Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Methodology for comparing the health effects of electricity generation from uranium and coal fuels  

SciTech Connect

A methodology was developed for comparing the health risks of electricity generation from uranium and coal fuels. The health effects attributable to the construction, operation, and decommissioning of each facility in the two fuel cycle were considered. The methodology is based on defining (1) requirement variables for the materials, energy, etc., (2) effluent variables associated with the requirement variables as well as with the fuel cycle facility operation, and (3) health impact variables for effluents and accidents. The materials, energy, etc., required for construction, operation, and decommissioning of each fuel cycle facility are defined as primary variables. The materials, energy, etc., needed to produce the primary variable are defined as secondary requirement variables. Each requirement variable (primary, secondary, etc.) has associated effluent variables and health impact variables. A diverging chain or tree is formed for each primary variable. Fortunately, most elements reoccur frequently to reduce the level of analysis complexity. 6 references, 11 figures, 6 tables.

Rhyne, W.R.; El-Bassioni, A.A.

1981-12-08T23:59:59.000Z

2

Polygeneration of Liquid Fuels and Electricity by the Atmospheric Pressure Hybrid Solar Gasification of Coal  

Science Journals Connector (OSTI)

(16, 17, 29, 30) The technical viability of the atmospheric pressure, windowed solar vortex reactor to gasify petroleum coke (petcoke) has been demonstrated on a small scale,(16, 29, 31) and a 300 kW pilot scale reactor has also been tested successfully. ... Inputs to the reactor were the model coal (as discussed above), nitrogen used for the carrier gas for the coal feed, steam used as a gasifying agent, and oxygen that is needed when ? gas turbine for electricity generation. ...

Ashok A. Kaniyal; Philip J. van Eyk; Graham J. Nathan; Peter J. Ashman; Jonathan J. Pincus

2013-05-20T23:59:59.000Z

3

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Alaska" "Fuel, Quality",1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",203,141,148 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",8698,8520,8278 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",0.33,0.5,0.71

4

Pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

5

Nitrogen oxide removal processes for coal-fueled electric power generation  

SciTech Connect

There is a global trend requiring lower NO{sub x}, emissions from stationary combustion sources. When NO{sub x} is released into the atmosphere it contributes to photochemical smog and acid rain. Elevated ozone concentrations have been implicated in crop and forest damage, and adverse effects on human health. Several alternative technologies have been developed to reduce NO{sub x} emissions resulting from the combustion of coal. The alternatives, which range from combustion modifications, to addition of post-combustion systems, to use of alternate coal combustion technologies, provide different degrees of NO{sub x} reduction efficiency with different associated costs. Only by careful evaluation of site specific factors can the optimum technology for each application be chosen. This chapter will investigate the alternatives for NO{sub x} control for new, large utility steam generators using coal as a fuel.

Van Nieuwenhuizen, Wm.

1993-12-31T23:59:59.000Z

6

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Maine" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-",241,237,262,266,327,319,367,506,619 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-",13138,13124,12854,12823,12784,13171,12979,12779,13011 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-",0.71,0.69,0.77,0.78,0.7,0.65,0.72,0.82,0.72

7

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Hawaii" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-","-","-",303,296,188,175,281,309,358,297,279 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-","-","-",11536,11422,11097,10975,10943,10871,10669,10640,10562 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-","-","-",0.32,0.44,0.49,0.55,0.51,0.47,0.66,0.65,0.62

8

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "South Dakota" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",115,113,113,110,108,103,94,92,93,94,99,103,130,134,139,142,151,156,174,176,195 " Average heat value (Btu per pound)",6096,6025,6034,6057,6049,6972,9034,8687,8728,8630,8464,8540,8550,8560,8523,8711,8534,8530,8391,8386,8327 " Average sulfur Content (percent)",0.9,0.87,0.92,0.9,0.91,0.87,0.52,0.63,0.72,0.6,0.31,0.33,0.37,0.33,0.34,0.31,0.32,0.3,0.31,0.31,0.33 "Petroleum (cents per million Btu)1",565,488,"-",467,"-","-",598,"-","-","-","-","-","-",804,822,1245,1546,"-",1985,1248,1808

9

Methodology and a preliminary data base for examining the health risks of electricity generation from uranium and coal fuels  

SciTech Connect

An analytical model was developed to assess and examine the health effects associated with the production of electricity from uranium and coal fuels. The model is based on a systematic methodology that is both simple and easy to check, and provides details about the various components of health risk. A preliminary set of data that is needed to calculate the health risks was gathered, normalized to the model facilities, and presented in a concise manner. Additional data will become available as a result of other evaluations of both fuel cycles, and they should be included in the data base. An iterative approach involving only a few steps is recommended for validating the model. After each validation step, the model is improved in the areas where new information or increased interest justifies such upgrading. Sensitivity analysis is proposed as the best method of using the model to its full potential. Detailed quantification of the risks associated with the two fuel cycles is not presented in this report. The evaluation of risks from producing electricity by these two methods can be completed only after several steps that address difficult social and technical questions. Preliminary quantitative assessment showed that several factors not considered in detail in previous studies are potentially important. 255 refs., 21 figs., 179 tabs.

El-Bassioni, A.A.

1980-08-01T23:59:59.000Z

10

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "Alabama" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",184,181,173,176,167,156,154,154,157,148,141,141,142,147,152,179,211,206,271,268,282 " Average heat value (Btu per pound)",12094,12107,12061,12092,12088,11861,11794,11584,11519,10963,10951,10990,10828,10977,10878,10950,10879,10644,10659,10507,10633 " Average sulfur Content (percent)",1.51,1.4,1.43,1.33,1.3,1.2,1.24,1.13,1.13,1.02,0.91,0.92,0.94,0.95,0.84,0.97,0.94,0.88,0.89,0.92,0.99 "Petroleum (cents per million Btu)1",507,512,460,425,402,376,446,405,288,326,652,552,509,560,754,1148,1327,1107,1672,1249,1589 " Average heat value (Btu per gallon)",130098,137126,137164,137671,137864,138276,139383,139645,139510,139140,137395,144286,140588,141395,142757,141012,140469,143452,140050,137243,137733

11

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Nebraska" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",75,75,75,75,77,75,72,59,59,55,56,57,58,60,66,71,80,88,90,133,142 " Average heat value (Btu per pound)",8561,8542,8553,8561,8571,8594,8599,8595,8584,8498,8632,8585,8654,8673,8574,8570,8514,8511,8496,8544,8547 " Average sulfur Content (percent)",0.35,0.35,0.37,0.35,0.35,0.33,0.34,0.32,0.27,0.3,0.3,0.31,0.3,0.29,0.32,0.31,0.3,0.31,0.31,0.31,0.28 "Petroleum (cents per million Btu)1",703,457,465,248,402,224,511,450,333,432,649,656,555,457,712,1343,1534,1669,1772,1056,1711 " Average heat value (Btu per gallon)",138043,137600,137586,107945,137640,103081,137621,137567,132550,137671,137750,138571,138043,138040,136976,138119,138124,138007,139452,140500,137895

12

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Louisiana" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",170,165,153,158,154,155,151,148,143,140,132,131,127,134,138,151,166,185,210,204,216 " Average heat value (Btu per pound)",8194,8223,8122,8092,8136,8110,8171,8102,8097,8149,7933,8030,8095,8023,8146,8136,8205,8246,8183,8201,8114 " Average sulfur Content (percent)",0.49,0.49,0.5,0.52,0.51,0.58,0.57,0.64,0.56,0.58,0.63,0.74,0.52,0.5,0.51,0.54,0.49,0.39,0.41,0.39,0.39 "Petroleum (cents per million Btu)1",371,413,388,223,269,348,327,302,222,204,459,519,63,247,286,427,300,196,425,195,296 " Average heat value (Btu per gallon)",144962,143214,141950,152148,147869,141543,147221,153519,153400,154469,149843,145238,140393,145807,147379,147057,142607,139310,140002,136969,136986

13

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

7 PM)" 7 PM)" "North Carolina" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",178,178,173,170,168,163,148,143,144,144,143,159,176,178,200,240,269,274,326,359,352 " Average heat value (Btu per pound)",12544,12506,12456,12465,12416,12461,12422,12368,12398,12450,12448,12380,12422,12423,12345,12309,12268,12374,12243,12333,12270 " Average sulfur Content (percent)",0.96,0.94,0.92,0.96,0.95,0.86,0.89,0.9,0.89,0.85,0.82,0.86,0.85,0.87,0.86,0.88,0.91,1.01,1.01,1.04,1.01 "Petroleum (cents per million Btu)1",512,473,441,405,384,382,468,428,311,398,616,584,467,623,715,997,1356,1042,1513,1014,1433 " Average heat value (Btu per gallon)",138229,138317,138450,138610,138238,138148,138298,138264,138167,138169,138360,145952,144098,140848,141338,142869,139114,146617,146483,146243,144814

14

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

9 PM)" 9 PM)" "Wisconsin" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",136,136,133,121,121,114,106,109,107,102,102,105,112,112,118,129,150,170,198,206,218 " Average heat value (Btu per pound)",9642,9643,9725,9490,9565,9351,9222,9375,9299,9115,9165,9500,9089,9006,9030,9088,8975,8967,9025,8920,8964 " Average sulfur Content (percent)",0.81,0.81,0.71,0.49,0.51,0.46,0.46,0.5,0.46,0.39,0.35,0.37,0.41,0.38,0.39,0.38,0.36,0.36,0.37,0.38,0.4 "Petroleum (cents per million Btu)1",526,312,310,153,221,177,193,180,83,81,88,146,111,108,109,150,203,204,356,222,240 " Average heat value (Btu per gallon)",139200,113495,110433,92736,103860,95883,91924,90760,75079,73869,74440,139048,133712,134343,135093,135238,134333,134845,136126,134033,131245

15

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Indiana" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",136,134,131,127,127,125,119,116,112,111,108,114,117,120,121,140,152,161,193,202,214 " Average heat value (Btu per pound)",10562,10569,10628,10539,10535,10338,10357,10461,10517,10620,10604,10540,10593,10550,10601,10756,10638,10588,10486,10470,10498 " Average sulfur Content (percent)",2.06,1.98,1.88,1.78,1.76,1.57,1.59,1.61,1.63,1.58,1.51,1.43,1.48,1.5,1.53,1.72,1.61,1.74,1.71,1.73,1.76 "Petroleum (cents per million Btu)1",191,297,218,365,390,298,198,150,184,170,245,220,208,311,330,803,1394,1337,2002,1002,1571 " Average heat value (Btu per gallon)",89740,105529,96317,126976,137426,115914,90057,81174,100264,90095,90071,149762,142836,138660,135267,139405,139621,140607,139538,139436,139390

16

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Texas" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",145,150,149,144,135,134,129,126,124,120,123,133,126,125,131,129,139,149,162,168,184 " Average heat value (Btu per pound)",7291,7225,7234,7284,7346,7346,7440,7423,7509,7506,7548,7635,7677,7605,7641,7611,7665,7681,7759,7787,7705 " Average sulfur Content (percent)",0.74,0.75,0.76,0.75,0.73,0.77,0.71,0.75,0.71,0.65,0.65,0.67,0.68,0.78,0.77,0.74,0.67,0.6,0.56,0.61,0.61 "Petroleum (cents per million Btu)1",517,471,399,179,211,283,473,342,113,96,617,556,200,423,171,248,267,240,312,213,423 " Average heat value (Btu per gallon)",141838,139760,140129,112764,120681,117555,138383,114810,99067,80493,135419,141905,140340,139979,137700,137955,137876,136814,136638,136569,135686

17

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "Missouri" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",135,134,134,124,110,98,95,93,92,93,92,96,90,92,93,101,111,133,151,153,159 " Average heat value (Btu per pound)",10400,10298,10321,9860,9718,9216,9063,8994,8938,8948,8913,8940,8875,8865,8838,8854,8808,8825,8837,8802,8801 " Average sulfur Content (percent)",2.01,1.84,1.8,1.02,1.03,0.57,0.58,0.47,0.37,0.34,0.3,0.36,0.36,0.37,0.38,0.37,0.36,0.38,0.38,0.38,0.36 "Petroleum (cents per million Btu)1",280,230,210,113,101,110,183,292,118,88,263,134,118,348,279,1236,1457,1713,1829,1022,1607 " Average heat value (Btu per gallon)",107890,131371,136233,83795,79640,79069,95638,123143,89640,76829,94214,136667,136381,137769,139288,137693,137188,137476,137340,137948,137655

18

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

0 PM)" 0 PM)" "Iowa" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",112,110,110,101,99,99,94,94,88,82,82,81,89,89,93,98,105,108,127,134,142 " Average heat value (Btu per pound)",8892,8890,8867,8660,8783,8678,8658,8662,8636,8581,8626,9000,8648,8705,8665,8668,8612,8619,8605,8657,8585 " Average sulfur Content (percent)",0.7,0.67,0.67,0.52,0.57,0.49,0.45,0.45,0.44,0.4,0.35,0.37,0.39,0.43,0.44,0.42,0.44,0.41,0.41,0.42,0.37 "Petroleum (cents per million Btu)1",518,355,158,127,144,96,117,141,141,399,643,617,579,635,459,1077,474,603,1023,1038,878 " Average heat value (Btu per gallon)",137943,123305,84117,83079,86795,77324,78400,83517,88176,139340,138731,139524,139667,139171,137162,139200,134952,135219,133214,136726,133860

19

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

50 PM)" 50 PM)" "Georgia" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",179,180,180,178,169,167,158,159,155,155,154,166,168,172,180,218,240,261,307,362,390 " Average heat value (Btu per pound)",11893,11936,12039,12148,11774,11576,11581,11755,11750,11740,11559,11730,11686,11668,11024,11058,10994,10983,10947,10933,10891 " Average sulfur Content (percent)",1.63,1.63,1.68,1.37,1.05,0.81,0.83,0.84,0.85,0.8,0.76,0.81,0.79,0.82,0.78,0.81,0.82,0.78,0.78,0.76,0.78 "Petroleum (cents per million Btu)1",486,474,434,347,396,378,431,421,328,390,691,668,549,268,289,433,356,537,838,552,667 " Average heat value (Btu per gallon)",139812,138000,140514,142390,138483,139631,140676,140471,138495,138495,138498,145714,138348,134648,136533,141855,135864,141493,138081,138371,137129

20

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

0 PM)" 0 PM)" "Arizona" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",143,141,137,135,137,139,144,142,133,133,124,125,126,127,130,141,144,159,174,181,180 " Average heat value (Btu per pound)",10482,10356,10303,10271,10281,10274,10232,10159,10186,10257,10229,10145,10232,10081,10211,10088,10011,9946,9828,9712,9685 " Average sulfur Content (percent)",0.49,0.51,0.51,0.49,0.51,0.53,0.55,0.54,0.55,0.55,0.56,0.58,0.6,0.64,0.57,0.57,0.57,0.57,0.59,0.65,0.66 "Petroleum (cents per million Btu)1",446,499,467,511,428,510,539,532,429,480,860,706,654,767,859,1403,1625,1671,2102,1300,1807 " Average heat value (Btu per gallon)",142831,139662,140379,140533,142148,139933,142293,140336,138850,138690,138607,143333,139567,139550,133595,140912,139114,140914,138424,135340,135993

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

0 PM)" 0 PM)" "Pennsylvania" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",152,155,148,144,143,136,138,136,135,130,115,121,125,122,137,159,172,175,210,230,241 " Average heat value (Btu per pound)",12241,12302,12399,12443,12368,12315,12321,12279,12323,12552,12670,11240,12111,11733,11615,11741,11459,11400,11079,10940,11063 " Average sulfur Content (percent)",2.16,2.14,2.12,2.07,2.11,2.12,2.09,2.13,2.19,2.15,2.26,2.12,1.95,1.95,2,1.94,2.09,2.08,2.09,2.21,2.39 "Petroleum (cents per million Btu)1",322,247,236,236,249,224,289,225,184,186,292,373,464,467,451,746,762,916,1181,762,1484 " Average heat value (Btu per gallon)",140462,137574,132824,141621,141245,128574,132045,126590,121550,112919,125114,146429,145976,144660,144343,146174,139310,139290,138850,138731,139112

22

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

47 PM)" 47 PM)" "Florida" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",185,186,182,177,178,179,174,173,165,159,157,172,176,176,192,231,256,256,297,339,347 " Average heat value (Btu per pound)",12364,12351,12370,12332,12293,12296,12193,12122,12144,12299,12330,12105,12263,12281,12249,12227,12142,12116,11929,11957,12024 " Average sulfur Content (percent)",1.73,1.73,1.68,1.57,1.6,1.47,1.55,1.59,1.55,1.53,1.59,1.54,1.55,1.44,1.44,1.38,1.37,1.35,1.38,1.45,1.67 "Petroleum (cents per million Btu)1",302,225,242,220,226,247,278,254,193,236,409,339,324,389,392,581,568,712,1003,727,856 " Average heat value (Btu per gallon)",151010,151217,151471,151660,151248,150633,148417,143486,143812,147529,147162,150000,149657,148431,148183,147510,146124,147276,146433,144745,143138

23

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Virginia" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",155,152,147,147,145,145,142,139,138,134,133,159,169,167,195,233,245,249,277,308,328 " Average heat value (Btu per pound)",12714,12768,12830,12817,12778,12743,12597,12554,12603,12702,12814,12730,12845,12826,12713,12650,12592,12531,12492,12501,12476 " Average sulfur Content (percent)",0.96,1,1.03,1,0.99,1.03,0.99,1.01,0.97,1.3,0.98,1.02,1.16,0.97,0.94,1,1.04,0.94,0.92,1,1.02 "Petroleum (cents per million Btu)1",384,223,247,213,216,251,290,282,204,230,424,357,380,499,497,761,875,922,1380,978,1315 " Average heat value (Btu per gallon)",146360,146626,148881,150319,149743,146179,146988,148219,150157,150660,151002,148810,149779,149367,150757,149019,150090,148238,147390,145531,145626

24

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Minnesota" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",125,126,119,113,114,114,107,109,107,110,111,102,106,108,107,113,122,150,169,164,174 " Average heat value (Btu per pound)",8788,8802,8838,8844,8821,8828,8914,8895,8883,8883,8929,8930,8860,8895,8914,8909,8911,8853,8902,8878,8812 " Average sulfur Content (percent)",0.51,0.48,0.45,0.44,0.46,0.47,0.45,0.45,0.44,0.44,0.43,0.47,0.45,0.46,0.44,0.44,0.44,0.45,0.46,0.46,0.43 "Petroleum (cents per million Btu)1",93,88,83,80,85,85,90,78,74,76,54,65,60,85,110,157,152,444,941,1210,1568 " Average heat value (Btu per gallon)",73719,72052,72467,71631,73031,73310,74050,72267,72781,71055,72531,132857,131267,133093,134967,133848,134976,132929,136357,139955,140595

