DEPLOYMENT OF THE GUBKA TECHNOLOGY TO STABILIZE RADIOACTIVE STANDARD SOLUTIONS AT THE FERNALD ENVIRONMENTAL MANAGEMENT PROJECT  

Science Conference Proceedings (OSTI)

This paper describes the deployment of the Gubka technology to stabilize liquid technical standards at the Fernald Environmental Management Project. Gubka, an open-cell glass crystalline porous material, was developed by a joint research program of Russian Institutes at St. Petersburg, Krasnoyarsk, and Zheleznogorsk and the Idaho National Engineering and Environmental Laboratory. Gubka technology can be applied in an active or a passive method to stabilize a solution. In both methods the result is the same, and the dried components of the solution are sorbed in the pores of the Gubka block while the liquid phase is evaporated. In this deployment Gubka blocks were passively floated in the solutions at ambient conditions. As the solutions evaporated, the non-volatile components were sorbed in the pores of the Gubka blocks. The waste-loaded Gubka blocks have been packaged for transportation and disposal at the Nevada Test site within an existing waste category.

Chipman, N.A.; Knecht, D.A.; Meyer, A.; Aloy, A.; Anshits, A.G.; Tretyakov, A.A.

2003-02-27T23:59:59.000Z

78

FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE  

SciTech Connect

Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

2012-09-12T23:59:59.000Z

79

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation to someone by E-mail Share Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Facebook Tweet about Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Twitter Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Google Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Delicious Rank Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Digg

80

LOS ANGELES DEPARTMENT OF WATER AND POWER FUEL CELL DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The Los Angeles Department of Water and Power (LADWP) is currently one of the most active electric utility companies in deploying fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell deploying, LADWP installed a Phosphoric Acid Fuel Cell (PAFC) in February 2002 at its Main Street service center. The goal of this project is to evaluate the PAFC's performance and cost benefits. This will provide LADWP an insight for future deployment of fuel cell technology. The fuel cell ran smoothly through the first year of operation with very high efficiency and availability, and only with some minor setbacks. The Main street fuel cell project is funded by LADWP with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the Main Street fuel cell are both examined in this report.

William W. Glauz

2004-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Bronx Zoo Fuel Cell Project  

DOE Green Energy (OSTI)

A 200 kW Fuel Cell has been installed in the Lion House, Bronx Zoo, NY. The Fuel Cell is a 200 kW phosphoric acid type manufactured by United Technologies Corporation (UTC) and will provide thermal energy at 725,000 Btu/hr.

Hoang Pham

2007-09-30T23:59:59.000Z

82

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

83

Navy fuel cell demonstration project.  

DOE Green Energy (OSTI)

This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

Black, Billy D.; Akhil, Abbas Ali

2008-08-01T23:59:59.000Z

84

Clean Cities: Alternative Fuel Market Project Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

fuels; and expand the Ohio Green Fleets program and the Ohio Natural Gas Vehicle and Propane Partnerships. Colorado Energy Office Denver, CO 500,000 The project REFUEL COLORADO,...

85

Spent Nuclear Fuel (SNF) Project Execution Plan  

SciTech Connect

The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

LEROY, P.G.

2000-11-03T23:59:59.000Z

86

Spent Nuclear Fuel Project operational staffing plan  

SciTech Connect

Using the Spent Nuclear Fuel (SNF) Project`s current process flow concepts and knowledge from cognizant engineering and operational personnel, an initial assessment of the SNF Project radiological exposure and resource requirements was completed. A small project team completed a step by step analysis of fuel movement in the K Basins to the new interim storage location, the Canister Storage Building (CSB). This analysis looked at fuel retrieval, conditioning of the fuel, and transportation of the fuel. This plan describes the staffing structure for fuel processing, fuel movement, and the maintenance and operation (M&O) staffing requirements of the facilities. This initial draft does not identify the support function resources required for M&O, i.e., administrative and engineering (technical support). These will be included in future revisions to the plan. This plan looks at the resource requirements for the SNF subprojects, specifically, the operations of the facilities, balances resources where applicable, rotates crews where applicable, and attempts to use individuals in multi-task assignments. This plan does not apply to the construction phase of planned projects that affect staffing levels of K Basins.

Debban, B.L.

1996-03-01T23:59:59.000Z

87

Early Fuel Cell Market Deployments: ARRA; Quarter 2 of 2010; Composite Data Products, Final Version April 14, 2010  

SciTech Connect

Graphs of composite data products produced by DOE's early fuel cell market demonstration projects for the second quarter of 2010.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.

2010-06-01T23:59:59.000Z

88

Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pennsylvania's Ethanol Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Google Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Delicious Rank Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on

89

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint  

DOE Green Energy (OSTI)

The National Fuel Cell Electric Vehicle Learning Demonstration is a U.S. Department of Energy (DOE) project that started in 2004. The purpose of this project is to conduct an integrated field validation that simultaneously examines the performance of fuel cell vehicles and the supporting hydrogen infrastructure. The DOE's National Renewable Energy Laboratory (NREL) has now analyzed data from over five years of the seven-year project. During this time, over 144 fuel cell electric vehicles have been deployed, and 23 project refueling stations were placed in use.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-10-01T23:59:59.000Z

90

Safety Planning Guidance for Hydrogen and Fuel Cell Projects  

Fuel Cell Technologies Publication and Product Library (EERE)

This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

91

Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights from U.S. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects specialty vehicle applications (i.e., lift trucks). This fund- ing has supported the deployment of over 1,000 fuel cell systems. These efforts are accelerating the potential of fuel cells to provide power in stationary, portable, and specialty vehicle applications; and to cut carbon emissions, create jobs, and broaden our nation's clean energy technology portfolio. Recovery Act and Market Transformation Activities DOE supported projects have spurred companies to order >3,000 fuel cell powered lift trucks with no DOE funding. Approximately 200 jobs were created or retained as a result of these Recovery Act projects.* *Includes supply chain and other indirect jobs. Recovery.gov reports that

92

Fuel Cell Forklift Project Final Report  

SciTech Connect

This project addresses the DOEs priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freights Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freights previous field trial experience with a handful of Plug Powers GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

Cummings, Clifton C

2013-10-23T23:59:59.000Z

93

Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions  

SciTech Connect

The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

2013-04-01T23:59:59.000Z

94

SAVANNAH RIVER NATIONAL LABORATORYREGENERATIVE FUEL CELL PROJECT  

DOE Green Energy (OSTI)

A team comprised of governmental, academic and industrial partners led by the Savannah River National Laboratory developed and demonstrated a regenerative fuel cell system for backup power applications. Recent market assessments have identified emergency response and telecommunication applications as promising near-term markets for fuel cell backup power systems. The Regenerative Fuel Cell System (RFC) consisted of a 2 kg-per-day electrolyzer, metal-hydride based hydrogen storage units and a 5 kW fuel cell. Coupling these components together created a system that can produce and store its own energy from the power grid much like a rechargeable battery. A series of test were conducted to evaluate the performance of the RFC system under both steady-state and transit conditions that might be encountered in typical backup power applications. In almost all cases the RFC functioned effectively. Test results from the demonstration project will be used to support recommendations for future fuel cell and hydrogen component and system designs and support potential commercialization activities. In addition to the work presented in this report, further testing of the RFC system at the Center for Hydrogen Research in Aiken County, SC is planned including evaluating the system as a renewable system coupled with a 20kW-peak solar photovoltaic array.

Motyka, T

2008-11-11T23:59:59.000Z

95

Optimization of Hydroacoustic Equipment Deployments at Lookout Point and Cougar Dams, Willamette Valley Project, 2010  

DOE Green Energy (OSTI)

The goal of the study was to optimize performance of the fixed-location hydroacoustic systems at Lookout Point Dam (LOP) and the acoustic imaging system at Cougar Dam (CGR) by determining deployment and data acquisition methods that minimized structural, electrical, and acoustic interference. The general approach was a multi-step process from mount design to final system configuration. The optimization effort resulted in successful deployments of hydroacoustic equipment at LOP and CGR.

Johnson, Gary E.; Khan, Fenton; Ploskey, Gene R.; Hughes, James S.; Fischer, Eric S.

2010-08-18T23:59:59.000Z

96

Alternative Fuels Data Center: Advanced Energy Research Project Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Energy Advanced Energy Research Project Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Energy Research Project Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Energy Research Project Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Google Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Delicious Rank Alternative Fuels Data Center: Advanced Energy Research Project Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Energy Research Project Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Energy Research Project Grants The Advanced Research Projects Agency - Energy (ARPA-E) was established

97

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Projects Funded for Fuel Cell Market Transformation Act Projects Funded for Fuel Cell Market Transformation Following the fuel cell funding announcement, DOE funded the fuel cell market transformation projects listed below. These projects focus on fuel cell systems in emergency backup power, material handling, and combined heat and power applications, with the goal of improving the potential of fuel cells to provide power in stationary, portable, and specialty vehicles. The Fuel Cell Technologies Office is collecting and analyzing data from these projects to show potential adopters the benefits and real-world performance of fuel cells. These data are aggregated across industries and sites as composite data products to provide relevant technology status results and fuel cell performance data without revealing proprietary information. These publicly available data products build the business case for fuel cells and help fuel cell developers understand the state of technologies while identifying ways to improve them.

98

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

99

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Project Loans to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Project Loans

100

Community Renewable Energy Deployment Success Stories: Financing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Success Stories: Financing Renewable Energy Projects Webinar Community Renewable Energy Deployment Success Stories: Financing Renewable Energy...

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nuclear Fuels Storage & Transportation Planning Project Documents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies » Nuclear Fuels Storage & Fuel Cycle Technologies » Nuclear Fuels Storage & Transportation Planning Project » Nuclear Fuels Storage & Transportation Planning Project Documents Nuclear Fuels Storage & Transportation Planning Project Documents September 30, 2013 Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. February 22, 2013 Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal This report provides findings from a set of social science studies

102

Fuel Reliability Project: Boiling Water Fuel Performance at Kernkraftwerk Leibstadt  

Science Conference Proceedings (OSTI)

The Kernkraftwerk Leibstadt (KKL) boiling water reactor (BWR), a General Electric BWR/6, performed a lead use assembly (LUA) program with fuel from three fuel suppliers. This program presented a unique opportunity to evaluate fuel performance on advanced 10x10 designs of AREVA, Global Nuclear Fuel (GNF), and Westinghouse Electric Company (Westinghouse). Fuel assemblies from each supplier (vendor) were loaded into the KKL core in 1997 and 1998. A number of fuel inspections have been performed during annua...

2007-05-16T23:59:59.000Z

103

Fuel Cell Vehicle World Survey 2003-Government sponsored projects  

NLE Websites -- All DOE Office Websites (Extended Search)

by Path Transit. BP is supplying the hydrogen fuel for the trial, produced from its oil refinery at Kwinana. The project hopes to determine the critical technical,...

104

Spent Nuclear Fuel project integrated safety management plan  

SciTech Connect

This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

Daschke, K.D.

1996-09-17T23:59:59.000Z

105

Current Projects for Reactor Physics and Fuel Cycle Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Modeling and Design Analysis > Reactor Physics and Fuel Cycle Analysis > Current Projects Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics...

106

Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants  

SciTech Connect

The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

Mays, Gary T [ORNL; Belles, Randy [ORNL; Cetiner, Mustafa Sacit [ORNL; Howard, Rob L [ORNL; Liu, Cheng [ORNL; Mueller, Don [ORNL; Omitaomu, Olufemi A [ORNL; Peterson, Steven K [ORNL; Scaglione, John M [ORNL

2012-06-01T23:59:59.000Z

107

Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment ...  

NLE Websites -- All DOE Office Websites (Extended Search)

over 90,000 hours of fuel cell operation by June * 30, 2012. Purchasing 29,240 kilograms of hydrogen by June 30, * 2012. Monitoring operating costs and reliability of * 40...

108

NETL: News Release - Fuel Cell Projects Address Barriers to  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1, 2006 June 1, 2006 Fuel Cell Projects Address Barriers to Commercialization Six Projects Focus on Improvements to Materials, Key Components WASHINGTON, DC - The Department of Energy today announced the selection of six research and development (R&D) projects expected to further enhance solid-oxide fuel cell (SOFC) technology, moving it one step closer to commercialization. These projects, part of DOE's Solid State Energy Conversion Alliance (SECA), build upon earlier Phase I research to support the development of efficient, low-cost and near-zero emissions SOFC power systems. "The projects selected reflect yet another step forward in the President's Hydrogen and Climate Initiatives, which envision a key role for fuel cells," said Jeffrey Jarrett, Assistant Secretary for Fossil Energy. "These projects are expected to further push fuel cell technology toward the ultimate application of fuel cells in FutureGen, the zero-emissions coal-fired plant of the future."

109

Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL-13/09 ANL-13/09 Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:

110

Nuclear Fuels Storage & Transportation Planning Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Storage & Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel assemblies [412.3 metric ton heavy metal (MTHM)] and 3 canisters of greater-than-class-C (GTCC) low-level radioactive waste. Photo courtesy of Connecticut Yankee (http://www.connyankee.com/html/fuel_storage.html). Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel

111

Successful knowledge transfer and project deployment in a service learning program  

Science Conference Proceedings (OSTI)

Service learning programs provide a richer, more practical experience for students and can deliver more benefits to the community by undertaking larger projects not limited by the length of a semester. Long-term projects with a larger scope present both ... Keywords: collaborative learning, community outreach, industry-education relationships, knowledge management, knowledge transfer, service learning

Jon Reid; Erick Slazinski

2003-10-01T23:59:59.000Z

112

USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fund Genomics Projects For Bioenergy Fuels Research Fund Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel resources. Bodman commented, "These research projects build upon DOE's strategic investments in genomics, to accelerate scientific discovery and promote the development of alternative energy sources vital to America's energy and economic security." "To be a reliable renewable energy source, farmers and ranchers will need

113

Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding from a $1.2 million grant provided by the American Recovery and Reinvestment Act through the U.S. Department of Energy's Fuel Cell Technologies Program. The total project cost was $3.3 million. The 98 new Raymond Corporation pallet lifts are powered by Plug Power

114

The Need for Deployment of the Next Generation Nuclear Plant Project Position Statement  

E-Print Network (OSTI)

research, development, design, construction, and operation of a prototype nuclear reactor to produce electricity and hydrogen. The NGNP is intended to be a collaborative effort among the U.S. Department of Energy, the Idaho National Laboratory, and appropriate industrial partners. It is also intended to include international technology exchanges. The NGNP will utilize what is commonly referred to as a Generation IV design. Generation III designs are the latest reactor designs licensed or certified by the U.S. Nuclear Regulatory Commission (NRC). Generation III+ includes the new designs currently under review by the NRC and anticipated to begin operation during the next 10 to 20 years. Generation IV designs are more advanced and are expected to be ready for commercial construction after 2020. The Generation IV designs may include new or additional features such as the following: capability for hydrogen production 2 use of recycled fuel use of plutonium and other fission by-products a more efficient fuel cycle with lower generation of waste products higher safety and physical protection levels higher reliability better economic performance. The ANS also supports the federal government efforts in support of a robust Generation IV development program in parallel with current Generation III+ efforts. 3 Sequential utilization of new or different designs and technologies will ensure ever-increasing safety levels and will help nuclear energy fulfill its vital role in worldwide electricity generation.

unknown authors

2005-01-01T23:59:59.000Z

115

Data Collection & Analysis for ARRA Fuel Cell Projects (Presentation)  

DOE Green Energy (OSTI)

The data analysis objectives are: (1) Independent assessment of technology, focused on fuel cell system and hydrogen infrastructure:performance, operation, and safety; (2) Leverage data processing and analysis capabilities from the fuel cell vehicle Learning Demonstration project and DoD Forklift Demo; (3) Establish a baseline of real-world fuel cell operation and maintenance data and identify technical/market barriers; (4) Support market growth of fuel cell technologies by reporting on technology features relevant to the business case; and (5) Report on technology to fuel cell and hydrogen communities and stakeholders.

Kurtz, J.; Ramsden, T.; Wipke, K.; Sprik, S.

2009-08-21T23:59:59.000Z

116

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure  

SciTech Connect

Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

Greene, David L [ORNL; Duleep, Gopal [HD Systems

2013-06-01T23:59:59.000Z

117

Integrated Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Deployment Integrated Deployment Integrated Deployment Integrated technology deployment uses a comprehensive approach to implement a variety of efficiency and renewable energy technology solutions in communities and cities, federal agencies, international locations, and states and territories. need_alt Community Renewable Energy Deployment Webinars Hear about successful community renewable energy projects, including the challenges and barriers faced during development. Learn more Integrated Deployment Projects The following projects provide examples of how the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory have used an integrated approach to address various location-specific energy challenges that is both scalable and replicable around the world:

118

NETL: News Release - SECA Fuel Cell Program Selects Two Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2008 9, 2008 SECA Fuel Cell Program Selects Two Projects Low-Cost Fuel Cell Systems to Address Energy Security, Climate and Water Challenges WASHINGTON, DC - The U.S. Department of Energy (DOE) has selected two projects for the Department's Solid State Energy Conversion Alliance (SECA) Program portfolio. The projects, focused on enhancing energy security through zero-emission applications, will be led by UTC Power, a United Technologies Corporation, in partnership with Delphi Corporation, and Rolls-Royce Fuel Cell Systems (U.S.) Inc. The Rolls-Royce project will include work at Ohio's Stark State College Fuel Cell Prototyping Center, which is also supported through a National Science Foundation grant. From an environmental perspective, fuel cells are one of the most attractive technologies for generating electricity. Solid oxide fuel cells operate by separating and transferring oxygen across a solid electrolyte membrane, where it reacts with a fuel - such as synthesis gas derived from coal, biofuels or natural gas - to produce steam and carbon dioxide (CO2). Condensing the steam results in a pure stream of CO2 gas; this can be readily captured for storage or other use in a central location. This feature, coupled with the well-known fact that fuel cell efficiency does not depend on high temperatures, results in near-zero emissions (e.g., NOx < 0.5ppm) at equivalent or reduced cost-of-electricity compared to today's power generation.

119

King County Carbonate Fuel Cell Demonstration Project: 2005 Update  

Science Conference Proceedings (OSTI)

This case study documents the ongoing demonstration experiences of a 1-MW carbonate fuel cell system operating on anaerobic digester gas at a wastewater treatment plant in King County, Washington. This is a follow-up to a previous EPRI report on the same project, 1011472, and summarizes operational experience and performance data obtained in 2005. The case study is one of several fuel cell project case studies under research by the EPRI Distributed Energy Resources Program. This case study is designed to...

2006-03-07T23:59:59.000Z

120

The ADVANCE project: Formal evaluation of the targeted deployment. Volume 3  

SciTech Connect

ADVANCE [Advanced Driver and Vehicle Advisory Navigation ConcEpt] was a public/private partnership conceived and developed by four founding parties. The founding parties include the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Northwestern University operating together under the auspices of the Illinois Universities Transportation Research Consortium (IUTRC), and Motorola, Inc. The major responsibilities of each party are fully described in the Project agreement. Subsequently, these four were joined on the Steering Committee by the American Automobile Association (AAA). This unique blending of public sector, private sector and university interests, augmented by more than two dozen other private sector participants, provided a strong set of resources for ADVANCE. The ADVANCE test area covered over 300 square miles including portions of the City of Chicago and 40 northwest suburban communities. The Project encompasses the high growth areas adjacent to O`Hare International Airport, the Schaumbura/Hoffman Estates office and retail complexes, and the Lake-Cook Road development corridor. It also includes major sports and entertainment complexes such as the Arlington International Racecourse and the Rosemont Horizon. The population in the area is more than 750,000. This volume provides a summary of the insights and achievements made as a result of this field test, and selected appendices containing more detailed information.

NONE

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Spent nuclear fuel project integrated schedule plan  

SciTech Connect

The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

Squires, K.G.

1995-03-06T23:59:59.000Z

122

Overview of the spent nuclear fuel project at Hanford  

SciTech Connect

The Spent Nuclear Fuel Project`s mission at Hanford is to {open_quotes}Provide safe, economic and environmentally sound management of Hanford spent nuclear fuel in a manner which stages it to final disposition.{close_quotes} The inventory of spent nuclear fuel (SNF) at the Hanford Site covers a wide variety of fuel types (production reactor to space reactor) in many facilities (reactor fuel basins to hot cells) at locations all over the Site. The 2,129 metric tons of Hanford SNF represents about 80% of the total US Department of Energy (DOE) inventory. About 98.5% of the Hanford SNF is 2,100 metric tons of metallic uranium production reactor fuel currently stored in the 1950s vintage K Basins in the 100 Area. This fuel has been slowly corroding, generating sludge and contaminating the basin water. This condition, coupled with aging facilities with seismic vulnerabilities, has been identified by several groups, including stakeholders, as being one of the most urgent safety and environmental concerns at the Hanford Site. As a direct result of these concerns, the Spent Nuclear Fuel Project was recently formed to address spent fuel issues at Hanford. The Project has developed the K Basins Path Forward to remove fuel from the basins and place it in dry interim storage. Alternatives that addressed the requirements were developed and analyzed. The result is a two-phased approach allowing the early removal of fuel from the K Basins followed by its stabilization and interim storage consistent with the national program.

Daily, J.L. [Dept. of Energy, Richland, WA (United States). Richland Operations Office; Fulton, J.C.; Gerber, E.W.; Culley, G.E. [Westinghouse Hanford Co., Richland, WA (United States)

1995-02-01T23:59:59.000Z

123

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured and initial investigations at low DME blend ratios (around 5-10 vol%) will begin shortly. They have also performed viscosity measurements on diesel fuel, DME and 50-50 blends of DME in diesel. These tests have verified that DME has a much lower viscosity than the diesel fuel and that the viscosity of the blended fuel is also much lower than the diesel base fuel. This has implications for the injection and atomization of the DME/diesel blends.

Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

2003-04-01T23:59:59.000Z

124

Kickoff Meeting for New Fuel Cell Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

* GO is the "Project" office while HQ is the "Program" office * GO Makes and Administers Financial Assistance awards for EERE Programs including all HFCIT awards * Provides...

125

FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy-duty diesel vehicle during the Alaska winter; a comparative study of the cold-starting characteristics of FT and conventional diesel fuel; and demonstration of the use of the fuel to generate electricity for rural Alaskan villages using both a diesel generator set, and a reformer-equipped fuel cell.

Stephen P. Bergin

2003-04-23T23:59:59.000Z

126

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

DOE Green Energy (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

127

Comparing Pathways Projected fuel consumption and  

E-Print Network (OSTI)

(all-electric 10-20 miles, 40-60 miles) · Fuel cells (hybrid with batteries) #12;Mid-size passenger car Vehicles by UC Davis, DOE, and MIT #12;Mid-size Passenger car Year Electric range mi Charge depleting mpg capability #12;Vehicle types and advanced technologies considered Vehicle types · Mid-size passenger cars

California at Davis, University of

128

U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-10-21T23:59:59.000Z

129

Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Scott Kliever Sysco Houston 10710 Greens Crossing Boulevard Houston, TX 77038 Phone: (713) 679-5574 Email: kliever.scott@hou.sysco.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463; Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000485 Subcontractors: * Plug Power Inc., Latham, NY * Air Products, Allentown, PA * Big-D Construction, Salt Lake City, UT Project Start Date: October 1, 2009 Project End Date: September 30, 2013 Objectives The objectives of this project are to: Convert a fleet of 79 class-3 electric lift trucks to *

130

Workshop Notes from "Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles" Workshop, December 10-11, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

S. Department of Energy and S. Department of Energy and U.S. Department of Transportation Workshop Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles Workshop Notes December 10-11, 2009 The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted a workshop to exchange information among experts from China, India, and the U.S. on compressed natural gas (CNG) and hydrogen (H 2 ) fuels for vehicles and to share lessons learned from deployment of these vehicles in public transit, fleets, and consumer transportation throughout the world. The workshop had five major objectives, and the success of the workshop in addressing these objectives is summarized below. 1. Coordinate lessons learned by identifying similarities and critical

131

SNF fuel retrieval sub project safety analysis document  

SciTech Connect

This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

BERGMANN, D.W.

1999-02-24T23:59:59.000Z

132

ITC Role in U.S. Fuel Cell Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

ITC Case Study ITC Case Study 1 ITC Role in US Fuel Cell Projects Case Study With a DOD Facility Samuel Logan February 19, 2009 MCB Camp Pendleton, CA ITC Case Study 2 Key Project Objectives * Turn-key fixed price contract * Furnish, install & integrate 750kW CHP MCFC system with customer facilities * Provide base load power and heat with environmental & energy security benefits * Demonstrate reliability & interoperability with built environment ITC Case Study 3 Project Background * Initial contract amount: $4,150,000 * Fuel cell manufacturer: FuelCell Energy Danbury, CT * Product: 3 DFC300MA 250kW MCFC power plants * Camp Pendleton contract award: 9/30/05 * Contracting agency: Naval Air Warfare Weapons Division, China Lake * Contract terms: 3 year O&M services, 1 year warranty, best efforts

133

Interim Results from Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins LlO-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 31768 Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.

Kevin L. Chandler; Paul Norton; Nigel Clark

1999-05-03T23:59:59.000Z

134

Reactor-specific spent fuel discharge projections, 1984 to 2020  

Science Conference Proceedings (OSTI)

The original spent fuel utility data base (SFDB) has been adjusted to produce agreement with the EIA nuclear energy generation forecast. The procedure developed allows the detail of the utility data base to remain intact, while the overall nuclear generation is changed to match any uniform nuclear generation forecast. This procedure adjusts the weight of the reactor discharges as reported on the SFDB and makes a minimal (less than 10%) change in the original discharge exposures in order to preserve discharges of an integral number of fuel assemblies. The procedure used in developing the reactor-specific spent fuel discharge projections, as well as the resulting data bases themselves, are described in detail in this report. Discussions of the procedure cover the following topics: a description of the data base; data base adjustment procedures; addition of generic power reactors; and accuracy of the data base adjustments. Reactor-specific discharge and storage requirements are presented. Annual and cumulative discharge projections are provided. Annual and cumulative requirements for additional storage are shown for the maximum at-reactor (AR) storage assumption, and for the maximum AR with transshipment assumption. These compare directly to the storage requirements from the utility-supplied data, as reported in the Spent Fuel Storage Requirements Report. The results presented in this report include: the disaggregated spent fuel discharge projections; and disaggregated projections of requirements for additional spent fuel storage capacity prior to 1998. Descriptions of the methodology and the results are included in this report. Details supporting the discussions in the main body of the report, including descriptions of the capacity and fuel discharge projections, are included. 3 refs., 6 figs., 12 tabs.

Heeb, C.M.; Libby, R.A.; Holter, G.M.

1985-04-01T23:59:59.000Z

135

Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project  

DOE Green Energy (OSTI)

The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements. The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.

Fred Mitlitsky; Sara Mulhauser; David Chien; Deepak Shukla; David Weingaertner

2009-11-14T23:59:59.000Z

136

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Million Industry Partnership Projects to Increase 4 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and eventually lead to a day when our children and grandchildren will call the

137

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $14 Million Industry Partnership Projects to Increase DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and

138

Dual Fuel Conversion System for Diesel Engines: Inventions and Innovation Project Fact Sheet  

DOE Green Energy (OSTI)

Project fact sheet written for the Inventions and Innovation Program about a new dual fuel conversion system allows diesel fuel switching with clean burning natural gas.

Wogsland, J.

2001-01-25T23:59:59.000Z

139

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

140

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth. Participating fuel cell developers share price information about their fuel cell products and/or raw fuel cell test data related to operations, maintenance, and safety with NREL via the Hydrogen Secure Data Center (HSDC). The limited-access, off-network HSDC houses the data and analysis tools to protect proprietary information. NREL shares individualized data analysis results as detailed data products (DDPs) with the partners who supplied the data. Aggregated results are published as composite data products (CDPs), which show the technology status without identifying individual companies. The CDPs are a primary benchmarking tool for the U.S. Department of Energy and other stakeholders interested in tracking the status of fuel cell technologies. They highlight durability advancements, identify areas for continued development, and help set realistic price expectations at small-volume production.

Not Available

2013-06-01T23:59:59.000Z

142

Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)  

SciTech Connect

This fact sheet describes National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth. Participating fuel cell developers share price information about their fuel cell products and/or raw fuel cell test data related to operations, maintenance, and safety with NREL via the Hydrogen Secure Data Center (HSDC). The limited-access, off-network HSDC houses the data and analysis tools to protect proprietary information. NREL shares individualized data analysis results as detailed data products (DDPs) with the partners who supplied the data. Aggregated results are published as composite data products (CDPs), which show the technology status without identifying individual companies. The CDPs are a primary benchmarking tool for the U.S. Department of Energy and other stakeholders interested in tracking the status of fuel cell technologies. They highlight durability advancements, identify areas for continued development, and help set realistic price expectations at small-volume production.

2013-06-01T23:59:59.000Z

143

Report on Synchrophasor Technologies and Their Deployment in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects...

144

TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN  

SciTech Connect

In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

RAYMOND RE

2011-12-27T23:59:59.000Z

145

Data Analysis for ARRA Early Fuel Cell Market Demonstrations (Presentation)  

SciTech Connect

Presentation about ARRA Early Fuel Cell Market Demonstrations, including an overview of the ARRE Fuel Cell Project, the National Renewable Energy Laboratory's data analysis objectives, deployment composite data products, and planned analyses.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.

2010-05-01T23:59:59.000Z

146

Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements  

SciTech Connect

In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8.0 References lists the references used for this document.

KLEM, M.J.

2000-10-18T23:59:59.000Z

147

Deployable structures  

E-Print Network (OSTI)

This thesis has the purpose of describing the meaning and applications of deployable structures (making emphasis in the scissor-hinged and sliding mechanisms.) and the development of new geometries, details, and mechanisms ...

Hernndez Merchan, Carlos Henrique

1987-01-01T23:59:59.000Z

148

NREL: Technology Deployment - Deployment and Market Transformation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Search More Search Options Site Map Printable Version Deployment and Market Transformation Email Updates NREL's deployment and market transformation email updates...

149

Modeling EERE Deployment Programs  

Science Conference Proceedings (OSTI)

The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, Modeling EERE Deployment Programs, sponsored by the Planning, Analysis, and Evaluation office within the Department of Energys Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.

Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.; Livingston, Olga V.

2007-11-08T23:59:59.000Z

150

Messiah College Biodiesel Fuel Generation Project Final Technical Report  

SciTech Connect

Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

2012-03-30T23:59:59.000Z

151

Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report  

SciTech Connect

This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle quality qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

2006-02-28T23:59:59.000Z

152

NREL: Technology Deployment - Clean Cities  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Clean Cities NREL assists the U.S. Department of Energy's Clean Cities program in supporting local actions to reduce petroleum use in transportation by providing technical assistance, educational and outreach publications, and coordinator support. Clean Cities is a national network of nearly 100 coalitions that bring together stakeholders in the public and private sectors to deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, idle-reduction measures, and new transportation technologies as they emerge. Technical Assistance NREL engineers and researchers provide hands-on technical assistance to help Clean Cities coalitions, stakeholders, manufacturers, and fuel providers overcome obstacles to deploying alternative fuels and advanced

153

Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet  

E-Print Network (OSTI)

Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

McAulay, Jeffrey L. (Jeffrey Lewis)

2009-01-01T23:59:59.000Z

154

Low Floor Americans with Disabilities Compliant Alternate Fuel Vehicle Project  

SciTech Connect

This project developed a low emission, cost effective, fuel efficient, medium-duty community/transit shuttle bus that meets American's with Disabilities Act (ADA) requirements and meets National Energy Policy Act requirements (uses alternative fuel). The Low Profile chassis, which is the basis of this vehicle is configured to be fuel neutral to accommodate various alternative fuels. Demonstration of the vehicle in Yellowstone Park in summer (wheeled operation) and winter (track operation) demonstrated the feasibility and flexibility for this vehicle to provide year around operation throughout the Parks system as well as normal transit operation. The unique configuration of the chassis which provides ADA access with a simple ramp and a flat floor throughout the passenger compartment, provides maximum access for all passengers as well as maximum flexibility to configure the vehicle for each application. Because this product is derived from an existing medium duty truck chassis, the completed bus is 40-50% less expensive than existing low floor transit buses, with the reliability and durability of OEM a medium duty truck.

James Bartel

2004-11-26T23:59:59.000Z

155

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

156

Spent nuclear fuels project characterization data quality objectives strategy  

SciTech Connect

A strategy is presented for implementation of the Data Quality Objectives (DQO) process to the Spent Nuclear Fuels Project (SNFP) characterization activities. Westinghouse Hanford Company (WHC) and the Pacific Northwest Laboratory (PNL) are teaming in the characterization of the SNF on the Hanford Site and are committed to the DQO process outlined in this strategy. The SNFP characterization activities will collect and evaluate the required data to support project initiatives and decisions related to interim safe storage and the path forward for disposal. The DQO process is the basis for the activity specific SNF characterization requirements, termed the SNF Characterization DQO for that specific activity, which will be issued by the WHC or PNL organization responsible for the specific activity. The Characterization Plan prepared by PNL defines safety, remediation, and disposal issues. The ongoing Defense Nuclear Facility Safety Board (DNFSB) requirement and plans and the fuel storage and disposition options studies provide the need and direction for the activity specific DQO process. The hierarchy of characterization and DQO related documentation requirements is presented in this strategy. The management of the DQO process and the means of documenting the DQO process are described as well as the tailoring of the DQO process to the specific need of the SNFP characterization activities. This strategy will assure stakeholder and project management that the proper data was collected and evaluated to support programmatic decisions.

Lawrence, L.A.; Thornton, T.A. [Pacific Northwest Lab., Richland, WA (United States); Redus, K.S.

1994-12-01T23:59:59.000Z

157

Spent Nuclear Fuel (SNF) Project Safety Basis Implementation Strategy  

Science Conference Proceedings (OSTI)

The objective of the Safety Basis Implementation is to ensure that implementation of activities is accomplished in order to support readiness to move spent fuel from K West Basin. Activities may be performed directly by the Safety Basis Implementation Team or they may be performed by other organizations and tracked by the Team. This strategy will focus on five key elements, (1) Administration of Safety Basis Implementation (general items), (2) Implementing documents, (3) Implementing equipment (including verification of operability), (4) Training, (5) SNF Project Technical Requirements (STRS) database system.

TRAWINSKI, B.J.

2000-02-08T23:59:59.000Z

158

State Level Incentives for Biogas-Fuel Cell Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

LEVEL INCENTIVES LEVEL INCENTIVES FOR BIOGAS-FUEL CELL PROJECTS Norma McDonald Vice Chair, American Biogas Council North American Sales Manager, Organic Waste Systems, Inc. www.americanbiogascouncil.org FIGURES * FOUNDED IN 1988 * SALES: $25-35 MILLION * 75 EMPLOYEES ACTIVITIES * BIOGAS CONSULTANCY & SUPPORT * BIODEGRADATION TESTING AND WASTE MANAGEMENT CONSULTANCY * DESIGN & CONSTRUCTION OF ANAEROBIC DIGESTION PLANTS FOR ORGANIC WASTE AND RESIDUALS * NO FORMAL STATE CHAPTERS - YET * MEMBER DRIVEN EFFORTS * LOCAL "TOUCH" IS ESSENTIAL * REAPPLY BEST PRACTICES/POLICIES * PROMOTE/ADVOCATE FOR POLICY PARITY FOR BIOGAS www.americanbiogascouncil.org DYNAMICS SHAPING STATE INCENTIVES * BUDGET WOES, ARRA FUNDS NOW RUNNING OUT

159

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Nuclear Fuel ..to characterize the nuclear fuel cycle (Wu et al. Renewableby the heat content of nuclear fuel. In this analysis we use

Coughlin, Katie

2013-01-01T23:59:59.000Z

160

Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind-to-Hydrogen Cost Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Google Bookmark Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Delicious Rank Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NREL: Technology Deployment - Solar Deployment and Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Deployment and Market Transformation Solar Deployment and Market Transformation NREL enables faster, easier, and less expensive solar installations by applying our expertise and knowledge to projects that addresses challenges, inefficiencies, and market barriers to solar technology deployment. Northeast Denver Housing Center Solarize Grassroots Movement Drives Down Solar Prices 30% in Portland, Oregon Solarize Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Our technical experts work with policymakers, program administrators, regulators, utilities, transmission organizations, technology developers, financial organizations, and insurance companies to help break down barriers to solar technology deployment by: Developing and delivering policy and market design trainings

162

Economics of ALMR deployment  

SciTech Connect

The Advanced Liquid Metal Reactor (ALMR) has the potential to extend the economic life of the nuclear option and of reducing the number of high level waste repositories which will eventually be needed in an expanding nuclear economy. This paper reports on an analysis which models and evaluates the economics of the use of ALMRs as a component of this country`s future electricity generation mix. The ALMR concept has the ability to utilize as fuel the fissile material contained in previously irradiated nuclear fuel (i.e., spent fuel) or from surplus weapons grade material. While not a requirement for the successful deployment of ALMR power plant technology, the reprocessing of spent fuel from light water reactors (LWR) is necessary for any rapid introduction of ALMR power plants. In addition, the reprocessing of LWR spent fuel may reduce the number of high level waste repositories needed in the future by burning the long-lived actinides produced in the fission process. With this study, the relative economics of a number of potential scenarios related to these issues are evaluated. While not encompassing the full range of all possibilities, the cases reported here provide an indication of the potential costs, timings, and relative economic attractiveness of ALMR deployment.

Delene, J.G.; Fuller, L.C.; Hudson, C.R.

1994-12-31T23:59:59.000Z

163

Wind-fuel cell hybrid project in rural Alaska  

DOE Green Energy (OSTI)

This is a summary of the work performed on the Wind-Fuel Cell Hybrid Project: (1) On October 5th, Tim Howell of the Golden Field Office and Tom Anderson of Battelle Labs arrived in Anchorage. They met with David Lockard, Project Manager, and Percy Frisby, Director of the Alaska Rural Energy Programs Group. (2) On October 6th, Tim, Tom and David flew to Nome to inspect the proposed wind turbine site and meet with John Handeland, Director of the Nome Joint Utility System. They visited the proposed site as well as several private, residential-sized wind turbines operating in the Nome area. (3)Tim and Tom flew to Unalaska on October 7th to meet with Mike Golat, City of Unalaska Public Utility Director, and to inspect the proposed wind turbine sites at Pyramid Creek and Pyramid Valley. (4)Tim sent a scoping letter on December 17th to a variety of local, state and federal agencies requesting comments on the proposed wind turbine project. (5) David discussed this project with Marc Schwartz and Gerry Nix at NREL. Marc provided David with a list of wind prospectors and meteorologists. (6) Tom raised the question of FAA permits for structures over 200 feet tall. Gerry provided information on NREL's experience with FAA permitting on other projects. David summarized the potential turbine choices and heights in a spreadsheet and initiated contact with the Alaska region FAA office regarding the permitting process. (7) David responded to a list of design questions from Tom regarding the project foundations, power output, and size for use in developing the environmental assessment. (8) David tried to get wind data for the Nome Anvil Mountain White Alice site from the Corps of Engineers and the Air Force, but was not able to find any. (9) David solicited quotes from vendors of wind monitoring equipment and provided cost information to Doug Hooker, federal grant manager in preparation for ordering the equipment.

David Lockard

2000-02-18T23:59:59.000Z

164

Fuel Cell Technologies Office: DOE Hydrogen Pipeline R&D Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Energy Efficiency and Renewable Energy Fuel Cell Technologies Office DOE Hydrogen Pipeline R&D Project Review Meeting On January 5th and 6th, 2005, the FreedomCAR and Fuels...

165

Fuel Cell Technologies Office: DOE Hydrogen Pipeline R&D Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share this resource Send a link to Fuel Cell Technologies Office: DOE Hydrogen Pipeline R&D Project Review Meeting to someone by E-mail Share Fuel Cell Technologies Office:...

166

Hydrogen Learning Demonstration Project: Fuel Cell Efficiency and Initial Durability (Presentation)  

Science Conference Proceedings (OSTI)

This presentation by NREL's Keith Wipke at the 2006 Fuel Cell Seminar provides information about the Hydrogen Learning Demonstration Project, with a focus on fuel cell efficiency and durability.

Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.; Gronich, S.; Garbak, J.

2006-11-15T23:59:59.000Z

167

SECA Fuel Cell Program Moves Two Key Projects Into Next Phase | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SECA Fuel Cell Program Moves Two Key Projects Into Next Phase SECA Fuel Cell Program Moves Two Key Projects Into Next Phase SECA Fuel Cell Program Moves Two Key Projects Into Next Phase February 5, 2009 - 12:00pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) has selected two projects for continuation within the Department's Solid State Energy Conversion Alliance (SECA) Program research portfolio. The projects--led by FuelCell Energy, in partnership with VersaPower Systems, and Siemens Energy--have successfully demonstrated solid oxide fuel cells (SOFCs) designed for aggregation and use in coal-fueled central power generation. Further development of these low-cost, near-zero emission fuel cell systems will substantially contribute to solving the Nation's energy security, climate, and water challenges.

168

Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004  

DOE Green Energy (OSTI)

The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

Not Available

2004-07-01T23:59:59.000Z

169

Spent Nuclear Fuel (SNF) Project Design Verification and Validation Process  

SciTech Connect

This document provides a description of design verification and validation activities implemented by the Spent Nuclear Fuel (SNF) Project. During the execution of early design verification, a management assessment (Bergman, 1999) and external assessments on configuration management (Augustenburg, 1999) and testing (Loscoe, 2000) were conducted and identified potential uncertainties in the verification process. This led the SNF Chief Engineer to implement corrective actions to improve process and design products. This included Design Verification Reports (DVRs) for each subproject, validation assessments for testing, and verification of the safety function of systems and components identified in the Safety Equipment List to ensure that the design outputs were compliant with the SNF Technical Requirements. Although some activities are still in progress, the results of the DVR and associated validation assessments indicate that Project requirements for design verification are being effectively implemented. These results have been documented in subproject-specific technical documents (Table 2). Identified punch-list items are being dispositioned by the Project. As these remaining items are closed, the technical reports (Table 2) will be revised and reissued to document the results of this work.

OLGUIN, L.J.

2000-09-25T23:59:59.000Z

170

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

171

Fuel used in electricity generation is projected to shift over the ...  

U.S. Energy Information Administration (EIA)

Projected fuel prices and economic growth are key factors influencing the future electricity generation mix. The price of natural gas, coal's chief competitor, ...

172

Community Renewable Energy Deployment: University of California at at Davis  

Open Energy Info (EERE)

at at Davis at at Davis Project Jump to: navigation, search Name Community Renewable Energy Deployment: University of California at at Davis Project Agency/Company /Organization US Department of Energy Focus Area Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Other, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Hydrogen and Fuel Cells, - Solar Pv, Biomass - Waste To Energy Phase Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality University of California at Davis References Community Renewable Energy Deployment: University of California at at Davis Project[1] Contents

173

Computational Chemistry for Better Fuel Cells Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry for Better Fuel Cells Computational Chemistry for Better Fuel Cells Key Challenges: Rational development of polymer electrolyte membranes (PEMs). Fundamental scientific...

