National Library of Energy BETA

Sample records for fuels consumption chart

  1. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  2. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  3. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  4. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  5. Fuel Cell Technologies Office Organization Chart and Contacts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Cell Technologies Office Organization Chart and Contacts Fuel Cell Technologies Office Organization Chart and Contacts Fuel Cell Technologies Office Organization Chart and Contacts Contact Information U.S. Department of Energy - Fuel Cell Technologies Office General Contact Information 202-586-3388 fuelcells@ee.doe.gov Office Contacts Director Sunita Satyapal 202-586-2336 Sunita.Satyapal@ee.doe.gov Operations Supervisor and Technology Acceleration Program Manager Rick Farmer

  6. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  7. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  8. The Impact of Using Derived Fuel Consumption Maps to Predict...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Impact of Using Derived Fuel Consumption Maps to Predict Fuel Consumption The Impact of Using Derived Fuel Consumption Maps to Predict Fuel Consumption Poster presented at the...

  9. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  10. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  11. Chapter 4. Fuel Economy, Consumption and Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  12. ,"Maine Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  13. ,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  14. ,"Washington Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  15. ,"Texas Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  16. ,"Texas Natural Gas Lease Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  17. ,"Texas Natural Gas Plant Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Fuel Oil Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings Using Fuel Oil...

  19. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: December 19, 2011 Vocational Vehicle Fuel Consumption Standards Fact 706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards The National Highway Traffic Safety...

  20. Complex System Method to Assess Commercial Vehicle Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complex System Method to Assess Commercial Vehicle Fuel Consumption Complex System Method to Assess Commercial Vehicle Fuel Consumption Two case studies for commercial vehicle ...

  1. Impact of Driving Behavior on PHEV Fuel Consumption for Different...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain, ...

  2. Canada's Fuel Consumption Guide Website | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentcanadas-fuel-consumption-guide-websit Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This website...

  3. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings...

  6. Table 3.1 Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99

  7. Table 3.2 Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,158 257 12 22 579 6 182 2 99 3112 Grain and Oilseed Milling 350 56 * 1 121 * 126 0 45 311221 Wet Corn Milling 214 25 * * 53 * 110 0 25 31131 Sugar Manufacturing 107 4 1 1 15 * 49 2 36

  8. Table 3.3 Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,148 314 6 53 446 14 25 Q 291 20-49 1,018 297 13 22 381 18 97 5 185 50-99 1,095 305 7 13 440 6 130 9 186 100-249

  9. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  10. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings Document details Fossil Fuel-Generated Energy...

  11. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING ...

  12. Fact #704: December 5, 2011 Fuel Consumption Standards for New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans Fact 704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans In September...

  13. Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  14. Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    and Plant Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  15. Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  16. New York Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) New York Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  17. New York Natural Gas Lease and Plant Fuel Consumption (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Plant Fuel Consumption (Million Cubic Feet) New York Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  18. Table 3.3 Fuel Consumption, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE"

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003" ,"Sum of Major Fuel Consumption (trillion Btu)",,,"Total Floorspace...

  20. Fossil Fuel-Generated Energy Consumption Reduction for New Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings and Major Renovations of Federal Buildings | Department of Energy Buildings Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings Document details Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in a Supplemental Notice of Proposed Rulemaking. File fossilfuel.docx More Documents & Publications Fossil Fuel-Generated Energy Consumption

  1. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: December 19, 2011 Vocational Vehicle Fuel Consumption Standards Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single-unit work vehicle over 8,500 lbs gross vehicle weight rating (GVWR) or a passenger vehicle over 10,000 lbs GVWR that is not a

  2. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings OIRA Comparison Document Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document...

  3. ,"New Mexico Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  4. ,"New Mexico Natural Gas Plant Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  5. ,"New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

  6. ,"New Mexico Natural Gas Lease Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  7. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  8. Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mid, and high), gross vehicle weight rating (class 7 and 8), and types of tractor (day cab, sleeper cab). Combination Tractor Fuel Consumption Standards, Model Years (MY)...

  9. Reducing fuel consumption on the field, by continuously measuring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation On Board Fuel Quality Sensor BioDiesel Content On-board ...

  10. Table 4a. Total Fuel Oil Consumption per Effective Occupied Square...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 4a. Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion...

  11. Hydraulic HEV Fuel Consumption Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydraulic HEV Fuel Consumption Potential Hydraulic HEV Fuel Consumption Potential 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss071_rousseau_2012_o.pdf More Documents & Publications Evaluation of Powertrain Options and Component Sizing for MD and HD Applications on Real World Drive Cycles Roadmap and Technical White Papers for 21st Century Truck Partnership Fuel Displacement & Cost Potential of CNG,

  12. Table 5.2 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27

  13. Table 5.4 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19

  14. Table 5.6 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733

  15. Table 5.8 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    8 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP

  16. South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption South Dakota Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  17. Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with ...

  18. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION Citation Details In-Document Search Title: RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population

  19. Demonstrating Fuel Consumption and Emissions Reductions with Next

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Model-Based Diesel Engine Control | Department of Energy Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating conditions. PDF icon deer11_atkinson.pdf

  20. Table 5.5 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  1. Table 5.7 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18

  2. Missouri Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Missouri Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 1990's 0 0 1 0 0 0 1 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Lease Fuel Consumption

  3. Nevada Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Nevada Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 53 30 21 16 13 11 9 9 8 2000's 7 7 6 6 5 5 5 5 4 4 2010's 4 3 4 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Lease Fuel Consumption

  4. Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 6 3 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 148 145 150 142 128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption

  5. Maryland Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Maryland Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 2 1 1 2 1 1 1990's 1 0 0 1 1 1 3 3 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Lease Fuel Consumption

  6. Table 6.2 Consumption Ratios of Fuel, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,"Consumption" " ",,"Consumption","per Dollar"," " " ","Consumption","per Dollar","of Value","RSE" "Economic","per Employee","of Value

  7. Table E7.1. Consumption Ratios of Fuel, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,"Consumption" " ",,"Consumption","per Dollar"," " " ","Consumption","per Dollar","of Value","RSE" "Economic","per Employee","of Value

  8. Impact of Driving Behavior on PHEV Fuel Consumption for Different

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain, Component Sizes and Control | Department of Energy Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss011_rousseau_2010_o.pdf More Documents & Publications PHEV Control Strategy

  9. Fossil Fuel-Generated Energy Consumption Reduction for New Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings and Major Renovations of Federal Buildings OIRA Comparison Document | Department of Energy Buildings OIRA Comparison Document Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Document details the Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in an OIRA Comparison Document. File fossilfuel_compare2014.docx More

  10. Complex System Method to Assess Commercial Vehicle Fuel Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Complex System Method to Assess Commercial Vehicle Fuel Consumption Complex System Method to Assess Commercial Vehicle Fuel Consumption Two case studies for commercial vehicle applications compare a baseline, contemporary vehicle with advanced, future options. PDF icon p-08_kasab.pdf More Documents & Publications Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies A High Temperature Direct Vehicle

  11. Tradeoff between Fuel Consumption and Emissions for PHEV's | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy between Fuel Consumption and Emissions for PHEV's Tradeoff between Fuel Consumption and Emissions for PHEV's 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss012_shidore_2010_o.pdf More Documents & Publications PHEV Engine Control and Energy Management Strategy PHEV Engine Control and Energy Management Strategy Evaluation of Ethanol Blends for PHEVs using Simulation and

  12. Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wins R&D 100 Award | Department of Energy Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award October 15, 2014 - 4:51pm Addthis Developed jointly by Corning, the FEV Group, Maguffin Microwave, Detroit Diesel, and Oak Ridge National Laboratory (ORNL) in cooperation with the New York City Department of Sanitation, the Radio Frequency Diesel

  13. Demonstrating Fuel Consumption and Emissions Reductions with...

    Broader source: Energy.gov (indexed) [DOE]

    Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating ...

  14. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Consumption (Million Cubic Feet) Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 100 0 2000's 0 0 0 0 0 0 0 0 1 2010's 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to Vehicle Fuel Consumers Maine Natural

  15. Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Consumption (Million Cubic Feet) Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2000's 0 1 1 1 1 0 W 1 1 2010's 1 3 3 3 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to Vehicle Fuel Consumers Vermont

  16. Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34 35 30 19 31 21 13 1990's 0 14 9 0 3 2 3 7 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Plant Fuel

  17. Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2000's 0 1 1 1 1 0 W 1 1 2010's 1 3 3 3 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to Vehicle Fuel Consumers Vermont

  18. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 100 0 2000's 0 0 0 0 0 0 0 0 1 2010's 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to Vehicle Fuel Consumers Maine Natural

  19. Fuel consumption of freight trains hauled by diesel electric locomotives

    SciTech Connect (OSTI)

    Radford, R.W.

    1983-05-01

    The cost of railway diesel fuel has become an increasingly high proportion of railway operating expenses. The paper analyzes the generation and utilization of rail horsepower in freight train operations. The effects on fuel consumption of variations in several parameters including train consist, car weight, gradient, average speed, meet strategy, throttle control, locomotive axle arrangement, and train marshalling are examined. Estimates are made of the value, in terms of fuel cost, of weight reduction of freight cars and of selective train marshalling.

  20. Table 4b. Relative Standard Errors for Total Fuel Oil Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil...

  1. Table 5.1 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  2. Table 5.3 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL

  3. South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 5 7 5 4 4 10 8 10 2000's 10 13 13 16 18 0 W 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered

  4. Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Consumption (Million Cubic Feet) Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 2 4 6 8 13 40 31 38 2000's 43 53 54 66 74 4 2 1 1 1 2010's 1 0 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to

  5. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 1 3 8 8 12 15 41 40 49 2000's 54 67 68 83 93 3 1 1 1 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered

  6. Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7 7 6 5 6 5 35 1990's 71 45 41 49 61 57 58 51 46 35 2000's 36 40 58 18 25 23 23 20 20 17 2010's 19 17 12 4 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas

  7. Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 982 966 7,077 4,709 6,270 6,646 7,646 1990's 637 188 268 352 467 468 451 508 405 405 2000's 441 653 890 504 490 433 509 404 470 489 2010's 529 423 622 797 871 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  8. Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vehicle Fuel Consumption (Million Cubic Feet) Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 0 0 0 1 1 1 21 27 33 2000's 37 46 46 56 63 9 6 5 4 1 2010's 1 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to

  9. Illinois Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Lease Fuel Consumption (Million Cubic Feet) Illinois Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29 47 39 54 47 38 35 1990's 22 10 9 10 10 7 7 6 5 4 2000's 4 4 4 4 4 4 4 39 41 62 2010's 50 101 122 122 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  10. Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 439 457 542 437 449 474 519 1990's 557 518 423 295 206 168 168 188 208 235 2000's 218 396 249 512 606 697 820 816 788 771 2010's 800 604 612 645 657 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  11. Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 2 4 6 8 13 40 31 38 2000's 43 53 54 66 74 4 2 1 1 1 2010's 1 0 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to

  12. Nebraska Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Nebraska Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 70 57 40 43 26 21 1990's 26 17 31 56 86 58 43 38 37 29 2000's 31 29 295 286 302 236 176 182 395 359 2010's 331 287 194 194 62 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  13. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 1 3 8 8 12 15 41 40 49 2000's 54 67 68 83 93 3 1 1 1 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered

  14. Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 50 63 71 69 96 88 87 1990's 14 14 16 20 36 32 37 39 40 42 2000's 43 40 37 17 18 12 8 5 0 0 2010's 0 0 127 202 468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural

  15. Oregon Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Oregon Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 120 131 130 115 59 1990's 93 60 68 118 95 66 40 0 0 0 2000's 49 42 40 43 27 21 24 23 26 26 2010's 31 39 44 44 25 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  16. Pennsylvania Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 158 171 148 171 205 191 218 1990's 156 159 341 235 116 181 217 253 222 274 2000's 208 272 251 343 395 483 549 495 575 599 2010's 881 963 2,529 9,200 11,602 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  17. South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 61 76 93 70 125 123 112 1990's 158 393 451 452 437 404 424 911 848 864 2000's 1,003 538 495 553 562 545 508 573 545 568 2010's 562 594 866 916 827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  18. South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 5 7 5 4 4 10 8 10 2000's 10 13 13 16 18 0 W 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered

  19. Tennessee Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Tennessee Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113 153 138 98 93 60 45 1990's 68 41 39 49 44 47 37 45 31 26 2000's 29 48 80 47 46 68 66 109 161 235 2010's 214 231 335 335 142 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  20. Washington Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Lease and Plant Fuel Consumption (Million Cubic Feet) Washington Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 440 326 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural

  1. Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 0 0 0 1 1 1 21 27 33 2000's 37 46 46 56 63 9 6 5 4 1 2010's 1 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to

  2. Indiana Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Indiana Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4 12 11 10 7 12 10 1990's 13 5 5 6 2 5 8 12 13 18 2000's 23 26 51 38 74 97 108 101 161 211 2010's 283 433 506 506 177 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  3. Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,025 7,165 6,940 4,056 852 830 627 1990's 657 702 707 689 611 702 682 641 548 641 2000's 419 475 535 536 617 698 653 691 587 391 2010's 772 278 641 280 278 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  4. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss077_shidore_2012_o.pdf More Documents & Publications Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Government Performance Result Act (GPRA) / Portfolio

  5. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  6. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012...