25

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "Washington" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",158,155,137,136,136,144,157,163,149,156,169,146,140,143,133,154,173,217,216,227 " Average heat value (Btu per pound)",8135,8014,8189,8125,8400,8267,7936,8043,8215,8224,8310,8014,8052,8151,8131,8532,9211,8366,8403,8391 " Average sulfur Content (percent)",0.7,0.66,0.66,0.71,0.65,0.69,0.71,0.62,0.59,0.75,0.73,1.01,1,0.93,0.75,0.69,0.34,0.32,0.33,0.34 "Petroleum (cents per million Btu)1",511,573,466,469,472,485,509,499,405,479,664,241,325,412,562,1629,663,1229,965,1383 " Average heat value (Btu per gallon)",140948,140176,139924,139936,139933,139952,139931,139943,139907,140000,140000,137098,145438,139331,137340,142807,138598,139040,139905,130674

26

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

7 PM)" 7 PM)" "West Virginia" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",147,152,147,142,139,127,125,124,122,118,120,125,121,125,135,153,167,173,222,254,239 " Average heat value (Btu per pound)",12452,12505,12524,12489,12468,12418,12378,12398,12305,12361,12281,12085,12103,12166,12061,11976,11967,12046,11897,11959,12034 " Average sulfur Content (percent)",1.89,1.92,2.05,1.94,1.87,1.98,1.93,1.95,1.86,1.84,1.42,1.19,1.71,1.69,1.75,1.78,1.79,2.04,2,2.13,2.4 "Petroleum (cents per million Btu)1",572,537,484,462,442,439,529,464,371,463,721,666,543,725,785,959,901,1063,2146,1434,1738 " Average heat value (Btu per gallon)",139293,139090,139486,139229,139324,138988,138655,138883,139186,139100,139324,137143,122840,140526,140943,141667,143471,143817,135557,137855,138536

27

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

32 PM)" 32 PM)" "Wyoming" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",84,83,76,80,80,82,82,81,79,76,78,77,79,82,87,95,100,105,117,120,132 " Average heat value (Btu per pound)",8811,8756,8840,8779,8766,8738,8716,8787,8794,8784,8803,8880,8759,8826,8826,8814,8708,8684,8769,8791,8806 " Average sulfur Content (percent)",0.54,0.51,0.52,0.51,0.52,0.5,0.52,0.54,0.53,0.51,0.5,0.48,0.49,0.49,0.48,0.49,0.51,0.49,0.51,0.51,0.53 "Petroleum (cents per million Btu)1",527,494,479,473,444,445,546,517,406,476,724,707,553,714,950,1317,1628,1772,2146,1369,1736 " Average heat value (Btu per gallon)",138848,139167,139150,139060,138986,139281,139171,138821,139138,139102,139219,146905,139448,139593,139338,139638,139333,139448,139926,139824,139238

28

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

3 PM)" 3 PM)" "Delaware" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",181,178,173,169,162,162,159,157,156,159,152,217,178,190,220,281,308,286,352,334,355 " Average heat value (Btu per pound)",13035,13053,13064,13027,12954,13085,13020,13062,12962,12935,12995,11495,12858,12803,12530,12222,12401,12524,12452,12567,12550 " Average sulfur Content (percent)",0.97,0.96,1.03,0.94,0.92,1,1.01,0.99,0.98,0.97,1.01,0.67,0.91,0.9,0.83,0.67,0.74,0.73,0.74,0.8,0.77 "Petroleum (cents per million Btu)1",278,238,242,230,259,261,321,278,215,244,446,380,406,576,611,863,1351,1304,1811,1120,1624 " Average heat value (Btu per gallon)",151269,151483,150760,151286,149733,152012,151900,151464,150957,150998,150486,148095,148964,147895,146312,147248,139117,144114,143781,137938,136498

29

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

9 PM)" 9 PM)" "New Jersey" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",180,178,173,177,182,178,175,176,159,145,139,227,187,180,205,218,273,289,333,401,416 " Average heat value (Btu per pound)",13429,13402,13465,13397,13341,13282,12993,13084,13113,13150,13153,13000,13137,13056,12868,12644,12770,11890,12073,11491,11758 " Average sulfur Content (percent)",1.16,1.27,1.29,1.29,1.29,1.21,1.36,1.24,1.13,1.14,1.13,1.57,1.23,1.11,1.58,1.14,1.17,0.88,1.03,0.9,1.05 "Petroleum (cents per million Btu)1",360,302,303,268,290,286,359,299,242,288,484,454,468,604,602,985,970,1147,1547,1011,1495 " Average heat value (Btu per gallon)",148298,148469,148864,149283,148376,149310,147321,148488,148655,149295,149557,141667,143162,139250,135095,134802,141505,136271,138217,136595,139952

30

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "New York" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",161,159,149,150,145,141,143,142,143,145,149,142,155,159,176,213,240,241,257,273,305 " Average heat value (Btu per pound)",12846,12923,12978,12914,12959,13051,13013,13105,13052,13034,13117,13025,13019,12545,12063,11832,11584,11382,11248,11187,10982 " Average sulfur Content (percent)",1.84,1.77,1.65,1.55,1.71,1.79,1.8,1.8,1.75,1.67,1.12,1.97,1.78,1.8,1.66,1.4,1.36,1.37,1.43,1.29,1.31 "Petroleum (cents per million Btu)1",360,272,264,257,251,263,319,284,203,237,431,350,366,493,486,731,800,799,1390,811,1144 " Average heat value (Btu per gallon)",150036,150812,150898,151012,149567,148624,149671,150326,150740,150569,151162,149286,149371,149998,149024,148914,150136,151036,148410,146824,144319

31

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

2 PM)" 2 PM)" "New Mexico" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",132,138,132,137,141,142,143,134,131,133,138,147,153,143,148,151,156,179,199,190,206 " Average heat value (Btu per pound)",9117,9092,9013,8991,9043,9033,9116,9069,9082,9132,9206,9250,9444,9164,9225,9173,9282,9198,9173,9226,8963 " Average sulfur Content (percent)",0.79,0.8,0.81,0.81,0.82,0.8,0.8,0.81,0.8,0.8,0.8,0.72,0.73,0.73,0.72,0.79,0.76,0.77,0.75,0.77,0.75 "Petroleum (cents per million Btu)1",525,535,516,506,465,490,587,575,439,502,758,631,614,754,956,1293,1695,1879,2353,1526,1942 " Average heat value (Btu per gallon)",138098,136000,135676,136000,136000,136000,136000,136000,136000,136000,136000,139524,136000,136048,136007,136252,136024,136026,134186,134086,134219

32

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "Kentucky" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",119,118,116,117,116,111,106,105,106,106,102,110,119,123,137,152,170,175,214,217,226 " Average heat value (Btu per pound)",11558,11552,11620,11697,11683,11625,11536,11571,11579,11582,11604,11425,11464,11498,11550,11620,11568,11661,11534,11472,11460 " Average sulfur Content (percent)",2.59,2.53,2.44,2.39,2.34,2.42,2.47,2.5,2.37,2.27,2.29,2.15,2.16,2.12,2.09,2.21,2.23,2.22,2.33,2.54,2.58 "Petroleum (cents per million Btu)1",575,505,479,204,153,318,310,361,278,275,559,567,465,227,127,117,127,127,203,168,217 " Average heat value (Btu per gallon)",138943,138998,138993,90574,87876,118024,105736,116976,115748,110888,125371,139286,137640,132664,131967,132710,132305,134155,134110,134810,135140

33

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "United States" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",145,145,141,139,136,132,129,127,125,122,120,123,125,128,136,154,169,177,207,221,227 " Average heat value (Btu per pound)",10465,10378,10395,10315,10338,10248,10263,10275,10241,10163,10115,10200,10168,10137,10074,10107,10063,10028,9947,9902,9843 " Average sulfur Content (percent)",1.35,1.3,1.29,1.18,1.17,1.08,1.1,1.11,1.06,1.01,0.93,0.89,0.94,0.97,0.97,0.98,0.97,0.96,0.97,1.01,1.04 "Petroleum (cents per million Btu)1",335,253,251,237,242,257,303,273,202,236,418,369,334,433,429,644,623,717,1087,702,954 " Average heat value (Btu per gallon)",149536,150093,150293,149983,149324,149371,149367,149838,149736,149407,149857,147857,147902,147086,147286,146481,143883,144545,142205,141321,140598

34

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

3 PM)" 3 PM)" "Kansas" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",124,123,118,102,102,102,99,102,98,95,98,105,98,101,103,112,119,123,141,143,151 " Average heat value (Btu per pound)",8948,8998,8900,8654,8708,8730,8827,8766,8696,8628,8672,8700,8571,8619,8626,8569,8607,8582,8545,8526,8569 " Average sulfur Content (percent)",0.58,0.59,0.49,0.43,0.49,0.43,0.49,0.48,0.45,0.43,0.42,0.43,0.44,0.48,0.44,0.44,0.45,0.41,0.39,0.4,0.38 "Petroleum (cents per million Btu)1",540,432,438,402,397,212,412,282,266,319,400,336,273,362,407,556,485,340,711,428,569 " Average heat value (Btu per gallon)",138176,138367,139117,138633,138890,104067,141940,154117,144688,147607,154871,154286,157186,156948,156855,155174,144821,137017,136552,137645,137600

35

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

5 PM)" 5 PM)" "Illinois" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",175,171,174,170,161,163,163,155,156,144,115,119,119,116,115,119,126,134,158,165,170 " Average heat value (Btu per pound)",10789,10721,10666,10362,10181,9970,9878,9781,9700,9560,9690,9555,9253,9176,9120,9015,8937,8962,8892,8876,8896 " Average sulfur Content (percent)",2.07,2,1.91,1.63,1.46,1.14,1.16,1.17,1.1,1.03,1.11,1.1,0.7,0.66,0.65,0.62,0.53,0.52,0.5,0.48,0.5 "Petroleum (cents per million Btu)1",395,309,304,297,280,232,298,309,234,291,324,579,524,540,464,1286,1465,1744,2432,1505,1765 " Average heat value (Btu per gallon)",148831,149029,149843,148693,148945,124129,128245,126779,130829,130367,96874,153333,140345,147876,143595,137405,141102,137319,137310,137181,137507

36

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "Mississippi" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",165,167,160,164,157,153,151,155,154,155,152,163,159,154,169,210,231,271,301,301,289 " Average heat value (Btu per pound)",12543,12555,12507,12338,11312,11221,11023,10486,10569,11062,11549,11670,9723,9235,9087,8993,8961,9290,9276,8541,8519 " Average sulfur Content (percent)",1.64,1.56,1.69,1.41,1.02,1.04,0.93,0.68,0.75,0.74,0.85,0.7,0.63,0.59,0.57,0.57,0.6,0.59,0.55,0.53,0.69 "Petroleum (cents per million Btu)1",243,216,200,176,164,374,224,269,199,154,333,377,428,412,465,651,830,763,1042,1193,1076 " Average heat value (Btu per gallon)",151229,151257,152595,153436,152705,139507,154381,156867,157169,157967,155569,154524,145986,155336,155638,155064,155619,154738,149826,142902,151357

37

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "New Hampshire" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",178,174,169,161,152,159,161,163,161,152,148,167,180,170,202,244,256,290,353,366,380 " Average heat value (Btu per pound)",13303,13247,13260,13179,13032,13111,13146,13054,13133,13133,13114,13050,13245,13262,13199,13087,13196,13109,12886,12849,12922 " Average sulfur Content (percent)",1.81,1.43,1.61,1.62,1.52,1.38,1.56,1.42,1.4,1.35,1.34,1.34,1.17,1.09,1.16,1.32,1.29,1.51,1.2,1.44,1.44 "Petroleum (cents per million Btu)1",227,180,186,184,200,233,254,264,187,214,345,337,371,374,406,595,782,914,1069,717,1345 " Average heat value (Btu per gallon)",154329,156712,156757,154129,153464,154402,154517,152621,151850,153221,153740,151190,152400,152724,152883,154024,155071,152450,152379,151240,146800

38

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

9 PM)" 9 PM)" "Montana" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",67,67,71,69,69,67,71,68,67,73,92,95,61,62,64,71,85,93,102,107,111 " Average heat value (Btu per pound)",8564,8522,8576,8496,8500,8520,8439,8426,8433,8435,6618,8380,8482,8515,8504,8447,8428,8426,8347,8409,8375 " Average sulfur Content (percent)",0.63,0.65,0.66,0.65,0.66,0.68,0.68,0.72,0.72,0.73,0.52,0.53,0.64,0.62,0.63,0.66,0.66,0.61,0.69,0.67,0.69 "Petroleum (cents per million Btu)1",543,472,509,526,463,491,565,529,466,491,"-","-",219,746,948,1274,173,90,135,83,73 " Average heat value (Btu per gallon)",141000,141000,141000,141000,141000,141000,141000,141000,141000,140100,"-","-",137148,136574,137064,126095,130833,137343,136819,139021,138571

39

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "Nevada" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",149,141,146,147,143,131,137,139,130,129,126,126,134,142,136,154,173,188,220,222,244 " Average heat value (Btu per pound)",11122,11121,11051,11012,11291,11075,11140,11169,11199,11257,11211,11210,11284,11120,11118,11176,11495,11151,10664,10505,10626 " Average sulfur Content (percent)",0.53,0.5,0.49,0.49,0.49,0.48,0.49,0.5,0.47,0.46,0.47,0.51,0.53,0.5,0.54,0.53,0.54,0.46,0.44,0.42,0.47 "Petroleum (cents per million Btu)1",314,393,331,358,329,337,552,508,380,453,722,585,600,601,473,990,1270,"-",2360,1382,1751 " Average heat value (Btu per gallon)",148233,147538,147779,148545,148195,146667,136898,138760,138845,139110,139110,151667,139110,138548,149914,141760,140610,"-",138938,138386,138452

40

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

2 PM)" 2 PM)" "Ohio" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",152,148,144,141,144,142,134,132,136,136,146,131,123,121,133,154,170,171,205,239,224 " Average heat value (Btu per pound)",11882,11945,11983,12049,12052,12122,12056,11891,11913,11918,11823,11550,12143,12160,12098,12097,11525,11495,11444,11768,11563 " Average sulfur Content (percent)",2.44,2.63,2.57,2.39,2.34,1.89,2.08,2.01,2.01,1.98,1.92,2.07,1.98,2.14,2.25,2.16,1.68,1.7,1.96,2.2,2.28 "Petroleum (cents per million Btu)1",459,381,233,187,197,349,347,426,202,348,635,601,532,731,777,1291,1224,1619,591,488,760 " Average heat value (Btu per gallon)",142917,131114,93026,81274,82224,128733,105121,135936,105736,128624,133586,142143,125426,137810,137986,138193,138150,138026,134567,136305,136052

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Making Fischer?Tropsch Fuels and Electricity from Coal and Biomass: Performance and Cost Analysis  

Science Journals Connector (OSTI)

We employ a unified analytical framework to systematically analyze 16 separate process designs, simulating for each detailed mass/energy balances using Aspen Plus software, and calculating their full lifecycle greenhouse gas (GHG) emissions. ... In the plant designs with electricity as a major coproduct, designated as “once-through” (OT) configurations (Figure 1b), the syngas passes only once through the synthesis reactor, and all of the unconverted syngas plus light gases from FTL refining are compressed and supplied to the power island where a gas turbine/steam turbine combined cycle (GTCC) provides the power needed to operate the plant, as well as a substantial amount of export power (up to 37% of the total plant output of fuel (LHV) and power—see Table 3). ... (27) The gasifier is followed by a tar cracking unit, modeled as an ATR with a syngas exit temperature of 882 °C that converts into syngas the heavy hydrocarbons that form at typical biomass gasification temperatures and that would otherwise condense and cause operating difficulties downstream. ...

Guangjian Liu; Eric D. Larson; Robert H. Williams; Thomas G. Kreutz; Xiangbo Guo

2010-12-06T23:59:59.000Z

42

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

43

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

44

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"...

45

Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass  

SciTech Connect

The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.

Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

2012-03-11T23:59:59.000Z

46

Coal-fueled diesel locomotive test  

SciTech Connect

The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

1993-01-01T23:59:59.000Z

47

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

2 PM)" 2 PM)" "Rhode Island" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Petroleum (cents per million Btu)1",359,241,195,320,254,413,479,"-","-","-",730,802,1407,"-",1931,1649,934,1561 " Average heat value (Btu per gallon)",152445,151507,152617,150388,151314,139562,140390,"-","-","-",140564,140562,135160,"-",138571,141786,145243,140864 " Average sulfur Content (percent)",0.93,0.91,1,0.97,0.97,0.03,0.14,"-","-","-",0.14,0.09,0.03,"-",0.15,0.3,0.46,0.25 "Natural Gas (cents per million Btu)",217,198,213,239,222,185,223,326,329,455,650,680,951,734,781,1028,488,538

48

Coal based electric generation comparative technologies report  

SciTech Connect

Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

Not Available

1989-10-26T23:59:59.000Z

49

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

50

Algae fuel clean electricity generation  

Science Journals Connector (OSTI)

Algae fuel clean electricity generation ... The link between algae and electricity may seem tenuous at best. ...

DERMOT O'SULIVAN

1993-02-08T23:59:59.000Z

51

Integration of carbonate fuel cells with advanced coal gasification systems  

SciTech Connect

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation`s carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. [Energy Research Corp., Danbury, CT (United States); Meyers, S.J. [Fluor Daniel, Inc., Irvine, CA (United States); Hauserman, W.B. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1992-12-01T23:59:59.000Z

52

Integration of carbonate fuel cells with advanced coal gasification systems  

SciTech Connect

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation's carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. (Energy Research Corp., Danbury, CT (United States)); Meyers, S.J. (Fluor Daniel, Inc., Irvine, CA (United States)); Hauserman, W.B. (North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center)

1992-01-01T23:59:59.000Z

53

Commodity Price Interaction: CO2 Allowances, Fuel Sources and Electricity  

Science Journals Connector (OSTI)

This work anlyses the relationship between the returns for carbon, electricity and fossil fuel price (coal, oil and natural gas), ... in carbon are not strongly reflected in electricity prices. Also, market power...