174

Renewable & Alternative Fuels - Analysis & Projections - U.S ...  

U.S. Energy Information Administration (EIA)

... (formerly shown in Table 5) was obtained from the Alternative Fuels Data Center (http://www.eere.energy.gov/afdc/fuels/stations_counts.html). ...

175

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pennsylvania Incentives and Laws Pennsylvania Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuel Project Grants Archived: 11/30/2013 Pennsylvania Energy Harvest Grant seeks to deploy cleaner energy sources by providing funding for alternative energy projects, including those involving clean, alternative fuels for transportation. Projects must address both energy and environmental concerns; projects that are primarily education, outreach, feasibility, assessment, planning, or research and development are not eligible. Eligible applicants include an incorporated 501(c)(3) non-profit organizations that is also registered with the

176

Community Renewable Energy Deployment: Sacramento Municipal Utility  

Open Energy Info (EERE)

Deployment: Sacramento Municipal Utility Deployment: Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects Agency/Company /Organization US Department of Energy Focus Area Agriculture, Economic Development, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Solar, - Solar Pv, Biomass - Waste To Energy Phase Bring the Right People Together, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality Sacramento Municipal Utility District, CA References Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects[1]

177

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

Steve Bergin

2004-10-18T23:59:59.000Z

178

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

Steve Bergin

2004-10-18T23:59:59.000Z

179

The Fuel Cell Mobile Light Project - A DOE Market Transformation...  

NLE Websites -- All DOE Office Websites (Extended Search)

style , 5000 psi (350 bar) TN1 port, fill selector and fuel gauge Control panel with remote display and operation function from fuel cell. Built-in Service and maintenance...

180

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

of a Natural Gas Combined-Cycle Power Generation System.combined with separate accounting for the use of energy in fuel production, is referred to as full- fuel- cycle (

Coughlin, Katie

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Department Awards $45 Million to Deploy Advanced Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards $45 Million to Deploy Advanced Awards $45 Million to Deploy Advanced Transportation Technologies Energy Department Awards $45 Million to Deploy Advanced Transportation Technologies September 4, 2013 - 10:06am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that accelerate the research and development of vehicle technologies to improve fuel efficiency, lower transportation costs and protect the environment in communities nationwide. "By partnering with universities, private industry and our national labs, the Energy Department is helping to build a strong 21st century

182

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Adam R. 2008. Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. In

Coughlin, Katie

2013-01-01T23:59:59.000Z

183

Renewable & Alternative Fuels - Analysis & Projections - U.S ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency. ... Biomass; Geothermal; Hydropower; Solar ...

184

Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes opportunities for leading fuel cell industry partners from the United States and abroad to participate in an objective and credible fuel cell technology performance and durability analysis by sharing their raw fuel cell test data related to operations, maintenance, safety, and cost with the National Renewable Energy Laboratory via the Hydrogen Secure Data Center.

Not Available

2013-01-01T23:59:59.000Z

185

King County Carbonate Fuel Cell Demonstration Project: Case Study of a 1MW Fuel Cell Power Plant Fueled by Digester Gas  

Science Conference Proceedings (OSTI)

This case study documents the first-year demonstration experiences of a 1-MW carbonate fuel cell system operating on anaerobic digester gas at a wastewater treatment plant in King County, Washington. The case study is one of several fuel cell project case studies under research by the EPRI Distributed Energy Resources Program. This case study is designed to help utilities and other interested parties understand the early applications of fuel cell systems to help them in their resource planning efforts an...

2005-03-30T23:59:59.000Z

186

EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Gilberton Coal-to-Clean Fuels and Power Project in 7 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA Summary This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. PUBLIC COMMENT OPPORTUNITIES

187

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-11-08T23:59:59.000Z

188

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

5 Comparison of natural gas supply projections AEO 2006 tothe projection of natural gas supply by source category as5 Comparison of natural gas supply projections AEO 2006 to

Coughlin, Katie

2013-01-01T23:59:59.000Z

189

Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Projects to Diversify U.S. Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles November 19, 2012 - 2:08pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced 20 new projects to help states and local governments cut red tape and develop the infrastructure, training and regional planning needed to help meet the demand for alternative fuel cars and trucks, including vehicles that run on natural gas, electricity and propane. These projects build on the important steps the Obama Administration has taken to expand the transportation options available for businesses and communities and improve the fuel

190

Cheyenne Light, Fuel and Power Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Light, Fuel and Power Company Smart Grid Project Light, Fuel and Power Company Smart Grid Project Jump to: navigation, search Project Lead Cheyenne Light, Fuel and Power Company Country United States Headquarters Location Cheyenne, Wyoming Recovery Act Funding $5,033,441.00 Total Project Value $10,066,882.00 Coverage Area Coverage Map: Cheyenne Light, Fuel and Power Company Smart Grid Project Coordinates 41.1399814°, -104.8202462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

191

Property:Number of Devices Deployed | Open Energy Information  

Open Energy Info (EERE)

Devices Deployed Devices Deployed Jump to: navigation, search Property Name Number of Devices Deployed Property Type Number Pages using the property "Number of Devices Deployed" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 3 + 1 + MHK Projects/ADM 5 + 1 + MHK Projects/AW Energy EMEC + 1 + MHK Projects/AWS II + 2 + MHK Projects/Admirality Inlet Tidal Energy Project + 450 + MHK Projects/Agucadoura + 3 + MHK Projects/Alaska 18 + 100 + MHK Projects/Alaska 36 + 100 + MHK Projects/Algiers Cutoff Project + 40 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

192

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

Steve Bergin

2003-10-17T23:59:59.000Z

193

Blender Pump Fuel Survey: CRC Project E-95  

DOE Green Energy (OSTI)

To increase the number of ethanol blends available in the United States, several states have 'blender pumps' that blend gasoline with flex-fuel vehicle (FFV) fuel. No specification governs the properties of these blended fuels, and little information is available about the fuels sold at blender pumps. No labeling conventions exist, and labeling on the blender pumps surveyed was inconsistent.; The survey samples, collected across the Midwestern United States, included the base gasoline and FFV fuel used in the blends as well as the two lowest blends offered at each station. The samples were tested against the applicable ASTM specifications and for critical operability parameters. Conventional gasoline fuels are limited to 10 vol% ethanol by the U.S. EPA. The ethanol content varied greatly in the samples. Half the gasoline samples contained some ethanol, while the other half contained none. The FFV fuel samples were all within the specification limits. No pattern was observed for the blend content of the higher ethanol content samples at the same station. Other properties tested were specific to higher-ethanol blends. This survey also tested the properties of fuels containing ethanol levels above conventional gasoline but below FFV fuels.

Alleman, T. L.

2011-07-01T23:59:59.000Z

194

PROGRESS REPORT ON FUEL ELEMENT DEVELOPMENT AND ASSOCIATED PROJECTS  

SciTech Connect

; 9 < 4 6 9 7 ; 6 8 7 6 sting Deactor (MTR) has sought to develop improved, economical, long-life fuel assemblies through a comprehensive study of various fuel compositions, enrichments, claddings, burnable poisons, fuel and poison distributions, and fuelelement geometry optimization. The core materials, including uranium -- aluminum alloys, uranium oxide -aluminum cermets, thorium, thorium oxide, boron, gadolinium, dysprosium, and iridium, are tested in pilot-plant scale by irradiating them as sandwich type sample fuel plates. In the procurement of these sample plates, fabrication techniques were developed and evaluated for incorporation of all the fuels and poisons (except Ir/sub 2/O/sub 3/) into cores of aluminum or aluminum alloys. Methods were developed to minimize "dog-boning" and to produce graded fuels. Some of the sample plate compcsitions have been irradiated to high burn-up, i.e., over 50% of the U/sup 235/ content, and have operated successfully in the MTR for seven or more cycles. The irradiated uranium-- aluminum alloy and uranium oxide-- aluminum cermet fuel plates have shown excellent dimensional stability and good corrosion resistance to long-term irradiation. However, some of the thorium oxide fuel plates failed during one cycle of irradiation because of blistering, rupturing, or forming of pinholes in the cladding. The isostatic bonding procedure used to bond aluminum plates to the ThO/sub 2/ cores is apparently not adequate for reactor use. The sample fuel plate work has demonstrated the suitability of high wt.% uranium oxide--aluminum fuels for testing reactors, indicated the potential of systematically varying the fuel loading within a single plate, and experimentally verified the applicability of burnable poisons for reducing reactivity changes resulting from fuel burnup. The Deactivity Measurement Facility has proved to be an excellent nondestructive analytical tool for determination of fuel and poison burn-up. This program has stimulated several new developments and revealed many interesting facts in the fabrication and testing of reactor fuel materials. For example: (1) ultrasonic inspection has proved to be an excellent nondestructive method for determination of small voids in the core and unbonded cladding not otherwise detected by radiographing, (2) the ultrasonic inspection of irradiated fuel plates in the MTR canal is feasible, and (3) analytical procedures were developed for the determination of the small quantities of gadolinium added to the cores. The prototype studies consisted of theoretical and experimental evaluations of the hydraulic and heat- transfer characteristics, the structural properties, the economics and the reactor operating characteristics of various full-sized fuel assemblies and shim rods. The results of the sample fuel plate studies were incorporated in these prototypes to obtain optimum practical designs for testing reactors. The fuel element geometries investigated include plates, tube bundles, hexagonal honeycomb, and concentric cylinders. A MTR shim rod with renewable fuel and poison sections was designed, tested hydraulically, and is now considered ready for final in-pile testing. This rod outlasts the existing shim rods, is cheaper, and allows more operational flexibility. A theoretical analysis, hydraulic tests, and a mechanical evaluation have shown that an improvement can be made in plate type fuel elements by using an increased number of thinner high-strength fuel plates in the fuel element. An in-pile prototype test of such an element is now planned. An analysis of roughened surfaces indicates that economy or increases in reactor power may be gained through the use of roughened heat- transfer surfaces in nonboiling watercooled reactors. Preliminary hydraulic tests were performed and indicate that practical roughened surfaces may be formed. Out-of-pile heat-transfer tests are now planned. The theoretical analysis of geometries indicates that tube bundles, honeycomb, and concentric cylinder de

Francis, W.C.; Craig, S.E. ed.

1960-08-16T23:59:59.000Z

195

Shippingport Spent Fuel Canister (SSFC) Design Report Project W-518  

SciTech Connect

The SSFC Design Report Describes A spent fuel canister for Shippingport Core 2 blanket fuel assemblies. The design of the SSFC is a minor modification of the MCO. The modification is limited to the Shield Plug which remains unchanged with regard to interfaces with the canister shell. The performance characteristics remain those for the MCO, which bounds the payload of the SSFC.

JOHNSON, D.M.

2000-01-27T23:59:59.000Z

196

AMF Deployment, Manacapuru, Brazil  

NLE Websites -- All DOE Office Websites (Extended Search)

Manacapuru, Brazil Manacapuru Deployment AMF Home Manacapuru Home GOAMAZON Home Experiment Planning Abstract and Related Campaigns Science Plan (PDF, 1.4MB) Deployment Operations...

197

DOE Hydrogen and Fuel Cell Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

eere.energy.gov eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program January 5, 2011 2 | Fuel Cell Technologies Program eere.energy.gov * Overview - Goals & Objectives - Technology Status & Key Challenges * Progress - Research & Development - Deployments - Recovery Act Projects * Budget * Key Publications Agenda: DOE Fuel Cell Technologies Program 3 | Fuel Cell Technologies Program eere.energy.gov Program Mission The mission of the Hydrogen and Fuel Cells Program is to enable the widespread commercialization of a portfolio of hydrogen and fuel cell technologies through basic and applied research, technology development and demonstration, and

198

Gilberton Coal-to-Clean Fuels and Power Co-Production Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Initiative (CCPI) Gilberton Coal-to-Clean Fuels and Power Co-ProduCtion ProjeCt Description WMPI PTY., LLC of Gilberton, Pennsylvania has assembled a leading technology and...

199

Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities  

Science Conference Proceedings (OSTI)

This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

MITCHELL, R.M.

2000-09-28T23:59:59.000Z

200

Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

That Will Advance Solid Oxide Fuel Cell Research That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development July 27, 2012 - 1:00pm Addthis Washington, D.C. - Seven projects that will help develop low-cost solid oxide fuel cell (SOFC) technology for environmentally responsible central power generation from the Nation's abundant fossil energy resources have been selected for further research by the Department of Energy (DOE). The projects, managed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL), are valued at a total of $4,391,570, with DOE contributing $3,499,250 and the remaining cost provided by the recipients. Four of the selected projects will pursue advances in cathode performance,

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Spent fuel test project, Climax granitic stock, Nevada Test Site  

SciTech Connect

The Spent Fuel Test-Climax (SFT-C) is a test of dry geologic storage of spent nuclear reactor fuel. The SFT-C is located at a depth of 420 m in the Climax granitic stock at the Nevada Test Site. Eleven canisters of spent commercial PWR fuel assemblies are to be stored for 3 to 5 years. Additional heat is supplied by electrical heaters, and more than 800 channels of technical information are being recorded. The measurements include rock temperature, rock displacement and stress, joint motion, and monitoring of the ventilation air volume, temperature, and dewpoint.

Ramspott, L.D.

1980-10-24T23:59:59.000Z

202

EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)  

SciTech Connect

This success story highlights the EPAct Alternative Fuel Transportation Program's series of workshops that bring fleets regulated under the Energy Policy Act of 1992 (EPAct) together with Clean Cities stakeholders and fuel providers to form and strengthen regional partnerships and initiate projects that will deploy more alternative fuel infrastructure.

Not Available

2010-08-01T23:59:59.000Z

203

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

petroleum petroleum petroleum Source Category undergroundwhich petroleum-based fuels are the primary energy source,Sources ..25 3.3.3 AEO Forecast .27 3.3.4 Issues for Further Study 28 3.4 Petroleum

Coughlin, Katie

2013-01-01T23:59:59.000Z

204

2010 Fuel Cell Project Kick-off Welcome  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Systems R&D A Hydrogen Fuel R&D Technology Validation M k t T f ti d Applied RD&D Market Transformation and Safety, Codes & Standards Systems Analysis Manufacturing R&D D...

205

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature MarketProjected Biomass Utilization for Fuels and Power in a Mature Market  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy 2013 Prepared by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

206

Case Studies of 250-kW Carbonate Fuel Cells: Demonstration of Three FuelCell Energy Systems at LADWP  

Science Conference Proceedings (OSTI)

This case study documents the demonstration experiences and lessons learned from the purchase, installation, and operation of three carbonate fuel cell systems built by FuelCell Energy and deployed by the Los Angeles Department of Water and Power (LADWP). These projects are among several fuel cell project case studies under research by EPRI's Distributed Energy Resources Program. They are designed to help utilities and other interested parties understand the early applications of carbonate fuel cells to ...

2005-03-31T23:59:59.000Z

207

Fuel Cell Research at DLR-Latest Results and current Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Research at DLR-Latest Results and current Projects Fuel Cell Research at DLR-Latest Results and current Projects Speaker(s): Werner Schnurnberger Date: March 27, 2008 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Galen Barbose Fuel cell R&D at the German Aerospace Center is focussing on both Membrane Fuel Cells (PEFC and DMFC) and high temperature Solid Oxide Fuel Cells (SOFC). The status of advanced DLR Manufacturing Technologies based on dry powder coating of membranes and plasma spray concepts for metal supported SOFC will be reported shortly. Fundamental research activities actually are focussed on in situ diagnostics using segmented cells and short stacks. Some latest results will be given for locally resolved current density distribution and temperature for both PEFC and SOFC. In addition,

208

NETL: News Release - SECA Fuel Cell Program Moves Two Key Projects Into  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2009 5, 2009 SECA Fuel Cell Program Moves Two Key Projects Into Next Phase Projects Continue Push for Low-Cost, Environmentally Friendly Coal Power Washington, DC-The U.S. Department of Energy (DOE) has selected two projects for continuation within the Department's Solid State Energy Conversion Alliance (SECA) Program research portfolio. The projects-led by FuelCell Energy, in partnership with VersaPower Systems, and Siemens Energy-have successfully demonstrated solid oxide fuel cells (SOFCs) designed for aggregation and use in coal-fueled central power generation. Further development of these low-cost, near-zero emission fuel cell systems will substantially contribute to solving the Nation's energy security, climate, and water challenges. The selections were based upon an assessment of demonstrated progress in developing high-performance, low-cost SOFC technology. FuelCell Energy is testing two ~10kilowatt SOFC stacks incorporating planar cells; each has surpassed 4,700 hours of operation to date. Similarly, Siemens is testing a ~10kilowatt SOFC stack incorporating its new higher power Delta cells, with 2,500 hours of operation to date. With the continuation, these projects will pursue cell materials and design development to further improve performance, reduce cost, and integrate the cells into larger stacks for evaluation and incorporation into larger demonstrations beginning in 2012.

209

Spent Nuclear Fuel project systems engineering management plan  

SciTech Connect

The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

Womack, J.C.

1995-10-03T23:59:59.000Z

210

Experimental hydrogen-fueled automotive engine design data-base project. Volume 2. Main technical report  

DOE Green Energy (OSTI)

Operational performance and emissions characteristics of hydrogen-fueled engines are reviewed. The project activities are reviewed including descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained. Analyses of other hydrogen engine project data are also presented and compared with the results of the present effort.

Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

1983-05-01T23:59:59.000Z

211

Kick-Off Meeting for New Fuel Cell Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance Reporting Checklist andor the Project Management and Reporting Task of the SOPO * Quarterly Technical Progress Report - due 30 days after the end of the quarter *...

212

Synthetic fuels: Status of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

Sponsors of the Great Plains coal gasification project in North Dakota defaulted on a federal loan in the amount of $1.54 billion. The Department of Energy has obtained title to the Great Plains project and is evaluating proposals from investment banking-type companies to assist it in selling the plant and its assets. This fact sheet highlights recent legal action concerning gas purchase agreements and mortgage foreclosure; the status of the project's sponsors' outstanding liability; DOE's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues.

Not Available

1987-01-01T23:59:59.000Z

213

Nuclear Fuels Storage and Transportation Planning Project (NFST...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project (NFST) Program Status More Documents & Publications DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues Update on Blue Ribbon Commission...

214

Final Technical Report for the MIT Annular Fuel Research Project  

SciTech Connect

MIT-NFC-PR-082 (January 2006) Abstract This summary provides an overview of the results of the U.S. DOE funded NERI (Nuclear Research ENergy Initiative) program on development of the internally and externally cooled annular fuel for high power density PWRs. This new fuel was proposed by MIT to allow a substantial increase in poer density (on the order of 30% or higher) while maintaining or improving safety margins. A comprehensive study was performed by a team consisting of MIT (lead organization), Westinghuse Electric Corporation, Gamma Engineering Corporation, Framatome ANP(formerly Duke Engineering) and Atomic Energy of Canada Limited.

Mujid S. Kazimi; Pavel Hejzlar

2008-01-31T23:59:59.000Z

215

Spent nuclear fuel project detonation phenomena of hydrogen/oxygen in spent fuel containers  

DOE Green Energy (OSTI)

Movement of Spent N Reactor fuels from the Hanford K Basins near the Columbia River to Dry interim storage facility on the Hanford plateau will require repackaging the fuel in the basins into multi-canister overpacks (MCOs), drying of the fuel, transporting the contained fuel, hot conditioning, and finally interim storage. Each of these functions will be accomplished while the fuel is contained in the MCOs by several mechanisms. The principal source of hydrogenand oxygen within the MCOs is residual water from the vacuum drying and hot conditioning operations. This document assesses the detonation phenomena of hydrogen and oxygen in the spent fuel containers. Several process scenarios have been identified that could generate detonation pressures that exceed the nominal 10 atmosphere design limit ofthe MCOS. Only 42 grams of radiolized water are required to establish this condition.

Cooper, T.D.

1996-09-30T23:59:59.000Z

216

Kick Off Meeting for New Fuel Cell Projects  

E-Print Network (OSTI)

Checklist and/or the Project Management and Reporting Task of the SOPO ·· Due 30 days after the end of each (SOPO) into the table · Generalllly projjects hhave 1-2 kkey mililestones//year off thhe project

217

A risk evaluation for the fuel retrieval sub-project  

SciTech Connect

This study reviews the technical, schedule and budget baselines of the sub-project to assure all significant issues have been identified on the sub-project issues management list. The issue resolution dates are identified and resolution plans established. Those issues that could adversely impact procurement activities have been uniquely identified on the list and a risk assessment completed.

Carlisle, B.S.

1996-10-11T23:59:59.000Z

218

Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project  

DOE Green Energy (OSTI)

The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

Stephen P. Bergin

2006-06-30T23:59:59.000Z

219

Final Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL  

Office of Scientific and Technical Information (OSTI)

Project Report Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL Nuclear Engineering Education Research Program (grant # DE-FG07-99ID13767) Rodney C. Ewing (co-PI) Lumin Wang (co-PI) October 30,2002 For the Period of 07/01/1999 to 06/30/2002 Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 1 1. Background Excess actinides result from the dismantlement of nuclear weapons (239Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241Am, Cm and 237Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burn- up of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-

220

Community Renewable Energy Deployment: University of California...  

Open Energy Info (EERE)

is using a combination of a solar photovoltaic array and fuel cells supplied with biogas from the campus waste to achieve the project goals. The project will demonstrate...