  7. Table 4.1 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4

  8. Table 4.2 Offsite-Produced Fuel Consumption, 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,113 258 12 22 579 5 182 2 54 3112 Grain and Oilseed Milling 346 57 * 1 121 * 126 0 41 311221 Wet Corn Milling 214 26 * * 53 * 110 0 25 31131 Sugar Manufacturing 72 4 1

  9. Table 4.3 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Residual Distillate Natural LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,038 314 6 53 445 14 25 Q 181 20-49 918 296 11 19 381 10 97 5 97 50-99 1,018 308 7 13 440 5 130 6 110

  10. Reduction of Heavy-Duty Fuel Consumption and CO2 Generation ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Fuel Consumption and CO2 Generation -- What the Industry Does and What the Government Can Do Reduction of Heavy-Duty Fuel Consumption and CO2 Generation -- What the ...

  11. Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,600 4,154 4,227 4,139 5,314 5,021 4,277 1990's 6,171 4,907 8,391 8,912 9,381 10,468 10,492 7,020 7,650 9,954 2000's 10,410 9,593 9,521 11,470 11,809 11,291 12,045 11,345 11,136 10,460 2010's 10,163 10,367 12,389 12,456 10,055 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,129 1,178 1,249 1,303 1,564 1,634 1,875 1990's 3,710 3,720 4,477 4,453 3,747 3,806 2,827 2,468 2,391 5,336 2000's 5,377 3,491 4,148 3,293 3,914 3,740 6,028 6,269 6,858 6,470 2010's 6,441 6,939 6,616 6,804 6,462 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,603 109,333 62,341 71,104 112,404 151,280 189,702 1990's 166,155 187,106 197,975 202,199 200,809 253,695 255,500 230,578 242,271 224,355 2000's 226,659 229,206 241,469 255,701 237,530 259,829 218,153 227,374 211,878 219,161 2010's 211,918 208,531 214,335 219,190 219,451 - = No Data Reported; -- = Not

  14. Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,225 1,736 1,807 1,582 4,278 2,390 2,537 1990's 27,720 36,088 36,741 35,503 37,347 39,116 40,334 40,706 39,601 41,149 2000's 42,519 42,243 44,008 44,762 44,016 43,386 38,938 41,197 40,286 39,447 2010's 37,316 35,339 37,397 36,638 36,707 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  15. Arkansas Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,402 4,956 5,362 4,353 5,720 5,469 3,940 1990's 6,464 1,218 5,570 6,053 4,283 5,083 5,124 6,349 7,980 1,822 2000's 1,468 849 536 615 1,364 1,288 1,351 1,502 2,521 4,091 2010's 5,340 6,173 6,599 6,605 6,452 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  16. Illinois Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Consumption (Million Cubic Feet) Illinois Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,844 4,379 4,198 3,944 3,378 24 17 1990's 109 132 98 106 101 90 75 80 84 83 2000's 73 60 66 58 63 56 45 45 48 41 2010's 4,559 4,917 4,896 4,917 288 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  17. Michigan Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,135 4,574 4,053 3,778 5,251 4,354 3,862 1990's 5,882 6,252 4,178 4,889 6,399 6,198 5,478 9,386 6,160 5,954 2000's 7,689 6,799 10,925 6,309 5,755 8,276 7,932 7,588 5,447 6,841 2010's 6,626 5,857 7,428 7,248 5,948 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,995 4,136 4,142 3,831 4,365 3,896 4,141 1990's 3,212 3,343 3,096 3,282 3,367 3,337 3,011 2,674 3,073 2,912 2000's 2,455 2,587 2,445 2,798 2,419 2,318 2,363 2,076 1,982 1,686 2010's 1,684 1,303 1,174 1,071 1,152 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  19. Mississippi Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,777 6,372 5,655 5,971 7,706 6,802 4,741 1990's 6,636 3,877 4,372 4,291 3,169 3,108 3,202 3,280 3,347 3,283 2000's 2,962 3,304 3,818 4,243 4,559 4,718 5,473 7,068 8,976 9,090 2010's 10,388 2,107 3,667 2,663 1,487 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  20. Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  1. Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 855 830 641 591 385 298 280 1990's 621 708 573 538 463 399 382 372 363 638 2000's 786 722 758 251 895 1,018 1,138 1,196 1,140 1,150 2010's 1,155 1,042 1,111 1,103 1,310 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. Montana Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Montana Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,531 1,612 1,596 1,371 1,639 1,520 1,247 1990's 1,705 1,162 1,448 2,084 2,037 2,070 2,233 2,089 1,792 798 2000's 2,360 2,644 3,113 3,543 3,933 4,502 4,864 4,327 4,067 3,371 2010's 3,265 2,613 3,845 3,845 1,793 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  3. New Mexico Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 26,231 29,787 27,294 20,497 28,958 23,288 20,828 1990's 32,573 11,826 14,805 12,832 18,476 16,134 17,901 18,476 17,728 16,738 2000's 38,944 37,094 34,686 36,339 40,977 41,815 44,880 47,525 49,753 49,655 2010's 49,070 47,556 47,696 47,018 49,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. New Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,399 20,875 19,415 15,118 19,180 18,418 21,396 1990's 33,316 32,940 38,892 36,826 36,310 36,455 63,850 45,982 41,926 39,345 2000's 41,863 39,501 38,973 37,620 42,601 35,508 33,435 35,600 36,571 36,827 2010's 35,289 38,331 37,195 33,121 35,269 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. North Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,014 2,398 2,494 2,017 2,457 1,902 1,383 1990's 2,104 6,806 3,709 3,522 6,247 6,800 7,320 4,152 3,838 4,153 2000's 4,724 4,528 4,786 4,889 3,237 2,488 2,644 2,699 3,472 2,986 2010's 3,753 3,200 4,595 6,486 8,683 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  6. North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,086 2,165 2,216 1,957 2,737 2,112 2,005 1990's 4,835 4,777 4,753 4,734 5,059 4,542 4,283 4,420 4,471 4,553 2000's 4,738 3,874 5,141 4,548 4,602 4,816 4,364 4,323 4,283 4,521 2010's 4,294 5,473 5,887 6,707 5,736 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  7. Ohio Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,327 5,678 5,371 5,174 5,706 4,781 3,789 1990's 5,115 1,462 1,434 1,346 1,296 1,251 1,193 1,162 1,085 1,035 2000's 986 983 972 936 894 833 855 872 840 879 2010's 773 781 836 1,079 4,247 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  8. Oklahoma Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 49,480 60,470 57,064 54,495 68,664 60,418 51,833 1990's 72,318 46,200 53,278 60,658 55,607 45,946 37,803 51,042 35,509 32,868 2000's 41,032 38,916 30,281 40,292 35,875 35,989 36,396 38,229 42,250 40,164 2010's 39,489 40,819 43,727 45,581 50,621 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  9. Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 32,119 36,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. Pennsylvania Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,385 5,065 4,427 4,544 5,594 4,792 4,549 1990's 5,875 3,343 3,040 3,910 3,136 2,888 3,082 2,022 1,484 3,675 2000's 5,111 5,469 6,154 4,156 4,277 4,341 5,855 5,112 6,801 11,753 2010's 19,805 46,784 79,783 115,630 112,847 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,270 1,530 1,924 1970's 2,251 2,419 2,847 2,725 1,649 1,760 3,043 3,210 2,134 2,889 1980's 1,320 1,580 3,278 3,543 5,236 4,575 4,715 5,799 4,983 4,767 1990's 6,031 3,502 3,381 4,145 3,252 3,069 3,299 2,275 1,706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  12. Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,806 5,621 6,286 6,775 8,970 7,970 6,596 1990's 10,573 4,597 3,866 3,241 3,322 18,520 18,570 16,478 19,481 15,930 2000's 16,394 14,578 17,163 16,398 15,802 17,216 20,221 21,715 18,169 20,222 2010's 22,022 23,209 28,165 28,165 25,336 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,732 2,754 2,715 6,514 8,701 8,919 9,615 1990's 9,146 9,141 8,745 9,285 9,951 8,492 8,549 8,141 7,985 7,880 2000's 8,276 5,436 4,534 4,481 3,370 3,914 3,739 2,779 2,206 1,573 2010's 1,616 3,063 3,031 5,996 4,782 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Virginia Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Virginia Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 124 272 443 438 669 536 425 1990's 489 327 653 1,120 1,102 1,296 1,183 1,330 1,243 1,519 2000's 1,820 1,641 3,000 2,108 3,307 2,749 3,809 3,143 4,406 6,040 2010's 6,121 7,206 8,408 8,408 7,252 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  15. California Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) California Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 14,569 17,498 17,575 15,868 18,066 14,370 11,065 1990's 14,754 96,442 84,220 80,210 63,251 62,160 63,297 69,386 68,370 61,810 2000's 60,757 49,766 41,878 39,452 37,337 37,865 57,234 56,936 64,689 63,127 2010's 64,931 44,379 51,154 49,846 54,288 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  16. California Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) California Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 100,497 93,074 82,996 1970's 92,119 75,241 68,738 72,574 71,686 84,843 78,967 79,425 69,624 65,787 1980's 62,824 53,655 22,275 22,231 25,213 25,274 22,973 26,846 22,778 19,586 1990's 22,712 104,251 92,228 87,306 69,639 66,447 67,817 74,182 72,881 - = No Data Reported; -- = Not

  17. California Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) California Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,662 7,715 7,699 7,105 8,780 8,408 8,521 1990's 7,958 7,809 8,008 7,096 6,388 4,287 4,520 4,796 4,511 4,212 2000's 3,572 2,893 2,781 2,568 2,760 2,875 2,475 2,540 2,318 2,611 2010's 2,370 2,253 2,417 2,834 2,361 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,943 5,500 5,586 4,991 6,380 6,081 5,630 1990's 8,888 14,802 8,936 12,969 11,865 11,570 12,598 17,150 18,874 23,695 2000's 23,790 26,907 27,708 32,886 34,178 35,866 38,088 39,347 44,231 64,873 2010's 66,083 78,800 76,462 71,105 74,402 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  19. Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,057 5,060 5,243 4,406 5,715 5,541 6,591 1990's 8,455 9,081 12,233 11,863 12,482 13,560 14,894 12,435 12,200 12,863 2000's 13,064 13,871 15,904 15,927 17,093 15,641 16,347 16,218 18,613 21,288 2010's 25,090 28,265 29,383 25,806 30,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  20. Florida Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Florida Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 668 422 392 278 313 241 208 1990's 250 2,413 3,819 476 653 620 2,049 2,321 2,200 2,240 2000's 2,307 2,154 1,262 1,133 1,178 987 896 654 897 94 2010's 4,512 4,896 6,080 5,609 6,551 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  1. Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,852 7,425 6,782 5,878 7,250 7,034 8,734 1990's 1,466 1,338 1,315 1,241 167 145 125 113 129 147 2000's 157 127 124 112 102 286 796 671 83 0 2010's 0 0 0 0 272 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  2. Kansas Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,471 14,232 15,160 13,269 15,701 16,571 13,965 1990's 18,415 13,814 17,424 20,363 15,623 18,772 18,752 20,641 13,068 11,611 2000's 13,338 11,598 17,693 10,861 8,589 11,734 13,681 10,232 12,803 15,169 2010's 13,461 12,781 17,017 17,110 14,851 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 25,430 25,873 27,297 25,616 28,804 29,357 29,665 1990's 22,499 30,800 26,312 36,294 28,988 28,510 30,444 26,205 20,921 19,321 2000's 16,664 10,928 11,723 9,706 6,460 8,100 7,541 5,439 2,331 2,126 2010's 2,102 2,246 2,268 2,189 1,983 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  4. Kentucky Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,336 1,873 2,155 2,279 2,402 2,112 1,718 1990's 2,492 1,730 2,105 2,573 2,162 1,945 1,744 1,816 1,777 1,615 2000's 2,075 1,980 3,442 2,278 2,044 2,879 3,524 2,676 3,914 4,862 2010's 5,626 5,925 6,095 6,095 4,388 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Louisiana Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 153,850 179,291 153,777 141,098 178,271 150,519 121,991 1990's 175,439 111,793 134,088 147,888 140,571 133,825 144,486 156,387 131,595 111,203 2000's 130,550 37,811 34,285 51,254 48,308 45,543 49,124 61,368 52,941 56,656 2010's 59,336 80,983 54,463 57,549 58,034 - = No Data Reported; -- = Not Applicable; NA =

  6. Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 34,179 30,527 - = No Data Reported; -- = Not Applicable; NA = Not