Mara Madaleno; Carlos Pinho; Cláudia Ribeiro

2014-01-01T23:59:59.000Z

54

Cost of Fuel to General Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Fuel to Generate Electricity of Fuel to Generate Electricity Cost of Fuel to Generate Electricity Herb Emmrich Gas Demand Forecast, Economic Analysis & Tariffs Manager SCG/SDG&E SCG/SDG&E Federal Utility Partnership Working Group (FUPWG) 2009 Fall Meeting November 18, 2009 Ontario, California The Six Main Costs to Price Electricity are:  Capital costs - the cost of capital investment (debt & equity), depreciation, Federal & State income taxes and property taxes and property taxes  Fuel costs based on fuel used to generate electricity - hydro, natural gas, coal, fuel oil, wind, solar, photovoltaic geothermal biogas photovoltaic, geothermal, biogas  Operating and maintenance costs  Transmission costs  Distribution costs  Social adder costs - GHG adder, low income adder,

55

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

SciTech Connect

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

56

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

57

Alternative Fuels Data Center: Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center: Electricity on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Prices Find electricity fuel prices and trends. Electricity can be used to power all-electric vehicles and plug-in hybrid

58

Liquid Tin Anode Direct Coal Fuel Cell - CellTech Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Tin Anode Direct Coal Liquid Tin Anode Direct Coal Fuel Cell-CellTech Power Background Direct carbon solid oxide fuel cells (SOFCs) offer a theoretical efficiency advantage over traditional SOFCs operating on gasified carbon (syngas). CellTech Power LLC (CellTech) has been developing a liquid tin anode (LTA) SOFC that can directly convert carbonaceous fuels including coal into electricity without gasification. One of the most significant impediments

59

Demonstration of a Carbonate Fuel Cell on Coal Derived Gas  

E-Print Network (OSTI)

system has run on actual syn-gas. Consequently, the Electric Power Research Institute (“EPRI”) has sponsored a 20 kW carbonate fuel cell pilot plant that will begin operating in March at Destec Energy’s coal gasification plant in Plaquemine, Louisiana...

Rastler, D. M.; Keeler, C. G.; Chi, C. V.

60

Electricity Fuel Basics | Department of Energy  

Office of Environmental Management (EM)

Vehicles & Fuels Fuels Electricity Fuel Basics Electricity Fuel Basics August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the...

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fact #844: October 27, 2014 Electricity Generated from Coal has...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

62

Coal fuel slurry for internal combustion engines  

Science Journals Connector (OSTI)

A technoeconomic study of the production of coal-water fuel slurry for internal combustion engines and thermal power plants was performed. Based on the accumulated experimental data, it was found that, in the ...

N. I. Red’kina; G. S. Khodakov; E. G. Gorlov

2013-09-01T23:59:59.000Z

63

Air blast type coal slurry fuel injector  

DOE Patents (OSTI)

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, Ramkrishna G. (San Antonio, TX)

1986-01-01T23:59:59.000Z

64

Production of Hydrogen and Electricity from Coal with CO2 Capture  

E-Print Network (OSTI)

fuels · H2 (and CO2) distribution · H2 utilization (e.g. fuel cells, combustion) · Princeton energy carriers are needed: electricity and hydrogen. · If CO2 sequestration is viable, fossil fuel1 Production of Hydrogen and Electricity from Coal with CO2 Capture Princeton University: Tom

65

Electric utilities, fuel use, and responsiveness to fuel prices  

Science Journals Connector (OSTI)

Abstract This research tests the impact of changes in fuel price to explain fuel use by electric utilities. We employ a three-stage least squares model that explains changes in fuel use as a function of changes in three fuel prices. This model is repeated across sub-samples of data aggregated at the plant level and operating holding company level. We expect that plants and holding companies reduce fuel use when fuel prices rise. Several fuel substitution effects within and across plants and holding companies are demonstrated, as well as several frictions. At the plant level, higher prices of natural gas lead to less natural gas consumption, less coal consumption, and more fuel oil consumption. At the operating holding company level, results demonstrate the inelasticity of coal use and the increases of natural gas in response to higher coal prices. Subsamples demonstrate heterogeneity of results across different plants. Results emphasize that technological, market, and regulatory frictions may hinder the performance of energy policies.

Daniel C. Matisoff; Douglas S. Noonan; Jinshu Cui

2014-01-01T23:59:59.000Z

66

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

67

NETL: News Release - World's First Coal Mine Methane Fuel Cell Powers Up in  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2003 22, 2003 World's First Coal Mine Methane Fuel Cell Powers Up in Ohio New Technology Mitigates Coal Mine Methane Emissions, Produces Electricity HOPEDALE, OH - In a novel pairing of old and new, FuelCell Energy of Danbury, Conn., has begun operating the world's first fuel cell powered by coal mine methane. Funded by the Department of Energy, the demonstration harnesses the power of a pollutant - methane emissions from coal mines - to produce electricity in a new, 21st Century fuel cell. MORE INFO Remarks by DOE's James Slutz FuelCell Energy Web Site "We believe this technology can reduce coal mine methane emissions significantly while producing clean, efficient, and reliable high-quality power," Secretary of Energy Spencer Abraham said. "This has the dual

68

Coal ban could heat up electricity prices  

Science Journals Connector (OSTI)

Coal ban could heat up electricity prices ... The U.S. EPA’s new report on the economic impact of the bill suggests it would cost households $100?140 per year by 2030. ...

Janet Pelley

2009-05-13T23:59:59.000Z

69

EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Gilberton Coal-to-Clean Fuels and Power Project in 7 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA Summary This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. PUBLIC COMMENT OPPORTUNITIES

70

High-pressure coal fuel processor development  

SciTech Connect

The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

Greenhalgh, M.L.

1992-11-01T23:59:59.000Z

71

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

72

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

73

High-pressure coal fuel processor development  

SciTech Connect

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. (Caterpillar, Inc., Peoria, IL (United States))

1992-12-01T23:59:59.000Z

74

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...A. G. Horsler, Gas Counc. (Gt. Brit...England, 1962; Gas J. 312, 19 (1962...be-come overdependent on natural gas and oil to supply...gasifier at elevated pressure with a downward flow...operability on coals of high ash-fusion temperature...

Arthur M. Squires

1974-04-19T23:59:59.000Z

75

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...appreciably larger sizes than coal to other...they grew to a size to fall upon an...air-blown Winkler gasifier pro-ducing power...additional gasification medium (air or oxygen-steam...provide "pure" gasifier Test revamp Develop larger sizes Develop pressure...

Arthur M. Squires

1974-04-19T23:59:59.000Z

76

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...superheating and water-heating sections of the boiler...percent on a higher heating value basis. Conclusions...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...

Arthur M. Squires

1974-04-19T23:59:59.000Z

77

Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...  

Energy Savers (EERE)

for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from...

78

Combustion characteristics of coal fuels in adiabatic diesel engines  

SciTech Connect

An experimental investigation was conducted to determine the combustion characteristics of coal fuels in adiabatic diesel engines. For this purpose engine testing was carried out by the fumigation of fine coal powder to the intake of an insulated and uncooled single cylinder diesel engine. The engine tests conducted include three types of fuels - Diesel fuel No. 2 (DF-2), Dual fuel (DF-2 + Coal), and Coal fuel. Excellent combustion characteristics of coal fuels were obtained in the present work in an adiabatic engine operating at high temperatures. The ''thermal ignition'' concept uncovered in this investigation led to a hot ''ignition chamber'' which provided ignition of the coal fuel. The high temperature engine with the ''ignition chamber'' permitted engine operation on 100% coal fuel without any external ignition aids or compression ignition. With the addition of a glow plug, the coal fueled engine was successfully cold started. For the coal fueled engine tests, analysis of cylinder pressure data showed rapid heat release rates, shorter combustion duration and very fast burning of coal powder fuel. Preliminary results of the apparent indicated cycle efficiency calculated from the heat release data, indicate that 100% coal powder fueled engine has higher cycle efficiency than DF-2 fueled engine in an adiabatic configuration. The problems encountered during the engine tests include: variation in the engine speed and load due to non-uniform coal flow rate by the coal feed system, contamination of the lubricating oil with fine coal powder, and wear of conventional piston rings. However, these problems can be solved with an improved coal feed system and wear resistant ceramic materials for the piston rings. 33 refs.

Kamo, R.; Kakwani, R.M.; Woods, M.E.; Valdmanis, E.

1986-06-01T23:59:59.000Z

79

Gasification Characteristics of Coal/Biomass Mixed Fuels  

SciTech Connect

A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures. A key result of this work is the finding that the reactivities of the mixed chars were not always in between the reactivities of the pure component chars at comparable gasification conditions. Mixed char reactivity to CO2 was lower than the reactivities of both the pure Wyodak coal and pure corn stover chars to CO2. In contrast, mixed char reactivity to H2O was higher than the reactivities of both the pure Wyodak coal and pure corn stover chars to H2O. This was found to be in part, a consequence of the reduced mass specific surface areas of the coal char particles formed during devolatilization when the coal and biomass particles are co-fired. The biomass particles devolatilize prior to the coal particles, impacting the temperature and the composition of the environment in which the coal particles devolatilize. This situation results in coal char particles within the mixed char that differ in specific surface area and reactivity from the coal char particles produced in the absence of the devolatilizing biomass particles. Due to presence of this “affected” coal char, it was not possible to develop a mixed char reactivity model that uses linear mixing rules to determine the reactivity of a mixed char from only the reactivities of the pure mixture components. However, it was possible to predict both mixed char specific surface area and reactivity for a wide range of fuel mixture rat os provided the specific surface area and reactivity of the affected coal char particles are known. Using the kinetic parameters determined for the Wyodak coal and corn stover chars, the model was found to adequately predict the observed conversion times and off-gas compositions

Mitchell, Reginald

2013-09-30T23:59:59.000Z

80

Effect of Coal Gas Contaminants on Solid Oxide Fuel Cell Operation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Gas Contaminants on Solid Oxide Fuel Cell Operation. Effect of Coal Gas Contaminants on Solid Oxide Fuel Cell Operation. Abstract: The operation of solid oxide fuel cells...

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cost and Quality of Fuels for Electric Utility Plants  

Gasoline and Diesel Fuel Update (EIA)

1) 1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Preface Background The Cost and Quality of Fuels for Electric Utility Plants 2001 is prepared by the Electric Power Divi- sion; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S.

82

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

83

Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Hybrid Electric State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg

84

Coal Integrated Gasification Fuel Cell System Study  

SciTech Connect

This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

2004-01-31T23:59:59.000Z

85

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Electric Generation Technology Conventional Coal-Fired PowerPlants Advanced Coal-Electric Plants OperatingCharacteristics for Conventional Coal- Fired Power

Ferrell, G.C.

2010-01-01T23:59:59.000Z

86

Fuel cells for electric utility and transportation applications  

SciTech Connect

This review article presents: the current status and expected progress status of the fuel cell research and development programs in the USA, electrochemical problem areas, techno-economic assessments of fuel cells for electric and/or gas utilities and for transportation, and other candidate fuel cells and their applications. For electric and/or gas utility applications, the most likely candidates are phosphoric, molten carbonate, and solid electrolyte fuel cells. The first will be coupled with a reformer (to convert natural gas, petroleum-derived, or biomass fuels to hydrogen), while the second and third will be linked with a coal gasifier. A fuel cell/battery hybrid power source is an attractive option for electric vehicles with projected performance characteristics approaching those for internal combustion or diesel engine powered vehicles. For this application, with coal-derived methanol as the fuel, a fuel cell with an acid electrolyte (phosphoric, solid polymer electrolyte or super acid) is essential; with pure hydrogen (obtained by splitting of water using nuclear, solar or hydroelectric energy), alkaline fuel cells show promise. A fuel cell researcher's dream is the development of a high performance direct methanol-air fuel cell as a power plant for electric vehicles. For long or intermittent duty cycle load leveling, regenerative hydrogen-halogen fuel cells exhibit desirable characteristics.

Srinivasan, S.

1980-01-01T23:59:59.000Z

87

What explains the increased utilization of Powder River Basin coal in electric power generation?  

SciTech Connect

This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

Gerking, S.; Hamilton, S.F. [University of Central Florida, Orlando, FL (United States)

2008-11-15T23:59:59.000Z

88

Alternative Fuels Data Center: Fuel Cell Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Fuel Cell Electric Vehicles

89

Alternative Fuels Data Center: Electricity Related Links  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity Related Links to someone by E-mail Share Alternative Fuels Data Center: Electricity Related Links on Facebook Tweet about Alternative Fuels Data Center: Electricity Related Links on Twitter Bookmark Alternative Fuels Data Center: Electricity Related Links on Google Bookmark Alternative Fuels Data Center: Electricity Related Links on Delicious Rank Alternative Fuels Data Center: Electricity Related Links on Digg Find More places to share Alternative Fuels Data Center: Electricity Related Links on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations

90

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the...

91

American Clean Coal Fuels | Open Energy Information  

Open Energy Info (EERE)

Fuels Fuels Jump to: navigation, search Name American Clean Coal Fuels Address 123 NW 12th ave Place Portland, Oregon Zip 97209 Sector Biofuels Product Uses gasification to turn carbon based feedstocks into syngas for biofuels Website http://www.cleancoalfuels.com/ Coordinates 45.5238219°, -122.6831677° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5238219,"lon":-122.6831677,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

93

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

94

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV)

95

Combustion and fuel characterization of coal-water fuels  

SciTech Connect

Activities conducted under this contract include studies on the combustion and fireside behavior of numerous coal-water fuels (CWFs). The work has been broken down into the following areas: Task 1 -- Selection of Candidate Fuels; Task 2 -- Bench Scale Tests; Task 3 -- CWF Preparation and Supply; Task 4 -- Combustion Characterization; Task 5 -- Ash Deposition and Performance Testing; Task 6 -- Commercial Applications. This report covers Task 6, the study of commercial applications of CWFs as related to the technical and economic aspects of the conversion of existing boilers and heaters to CWF firing. This work involves the analysis of seven units of various sizes and configurations firing several selected CWFs. Three utility boilers, two industrial boilers, and two process heater designs are included. Each of the units was considered with four primary selected CWFs. A fifth fuel was considered for one of the utility units. A sixth fuel, a microfine grind CWF, was evaluated on two utility units and one industrial unit. The particular fuels were chosen with the objective of examining the effects of coal source, ash level, ash properties, and beneficiation on the CWF performance and economics of the seven units. 10 refs., 81 figs., 80 tabs.

Beal, H.R.; Gralton, G.W.; Gronauer, T.W.; Liljedahl, G.N.; Love, B.F.

1987-06-01T23:59:59.000Z

96

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

97

Co-Production of Substitute Natural Gas/Electricity Via Catalytic Coal Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Co-ProduCtion of SubStitute natural GaS / eleCtriCity via CatalytiC Coal GaSifiCation Description The United States has vast reserves of low-cost coal, estimated to be sufficient for the next 250 years. Gasification-based technology, such as Integrated Gasification Combined Cycle (IGCC), is the only environmentally friendly technology that provides the flexibility to co-produce hydrogen, substitute natural gas (SNG), premium hydrocarbon liquids including transportation fuels, and electric power in desired combinations from coal and other carbonaceous feedstocks. Rising costs and limited domestic supply of crude oil and natural gas provide a strong incentive for the development of coal gasification-based co-production processes. This project addresses the co-production of SNG and electricity from coal via gasification

98

Carbon dioxide capture technology for the coal-powered electricity industry : a systematic prioritization of research needs  

E-Print Network (OSTI)

Coal is widely relied upon as a fuel for electric power generation, and pressure is increasing to limit emissions of the CO2 produced during its combustion because of concerns over climate change. In order to continue the ...

Esber, George Salem, III

2006-01-01T23:59:59.000Z

99

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

SciTech Connect

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24T23:59:59.000Z

100

Novel injector techniques for coal-fueled diesel engines  

SciTech Connect

This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life  

SciTech Connect

The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

2008-09-30T23:59:59.000Z

102

NREL: Energy Analysis - Coal-Fired Electricity Generation Results...  

NLE Websites -- All DOE Office Websites (Extended Search)

assessments have shown wide-ranging results. To better understand the greenhouse gas (GHG) emissions from utility-scale, coal-fired electricity generation systems (based on...

103

Table 11a. Coal Prices to Electric Generating Plants, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " constant dollars per million Btu in ""dollar year"" specific to each...

104

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramn Ramrez, Armando Gmez, Javier Ortiz, Luis C....

105

Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative

106

Fuel cell electric power production  

DOE Patents (OSTI)

A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

1985-01-01T23:59:59.000Z

107

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

108

Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report  

SciTech Connect

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

Not Available

1985-09-01T23:59:59.000Z

109

SECA Coal-Based Systems - FuelCell Energy, Inc.  

SciTech Connect

The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ?25 kW SOFC stack tower incorporating multiple stack building blocks of scaled-up cells, suitable for integration into a large-scale fuel cell power module. Activities in Phase II also included the development of the baseline system, factory cost estimate for the baseline plant’s power block, and conceptual design of a natural gas fueled sub-MW system to be used for testing and verification of the fuel cell stacks in a system environment. The specific objective for Phase III was the validation of the performance and robustness of stacks and scaled stack arrays suitable for use in large-scale power generation systems such as an IGFC with reliable, fail-safe operation being of paramount importance. The work culminated in the verification tests of a 60 kW SOFC stack module in a power plant facility. This final technical report summarizes the progress made during the project period. Significant progress was made in the areas of cell and stack technology development, stack module design, sub-scale module tests, Baseline Power Plant system development and Proof-of- Concept Module unit design. The development of this technology will significantly advance the nation’s energy security and independence interests while simultaneously addressing environmental concerns, including greenhouse gas emissions and water usage.

Ayagh, Hossein

2014-01-31T23:59:59.000Z

110

Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1  

SciTech Connect

This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

Not Available

1993-05-01T23:59:59.000Z

111

Overview of Fuel Cell Electric Bus Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus...

112

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

...amounts of coal, because...Director-Mineral Re-sources...of Gas from Coal through a...on coals of high ash-fusion temperature...per ton of high-sulfur coal burned. Absorp-tion...particulate matter as well as...capable of remov-ing up to...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

113

Combustion characterization of beneficiated coal-based fuels  

SciTech Connect

This three-year research project at Combustion Engineering, Inc. (CE) will assess the potential economic and environmental benefits derived from coal beneficiation by various advanced cleaning processes. The objectives of this program include the development of a detailed generic engineering database, comprised of fuel combustion and ash performance data on beneficiated coal-based fuels (BCFs), which is needed to permit broad application. This technical database will provide detailed information on fundamental fuel properties influencing combustion and mineral matter behavior as well as quantitative performance data on combustion, ash deposition, ash erosion, particulate collection, and gaseous and particulate emissions. Program objectives also address the application of this technical database to predict performance impacts associated with firing BCFs in various commercial boiler designs as well as assessment of the economic implications of BCF utilization. Additionally, demonstration of this technology, with respect to large-scale fuel preparation, firing equipment operation, fuel performance, environmental impacts, and verification of prediction methodology, will be provided during field testing. Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for the field test. Approximately nine BCFs will be in dry ultra fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Up to 25 additional BCFs would be characterized during optional project supplements. 9 figs., 1 tab.

Not Available

1989-12-01T23:59:59.000Z

114

Combustion characterization of beneficiated coal-based fuels  

SciTech Connect

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

Chow, O.K.; Nsakala, N.Y.