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Deploying Emerging Technologies in ESPC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deploying Emerging Technologies in Deploying Emerging Technologies in ESPC Charles Williams with Mike Holda and Anthony Radspieler Lawrence Berkeley National Laboratory For More Information * Would you like to know more about this presentation? * Charles Williams * Lawrence Berkeley National Laboratory * One Cyclotron Road, MS90R3111 Berkeley CA 94720 * CHWilliams@lbl.gov Deploying Emerging Technologies * Goals/Objective * Define emerging technologies * Examples of emerging technologies in ESPC projects - lessons learned * Describe actions taken to incorporate ET in ESPCs * Results to date * Feedback, suggestions Emerging Technologies in ESPCs Goal/Objective: -Tool to help reach Executive Order 13423, EPACT 2005 and EISA energy use reduction goals -Means to acquire energy savings otherwise not attainable, and build larger

222

Deployment Partnerships (Presentation)  

SciTech Connect

This presentation, Deployment Partnerships, was given by Mike Pacheco at the Industry Growth Forum in Golden, Colorado, November 5, 2009.

Pacheco, M.

2009-11-05T23:59:59.000Z

223

Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects  

DOE Green Energy (OSTI)

To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

None

1981-08-07T23:59:59.000Z

224

Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project  

DOE Green Energy (OSTI)

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

Steve Bergin

2005-10-14T23:59:59.000Z

225

ONSI-FUEL CELL PROJECT ''AEB BIRSFELDEN/BASEL  

Science Conference Proceedings (OSTI)

AEB Alternativ-Energie Birsfelden AG is supplying several buildings, a public indoor pool and one school with electrical and thermal energy from 5 Kaplan turbines, 2 heat-pumps and conventional boilers. The hating station is called ''Heizzentrale Kirchmatt''. The total heat demand is 3.8 MW peak and 5.5 GWh/a. The Department of Energy of Switzerland supports this project. The FC combined heat and power plant is part of this project with priority in supply of domestic heat. The ONSI PC25C was installed by AEB on a school yard in Birsfelden a district of the Swiss city Basel.

Dipl.-Ing. Irina Reese; Dipl.-Ing. Andreas Bode

2002-04-01T23:59:59.000Z

226

DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines  

DOE Green Energy (OSTI)

Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels. Extensive data from current and previous years was leveraged into participation with several large proposal teams, as our fuels database covers a very wide range of conventional and emerging fuels and biofuels.

Bunting, Bruce G [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

227

Application of the BISON Fuel Performance Code to the FUMEX-III Coordinated Research Project  

SciTech Connect

INL recently participated in FUMEX-III, an International Atomic Energy Agency sponsored fuel modeling Coordinated Research Project. A main purpose of FUMEX-III is to compare code predictions to reliable experimental data. During the same time period, the INL initiated development of a new multidimensional (2D and 3D) multiphysics nuclear fuel performance code called BISON. Interactions with international fuel modeling researchers via FUMEX-III played a significant and important role in the BISON evolution, particularly influencing the selection of material and behavioral models which are now included in the code. BISON's ability to model integral fuel rod behavior did not mature until 2011, thus the only FUMEX-III case considered was the Riso3-GE7 experiment, which includes measurements of rod outer diameter following pellet clad mechanical interaction (PCMI) resulting from a power ramp late in fuel life. BISON comparisons to the Riso3-GE7 final rod diameter measurements are quite reasonable. The INL is very interested in participation in the next Fuel Modeling Coordinated Research Project and would like to see the project initiated as soon as possible.

R. L. Williamson; S. R. Novascone

2012-04-01T23:59:59.000Z

228

Newberry Seismic Deployment Fieldwork Report  

DOE Green Energy (OSTI)

This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquake detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.

Wang, J; Templeton, D C

2012-03-21T23:59:59.000Z

229

Spent Nuclear Fuel Project technical baseline document. Fiscal year 1995: Volume 1, Baseline description  

SciTech Connect

This document is a revision to WHC-SD-SNF-SD-002, and is issued to support the individual projects that make up the Spent Nuclear Fuel Project in the lower-tier functions, requirements, interfaces, and technical baseline items. It presents results of engineering analyses since Sept. 1994. The mission of the SNFP on the Hanford site is to provide safety, economic, environmentally sound management of Hanford SNF in a manner that stages it to final disposition. This particularly involves K Basin fuel, although other SNF is involved also.

Womack, J.C. [Westinghouse Hanford Co., Richland, WA (United States); Cramond, R. [TRW (United States); Paedon, R.J. [SAIC (United States)] [and others

1995-03-13T23:59:59.000Z

230

Synthetic fuels. Status of the Great Plains Coal Gasification Project  

Science Conference Proceedings (OSTI)

This report includes updated information obtained through February 14, 1986, on the loan-default, Great Plains loan and gas pricing formula, legal matters and agreements, the Department of Energy's options and actions, and Great Plains operations. The new information highlights changes in the gas pricing calculations; legal action concerning gas purchase agreements and mortgage foreclosure; the Department's determination of the project sponsors' outstanding liability; the Department's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues. Our November fact sheet included information on socioeconomic issues. We have not obtained any additional information on these issues and are, therefore, not repeating the socioeconomic information in this fact sheet.

Not Available

1986-02-01T23:59:59.000Z

231

NREL: Technology Deployment Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Decathlon 2013 Heading to California Solar Decathlon 2013 Heading to California U.S. Coast Guard Saves Energy, Money Training Results in Decreased Energy Use and Costs for Sector Guam Standard Work Specifications Tool Now Available Standard Work Specifications Tool Now Available Weatherization industry can save specifications online and streamline work NREL Federal Fueling Station Data Supports Sandy Recovery NREL Federal Fueling Station Data Supports Sandy Recovery Decision Makers Able to Coordinate Access to Fuel NREL works with federal, state, and local government and private industry and organizations to deploy commercially available energy efficiency and renewable energy technologies. Our experts help prepare the market for emerging technologies by removing barriers to adoption. Use our technology

232

Final Technical Report for the Martin County Hydrogen Fuel Cell Development Project  

DOE Green Energy (OSTI)

In September 2008, the U.S. Department of Energy and Martin County Economic Development Corporation entered into an agreement to further the advancement of a microtubular PEM fuel cell developed by Microcell Corporation. The overall focus of this project was on research and development related to high volume manufacturing of fuel cells and cost reduction in the fuel cell manufacturing process. The extrusion process used for the microfiber fuel cells in this project is inherently a low cost, high volume, high speed manufacturing process. In order to take advantage of the capabilities that the extrusion process provides, all subsequent manufacturing processes must be enhanced to meet the extrusion lines speed and output. Significant research and development was completed on these subsequent processes to ensure that power output and performance were not negatively impacted by the higher speeds, design changes and process improvements developed in this project. All tasks were successfully completed resulting in cost reductions, performance improvements and process enhancements in the areas of speed and quality. These results support the Department of Energys goal of fuel cell commercialization.

Eshraghi, Ray

2011-03-09T23:59:59.000Z

233

Accelerating Electric Vehicle Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment More Documents &...

234

UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

Walkowicz, K.

2001-08-14T23:59:59.000Z

235

DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia  

NLE Websites -- All DOE Office Websites (Extended Search)

Boeing Sponsored Projects in Boeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia Lennie Klebanoff and Joe Pratt Sandia National Laboratories Livermore CA 94551 September 30, 2010 "Exceptional Service in the National Interest" DOE-DOD Workshop on Uses of Fuel Cells in Aviation * ~ 8,300 employees * ~ 1,500 PhDs; ~2800 MS/MA * ~ 700 on-site contractors Sandia National Laboratories Sandia is a government-owned/contractor operated (GOCO) facility. Sandia Corporation, a Lockheed Martin company, manages Sandia for the U.S. Department of Energy's National Nuclear Security Administration. Website: www.sandia.gov Annual Budget ~ $2.2 Billion ($1.3 Billion DOE, $0.9 Billion work for others) 3 Origin: Boeing Interested in Bringing Fuel Cell Technology to Ground Support Equipment (GSE)

236

Federal and State Incentives for Early Commercial Deployment  

E-Print Network (OSTI)

supported research and development (R&D) on coal gasification, Integrated Gasification Combined Cycle (IGCC) technology, and associated carbon capture and storage (CCS) methods. As a result of these joint efforts, the application of IGCC and CCS to electric power generation and related energy markets is at the beginning of commercial deployment. Due to technological successes already achieved and unique capabilities relative to competitive technologies, there is currently a very high level of interest in IGCC, CCS, and associated gasification-based technologies. This interest is, in part, a result of evolving Federal and state strategic energy policy goals that encourage the commercial deployment of advanced fossil energy supply technologies to enhance fuel diversity, domestic energy security, environmental footprint and climate change mitigation, while sustaining efficient utilization of domestic resources. This is the second of two Technical Forum discussions on IGCC/CCS and focuses primarily on the Federal and State incentives offered to encourage technology deployment. Federal energy policy towards IGCC is most recently and clearly established in the Energy Policy Act of 2005, which authorizes continued RD&D support and strengthens financial incentives to enhance the competitiveness of early commercial IGCC/CCS projects and encourage use of a broad range of coal types, project locations, and plant designs. State policies supporting IGCC/CCS come in the form of legislation and regulations that provide technology development

I. Background

2006-01-01T23:59:59.000Z

237

Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)  

SciTech Connect

The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.

PICKETT, W.W.

2000-09-22T23:59:59.000Z

238

Results of FY 1979 project appraisal. Appendix A: fuel cells worksheets  

DOE Green Energy (OSTI)

Worksheets are presented to show the project appraisal of each of the three technologies (phosphoric acid fuel cells, molten carbonate fuel cells, and thermionic converters) and the market penetration of the technologies in their respective market areas. In the case of the phosphoric acid fuel cell, there are two market areas which were analyzed. Those market areas coincided with the two sizes of phosphoric acid systems that are expected to be produced (4.8 MW module and the 40 kW module). The 4.8 kW module system is used for both total energy systems and industrial systems. The industrial market is comprised of industrial cogeneration, and waste utilization. Molten carbonate fuel cells and thermionic energy conversion will be used in the market areas of baseload utility electric generation and inudstrial cogeneration.

None

1979-03-01T23:59:59.000Z

239

Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan  

DOE Data Explorer (OSTI)

Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

Gurney, Kevin [PI and spokesperson for the Vulcan Collaboration

240

AMF Deployment, Shouxian, China  

NLE Websites -- All DOE Office Websites (Extended Search)

China Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments Experiment Planning Proposal Science Plan, (PDF, 1,257K) Outreach Fact Sheets English Version...

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

DOE Green Energy (OSTI)

General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

Stottler, Gary

2012-02-08T23:59:59.000Z

242

PNNL Technology Planning and Deployment Group | Open Energy Information  

Open Energy Info (EERE)

Planning and Deployment Group Planning and Deployment Group (Redirected from Technology Planning and Deployment) Jump to: navigation, search Logo: Technology Planning and Deployment Name Technology Planning and Deployment Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tpd.pnl.gov/ References Technology Planning and Development [1] "The Technology Planning & Deployment (TP&D) group is part of the Pacific Northwest National Laboratory's (PNNL's) Energy and Environment Directorate. TP&D staff provide customers with a unique combination of experience and expertise with capabilities in economics and regulatory analysis, systems engineering, marketing, technology adaptation and application, policy analysis, and project management."[1]

243

Strategies to Finance Large-Scale Deployment of Renewable Energy...  

Open Energy Info (EERE)

Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Name Strategies to Finance Large-Scale...

244

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market  

DOE Green Energy (OSTI)

The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

2013-03-01T23:59:59.000Z

245

Major Government-Supported Fuel Cell Vehicle Projects Government support for fuel cell projects is critical to the development of fuel cell technology.  

E-Print Network (OSTI)

provide most of its power. In the future, there are plans to use fuel cells, a solar-thermal system. The Centre also will house a "National Research Flagship," entitled "Energy Transformed," that will focus sustainable energy technologies, including solar, gas micro-turbines, and wind generators that will initially

246

ARM - News from the Steamboat Springs Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

ColoradoNews from the Steamboat Springs Deployment Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace News from the Steamboat Springs Deployment Releases WPSD (Paducah, KY) "STORMVEX Cloud Study" January 19, 2011 The Daily Sentinel, Grand Junction "Steamboat project gives scientists unique, grounded look at clouds" December 12, 2010 Steamboat Pilot & Today "Steamboat cloud study to help create better global climate models" Image Gallery December 12, 2010 Also picked up by:

247

Property:DeploymentPrograms | Open Energy Information  

Open Energy Info (EERE)

DeploymentPrograms DeploymentPrograms Jump to: navigation, search Property Name DeploymentPrograms Property Type String Description Depolyment programs as listed in cleanenergysolutions.org Allows the following values: Audit Programs Demonstration & Implementation Green Power/Voluntary RE Purchase High Performance Buildings Industry Codes & Standards Project Development Public Tenders, Procurement, & Lead Examples Public-Private Partnerships Retrofits Ride Share, Bike Share, etc. Technical Assistance Training & Education Voluntary Appliance & Equipment Labeling Voluntary Industry Agreements Subproperties This property has the following 2 subproperties: G Greenhouse Gas Regional Inventory Protocol (GRIP) Website M Methods for Climate Change Technology Transfer Needs Assessments and

248

Spent Nuclear Fuel Project FY 1996 Multi-Year Program Plan WBS No. 1.4.1, Revision 1  

SciTech Connect

This document describes the Spent Nuclear Fuel (SNF) Project portion of the Hanford Strategic Plan for the Hanford Reservation in Richland, Washington. The SNF Project was established to evaluate and integrate the urgent risks associated with N-reactor fuel currently stored at the Hanford site in the K Basins, and to manage the transfer and disposition of other spent nuclear fuels currently stored on the Hanford site. An evaluation of alternatives for the expedited removal of spent fuels from the K Basin area was performed. Based on this study, a Recommended Path Forward for the K Basins was developed and proposed to the U.S. DOE.

NONE

1995-09-01T23:59:59.000Z

249

U.S. DEPARTMENT OF ENERGY SOLID OXIDE FUEL CELLS PROGRAM | 2013 PROJECT PORTFOLIO  

NLE Websites -- All DOE Office Websites (Extended Search)

DEPARTMENT OF ENERGY DEPARTMENT OF ENERGY SOLID OXIDE FUEL CELLS PROGRAM | 2013 PROJECT PORTFOLIO 2 THIS PAGE INTENTIONALLY LEFT BLANK OFFICE OF FOSSIL ENERGY SOLID OXIDE FUEL CELLS PROGRAM | 2013 PROJECT PORTFOLIO 3 Disclaimer DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not neces-

250

Revised projections of fuel economy and technology for highway vehicles. Task 22. Final report  

SciTech Connect

Both the methodology used to forecast fuel economy and the technological and tooling plan data central to the derivation of the forecast for all those vehicle classes are updated here. Forecasts were prepared for a scenario where oil prices stay flat through 1985 (in current real dollars) and increase at the rate of one percent per year in the 1985 to 1995 period. Estimates of the mix of vehicles sold and projections for diesel penetration are documented. Revised forecasts for cars and light duty truck analysis are detailed. Heavy-duty truck fuel economy forecast revisions are described. The DOE automotive R and D programs are examined in the context of the newly revised projections. (MHR)

1983-06-15T23:59:59.000Z

251

California Hydrogen Infrastructure Project - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Edward C. Heydorn Air Products and Chemicals, Inc. 7201 Hamilton Boulevard Allentown, PA 18195 Phone: (610) 481-7099 Email: heydorec@airproducts.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Jim Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: DE-FC36-05GO85026 Working Partners/Subcontractors: * University of California Irvine (UCI), Irvine, CA * National Fuel Cell Research Center (NFCRC), Irvine, CA Project Start Date: August 1, 2005 Project End Date: December 31, 2011 Fiscal Year (FY) 2012 Objectives Demonstrate a cost-effective infrastructure model in

252

Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

Science Conference Proceedings (OSTI)

The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

NONE

1996-12-01T23:59:59.000Z

253

Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1995-09-01T23:59:59.000Z

254

Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)  

Science Conference Proceedings (OSTI)

The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those requirements are noted in section 3.1.5 and will be tracked as part of the CSB Facility action tracking system.

BAZINET, G.D.

2000-11-03T23:59:59.000Z

255

Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products  

DOE Green Energy (OSTI)

Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

Sefer, N.R.; Russell, J.A.

1981-12-01T23:59:59.000Z

256

NREL: Technology Deployment - Wind Energy Deployment and Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Deployment and Market Transformation NREL experts have a broad range of wind energy deployment and market transformation capabilities spanning more than 20 years of...

257

Spent nuclear fuel project multi-canister overpack, additional NRC requirements  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE), established in the K Basin Spent Nuclear Fuel Project Regulatory Policy, dated August 4, 1995 (hereafter referred to as the Policy), the requirement for new Spent Nuclear Fuel (SNF) Project facilities to achieve nuclear safety equivalency to comparable US Nuclear Regulatory Commission (NRC)-licensed facilities. For activities other than during transport, when the Multi-Canister Overpack (MCO) is used and resides in the Canister Storage Building (CSB), Cold Vacuum Drying (CVD) facility or Hot Conditioning System, additional NRC requirements will also apply to the MCO based on the safety functions it performs and its interfaces with the SNF Project facilities. An evaluation was performed in consideration of the MCO safety functions to identify any additional NRC requirements needed, in combination with the existing and applicable DOE requirements, to establish nuclear safety equivalency for the MCO. The background, basic safety issues and general comparison of NRC and DOE requirements for the SNF Project are presented in WHC-SD-SNF-DB-002.

Garvin, L.J.

1998-08-04T23:59:59.000Z

258

NREL: Regional Energy Deployment System (ReEDS) Model - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Energy Deployment System (ReEDS) Model Energy Analysis ReEDS Regional Energy Deployment System Model Regional Energy Deployment System (ReEDS) Model Energy Analysis ReEDS Regional Energy Deployment System Model Search More Search Options Site Map Printable Version Publications The following are publications - including technical reports, journal articles, conference papers, and posters - focusing on the Wind Deployment System (WinDS) and Regional Energy Deployment System (ReEDS) models. Technical Reports Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M. (2013). Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions. 55 pp.; NREL Report No. TP-6A20-55836. Martinez, A.; Eurek, K.; Mai, T.; Perry, A. (2013). Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS).

259

Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project  

SciTech Connect

Thirteen countries participated in the Collaborative Project GAINS Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle, which was the primary activity within the IAEA/INPRO Program Area B: Global Vision on Sustainable Nuclear Energy for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energy systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.

Brent Dixon

2012-09-01T23:59:59.000Z

260

NREL: Technology Deployment - State and Local Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Search More Search Options Site Map NREL helps states and local communities throughout the United States achieve their clean energy goals by supporting renewable energy and energy-saving projects through a variety of technical assistance and technology deployment programs. Analyze Energy Policy Impacts Analyze Energy Policy Impacts Find data to help your state, locality, or region establish beneficial clean energy policies. Learn more. Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player. Technical Assistance Webcast Experts present information on state and local energy projects, financing, policy and more... Renewable Energy Data Book NREL's Cean Energy Policy Analyses Project State of the States 2010 The role of policy in clean energy market transformation

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hanford spent nuclear fuel project recommended path forward, volume III: Alternatives and path forward evaluation supporting documentation  

SciTech Connect

Volume I of the Hanford Spent Nuclear Fuel Project - Recommended Path Forward constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. Volume II provided a comparative evaluation of four Alternatives for the Path Forward and an evaluation for the Recommended Path Forward. Although Volume II contained extensive appendices, six supporting documents have been compiled in Volume III to provide additional background for Volume II.

Fulton, J.C.

1994-10-01T23:59:59.000Z

262

Technology Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment Deployment Technology Deployment October 8, 2013 - 2:43pm Addthis The Federal Energy Management Program's (FEMP) Technology Deployment program provides the Federal Government and commercial building sector with unbiased information and guidance about energy-efficient and renewable energy technologies available for deployment. Specifically, this program: Identifies technologies that have high potential energy savings and cost benefits and are ready for rapid deployment Develops and conducts deployment campaigns to raise awareness about energy technologies of the highest priority Educates Federal agencies and the commercial buildings sector about targeted energy-efficient technologies. Learn about: Technology Deployment List: Read about new and underutilized

263

Technology Deployment Matrix Improvements - Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory September 15, 2011 2 | Interagency Technology Deployment Working Group eere.energy.gov Technology Deployment Matrix Improvement Efforts 1. Develop criteria for...

264

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leading the Nation in Clean Energy Deployment (Fact Sheet), Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID) Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID) This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world. id_overview.pdf More Documents & Publications A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact

265

PNNL Technology Planning and Deployment Group | Open Energy Information  

Open Energy Info (EERE)

Deployment Group Deployment Group Jump to: navigation, search Logo: Technology Planning and Deployment Name Technology Planning and Deployment Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tpd.pnl.gov/ References Technology Planning and Development [1] "The Technology Planning & Deployment (TP&D) group is part of the Pacific Northwest National Laboratory's (PNNL's) Energy and Environment Directorate. TP&D staff provide customers with a unique combination of experience and expertise with capabilities in economics and regulatory analysis, systems engineering, marketing, technology adaptation and application, policy analysis, and project management."[1] Primary Services Building and facilities energy utilization assessments, audits,

266

Energy Department Launches Public-Private Partnership to Deploy Hydrogen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public-Private Partnership to Deploy Public-Private Partnership to Deploy Hydrogen Infrastructure Energy Department Launches Public-Private Partnership to Deploy Hydrogen Infrastructure May 13, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The Energy Department today launched H2USA -- a new public-private partnership focused on advancing hydrogen infrastructure to support more transportation energy options for U.S. consumers, including fuel cell electric vehicles (FCEVs). The new partnership brings together automakers, government agencies, gas suppliers, and the hydrogen and fuel cell industries to coordinate research and identify cost-effective solutions to deploy infrastructure that can deliver affordable, clean hydrogen fuel in the United States. "Fuel cell technologies are an important part of an all-of-the-above

267

Vehicle Technologies Office: The eGallon Tool Advances Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

eGallon Tool Advances Deployment of Electric Vehicles The Department of Energy recently launched the eGallon to help consumers compare the cost of fueling electric vehicles (EVs)...