  7. West Virginia Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,720 4,377 4,270 3,849 5,480 5,017 4,203 1990's 6,427 4,353 4,807 3,749 4,815 4,846 4,292 4,500 4,549 3,705 2000's 6,720 6,384 7,420 4,881 4,277 6,729 8,339 6,483 8,423 11,348 2010's 11,348 15,571 21,569 28,682 27,853 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. West Virginia Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,106 2,855 2,920 2,809 3,355 3,326 3,679 1990's 3,204 3,391 3,290 3,316 3,272 3,199 2,262 2,710 2,344 2,209 2000's 2,505 2,342 2,186 1,361 723 281 315 309 283 698 2010's 810 1,153 1,812 3,429 6,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Wyoming Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,438 18,274 17,619 16,966 25,122 23,252 20,541 1990's 29,233 20,988 27,382 7,592 4,676 4,570 4,252 4,099 3,477 3,125 2000's 3,236 4,032 4,369 4,590 4,823 5,010 5,279 33,309 35,569 36,290 2010's 34,459 39,114 33,826 32,004 21,811 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 27,935 25,782 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment Most lawn and garden equipment uses gasoline instead of diesel fuel. Mowing equipment consumes nearly half of all the fuel used by lawn and garden equipment. The fuel used in this equipment accounts for only 1.8% of total gasoline use. Fuel Consumption from Lawn and Garden Equipment, 2008 Bar graph showing the fuel consumption

  12. Penta Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Penta Charts Penta Charts A penta chart is a concise one-page description of a specific technical topic, project or capability, created by individuals or teams at LANL. Penta charts cover a wide range of technical capabilities at various stages of development at the Laboratory. Contact Business Development Team Richard P. Feynman Center for Innovation Email Small Self-Regulating Fission Reactor System (pdf) Small Self-Regulating Fission Reactor System Resilience / Fault Injection Research (pdf)

  13. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    SciTech Connect (OSTI)

    Bunting, Bruce G

    2012-01-01

    Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

  14. Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organization Chart Organization Chart Organization Chart Printable PDF Mission Leadership

  15. Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Equipped with a Lean-NOx Trap | Department of Energy NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Lean-burn improves PFI fuel economy by ~3% relative to best stoichiometric VCT/EGR conditions, when used in combination with VCT & EGR. PDF icon deer09_lymburner.pdf More Documents & Publications Vehicle Technologies Office Merit

  16. Table 3.5 Selected Byproducts in Fuel Consumption, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor","

  17. Table 3.5 Selected Byproducts in Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Selected Byproducts in Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Blast Pulping Liquor NAICS Furnace/Coke Petroleum or Wood Chips, Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Total United States 311 Food 11 0 7 0 0 1 3112 Grain and Oilseed Milling 5 0 2 0 0 * 311221 Wet Corn Milling * 0 * 0 0 0 31131 Sugar Manufacturing * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty

  18. Table 4.3 Offsite-Produced Fuel Consumption, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE"

  19. Table E3.1. Fuel Consumption, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE"

  20. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas

  1. Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas

  2. Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas

  3. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to Vehicle

  4. South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to Vehicle

  5. Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas

  6. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ,"

  7. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in Barrels per Day) " ,,,,," Input for Heat,",,," Primary" " ",," Consumption for All Purposes",,,"Power, and Generation of Electricity",,," Consumption for Nonfuel Purposes ",,,"RSE" "SIC",,"

  8. Federal Offshore--Gulf of Mexico Natural Gas Plant Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Gulf of Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption Gulf of Mexico Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  9. Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels ADVANCED MANUFACTURING OFFICE Enabling Clean Combustion of Low-Btu and Reactive Fuels in Gas Turbines By enabling ultralow-emission, lean premixed combustion of a wide range of gaseous opportunity fuels, this unique, fuel- fexible catalytic combustor for gas turbines can reduce natural gas consumption in industry. Introduction Gas turbines are commonly used in industry for onsite power and heating needs because of their high

  10. Notices CHART

    Energy Savers [EERE]

    436 Federal Register / Vol. 78, No. 168 / Thursday, August 29, 2013 / Notices CHART 5-FIXED-RATE FEDERAL SUBSIDIZED AND UNSUBSIDIZED STAFFORD AND PLUS LOANS-Continued Loan type Student grade level First disbursed on or after First disbursed before Rate (percent) Unsubsidized ................................................... All Students .................................................... 7/1/2006 7/1/2010 6.80 PLUS ............................................................... Parents and

  11. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  12. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  13. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  14. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity Consumption and Conditional Energy Intensity, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using Electricity (million square...

  15. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  16. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  17. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  20. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of Buildings Using Electricity...

  1. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  2. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  3. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  6. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  7. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  8. Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines ADVANCED MANUFACTURING OFFICE Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines Introduction Gas turbines-heat engines that use high-temperature and high-pressure gas as the combustible fuel-are used extensively throughout U.S. industry to power industrial processes. The majority of turbines are operated using natural gas because of its availability, low cost, and

  9. Optimization to reduce fuel consumption in charge depleting mode

    DOE Patents [OSTI]

    Roos, Bryan Nathaniel; Martini, Ryan D.

    2014-08-26

    A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

  10. EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected...

    Gasoline and Diesel Fuel Update (EIA)

    b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector...

  11. EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for...

    Gasoline and Diesel Fuel Update (EIA)

    b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS...

  12. Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors

    Broader source: Energy.gov [DOE]

    The National Highway Traffic Safety Administration published a final rule setting fuel consumption standards for heavy trucks in September 2011. For tractor-trailers, the standards focus on the...

  13. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles

    Broader source: Energy.gov [DOE]

    Based on a worksheet developed by Argonne National Laboratory, the idle fuel consumption rate for selected gasoline and diesel vehicles with no load (no use of accessories such as air conditioners,...

  14. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Model Documentation: Electricity Generation and Fuel Consumption Models January 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Model Documentation: Electricity Generation and Fuel Consumption Models i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts

  15. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DRIVING IN LABORATORY CONDITIONS | Department of Energy HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_erkkila.pdf More Documents & Publications Evaluating Exhaust Emission Performance of Urban Buses Using Transient Heavy-Duty

  16. Table 10.5 Estimated Number of Alternative-Fueled Vehicles in Use and Fuel Consumption, 1992-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Number of Alternative-Fueled Vehicles in Use and Fuel Consumption, 1992-2010 Year Alternative and Replacement Fuels 1 Liquefied Petroleum Gases Compressed Natural Gas Liquefied Natural Gas Methanol, 85 Percent (M85) 3 Methanol, Neat (M100) 4 Ethanol, 85 Percent (E85) 3,5 Ethanol, 95 Percent (E95) 3 Elec- tricity 6 Hydro- gen Other Fuels 7 Subtotal Oxygenates 2 Bio- diesel 10 Total Methyl Tertiary Butyl Ether 8 Ethanol in Gasohol 9 Total Alternative-Fueled Vehicles in Use 11

  17. Organizational Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organizational Chart Organizational Chart AU Organizational Chart, December 22, 2015 Full Resolution Version News

  18. Organizational Chart | Department of Energy

    Energy Savers [EERE]

    Chart Office presentation icon Organizational Chart More Documents & Publications IEA Organizational Chart Office of International Affairs Org Chart Chart of breakout of...

  19. Public Affairs Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Affairs Organization Chart Public Affairs Communications Community Public Affairs Org Chart Education Creative Services Navigate Section Public Affairs Communications...

  20. Fact #704: December 5, 2011 Fuel Consumption Standards for New Heavy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pickups and Vans | Department of Energy 4: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans Fact #704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans In September 2011 the National Highway Traffic Safety Administration issued the final rule to set standards regulating the fuel use of new vehicles heavier than 8,500 lbs. gross vehicle weight. Included in the new standards are pickup trucks over 8,500 lbs., cargo trucks over 8,500 lbs., and

  1. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Relative to the baseline school bus, the PHEV fuel savings in charge-depleting (CD) mode ... PHEV school bus would initially operate in CD mode for some distance, then in a ...

  2. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  3. ,"Montana Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Nebraska Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"Nevada Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"New Hampshire Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"New Jersey Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  8. ,"New Mexico Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. ,"New York Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"North Carolina Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  11. ,"North Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  12. ,"Ohio Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  13. ,"Oklahoma Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  14. ,"Oregon Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  15. ,"Pennsylvania Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  16. ,"Rhode Island Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"South Carolina Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"Tennessee Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"Texas Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"Utah Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. ,"Vermont Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Washington Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"West Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"Wisconsin Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"Wyoming Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  8. Arizona Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Arizona Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 33 20 34 1970's 50 50 44 39 0 0 0 0 0 0 1980's 0 222 7 7 7 6 5 6 5 35 1990's 71 45 41 49 61 57 58 51 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  9. Missouri Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Missouri Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 494 0 1980's 0 0 0 0 0 0 0 0 1990's 0 0 1 0 0 0 1 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas

  10. Nevada Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Nevada Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 168 0 0 0 0 0 0 1990's 0 53 30 21 16 1 11 9 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas

  11. Oregon Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Oregon Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 32 30 37 30 30 1980's 0 0 0 0 0 120 131 130 115 59 1990's 93 60 68 118 95 66 40 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  12. Rhode Island Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Lease and Plant Fuel Consumption (Million Cubic Feet) Rhode Island Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 4 0 0 0 0 0 0 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural

  13. South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 63 61 76 93 70 125 123 112 1990's 158 393 451 452 437 404 424 911 848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  14. Tennessee Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Tennessee Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 355 753 986 1970's 1,265 1,524 1,150 1,263 1,087 387 537 509 516 616 1980's 0 0 78 113 153 138 98 93 60 45 1990's 74 44 39 49 44 47 37 45 31 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  15. Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 128 211 1970's 252 213 157 170 307 168 157 157 191 266 1980's 240 361 181 124 272 443 438 669 536 425 1990's 489 327 653 1,120 1,102 1,296 1,183 1,330 1,243 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  16. ,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"Alaska Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Arizona Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"California Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"Colorado Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. ,"Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"Delaware Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Florida Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"Georgia Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"Idaho Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  8. ,"Illinois Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. ,"Indiana Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"Iowa Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  11. ,"Kansas Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  12. ,"Kentucky Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  13. ,"Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  14. ,"Maine Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  15. ,"Maryland Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  16. ,"Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"Michigan Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Minnesota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"Mississippi Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"Missouri Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease and Plant Fuel Consumption (Million Cubic Feet) Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Lease and

  2. Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease and Plant Fuel Consumption (Million Cubic Feet) Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 38 5 6 22 4 1980's 7 0 0 0 0 0 0 0 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Lease and

  3. Indiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Indiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5 0 0 1970's 0 0 0 0 0 0 0 0 0 1 1980's 7 51 10 4 12 11 10 7 12 10 1990's 13 5 5 6 2 5 8 12 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  4. Maryland Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Maryland Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 257 310 381 1970's 319 451 67 474 392 277 415 342 889 2,488 1980's 0 0 1 1 2 1 1 2 1 1 1990's 1 0 0 1 1 1 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  5. Estimate of Fuel Consumption and GHG Emission Impact on an Automated Mobility District: Preprint

    SciTech Connect (OSTI)

    Chen, Yuche; Young, Stanley; Gonder, Jeff; Qi, Xuewei

    2015-12-11

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  6. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West North Central","South Atlantic","East South Central","West North...

  7. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  8. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West South Central","Moun- tain","Pacific","West South Central","Moun-...

  9. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  10. Organizational Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chart Organizational Chart Office presentation icon Organizational Chart More Documents & Publications IEA Organizational Chart Office of International Affairs Org Chart Chart of breakout of funds by major FSC

  11. Edison Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Size Charts Edison Job Size Charts Fraction of Hours Used per Job Size This chart shows the fraction of hours used on Edison in each of 5 job-core-size bins. 2015 Usage by Job Size Chart 2014 Fraction of Hours Used by Big Jobs This chart shows the fraction of hours used on Edison by jobs using 16,384 or more cores. 2015 Usage by Job Size Chart 2014 Last edited: 2015-02-18 16:06:26

  12. Hopper Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Size Charts Hopper Job Size Charts Fractional Jobs The following charts show the fraction of hours used on Hopper in each of five job-core-size bins: 2014 Usage by Job Size Chart 2013 2012 2011 Large Jobs The following charts show the fraction of hours used on Hopper by jobs using greater than 16,384 cores: 2014 2013 2012 Usage by Job Size Chart 2011 Last edited: 2014-12-22 12:16:26

  13. Organization Chart - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LSD Logo About Us People & Organization Research News & Events Safety Internal Resources Organization Chart Departments Scientific Staff Directory Committees Organization Chart...

  14. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1959 or Before","1960 to 1989","1990 to 2003","1959 or Before","1960 to...

  15. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  16. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"New England","Middle Atlantic","East North Central","New England","Middle...

  17. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"Zone 1","Zone 2","Zone 3","Zone 4","Zone 5","Zone 1","Zone 2","Zone 3","Zone...