1990-11-01T23:59:59.000Z

115

Illinois Coal Revival Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

116

Solid Oxide Fuel Cell System Utilizing Syngas from Coal Gasifiers  

Science Journals Connector (OSTI)

Solid Oxide Fuel Cell System Utilizing Syngas from Coal Gasifiers ... The oxidizer is expected to be similar in design to a HRSG duct firing burner (at the inlet of a HRSG). ...

Hossein Ghezel-Ayagh; Stephen Jolly; Dilip Patel; David Stauffer

2013-01-10T23:59:59.000Z

117

Overview of Fuel Cell Electric Bus Development | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Electric Bus Development Overview of Fuel Cell Electric Bus Development Presentation slides from the Fuel Cell Technologies Office webinar ""Fuel Cell Buses"" held...

118

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

119

Group effects on fuel NOx emissisons from coal  

E-Print Network (OSTI)

GROUP EFFECTS ON FUEL NOX EMISSIONS FROM COAL A Thesis by ANAND ANAKKARA VADAKKATH Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1991 Major Subject: Mechanical Engineering GROUP EFFECTS ON FUEL NOX EMISSIONS FROM COAL A Thesis by ANAND ANAKKARA VADAKKATH Approved ss to style and content by: K. Annamalai (Chair of Committee) Cr, R. Laster (Member) J. Wagne (Member...

Vadakkath, Anand Anakkara

2012-06-07T23:59:59.000Z

120

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ``Monthly Power Plant Report.`` These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

122

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

123

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

1991-01-01T23:59:59.000Z

124

Cost and quality of fuels for electric utility plants, 1984  

SciTech Connect

Information on the cost and quality of fossil fuel receipts in 1984 to electric utility plants is presented, with some data provided for each year from 1979 through 1984. Data were collected on Forms FERC-423 and EIA-759. Fuels are coal, fuel oil, and natural gas. Data are reported by company and plant, by type of plant, and by State and Census Region, with US totals. This report contains information on fossil fuel receipts to electric utility plants with a combined steam capacity of 50 megawatts or larger. Previous reports contained data on all electric plants with a combined capacity of 25 megawatts or larger. All historical data in this publication have been revised to reflect the new reporting threshold. Peaking unit data are no longer collected. A glossary of terms, technical notes, and references are also provided. 7 figs., 62 tabs.

Not Available

1985-07-01T23:59:59.000Z

125

Construction Begins on First-of-its-Kind Advanced Clean Coal Electric  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Begins on First-of-its-Kind Advanced Clean Coal Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility September 10, 2007 - 3:16pm Addthis ORLANDO, Fla. - Officials representing the U.S. Department of Energy (DOE), Southern Company, KBR Inc. and the Orlando Utilities Commission (OUC) today broke ground to begin construction of an advanced 285-megawatt integrated gasification combined cycle (IGCC) facility near Orlando, Fla. The new generating station will be among the cleanest, most efficient coal-fueled power plants in the world. Southern Company will operate the facility through its Southern Power subsidiary, which builds, owns, and manages the company's competitive generation assets. It will be located at OUC's Stanton Energy Center in

126

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Relative Standard Errors for Table 1.4;" 1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",0.4,0.4,19.4,8.9,2,6.9,5.4,0,10.1,9.1 3112," Grain and Oilseed Milling",0,0,21.1,14.7,8.4,13.3,7.9,"X",17.9,9.1

127

Electricity from coal and utilization of coal combustion by-products  

SciTech Connect

Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

128

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal"...

129

Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual  

SciTech Connect

In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

Not Available

1981-06-25T23:59:59.000Z

130

Design of advanced fossil-fuel systems (DAFFS): a study of three developing technologies for coal-fired, base-load electric power generation. Integrated coal gasification/combined cycle power plant with Texaco gasification process  

SciTech Connect

The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and performance and cost estimates for the Texaco Integrated Gasification Combined Cycle (IGCC) power plant. Following the introductory comments, the results of the Texaco IGCC power plant study are summarized in Section 2. In Section 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operation and maintenance costs and cost of electricity are presented in Section 5. A Bechtel Group, Inc. assessment and comments on the designs provided by Burns and Roe-Humphreys and Glasgow Synthetic Fuel, Inc. are included in Section 6. The design and cost estimate reports which were prepared by BRHG for those items within their scope of responsibility are included as Appendices A and B, respectively. Appendix C is an equipment list for items within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 8 references, 17 figures, 15 tables.

Not Available

1983-06-01T23:59:59.000Z

131

Design of advanced fossil-fuel systems (DAFFS): a study of three developing technologies for coal-fired, base-load electric power generation. Integrated coal-gasification/combined power plant with BGC/Lurgi gasification process  

SciTech Connect

The objectives of this report are to present the facility description, plant layouts and additional information which define the conceptual engineering design, and performance and cost estimates for the BGC/Lurgi Integrated Gasification Combined Cycle (IGCC) power plant. Following the introductory comments, the results of the British Gas Corporation (BGC)/Lurgi IGCC power plant study are summarized in Section 2. In Secion 3, a description of plant systems and facilities is provided. Section 4 includes pertinent performance information and assessments of availability, natural resource requirements and environmental impact. Estimates of capital costs, operating and maintenance costs and cost of electricity are presented in Section 5. A Bechtel Group Inc. (BGI) assessment and comments on the designs provided by Burns and Roe-Humphreys and Glasgow Synthetic Fuels, Inc. (BRHG) are included in Section 6. The design and cost estimate reports which were prepared by BRHG for those items within their scope of responsibility are included as Appendices A and B, respectively. Apendix C is an equipment list for items within the BGI scope. The design and cost estimate classifications chart referenced in Section 5 is included as Appendix D. 8 references, 18 figures, 5 tables.

Not Available

1983-06-01T23:59:59.000Z

132

Evaluation of coal-derived liquids as boiler fuels. Volume 1. Comprehensive report. Final report  

SciTech Connect

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases which are distinguished by the level of the test effort. The first phase included the combustion tests of the two conventional fuels used at the station (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. In general, no adverse boiler performance effects were encountered with the combustion of the CDL fuels. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. With the exception of NO/sub x/ emissions, the CDL fuels will be expected to have lower levels of stack emissions compared to a conventional No. 6 fuel oil. NO/sub x/ emissions will be controllable to EPA standards with the application of conventional combustion modification techniques. Volume 1, of a five-volume report, contains a comprehensive report of the entire test program. 43 figs., 19 tabs.

Not Available

1985-09-01T23:59:59.000Z

133

Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report  

SciTech Connect

This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

NONE

1996-01-01T23:59:59.000Z

134

Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Coal reports Coal reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

135

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15T23:59:59.000Z

136

Coal-fueled high-speed diesel engine development  

SciTech Connect

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

137

Coal-fueled diesels for modular power generation  

SciTech Connect

Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

Wilson, R.P. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, A.K. [Cooper-Bessemer Reciprocating, Grove City, PA (United States); Smith, W.C. [Department of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

1993-11-01T23:59:59.000Z

138

A fresh look at coal-derived liquid fuels  

SciTech Connect

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15T23:59:59.000Z

139

Dimethyl ether (DME) from coal as a household cooking fuel in China  

E-Print Network (OSTI)

technologies. Given China's rich coal resources, the production and use of coal-derived DME as a cooking fuelDimethyl ether (DME) from coal as a household cooking fuel in China Eric D. Larson Princeton gas (LPG) as a household cooking fuel. As such, DME is an attractive fuel for clean cooking. DME can

140

Cost and Quality of Fuels for Electric Utility Plants 1997  

Gasoline and Diesel Fuel Update (EIA)

7 Tables 7 Tables May 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/Cost and Quality of Fuels for Electric Utility Plants 1997 Tables ii Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cycle simulation of coal-fueled engines utilizing low heat rejection concepts  

E-Print Network (OSTI)

achieved using the coal water slurry both with and without a diesel pilot. Fuel consumption was also comparable to that of diesel fuel. Ignition delays as long as 6 ms were observed, which was acceptable for the engines speed range. In general, exhaust.... Hsu [15, 16] reports on the successful operation of a General Electric locomotive engine on CWS with and without a diesel pilot. When no pilot was used, inlet air temperature had to be raised by about 40'C. Specific fuel consumption was comparable...

Roth, John M.

2012-06-07T23:59:59.000Z

142

Rail Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Analysis & Projections Analysis & Projections ‹ See all Coal Reports Rail Coal Transportation Rates to the Electric Power Sector Release Date: June 16, 2011 | Next Release Date: July 2012 | full report Introduction The U.S. Energy Information Administration (EIA) is releasing a series of estimated data based on the confidential, carload waybill sample obtained from the U.S. Surface Transportation Board (Carload Waybill Sample). These estimated data represent a continuation of EIA's data and analysis products related to coal rail transportation. These estimated data also address a need expressed by EIA's customers for more detailed coal transportation rate data. Having accurate coal rail transportation rate data is important to understanding the price of electricity for two main reasons. First,

143

Liquid Tin Anode Direct Coal Fuel Cell Final Program Report  

SciTech Connect

This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

Tao, Thomas

2012-01-26T23:59:59.000Z

144

Coal fueled diesel system for stationary power applications-technology development  

SciTech Connect

The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

NONE

1995-08-01T23:59:59.000Z

145

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

146

Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2008-09-15T23:59:59.000Z

147

Annual book of ASTM Standards 2005. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The standard part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrographic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2005-09-15T23:59:59.000Z

148

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

149

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text  

SciTech Connect

This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

DeLuchi, M.A. [California Univ., Davis, CA (United States)

1991-11-01T23:59:59.000Z

150

Coal and Biomass to Liquid Fuels  

Science Journals Connector (OSTI)

Figure 3.3 illustrates the main processing steps in coal to gasoline using MTG. Methanol synthesis is large-scale commercial technology...2]. Single-train methane-based methanol plants up to 5,500 tonnes of metha...

James R. Katzer

2011-01-01T23:59:59.000Z

151

EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY Documents Available for...

152

Energy analysis of the coal fuel cycle in an Appalachian coal county  

SciTech Connect

Preliminary results from an energy analysis of the coal fuel cycle in an Appalachian coal county have provided a systematic assessment of hidden energy subsidies in extraction, transport, processing, and combustion. Current results indicate that the system operates at an annual energy deficit of approximately 350 x 10/sup 10/ kcal. A major loss is depletion of the coal resource base by use of inefficient mining techniques. Although of smaller magnitude, reductions in work force and community productivity from occupational accidents, disease, and road maintenance requirements for transport also appear to be significant. Further assessment is needed to verify assumptions and characterize additional data bases. 39 references.

Watson, A.P.

1984-03-01T23:59:59.000Z

153

Combined-Cycle Power Generation — A Promising Alternative for the Generation of Electric Power from Coal  

Science Journals Connector (OSTI)

The classic concept of generating electric power from a fossil energy source (coal, oil, gas) comprises the following essential process steps (Fig. 1): Combustion of coal and g...

Eberhard Nitschke

1987-01-01T23:59:59.000Z

154

Enzymantic Conversion of Coal to Liquid Fuels  

SciTech Connect

The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

Richard Troiano

2011-01-31T23:59:59.000Z

155

High-pressure coal fuel processor development. Final report  

SciTech Connect

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. [Caterpillar, Inc., Peoria, IL (United States)

1992-12-01T23:59:59.000Z

156

Development of a co-firing fuel from biomass-derived binder and crushed coal.  

E-Print Network (OSTI)

??The focus of this work was the development of a co-firing boiler fuel for use in the coal power plant industry. This fuel, known as… (more)

Friend, Andrew

2013-01-01T23:59:59.000Z

157

Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor  

Science Journals Connector (OSTI)

An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

S.T. Wagland; P. Kilgallon; R. Coveney; A. Garg; R. Smith; P.J. Longhurst; S.J.T. Pollard; N. Simms

2011-01-01T23:59:59.000Z

158

Cost of Fuel to General Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the topic of the cost of fuel to general electricity for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

159

Evaluation of coal-derived liquids as boiler fuels. Volume 3. Emissions test results. Final report  

SciTech Connect

A combustion demonstration using six coal-derived fuels was conducted on a utility boiler located at the plant, Sweatt Electric Generating Station of Mississippi Power Company, in Meridian, Mississippi. Volume 1, of a 5 volume report, contains a comprehensive report of the whole test program - see abstract of Volume 1 for a detailed abstract of the whole program. Volume 3 contains detailed emissions testing results. 41 figs., 6 tabs. (LTN)

Not Available

1985-09-01T23:59:59.000Z

160

Safe electrical design practices for coal-handling facilities  

SciTech Connect

Today's electrical designer must be aware of the latest changes in both codes and regulatory requirements. These regulations now make classification for coal-handling facilities as hazardous areas, a mandatory requirement for both utility and industrial plants. Safe electrical systems can be provided with proper selection, application and installation of material and equipment.

Baggs, G.; Tyles, G.

1982-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fuel Cells: Dispersed Generation of Electricity  

Science Journals Connector (OSTI)

...Corporation, East Hartford, Connecticut. Pratt & Whitney did...is the relatively high price of transmitting and distributing...not only help provide heating, hot water, and air...greater quanti-ties of oil and coal available for...viability of one method of heating the fuel in a tokamak...

Thomas H. Maugh II

1972-12-22T23:59:59.000Z

162

Fuel Consumption for Electricity Generation, All Sectors United States  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption for Electricity Generation, All Sectors Fuel Consumption for Electricity Generation, All Sectors United States Coal (thousand st/d) .................... 2,361 2,207 2,586 2,287 2,421 2,237 2,720 2,365 2,391 2,174 2,622 2,286 2,361 2,437 2,369 Natural Gas (million cf/d) ............. 20,952 21,902 28,751 21,535 20,291 22,193 28,174 20,227 20,829 22,857 29,506 21,248 23,302 22,736 23,627 Petroleum (thousand b/d) ........... 128 127 144 127 135 128 135 119 131 124 134 117 131 129 127 Residual Fuel Oil ...................... 38 28 36 29 30 31 33 29 31 30 34 27 33 31 30 Distillate Fuel Oil ....................... 26 24 27 28 35 30 30 26 31 26 28 25 26 30 28 Petroleum Coke (a) .................. 59 72 78 66 63 63 66 59 62 63 67 60 69 63 63 Other Petroleum Liquids (b) ..... 5 3 4 4 7 5 5 5 7 5 5 5 4 6 6 Northeast Census Region Coal (thousand st/d) ....................

163

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

High-Sulfur...FLUIDIZED-BED COMBUSTORS, COMBUSTION...MAY FLUE GAS DES S E...1971 ). High-sulfur...was brief. Natural gas became...overdependent on natural gas and oil to...elevated pressure with a downward...coals of high ash-fusion...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

164

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...15.7 Nuclear 3.1 Geothermal Negligible 1973, use...home and commercial heating, transporta-tion...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

165

The proceedings of the 31st international technical conference on coal utilization and fuel systems  

SciTech Connect

Topics covered include oxy-fuel, gasification, CO{sub 2} sequestration, coal preparation, opportunities and barriers for overall energy efficiency improvement, advanced sensors and controls, co-firing, computer simulations and virtual power plants, hydrogen fuels from coal, advanced materials, combustion optimisation, innovations for existing power plants, CO{sub 2} capture, biomass, alternative methods of hydrogen production, NOx control, mercury, low NOx technology, coal to liquids, and coal compatible fuel cells.

Sakkestad, B.A. (ed.)

2006-07-01T23:59:59.000Z

166

Innovative coal-fueled diesel engine injector  

SciTech Connect

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

167

Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report  

SciTech Connect

This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

Kakwani, R.M.; Kamo, R.

1989-01-01T23:59:59.000Z

168

Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle  

Science Journals Connector (OSTI)

The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and ...

Frank A. Settle

2009-03-01T23:59:59.000Z

169

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

170

Tracking new coal-fired power plants: coal's resurgence in electric power generation  

SciTech Connect

This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

NONE

2007-05-01T23:59:59.000Z

171

Conditions of utilization of coal mining and processing sludges as slurry fuel  

SciTech Connect

The results of this study have shown that coal sludge can be used as slurry fuel (like coal-water fuel (CWF)) providing that its ash content does not exceed 30% and the amount in the fuel is at least 55%. The conventional CWF preparation technologies are inapplicable to the fabrication of water-sludge fuel; therefore, special technologies with allowance for the ash content, the particle size, and the water content of coal sludge are demanded.

E.G. Gorlov; A.I. Seregin; G.S. Khodakov [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-12-15T23:59:59.000Z

172

Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations  

Science Journals Connector (OSTI)

Abstract Oxy-fuel technology is one of the potential solutions to reduce CO2 emissions from coal-fired power plants. Although vendors offer a “retrofit package,” to the best of our knowledge there has not been a study undertaken that looks at the technical and economic viability of oxy-fuel technology for CO2 capture for South African coal-fired power stations. This study presents a techno-economic analysis for six coal fired power stations in South Africa. Each of these power stations has a total capacity of about 3600 MW. The analysis was done using the oxy-fuel model developed by Carnegie Mellon University in the USA. The model was used to define the performance and costs of retrofitting the boilers. The results obtained showed that the CO2 emission rate was reduced by a factor of 10 for all the plants when retrofitted to oxy-fuel combustion. Between 27 and 29% of the energy generated was used to capture CO2. The energy loss was correlated to the coal properties. Sulphur content in the coal samples affects the energy used for flue gas cooling but did not affect the energy used for CO2 purification and compression. The study also showed there is a need for the flue gas to be treated for \\{NOx\\} and \\{SOx\\} control. The total capital costs and cost of electricity for the six plants were different, resulting with the cost of electricity varying from 101$/MWh to124$/MWh.

B.O. Oboirien; B.C. North; T. Kleyn

2014-01-01T23:59:59.000Z

173

First Commercially Available Fuel Cell Electric Vehicles Hit...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

First Commercially Available Fuel Cell Electric Vehicles Hit the Street First Commercially Available Fuel Cell Electric Vehicles Hit the Street December 10, 2014 - 12:25pm Addthis...

174

National Fuel Cell Electric Vehicle Learning Demonstration Final...  

Office of Environmental Management (EM)

National Fuel Cell Electric Vehicle Learning Demonstration Final Report National Fuel Cell Electric Vehicle Learning Demonstration Final Report This report discusses key analysis...

175

Alternative Fuels Data Center: Electricity Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity Laws and Incentives to someone by E-mail Share Alternative Fuels Data...