268

Nuclear Deployment Scorecards | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiatives Nuclear Reactor Technologies Nuclear Deployment Scorecards Nuclear Deployment Scorecards January 1, 2014 Quarterly Nuclear Deployment Scorecard - January 2014 The...

269

Synthetic fuels. Status of the Great Plains Coal Gasification Project, August 1, 1985  

Science Conference Proceedings (OSTI)

In December 1984, the Great Plains Gasification Associates had essentially finished constructing the nation's first commercial-scale coal gasification plant. As of July 31, 1985, Great Plains had contributed about $537 million in equity to the project and had borrowed $1.54 billion against a federal load guarantee made available by the Department of Energy (DOE). Since 1984 the project has faced deteriorating financial projections in the wake of declining energy prices. This is GAO's eighth semiannual report on Great Plains and covers the project's progress from January through August 1, 1985. GAO's objectives were to report on (1) the status of Great Plains' attempt to obtain additional federal financial assistance and (2) the status of the project's operational startup activities as of August 1, 1985. The Department of Energy Act of 1978 requires GAO to report on the status of the loan guarantee. Even though the Synthetic Fuels Corporation approved price guarantees in principle for Great Plains, DOE announced, on July 30, 1985, that it would not agree to restructuring its guaranteed loan. DOE rejected the proposed agreement, saying that it would not assure long-term plant operation at a reasonable cost to the taxpayers. The Great Plains sponsors then terminated their participation in the project on August 1, 1985, and defaulted on the $1.54 billion DOE-guaranteed loan. DOE directed the project administrator, ANG Coal Gasification Company, to continue plant operations pending a DOE decision about the project's future. DOE is assessing options including operating, leasing, selling, shutting down, mothballing, and scrapping the plant.

Bowsher, C.A.

1985-12-01T23:59:59.000Z

270

AMF Deployment, Oliktok, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Alaska Oliktok Deployment AMF Home Oliktok Home Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press New Sites Fact Sheet (PDF, 1.6MB) Images Contacts Fred Helsel, AMF Operations Lynne Roeder, Media Contact Hans Verlinde, Principal Investigator AMF Deployment, Oliktok Point, Alaska This view shows the location of the Oliktok, Alaska, ARM Mobile Facility. Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM's third and newest ARM Mobile Facility, or AMF3.

271

Property:Number of Build Out Units Deployed | Open Energy Information  

Open Energy Info (EERE)

Build Out Units Deployed Build Out Units Deployed Jump to: navigation, search Property Name Number of Build Out Units Deployed Property Type String Pages using the property "Number of Build Out Units Deployed" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 50 + MHK Projects/AWS II + 20 + MHK Projects/Algiers Light Project + 500 + MHK Projects/Anconia Point Project + 500 + MHK Projects/Ashley Point Project + 3700 + MHK Projects/Avondale Bend Project + 450 + MHK Projects/Bar Field Bend + 2350 + MHK Projects/Barfield Point + 2851 + MHK Projects/Bayou Latenache + 1260 + MHK Projects/BioSTREAM Pilot Plant + 1 + MHK Projects/Bondurant Chute + 3802 + MHK Projects/Breeze Point + 4942 + MHK Projects/Brilliant Point Project + 1400 +

272

Remote Systems Design & Deployment  

Science Conference Proceedings (OSTI)

The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNLs experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNLs work experiences, and the work of others in the national laboratory complex.

Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

2009-08-28T23:59:59.000Z

273

Community Renewable Energy Deployment Webinars | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment (CommRE) Webinars provide information on successful community renewable energy projects, including the challenges and barriers faced during development. Find past webinars, and download presentations and supporting materials below. Past Webinars April 16, 2013: Community-Scale Anaerobic Digesters This webinar provided information on San Jose, California's, commercial-scale, high solids dry fermentation anaerobic digestion system, and the Forest County Potawatomi Community's anaerobic digester project. March 19, 2013: Renewable Energy Parks This webinar provided information on how two cities in Washington and New York integrated multiple renewable energy technologies to create renewable

274

Deployment & Market Transformation (Brochure)  

SciTech Connect

NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

Not Available

2012-04-01T23:59:59.000Z

275

Fusion Power Deployment  

DOE Green Energy (OSTI)

Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

J.A. Schmidt; J.M. Ogden

2002-02-06T23:59:59.000Z

276

Deployment & Market Transformation (Brochure)  

SciTech Connect

NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

2012-04-01T23:59:59.000Z

277

Automatic service deployment using virtualisation  

E-Print Network (OSTI)

Manual deployment of the application usually requires expertise both about the underlying system and the application. Automatic service deployment can improve deployment significantly by using on-demand deployment and selfhealing services. To support these features this paper describes an extension the Globus Workspace Service [10]. This extension includes creating virtual appliances for Grid services, service deployment from a repository, and influencing the service schedules by altering execution planning services, candidate set generators or information systems. 1 2 1.

Gabor Kecskemeti; Peter Kacsuk; Gabor Terstyanszky; Tamas Kiss; Thierry Delaitre

2008-01-01T23:59:59.000Z

278

Clean Cities 2012 Project Selections  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

technician training; develop Alternative Fuels Readiness Workbooks to guide alternative fuel vehicle (AFV) deployment readiness; assist municipalities with AFV readiness; and...

279

Sampling and analysis plan for the preoperational environmental survey of the spent nuclear fuel project facilities  

Science Conference Proceedings (OSTI)

This sampling and analysis plan will support the preoperational environmental monitoring for construction, development, and operation of the Spent Nuclear Fuel (SNF) Project facilities, which have been designed for the conditioning and storage of spent nuclear fuels; particularly the fuel elements associated with the operation of N-Reactor. The SNF consists principally of irradiated metallic uranium, and therefore includes plutonium and mixed fission products. The primary effort will consist of removing the SNF from the storage basins in K East and K West Areas, placing in multicanister overpacks, vacuum drying, conditioning, and subsequent dry vault storage in the 200 East Area. The primary purpose and need for this action is to reduce the risks to public health and safety and to the environment. Specifically these include prevention of the release of radioactive materials into the air or to the soil surrounding the K Basins, prevention of the potential migration of radionuclides through the soil column to the nearby Columbia River, reduction of occupational radiation exposure, and elimination of the risks to the public and to workers from the deterioration of SNF in the K Basins.

MITCHELL, R.M.

1999-04-01T23:59:59.000Z

280

Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT  

DOE Green Energy (OSTI)

Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

Berry, JB

2005-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Separations technologies supporting the development of a deployable ATW system  

Science Conference Proceedings (OSTI)

A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The first several years of the program will be directed toward an elucidation of related technical issues and to the establishment, by means of comprehensive trade studies, of an optimum configuration of the elements of the chemical processing infrastructure required for support of the total ATW system. By adopting this sort of disciplined systems engineering approach, it is expected that development and demonstration costs can be minimized and that it will be possible to deploy an ATW system that is an environmentally sound and economically viable venture.

Laidler, J. J.

2000-01-07T23:59:59.000Z

282

Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites  

SciTech Connect

Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

Dennis Castonguay

2012-06-29T23:59:59.000Z

283

Spent Nuclear Fuel (SNF) Project Cask and MCO Helium Purge System Design Review Completion Report Project A.5 and A.6  

SciTech Connect

This report documents the results of the design verification performed on the Cask and Multiple Canister Over-pack (MCO) Helium Purge System. The helium purge system is part of the Spent Nuclear Fuel (SNF) Project Cask Loadout System (CLS) at 100K area. The design verification employed the ''Independent Review Method'' in accordance with Administrative Procedure (AP) EN-6-027-01.

ARD, K.E.

2000-04-19T23:59:59.000Z

284

Related Links on Community Renewable Energy Deployment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Community Renewable Energy Deployment Related Links on Community Renewable Energy Deployment The following publications and websites provide helpful information for communities planning or implementing renewable energy and energy efficiency projects. Publications The U.S. Department of Energy (DOE) and its National Renewable Energy Laboratory (NREL) publish numerous community guides, resources, and examples, as well as publications geared toward organizations that provide technical assistance to communities. Community Guides, Resources, and Examples These documents provide how-to information, steps, and resources for community-wide projects, as well as lessons learned from other communities. A Guide to Community Solar: Utility, Private, and Non-Profit Project

285

Deployment of Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment of Emerging Deployment of Emerging Technologies FUPWG November 1, 2006 Brad Gustafson Department of Energy Progress To Date: Federal Standard Buildings 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 125,000 130,000 135,000 140,000 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 FISCAL YEAR Btu per Gross Square Foot 10% Goal - 1995 (NECPA) 20% Goal - 2000 (EPACT 1992) 30% Goal - 2005 (EO 12902) 35% Goal - 2010 (EO 13123) 29.6% Reduction, 2005 (Preliminary Data) Actual Energy Use Annual Goals (EPACT 2005) Although the Federal Government narrowly missed the 2005 goal, it is on track to meet the 2010 goal * To identify promising emerging technologies and accelerate deployment in Federal sector - Meet the Federal Energy Goals - Lead by Example

286

Five kW Solid Oxide Fuel Cell Demonstration Project: Case Study: Exit Glacier Nature Center Acumentrics Demonstration  

Science Conference Proceedings (OSTI)

This case study documents the demonstration experiences and lessons learned from a 5 kW solid oxide fuel cell system operating on propane at the Kenai Fiords National Park at the Exit Glacier Visitor Center, Seward, Alaska. The case study is one of several fuel cell project case studies under research by EPRI's Distributed Energy Resources Program. This case study is designed to help utilities and other interested parties understand the early applications of fuel cell systems to help them in their resour...

2005-02-17T23:59:59.000Z

287

Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility  

NLE Websites -- All DOE Office Websites (Extended Search)

3-0501 3-0501 Unlimited Release Printed February 2013 Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility Joseph W. Pratt and Aaron P. Harris Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. 2 Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the

288

Experimental hydrogen-fueled automotive engine design data-base project. Volume 1. Executive summary report  

DOE Green Energy (OSTI)

A preliminary hydrogen-fueled automotive piston engine design data-base now exists as a result of a research project at the University of Miami. The effort, which is overviewed here, encompassed the testing of 19 different configurations of an appropriately-modified, 1.6-liter displacement, light-duty automotive piston engine. The design data base includes engine performance and exhaust emissions over the entire load range, generally at a fixed speed (1800 rpm) and best efficiency spark timing. This range was sometimes limited by intake manifold backfiring and lean-limit restrictions; however, effective measures were demonstrated for obviating these problems. High efficiency, competitive specific power, and low emissions were conclusively demonstrated.

Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

1983-05-01T23:59:59.000Z

289

Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual  

Science Conference Proceedings (OSTI)

This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

2000-02-03T23:59:59.000Z

290

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

Science Conference Proceedings (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nations CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

291

Methodology for Fleet Deployment Decisions  

Science Conference Proceedings (OSTI)

Utilities can apply a rigorous, optimized methodology for creating deployment plans for their fossil power plants. These deployment plans maximize corporate-wide value under various business environments. Case studies at Consolidated Edison of New York and Central Illinois Public Service Company (CIPS) refined the approach and confirmed its merit for evaluating fleet deployment decisions.

1995-04-14T23:59:59.000Z

292

What are projected diesel fuel prices for 2013 and for 2014? - FAQ ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Why don't fuel prices change as quickly as crude oil prices? Why has diesel fuel been more expensive than gasoline?

293

Fuel Cell Research at DLR-Latest Results and current Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

both Membrane Fuel Cells (PEFC and DMFC) and high temperature Solid Oxide Fuel Cells (SOFC). The status of advanced DLR Manufacturing Technologies based on dry powder coating of...

294

Overview of An Analysis Project for Renewable Biogas / Fuel Cell Technologies (Presentation)  

DOE Green Energy (OSTI)

Presentation on renewable biogas: as an opportunity for commercialization of fuel cells presented as part of a panel discussion at the 2009 Fuel Cell Seminar, Palm Springs, CA.

Jalalzadeh-Azar, A.

2009-11-19T23:59:59.000Z

295

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

296

Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures  

DOE Green Energy (OSTI)

This report describes the data gathering and analysis procedures that support the US Department of Energy's implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

Not Available

1992-07-01T23:59:59.000Z

297

Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures  

DOE Green Energy (OSTI)

This report describes the data gathering and analysis procedures that support the US Department of Energy`s implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

Not Available

1992-07-01T23:59:59.000Z

298

Customer-Focused Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Customer-Focused Customer-Focused Deployment SAM RASHKIN Chief Architect Building Technologies Program February 29, 2012 Building America Meeting 2 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov 'Good Government' As-A-System IECC Code: Mandates technologies and practices proven reliable and cost- effective ENERGY STAR: Recognizes Builders Who Deliver Significantly Above Code Performance Builders Challenge: Recognizes Leading Builders Applying Proven Innovations and Best Practices Building America: Develops New Innovations and Best Practices 3 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov Disseminating Research Results: Building America Resource Tool 4 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market

299

Project Development and Finance: Capabilities (Fact Sheet)  

SciTech Connect

Capabilities overview of NREL's Project Finance and Development Group within the Deployment and Market Transformation Directorate.

Not Available

2013-01-01T23:59:59.000Z

300

Massively Deployed Sensors Final Project Report  

E-Print Network (OSTI)

transparency, increase opportunities for bio energy and solar technologies, improve business certainty

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

302

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems … Projected Performance and Cost Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program Record DOE Hydrogen and Fuel Cells Program Record Record #: 9017 Date: July 02, 2010 Title: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters Originators: Robert C. Bowman and Ned Stetson Approved by: Sunita Satyapal Date: August 10, 2010 This record summarizes the current technical assessments of hydrogen (H 2 ) storage system capacities and projected manufacturing costs for the scenario of high-volume production (i.e., 500,000 units/year) for various types of "on-board" vehicular storage systems. These analyses were performed within the Hydrogen Storage sub-program of the DOE Fuel Cell Technologies (FCT) program of the Office of Energy Efficiency and Renewable Energy. Item: It is important to note that all system capacities are "net useable capacities" able to be delivered to the

303

Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jennifer Kurtz (Primary Contact), Keith Wipke, Sam Sprik, Todd Ramsden, Genevieve Saur, and Chris Ainscough National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-4061 Email: jennifer.kurtz@nrel.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Subcontractors: Pacific Northwest National Laboratory, Richland, WA Project Start Date: August 2009 Project End Date: December 2012, with future evaluations covered under DOE's Technology Validation sub-program Objectives Perform an independent assessment of technology in * real-world operation conditions, focusing on fuel cell

304

NETL Publications: Generation, Fuels and Environment Membership Advisory  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation, Fuels and Environment Membership Advisory Group Generation, Fuels and Environment Membership Advisory Group June 15-16, 2010 Table of Contents Disclaimer Presentations PRESENTATIONS Welcome [PDF-1.1MB] Dan Cicero, Senior Management & Technical Advisor, Strategic Center for Coal, NETL Dale Bradshaw, Senior Program Manager, National Rural Electric Cooperative Association IGCC [PDF-3.1MB] Timeline [PDF-511KB] Jenny Tennant, Technology Manager, Gasification Status of Area 1 - ICCS [PDF-763KB] Nelson Rekos, Project Financing & Technology Deployment Division Status of Area 2 - ICCS [PDF-235KB] Elaine Everitt, Fuels Division Turbines [PDF-971KB] Robin Ames, Project Manager, Power Systems Division, Turbines Fuel Cells [PDF-2.4MB] Travis Shultz, Acting Technology Manager, Fuel Cells Coal to Synfuels Projects/Polygeneration Projects

305

Fuel Cell Demonstration Program  

DOE Green Energy (OSTI)

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

306

Fuel Cells on Bio-Gas (Presentation)  

SciTech Connect

The conclusions of this presentation are: (1) Fuel cells operating on bio-gas offer a pathway to renewable electricity generation; (2) With federal incentives of $3,500/kW or 30% of the project costs, reasonable payback periods of less than five years can be achieved; (3) Tri-generation of electricity, heat, and hydrogen offers an alternative route to solving the H{sub 2} infrastructure problem facing fuel cell vehicle deployment; and (4) DOE will be promoting bio-gas fuel cells in the future under its Market Transformation Programs.

Remick, R. J.

2009-03-04T23:59:59.000Z

307

EERE: Fuel Cell Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

The Fuel Cell Technologies Office is a comprehensive portfolio of activities that address the full range of barriers facing the development and deployment of hydrogen and fuel...

308

Fuel cells at the crossroads : attitudes regarding the investment climate for the US fuel cell industry and a projection of industry job creation potential.  

DOE Green Energy (OSTI)

Fuel Cells at the Crossroads examines financial community and fuel cell industry views on the investment climate for the fuel cell industry. It also explores the investment history of the US fuel cell industry and projects potential future job creation. The scope of the study included the transportation, stationary power generation and portable sectors. Interviews were conducted with industry and financial experts. The results of the interviews provide a snapshot of industry perspective just prior to President Bush's endorsement of a hydrogen economy in his 2003 State of the Union address. In April 2003, we conducted a spot check to test whether the State of the Union address had changed opinions. We found little change among the financial and investment communities, but some guarded new optimism among industry leaders. The general outlook of our sample was cautiously hopeful. There is no question, however, that the current climate is one of great uncertainty, particularly when compared with the enthusiasm that existed just a few years ago. Among other things: (1) Respondents generally believed that the energy industry will undergo profound change over the next few decades, resulting in some form of hydrogen economy. They acknowledged, however, that huge technology and cost hurdles must be overcome to achieve a hydrogen economy. (2) Respondents were worried about the future of the industry, including timeframes for market development, foreign competition, technical problems, and the current poor investment environment. (3) Respondents generally believed that the US federal government must provide strong leadership to ensure American leadership in the fuel cell industry. They believe that governments in Europe and Japan are highly committed to fuel cells, thus providing European and Japanese companies with significant advantages. (4) Respondents frequently mentioned several areas of concern, including the situation in Iraq, the increased commitment to fuel cells in Europe, and recent actions by Toyota and Honda.

NONE

2004-05-27T23:59:59.000Z

309

Fuel cells at the crossroads : attitudes regarding the investment climate for the US fuel cell industry and a projection of industry job creation potential.  

SciTech Connect

Fuel Cells at the Crossroads examines financial community and fuel cell industry views on the investment climate for the fuel cell industry. It also explores the investment history of the US fuel cell industry and projects potential future job creation. The scope of the study included the transportation, stationary power generation and portable sectors. Interviews were conducted with industry and financial experts. The results of the interviews provide a snapshot of industry perspective just prior to President Bush's endorsement of a hydrogen economy in his 2003 State of the Union address. In April 2003, we conducted a spot check to test whether the State of the Union address had changed opinions. We found little change among the financial and investment communities, but some guarded new optimism among industry leaders. The general outlook of our sample was cautiously hopeful. There is no question, however, that the current climate is one of great uncertainty, particularly when compared with the enthusiasm that existed just a few years ago. Among other things: (1) Respondents generally believed that the energy industry will undergo profound change over the next few decades, resulting in some form of hydrogen economy. They acknowledged, however, that huge technology and cost hurdles must be overcome to achieve a hydrogen economy. (2) Respondents were worried about the future of the industry, including timeframes for market development, foreign competition, technical problems, and the current poor investment environment. (3) Respondents generally believed that the US federal government must provide strong leadership to ensure American leadership in the fuel cell industry. They believe that governments in Europe and Japan are highly committed to fuel cells, thus providing European and Japanese companies with significant advantages. (4) Respondents frequently mentioned several areas of concern, including the situation in Iraq, the increased commitment to fuel cells in Europe, and recent actions by Toyota and Honda.

2004-05-27T23:59:59.000Z

310

Report on Synchrophasor Technologies and Their Deployment in Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Synchrophasor Technologies and Their Deployment in on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available August 15, 2013 - 10:48am Addthis The Office of Electricity Delivery and Energy Reliability has released a new report that explains synchrophasor technologies and how they can be used to improve the efficiency, reliability, and resiliency of grid operations. The report also includes an analysis of the costs and benefits of synchrophasors, based on data and initial results from Recovery Act-funded projects that are deploying the technologies. The report is available now for downloading. Addthis Related Articles Reports on the Impact of the Smart Grid Investment Grant Program Now

311

Report on Synchrophasor Technologies and Their Deployment in Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on Synchrophasor Technologies and Their Deployment in Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available August 15, 2013 - 10:48am Addthis The Office of Electricity Delivery and Energy Reliability has released a new report that explains synchrophasor technologies and how they can be used to improve the efficiency, reliability, and resiliency of grid operations. The report also includes an analysis of the costs and benefits of synchrophasors, based on data and initial results from Recovery Act-funded projects that are deploying the technologies. The report is available now for downloading. Addthis Related Articles Reports on the Impact of the Smart Grid Investment Grant Program Now

312

Spent nuclear fuel project multi-year work plan WBS {number_sign}1.4.1  

Science Conference Proceedings (OSTI)

The Spent Nuclear Fuel (SNF) Project Multi-Year Work Plan (MYWP) is a controlled living document that contains the current SNF Project Technical, Schedule and Cost Baselines. These baselines reflect the current Project execution strategies and are controlled via the change control process. Other changes to the MYWP document will be controlled using the document control process. These changes will be processed as they are approved to keep the MYWP a living document. The MYWP will be maintained continuously as the project baseline through the life of the project and not revised annually. The MYWP is the one document which summarizes and links these three baselines in one place. Supporting documentation for each baseline referred to herein may be impacted by changes to the MYWP, and must also be revised through change control to maintain consistency.