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1959 or Before","1960 to 1989","1990 to 1999","1959 or Before","1960 to...

  20. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect (OSTI)

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  1. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  2. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  3. Cost and Quality of Fuels for Electric Plants - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Electric power plants generating capacity Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Revenue and

  4. Reduction of Heavy-Duty Fuel Consumption and CO2 Generation-- What the Industry Does and What the Government Can Do

    Broader source: Energy.gov [DOE]

    Smart regulations, funding for advanced technologies, and improvements to operations and infrastructure play important roles in reducing fuel consumption

  5. Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 162 152 150 1970's 214 476 1,070 1,329 1,301 1,968 2,714 5,444 3,371 21,454 1980's 9,990 5,804 5,037 4,729 5,332 5,476 5,442 6,878 6,655 6,152 1990's 9,881 8,627 12,868 13,365 0 14,274 13,319 9,488 10,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,659 2,240 6,864 1970's 4,748 8,459 16,056 15,217 14,402 17,842 15,972 17,336 15,895 12,153 1980's 30,250 15,249 94,232 97,828 111,069 64,148 72,686 116,682 153,670 192,239 1990's 193,875 223,194 234,716 237,702 238,156 292,811 295,834 271,284 281,872 - = No Data Reported; -- = Not Applicable;

  7. Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,267 4,027 6,268 1970's 9,184 6,433 4,740 3,000 4,246 4,200 4,049 4,032 3,760 7,661 1980's 1,949 2,549 5,096 5,384 5,922 12,439 9,062 11,990 12,115 11,586 1990's 7,101 1,406 5,838 6,405 4,750 5,551 5,575 6,857 8,385 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  8. Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Natural Gas Lease Fuel Consumption (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 114,017 109,277 98,372 90,025 78,139 102,242 115,528 102,389 103,976 2010's 108,490 101,217 93,985 95,207 93,855 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  9. Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,798 2,012 2,074 1970's 3,440 2,145 2,143 2,551 3,194 8,420 7,647 8,022 11,076 14,695 1980's 6,494 3,461 9,699 8,130 8,710 8,195 7,609 9,616 8,250 8,003 1990's 9,094 9,595 7,274 8,171 9,766 9,535 8,489 12,060 9,233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  10. Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,904 5,188 6,183 1970's 5,091 6,148 5,924 4,281 3,683 2,315 2,754 2,972 2,792 4,796 1980's 3,425 1,832 2,012 1,970 2,069 2,138 1,808 2,088 1,994 1,766 1990's 2,262 1,680 1,871 2,379 2,243 2,238 2,401 2,277 2,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Nebraska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Nebraska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,164 1,945 1,877 1970's 1,650 1,275 814 1,809 1,194 1,036 708 695 1,160 1,867 1980's 3,779 132 107 94 105 87 59 74 47 34 1990's 26 31 40 56 89 60 46 45 37 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  12. New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,793 46,331 45,309 1970's 47,998 46,114 48,803 52,553 43,452 38,604 49,160 43,751 37,880 50,798 1980's 36,859 22,685 55,722 47,630 50,662 46,709 35,615 48,138 41,706 42,224 1990's 65,889 44,766 53,697 49,658 54,786 52,589 81,751 64,458 59,654 - = No Data Reported; -- = Not

  13. North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,133 16,163 14,691 1970's 14,067 13,990 12,773 12,462 11,483 12,008 15,998 13,697 12,218 3,950 1980's 1,017 13,759 3,514 4,100 4,563 4,710 3,974 5,194 4,014 3,388 1990's 6,939 11,583 8,462 8,256 11,306 11,342 11,603 8,572 8,309 - = No Data Reported; -- = Not Applicable; NA =

  14. Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 3,505 2,879 1970's 3,140 4,302 3,397 3,548 2,957 2,925 2,742 2,814 3,477 22,094 1980's 1,941 1,776 3,671 4,377 5,741 5,442 5,243 5,802 4,869 3,876 1990's 5,129 1,476 1,450 1,366 1,332 1,283 1,230 1,201 1,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 65,167 84,259 103,361 1970's 98,417 101,126 98,784 80,233 80,780 79,728 84,025 77,631 82,046 128,475 1980's 59,934 56,785 91,465 79,230 91,707 88,185 84,200 104,415 100,926 90,225 1990's 111,567 88,366 92,978 99,869 91,039 80,846 73,039 81,412 61,543 - = No Data Reported; -- = Not Applicable;

  16. U.S. Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Fuel Consumption (Million Cubic Feet) U.S. Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 595,172 687,356 598,475 573,793 741,268 697,703 640,633 1990's 807,735 672,314 710,250 723,118 699,842 792,315 799,629 776,306 771,366 679,480 2000's 746,889 747,411 730,579 758,380 731,563 756,324 782,992 861,063 864,113 913,229 2010's 916,797 938,340 987,957 1,068,289 1,074,943 - = No Data Reported; -- = Not

  17. U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 383,077 389,525 367,572 348,731 408,115 398,180 429,269 1990's 428,657 456,954 460,571 448,822 423,878 427,853 450,033 426,873 401,314 399,509 2000's 404,059 371,141 382,503 363,903 366,341 355,193 358,985 365,323 355,590 362,009 2010's 368,830 384,248 408,316 414,796 425,238 - = No Data Reported; -- = Not

  18. Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,956 1,503 2,113 1970's 633 2,115 1,978 2,435 4,193 7,240 9,150 7,585 8,325 14,123 1980's 7,594 511 5,965 4,538 8,375 9,001 13,289 17,671 16,889 16,211 1990's 19,719 13,738 12,611 12,526 13,273 27,012 27,119 24,619 27,466 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,668 2,361 2,604 1970's 2,726 3,231 4,676 7,202 5,822 7,673 7,739 9,124 10,619 21,610 1980's 7,041 7,093 13,673 10,000 10,560 10,829 9,397 12,095 11,622 12,221 1990's 17,343 23,883 21,169 24,832 24,347 25,130 27,492 29,585 31,074 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  20. Florida Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Florida Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 210 201 176 1970's 234 294 1,782 3,027 2,700 6,304 6,306 4,890 5,314 7,628 1980's 8,284 9,035 10,603 8,520 7,847 7,174 6,156 7,563 7,275 8,942 1990's 1,716 3,751 5,134 1,717 820 765 2,174 2,434 2,329 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,842 15,867 17,587 1970's 20,841 27,972 28,183 32,663 35,350 27,212 31,044 29,142 30,491 48,663 1980's 24,521 19,665 41,392 37,901 40,105 42,457 38,885 44,505 45,928 43,630 1990's 40,914 44,614 43,736 56,657 44,611 47,282 49,196 46,846 33,989 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,828 1,992 2,277 1970's 2,317 2,212 1,509 1,238 1,206 1,218 1,040 1,107 1,160 1,214 1980's 989 1,040 9,772 8,361 9,038 9,095 6,335 3,254 2,942 2,345 1990's 3,149 2,432 2,812 3,262 2,773 2,647 2,426 2,457 2,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  3. Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 195,990 212,134 273,213 1970's 287,222 292,589 312,145 336,832 347,098 301,816 556,772 591,292 558,877 305,181 1980's 196,033 180,687 337,398 275,698 303,284 258,069 243,283 301,279 272,455 256,123 1990's 258,267 195,526 220,711 222,813 207,171 209,670 213,721 227,542 194,963 - = No Data

  4. West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,052 2,276 0 1970's 2,551 3,043 3,808 2,160 1,909 1,791 1,490 1,527 1,233 1,218 1980's 2,482 2,515 6,426 5,826 7,232 7,190 6,658 8,835 8,343 7,882 1990's 9,631 7,744 8,097 7,065 8,087 8,045 6,554 7,210 6,893 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. Wyoming Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,722 17,271 19,964 1970's 19,625 20,348 22,402 21,151 14,302 15,102 16,726 16,601 20,363 31,081 1980's 17,763 17,527 26,559 28,010 34,459 34,709 30,599 41,371 40,698 40,361 1990's 41,415 35,142 40,599 20,643 18,615 19,466 19,661 19,696 20,001 - = No Data Reported; -- = Not Applicable; NA =

  6. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Organization Chart Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart ⇒ Navigate Section Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart Berkeley Lab Organization Chart ESnet Protective Services ETA/ESDR ETA/EAEI ETA Chief Operating Officer Laboratory Council RIIO Sustainability Deputy Director Innovation & Partnerships Office Public Affairs Information Technology Office of the Chief Financial Officer Human

  7. Organization Chart | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Chart Download Other Organization Charts Computing, Environment, and Life Sciences Energy and Global Security Physical Science and Engineering Photon Sciences PDF icon argonne_org_chart

  8. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Expenditures Electricity Consumption Natural Gas Consumption Wood and Solar Energy Consumption Fuel Oil and District Heat Consumption Energy Consumption in...

  9. Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass

    SciTech Connect (OSTI)

    Lammert, M. P.; Duran, A.; Diez, J.; Burton, K.; Nicholson, A.

    2014-10-01

    This research project evaluates fuel consumption results of two Class 8 tractor-trailer combinations platooned together compared to their standalone fuel consumption. A series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights (GVWs). The steady-state speeds ranged from 55 mph to 70 mph, the following distances ranged from a 20-ft following distance to a 75-ft following distance, and the GVWs were 65K lbs and 80K lbs. All tractors involved had U.S. Environmental Protection Agency (EPA) SmartWay-compliant aerodynamics packages installed, and the trailers were equipped with side skirts. Effects of vehicle speed, following distance, and GVW on fuel consumption were observed and analyzed. The platooning demonstration system used in this study consisted of radar systems, Dedicated Short-Range Communication (DSRC) vehicle-to-vehicle (V2V) communications, vehicle braking and torque control interface, cameras and driver displays. The lead tractor consistently demonstrated an improvement in average fuel consumption reduction as following distance decreased, with results showing 2.7% to 5.3% fuel savings at a GVW of 65k. The trailing vehicle achieved fuel consumption savings ranging from 2.8% to 9.7%; tests during which the engine cooling fan did not operate achieved savings of 8.4% to 9.7%. 'Team' fuel savings, considering the platooned vehicles as one, ranged from 3.7% to 6.4%, with the best combined result being for 55 mph, 30-ft following distance, and 65k GVW.

  10. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus Preprint Robb Barnitt and Jeff Gonder To be presented at the SAE 2011 World Congress Detroit, Michigan April 12-14, 2011 Conference Paper NREL/CP-5400-50251 April 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain

  11. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0

  12. Table N5.1. Selected Byproducts in Fuel Consumption, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor","

  13. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect (OSTI)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  14. Organizational Chart - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    194_v2.jpg Organizational Chart Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  15. GS Equivalency Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for General Schedule (i.e., annual) positions. The Chart provides guidance for Human Resource Specialists and Assistants in making qualification determinations when BPA...

  16. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " ","

  17. Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " ","

  18. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand)...

  19. Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.

    SciTech Connect (OSTI)

    Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

    2010-03-31

    The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

  20. Manufacturing Consumption of Energy 1991--Combined Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  1. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    SciTech Connect (OSTI)

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  2. IEA Organizational Chart | Department of Energy

    Energy Savers [EERE]

    IEA Organizational Chart IEA Organizational Chart More Documents & Publications Organizational Chart Office of International Affairs Org Chart Independent Oversight Review, Idaho Cleanup Project - August 201

  3. PNNL: Center for Molecular Electrocatalysis - Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enlarge Image | PDF version EFRC Organization Chart

  4. Technology and Commercialization Organization Chart | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Technology and Commercialization Organization Chart PDF icon tdc_org_chart

  5. Business Operations Organization Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Business Operations Organization Chart Office of Business Operations Michael Budney, Director Project Management Coordination Office Scott Hine, Director Information and Technology Services Office Steve VonVital, Director (Acting) Workforce Management Office Jennifer Blankenheim, Director Golden Field Office Timothy Meeks, Director

  6. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per...

  7. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    SciTech Connect (OSTI)

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  8. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel. Biodiesel Vehicle and Infrastructure Codes and Standards Chart Vehicles Storage Dispensing Infrastructure Engine Testing: Fuel Systems: Fuel Lubricants: Powertrain Systems: Containers: Dispensing Operations: Dispensing

  9. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect (OSTI)

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  10. ChallengeX_2008_Team_Technologies_Chart.pdf | Department of Energy

    Office of Environmental Management (EM)

    ChallengeX_2008_Team_Technologies_Chart.pdf ChallengeX_2008_Team_Technologies_Chart.pdf PDF icon ChallengeX_2008_Team_Technologies_Chart.pdf More Documents & Publications The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles hd_hydrogen_2007.xls

  11. GeoVision Process Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Chart GeoVision Process Chart GeoVision Process Chart

  12. Office of Environmental Management (EM) Organization Chart |...

    Office of Environmental Management (EM)

    Environmental Management (EM) Organization Chart Office of Environmental Management (EM) Organization Chart PDF icon Office of Environmental Management (EM) Organization Chart More...