176

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network (OSTI)

factors that would enhance or impede development and deployment. · Review other alternative fuels MIT HAROLD SCHOBERT Pennsylvania State University CHRISTOPHER SOMERVILLE Energy BioSciences Institute biomass 085 072 Wheat straw 070 055 a2008 costs = baseline costs #12;BIOCHEMICAL CONVERSION STATUS

177

Producing liquid fuels from coal: prospects and policy issues  

SciTech Connect

The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a commercial coal-to-liquids (CTL) industry within the United States. It describes the technical status, costs, and performance of methods that are available for producing liquids from coal; the key energy and environmental policy issues associated with CTL development; the impediments to early commercial experience; and the efficacy of alternative federal incentives in promoting early commercial experience. Because coal is not the only near-term option for meeting liquid-fuel needs, this book also briefly reviews the benefits and limitations of other approaches, including the development of oil shale resources, the further development of biomass resources, and increasing dependence on imported petroleum. A companion document provides a detailed description of incentive packages that the federal government could offer to encourage private-sector investors to pursue early CTL production experience while reducing the probability of bad outcomes and limiting the costs that might be required to motivate those investors. (See Rand Technical Report TR586, Camm, Bartis, and Bushman, 2008.) 114 refs., 2 figs., 16 tabs., 3 apps.

James T. Bartis; Frank Camm; David S. Ortiz

2008-07-01T23:59:59.000Z

178

NREL: Vehicles and Fuels Research - Fuel Cell Electric Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies in the Media Spotlight Vehicle Technologies in the Media Spotlight August 19, 2013 Automakers have made steady progress reducing the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market between 2015 and 2020. A recent Denver Post article highlights the National Renewable Energy Laboratory's contribution to the progress that automakers have made in getting their fuel cell electric vehicles ready for production. "When I started working on fuel cells in the '90s, people said it was a good field because a solution would always be five years away," said Brian Pivovar, who leads NREL's fuel cell research. "Not anymore." The article references a variety of NREL's hydrogen and fuel cell

179

Integrating catalytic coal gasifiers with solid oxide fuel cells  

SciTech Connect

A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

2010-01-01T23:59:59.000Z

180

Alternative Fuels Data Center: Electric Vehicle Charging Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Stations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Electric Vehicle Charging Stations

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Production of high-energy fuel with low volatile content from 3B and D coal  

Science Journals Connector (OSTI)

Experiments on the carbonization of coal show that high-energy fuel with satisfactory piece strength (?8 MPa in compression) may be produced in the nonoxidative heating of 3B and D coal, with gradual increase ...

M. V. Kulesh; S. R. Islamov

2012-08-01T23:59:59.000Z

182

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal  

E-Print Network (OSTI)

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal Gordon R. Holcomb · Joseph Tylczak the nature of coal ash deposits. Wigley and Goh [1] reported that particles in oxy-fired deposits, compared

Laughlin, David E.

183

Combustion characterization of beneficiated coal-based fuels  

SciTech Connect

This three-year research project at Combustion Engineering, Inc. (CE), will assess the potential economic and environmental benefits derived from coal beneficiation by various advanced cleaning processes. The objectives of this program include the development of a detailed generic engineering data base, comprised of fuel combustion and ash performance data on beneficiated coal-based fuels (BCFs), which is needed to permit broad application. This technical data base will provide detailed information on fundamental fuel properties influencing combustion and mineral matter behavior as well as quantitative performance data on combustion, ash deposition, ash erosion, particulate collection, and gaseous and particulate emissions. Program objectives also address the application of this technical data base to predict performance impacts associated with firing BCFs in various commercial boiler designs as well as assessment of the economic implications of BCF utilization. Additionally, demonstration of this technology, with respect to large-scale fuel preparation, firing equipment operation, fuel performance, environmental impacts, and verification of prediction methodology, will be provided during field testing.

Not Available

1990-03-01T23:59:59.000Z

184

Fuel Savings from Hybrid Electric Vehicles  

SciTech Connect

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

185

Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand  

SciTech Connect

In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increase from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.

NONE

1997-05-01T23:59:59.000Z

186

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

187

Alternative Fuels Data Center: Electricity Research and Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Research Electricity Research and Development to someone by E-mail Share Alternative Fuels Data Center: Electricity Research and Development on Facebook Tweet about Alternative Fuels Data Center: Electricity Research and Development on Twitter Bookmark Alternative Fuels Data Center: Electricity Research and Development on Google Bookmark Alternative Fuels Data Center: Electricity Research and Development on Delicious Rank Alternative Fuels Data Center: Electricity Research and Development on Digg Find More places to share Alternative Fuels Data Center: Electricity Research and Development on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

188

Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Insurance Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Insurance Regulation

189

Alternative Fuels Data Center: Electric Vehicle Charging Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development

190

Mercury Control Technologies for Electric Utilities Burning Lignite Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control technologies for Mercury control technologies for electric utilities Burning lignite coal Background In partnership with a number of key stakeholders, the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), through its National Energy Technology Laboratory (NETL), has been carrying out a comprehensive research program since the mid-1990s focused on the development of advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Mercury is a poisonous metal found in coal, which can be harmful and even toxic when absorbed from the environment and concentrated in animal tissues. Mercury is present as an unwanted by-product of combustion in power plant flue gases, and is found in varying percentages in three basic chemical forms(known as speciation): particulate-bound mercury, oxidized

191

MS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COAL-OUR MOST ABUNDANT FUEL COAL-OUR MOST ABUNDANT FUEL America has more coal than any other fossil fuel resource. Th e United States also has more coal reserves than any other single country in the world. In fact, 1/4 of all the known coal in the world is in the United States. Th e United States has more energy in coal that can be mined than the rest of the world has in oil that can be pumped from the ground. Currently, coal is mined in 25 of the 50 states. Coal is used primarily in the United States to generate electricity. In fact, it is burned in power plants to produce nearly half of the electricity we use. A stove uses about half a ton of coal a year. A water heater uses about two tons of coal a year. And a refrigerator, that's another half-ton a year. Even though you

192

Alternative Fuels Data Center: Benefits and Considerations of Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits and Benefits and Considerations of Electricity as a Vehicle Fuel to someone by E-mail Share Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Facebook Tweet about Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Twitter Bookmark Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Google Bookmark Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Delicious Rank Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Digg Find More places to share Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on AddThis.com...

193

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

194

Coal for the future. Proceedings of the 33rd international technical conference on coal utilization and fuel systems  

SciTech Connect

Topics covered include oxy-fuel technology, modelling and simulations, low NOx technology, gasification technology, pre-utilization beneficiation of coal, advanced energy conversion systems, mercury emissions control, improving power plant efficiency and reducing emissions, biomass and wastes, coal to liquids, post-combustion CO{sub 2} capture, multi emission controls, advanced materials, advanced controls, and international highlights.

Sakkestad, B.A. (ed.)

2008-07-01T23:59:59.000Z

195

Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)  

Energy.gov (U.S. Department of Energy (DOE))

Download presentation slides from the DOE Fuel Cell Technologies Office webinar Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) held on June 24, 2014.

196

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on AddThis.com...

197

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

198

Alternative Fuels Data Center: Electric Vehicle (EV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Charging Infrastructure Availability to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on AddThis.com... More in this section...

199

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Digg Find More places to share Alternative Fuels Data Center: Electric

200

Alternative Fuels Data Center: State Agency Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Electric State Agency Electric Vehicle Supply Equipment (EVSE) Installation to someone by E-mail Share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Facebook Tweet about Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Twitter Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Google Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Delicious Rank Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Digg Find More places to share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on AddThis.com...

202

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

203

Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Electric Aftermarket Electric Vehicle (EV) Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on AddThis.com... More in this section...

204

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on AddThis.com...

205

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

206

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

207

Alternative Fuels Data Center: State Highway Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Highway Electric State Highway Electric Vehicle Supply Equipment (EVSE) Regulations to someone by E-mail Share Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Facebook Tweet about Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Twitter Bookmark Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Google Bookmark Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Delicious Rank Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Digg Find More places to share Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on

208

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

209

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

210

Alternative Fuels Data Center: Electric Trolley Boosts Business in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Trolley Electric Trolley Boosts Business in Bakersfield, California to someone by E-mail Share Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Facebook Tweet about Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Twitter Bookmark Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Google Bookmark Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Delicious Rank Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Digg Find More places to share Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on AddThis.com...

211

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on AddThis.com... More in this section... Federal

212

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

213

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

214

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

215

Alternative Fuels Data Center: State Agency Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Electric State Agency Electric Vehicle Supply Equipment (EVSE) Installation to someone by E-mail Share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Facebook Tweet about Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Twitter Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Google Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Delicious Rank Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Digg Find More places to share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on

216

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

217

Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mandatory Electric Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards to someone by E-mail Share Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Facebook Tweet about Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Twitter Bookmark Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Google Bookmark Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Delicious Rank Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Digg Find More places to share Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on

218

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

219

Table 5.3 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand...

220

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

222

Overview of Fuel Cell Electric Bus Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Fuel Cell Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus emissions * Improve fuel efficiency * Improve vehicle performance * Consumer Acceptance * Transit industry is excellent test-bed for new technologies o Centrally fueled and maintained o Fixed routes with urban stop-go duty cycle o Professional operators and mechanics o Federal Capital Funding Support o High Visibility & High Impact 3 FCEB Development Timeline since 2000 California Air Resources Board Transit Rule Early demonstrations of single prototypes DOE begins funding NREL technology validation for FCEBs First multiple bus fleet demonstrations in California FTA initiates National Fuel Cell Bus Program and

223

Advanced Coal-Fueled Gas Turbine Program. Final report  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

224

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15T23:59:59.000Z

225

International Coal Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Electricity Generation for Selected Countries1 Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Australia NA NA NA NA NA NA NA NA NA Austria 45.70 52.67 64.47 81.28 87.52 92.75 96.24 122.10 120.10 Belgium 37.72 34.48 35.94 72.46 80.35 63.24 75.54 130.54 NA Canada 18.52 19.17 21.03 20.32 24.50 26.29 NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 31.29 31.43 31.18 47.75 57.70 54.68 70.17 118.49 NA Czech Republic3 8.05 8.52 C C C C C C C Denmark NA NA NA NA NA NA NA NA NA Finland 46.66 44.02 48.28 67.00 72.06 74.27 83.72 142.90 NA France 45.28 42.89 42.45 63.55 74.90 72.90 83.90 136.10 NA Germany 51.86 45.70 50.02 70.00 79.74 77.95 90.26 152.60 NA

226

Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process  

SciTech Connect

Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

2012-01-01T23:59:59.000Z

227

Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing  

SciTech Connect

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

228

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

229

Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Highway Electric Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Highway

230

Alternative Fuels Data Center: Procurement Preference for Electric and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Procurement Preference Procurement Preference for Electric and Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Procurement Preference for Electric and Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Procurement Preference for Electric and Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Procurement Preference for Electric and Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Procurement Preference for Electric and Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Procurement Preference for Electric and Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Procurement Preference for Electric and Hybrid Electric Vehicles on AddThis.com...

231

Fireside Corrosion in Oxy-Fuel Combustion of Coal  

SciTech Connect

The goal is to develop technologies for pulverized coal boilers with >90% CO{sub 2} capture and sequestration and <35% increase in the cost of electricity. Air-fired power plant experience shows a corrosion loss max at 680-700 C. Low melting point alkali metal trisulfates, such as (K,Na){sub 3}Fe(SO{sub 4}){sub 3}, become thermally unstable above this temperature range. Some overall conclusions are: (1) CO{sub 2} + 30% H{sub 2}O more corrosive than Ar + 30% H{sub 2}O; (2) Excess O{sub 2} in H{sub 2}O can, in some cases, greatly increase oxidation; (3) Coal ash is generally innocuous without SO{sub 3}3 in gas phase; and (4) Long-term exposures are starting to establish differences between air-firing and oxy-firing conditions.

G. R. Holcomb; J. Tylczak; G. H. Meier; K. Jung; N. Mu; N. M. Yanar; F. S. Pettit

2011-10-09T23:59:59.000Z

232

Economic evaluation of the efficiency of technologies for the manufacture of gas and briquetted fuel from coals  

Science Journals Connector (OSTI)

The technical feasibility of the production of new types of fuel from coal, which most fully meet the requirements of ... influence of the new types of fuel from coals on the economic indices of the production of...

I. P. Krapchin; T. I. Kuz’mina

2012-02-01T23:59:59.000Z

233

Estimating Externalities of Coal Fuel Cycles, Report 3  

SciTech Connect

The agreement between the US DOE and the EC established the specific objectives of the study: (a) to develop a methodological framework that uses existing data and models to quantify the external costs and benefits of energy; (b) to demonstrate the application of the framework to estimate the externalities of the coal, biomass, oil, natural gas, hydro, nuclear, photovoltaic, and wind fuel cycles (by agreement with the EC, the US addressed the first six of these); and (c) to identify major gaps in the availability of information to quantify impacts, damages, benefits, and externalities of fuel cycles; and to suggest priorities for future research. The main consideration in defining these objectives was a desire to have more information about externalities, and a better method for estimating them.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1994-09-01T23:59:59.000Z

234

Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life  

SciTech Connect

The U.S. Department of Energy’s SECA program envisions the development of high-efficiency, low-emission, CO2 sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NOx production), and modularity. The primary objective of the Phase I study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700? to 900?C. Laboratory-scale tests were performed with 1-inch diameter solid oxide fuel cells procured from InDec B.V., Netherlands. These cells produce 0.15, 0.27, and 0.35 W/cm2 at 700?, 750?, and 800?C, respectively, in a H2 anode feed and are expected to be stable within 10% of the original performance over a period of 2000 h. A simulated coal-derived gas containing 30.0% CO, 30.6% H2 11.8% CO2, 27.6% H2O was used at a rate of ~100 standard cm3/min to determine the effect of contaminants on the electrical performance of the cells. Alumina or zirconia components were used for the gas manifold to prevent loss of contaminants by reaction with the surfaces of the gas manifold Short-term accelerated tests were conducted with several contaminants including As, P, CH3Cl, HCl, Hg, Sb, and Zn vapors. In these tests, AsH3, PH3, Cd vapor and CH3Cl identified as the potential contaminants that can affect the electrical performance of SOFCs. The effect of some of these contaminants varied with the operating temperature. Cell failure due to contact break inside the anode chamber occurred when the cell was exposed to 10 ppm arsenic vapor at 800?C. The electrical performance of SOFC samples suffered less than 1% in when exposed to contaminants such as HCl(g), Hg(g), and Zn(g), and SbO(g) at levels of 8 ppm and above. AsH3 vapor at 0.5 ppm did not affect the electrical performance of an SOFC sample even after 1000 h at 750?C. In Phase II of the program, long-term tests will be performed with multiple contaminants at a temperature range of 750? to 850?C. These tests will be at contaminant levels typical of coal-derived gas streams that have undergone gas cleanup using Selexol technology. The chemical nature of the contaminant species will be identified at the operating temperature of SOFC and compare them with thermodynamic equilibrium calculations. The results of the testing will be used to recommend the sensitivity limits for SOFC operation and to assess the reduction in the service life of the SOFC for trace level contaminants.

Gopala N. Krishnan, Palitha Jayaweera, Jordi Perez, M. Hornbostel, John. R. Albritton and Raghubir P. Gupta

2007-10-31T23:59:59.000Z

235

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1  

E-Print Network (OSTI)

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here, the term biomass includes organic matter produced as a result of photosynthesis as well as municipal

Wooldridge, Margaret S.

236

Coal-Fueled Diesel Technology Assessment Study: systems performance and cost comparisons  

SciTech Connect

This report examines the performance of diesel engines operating on coal-based fuels and compares their power generation costs with those of corresponding oil-burning prime movers. Similar performance and cost comparisons are also presented for an alternative prime mover, the direct-fired gas turbine in both a simple-cycle and a regenerative-cycle configuration. The coal-based fuels under consideration include micronized coal, coal slurries, and coal-derived gaseous fuels. The study focuses on medium-speed diesel engines for locomotive, marine, small stationary power, and industrial cogeneration applications in the 1000 to 10,000 kW size range. This report reviews the domestic industrial and transportation markets for medium-speed engines currently using oil or gas. The major problem areas involving the operation of these engines on coal-based fuels are summarized. The characteristics of available coal-based fuels are discussed and the costs of various fuels are compared. Based on performance data from the literature, as well as updated cost estimates originally developed for the Total Energy Technology Alternatives Studies program, power generation costs are determined for both oil-fueled and coal-fueled diesel engines. Similar calculations are also performed for direct-fired gas turbines. The calculations illustrate the sensitivity of the power generation cost to the associated fuel cost for these prime movers. The results also show the importance of reducing the cost of available coal-based fuels, in order to improve the economic competitiveness of coal-fueled prime movers relative to engines operating on oil or gas. 50 refs., 9 figs., 11 tabs.

Holtz, R.E.; Krazinski, J.L.

1985-12-01T23:59:59.000Z

237

Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis  

SciTech Connect

Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

Not Available

1991-12-01T23:59:59.000Z

238

Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995  

SciTech Connect

This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

NONE

1995-03-01T23:59:59.000Z

239

Novel injector techniques for coal-fueled diesel engines. Final report  

SciTech Connect

This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

240

Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Promotion and Infrastructure Development to someone by E-mail Promotion and Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on AddThis.com...

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle (EV) Vehicle (EV) Infrastructure Definitions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

242

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Electric

243

Oxy-fuel Combustion and Integrated Pollutant Removal as Retrofit Technologies for Removing CO2 from Coal Fired Power Plants  

SciTech Connect

One third of the US installed capacity is coal-fired, producing 49.7% of net electric generation in 20051. Any approach to curbing CO2 production must consider the installed capacity and provide a mechanism for preserving this resource while meeting CO2 reduction goals. One promising approach to both new generation and retrofit is oxy-fuel combustion. Using oxygen instead of air as the oxidizer in a boiler provides a concentrated CO2 combustion product for processing into a sequestration-ready fluid.... Post-combustion carbon capture and oxy-fuel combustion paired with a compression capture technology such as IPR are both candidates for retrofitting pc combustion plants to meet carbon emission limits. This paper will focus on oxy-fuel combustion as applied to existing coal power plants.

Ochs, T.L.; Oryshchyn, D.B.; Summers, C.A.; Gerdemann, S.J.

2001-01-01T23:59:59.000Z

244

Investigation into the effects of trace coal syn gas species on the performance of solid oxide fuel cell anodes, PhD. thesis, Russ College of Engineering and Technology of Ohio University  

SciTech Connect

Coal is the United States’ most widely used fossil fuel for the production of electric power. Coal’s availability and cost dictates that it will be used for many years to come in the United States for power production. As a result of the environmental impact of burning coal for power production more efficient and environmentally benign power production processes using coal are sought. Solid oxide fuel cells (SOFCs) combined with gasification technologies represent a potential methodology to produce electric power using coal in a much more efficient and cleaner manner. It has been shown in the past that trace species contained in coal, such as sulfur, severely degrade the performance of solid oxide fuel cells rendering them useless. Coal derived syngas cleanup technologies have been developed that efficiently remove sulfur to levels that do not cause any performance losses in solid oxide fuel cells. The ability of these systems to clean other trace species contained in syngas is not known nor is the effect of these trace species on the performance of solid oxide fuel cells. This works presents the thermodynamic and diffusion transport simulations that were combined with experimental testing to evaluate the effects of the trace species on the performance of solid oxide fuel cells. The results show that some trace species contained in coal will interact with the SOFC anode. In addition to the transport and thermodynamic simulations that were completed experimental tests were completed investigating the effect of HCl and AsH3 on the performance of SOFCs.