Wells, J.L.

1997-03-01T23:59:59.000Z

313

DNC / CRONOS Deployment 703040  

SciTech Connect

KCP tested a classified DNC / CRONOS as a pilot project in FY06 in the Reservoir Machining area. The pilot proved as a successful way to distribute classified NC Programs to machines that run both classified and unclassified programs securely. This also allows for elimination of CREM for machines which had to swap out classified and unclassified hard drives previously. This projects purpose is to rollout this technology to the remaining machining areas, predominately Department B, Department C and Department A. Associated with this activity is the modification of business practices in the Tool Room / Model Shop areas and to address licensing issues for MASTERCAM to incorporate DNC CRONOS.

Kanies, Tim

2009-03-13T23:59:59.000Z

314

Buildings Technologies Deployment | Clean energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment SHARE Building Technologies Deployment benchmarking commercial buildings Once building technologies emerge and become commercially available, only in...

315

Alternative Fuels Data Center: Provision for Alternative Fuels Corridor  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Provision for Provision for Alternative Fuels Corridor Pilot Projects to someone by E-mail Share Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Facebook Tweet about Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Twitter Bookmark Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Google Bookmark Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Delicious Rank Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Digg Find More places to share Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on AddThis.com... More in this section... Federal

316

NREL: Vehicles and Fuels Research - Advanced Combustion and Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Combustion and Fuels Projects NREL's advanced combustion and fuels projects bridge fundamental chemical kinetics and engine research to investigate how new vehicle fuels...

317

Community Renewable Energy Deployment Success Stories: Financing Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Success Stories: Financing Community Renewable Energy Deployment Success Stories: Financing Renewable Energy Projects Webinar Community Renewable Energy Deployment Success Stories: Financing Renewable Energy Projects Webinar August 21, 2012 3:00PM EDT Webinar This DOE webinar will cover the challenges and successes of financing mechanisms for a solar project in Knoxville, Tennessee, and a Sacramento Municipal Utility District (SMUD) project. More details about the projects are provided below. Renewables and Sector Partnerships: Leveraging Incentives to Work for You In September 2009, the City of Knoxville was awarded more than $2 million in DOE Energy Efficiency and Conservation Block Grant funding. The city obtained approval to use $250,000 of that funding for initial investment to

318

Biogas and Fuel Cells Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

BIOGAS AND FUEL CELLS WORKSHOP AGENDA BIOGAS AND FUEL CELLS WORKSHOP AGENDA National Renewable Energy Laboratory Research Support Facility, Beaver Creek Conference Room Golden, Colorado June 11-13, 2012 WORKSHOP OBJECTIVES: * Discuss current state-of-the art for biogas and waste-to-energy technologies for fuel cell applications. * Identify key challenges (both technical and non-technical) preventing or delaying the widespread near term deployment of biogas fuel cells projects. * Identify synergies and opportunities for biogas and fuel cell technologies. * Identify and prioritize opportunities to address the challenges, and determine roles and opportunities for both government and industry stakeholders. * Develop strategies for accelerating the use of biogas for stationary fuel cell power and/or

319

Constrained multiple deployment problem in wireless sensor networks with guaranteed lifetimes  

Science Conference Proceedings (OSTI)

We aimed to deploy wireless sensor networks with guaranteed lifetimes for outdoor monitoring projects. The provision of a guaranteed lifetime has rarely been studied in previous deployment problems. The use of battery packs as the power source for sensors ... Keywords: Deployment problem, Guaranteed lifetime, Sensor network

Chun-Han Lin; Chung-Ta King; Ting-Yi Chen

2011-02-01T23:59:59.000Z

320

Final Scientifc Report - Hydrogen Education State Partnership Project  

Science Conference Proceedings (OSTI)

Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.

Leon, Warren

2012-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

322

Alternative Fuels Data Center: Publications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities 2012 Annual Metrics Report Johnson, C. 12/5/2013 Reports Clean Cities 2012 Annual Metrics Report Johnson, C. 12/5/2013 Reports National Renewable Energy Laboratory, Golden, Colorado The U.S. Department of Energy's (DOE) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. A national network of nearly 100 Clean Cities coalitions brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge.Each year DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterizes the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this report.

323

Deployment Effects of Marin Renewable Energy Technologies  

Science Conference Proceedings (OSTI)

Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The projects scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industrys development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nom

Brian Polagye; Mirko Previsic

2010-06-17T23:59:59.000Z

324

Regional Effort to Deploy Clean Coal Technologies  

SciTech Connect

The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

2009-01-31T23:59:59.000Z

325

Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report  

Science Conference Proceedings (OSTI)

This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

Not Available

2006-06-01T23:59:59.000Z

326

Multi-Function Fuel-Fired Heat Pump Research Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

demand. Peak-load conditions can lead to high electricity prices, power quality problems, grid system inefficiencies, and eventually brown outs. Project Description This project...

327

Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions  

DOE Green Energy (OSTI)

The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

2007-03-30T23:59:59.000Z

328

Critical analysis of the Hanford spent nuclear fuel project activity based cost estimate  

Science Conference Proceedings (OSTI)

In 1997, the SNFP developed a baseline change request (BCR) and submitted it to DOE-RL for approval. The schedule was formally evaluated to have a 19% probability of success [Williams, 1998]. In December 1997, DOE-RL Manager John Wagoner approved the BCR contingent upon a subsequent independent review of the new baseline. The SNFP took several actions during the first quarter of 1998 to prepare for the independent review. The project developed the Estimating Requirements and Implementation Guide [DESH, 1998] and trained cost account managers (CAMS) and other personnel involved in the estimating process in activity-based cost (ABC) estimating techniques. The SNFP then applied ABC estimating techniques to develop the basis for the December Baseline (DB) and documented that basis in Basis of Estimate (BOE) books. These BOEs were provided to DOE in April 1998. DOE commissioned Professional Analysis, Inc. (PAI) to perform a critical analysis (CA) of the DB. PAI`s review formally began on April 13. PAI performed the CA, provided three sets of findings to the SNFP contractor, and initiated reconciliation meetings. During the course of PAI`s review, DOE directed the SNFP to develop a new baseline with a higher probability of success. The contractor transmitted the new baseline, which is referred to as the High Probability Baseline (HPB), to DOE on April 15, 1998 [Williams, 1998]. The HPB was estimated to approach a 90% confidence level on the start of fuel movement [Williams, 1998]. This high probability resulted in an increased cost and a schedule extension. To implement the new baseline, the contractor initiated 26 BCRs with supporting BOES. PAI`s scope was revised on April 28 to add reviewing the HPB and the associated BCRs and BOES.

Warren, R.N.

1998-09-29T23:59:59.000Z

329

Kick Off Meeting for New Fuel Cell Projects - Golden Field Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

financial assistance awards for EERE Programs - Fuel Cell Technologies - Biomass - S l Solar - WindWater - Geothermal - Industrial Technologies - State Energ State Energy * GO...

330

Projection of world fossil fuel production with supply and demand interactions.  

E-Print Network (OSTI)

??Research Doctorate - Doctor of Philosophy (PhD) Historically, fossil fuels have been vital for our global energy needs. However climate change is prompting renewed interest (more)

Mohr, Steve

2010-01-01T23:59:59.000Z

331

NREL: Technology Deployment - Technology Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on...

332

NREL: Water Power Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Search More Search Options Site Map Printable Version Projects NREL's water power R&D projects support industry efforts to develop and deploy cost-effective water power...

333

ITS Deployment Tracking.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Deployment Statistics Database Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research...

334

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

335

HOW MANY DID YOU SAY? HISTORICAL AND PROJECTED SPENT NUCLEAR FUEL SHIPMENTS IN THE UNITED STATES, 1964 - 2048  

Science Conference Proceedings (OSTI)

No comprehensive, up-to-date, official database exists for spent nuclear fuel shipments in the United States. The authors review the available data sources, and conclude that the absence of such a database can only be rectified by a major research effort, similar to that carried out by Oak Ridge National Laboratory (ORNL) in the early 1990s. Based on a variety of published references, and unpublished data from the U.S. Nuclear Regulatory Commission (NRC), the authors estimate cumulative U.S. shipments of commercial spent fuel for the period 1964-2001. The cumulative estimates include quantity shipped, number of cask-shipments, and shipment-miles, by truck and by rail. The authors review previous estimates of future spent fuel shipments, including contractor reports prepared for the U.S. Department of Energy (DOE), NRC, and the State of Nevada. The DOE Final Environmental Impact Statement (FEIS) for Yucca Mountain includes projections of spent nuclear fuel and high-level radioactive was te shipments for two inventory disposal scenarios (24 years and 38 years) and two national transportation modal scenarios (''mostly legal-weight truck'' and ''mostly rail''). Commercial spent fuel would compromise about 90 percent of the wastes shipped to the repository. The authors estimate potential shipments to Yucca Mountain over 38 years (2010-2048) for the DOE ''mostly legal-weight truck'' and ''mostly rail'' scenarios, and for an alternative modal mix scenario based on current shipping capabilities of the 72 commercial reactor sites. The cumulative estimates of future spent fuel shipments include quantity shipped, number of cask-shipments, and shipment-miles, by legal-weight truck, heavy-haul truck, rail and barge.

Halstead, Robert J.; Dilger, Fred

2003-02-27T23:59:59.000Z

336

DOE Hydrogen and Fuel Cells Program: Cooperative R&D Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships Roadmaps and R&D Status Cooperative R&D Projects U.S. Department of Energy Search help Home > International > Cooperative R&D Projects Printable Version Cooperative...

337

Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9  

Science Conference Proceedings (OSTI)

The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

1994-03-01T23:59:59.000Z

338

Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8  

Science Conference Proceedings (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Not Available

1992-10-01T23:59:59.000Z

339

Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10  

Science Conference Proceedings (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

Not Available

1994-12-01T23:59:59.000Z

340

Toward a Systematic Framework for Deploying Synchrophasors  

E-Print Network (OSTI)

Toward a Systematic Framework for Deploying Synchrophasors and their Utilization for Improving for Deploying Synchrophasors and their Utilization for Improving Performance of Future Electric Energy Systems a Systematic Framework for Deploying Synchrophasors and their Utilization for Improving Performance of Future

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NREL: Technology Deployment - Building Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Systems Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and Knowledge NREL offers technical assistance and project development support by working closely with industry partners to research, develop, and deploy advanced building technologies. Examples include: Building Energy Audits and Assessments NREL provides technical assistance, guidelines, checklists, and data

342

State and Territory Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State and Territory Projects State and Territory Projects State and Territory Projects The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) are using the integrated deployment approach to help implement clean energy solutions and reduce fossil fuel use in the states of Alaska and Hawaii and the U.S. Virgin Islands territory. Alaska DOE and NREL are joining forces with key stakeholders, including the state of Alaska, tribal and community leaders, utilities, and developers, to help reach clean energy goals throughout Alaska. The majority of the state's energy consumption is from diesel heating fuel, which is used to provide electricity and heat for homes and businesses. The fuel must be shipped in on barges or flown in on planes in bulk during the summer and stored in large tanks in the villages. When the price of oil

343

UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)  

Science Conference Proceedings (OSTI)

This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Not Available

2002-08-01T23:59:59.000Z

344

Conceptual design report for the ICPP spent nuclear fuel dry storage project  

Science Conference Proceedings (OSTI)

The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

NONE

1996-07-01T23:59:59.000Z

345

NREL: Financing Geothermal Power Projects - Planning and Timing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Deployment Energy Systems Integration Financing Geothermal Power Projects Geothermal Technologies Financing Geothermal Power Projects Search...

346

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in target channels and discharged a few times more frequently than the natural-uranium driver fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

347

MHK Projects/US Navy Wave Energy Technology WET Program at Marine...  

Open Energy Info (EERE)

of Devices Deployed 6 Number of Build Out Units Deployed 7 Main Overseeing Organization Ocean Power Technologies Project Technology *MHK TechnologiesPowerBuoy Project Timeline and...

348

Federal Energy Management Program: Technology Deployment Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Resources to someone by E-mail Share Federal Energy Management Program: Technology Deployment Resources on Facebook Tweet about Federal Energy Management...

349

Federal Energy Management Program: Technology Deployment Goals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Goals and Initiatives to someone by E-mail Share Federal Energy Management Program: Technology Deployment Goals and Initiatives on Facebook Tweet about...

350

ARM - News : AMF Deployment, Shouxian, China  

NLE Websites -- All DOE Office Websites (Extended Search)

ChinaNews : AMF Deployment, Shouxian, China Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments Experiment Planning Proposal Science Plan, (PDF, 1,257K)...

351

Renewable Energy Technology Development, Deployment, and Education...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Powered Truck 68 Fork Lift Trucks Deployed in Industry Renewable Energy Technology Development, Deployment, and Education in South Carolina EDPSC-SRNL Install Advanced Offshore...

352

Quarterly Nuclear Deployment Scorecard - October 2013 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quarterly Nuclear Deployment Scorecard - October 2013 Quarterly Nuclear Deployment Scorecard - October 2013 News Updates Dominion has filed an updated integrated resource plan with...

353

Deploying Systems Interoperability and Customer Choice within...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deploying Systems Interoperability and Customer Choice within Smart Grid Title Deploying Systems Interoperability and Customer Choice within Smart Grid Publication Type Conference...

354

Personal Fuel Appliance  

DOE Green Energy (OSTI)

This report summarizes the progress made in Phase I of Stuart's Personal Fueling Appliance Program. Phase I concluded in March 2002 with the demonstration and deployment of several working models. As proposed in the original project plan, working models of the PFA were built to prove feasibility and technically market the concept. Future follow up phases of the project, Phase II and III, will take the concept through prototyping development to pre-production of commercially viable product. The Phase I program successfully demonstrate a home fueling system capable of running on a household circuit, 220V/40 Amp/single phase or equivalent. Connected to a source of ''drinking water'' the system has all the functions necessary to convert water and electricity to high-pressure hydrogen fuel. Pressures of up to 3600 psig were achieved on demonstration systems and higher pressures up to 5000 psig were achieved in the lab. The development program spanned building 3 series of prototypes: White Box (1 unit built 1998), PFA Series 100 (4 units built 1999-2000), and Series 200 (6 units built 2000-02). Advanced in controls and process learned in the PFA program have been embodied in Stuart's larger fuel appliances.

Stuart Energy

2003-12-30T23:59:59.000Z

355

NREL: Geothermal Technologies - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Projects The NREL...

356

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Deployment of Mobile Technologies for Nuclear Power Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making,

357

Outdoor Solid-State Lighting Technology Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies » Technology Deployment » Outdoor Solid-State Technologies » Technology Deployment » Outdoor Solid-State Lighting Technology Deployment Outdoor Solid-State Lighting Technology Deployment October 7, 2013 - 9:10am Addthis Outdoor solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by nearly one half and contribute significantly to our nation's climate change solutions. The U.S. Department of Energy's (DOE) Buildings Technologies Office offers a wealth of information on its Solid-State Lighting website. Visit the site to find: SSL Basics Studies and Reports CALiPER Summary Reports Tools SSL Webcasts. Also see: FEMP Outdoor SSL Initiative: Resources for Outdoor SSL Applications outlines resources available for outdoor solid-state lighting projects. Better Buildings Alliance: This DOE initiative is driven and managed

358

DOE Hydrogen Analysis Repository: Evaluation of Energy Recovery Act Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Energy Recovery Act Fuel Cell Initiative Evaluation of Energy Recovery Act Fuel Cell Initiative Project Summary Full Title: Evaluation of U.S. DOE Energy Recovery Act Fuel Cell (Technologies Program) Initiative (ARRA-FCI) Project ID: 284 Principal Investigator: Brian James Brief Description: An evaluation was conducted to assess the early stage "market change" impacts of the Fuel Cell (Technologies Program) Initiative of the American Recovery and Reinvestment Act (ARRA-FCI) to accelerate fuel cell deployment and commercialization. Performer Principal Investigator: Brian James Organization: Strategic Analysis, Inc. Address: 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Telephone: 703-778-7114 Email: bjames@sainc.com Sponsor(s) Name: Fred Joseck Organization: DOE/EERE/FCTO Telephone: 202-586-7932

359

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network (OSTI)

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

360

DOE Hydrogen Analysis Repository: Stranded Biogas Decision Tool for Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Stranded Biogas Decision Tool for Fuel Cell Co-Production Stranded Biogas Decision Tool for Fuel Cell Co-Production Project Summary Full Title: Stranded Biogas Decision Tool for Fuel Cell Co-Production Project ID: 257 Principal Investigator: Michael Ulsh Brief Description: This project will explore the feasibility and utility of using stranded biogas resources in fuel cell co-production networks as well as lay the basis for development of analysis and decision-making tools for potential biogas sources and energy end-users to evaluate the economic feasibility of deploying these systems. Performer Principal Investigator: Michael Ulsh Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401 Telephone: 303-275-3842 Email: michael.ulsh@nrel.gov Website: http://www.nrel.gov

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NREL: Research Participant Program - Research and Deployment Disciplines  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Deployment Disciplines Research and Deployment Disciplines Participants in NREL programs are able to study a variety of disciplines within the Lab's research centers: National Bioenergy Center Biochemical engineering, microbiology, molecular biology, chemistry, and chemical engineering related to biomass and derived products. Energy Sciences Bioscience, chemical and materials science, computational science, physics, chemistry, and biological sciences. Electricity, Resources, and Building Systems Integration Physics, mechanical engineering (heat transfer emphasis), and architectural engineering. Hydrogen and Fuel Cells Research Hydrogen technologies and analysis. Materials and Computational Sciences Center Physics, materials science, chemistry, electrical engineering, and basic and applied research using high-performance computing and applied

362

Renewable Energy and Energy Efficiency Partnership Ongoing Project Website  

Open Energy Info (EERE)

and Energy Efficiency Partnership Ongoing Project Website and Energy Efficiency Partnership Ongoing Project Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy and Energy Efficiency Partnership Ongoing Project Website Focus Area: Wind Topics: Deployment Data Website: www.reeep.org/16085/completed-projects.htm Equivalent URI: cleanenergysolutions.org/content/renewable-energy-and-energy-efficienc Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Public-Private Partnerships Regulations: "Fuel Efficiency Standards,Appliance & Equipment Standards and Required Labeling,Audit Requirements,Building Certification,Energy Standards,Feed-in Tariffs" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

363

AMF Deployment, Black Forest, Germany  

NLE Websites -- All DOE Office Websites (Extended Search)

Germany Germany Black Forest Deployment AMF Home Black Forest Home Data Plots and Baseline Instruments CERA COPS Data University of Hohenheim COPS Website COPS Update, April 2009 Experiment Planning COPS Proposal Abstract and Related Campaigns Science Plan (PDF, 12.4M) Outreach COPS Backgrounder (PDF, 306K) Posters AMF Poster, German Vesion Researching Raindrops in the Black Forest News Campaign Images AMF Deployment, Black Forest, Germany Main Site: 48° 32' 24.18" N, 08° 23' 48.72" E Altitude: 511.43 meters In March 2007, the third deployment of the ARM Mobile Facility (AMF) will take place in the Black Forest region of Germany, where scientists will study rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. ARM

364

Rational Deployment of CSP Heuristics  

E-Print Network (OSTI)

Heuristics are crucial tools in decreasing search effort in varied fields of AI. In order to be effective, a heuristic must be efficient to compute, as well as provide useful information to the search algorithm. However, some well-known heuristics which do well in reducing backtracking are so heavy that the gain of deploying them in a search algorithm might be outweighed by their overhead. We propose a rational metareasoning approach to decide when to deploy heuristics, using CSP backtracking search as a case study. In particular, a value of information approach is taken to adaptive deployment of solution-count estimation heuristics for value ordering. Empirical results show that indeed the proposed mechanism successfully balances the tradeoff between decreasing backtracking and heuristic computational overhead, resulting in a significant overall search time reduction.

Tolpin, David

2011-01-01T23:59:59.000Z

365

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop: Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 11, 2009 John Garbak, Todd Ramsden Keith Wipke, Sam Sprik, Jennifer Kurtz Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project National Renewable Energy Laboratory 2 Innovation for Our Energy Future Fuel Cell Vehicle Learning Demonstration Project Objectives and Targets * Objectives - Validate H 2 FC Vehicles and Infrastructure in Parallel - Identify Current Status and Evolution of the Technology - Objectively Assess Progress Toward Technology Readiness - Provide Feedback to H 2 Research and Development Photo: NREL Solar Electrolysis Station, Sacramento, CA Performance Measure

366

Spent Nuclear Fuel project photon heat deposition calculation for hygrogen generation within MCO  

DOE Green Energy (OSTI)

Three types of water conditions are analyzed for nuclear heat deposition in a MCO: fully flooded, thick film, and thin film. These heat deposition rates within water can be used to determine gas generation during the different phases of Spent Fuel removal and processing for storage.

Lan, J.S.