  13. PPPO Organization Chart | Department of Energy

    Office of Environmental Management (EM)

    PPPO Organization Chart PPPO Organization Chart PPPO Organization Chart r011415 PORTSMOUTHPADUCAH PROJECT OFFICE PPPO LOGO-4 4-3.png PPPO Website Directory...

  14. Residential Energy Consumption Survey:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  15. A STUDY OF THE DISCREPANCY BETWEEN FEDERAL AND STATE MEASUREMENTS OF ON-HIGHWAY FUEL CONSUMPTION

    SciTech Connect (OSTI)

    Hwang, HL

    2003-08-11

    Annual highway fuel taxes are collected by the Treasury Department and placed in the Highway Trust Fund (HTF). There is, however, no direct connection between the taxes collected by the Treasury Department and the gallons of on-highway fuel use, which can lead to a discrepancy between these totals. This study was conducted to determine how much of a discrepancy exists between the total fuel usages estimated based on highway revenue funds as reported by the Treasury Department and the total fuel usages used in the apportionment of the HTF to the States. The analysis was conducted using data from Highway Statistics Tables MF-27 and FE-9 for the years 1991-2001. It was found that the overall discrepancy is relatively small, mostly within 5% difference. The amount of the discrepancy varies from year to year and varies among the three fuel types (gasoline, gasohol, special fuels). Several potential explanations for these discrepancies were identified, including issues on data, tax measurement, gallon measurement, HTF receipts, and timing. Data anomalies caused by outside forces, such as deferment of tax payments from one fiscal year to the next, can skew fuel tax data. Fuel tax evasion can lead to differences between actual fuel use and fuel taxes collected. Furthermore, differences in data collection and reporting among States can impact fuel use data. Refunds, credits, and transfers from the HTF can impact the total fuel tax receipt data. Timing issues, such as calendar year vs. fiscal year, can also cause some discrepancy between the two data sources.

  16. Chart of communications requirements | Department of Energy

    Office of Environmental Management (EM)

    Chart of communications requirements Chart of communications requirements Chart of communications requirements for BGE PDF icon Chart of communications requirements More Documents & Publications BGE Communications Requirements Lower Colorado River Authority Lower Colorado River Authority

  17. CNM Organization Chart | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Chart Organizational structure of Argonnne's Center for Nanoscale Materials PDF icon CNMOrg Chart_March2016

  18. Physical Sciences & Engineering Directorate Organization Chart...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Awards and Achievements Organization Chart Contact Us Physical Sciences & Engineering Directorate Organization Chart PDF icon pseorgchart.pdf...

  19. HC Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HC Organization Chart HC Organization Chart PDF version of the HC Organizational chart PDF icon 10-20-13 HC_Org_Chart.pdf More Documents & Publications Environmental Justice and Tribal Consultation Training OCIO Organization Chart (printable version) DOE Organization Chart - October 22, 2012

  20. HC Organization Chart | Department of Energy

    Energy Savers [EERE]

    HC Organization Chart HC Organization Chart PDF version of the HC Organizational chart PDF icon 10-20-13 HC_Org_Chart.pdf More Documents & Publications Environmental Justice and Tribal Consultation Training OCIO Organization Chart (printable version) DOE Organization Chart - October 22, 2012

  1. Business Operations Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Operations Organization Chart Business Operations Organization Chart A chart showing how the Office of Energy Efficiency and Renewable Energy's Business Operations office is organized. PDF icon Business Operations org chart More Documents & Publications Office of Energy Efficiency and Renewable Energy Organization Chart Federal Information Technology Acquisition Reform Act (FITARA) Data Resources Office of Management Organization Chart

  2. Fossil fuel potential of Turkey: A statistical evaluation of reserves, production, and consumption

    SciTech Connect (OSTI)

    Korkmaz, S.; Kara-Gulbay, R.; Turan, M.

    2008-07-01

    Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy production from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.

  3. PIC Transcribed Flip Chart Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Workshop" versus "meeting" Could provide someone to take verbal comments Page 5 PIC Transcribed Flip Chart Notes Wednesday, October 31, 2012 300 Area Public Involvement...

  4. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  5. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect (OSTI)

    Barnitt, R.; Gonder, J.

    2011-04-01

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

  6. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks

    SciTech Connect (OSTI)

    F. Stodolsky; L. Gaines; A. Vyas

    2000-06-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  7. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using...

  8. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

  9. Effects of Village Power Quality on Fuel Consumption and Operating Expenses

    SciTech Connect (OSTI)

    Richard Wies; Ron Johnson

    2008-12-31

    Alaska's rural village electric utilities are isolated from the Alaska railbelt electrical grid intertie and from each other. Different strategies have been developed for providing power to meet demand in each of these rural communities. Many of these communities rely on diesel electric generators (DEGs) for power. Some villages have also installed renewable power sources and automated generation systems for controlling the DEGs and other sources of power. For example, Lime Village has installed a diesel battery photovoltaic hybrid system, Kotzebue and Wales have wind-diesel hybrid systems, and McGrath has installed a highly automated system for controlling diesel generators. Poor power quality and diesel engine efficiency in village power systems increases the cost of meeting the load. Power quality problems may consist of poor power factor (PF) or waveform disturbances, while diesel engine efficiency depends primarily on loading, the fuel type, the engine temperature, and the use of waste heat for nearby buildings. These costs take the form of increased fuel use, increased generator maintenance, and decreased reliability. With the cost of bulk fuel in some villages approaching $1.32/liter ($5.00/gallon) a modest 5% decrease in fuel use can result in substantial savings with short payback periods depending on the village's load profile and the cost of corrective measures. This project over its five year history has investigated approaches to improving power quality and implementing fuel savings measures through the use of performance assessment software tools developed in MATLAB{reg_sign} Simulink{reg_sign} and the implementation of remote monitoring, automated generation control, and the addition of renewable energy sources in select villages. The results have shown how many of these communities would benefit from the use of automated generation control by implementing a simple economic dispatch scheme and the integration of renewable energy sources such as wind generation.

  10. MA-60 Org chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MA-60 Org chart MA-60 Org chart Updated August 12, 2015 File OAM Org Chart (MA-60) v18.pptx More Documents & Publications Office of Management Organization Chart Policy Flash 2016-08 Office of International Affairs Org Chart

  11. MA-60 Org chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MA-60 Org chart MA-60 Org chart Updated August 12, 2015 File OAM Org Chart (MA-60) v18.pptx More Documents & Publications Office of Management Organization Chart Office of International Affairs Org Chart Policy Flash 2015-09

  12. Reducing Fuel Consumption through Semi-Automated Platooning with Class 8 Tractor Trailer Combinations (Poster)

    SciTech Connect (OSTI)

    Lammert, M.; Gonder, J.

    2014-07-01

    This poster describes the National Renewable Energy Laboratory's evaluation of the fuel savings potential of semi-automated truck platooning. Platooning involves reducing aerodynamic drag by grouping vehicles together and decreasing the distance between them through the use of electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. The NREL study addressed the need for data on American style line-haul sleeper cabs with modern aerodynamics and over a range of trucking speeds common in the United States.

  13. Chart of the Nuclides

    Energy Science and Technology Software Center (OSTI)

    1999-03-23

    Nucleus is an interactive PC-based graphical viewer of NUBASE nuclear property data. NUBASE contains experimentally known nuclear properties, together with some values that have been estimated from extrapolation of experimental data for 3010 nuclides. NUBASE also contains data on those isomeric states that have half-lives greater than 1 millisecond; there are 669 such nuclides of which 58 have more than one isomeric state. The latest version of NUCLEUS-CHART has been corrected to include the namesmore » and the chemical symbols of the elements 104 to 109 that have been finally adopted by the Commission on Nomenclature of Inorganic Chemistry (CNIC) of the International Union of Pure and Applied Chemistry (IUPAC). They differ from those recommended by the same commission a few years before and that were widely used in the evaluations AME''95 and NUBASE''97. It results in some shuffling of the names and symbols, that may cause confusion in the near future. At AMDC we''ll be as careful as possible to try to avoid such confusion. In advance we apologize if any will occur in the future and recommend the user to always double check these few names.« less

  14. EERE Organization Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Click to edit Master title style - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Assistant Secretary EE 1 Dr. David Danielson Principal Deputy Assistant Secretary EE 2 David Friedman Vehicle Technologies (VTO) EE 3V David Howell Director Bioenergy Technologies (BETO) EE 3B Dr. Jonathan Male Director Fuel Cells Technologies (FCTO) EE 3F Dr. Sunita Satyapal Director Solar Energy Technologies (SETO) EE 4S Minh Sy Le Director Geothermal Technologies (GTO) EE 4G Margaret Schaus Director

  15. EERE Organization Chart

    Office of Environmental Management (EM)

    to edit Master title style - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Vehicle Technologies (VTO) EE 3V Christy Cooper Director (Acting) Bioenergy Technologies (BETO) EE 3B Dr. Jonathan Male Director Fuel Cells Technologies (FCTO) EE 3F Dr. Sunita Satyapal Director Solar Energy Technologies (SETO) EE 4S Lidija Sekaric Director (Acting) Geothermal Technologies (GTO) EE 4G Dr. Susan Hamm Director (Acting) Wind & Water Power Technologies (WWPTO) EE 4W Jose Zayas Director

  16. Ames Lab Org Chart | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Lab Org Chart Document Number: NA Effective Date: 01/2016 File (public): PDF icon ameslab_org_chart_01-01-16

  17. PI Organization Chart | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Office of Policy and International Affairs Organization Chart Office of International Affairs Organization Chart Microsoft PowerPoint - Nov...

  18. Energy Systems Organization Charts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Organization Charts Charts showing the organizational structure of the Energy Systems Division and the Center for Transportation Research at Argonne. PDF icon...

  19. Table 8.5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b)

    U.S. Energy Information Administration (EIA) Indexed Site

    5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Electricity-Only Plants 11<//td> 1989 767,378,330 25,574,094 241,960,194 3,460 517,385 270,124,673

  20. ARRA Projects Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Chart ARRA Projects Chart A chart stating the grantee, DOE grant amount,non federal cost share,project lead organization,description,and partners. PDF icon ARRA Projects Chart More Documents & Publications ARRA Project Info Combined 0112110.xls Missouri Recovery Act State Memo The Promise and Challenge of Algae as Renewable Sources of Biofuels

  1. AU Organization Chart | Department of Energy

    Energy Savers [EERE]

    AU Organization Chart AU Organization Chart AU Organization Chart: December 22, 2015 PDF icon AU Organization Chart: December 22, 2015 More Documents & Publications FTCP Senior Technical Safety Manager (STSM) Status Report USW Health Safety and Environment Conference - HSS Workshop Response to several FOIA requests - Renewable Energy.

  2. US Nuclear Regulatory Commission functional organization charts

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This document provides functional organization charts for all NRC Offices and Regions, and their components.

  3. US Nuclear Regulatory Commission functional organization charts

    SciTech Connect (OSTI)

    Not Available

    1986-11-30

    Functional organization charts for the NRC Commission Offices, Divisions, and Branches are presented.

  4. WIP Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIP Organization Chart WIP Organization Chart This document contains the organizational chart for WIP. PDF icon WIP Organization Chart More Documents & Publications 2014 Annual Workforce Analysis and Staffing Plan Report - Carlsbad Field Office 2011 Annual Workforce Analysis and Staffing Plan Report - Carlsbad Field Office Voluntary Protection Program Onsite Review, Oak Ridge Associated Universities Oak Ridge Institute for Science and Education - April 2008

  5. Indoor air pollution from portable kerosene-fired space heaters. [Effects of wick height and fuel consumption rate

    SciTech Connect (OSTI)

    Traynor, G.W.; Apte, M.G.; Dillworth, J.F.; Grimsrud, D.T.

    1983-02-01

    Indoor use of unvented combustion appliances is known to cause an increase in indoor air pollutant levels. Laboratory tests were conducted on radiant and convective portable kerosene-fired space heaters to identify the pollutants they emit and to determine their emission rates. Laboratory-derived CO and NO/sub 2/ emission rates from unvented portable kerosense-fired space heaters are summarized and the effect of wick height and fuel consumption rate on CO and NO/sub 2/ emissions is given. Pollutant concentration profiles resulting from the use of kerosene heaters in a 27m/sup 3/ environmental chamber and a 240m/sup 3/ house are presented. When such heaters are operated for one hour in a 27m/sup 3/ chamber with 0.4 air changes per hour, the resultant CO/sub 2/ concentrations are well above the U.S. occupational standard, and NO/sub 2/ concentrations are well above California's short-term outdoor standard. Further data on parameters such as heater usage patterns and air exchange rates are needed to determine the actual pollutant exposure that kerosene heater users experience.