Trembly, J.P.

2007-06-01T23:59:59.000Z

245

Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Electric Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) to someone by E-mail Share Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) on Facebook Tweet about Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) on Twitter Bookmark Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) on Google Bookmark Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) on Delicious Rank Alternative Fuels Data Center: Commercial Electric Vehicle

246

Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)  

SciTech Connect

As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

Not Available

2011-02-01T23:59:59.000Z

247

Alternative Fuels Data Center: Electricity Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity » Laws & Incentives Electricity » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Electricity Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Electricity Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Electricity Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Electricity Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Electricity Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Electricity Laws and Incentives on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations

248

Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Digg Find More places to share Alternative Fuels Data Center: Alternative

249

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

SciTech Connect

Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradual heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and four conference publications dealing with utilization of animal waste as fuel have been published. In addition a presentation was made to a utility company interested in the new reburn technology for NO{sub x} reduction.

Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Soyuz Priyadarsan (PhD)

2003-06-01T23:59:59.000Z

250

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick...

251

Alternative Fuels Data Center: All-Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

All-Electric Vehicles All-Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: All-Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: All-Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: All-Electric Vehicles on Google Bookmark Alternative Fuels Data Center: All-Electric Vehicles on Delicious Rank Alternative Fuels Data Center: All-Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: All-Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles All-Electric Vehicles Content on this page requires a newer version of Adobe Flash Player.

252

Cost and Quality of Fuels for Electric Plants - Energy Information...  

Annual Energy Outlook 2012 (EIA)

Cost and Quality of Fuels for Electric Plants Report This report has been discontinued. Cost and quality of fuels for electric plant information can now be found in the detailed...

253

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

SciTech Connect

The following are proposed activities for quarter 2 (9/15/00-12/14/00): (1) Conduct TGA and fuel characterization studies--Task 1; (2) Perform re-burn experiments--Task 2; (3) Fabricate fixed bed gasifier/combustor--Task 3; and (4) Modify the 3D combustion modeling code for feedlot and litter fuels--Task 4. The following were achieved During Quarter 2 (9/15/00-12/14/00): (1) The chicken litter has been obtained from Sanderson farms in Denton, after being treated with a cyclonic dryer. The litter was then placed into steel barrels and shipped to California to be pulverized in preparation for firing. Litter samples have also been sent for ultimate/proximate laboratory analyses.--Task 1; (2) Reburn-experiments have been conducted on coal, as a base case for comparison to litter biomass. Results will be reported along with litter biomass as reburn fuel in the next report--Task 2; (3) Student has not yet been hired to perform task 3. Plans are ahead to hire him or her during quarter No. 3; and (4) Conducted a general mixture fraction model for possible incorporation in the code.

Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

2001-02-05T23:59:59.000Z

254

Alternative Fuels Data Center: Electricity Provider and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Provider Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations to someone by E-mail Share Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Facebook Tweet about Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Twitter Bookmark Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Google Bookmark Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Delicious Rank Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Digg Find More places to share Alternative Fuels Data Center: Electricity

255

Alternative Fuels Data Center: Planned Community and Condominium Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Planned Community and Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations to someone by E-mail Share Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Facebook Tweet about Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Twitter Bookmark Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Google Bookmark Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Delicious Rank Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Digg

256

Characterization of coal-water slurry fuel sprays generated by an electronically-controlled accumulator fuel injector.  

E-Print Network (OSTI)

??Experiments have been completed to characterize coal-water slurry sprays generated by an electronically-controlled accumulator fuel injection system for a diesel engine. The sprays were injected… (more)

Payne, Stephen Ellis

2012-01-01T23:59:59.000Z

257

Characterization of coal-water slurry fuel sprays generated by an electronically-controlled accumulator fuel injector  

E-Print Network (OSTI)

Experiments have been completed to characterize coal-water slurry sprays generated by an electronically-controlled accumulator fuel injection system for a diesel engine. The sprays were injected into a pressurized chamber equipped with quartz...

Payne, Stephen Ellis

2012-06-07T23:59:59.000Z

258

Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Trucks Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Digg Find More places to share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on AddThis.com... Sept. 17, 2011 Electric Trucks Deliver at Kansas City Schools F ind out how the Lee's Summit R-7 School District in Missouri uses electric

259

Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)  

Energy.gov (U.S. Department of Energy (DOE))

Recording and text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014.

260

Noise emissions from new electric options: Coal conversion and on?site generation  

Science Journals Connector (OSTI)

Two alternatives being considered for reducing the use of imported petroleum are the reconversion of oil?fired electric power plants to burn coal or the construction of small on?site generators which would make use of the waste heat from diesel generators to improve fuel efficiency. In urban areas there may be insufficient distance between the noise sources and residents to act as an acoustical buffer zone to attenuate noise to the local permissible limit. Calculations made during the preparation of environmental impact statements will determine noise abatement requirements either for achieving compliance with local noise limits or for minimizing community annoyance. Several studies were undertaken to provide a noise emission data base for the sound sources associated with both alternatives and to develop procedures for evaluating the effects of environmental noise changes. Noise emissions from two types of coal delivery and handling systems are reviewed since these are expected to be the main sources of noise resulting from coal reconversion of a central power station. Noise emissions from on?site cogenerators which will most likely be diesel engine?generators will be discussed briefly since it was the subject of a prior paper [A. M. Teplitzky and L. N. Miller J. Acoust. Soc. Am. Suppl. 1 67 S87(1980)]. The studies have shown that noise emissions from either alternative are compatible with the urban environment when adequate noise abatement devices are installed.

Allan M. Teplitzky

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

"1. Labadie","Coal","Union Electric Co",2407 "2. Iatan","Coal","Kansas City Power & Light Co",1555  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "1. Labadie","Coal","Union Electric Co",2407 "2. Iatan","Coal","Kansas City Power & Light Co",1555 "3. Rush Island","Coal","Union Electric Co",1204 "4. Callaway","Nuclear","Union Electric Co",1190 "5. New Madrid","Coal","Associated Electric Coop, Inc",1160 "6. Thomas Hill","Coal","Associated Electric Coop, Inc",1125 "7. Sioux","Coal","Union Electric Co",986 "8. Hawthorn","Coal","Kansas City Power & Light Co",979 "9. Meramec","Coal","Union Electric Co",951 "10. Aries Power Project","Gas","Dogwood Energy LLC",614

262

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Battery Corporation Fuel Battery Corporation Jump to: navigation, search Name Electric Fuel Battery Corporation Place Auburn, Alabama Zip 36832 Product Develops and manufactures BA-8180/U high power zinc-air battery for military applications. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Registration Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Registration Fee The annual registration fee for an EV is $25.00 unless the vehicle is more

264

Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Horsepower for Kentucky Schools to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on AddThis.com... April 7, 2011 Hybrid Electric Horsepower for Kentucky Schools " The hybrid school bus project not only serves as a means to improve

265

Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Oregon Celebrates 200 Oregon Celebrates 200 Miles of Electric Highways to someone by E-mail Share Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Facebook Tweet about Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Twitter Bookmark Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Google Bookmark Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Delicious Rank Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Digg Find More places to share Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on AddThis.com... April 18, 2012 Oregon Celebrates 200 Miles of Electric Highways " These [electric charging] stations will help create a corridor that, by the

266

Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Initiatives to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle Initiatives All solicitation documents that include the purchase of passenger

267

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

Shields, G.L.; Smit, F.J.; Jha, M.C.

1997-08-28T23:59:59.000Z

268

A CO-UTILIZATION OF COAL WITH E-FUEL FROM ENERTECH'S SLURRYCARBtm PROCESS  

SciTech Connect

In August 1999, EnerTech Environmental, LLC (EnerTech) and the Federal Energy Technology Center (FETC) entered into a Cooperative Agreement to develop the first SlurryCarb{trademark} facility for converting Municipal Sewage Sludge (MSS) into a high-density slurry fuel, which could be co-utilized with coal in various industrial applications. Funded primarily by private investors, this program was divided into two major phases, Project Definition (Phase 0) and Design, Construction, and Operation (Phase 1). Project Definition, performed during this reporting period, was designed to define the project from a technical, economic, and scheduling standpoint. Once defined, much of the project risk would be appropriately mitigated thereby providing stakeholders, such as FETC, less risk when investing in the more costly Phase 1, which includes the design, construction, and operation of the first SlurryCarb{trademark} facility. Since May 1999, EnerTech has made significant progress in the tasks required in Phase 0 for bringing this project to Phase 1. These accomplishments have enhanced the probability for success thereby reducing the risk to the United States Department of Energy's (DOE) for its investment in the project. Phase 0 technical accomplishments include: Locating and securing a project site for the 60 dry ton per day (DTPD) SlurryCarb{trademark} facility; Locating and securing a project partner who will supply the necessary MSS for the project revenue stream; Completing the basic engineering of the project, which included value engineering for reducing technical risk and lowering project costs (final drawings, detail technical review, test runs on process development unit, fuel production for fuel usage research, and final cost estimate all pending); Research and a market study necessary for finding a potential fuel user, which included working with General Electric Environmental Research Corporation (EER) with a focus on coal utilization (locate actual fuel user and detailed combustion research pending); Beginning the National Environmental Policy Act (NEPA) process necessary for the DOE involvement (final NEPA report pending); Completing the basic design for the fuel delivery system and developing a research protocol for testing required by the fuel user (actual fuel testing pending); and Locating engineering, procurement, and construction firm (EPC) to provide a fixed price guaranteed schedule for the project (EPC contract negotiation pending). For this project, a semi-annual technical progress report is required to describe the technical progress made during the duration of the budget period.

Susan L. Hoang

2000-03-02T23:59:59.000Z

269

Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping  

SciTech Connect

Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen carriers in the system by using the high-sulfur-laden asphalt fuels. In all, the scaled-up test in 10 kW CLC facility demonstrated that the preparation method of copper-based oxygen carrier not only help to maintain its good reactivity, also largely minimize its agglomeration tendency.

Pan, Wei-Ping; Cao, Yan

2012-11-30T23:59:59.000Z

270

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown  

Energy.gov (U.S. Department of Energy (DOE))

From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

271

Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors  

SciTech Connect

Concern about global climate change has led to research on low CO{sub 2} emission in the process of the energy conversion of fossil fuel. One of the solutions is the conversion of fossil fuel into carbon-free energy carriers, hydrogen, and electricity with CO{sub 2} capture and storage. In this paper, the main purpose is to investigate the thermodynamics performance of converting coal to a hydrogen and electricity system with chemical-looping reactors and to explore the influences of operating parameters on the system performance. Using FeO/Fe{sub 3}O{sub 4} as an oxygen carrier, we propose a carbon-free coproduction system of hydrogen and electricity with chemical-looping reactors. The performance of the new system is simulated using ASPEN PLUS software tool. The influences of the chemical-looping reactor's temperature, steam conversion rate, and O{sub 2}/coal quality ratio on the system performance, and the exergy performance are discussed. The results show that a high-purity of H{sub 2} (99.9%) is reached and that CO{sub 2} can be separated. The system efficiency is 57.85% assuming steam reactor at 815 C and the steam conversion rate 37%. The system efficiency is affected by the steam conversion rate, rising from 53.17 to 58.33% with the increase of the steam conversion rate from 28 to 41%. The exergy efficiency is 54.25% and the losses are mainly in the process of gasification and HRSG. 14 refs., 12 figs., 3 tabs.

Xiang Wenguo; Chen Yingying [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

2007-08-15T23:59:59.000Z

272

EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy’s Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

273

Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process  

SciTech Connect

Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

2012-09-15T23:59:59.000Z

274

Coal-liquid fuel/diesel engine operating compatibility. Final report  

SciTech Connect

This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

Hoffman, J.G.; Martin, F.W.

1983-09-01T23:59:59.000Z

275

Learn More About the Fuel Economy Label for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles Electric Vehicles Learn More About the New Label Electric Vehicle Fuel Economy and Environment Label Vehicle Technology & Fuel Fuel Economy Comparing Fuel Economy to Other Vehicles You Save Fuel Consumption Rate Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating Details in Fine Print QR Code Fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that is powered by electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

276

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset  

Energy.gov (U.S. Department of Energy (DOE))

Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

277

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 6, July 1990--September 1990  

SciTech Connect

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

Chow, O.K.; Nsakala, N.Y.

1990-11-01T23:59:59.000Z

278

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Digg

279

Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Registration Fee Reduction to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

280

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Open Access Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on AddThis.com...

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: New York Broadens Network for Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New York Broadens New York Broadens Network for Electric Vehicle Charging to someone by E-mail Share Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Facebook Tweet about Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Twitter Bookmark Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Google Bookmark Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Delicious Rank Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Digg Find More places to share Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on AddThis.com... May 18, 2013 New York Broadens Network for Electric Vehicle Charging

282

Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Parking Space Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

283

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on AddThis.com...

284

Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Shuttle Buses Offer Free Rides in Maryland to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on AddThis.com... June 18, 2010

285

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Infrastructure Information Resource to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on

286

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Infrastructure Promotion to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on AddThis.com... More in this section... Federal

287

Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retail Electric Retail Electric Vehicle (EV) Charging Regulations to someone by E-mail Share Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Facebook Tweet about Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Twitter Bookmark Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Google Bookmark Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Delicious Rank Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Digg Find More places to share Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

288

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Financing to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

289

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids

290

Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment Rebate - GWP to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

291

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Digg Find More places to share Alternative Fuels Data Center: Electric

292

Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Charging Incentive - Xcel Energy to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

293

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Digg Find More places to share Alternative Fuels Data Center: Electric

294

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on AddThis.com... More in this section...

295

Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Ice Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail Share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Facebook Tweet about Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Twitter Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Google Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Delicious Rank Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Digg Find More places to share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on AddThis.com... Sept. 14, 2013

296

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

297

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebates to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

298

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

299

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on AddThis.com... More in this section...

300

Alternative Fuels Data Center: Residential Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Residential Electric Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Google Bookmark Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Delicious Rank Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on AddThis.com...

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Improving the technology of creating water-coal fuel from lignites  

SciTech Connect

This paper describes the preparation of coal-water fuel slurries from lignite. The heat of combustion as related to the preparation of the lignite was investigated. The hydrobarothermal processing of suspensions of lignites was studied in autoclaves.

Gorlov, E.G.; Golovin, G.S.; Zotova, O.V. [Rossiiskaya Akadeiya, Nauk (Russian Federation)

1994-12-31T23:59:59.000Z

302

Investigation of Coal Fueled Chemical Looping Combustion Using Fe3O4 as Oxygen Carrier  

Science Journals Connector (OSTI)

Chemical-looping combustion (CLC) is a novel combustion technique with CO2 separation. Magnetite (Fe3O4) was selected as the oxygen carrier and Shenhua coal (Inner Mongolia, China) as the fuel for this study. The...

Wenguo Xlang; Xiaoyan Sun; Sha Wangt…

2010-01-01T23:59:59.000Z

303

The economics of liquid transportation fuels from coal: Past, present and future  

SciTech Connect

This paper reviews the technologies for producing liquid transportation fuels from coal and traces their evolution. Estimates of how their economics have changed with continuing research and development are also given.

Gray, D.; Tomlinson, G.; ElSawy, A. [Mitre Corp., McLean, VA (United States)

1993-08-01T23:59:59.000Z

304

Cost and Quality of Fuels for Electric Utility Plants 2000 Tables  

Gasoline and Diesel Fuel Update (EIA)

0) 0) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2000 Tables August 2001 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions

305

Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

306

A cycle simulation of coal particle fueled reciprocating internal-combustion engines  

E-Print Network (OSTI)

- Summary of Experimental Diesel Engine Operation on Solid Coal Fuels Page Table 2 - Property Data for Coal (Char) Particles . . 23 Table 3 - Summary of the Combustion Model and Reaction Constants 40 Table 4 ? Specifications of the Base Case Engine... Efforts The first attempt to operate a solid particle fueled piston engine was performed nearly a century ago by Rudolf Diesel, inventor of the compression-ignition engine. Since then, at least a dozen separate attempts to oper- ate diesel engines...

Rosegay, Kenneth Harold

2012-06-07T23:59:59.000Z

307

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-10-29T23:59:59.000Z

308

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the available data from laboratory, pilot and full-scale SCR units was reviewed, leading to hypotheses about the mechanism for mercury oxidation by SCR catalysts.

Constance Senior

2004-04-30T23:59:59.000Z

309

"1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "1. Coal Creek","Coal","Great River Energy",1133 "2. Antelope Valley","Coal","Basin Electric Power Coop",900 "3. Milton R Young","Coal","Minnkota Power Coop, Inc",697 "4. Leland Olds","Coal","Basin Electric Power Coop",670 "5. Garrison","Hydroelectric","USCE-Missouri River District",508 "6. Coyote","Coal","Otter Tail Power Co",427 "7. Stanton","Coal","Great River Energy",202 "8. Tatanka Wind Power LLC","Other Renewables","Acciona Wind Energy USA LLC",180 "9. Langdon Wind LLC","Other Renewables","FPL Energy Langdon Wind LLC",159

310

Fuel strategies, coal supply, dust control, and byproduct utilization  

SciTech Connect

This book contains articles presented at the 1990 International Joint Power Generation Conference. Included are the following papers: Waste management on hard coal fired power plants; Acid rain legislation FGD by-product concerns; Innovative transport modes; coal slurry pipelines.

Aananson, M.L. (Philadelphia Electric Co. (US)); Krishna, K. (Burns and McDonnell (US)); Mahr, D. (Burns and Roe Enterprises (US)); Nechvatal, T.M. (Wisconsin Electric Power Co. (US))

1990-01-01T23:59:59.000Z

311

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents (OSTI)

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

312

Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Vehicle Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E to someone by E-mail Share Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Facebook Tweet about Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Twitter Bookmark Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Google Bookmark Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Delicious Rank Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Digg Find More places to share Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on AddThis.com...

313

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Study to someone by E-mail Study to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle Supply Equipment (EVSE) Study

314

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rules to someone by E-mail Rules to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle Supply Equipment (EVSE) Rules

315

Alternative Fuels Data Center: Electric Vehicle (EV) Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fee to someone by E-mail Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Fee EV operators must pay an annual vehicle registration renewal fee of $100. This fee expires if the legislature imposes a vehicle miles traveled fee or

316

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Digg Find More places to share Alternative Fuels Data Center: Hybrid

317

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: Hybrid

318

Transportation costs for new fuel forms produced from low rank US coals  

SciTech Connect

Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

Newcombe, R.J.; McKelvey, D.G. (TMS, Inc., Germantown, MD (USA)); Ruether, J.A. (USDOE Pittsburgh Energy Technology Center, PA (USA))

1990-09-01T23:59:59.000Z

319

Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications  

SciTech Connect

The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel? column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and

Frank J. Smit; Gene L. Schields; Mehesh C. Jha; Nick Moro

1997-09-26T23:59:59.000Z

320

Preparation and gasification of a Thailand coal-water fuel  

SciTech Connect

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy and Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density, determined at 500 cP, indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700 C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals and will produce high levels of hydrogen and be fairly reactive.