1996-08-01T23:59:59.000Z

367

ITC Case Study 1 ITC Role in US Fuel Cell Projects  

E-Print Network (OSTI)

efficiency >30% (ASME PTC50) ­ In service after 01/01/09 and before 12/31/16 #12;ITC Case Study 5 Fuel Cell ­ Requires 5 year holding period #12;ITC Case Study 6 Monetizing Camp Pendleton ITC $750,000... Camp

368

Comparative analysis of structural concrete quality assurance practices on three fossil fuel power plant construction projects. Final report  

SciTech Connect

The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to criteria similar to those which apply on nuclear power plant projects. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards.

Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

1978-06-01T23:59:59.000Z

369

Spent nuclear fuels project: FY 1995 multi-year program plan, WBS {number_sign}1.4  

SciTech Connect

The mission of the Spent Nuclear Fuel (SNF) program is to safely, reliably, and efficiently manage, condition, transport, and store Department of Energy (DOE)-owned SNF, so that it meets acceptance criteria for disposal in a permanent repository. The Hanford Site Spent Nuclear Fuel strategic plan for accomplishing the project mission is: Establish near-term safe storage in the 105-K Basins; Complete national Environmental Policy Act (NEPA) process to obtain a decision on how and where spent nuclear fuel will be managed on the site; Define and establish alternative interim storage on site or transport off site to support implementation of the NEPA decision; and Define and establish a waste package qualified for final disposition. This report contains descriptions of the following: Work Breakdown Structure; WBS Dictionary; Responsibility Assignment Matrix; Program Logic Diagrams; Program Master Baseline Schedule; Program Performance Baseline Schedule; Milestone List; Milestone Description Sheets; Cost Baseline Summary by Year; Basis of Estimate; Waste Type Data; Planned Staffing; and Fiscal Year Work Plan.

Denning, J.L.

1994-09-01T23:59:59.000Z

370

Two dimensional point of use fuel cell : a final LDRD project report.  

DOE Green Energy (OSTI)

The Proliferation Assessment (program area - Things Thin) within the Defense Systems and Assessment Investment Area desires high energy density and long-lived power sources with moderate currents (mA) that can be used as building blocks in platforms for the continuous monitoring of chemical, biological, and radiological agents. Fuel cells can be an optimum choice for a power source because of the high energy densities that are possible with liquid fuels. Additionally, power generation and fuel storage can be decoupled in a fuel cell for independent control of energy and power density for customized, application-driven power solutions. Direct methanol fuel cells (DMFC) are explored as a possible concept to develop into ultrathin or two-dimensional power sources. New developments in nanotechnology, advanced fabrication techniques, and materials science are exploited to create a planar DMFC that could be co-located with electronics in a chip format. Carbon nanotubes and pyrolyzed polymers are used as building block electrodes - porous, mechanically compliant current collectors. Directed assembly methods including surface functionalization and layer-by-layer deposition with polyelectrolytes are used to pattern, build, and add functionality to these electrodes. These same techniques are used to incorporate nanoscale selective electrocatalyst into the carbon electrodes to provide a high density of active electron transfer sites for the methanol oxidation and oxygen reduction reactions. The resulting electrodes are characterized in terms of their physical properties, electrocatalytic function, and selectivity to better understand how processing impacts their performance attributes. The basic function of a membrane electrode assembly is demonstrated for several prototype devices.

Zavadil, Kevin Robert; Hickner, Michael A. (Pennsylvania State University, University Park, PA); Gross, Matthew L. (Pennsylvania State University, University Park, PA)

2011-03-01T23:59:59.000Z

371

Spent Nuclear Fuel Dry Transfer System Cold Demonstration Project Final Report  

SciTech Connect

The spent nuclear fuel dry transfer system (DTS) provides an interface between large and small casks and between storage-only and transportation casks. It permits decommissioning of reactor pools after shutdown and allows the use of large storage-only casks for temporary onsite storage of spent nuclear fuel irrespective of reactor or fuel handling limitations at a reactor site. A cold demonstration of the DTS prototype was initiated in August 1996 at the Idaho National Engineering and Environmental Laboratory (INEEL). The major components demonstrated included the fuel assembly handling subsystem, the shield plug/lid handling subsystem, the cask interface subsystem, the demonstration control subsystem, a support frame, and a closed circuit television and lighting system. The demonstration included a complete series of DTS operations from source cask receipt and opening through fuel transfer and closure of the receiving cask. The demonstration included both normal operations and recovery from off-normal events. It was designed to challenge the system to determine whether there were any activities that could be made to jeopardize the activities of another function or its safety. All known interlocks were challenged. The equipment ran smoothly and functioned as designed. A few "bugs" were corrected. Prior to completion of the demonstration testing, a number of DTS prototype systems were modified to apply lessons learned to date. Additional testing was performed to validate the modifications. In general, all the equipment worked exceptionally well. The demonstration also helped confirm cost estimates that had been made at several points in the development of the system.

Christensen, Max R; McKinnon, M. A.

1999-12-01T23:59:59.000Z

372

Technology Deployment List | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment » Technology Deployment List Deployment » Technology Deployment List Technology Deployment List October 8, 2013 - 2:44pm Addthis Technology Ranking Criteria Technologies featured in the Technology Deployment List were ranked by: Federal Impact: Combination of energy savings potential and applicability in the Federal market (50% weighting) Cost Effectiveness: Relative cost of the implementation and average expected return typically reported in case studies as simple payback period (30% weighting) Probability of Success: Combination of the qualitative characteristics scored separately and averaged to determine probability of success. Criteria include strength of supply chain, knowledge base, implementation difficulty, and customer acceptance (20% weighting). The Federal Energy Management Program's (FEMP) Technology Deployment List

373

The Enbridge Consumers Gas "Steam Saver" Program ("As Found" Performance and Fuel Saving Projects from Audits of 30 Steam Plants)  

E-Print Network (OSTI)

In Canada, medium and large sized steam plants consume approximately 442 Billion Cubic Feet (12.5 Billion Cubic Meters) of natural gas annually. This is 25% of all natural gas delivered to all customers. (Small steam plants and Hydronic heating boilers consume another 15%) Enbridge Consumers Gas, a local gas distribution company located in Toronto, has approximately 400 Industrial and Institutional customers who own medium or large sized steam plants. During the past three years, Enbridge has developed a comprehensive steam energy efficiency program called "Steam Saver". This program is aimed at these 400 customers. The heart of this program is the boiler plant audit and performance test. This paper describes the fuel saving results for more than 30 medium and large sized boiler plants where audits have been completed and projects have been implemented. The savings in cubic feet per year of natural gas are broken down according to project or technology type. The financial payback is indicated for each category. Eleven of the larger plants have been "benchmarked". Plant efficiency, fuel consumption, steam costs and other performance variables are tabulated for these plants.

Griffin, B.

2000-04-01T23:59:59.000Z

374

Federal Energy Management Program: Technology Deployment List  

NLE Websites -- All DOE Office Websites (Extended Search)

List to someone by E-mail List to someone by E-mail Share Federal Energy Management Program: Technology Deployment List on Facebook Tweet about Federal Energy Management Program: Technology Deployment List on Twitter Bookmark Federal Energy Management Program: Technology Deployment List on Google Bookmark Federal Energy Management Program: Technology Deployment List on Delicious Rank Federal Energy Management Program: Technology Deployment List on Digg Find More places to share Federal Energy Management Program: Technology Deployment List on AddThis.com... Energy-Efficient Products Technology Deployment Technology Deployment List Solid-State Lighting Working Group Renewable Energy Technology Deployment List Technology Ranking Criteria Technologies featured in the Technology Deployment List were ranked by:

375

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

376

Optimal deployment of solar index  

SciTech Connect

There is a growing trend, generally caused by state-specific renewable portfolio standards, to increase the importance of renewable electricity generation within generation portfolios. While RPS assist with determining the composition of generation they do not, for the most part, dictate the location of generation. Using data from various public sources, the authors create an optimal index for solar deployment. (author)

Croucher, Matt

2010-11-15T23:59:59.000Z

377

Synthetic fuels projects status report. Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming. Final report  

SciTech Connect

Energy resources are abundant in the six Federal Region 8 States of Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming. This publication provides a compilation of available data on energy resources and projected levels of development.

Grace, S.R.; Thoem, T.L.

1980-11-01T23:59:59.000Z

378

Project Development and Finance: Capabilities (Fact Sheet)  

SciTech Connect

Capabilities overview of NREL's Project Finance and Development Group within the Deployment and Market Transformation Directorate.

2013-01-01T23:59:59.000Z

379

R&D and deployment valuation of intelligent transportation systems : a case example of the intersection collision avoidance systems  

E-Print Network (OSTI)

Compared with investments in the conventional infrastructure, those in Intelligent Transportation Technology (ITS) include various uncertainties. Because deployment of ITS requires close public-private partnership, projects ...

Hodota, Kenichi

2006-01-01T23:59:59.000Z

380

Deploying  

NLE Websites -- All DOE Office Websites (Extended Search)

and a Topology Service (TS), but those systems overlap significantly in some cases. The query syntax of the two is essentially the same, and the infrastructure used to support...

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Projections  

E-Print Network (OSTI)

Growth in energy production outstrips consumption growth Crude oil production rises sharply over the next decade Motor gasoline consumption reflects more stringent fuel economy standards The U.S. becomes a net exporter of natural gas in the early 2020s U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040

Adam Sieminski Administrator; Adam Sieminski; Adam Sieminski; Adam Sieminski; Adam Sieminski; Adam Sieminski; Adam Sieminski

2013-01-01T23:59:59.000Z

382

An indirect sensing technique for diesel fuel quantity control. Progress report, April 1--June 30, 1998  

DOE Green Energy (OSTI)

This reports on a project to develop an indirect sensing technique for diesel fuel quantity control. Development has continued on a vehicle-installed prototype for EPA certification and demonstration. Focus of development is on the use of this technology for retrofitting existing diesel vehicles to reduce emissions rather than exclusively upon deployment in the OEM market. Technical obstacles that have been encountered and their solutions and remaining project tasks are described.

MacCarley, C.A.

1998-08-31T23:59:59.000Z

383

Fuel Cell Demonstration Program - Central and Remote Sites 2003  

SciTech Connect

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies, the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 25 Lorax 4.5 units operated under this Award from April 2003 to December 2004. In parallel with the operation of the Farm, LIPA recruited government, commercial, and residential customers to demonstrate fuel cells as on-site distributed generation. The deployment of the 20 Lorax 4.5 units for the Remote Sites phase of the project began in October 2004. To date, 10 fuel cells have completed their demonstrations while 10 fuel cells are currently being monitored at various customer sites throughout Long Island. As of June 30, 2006 the 45 fuel cells operating under this Award produced a total of 1,585,093 kWh. As fuel cell technology became more mature, performance improvements included increases in system efficiency and availability. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

384

Solar Photovoltaic Financing: Deployment by Federal Government Agencies  

DOE Green Energy (OSTI)

The goal of this report is to examine how federal agencies can finance on-site PV projects. It explains state-level cash incentives available, the importance of solar renewable energy certificate revenues (in certain markets), existing financing structures, as well as innovative financing structures being used by federal agencies to deploy on-site PV. Specific examples from the DOD, DOE, and other federal agencies are highlighted to explain federal project financing in detail.

Cory, K.; Coggeshall, C.; Coughlin, J.; Kreycik, C.

2009-07-01T23:59:59.000Z

385

DOE Hydrogen and Fuel Cells Program Record 13013: Hydrogen Delivery Cost Projections - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

3013 Date: September 26, 2013 3013 Date: September 26, 2013 Title: H 2 Delivery Cost Projections - 2013 Originator: E. Sutherland, A. Elgowainy and S. Dillich Approved by: R. Farmer and S. Satyapal Date: December 18, 2013 Item: Reported herein are past 2005 and 2011 estimates, current 2013 estimates, 2020 projected cost estimates and the 2015 and 2020 target costs for delivering and dispensing (untaxed) H 2 to 10%- 15% of vehicles within a city population of 1.2M from a centralized H 2 production plant located 100 km from the city gate. The 2011 volume cost estimates are based on the H2A Hydrogen Delivery Scenario Analysis Model (HDSAM) V2.3 projections and are employed as the basis for defining the cost and technical targets of delivery components in Table 3.2.4 in the 2012 Delivery

386

Rapid Deployment of Rich Catalytic Combustion  

SciTech Connect

The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

Richard S. Tuthill

2004-06-10T23:59:59.000Z

387

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

388

AMF Deployment, Steamboat Springs, Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado Colorado Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace AMF Deployment, Steamboat Springs, Colorado This view shows the instrument locations for the STORMVEX campaign. At the westernmost site is the Valley Floor. Heading east up the mountain is Christy Peak, Thunderhead, and Storm Peak Laboratory at the far east. Valley Floor: 40° 39' 43.92" N, 106° 49' 0.84" W Thunderhead: 40° 39' 15.12" N, 106° 46' 23.16" W Storm Peak: 40° 27' 18.36" N, 106° 44' 40.20" W

389

Rapidly deployable emergency communication system  

DOE Patents (OSTI)

A highly versatile, highly portable emergency communication system which permits deployment in a very short time to cover both wide areas and distant isolated areas depending upon mission requirements. The system employs a plurality of lightweight, fully self-contained repeaters which are deployed within the mission area to provide communication between field teams, and between each field team and a mobile communication control center. Each repeater contains a microcomputer controller, the program for which may be changed from the control center by the transmission of digital data within the audible range (300-3,000 Hz). Repeaters are accessed by portable/mobile transceivers, other repeaters, and the control center through the transmission and recognition of digital data code words in the subaudible range.

Gladden, Charles A. (Las Vegas, NV); Parelman, Martin H. (Las Vegas, NV)

1979-01-01T23:59:59.000Z

390

OPT's Reedsport Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 Single PowerBuoy and DOE Project The scope of the DOE Reedsport Deployment and Ocean Test project (DE-EE0003646) is the installation of a single autonomous PowerBuoy at...

391

Nuclear Deployment Scorecards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Scorecards Nuclear Deployment Scorecards October 31, 2013 Quarterly Nuclear Deployment Scorecard - October 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. August 8, 2013 Quarterly Nuclear Deployment Scorecard - July 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. May 1, 2013 Quarterly Nuclear Power Deployment Scorecard - April 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, and new plant construction progress.

392

Technical Cross-Cutting Issues for the Next Generation Safeguards Initiative's Spent Fuel Nondestructive Assay Project  

Science Conference Proceedings (OSTI)

Ever since there has been spent fuel (SF), researchers have made nondestructive assay (NDA) measurements of that fuel to learn about its content. In general these measurements have focused on the simplest signatures (passive photon and total neutron emission) and the analysis has often focused on diversion detection and on determining properties such as burnup (BU) and cooling time (CT). Because of shortcomings in current analysis methods, inspectorates and policy makers are interested in improving the state-of-the-art in SF NDA. For this reason the U.S. Department of Energy, through the Next Generation Safeguards Initiative (NGSI), targeted the determination of elemental Pu mass in SF as a technical goal. As part of this research effort, 14 nondestructive assay techniques were studied . This wide range of techniques was selected to allow flexibility for the various needs of the safeguards inspectorates and to prepare for the likely integration of one or more techniques having complementary features. In the course of researching this broad range of NDA techniques, several cross-cutting issues were. This paper will describe some common issues and insights. In particular we will describe the following: (1) the role of neutron absorbers with emphasis on how these absorbers vary in SF as a function of initial enrichment, BU and CT; (2) the need to partition the measured signal among different isotopic sources; and (3) the importance of the first generation concept which indicates the spatial location from which the signal originates as well as the isotopic origins.

Tobin, S. J.; Menlove, H. O.; Swinhoe, Martyn T.; Blanc, P.; Burr, T.; Evans, L. G.; Favalli, A.; Fensin, M. L.; Freeman, C. R.; Galloway, J.; Gerhart, J.; Rajasingam, A.; Rauch, E.; Sandoval, N. P.; Trellue, H.; Ulrich, T. J.; Conlin, J. L.; Croft, S.; Hendricks, John; Henzl, V.; Henzlova, D.; Eigenbrodt, J. M.; Koehler, W. E.; Lee, D. W.; Lee, T. H.; Lafleur, A. M.; Schear, M. A.; Humphrey, M. A.; Smith, Leon E.; Anderson, Kevin K.; Campbell, Luke W.; Casella, Andrew M.; Gesh, Christopher J.; Shaver, Mark W.; Misner, Alex C.; Amber, S. D.; Ludewigt, Bernhard A.; Quiter, B.; Solodov, Alexander; Charlton, W.; Stafford, A.; Romano, C.; Cheatham, J.; Ehinger, Michael; Thompson, S. J.; Chichester, David; Sterbentz, James; Hu, Jianwei; Hunt, A.; Mozin, Vladimir V.; Richard, J. G.

2012-03-01T23:59:59.000Z

393

Leading the Nation in Clean Energy Deployment (Fact Sheet)  

SciTech Connect

This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world. The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agencies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions.

Not Available

2012-07-01T23:59:59.000Z

394

Community Renewable Energy Deployment: Forest County Potawatomi Tribe |  

Open Energy Info (EERE)

Potawatomi Tribe Potawatomi Tribe Jump to: navigation, search Name Community Renewable Energy Deployment: Forest County Potawatomi Tribe Agency/Company /Organization US Department of Energy Sector Energy Focus Area Energy Efficiency - Central Plant, Economic Development, Forestry, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Biomass, Solar, - Solar Pv, Biomass - Waste To Energy Phase Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available -- Free Publication Date 11/29/2010 Website http://www1.eere.energy.gov/co Locality Forest County Potawatomi Tribe References Community Renewable Energy Deployment: Forest County Potawatomi Tribe[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 References

395

Building Diagnostic Market Deployment - Final Report  

SciTech Connect

The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energys Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of automated fault de4tection and diagnostic (AFDD) tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction, and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: 1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, 2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and 3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations.

Katipamula, Srinivas; Gayeski, N.

2012-04-01T23:59:59.000Z

396

Economics of ALMR deployment in the United States  

SciTech Connect

The Advanced Liquid Metal Reactor (ALMR) has the potential to extend the economic life of the nuclear option and of reducing the number of high-level waste repositories which will eventually be needed in an expanding nuclear economy. This paper reports on an analysis which models and evaluates the economics of the use of ALMRs as a component of this country`s future electricity generation mix. The ALMR concept has the ability to utilize as fuel the fissile material contained in previously irradiated nuclear fuel (i.e., spent fuel) or from surplus weapons-grade material. While not a requirement for the successful deployment of ALMR power plant technology, the reprocessing of spent fuel from light water reactors (LWR) is necessary for any rapid introduction of ALMR power plants. In addition, the reprocessing of LWR spent fuel may reduce the number of high-level waste repositories needed in the future by burning the long-lived actinides produced in the fission process. With this study, the relative economics of a number of potential scenarios related to these issues are evaluated. While not encompassing the full range of all possibilities, the cases reported here provide an indication of the potential costs, timings, and relative economic attractiveness of ALMR deployment.

Delene, J.G.; Fuller, L.C.; Hudson, C.R.

1995-02-01T23:59:59.000Z

397

An Introduction to the 2010 Fuel Cell Pre-Solicitation Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

An Introduction to the 2010 Fuel Cell An Introduction to the 2010 Fuel Cell Pre-Solicitation Workshop Pre Solicitation Workshop Dr. Dimitrios Papageorgopoulos Team Lead Fuel Cells US DOE Fuel Cell Technologies Program Lakewood, Colorado Lakewood, Colorado March 16, 2010 March 16, 2010 e e t a eco o de a d t ade o a to educe Advancing Presidential Priorities Energy efficiency and renewable energy research, development, and deployment activities help the Nation meet its economic, energy security, and environmental challenges concurrently. Economic Energy Security * Create green jobs through * Deploy the cheapest, cleanest, Recovery Act energy projects fastest energy source - energy efficiency * Double renewable energy generation by 2012 * One million plug-in hybrid cars on the road by 2015 * Weatherize one million homes

398

The implementation and deployment of an ERP system: an industrial case study  

Science Conference Proceedings (OSTI)

This article concerns the integration and deployment of the ERP project at Alcatel, a telecommunications company. After a short presentation of the main activities managed by the ERP system, we propose a five-stage deployment model (selection of the ... Keywords: enterprise resource planning (ERP) system, firm performance, firm processes, information system (IS), material requirements planning (MRP) activity, planning process

Claire Berchet; Georges Habchi

2005-08-01T23:59:59.000Z

399

The implementation and deployment of an ERP system: An industrial case study  

Science Conference Proceedings (OSTI)

This article concerns the integration and deployment of the ERP project at Alcatel, a telecommunications company. After a short presentation of the main activities managed by the ERP system, we propose a five-stage deployment model (selection of the ... Keywords: Enterprise resource planning (ERP) system, Firm performance, Firm processes, Information system (IS), Material requirements planning (MRP) activity, Planning process

Claire Berchet; Georges Habchi

2005-08-01T23:59:59.000Z

400

Fuel quality issues in stationary fuel cell systems.  

SciTech Connect

Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough, component sizing, and utility needs. These data, along with process efficiency results from the model, were subsequently used to calculate the cost of electricity. Sensitivity analyses were conducted to correlate the concentrations of key impurities in the fuel gas feedstock to the cost of electricity.

Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

2012-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Final Report of Project Nanometer Structures for Fuel Cells and Displays, etc.  