  6. Community Solar Program Comparison Chart

    Broader source: Energy.gov [DOE]

    This chart is a supplement to the "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development," provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  7. Help:Motion Chart | Open Energy Information

    Open Energy Info (EERE)

    information, visit the Google Help page for Motion Charts Step 2 - Setting up the Chart Once you have the data in the google doc, and it is displaying the ranges you'd like, its...

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  9. Project Management Coordination Office Organization Chart

    Broader source: Energy.gov [DOE]

    Project Management Coordination Office Organization Chart, U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

  10. US Nuclear Regulatory Commission functional organization charts

    SciTech Connect (OSTI)

    Not Available

    1990-08-15

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions, and branches are presented in this document.

  11. US Nuclear Regulatory Commission functional organization charts

    SciTech Connect (OSTI)

    Not Available

    1990-04-01

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions, and branches are presented in this document.

  12. OSDBU Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » OSDBU Organization Chart OSDBU Organization Chart The organization chart for the Office of Small and Disadvantaged Business Utilization is being updated and should be available soon. More Documents & Publications Guidance of the Department of Energy Subcontracting Program SubcontractingGuidelines.doc&#0; EIS-0433-S1: Notice of Intent to Prepare a Supplemental Environmental Impact Statement News & Blog Events Organization Chart

  13. DOE Organization Chart - June 25, 2012 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2012-07.pdf More Documents & Publications DOE Organization Chart - July 15, 2013 DOE Organization Chart - May 2, 2014 DOE Organization Chart - October 2014

  14. DOE Organization Chart - October 6, 2011 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    NONAMES-2011-10.pdf More Documents & Publications DOE Organization Chart - June 6, 2013 DOE Organization Chart - June 25, 2012 DOE Organization Chart - May 1, 2013

  15. Goals & Objectives Chart | Department of Energy

    Office of Environmental Management (EM)

    Goals & Objectives Chart Goals & Objectives Chart PDF icon goal and objectives chart.pdf Responsible Contacts Donna Friend HUMAN RESOURCES SPECIALIST E-mail donna.friend@hq.doe.dov Phone 202-586-5880 More Documents & Publications Operational Plan and Desktop Reference for the Veterans Employment Program Goals and Objectives Roles & Responsibilities

  16. NNSA Service Center Chart | Department of Energy

    Office of Environmental Management (EM)

    NNSA Service Center Chart NNSA Service Center Chart Office of Chief Counsel at the NNSA Service Center in Albuquerque, NM PDF icon NNSA Service Center Chart More Documents & Publications Technical Qualification Program Accreditation Schedule 2011 Annual Planning Summary for NNSA Service Center (NNSASC) EIS-0466: Notice of Intent to Prepare an Environmental Impact Statement

  17. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

  18. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  19. Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle and Infrastructure Codes and Standards Chart Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas. Vehicle Safety: Vehicle Fuel Systems: Vehicle Containers: Vehicle Fuel System Components: Dispensing Component Standards: Dispensing Operations:

  20. Fuel Cell Technologies Office: Plans, Implementation, and Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Codes & Standards Education Systems Analysis Plans,...

  1. Health Care Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  2. The Clean Energy Economy in Three Charts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts January 6, 2014 - 5:55pm Addthis The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts America's cleantech industry has a bright -- and growing -- future. America's cleantech industry has a bright -- and growing -- future. The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts

  3. DOE Organization Chart - February 2015 | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2015 DOE Organization Chart - February 2015 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOE Organization Chart - February 2015 More Documents & Publications DOE Organization Chart - May 2015 DOE Organization Chart - December 2014 DOE ORGANIZATION CHART - JULY 2015

  4. Office of International Affairs Organization Chart | Department of Energy

    Energy Savers [EERE]

    Office of International Affairs Organization Chart Office of International Affairs Organization Chart PDF icon IA Org Chart Updated June 2014 More Documents & Publications PI Organization Chart Office of Policy and International Affairs Organization Chart Microsoft PowerPoint - Nov 2009 PI Org Chart (web)

  5. OCIO Organization Chart (printable version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OCIO Organization Chart (printable version) OCIO Organization Chart (printable version) Printable PDF version of the OCIO Organization Chart. PDF icon OCIO Org Chart as of 11.13.2015 More Documents & Publications Office of Management Organization Chart OCIO Organization Chart (printable version) Organization FTCP Senior Technical Safety Manager (STSM) Status Report

  6. DOE Organization Chart - May 2015 | Department of Energy

    Office of Environmental Management (EM)

    015 DOE Organization Chart - May 2015 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOE Organization Chart - May 2015 More Documents & Publications DOE Organization Chart - February 2015 DOE Organization Chart - December 2014 DOE ORGANIZATION CHART - JULY 2015

  7. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

  8. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information AdministrationManufacturing Consumption of Energy 1994 SIC Residual...

  9. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane. Propane Vehicle and Infrastructure Codes and Standards Chart Vehicle Systems Safety: Vehicle Tanks and Piping: Vehicle Components: Vehicle Dispensing Systems: Vehicle Dispensing System Components: Storage Systems: Storage

  10. 1999 Commercial Buildings Energy Consumption Survey Detailed Tables

    Gasoline and Diesel Fuel Update (EIA)

    Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by

  11. 2004 FUEL ECONOMY GUIDE BEST IN CLASS | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A chart describing the 2004 fuel economy best in class vehicles. 2004 FUEL ECONOMY GUIDE BEST IN CLASS More Documents & Publications Microsoft Word - Document1 2010 Vehicle...

  12. CDM in Charts | Open Energy Information

    Open Energy Info (EERE)

    Tool Summary LAUNCH TOOL Name: CDM in Charts AgencyCompany Organization: Institute for Global Environmental Strategies Sector: Energy Topics: Implementation, Policiesdeployment...

  13. LLNL Energy Flow Charts | Open Energy Information

    Open Energy Info (EERE)

    Organization: Lawrence Livermore National Lab Sector: Energy Focus Area: Renewable Energy Topics: Pathways analysis References: LLNL Energy Flow Charts 1 Decision makers have...

  14. Federal Energy Management Program Organization Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chart Technical Services Brad Gustafson Procurement Services Skye Schell Customer Service Hayes Jones Metering, Product Procurement, Water Saralyn Bunch Lab and Data Center ...

  15. APS Organization Chart | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Organization Chart The Advanced Photon Source (APS) organization comprises three divisions and one project office. Advanced Photon Source Organization Photon Sciences Overview...

  16. Nanoscience & Technology Organization Chart | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscience & Technology Organization Chart The Nanoscience and Technology (NST) Division at Argonne National Laboratory hosts a user facility, the Center for Nanoscale Materials,...

  17. Organization Chart | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Business Operations Careers Human Resources Directory Environment, Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer...

  18. Office of International Affairs Org Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of International Affairs Org Chart Office of International Affairs Org Chart The Organizational Chart for the Office of International Affairs at the U.S. Department of Energy. PDF icon The Organizational Chart for the Office of International Affairs at the U.S. Department of Energy. More Documents & Publications Office of International Affairs Organization Chart PI Organization Chart Office of Policy and International Affairs Organization Chart

  19. DOE Organization Chart - December 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2014 DOE Organization Chart - December 2014 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOE Organization Chart - December 2014 More Documents & Publications DOE Organization Chart - October 2014 DOE Organization Chart - May 2,

  20. Office of Management Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Organization Chart Office of Management Organization Chart Following is the link to the latest Office of Management Organization Chart. PDF icon MA_Org_Chart_Revised_01-05-16.pdf More Documents & Publications Agenda 2015 DOE Acquisition and Project Management (APM) Workshop Presentations OCIO Organization Chart (printable version)

  1. Federal Energy Management Program Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Management Program Organization Chart Federal Energy Management Program Organization Chart Federal Energy Management Program Organization Chart Document shows the organization chart for the U.S. Department of Energy's Federal Energy Management Program. PDF icon Download the FEMP organization chart.

  2. OFFICE OF ENVIRONMENTAL MANAGEMENT (EM) ORGANIZATION CHART | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy OFFICE OF ENVIRONMENTAL MANAGEMENT (EM) ORGANIZATION CHART OFFICE OF ENVIRONMENTAL MANAGEMENT (EM) ORGANIZATION CHART OFFICE OF ENVIRONMENTAL MANAGEMENT (EM) ORGANIZATION CHART Download Printable Version Mission & Functions Statement for the Office of Environmental Management

  3. DOE Organization Chart - July 15, 2013 | Department of Energy

    Energy Savers [EERE]

    July 15, 2013 DOE Organization Chart - July 15, 2013 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOE Organization Chart - July 15, 2013 More Documents & Publications DOE Organization Chart - July 23, 2013 DOE Organization Chart - May 2, 2014 DOE Organization Chart - October 2014

  4. DOE Organization Chart - October 22, 2012 | Department of Energy

    Energy Savers [EERE]

    October 22, 2012 DOE Organization Chart - October 22, 2012 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOE Organizational Chart More Documents & Publications DOE Organization Chart - July 15, 2013 DOE Organization Chart - June 6, 2013 DOE Organization Chart - May 1, 2013

  5. DOE ORGANIZATION CHART - JANUARY 2016 | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORGANIZATION CHART - JANUARY 2016 DOE ORGANIZATION CHART - JANUARY 2016 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOECHART-NONAMES-2016-01.pdf More Documents & Publications DOE ORGANIZATION CHART - FEBRUARY 2016 DOE Organization Chart - December 2014 DOE Organization Chart - February

  6. DOE ORGANIZATION CHART - FEBRUARY 2016 | Department of Energy

    Energy Savers [EERE]

    DOE ORGANIZATION CHART - FEBRUARY 2016 DOE ORGANIZATION CHART - FEBRUARY 2016 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOECHART-NONAMES-2016-February-22.pdf More Documents & Publications DOE ORGANIZATION CHART - JANUARY 2016 DOE Organization Chart - December 2014 DOE Organization Chart - February 2015

  7. DOE ORGANIZATION CHART - JULY 2015 | Department of Energy

    Office of Environmental Management (EM)

    ORGANIZATION CHART - JULY 2015 DOE ORGANIZATION CHART - JULY 2015 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOECHART-NONAMES-2015-07.pdf More Documents & Publications DOE Organization Chart - February 2015 DOE Organization Chart - May 2015 DOE Organization Chart - December

  8. DOE Organization Chart - April 8, 2014 | Department of Energy

    Office of Environmental Management (EM)

    April 8, 2014 DOE Organization Chart - April 8, 2014 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOE Organization Chart - April 8, 2014 More Documents & Publications DOE Organization Chart - May 2, 2014 DOE Organization Chart - October 2014 DOE Organization Chart - January 17

  9. DOE Organization Chart - August 7, 2013 | Department of Energy

    Office of Environmental Management (EM)

    August 7, 2013 DOE Organization Chart - August 7, 2013 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOE Organization Chart - August 7, 2013 More Documents & Publications DOE Organization Chart - May 2, 2014 DOE Organization Chart - October 2014 DOE Organization Chart - April 8

  10. DOE Organization Chart - July 23, 2013 | Department of Energy

    Office of Environmental Management (EM)

    July 23, 2013 DOE Organization Chart - July 23, 2013 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOE Organization Chart - July 23, 2013.pdf More Documents & Publications DOE Organization Chart - May 2, 2014 DOE Organization Chart - October 2014 DOE Organization Chart - April 8, 2014

  11. DOE Organization Chart - May 2, 2014 | Department of Energy

    Office of Environmental Management (EM)

    , 2014 DOE Organization Chart - May 2, 2014 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOE Organization Chart - May 2014 More Documents & Publications DOE Organization Chart - October 2014 DOE Organization Chart - April 8, 2014 DOE Organization Chart - January 17, 2014

  12. DOE Organization Chart - October 2014 | Department of Energy

    Office of Environmental Management (EM)

    October 2014 DOE Organization Chart - October 2014 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOE Organization Chart - October 2014 More Documents & Publications DOE Organization Chart - May 2, 2014 DOE Organization Chart - April 8, 2014 DOE Organization Chart - January 17, 2014

  13. Survey Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  14. Office of Policy and International Affairs Organization Chart...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Policy and International Affairs Organization Chart Office of Policy and International Affairs Organization Chart Office of Policy and International Affairs Organization...

  15. DOE Organization Chart- December 16, 2013

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energys structure along with the relationships and relative ranks of its parts and positions/jobs.

  16. DOE Organization Chart- May 21, 2013

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  17. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  18. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  19. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  20. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  1. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  2. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Research Team Members Key Contacts Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as coal, biomass, and natural gas, and to produce a variety of products, including heat and specialty chemicals. Advanced integrated gasification combined cycle schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development

  3. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production

    SciTech Connect (OSTI)

    Gregg, J; Andres, Robert Joseph; Marland, Gregg

    2008-01-01

    Release of carbon dioxide (CO2) from fossil fuel combustion and cement manufacture is the primary anthropogenic driver of climate change. Our best estimate is that China became the largest national source of CO2 emissions during 2006. Previously, the United States (US) had occupied that position. However, the annual emission rate in the US has remained relatively stable between 2001-2006 while the emission rate in China has more than doubled, apparently eclipsing that of the US in late 2006. Here we present the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions. Though our best point estimate places China in the lead position in terms of CO2 emissions, we qualify this statement in a discussion of the uncertainty in the underlying data (3-5% for the US; 15-20% for China). Finally, we comment briefly on the implications of China's new position with respect to international agreements to mitigate climate change.