Ness, R.O. Jr.; Anderson, C.M.; Musich, M.A.; Richter, J.J.; Dewall, R.A.; Young, B.C. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Nakanart, A. [Ministry of Industry, Bangkok (Thailand)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network (OSTI)

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

322

Coal liquefaction process wherein jet fuel, diesel fuel and/or astm no. 2 fuel oil is recovered  

SciTech Connect

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, R.F.; Ryan, D.F.

1982-06-01T23:59:59.000Z

323

Advanced turbine design for coal-fueled engines  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

324

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-04-01T23:59:59.000Z

325

Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Road User Assessment System Pilot to someone by E-mail Road User Assessment System Pilot to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on AddThis.com... More in this section... Federal State Advanced Search

326

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure and Battery Tax Exemptions to someone by E-mail Infrastructure and Battery Tax Exemptions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on AddThis.com...

327

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure Evaluation to someone by E-mail Infrastructure Evaluation to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on AddThis.com... More in this section... Federal State Advanced Search

328

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Digg Find More places to share Alternative Fuels Data Center: Compressed

329

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURING LOW RANK FUELS  

SciTech Connect

This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a review of the available data on mercury oxidation across SCR catalysts from small, laboratory-scale experiments, pilot-scale slipstream reactors and full-scale power plants was carried out. Data from small-scale reactors obtained with both simulated flue gas and actual coal combustion flue gas demonstrated the importance of temperature, ammonia, space velocity and chlorine on mercury oxidation across SCR catalyst. SCR catalysts are, under certain circumstances, capable of driving mercury speciation toward the gas-phase equilibrium values at SCR temperatures. Evidence suggests that mercury does not always reach equilibrium at the outlet. There may be other factors that become apparent as more data become available.

Constance Senior

2004-07-30T23:59:59.000Z

330

A Characterization and Evaluation of Coal Liquefaction Process Streams. Results of Inspection Tests on Nine Coal-Derived Distillation Cuts in the Jet Fuel Boiling Range  

SciTech Connect

This report describes the assessment of the physical and chemical properties of the jet fuel (180-300 C) distillation fraction of nine direct coal liquefaction products and compares those properties to the corresponding specifications for aviation turbine fuels. These crude coal liquids were compared with finished fuel specifications specifically to learn what the refining requirements for these crudes will be to make them into finished fuels. The properties of the jet fuel fractions were shown in this work to require extensive hydrotreating to meet Jet A-1 specifications. However, these materials have a number of desirable qualities as feedstocks for the production of high energy-density jet fuels.

S. D. Brandes; R. A. Winschel

1999-12-30T23:59:59.000Z

331

Uncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal  

E-Print Network (OSTI)

analyses involving coal. Greenhouse gas emissions from fuel use and methane releases at coal mines, fuel.5 million metric tons of methane emissions. Close to 95% of domestic coal was consumed by the electricityUncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal Aranya Venkatesh

Jaramillo, Paulina

332

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Digg

333

Risk-Cost Tradeoff Analysis of Oil vs. Coal Fuels for Power Generation  

Science Journals Connector (OSTI)

This study examines the economic requirements and health consequences of converting an electrical power generating unit from oil to coal combustion at the West Springfield, MA Generating Station. Three alterna...

Lawrence B. Gratt; Gregory S. Kowalczyk

1991-01-01T23:59:59.000Z

334

Sandia National Laboratories: fuel-cell electric vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel-cell electric vehicle High-Efficiency Solar Thermochemical Reactor for Hydrogen Production On July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI),...

335

Distributed Energy Fuel Cells Electricity Users  

E-Print Network (OSTI)

& Barriers Distributed Energy OBJECTIVES · Develop a distributed generation PEM fuel cell system operating of Stationary PEM Fuel Cell Power System Development of Back-up Fuel Cell Power System Development of Materials of PEM Fuel Cell Systems #12;

336

Recovery of Electrical Energy in Microbial Fuel Cells  

Science Journals Connector (OSTI)

Recovery of Electrical Energy in Microbial Fuel Cells ... Further improvement of energy recovery through optimizing configuration, operation, microbiology, and materials will make MFCs more attractive. ... This research indicates that microbial electricity generation offers perspectives for optimization. ...

Zheng Ge; Jian Li; Li Xiao; Yiran Tong; Zhen He

2013-09-04T23:59:59.000Z

337

Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility to Purchase Electricity from Innovative DOE-Supported Clean Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project January 17, 2012 - 12:00pm Addthis Washington, DC - An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy (DOE) announced today. Under the agreement - the first U.S. purchase by a utility of low-carbon power from a commercial-scale, coal-based power plant with carbon capture - CPS Energy of San Antonio will purchase approximately 200 megawatts (MW) of power from the Texas Clean Energy Project (TCEP), located just west of Midland-Odessa.

338

Status of hydrogen fuel cell electric buses worldwide  

Science Journals Connector (OSTI)

Abstract This review summarizes the background and recent status of the fuel cell electric bus (FCEB) demonstration projects in North America and Europe. Key performance metrics include accumulated miles, availability, fuel economy, fuel cost, roadcalls, and hydrogen fueling. The state-of-the-art technology used in today's fuel cell bus is highlighted. Existing hydrogen infrastructure for refueling is described. The article also presents the challenges encountered in these projects, the experiences learned, as well as current and future performance targets.

Thanh Hua; Rajesh Ahluwalia; Leslie Eudy; Gregg Singer; Boris Jermer; Nick Asselin-Miller; Silvia Wessel; Timothy Patterson; Jason Marcinkoski

2014-01-01T23:59:59.000Z

339

Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Medium-Speed and Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Google Bookmark Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Delicious Rank Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Digg

340

NETL: Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

use of our domestic energy resources and infrastructure. Gasification Systems | Advanced Combustion | Coal & Coal-Biomass to Liquids | Solid Oxide Fuel Cells | Turbines CO2...

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Blending high sulfer coal with refuse derived fuel to make SO{sub 2} compliant slurry fuels  

SciTech Connect

The need for a better method of disposing of the international community`s garbage hardly needs emphasizing. In 1993, the United States alone generated approximately 207 million ton per year of Municipal Solid Waste (MSW), with 62% landfilled, 220/6 recycled, and 16% combusted for energy recovery. Despite strenuous efforts to make these disposal methods meet present needs, the cost of disposal is rising dramatically. Concurrently, the Clean Air Act Amendments (CAAA) of 1990 have severely restricted the SO{sub 2} emissions from coal fired boilers. Medium and high sulfur coals will not comply with the Phase II CAAA regulation limit of 1.2 lb SO{sub 2}/MM Btu, without advanced coal cleaning technologies or flue gas desulfurization, including the majority of the North Dakota lignite reserves. Utility power plants have attempted to burn refuse derived fuel (RDF), a heterogeneous solid fuel produced from MSW, with coal in utility scale boilers (generally referred to as co-firing). Co-firing of RDF with coal has been attempted in sixteen different boilers, five commercially. While lower SO{sub 2} emissions provided the impetus, co-firing RDF with coal suffered from several disadvantages including increased solids handling, increased excess air requirements, higher HCI, CO, NO{sub x} and chlorinated organic emissions, increased slag formation in the boiler, and higher fly ash resistivity. Currently, only two of the sixteen boilers are still regularly used to co-fire RDF. The overall objective of this research program was to assess the feasibility of blending RDF with lignite coal to form SO{sub 2} Compliant slurry fuels using EnerTech`s SlurryCarb{trademark} process. In particular, the objective was to overcome the difficulties of conventional co-firing. Blended slurry fuels were produced with the Energy & Environmental Research Center`s (EERC) bench-scale autoclave and were combusted in a pressurized fluidized-bed reactor (PFBR).

Klosky, M. [EnerTech Environmental, Inc., Atlanta, GA (United States); Anderson, C. [Energy & Environmental Research Center, Grand Forks, ND (United States)

1995-12-31T23:59:59.000Z

342

Wiang Haeng coal-water fuel preparation and gasification, Thailand - task 39  

SciTech Connect

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy & Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density for a pumpable coal-water fuel indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700{degrees}C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals, will produce high levels of hydrogen, and be fairly reactive.

Anderson, C.M.; Musich, M.A.; Young, B.C. [and others

1996-07-01T23:59:59.000Z

343

EIA model documentation: Electricity market module - electricity fuel dispatch  

SciTech Connect

This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA`s Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097.

NONE

1997-01-01T23:59:59.000Z

344

High-pressure coal fuel processor development. Task 1, Proof of principle testing  

SciTech Connect

The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

Greenhalgh, M.L.

1992-11-01T23:59:59.000Z

345

Integrated low emissions cleanup system for coal fueled turbines Phase III bench-scale testing and evaluation  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technologies such as Pressurized Fluidized Bed Combustion (PFBC), coal Gasification Combined Cycles (GCC), and Direct Coal-Fired Turbines (DCFT). A major technical development challenge remaining for coal-fired turbine systems is high-temperature gas cleaning to meet environmental emissions standards, as well as to ensure acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, has evaluated an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic hot gas filter (HGF), ILEC concept controls particulate emissions, while simultaneously contributing to the control of sulfur and alkali vapor contaminants in high-temperature, high-pressure, fuel gases or combustion gases. This document reports on the results of Phase III of the ILEC evaluation program, the final phase of the program. In Phase III, a bench-scale ILEC facility has been tested to (1) confirm the feasibility of the ILEC concept, and (2) to resolve some major filter cake behavior issues identified in PFBC, HGF applications.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1995-08-01T23:59:59.000Z

346

Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT-Liquid Fuels from Coal and  

E-Print Network (OSTI)

Coal and Natural Gas Figure S1 shows a graphical description of the life cycle of coal-to-liquids (CTL) and gas-to-liquids (GTL). Figure S1: Life Cycle of Coal-Based and Natural Gas-Based Fischer-Tropsch LiquidComparative Analysis of the Production Costs and Life- Cycle GHG Emissions of FT-Liquid Fuels from

Jaramillo, Paulina

347

Coal home heating and environmental tobacco smoke in relation to lower respiratory illness in Czech children, from birth to 3 years of age  

E-Print Network (OSTI)

electricity, natural gas, or propane) were not associatedcoal, wood, natural gas, and propane for heating or cooking.fuel used for cooking Gas Propane Electricity Coal Wood

2006-01-01T23:59:59.000Z

348

Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation  

SciTech Connect

Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal-distributed. There have been mixed results in the field using variable orifices in coal pipes. Development of other coal flow control devices has been limited. An underlying difficulty that, to date, has hindered the development of an accurate instrument for coal flow measurements is the fact that coal flow is characterized by irregular temporal and spatial variation. However, despite the inherent complexity of the dynamic system, the system is in fact deterministic. Therefore, in principle, the coal flow can be deduced from the dynamics it exhibits. Nonetheless, the interactions are highly nonlinear, rendering standard signal processing approaches, which rely on techniques such as frequency decomposition, to be of little value. Foster-Miller, Inc. has developed a methodology that relates the complex variation in such systems to the information of interest. This technology will be described in detail in Section 2. A second concern regarding the current measurement systems is installation, which can be labor-intensive and cost-prohibitive. A process that does not require the pulverizer to be taken off line would be highly desirable. Most microwave and electrostatic methods require drilling up to 20 holes in the pipe, all with a high degree of precision so as to produce a proper alignment of the probes. At least one electrostatic method requires a special spool piece to be fitted into each existing coal pipe. Overall, these procedures are both difficult and very expensive. An alternative approach is pursued here, namely the development of an instrument that relies on an acoustic signal captured by way of a commercial accelerometer. The installation of this type of sensor is both simpler and less invasive than other techniques. An accelerometer installed in a pipe wall need not penetrate through the wall, which means that the system may be able to remain on line during the installation. Further, due to the fact that the Dynamical Instruments technology, unlike other systems, does not rely on uniformity of the air or coal profile, the installation location need not be on a long, straight run

R. Demler

2006-04-01T23:59:59.000Z

349

Characteristics of Generating Electricity with Microbial Fuel Cell by Different Organics as Fuel  

Science Journals Connector (OSTI)

A two-chambered microbial fuel cell (MFC) was designed to test the feasibility of organics degradation and electricity production, simultaneously, by using ... glucose, glucose-phenol mixture, and phenol as fuel....

Luo Haiping; Liu Guangli; Zhang Renduo…

2009-01-01T23:59:59.000Z

350

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 2 systems per household Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $400/system Provider York Electric Cooperative, Inc York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and industrial locations. The incentive is for the property owner only, meaning that renters/tenants are not

351

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-04-01T23:59:59.000Z

352

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-06-30T23:59:59.000Z

353

Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels  

SciTech Connect

For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

1995-12-31T23:59:59.000Z

354

Advanced coal-fueled gas turbine systems. Final report  

SciTech Connect

The configuration of the subscale combustor has evolved during the six years of this program from a system using only an impact separator to remove particulates to a system which also included a slagging cyclone separator before the lean-quench combustor. The system also now includes active slag tapping after the impact separator rather than a bucket to collect the slag. The subscale 12 MM Btu/hr (higher heating value, HHV) slagging combustor has demonstrated excellent coal-fired operation at 6 atm. The combustor has fired both coal-water mixtures (CWM) and pulverized coal (PC). Three Wyoming subbituminous coals and two bituminous coals have been successfully fired in the TVC. As a result of this active testing, the following conclusions may be drawn: (1) it was possible to achieve the full design thermal capacity of 12 MM Btu/hr with the subscale slagging combustor, while burning 100% pulverized coal and operating at the design pressure of 6 atm; (2) because of the separate-chamber, rich-lean design of the subscale slagging combustor, NO{sub x} emissions that easily meet the New Source Performance Standards (NSPS) limits were achieved; (3) carbon burnout efficiency was in excess of 99% when 100% coal-fired; (4) ninety percent of the ash can be separated as slag in the impact separator, and a total 98 to 99% removed with the addition of the slagging cyclone separator; (5) Objectives for third-stage exit temperature (1850{degrees}F), and exit temperature pattern factor (14%) were readily achieved; (6) overall pressure loss is currently an acceptable 5 to 6% without cyclone separator and 7 to 9% with the cyclone; and (7) feeding pulverized coal or sorbent into the combustor against 6 atm pressure is achievable.

Not Available

1993-08-01T23:59:59.000Z

355

Abrasive wear by diesel engine coal-fuel and related particles  

SciTech Connect

The purpose of the work summarized in this report was to obtain a basic understanding of the factors which are responsible for wear of the piston ring and cylinder wall surfaces in diesel engines utilizing coal-fuel. The approach included analytical studies using scanning electron microscopy and energy dispersive x-ray analyses to characterize coal-fuel and various combustion particles, and two different wear tests. The wear tests were a modified pin-on-disk test and a block-on-ring test capable of either unidirectional or reciprocating-rotational sliding. The wear tests in general were conducted with mixtures of the particles and lubricating oil. The particles studied included coal-fuel, particles resulting from the combustion of coal fuel, mineral matter extracted during the processing of coal, and several other common abrasive particle types among which quartz was the most extensively examined. The variables studied included those associated with the particles, such as particle type, size, and hardness; variables related to contact conditions and the surrounding environment; and variables related to the type and properties of the test specimen materials.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-09-01T23:59:59.000Z

356

Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Transmission and Fuel Gas Transmission Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Siting and Permitting Provider New York State Public Service Commission Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and environmental impacts of the proposed transmission line. The regulations describe application and review

357

"Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel...

358

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

359

Abrasive wear by coal-fueled diesel engine and related particles  

SciTech Connect

The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1992-09-01T23:59:59.000Z

360

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed to Paulette Young at (202) 426-1150, email

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed

362

Fundamental aspects of coal-water fuel droplet combustion and secondary atomization of coal-water mixtures. Volume I, final report  

E-Print Network (OSTI)

This Final Report is issued in two volumes, covering research into the combustion of coal-water fuels (CWF). Two separate but related tasks are discussed; the present report, Volume I, contains results obtained under Task ...

Sarofim, Adel F.

1987-01-01T23:59:59.000Z

363

Rail Coal Transportation Rates to the Electric Power Sector  

Annual Energy Outlook 2012 (EIA)

well as other details about the shipment. A waybill can include one or more cars and a train can include one or more waybills. Unlike most other reports with coal transportation...

364

Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Survey data. Each plant receiving CAPP or PRB coal in 2007 and 2010 were mapped and their data used to estimate costs for other cells by interpolating values based on inverse...

365

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Contact Cheyenne Light, Fuel and Power CFL Bulbs: Up to 10 CFL bulbs at reduced cost Water Heater: $75 Refrigerator Recycling: $30 Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL light bulbs, tank water heaters and refrigerator recycling. Water heater purchases and

366

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-09-30T23:59:59.000Z

367

Water effects of the use of western coal for electrical production  

SciTech Connect

Water may be a constraint on the expanded development of coal resources in the semi-arid western United States. Water allocation in the West has been determined by the appropriative rights doctrine which allows perpetual use of water sources by those who first claim it for beneficial purposes. This has had the effect of placing a dominative interest in water allocation in one economic sector: agriculture. New water sources are available to coal producers but political and economic problems must be overcome. Water is required by every phase of coal development. Mines use water for dust control and land reclamation. Coal slurry pipelines would use water as a transport medium. Steam electric power plants use water for cooling, cleaning, and in the boiler. Coal gasification plants would use water for cooling, cleaning, and as a material input. In addition to these direct uses of water by coal development, the people who build and operate the development demand water for domestic and recreational purposes. The quantity of water required for a given element of a coal development is site specific and dependent on many factors. The available literature cites a range of estimates of the amount of water required for each type of development. The width of this range seems related to the stage of development of the particular technology. Estimates of water requirements for various schemes to provide an average electrical load of 9 GWe to a load center 1000 miles from western mines are shown in Table 5.

Rogers, E.A.

1980-02-01T23:59:59.000Z

368

Pulverized Coal-Fired Boilers and Pollution Control  

Science Journals Connector (OSTI)

Fossil fuels, such as coal, natural gas, and fuel oil, are used to generate electric power for industrial, commercial, and residential use. ... production and approximately 41% of the world power generation was s...

David K. Moyeda

2013-01-01T23:59:59.000Z

369

Coal-water slurry fuel internal combustion engine and method for operating same  

DOE Patents (OSTI)

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, Michael H. (Fairmont, WV)

1992-01-01T23:59:59.000Z

370

Liquid Fuels from Coal: From R & D to an Industry  

Science Journals Connector (OSTI)

...10 FEBRUARY 1978 the major tool that the United States is now...2). Coal is gasified with steam by the Lurgi technology to...in-frastructure and logistics system for feed and products. It...pe-troleum. While no accurate assessment of costs was really possible...