DOE Green Energy (OSTI)

Low-energy ion beam bombardment induced self-assembly has been used to form various periodic nano-size wave-ordered structures (WOS). Such WOS can be used as hard etching masks to produce nanowire arrays, trenches etc., on other materials by means of traditional etching or ion sputtering. These periodic nano-size structures have a wide range of applications, including flat panel displays, optical electronics, and clean energy technologies (solar and fuel cells, lithium batteries). In order to achieve high throughput of the above processes, a large area RF-driven multicusp nitrogen ion source has been developed for the application of nitrogen ion beam induced surface modification. An integrated ion beam system, which can house either a large area RF-driven multicusp ion source or a commercially available microwave ion source (Roth & Rau AG Tamiris 400-f) have been designed, manufactured, assembled, and tested.

Ji, Qing

2011-12-15T23:59:59.000Z

402

Fuel Cell Technologies Office: Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

The tool estimates the number of jobs created by deploying fuel cells in forklifts, backup power, and prime power applications. JOBS FC is a spreadsheet model that estimates...

403

Hydrogen &amp; Fuel Cells News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth http://energy.gov/articles/energy-dept-reports-us-fuel-cell-market-production-and-deployment-continues-strong-growth fuel-cell-market-production-and-deployment-continues-strong-growth" class="title-link">Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth

404

Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints  

SciTech Connect

Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Plotkin, S.; Stephens, T.; McManus, W.

2013-03-01T23:59:59.000Z

405

Quarterly Nuclear Power Deployment Scorecard - January 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Deployment Scorecard - January 2013 Power Deployment Scorecard - January 2013 Quarterly Nuclear Power Deployment Scorecard - January 2013 News Updates On October 22, 2012, Dominion Resources Inc. announced that it would close and decommission its Kewaunee Power Station located in Carlton, Wis. after failing to find a buyer for the plant. The company said that the plant closure was a purely economic decision resulting from low projected wholesale electricity prices. Power production will cease in the second quarter of 2013. On November 20, the Department of Energy announced that it had selected the Generation mPower team as a recipient for Government cost-shared funding as part of its Small Modular Reactor Licensing Technical Support program. The Department also announced plans to issue a follow-on solicitation open to other companies and manufacturers, focused

406

Quarterly Nuclear Power Deployment Scorecard - January 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Deployment Scorecard - January 2013 Power Deployment Scorecard - January 2013 Quarterly Nuclear Power Deployment Scorecard - January 2013 News Updates On October 22, 2012, Dominion Resources Inc. announced that it would close and decommission its Kewaunee Power Station located in Carlton, Wis. after failing to find a buyer for the plant. The company said that the plant closure was a purely economic decision resulting from low projected wholesale electricity prices. Power production will cease in the second quarter of 2013. On November 20, the Department of Energy announced that it had selected the Generation mPower team as a recipient for Government cost-shared funding as part of its Small Modular Reactor Licensing Technical Support program. The Department also announced plans to issue a follow-on solicitation open to other companies and manufacturers, focused

407

QUARTERLY NUCLEAR DEPLOYMENT SCORECARD - JULY 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

QUARTERLY NUCLEAR DEPLOYMENT SCORECARD - JULY 2013 QUARTERLY NUCLEAR DEPLOYMENT SCORECARD - JULY 2013 QUARTERLY NUCLEAR DEPLOYMENT SCORECARD - JULY 2013 News Updates Dominion Resources, Inc. has informed the NRC that Dominion Virginia Power will amend its COL application (COLA) to reflect the ESBWR technology by the end of 2013. In 2009 Dominion dropped the ESBWR from its COLA after failing to reach a commercial agreement with General Electric-Hitachi (GEH). A COL is expected no earlier than late 2015. Dominion Virginia Power has not yet committed to building a new nuclear unit at North Anna. NRC has determined that the latest revision to the South Texas Project COLA does not alleviate foreign interest concerns; the staff found that despite having only a 10% ownership stake in Nuclear Innovation North America LLC (NINA), Toshiba American Nuclear Energy Corporation's

408

Quarterly Nuclear Deployment Summary, January 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment Summary, January 2013 Deployment Summary, January 2013 Quarterly Nuclear Deployment Summary, January 2013 January 30, 2013 - 5:59pm Addthis Quarterly Updates On October 22 Dominion Resources Inc. announced that it would close and decommission its Kewaunee Power Station located in Carlton, Wis. after failing to find a buyer for the plant. The company said that the plant closure was a purely economic decision resulting from low projected wholesale electricity prices. Power production will cease in the second quarter of 2013. On November 20, 2012, the Department of Energy announced that it had selected the Generation mPower team as a recipient for Government cost-shared funding as part of its Small Modular Reactor Licensing Technical Support program. The Department also announced plans to issue a

409

Microsoft PowerPoint - PARS II Deployment Discussion 20090416.ppt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARS II PARS II Deployment Discussion John Makepeace (OECM) Kai Mong (EES), Judith Bernsen (EES/PMC) April 16, 2009 2 Purpose * Review inclusion/exclusion of projects * Discuss the proposed schedule for transitioning projects PARS II Timeline 3 Target Dates * May 2009 - DOE-wide announcement * May 2009 - Contact Group 1 * Sep 2009 - Error free files from Group 1 * Dec 2009 - Group 1 repeatable process established * Feb 2010 - Groups 1-3 begin reporting * Sep 2010 - Group 9 begins reporting 4 5 Exclusion Criteria * Project was excluded if * Planned CD-4 date was on or before Sep 30 2010 * Project was at CD-0 or CD-1 with no planned CD-2 date on or before Sep 30 2010 * Project at CD-3 and more than 50% complete (schedule) * Project TPC < $20M 6 Grouping Criteria * Projects were grouped using the following

410

Federal Energy Management Program: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

& Initiatives Solid State Lighting Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Technology Deployment NEW Technology...

411

Real-Time Deployment of Mesh Networks  

Science Conference Proceedings (OSTI)

... Related Efforts. DARPA LANdroids program. Publications. MR Souryal, A. Wapf, N. Moayeri, Rapidly-Deployable Mesh Network Testbed; ...

2013-07-08T23:59:59.000Z

412

Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches  

Science Conference Proceedings (OSTI)

The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on performance/catalyst degradation. The key accomplishments of this project are: The development of a molecular-dynamics based description of the carbon supported-Pt and ionomer system The development of a composition-based, 1D-statistical Unit Cell Performance model A modified and improved multi-pathway ORR model An extension of the existing micro-structural catalyst model to transient operation The coupling of a Pt Dissolution model to the modified ORR pathway model The Development A Semi-empirical carbon corrosion model The integration and release of an open-source forward predictive MEA performance and degradation model Completion of correlations of BOT (beginning of test) and EOT (end of test) performance loss breakdown with cathode catalyst layer composition, morphology, material properties, and operational conditions Catalyst layer durability windows and design curves A design flow path of interactions from materials properties and catalyst layer effective properties to performance loss breakdown for virgin and degraded catalyst layers In order to ensure the best possible user experience we will perform a staged release of the software leading up to the webinar scheduled in October 2013. The release schedule will be as follows (please note that the manual will be released with the beta release as direct support is provided in Stage 1): Stage 0 - Internal Ballard Release o Cross check of compilation and installation to ensure machine independence o Implement code on portable virtual machine to allow for non-UNIX use (pending) Stage 1 - Alpha Release o The model code will be made available via a GIT, sourceforge, or other repository (under discussion at Ballard) for download and installation by a small pre-selected group of users o Users will be given three weeks to install, apply, and evaluate features of the code, providing feedback on issues or software bugs that require correction prior to beta release Stage 2 - Beta Release o The model code repository is opened to the general public on a beta release c

Wessel, Silvia [Ballard Materials Products] [Ballard Materials Products; Harvey, David [Ballard Materials Products] [Ballard Materials Products

2013-06-28T23:59:59.000Z

413

Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System  

DOE Green Energy (OSTI)

Report describes efforts to deploy alternative transportation fuels and how those experiences might apply to a hydrogen-fueled transportation system.

Melendez, M.; Theis, K.; Johnson, C.

2007-08-01T23:59:59.000Z

414

Integrated Field Testing of Fuel Cells and Micro-Turbines  

DOE Green Energy (OSTI)

A technical and economic evaluation of the prospects for the deployment of distributed generation on Long Beach Island, New Jersey concluded that properly sited DG would defer upgrading of the electric power grid for 10 years. This included the deployment of fuel cells or microturbines as well as reciprocating engines. The implementation phase of this project focused on the installation of a 120 kW CHP microturbine system at the Harvey Cedars Bible Conference in Harvey Cedars, NJ. A 1.1 MW generator powered by a gas-fired reciprocating engine for additional grid support was also installed at a local substation. This report contains installation and operation issues as well as the utility perspective on DG deployment.

Jerome R. Temchin; Stephen J. Steffel

2005-11-01T23:59:59.000Z

415

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

national laboratory of the U.S. Department of Energy national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720� Hydrogen as a Vehicle Fuel into September 2005 � the Existing Natural Gas Vehicle � Fueling Infrastructure of the � Interstate Clean Transportation � Corridor Project � April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates � Santa Monica, California � NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation

416

Disposable telemetry cable deployment system  

DOE Patents (OSTI)

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

417

Energy Department Invests Over $7 Million to Deploy Tribal Clean Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Over $7 Million to Deploy Tribal Clean Over $7 Million to Deploy Tribal Clean Energy Projects Energy Department Invests Over $7 Million to Deploy Tribal Clean Energy Projects November 14, 2013 - 10:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to strengthening partnerships with Tribal nations and building stronger, more resilient communities that are better prepared for a changing climate, the Energy Department today announced nine tribal clean energy projects to receive more than $7 million. Highlighted during the 2013 White House Tribal Nations Conference, these awards will help American Indian and Alaska Native tribes deploy clean energy projects - saving these communities money, enhancing their energy security and creating new job and

418

Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

Lantz, E.

2011-05-23T23:59:59.000Z

419

NREL: Energy Systems Integration - Integrated Deployment Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Deployment Workshop Integrated Deployment Workshop The Energy Systems Integration Facility workshop, Integrated Deployment, was held August 21 - 23, 2012 at the National Renewable Energy Laboratory in Golden, Colorado. Each day of the workshop, which included a tour of the Energy Systems Integration Facility, focused on a different topic: Day 1: Utility-Scale Renewable Integration Day 2: Distribution-Level Integration Day 3: Isolated and Islanded Grid Systems The agenda and presentations from the workshop are below. Agenda Energy Systems Integration Facility Overview ESIF Technology Partnerships Integrated Deployment Model Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings Printable Version Energy Systems Integration Home Research & Development

420

Buildings Technologies Deployment | Clean energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Deployment Building Technologies Deployment SHARE Building Technologies Deployment benchmarking commercial buildings Once building technologies emerge and become commercially available, only in exceptional cases does robust market uptake automatically follow. Additional efforts remain to ensure that emerging and under-utilized technologies are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use in residential, commercial, and industrial sectors through applications research, technical assistance, and a variety of deployment strategies. The team's comprehensive knowledge of buildings and energy use spans multi-building sites, whole-buildings, systems, components, and multi-level

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

California Hydrogen Infrastructure Project  

Science Conference Proceedings (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ???¢????????real-world???¢??????? retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation???¢????????s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products???¢???????? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user???¢????????s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

422

Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project  

DOE Green Energy (OSTI)

The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

Brown, R.C.; Smeenk, J. [Iowa State Univ., Ames, IA (United States); Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

1998-09-30T23:59:59.000Z

423

An early deployment strategy for carbon capture, utilisation, and storage  

SciTech Connect

This report describes the current use of CO2 for EOR, and discusses potential expansion of EOR using CO2 from power plants. Analysis of potential EOR development in the USA, where most current CO2-based EOR production takes place, indicates that relatively low cost, traditional sources of CO2 for EOR (CO2 domes and CO2 from natural gas processing plants) are insufficient to exploit the full potential of EOR. To achieve that full potential will require use of CO2 from combustion and gasification systems, such as fossil fuel power plants, where capture of CO2 is more costly. The cost of current CCUS systems, even with the revenue stream for sale of the CO2 for EOR, is too high to result in broad deployment of the technology in the near term. In the longer term, research and development may be sufficient to reduce CO2 capture costs to a point where CCUS would be broadly deployed. This report describes a case study of conditions in the USA to explore a financial incentive to promote early deployment of CCUS, providing a range of immediate benefits to society, greater likelihood of reducing the long-term cost of CCUS, and greater likelihood of broad deployment of CCUS and CCS in the long term. Additionally, it may be possible to craft such an incentive in a manner that its cost is more than offset by taxes flowing from increased domestic oil production. An example of such an incentive is included in this report.

Carter, L.D.

2012-11-01T23:59:59.000Z

424

NREL: Technology Deployment - Tool Development  

NLE Websites -- All DOE Office Websites (Extended Search)

renewable energy projects. NREL develops geographic tools, interactive calculators, market and metrics databases, and mobile applications to help inform sustainable energy...

425

Geothermal Energy Market Study on the Atlantic Coastal Plain. A Review of Recent Energy Price Projections for Traditional Space Heating Fuel 1985-2000  

DOE Green Energy (OSTI)

In order to develop an initial estimate of the potential competitiveness of low temperature (45 degrees C to 100 degrees C) geothermal resources on the Eastern Coastal Plain, the Center for Metropolitant Planning and Research of The Johns Hopkins University reviewed and compared available energy price projections. Series of projections covering the post-1985 period have been made by the Energy Information Administration, Brookhaven National Laboratory, and by private research firms. Since low temperature geothermal energy will compete primarily for the space and process heating markets currently held by petroleum, natural gas, and electricity, projected trends in the real prices for these fuels were examined. The spread in the current and in projected future prices for these fuels, which often serve identical end uses, underscores the influence of specific attributes for each type of fuel, such as cleanliness, security of supply, and governmental regulation. Geothermal energy possesses several important attributes in common with electricity (e.g., ease of maintenance and perceived security of supply), and thus the price of electric space heating is likely to be an upper bound on a competitive price for geothermal energy. Competitiveness would, of course, be increased if geothermal heat could be delivered for prices closer to those for oil and natural gas. The projections reviewed suggest that oil and gas prices will rise significantly in real terms over the next few decades, while electricity prices are projected to be more stable. Electricity prices will, however, remain above those for the other two fuels. The significance of this work rests on the fact that, in market economies, prices provide the fundamental signals needed for efficient resource allocation. Although market prices often fail to fully account for factors such as environmental impacts and long-term scarcity value, they nevertheless embody a considerable amount of information and are the primary guideposts for suppliers and consumers.

Weissbrod, Richard; Barron, William

1979-03-01T23:59:59.000Z

426

Impacts from Deployment Barriers on the United States Wind Power Industry: Overview & Preliminary Findings (Presentation)  

DOE Green Energy (OSTI)

Regardless of cost and performance some wind projects are unable to proceed to commissioning as a result of deployment barriers. Principal deployment barriers in the industry today include: wildlife, public acceptance, access to transmission, and radar. To date, methods for understanding these non-technical barriers have failed to accurately characterize the costs imposed by deployment barriers and the degree of impact to the industry. Analytical challenges include limited data and modeling capabilities. Changes in policy and regulation, among other factors, also add complexity to analysis of impacts from deployment barriers. This presentation details preliminary results from new NREL analysis focused on quantifying the impact of deployment barriers on the wind resource of the United States, the installed cost of wind projects, and the total electric power system cost of a 20% wind energy future. In terms of impacts to wind project costs and developable land, preliminary findings suggest that deployment barriers are secondary to market drivers such as demand. Nevertheless, impacts to wind project costs are on the order of $100/kW and a substantial share of the potentially developable windy land in the United States is indeed affected by deployment barriers.

Lantz, E.; Tegen, S.; Hand, M.; Heimiller, D.

2012-09-01T23:59:59.000Z

427

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview and Overview and Federal Sector Deployment Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company Bob Slattery Oak Ridge National Laboratory CHP is an integrated energy system that:  is located at or near a facility  generates electrical and/or mechanical power  recovers waste heat for ◦ heating ◦ cooling ◦ dehumidification  can utilize a variety of technologies and fuels  is also referred to as cogeneration The on-site simultaneous generation of two forms of energy (heat and electricity) from a single fuel/energy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP

428

1 MW Fuel Cell Project: Test and Evaluation of Five 200 kW Phosphoric Acid Fuel Cell Units Configured as a 1 MW Power Plant  

Science Conference Proceedings (OSTI)

Fuel cell technology can play a potentially significant role as a distributed generation resource at customer facilities. This report describes a demonstration of the new technology that is needed for utility management and control of multiple fuel cell power plants at a single location in an assured power application.

2002-07-10T23:59:59.000Z

429

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

430

National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)  

DOE Green Energy (OSTI)

Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

Not Available

2012-04-01T23:59:59.000Z

431

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

This project is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to Design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-01-01T23:59:59.000Z

432

CALLA ENERGY BIOMASS COFIRING PROJECT  

DOE Green Energy (OSTI)

The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-10-01T23:59:59.000Z

433

City of Montpelier Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Montpelier Project City of Montpelier Project City of Montpelier Project November 13, 2013 - 10:45am Addthis The City of Montpelier, Vermont, together with the state of Vermont, is constructing a central district energy system fueled with locally-sourced renewable and sustainably-harvested wood chips. The U.S. Department of Energy provided $8 million in funding for this Community Renewable Energy Deployment (CommRE) project. Community District Energy System The central heat plant's 41 million British thermal unit (1,200 horsepower) will heat a complex of state buildings, several city buildings, a federal building and a number of private buildings in Montpelier, including the state capitol and city hall, a school and the post office. The system has the capacity to add additional downtown buildings.

434

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

SciTech Connect

Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The projects scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industrys development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industrys development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

435

Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities  

Science Conference Proceedings (OSTI)

This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as MOX. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these minor actinides can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

2007-12-15T23:59:59.000Z

436

BWRVIP-129: BWR Vessel and Internals Project: Post-NMCA Fuel Surveillance Program at the Duane Arnold Energy Center: EOC 17 Fuel Hotcell Examination Program  

Science Conference Proceedings (OSTI)

Duane Arnold was the first plant to implement noble metal chemical application (NMCA), also known as NobleChem, during hot shutdown near the end of cycle (EOC) 14 in 1996. A fuel surveillance program evaluated fuel rod performance after one, two, and three NMCA cycles via poolside inspections and after one and three cycles via a hot cell postirradiation examination (PIE). This report documents hot cell PIE results of fuel rods after operating for three post-NMCA cycles, during which time there was...

2004-06-23T23:59:59.000Z

437

Fleet DNA Project (Fact Sheet)  

SciTech Connect

The Fleet DNA Project - designed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in partnership with Oak Ridge National Laboratory - aims to accelerate the evolution of advanced vehicle development and support the strategic deployment of market-ready technologies that reduce costs, fuel consumption, and emissions. At the heart of the Fleet DNA Project is a clearinghouse of medium- and heavy-duty commercial fleet transportation data for optimizing the design of advanced vehicle technologies or for selecting a given technology to invest in. An easy-to-access online database will help vehicle manufacturers and fleets understand the broad operational range for many of today's commercial vehicle vocations.

Not Available

2012-10-01T23:59:59.000Z

438

Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects to someone by E-mail Share Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Facebook Tweet about Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Twitter Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Google Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Delicious Rank Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Digg Find More places to share Fuel Cell Technologies Office: Financial

439

Technology Deployment List | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Technology Deployment List Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Deployment List Agency/Company /Organization: Federal Energy Management Program Sector: Energy Focus Area: Renewable Energy Phase: Create a Vision Topics: Implementation User Interface: Website Website: www1.eere.energy.gov/femp/technologies/newtechnologies_matrix.html#cat OpenEI Keyword(s): EERE tool, Technology Deployment List Language: English References: Technology Deployment List[1] Identify emerging-and underused-energy-saving technologies, including building envelope; heating, ventilation, and air conditioning; lighting; water heating; and refrigeration, computer power management, and vending

440

Integrated assessment of dispersed energy resources deployment  

E-Print Network (OSTI)

54 Table 5: Summary of Net MeteringDER Deployment Table 5: Summary of Net Metering Laws Summaryof State Net Metering Programs ( Current) Limit Limit on

Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Estimating IPv6 & DNSSEC Deployment Status  

Science Conference Proceedings (OSTI)

Estimating IPv6 & DNSSEC External Service Deployment Status Background and Methodology. ... gov.two. Agency Two, (errors & islands). gov.three. ...

2013-11-07T23:59:59.000Z

442

Federal Energy Management Program: Federal Technology Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Initiatives Solid State Lighting Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Federal Technology Deployment Working Group Energy...

443

NREL: Technology Deployment - Climate Action Planning Tool -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment - Climate Action Planning Tool Step 1 of 4 Step 1: Gather Baseline Energy Consumption Data Download the sample data sheet below, gather your numbers, and...

444

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

445

The Department of Energy's Hydrogen and Fuel Cells Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's Energy's Hydrogen and Fuel Cells Program OAS-RA-13-31 September 2013 Department of Energy Washington, DC 20585 September 27, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Hydrogen and Fuel Cells Program" INTRODUCTION AND OBJECTIVE The Department of Energy spent approximately $1 billion over the last 5 years on Hydrogen and Fuel Cells Program activities implemented through various projects at Federal laboratories, universities, non-profit institutions, Government agencies and industry participants. The Department also provided an additional $42 million in American Recovery and Reinvestment Act of 2009 funding to accelerate the commercialization and deployment of fuel cells. As of

446

Solar Thermochemical Fuels Production: Solar Thermochemical Fuel Production via a Novel Lowe Pressure, Magnetically Stabilized, Non-volatile Iron Oxide Looping Process  

SciTech Connect

HEATS Project: The University of Florida is developing a windowless high-temperature chemical reactor that converts concentrated solar thermal energy to syngas, which can be used to produce gasoline. The overarching project goal is lowering the cost of the solar