  4. Computing, Environment & Life Sciences Directorate Organization Chart |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Events About Us Organization Chart Staff Directory Career Opportunities Intranet About Us Intranet Argonne National Laboratory Computing, Environment and Life Sciences Organizations Facilities and Institutes News Events About Us Organization Chart Staff Directory Career Opportunities Computing, Environment & Life Sciences Directorate Organization Chart PDF icon cels_org_chart.pdf

  5. US Nuclear Regulatory Commission functional organization charts, March 15, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions, and branches are presented.

  6. U. S. Nuclear Regulatory Commission functional organization charts

    SciTech Connect (OSTI)

    Not Available

    1989-07-01

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions and branches are presented.

  7. U. S. Nuclear Regulatory Commission functional organization charts

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    Functional organization charts for the NRC Commission Offices, Divisions, Staffs and Branches are presented.

  8. Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation by State, 2010 | Department of Energy 9: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010 Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010 The map below shows the amount of petroleum and natural gas consumed in the transportation sector by state for 2010. The pie charts for each state are scaled based on total consumption of petroleum and natural gas. The yellow slice of the pie chart

  9. DOE Organization Chart - June 6, 2013 | Department of Energy

    Office of Environmental Management (EM)

    June 6, 2013 DOE Organization Chart - June 6, 2013 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOECHART-NONAMES 6_2013 More Documents & Publications DOE Organization Chart - May 1, 2013 DOE Organization Chart - May 21, 2013 DOE Organization Chart - June 25, 2012

  10. DOE Organization Chart - May 1, 2013 | Department of Energy

    Office of Environmental Management (EM)

    1, 2013 DOE Organization Chart - May 1, 2013 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOECHART-NONAMES 2013-05.pdf More Documents & Publications DOE Organization Chart - July 15, 2013 DOE Organization Chart - April 8, 2014 DOE Organization Chart - December 16, 2013

  11. Office of Energy Efficiency and Renewable Energy Organization Chart |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Office of Energy Efficiency and Renewable Energy Organization Chart Office of Energy Efficiency and Renewable Energy Organization Chart This chart shows how the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy is organized. PDF icon EERE Organization Chart More Documents & Publications Business Operations Organization Chart EM Capital and Major Operating Project Standard Review Plan Edition Two State Energy Advisory Board April 2015

  12. Commercial Buildings Energy Consumption and Expenditures 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil, and district heat consumption and expenditures for commercial buildings by building characteristics. Previous Page Arrow Separater Bar File Last Modified: January 29,...

  13. CBECS 1992 - Consumption & Expenditures, Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    consumption by major fuel, 1992 Divider Line To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  14. ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; GREENHOUSES...

    Office of Scientific and Technical Information (OSTI)

    fuel-fired peak heating for geothermal greenhouses Rafferty, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; GREENHOUSES; AUXILIARY HEATING; CAPITALIZED COST; OPERATING...

  15. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  16. Natural Gas Lease Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    913,229 916,797 938,340 987,957 1,068,289 1,074,943 1983-2014 Alabama 10,460 10,163 10,367 12,389 12,456 10,055 1983-2014 Alaska 219,161 211,918 208,531 214,335 219,190 219,451 1983-2014 Arizona 17 19 17 12 4 3 1983-2014 Arkansas 4,091 5,340 6,173 6,599 6,605 6,452 1983-2014 California 63,127 64,931 44,379 51,154 49,846 54,288 1983-2014 Colorado 64,873 66,083 78,800 76,462 71,105 74,402 1983-2014 Florida 94 4,512 4,896 6,080 5,609 6,551 1983-2014 Gulf of Mexico 103,976 108,490 101,217 93,985

  17. Natural Gas Plant Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    362,009 368,830 384,248 408,316 414,796 425,238 1983-2014 Alabama 6,470 6,441 6,939 6,616 6,804 6,462 1983-2014 Alaska 39,447 37,316 35,339 37,397 36,638 36,707 1983-2014 Arkansas 489 529 423 622 797 871 1983-2014 California 2,611 2,370 2,253 2,417 2,834 2,361 1983-2014 Colorado 21,288 25,090 28,265 29,383 25,806 30,873 1983-2014 Florida 0 0 0 0 0 272 1983-2014 Gulf of Mexico 0 2014-2014 Illinois 41 4,559 4,917 4,896 4,917 288 1983-2014 Kansas 2,126 2,102 2,246 2,268 2,189 1,983 1983-2014

  18. How to use streaming chart? | OpenEI Community

    Open Energy Info (EERE)

    use streaming chart? Home > Groups > Databus Hi, how do you use the built-in streaming chart? How do you form the URL for it? Thanks, Submitted by Hopcroft on 31 October, 2013 -...

  19. Must all charting and graphing code be written in javascript...

    Open Energy Info (EERE)

    Must all charting and graphing code be written in javascript? Home > Groups > Databus In the documentation chapter entitled Developing charts using 3rd party api, we are told that...

  20. Chart of Nuclides from the National Nuclear Data Center (NNDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Chart of Nuclides is a software product that allows users to search and plot nuclear structure and nuclear decay data interactively. The Chart of Nuclides was developed by the National Nuclear Data Center (NNDC). It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Using the Chart of Nuclides, it is possible to search for nuclear level properties (energy, half-life, spin-parity), gamma-ray information (energy, intensity, multipolarity, coincidences),radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by the Chart of Nuclides can be seen in tables, level schemes and an interactive chart of nuclides. (From the Chart of Nuclides Description at http://www.nndc.bnl.gov/chart/help/index.jsp?product=chart)

  1. Office of the Chief Financial Officer Organization Chart | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About Us » Office of the Chief Financial Officer Organization Chart Office of the Chief Financial Officer Organization Chart OCFOFrontOffice2015.jpg Leadership Organization Contact Us

  2. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Energy Information Administration (EIA) Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 MECS 2010 - Release date: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17 percent from 2002 to 2010 (Figure 1), according to data from the U.S. Energy Information Administration's (EIA) Manufacturing Energy Consumption Survey (MECS). line chart:air

  3. Charting a New Carbon Route to Development | Open Energy Information

    Open Energy Info (EERE)

    www.beta.undp.orgcontentundpenhomeourworkenvironmentandenergyfo Cost: Free Language: English Charting a New Carbon Route to Development Screenshot "UNDP recognizes the...

  4. US Nuclear Regulatory Commission functional organization charts. Revision 6

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The report consists entirely of organizational charts of the US NRC, with functional notes for each office. (GHT)

  5. US Nuclear Regulatory Commission functional organization charts, January 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions, and branches are presented in this document.

  6. Environmental Impact Statements and Environmental Assessments Status Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Environmental Impact Statements and Environmental Assessments Status Chart Environmental Impact Statements and Environmental Assessments Status Chart The Status Chart provides the status of ongoing NEPA documents at the Department of Energy, including the dates of important milestones in the NEPA process, links to the project pages, and references to more information (updated monthly). This chart represents anticipated activity and is not a commitment for documentation

  7. Office of the General Counsel Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of the General Counsel Organization Chart Office of the General Counsel Organization Chart The following graphic is an organization chart for the Office of the General Counsel. The office is separated into four major departmental groups: Litigation, Regulation and Enforcement (GC-30) Environment and Compliance (GC-50) Transactions, Technology and Contractor Human Resources (GC-60) Energy Policy (GC-70) PDF icon GCORG 2015 04 names More Documents & Publications DOE Organization Chart -

  8. Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. HSEP Committee Meeting - Transcribed Flip Chart Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flip Chart Notes November 14, 2013 Emergency Preparedness: Observations from August Drill * Observation that EOC, JIC and public process release info. not always the same * How social media contributes to info. flow (could be helpful or problematic) Page 1 Emergency Preparedness: Suggestions 1. Quickly determine and use a consistent name for the incident 2. Reinforce website use 3. Engage and train workers on site 4. Share siren info. / other info. with the community 5. Film an incident/ drill

  10. Pay Chart | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Pay Chart | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  11. Government Buildings CHARTING YOUR JOURNEY REACHING MILESTONES

    Office of Environmental Management (EM)

    ROADMAP to Sustainable Government Buildings CHARTING YOUR JOURNEY REACHING MILESTONES ADDITIONAL RESOURCES ON THE HORIZON LEED TRAINING SUSTAINABILITY GOALS PRE-PROJECT PLANNING ROADMAP INTRODUCTION EXISTING BUILDINGS NEW CONSTRUCTION PROGRAM ADMINISTRATION GREEN BUILDING PROGRAM ACKNOWLEDGEMENT The Roadmap to Sustainable Government Buildings was created through the joint efforts of the U.S. Green Building Council (USGBC) and the National Association of State Facilities Administrators (NASFA).

  12. DOE Organization Chart - January 17, 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 17, 2014 DOE Organization Chart - January 17, 2014 The DOE Organization Chart is a diagram of the U.S. Department of Energy's structure along with the relationships and relative ranks of its parts and positions/jobs. PDF icon DOE Organization Chart - January 17, 2014

  13. SunShot Initiative Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Initiative Chart SunShot Initiative Chart Enlarged version of SunShot Initiative chart. Image icon lcoewithcoins.jpg More Documents & Publications SunShot Concentrating Solar Power Program SunShot Initiative 2014 Portfolio Overview EERE Science and Technology Policy (STP) Fellowships Application Form

  14. Full Consumption Report.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    214(2013) July 2015 State Energy Consumption Estimates 1960 Through 2013 2013 Consumption Summary Tables S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Consumption 3 Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2013 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity f Net Electricity Imports g Residential Commercial

  15. Ethanol Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    pipeline safety) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: State and Local Government (zoning, building permits) CONTROLLING AUTHORITIES: DOT/NHTS (crashworthiness) EPA (emissions) Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and

  16. Vehicle Technologies Office Merit Review 2015: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Broader source: Energy.gov [DOE]

    Presentation given by Filter Sensing Technologies, Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  17. Vehicle Technologies Office Merit Review 2014: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Broader source: Energy.gov [DOE]

    Presentation given by Filter Sensing Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  18. RAP Meeting Transcribed Flip Chart Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flip Chart Notes February 15, 2012 Site-wide Permit Workshop May 3 1. Have "post-workshop" session to discuss HAB next steps 2. Recommend Ecology sponsors & facilitates Workshop - Ecology captures notes, but HAB members track issues of concern, too. 3. Web-ex for public when it fits 4. Pre-workshop meeting with HAB issue leaders (potential speakers) Page 1 300 Area HAB next steps... IM & Pam 1. Issue managers meet to review potential issues for HAB/committees 2. Bring back to

  19. Charting the Course for Elementary Particle Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2345 Charting the Course for Elementary Particle Physics AAAS Panel, San Francisco, CA Prof. Burton Richter Stanford University February 16, 2007 INTRODUCTION "It was the best of times; it was the worst of times" is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator

  20. Interval Data Analysis with the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Katipamula, Srinivas; Koran, William

    2011-07-07

    Analyzing whole building interval data is an inexpensive but effective way to identify and improve building operations, and ultimately save money. Utilizing the Energy Charting and Metrics Tool (ECAM) add-in for Microsoft Excel, building operators and managers can begin implementing changes to their Building Automation System (BAS) after trending the interval data. The two data components needed for full analyses are whole building electricity consumption (kW or kWh) and outdoor air temperature (OAT). Using these two pieces of information, a series of plots and charts and be created in ECAM to monitor the buildings performance over time, gain knowledge of how the building is operating, and make adjustments to the BAS to improve efficiency and start saving money.

  1. US ENC IL Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  2. US ENC MI Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  3. Widget:Motion Chart Visualizations | Open Energy Information

    Open Energy Info (EERE)

    References usenergyconsumption: SED data usconsumption2010: SED data worldenergysupply: OECD data Retrieved from "http:en.openei.orgwindex.php?titleWidget:MotionChartVisuali...

  4. Energy and Global Security Directorate Organization Chart | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Energy and Global Security Directorate Organization Chart PDF icon egs_orgchart_02-18-16.pdf

  5. US Nuclear Regulatory Commission organization charts and functional statements

    SciTech Connect (OSTI)

    1996-07-01

    This document is the US NRC organizational structure and chart as of July 1, 1996. It contains the org charts for the Commission, ACRS, ASLAB, Commission staff offices, Executive Director for Operations, Office of the Inspector General, Program offices, and regional offices.

  6. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Consumption and Efficiency All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 15 results

  7. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003" ,"All Buildings*",,"Total Energy Consumption (trillion Btu)" ,"Number of Buildings (thousand)","Floorspace...

  8. Major Fuels","Site Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    C1. Total Energy Consumption by Major Fuel, 1999" ,"All Buildings",,"Total Energy Consumption (trillion Btu)",,,,,"Primary Electricity (trillion Btu)" ,"Number of Buildings...

  9. US MidAtl NY Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    consumption in New York homes is much lower than the U.S. average, because many households use other fuels for major energy end uses like space heating, water heating, and cooking. ...

  10. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels & Infrastructure All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 54 results Fuel Trends -

  11. User's Guide to the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Koran, William

    2012-02-28

    The intent of this user guide is to provide a brief description of the functionality of the Energy Charting and Metrics (ECAM) tool, including the expanded building re-tuning functionality developed for Pacific Northwest National laboratory (PNNL). This document describes the tool's general functions and features, and offers detailed instructions for PNNL building re-tuning charts, a feature in ECAM intended to help building owners and operators look at trend data (recommended 15-minute time intervals) in a series of charts (both time series and scatter) to analyze air-handler, zone, and central plant information gathered from a building automation system (BAS).

  12. Charting the Future of Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charting the Future of Energy Storage Charting the Future of Energy Storage August 7, 2013 - 2:53pm Addthis Watch the video above to learn how Urban Electric Power is creating a market for energy storage technology. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs What are the key facts? As we continue to incorporate more renewable energy into the grid, energy storage technologies will be key to

  13. Alternative Fuels Data Center

    SciTech Connect (OSTI)

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  14. Compare All CBECS Activities: Fuel Oil Use

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

  15. US Nuclear Regulatory Commission functional organization charts, March 15, 1993. Revision 16

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    Functional organization charts for the US Nuclear Regulatory Commission offices, divisions, and branches are presented.

  16. Fuel Cell Technologies Office Accomplishments and Progress | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy About the Fuel Cell Technologies Office » Fuel Cell Technologies Office Accomplishments and Progress Fuel Cell Technologies Office Accomplishments and Progress The U.S. Department of Energy's (DOE's) efforts have advanced the state of the art of hydrogen and fuel cell technologies-making significant progress toward overcoming key challenges to widespread commercialization. See the Fuel Cell Technologies Office's accomplishments fact sheet. Chart showing fuel cell system cost and

  17. Fuel Cell Technologies Office Accomplishments and Progress | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About the Fuel Cell Technologies Office » Fuel Cell Technologies Office Accomplishments and Progress Fuel Cell Technologies Office Accomplishments and Progress The U.S. Department of Energy's (DOE's) efforts have advanced the state of the art of hydrogen and fuel cell technologies-making significant progress toward overcoming key challenges to widespread commercialization. See the Fuel Cell Technologies Office's accomplishments fact sheet. Chart showing fuel cell system cost and

  18. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State & Alt Fuel Providers All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 6 results

  19. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  20. Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential;

    Gasoline and Diesel Fuel Update (EIA)

    Nonswitchable Minimum and Maximum Consumption, 2010; Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential; Unit: Physical Units. Actual Minimum Maximum Energy Sources Consumption Consumption(a) Consumption(b) Total United States Electricity Receipts(c) (million kilowatthour 745,247 727,194 770,790 Natural Gas (billion cubic feet) 5,064 4,331 5,298 Distillate Fuel Oil (thousand barrels) 22 20 82 Residual Fuel Oil (thousand barrels) 13 9 46 Coal (thousand short

  1. CSV File Documentation: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    Consumption Estimates The State Energy Data System (SEDS) comma-separated value (CSV) files contain consumption estimates shown in the tables located on the SEDS website. There are four files that contain estimates for all states and years. Consumption in Physical Units contains the consumption estimates in physical units for all states; Consumption in Btu contains the consumption estimates in billion British thermal units (Btu) for all states. There are two data files for thermal conversion

  2. Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection | Department of Energy Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions. PDF icon p-02_anitescu.pdf More Documents & Publications Preparation, Injection and Combustion of Supercritical Fluids Evaluation of Biodiesel

  3. Water Emissions from Fuel Cell Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs). Water Chart: How far will one gallon go and how much water will it produce?

  4. Federal Government's Energy Consumption Lowest in Almost 40 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Government's Energy Consumption Lowest in Almost 40 Years Federal Government's Energy Consumption Lowest in Almost 40 Years February 11, 2015 - 3:49am Addthis Energy consumption by the federal government has been steadily declining for nearly four decades. Much of the decline in recent years can be attributed to a decrease in the use of jet fuel at agencies like the Air Force. | Air Force photo Energy consumption by the federal government has been steadily declining for

  5. New Reports Chart Offshore Wind's Path Forward | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Chart Offshore Wind's Path Forward New Reports Chart Offshore Wind's Path Forward December 12, 2012 - 2:29pm Addthis Taking a look at the challenges and opportunities that lie ahead as the U.S. prepares to enter the offshore wind market. <a href=" http://energy.gov/articles/infographic-offshore-wind-outlook"> Click here</a> to view the full infographic. | Infographic by Sarah Gerrity. Taking a look at the challenges and opportunities that lie ahead as the U.S.

  6. DASHBOARDS & CONTROL CHARTS EXPERIENCES IN IMPROVING SAFETY AT HANFORD WASHINGTON

    SciTech Connect (OSTI)

    PREVETTE, S.S.

    2006-02-27

    The aim of this paper is to demonstrate the integration of safety methodology, quality tools, leadership, and teamwork at Hanford and their significant positive impact on safe performance of work. Dashboards, Leading Indicators, Control charts, Pareto Charts, Dr. W. Edward Deming's Red Bead Experiment, and Dr. Deming's System of Profound Knowledge have been the principal tools and theory of an integrated management system. Coupled with involved leadership and teamwork, they have led to significant improvements in worker safety and protection, and environmental restoration at one of the nation's largest nuclear cleanup sites.

  7. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Broader source: Energy.gov (indexed) [DOE]

    and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption...

  8. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. PDF icon Displacing Natural Gas Consumption and...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Exemption The retail sale, use, storage, and consumption of alternative fuels is exempt from the state retail sales and use tax. (Reference North Carolina General Statutes 105-164.13(11)

  10. US Nuclear Regulatory Commission organization charts and functional statements

    SciTech Connect (OSTI)

    1997-11-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed.

  11. US Nuclear Regulatory Commission organization charts and functional statements

    SciTech Connect (OSTI)

    NONE

    1996-08-19

    This document is the organizational chart for the US NRC. It contains organizational structure and functional statements for the following: (1) the Commission, (2) committees and boards, (3) staff offices, (4) office of the Inspector General, (5) executive director for operations, (6) program offices, and (7) regional offices.

  12. Minimizing glovebox glove breaches, Part 4: control charts

    SciTech Connect (OSTI)

    Cournoyer, M.E.; Lee, M.B.; Schreiber, S.

    2007-07-01

    At the Los Alamos National Laboratory (LANL) Plutonium Facility, plutonium isotopes and other actinides are handled in a glovebox environment. The spread of radiological contamination, and excursions of contaminants into the worker's breathing zone, are minimized and/or prevented through the use of glovebox technology. Evaluating the glovebox configuration, the glovebox gloves are the most vulnerable part of this engineering control. Recognizing this vulnerability, the Glovebox Glove Integrity Program was developed to minimize and/or prevent unplanned openings in the glovebox environment, e.g., glove failures and breaches. In addition, LANL implement the 'Lean Six Sigma (LSS)' program that incorporates the practices of Lean Manufacturing and Six Sigma technologies and tools to effectively improve administrative and engineering controls and work processes. One tool used in LSS is the use of control charts, which is an effective way to characterize data collected from unplanned openings in the glovebox environment. The benefit management receives from using this tool is two-fold. First, control charts signal the absence or presence of systematic variations that result in process instability, in relation to glovebox glove breaches and failures. Second, these graphical representations of process variation determine whether an improved process is under control. Further, control charts are used to identify statistically significant variations (trends) that can be used in decision making to improve processes. This paper discusses performance indicators assessed by the use control charts, provides examples of control charts, and shows how managers use the results to make decisions. This effort contributes to LANL Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations. (authors)

  13. MINIMIZING GLOVEBOX GLOVE BREACHES, PART IV: CONTROL CHARTS

    SciTech Connect (OSTI)

    COURNOYER, MICHAEL E.; LEE, MICHELLE B.; SCHREIBER, STEPHEN B.

    2007-02-05

    At the Los Alamos National Laboratory (LANL) Plutonium Facility, plutonium. isotopes and other actinides are handled in a glovebox environment. The spread of radiological contamination, and excursions of contaminants into the worker's breathing zone, are minimized and/or prevented through the use of glovebox technology. Evaluating the glovebox configuration, the glovebo gloves are the most vulnerable part of this engineering control. Recognizing this vulnerability, the Glovebox Glove Integrity Program (GGIP) was developed to minimize and/or prevent unplanned openings in the glovebox environment, i.e., glove failures and breaches. In addition, LANL implement the 'Lean Six Sigma (LSS)' program that incorporates the practices of Lean Manufacturing and Six Sigma technologies and tools to effectively improve administrative and engineering controls and work processes. One tool used in LSS is the use of control charts, which is an effective way to characterize data collected from unplanned openings in the glovebox environment. The benefit management receives from using this tool is two-fold. First, control charts signal the absence or presence of systematic variations that result in process instability, in relation to glovebox glove breaches and failures. Second, these graphical representations of process variation detennine whether an improved process is under control. Further, control charts are used to identify statistically significant variations (trends) that can be used in decision making to improve processes. This paper discusses performance indicators assessed by the use control charts, provides examples of control charts, and shows how managers use the results to make decisions. This effort contributes to LANL Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations.

  14. Comparison of Fuel Cell Technologies | Department of Energy

    Office of Environmental Management (EM)

    Comparison of Fuel Cell Technologies Comparison of Fuel Cell Technologies Each fuel cell technology has advantages and disadvantages. See how fuel cell technologies compare with one another. This comparison chart is also available as a fact sheet. Fuel Cell Type Common Electrolyte Operating Temperature Typical Stack Size Electrical Efficiency (LHV) Applications Advantages Disadvantages Polymer Electrolyte Membrane (PEM) Perfluorosulfonic acid <120°C <1 kW-100 kW 60% direct H2;a 40%

  15. Displacing Natural Gas Consumption and Lowering Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion System for Refinery and Chemical Plant Process Heaters ADVANCED MANUFACTURING OFFICE Displacing Natural Gas Consumption and Lowering Emissions By enabling process heaters to utilize opportunity gaseous fuels with a fuel-flexible combustion system, this technol- ogy lowers carbon and nitrogen oxide (NO x ) emissions and reduces energy costs for industry. Introduction The refning and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion

  16. Fuel Consumption per Vehicle.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Selected Survey Years (Gallons) Survey Years Household Composition Households With Children... NA NA 609 597 625 665 Age of Oldest Child Under...

  17. Natural Gas Lease and Plant Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    134,954 135,747 132,080 134,757 130,158 133,919 198

  18. Canada's Fuel Consumption Guide | Open Energy Information

    Open Energy Info (EERE)

    from the LEDS Global Partnership. When to Use This Tool While building a low emission strategy for your country's transportation system, this tool is most useful during these...

  19. Natural Gas Lease and Plant Fuel Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    1,285,627 1,322,588 1,396,273 1,483,085 1,500,181 1,580,997 1930-2015 Alabama 1967-1998 Alaska 1967-1998 Arizona 1967-1998 Arkansas 1967-1998 California 1967-1998 Colorado 1967-1998 Delaware 1967-1992 Florida 1967-1998 Idaho 1967-1992 Illinois 1967-1998 Indiana 1967-1998 Kansas 1967-1998 Kentucky 1967-1998 Louisiana 1967-1998 Maryland 1967-1998 Michigan 1967-1998 Mississippi 1967-1998 Missouri 1967-1998 Montana 1967-1998 Nebraska 1967-1998 Nevada 1967-1998 New Mexico 1967-1998 New York 1967-1998

  20. Vehicle Fuel Consumption of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    28,664 29,974 29,970 30,044 35,280 34,459 1997-2015 Alabama 105 192 193 190 224 220 1988-2015 Alaska 20 11 11 9 10 11 1997-2015 Arizona 2,015 1,712 1,707 1,730 2,032 1,976 1988-2015 Arkansas 16 21 21 27 31 28 1988-2015 California 13,572 14,660 14,671 14,121 16,581 16,467 1988-2015 Colorado 249 282 281 269 316 314 1988-2015 Connecticut 41 27 27 46 54 44 1988-2015 Delaware 1 1 1 1 1 1 1988-2015 District of Columbia 883 879 870 861 1,011 993 1988-2015 Florida 60 84 84 175 206 159 1988-2015 Georgia