L. E. Swabb Jr.

1978-02-10T23:59:59.000Z

371

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

372

Modelling the Fate of Sulphur During Pulverized Coal Combustion under Conventional and Oxy-fuel Conditions  

Science Journals Connector (OSTI)

Abstract Focus of the present study is on the fate of sulphur during coal combustion and modelling of the corresponding \\{SOx\\} formation mechanisms. The sulphur chemistry during coal combustion in general is briefly described and potential effects of the oxy-fuel conditions are explained. Details about the developed sulphur chemistry model which covers both heterogeneous and homogeneous reaction pathways are given. The model describes the sulphur transformation in a sequence of stages: the release of coal-bound sulphur, gas phase reactions of sulphuric species, and self-retention of sulphur oxides by coal ash. The model is evaluated against experimental data from IFK's semi-industrial scale furnace (500 kWth) firing lignite at conventional and oxy-fuel combustion conditions. Four reference cases are considered, i.e. air and oxy-fuel mode in both non-staged and staged operation. Based on the results from the basic combustion simulation with AIOLOS, the sulphur chemistry model has been applied in a subsequent post-processing step. The sulphur related results show that the general trends regarding the species concentrations may be predicted correctly. The specific characteristics and the effect of oxy-fuel conditions and oxidant staging are captured correspondingly within the simulation results. Yet, certain deficiencies concerning the quantitative prediction could be identified which necessitate further investigations.

Michael Müller; Uwe Schnell; Günter Scheffknecht

2013-01-01T23:59:59.000Z

373

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-12-31T23:59:59.000Z

374

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Energy.gov (U.S. Department of Energy (DOE))

Webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013.

375

Comparing properties of coal ash and alternative-fuel ash  

Science Journals Connector (OSTI)

The results of investigating ash produced in burning alternative kinds of fuel are discussed. Its impact on the environment is evaluated, and possibilities of recovering it are studied.

E. P. Dick; G. A. Ryabov; A. N. Tugov; A. N. Soboleva

2007-03-01T23:59:59.000Z

376

The economical production of alcohol fuels from coal-derived synthesis gas. Sixth quarterly technical progress report, January 1, 1993--March 31, 1993  

SciTech Connect

Preliminary economic investigations have focused on cost reduction measures in the production of syngas from coal. A spread sheet model has been developed which can determine the cost of syngas production based upon the cost of equipment and raw materials and the market value of energy and by-products. In comparison to natural gas derived syngas, coal derived syngas is much more expensive, suggesting a questionable economic status of coal derived alcohol fuels. While it is possible that use of less expensive coal or significant integration of alcohol production and electricity production may reduce the cost of coal derived syngas, it is unlikely to be less costly to produce than syngas from natural gas. Fuels evaluation is being conducted in three parts. First, standard ASTM tests are being used to analyze the blend characteristics of higher alcohols. Second, the performance characteristics of higher alcohols are being evaluated in a single-cylinder research engine. Third, the emissions characteristics of higher alcohols are being investigated. The equipment is still under construction and the measurement techniques are still being developed. Of particular interest is n-butanol, since the MoS{sub 2} catalyst produces only linear higher alcohols. There is almost no information on the combustion and emission characteristics of n-butanol, hence the importance of gathering this information in this research.

Not Available

1993-04-01T23:59:59.000Z

377

DOE Hydrogen Analysis Repository: Gasification-Based Fuels and Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification-Based Fuels and Electricity Production from Biomass Gasification-Based Fuels and Electricity Production from Biomass Project Summary Full Title: Gasification-Based Fuels and Electricity Production from Biomass, without and with Carbon Capture and Storage Project ID: 226 Principal Investigator: Eric D. Larson Keywords: Biomass; Fischer Tropsch; hydrogen Purpose Develop and analyze process designs for gasification-based thermochemical conversion of switchgrass into Fischer-Tropsch (F-T) fuels, dimethyl ether (DME), and hydrogen. All process designs will have some level of co-production of electricity, and some will include capture of byproduct CO2 for underground storage. Performer Principal Investigator: Eric D. Larson Organization: Princeton University Telephone: 609-258-4966 Email: elarson@princeton.edu

378

October 2005 Gasification-Based Fuels and Electricity Production from  

E-Print Network (OSTI)

October 2005 Gasification-Based Fuels and Electricity Production from Biomass, without......................................................................... 9 3.1.1 Biomass Gasification, and production cost estimates for gasification-based thermochemical conversion of switchgrass into Fischer

379

First Commercially Available Fuel Cell Electric Vehicles Hit the Street  

Office of Energy Efficiency and Renewable Energy (EERE)

Fuel cell electric vehicles are now widely available in the United States. These passenger vehicles have the driving range, ease of refueling, and performance of today’s gasoline-powered cars while emitting nothing but water.

380

Alternative Fuels Data Center: Rental Cars Go Electric in Florida  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to Its Fleet Sept. 28, 2013 Photo of an ice resurfacer Electric Ice Resurfacers Improve Air Quality in Minnesota Sept. 14, 2013 Photo of a police officer fueling a vehicle Texas...

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Prospects for Coal-To-Liquid Conversion: A General Equilibrium Analysis  

E-Print Network (OSTI)

We investigate the economics of coal-to-liquid (CTL) conversion, a polygeneration technology that produces liquid fuels, chemicals, and electricity by coal gasification and Fischer-Tropsch process. CTL is more expensive ...

Chen, Y.-H. Henry

382

Trace elements in co-combustion of solid recovered fuel and coal  

Science Journals Connector (OSTI)

Trace element partitioning in co-combustion of a bituminous coal and a solid recovered fuel (SRF) was studied in an entrained flow reactor. The experiments were carried out at conditions similar to pulverized coal combustion, with SRF shares of 7.9 wt.% (wet basis), 14.8 wt.% and 25.0 wt.%. In addition, the effect of additives such as NaCl, PVC, ammonium sulphate, and kaolinite on trace element partitioning was investigated. The trace elements studied were As, Cd, Cr, Pb, Sb and Zn, since these elements were significantly enriched in SRF as compared to coal. During the experiments, bottom ash was collected in a chamber, large fly ash particles were collected by a cyclone with a cut-off diameter of ~ 2.5 ?m, and the remaining fly ash particles were gathered in a filter. It was found that when coal was co-fired with SRF, the As, Cd, Pb, Sb and Zn content in filter ash/cyclone ash increased almost linearly with their content in fuel ash. This linear tendency was affected when the fuels were mixed with additives. The volatility of trace elements during combustion was assessed by applying a relative enrichment (RE) factor, and TEM–EDS analysis was conducted to provide qualitative interpretations. The results indicated that As, Cd, Pb, Sb and Zn were highly volatile when co-firing coal and SRF, whereas the volatility of Cr was relatively low. Compared with coal combustion, co-firing of coal and SRF slightly enhanced the volatility of Cd, Pb and Zn, but reduced the volatility of Cr and Sb. The Cl-based additives increased the volatility of Cd, Pb and As, whereas addition of ammonium sulphate generally decreased the volatility of trace elements. Addition of kaolinite reduced the volatility of Pb, while the influence on other trace elements was insignificant. The results from the present work imply that trace element emission would be significantly increased when coal is co-fired with SRF, which may greatly enhance the toxicity of the dusts from coal-fired power plant. In order to minimize trace element emission in co-combustion, in addition to lowering the trace element content in SRF, utilizing SRF with low Cl content and coal with high S and aluminosilicates content would be desirable.

Hao Wu; Peter Glarborg; Flemming Jappe Frandsen; Kim Dam-Johansen; Peter Arendt Jensen; Bo Sander

2013-01-01T23:59:59.000Z

383

Coal Technology for Power, Liquid Fuels, and Chemicals  

Science Journals Connector (OSTI)

Several large demonstrations of FBC technology for electric power generation have proven ... -MW(e) atmospheric pressure circulating fluidized-bed boiler at the Colorado-Ute Electric Association’s...21].

Burtron H. Davis; James Hower

2012-01-01T23:59:59.000Z

384

Electrical contact structures for solid oxide electrolyte fuel cell  

DOE Patents (OSTI)

An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

385

Chemically authentic surrogate mixture model for the thermophysical properties of a coal-derived liquid fuel  

SciTech Connect

We developed a surrogate mixture model to represent the physical properties of a coal-derived liquid fuel using only information obtained from a gas chromatography-mass spectrometry analysis of the fuel and a recently developed 'advanced distillation curve'. We then predicted the density, speed of sound, and viscosity of the fuel and compared them to limited experimental data. The surrogate contains five components (n-propylcyclohexane, trans-decalin, {alpha}-methyldecalin, bicyclohexane, and n-hexadecane), yet comparisons to limited experimental data demonstrate that the model is able to represent the density, sound speed, and viscosity to within 1, 4, and 5%, respectively. 102 refs., 2 figs., 5 tabs.

M.L. Huber; E.W. Lemmon; V. Diky; B.L. Smith; T.J. Bruno [National Institute of Standards and Technology (NIST), Boulder, CO (United States). Physical and Chemical Properties Division

2008-09-15T23:59:59.000Z

386

Innovative coal-fueled diesel engine injector. Final report  

SciTech Connect

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

387

Task 27 -- Alaskan low-rank coal-water fuel demonstration project  

SciTech Connect

Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

NONE

1995-10-01T23:59:59.000Z

388

Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994  

SciTech Connect

This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

Not Available

1994-05-01T23:59:59.000Z

389

Historical Costs of Coal-Fired Electricity and Implications for the Future  

E-Print Network (OSTI)

We study the costs of coal-fired electricity in the United States between 1882 and 2006 by decomposing it in terms of the price of coal, transportation costs, energy density, thermal efficiency, plant construction cost, interest rate, and capacity factor. The dominant determinants of costs at present are the price of coal and plant construction cost. The price of coal appears to fluctuate more or less randomly while the construction cost follows long-term trends, decreasing from 1902 - 1970, increasing from 1970 - 1990, and leveling off or decreasing a little since then. This leads us to forecast that even without carbon capture and storage, and even under an optimistic scenario in which construction costs resume their previously decreasing trending behavior, the cost of coal-based electricity will drop for a while but eventually be determined by the price of coal, which varies stochastically but shows no long term decreasing trends. Our analysis emphasizes the importance of using long time series and compari...

McNerney, James; Farmer, J Doyne

2010-01-01T23:59:59.000Z

390

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs  

E-Print Network (OSTI)

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic and Policy Program #12;- 2 - #12;Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry must be developed for capturing CO2 from power plants. Current CO2 capture technology is expensive

391

Electricity generation from coal with CO2 capture by means of a novel power cycle  

SciTech Connect

Climate modelers have estimated that anthropogenic emissions of CO2 must be reduced substantially from the present rate to stabilize atmospheric concentration. To achieve this, electricity generation from fossil fuels with CO2 capture and direct sequestration may play an important role. If so, it will be worthwhile to consider power cycles that are designed to minimize atmospheric CO2 emissions and deliver CO2 ready for pipeline transport in addition to providing other desirable attributes of environmental performance and efficiency. One such novel approach, named the Matiant cycle, employs self generated CO2 as the working fluid with both Bryton and Rankine cycle turbines. Process modeling studies are being conducted at the NETL to investigate the promise of this cycle. In the work to be reported, synthesis gas is provided to the Matiant cycle by oxygen-blown dry coal entrained gasification. Oxygen for both the gasifier and the Matiant cycle is provided by use of an Ion Transport Membrane (ITM). ITM is a revolutionary approach for producing high purity oxygen from a high temperature pressurized air stream. ASPEC Plus is used as the simulation tool to compute energy balances and system performance. Two flowsheets are analyzed, the difference being the treatment of the low oxygen content raffinate stream from the ITM. Computed thermal efficiencies of the ITM/Matiant cycle are comparable to those of conventional IGCC without carbon capture. Specific carbon emissions per net MWh are many times lower for the new cycle than for other approaches being developed for power generation with CO2 capture, however. As much as 99.5% of the carbon in synthesis gas fed to the Matiant cycle could be recovered and removed in a pipeline as a high pressure liquid. Such high capture efficiencies at large central generating stations could allow use of fossil fuels without capture at smaller installations or by mobile sources, yielding a modest overall rate of CO2 emissions.

Ruether, J.; Le, P.; White, C.

2000-07-01T23:59:59.000Z

392

Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels  

SciTech Connect

This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

Steven Markovich

2010-06-30T23:59:59.000Z

393

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

Paul A. Erickson

2004-04-01T23:59:59.000Z

394

Alternative Fuels Data Center: Research and Development of Electricity as a  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Research and Research and Development of Electricity as a Vehicle Fuel to someone by E-mail Share Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Facebook Tweet about Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Twitter Bookmark Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Google Bookmark Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Delicious Rank Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Digg Find More places to share Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on AddThis.com... More in this section...

395

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

XXXXX XXXXX Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Summary This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate

396

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect

Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

Schwalb, J.A.; Ryan, T.W.

1991-10-01T23:59:59.000Z

397

Wear mechanism and wear prevention in coal-fueled diesel engines. Final report  

SciTech Connect

Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

Schwalb, J.A.; Ryan, T.W.

1991-10-01T23:59:59.000Z

398

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992  

SciTech Connect

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

399

Electricity production levelized costs for nuclear, gas and coal  

Office of Scientific and Technical Information (OSTI)

was no competitive in Mexico, at present this situation is changing, due to different factors. One of them is the high price of fossile fuel in Mexico mainly natural gas. Other...

400

PRODUCTION OF HYDROGEN AND ELECTRICITY FROM COAL WITH CO2 CAPTURE  

E-Print Network (OSTI)

gasification, quench cooled and shifted to (pri- marily) H2 and CO2 via sulfur-tolerant water-gas shift (WGS with sulfur-bearing waste gases, H2S and SO2. I. INTRODUCTION Carbon-free energy carriers, H2 and electricity relative abundance, high carbon intensity, and low cost. Coal-to-H2 plants based on gasification have been

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal  

Science Journals Connector (OSTI)

Abstract The performance of a demineralised and devolatilised coal from the Morwell mine in the Latrobe Valley, Victoria, has been investigated in a direct carbon fuel cell (DCFC) operated at 850 °C. The focus of the investigation has been on understanding degradation issues as a function of time involving a sequence of electrochemical impedance spectroscopy and voltage-current characteristic. Diffusion limited processes dominate the electrode polarisation losses in pure N2 atmosphere, however, these decrease substantially in the presence of CO2 as the anode chamber purge gas, due to in situ generation of fuel species by the reaction of CO2 with carbon. Post-mortem analysis of anode by SEM and XRD revealed only a minor degradation due to its reduction, particle agglomeration as well as the formation of small quantity of new phases. However, major fuel cell performance degradation (increase of ohmic resistive and electrode polarisation losses) occurred due to loss of carbon/anode contacts and a reduction in the electron-conducting pathways as the fuel was consumed. The investigations revealed that the demineralised coal char can be used as a viable fuel for DCFC, however, further developments on anode materials and fuel feed mechanism would be required to achieve long-term sustained performance.

Adam C. Rady; Sarbjit Giddey; Aniruddha Kulkarni; Sukhvinder P.S. Badwal; Sankar Bhattacharya

2014-01-01T23:59:59.000Z

402

(Wear mechanism and wear prevention in coal-fueled diesel engines)  

SciTech Connect

The overall objectives of this program is to develop the engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; definition of the specific effect of each coal-related lube oil contaminant; determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; evaluation of several different engine design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and presentation of the engine/lubricant system and design determined to have the most potential. 2 figs., 3 tabs.

Not Available

1989-09-15T23:59:59.000Z

403

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect

The overall objective of this program is to develop the engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; definition of the specific effect of each coal-related lube oil contaminant; determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; evaluation of several different design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and presentation of the engine/lubricant system design determined to have the most potential. 2 figs., 3 tabs.

Not Available

1990-02-19T23:59:59.000Z

404

Method of producing a colloidal fuel from coal and a heavy petroleum fraction  

DOE Patents (OSTI)

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300.degree.-550.degree. C. The slurry is heated to a temperature of 400.degree.-500.degree. C. for a limited time of only about 1-5 minutes before cooling to a temperature of less than 300.degree. C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, James R. (Columbus, OH)

1983-08-09T23:59:59.000Z

405

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-06-30T23:59:59.000Z

406

NREL: Vehicles and Fuels Research - NREL to Showcase Renewable Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL to Showcase Renewable Electricity Generation Systems and Advanced NREL to Showcase Renewable Electricity Generation Systems and Advanced Vehicles at Denver Earth Day Fair April 18, 2013 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will showcase two mobile renewable electricity generation systems and three advanced vehicles-a Toyota Highlander fuel cell electric vehicle, a plug-in Toyota Prius hybrid electric vehicle, and a Mitsubishi i-MiEV electric vehicle-at the Denver Earth Day Fair on April 22. The larger of NREL's two renewable electricity generation systems features a 12 kilowatt biodiesel-powered back-up generator as well as a 1.8 kilowatt photovoltaic array that taps into energy from the sun to produce renewable electricity, which will power the fair. The smaller system includes a 384

407

The potential utilization of nuclear hydrogen for synthetic fuels production at a coal–to–liquid facility / Steven Chiuta.  

E-Print Network (OSTI)

??The production of synthetic fuels (synfuels) in coal–to–liquids (CTL) facilities has contributed to global warming due to the huge CO2 emissions of the process. This… (more)

Chiuta, Steven

2010-01-01T23:59:59.000Z

408

Hydrogen Air Fuel Cell Powered Passenger Car Fever — Fuel Cell Electric Vehicle for Efficiency and Range  

Science Journals Connector (OSTI)

Various technologies are used or developed to alleviate the atmospheric pollution due to exhaust gases from the vehicles: catalytic post — treatment, gaseous fuel and electric vehicles. Renault has decided to ...

J. C. Griesemann; D. Corgier; P. Achard…

1998-01-01T23:59:59.000Z

409

FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE GILBERTON COAL-TO-CLEAN FUELS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPACT STATEMENT IMPACT STATEMENT FOR THE GILBERTON COAL-TO-CLEAN FUELS AND POWER PROJECT GILBERTON, PENNSYLVANIA Volume 2: Appendices October 2007 U.S. DEPARTMENT OF ENERGY Final: October 2007 COVER SHEET October 2007 RESPONSIBLE AGENCY U.S. Department of Energy (DOE) TITLE Final Environmental Impact Statement for the Gilberton Coal-to-Clean Fuels and Power Project LOCATION Gilberton, Pennsylvania CONTACTS Additional copies or information concerning this final environmental impact statement (EIS) can be obtained from Ms. Janice L. Bell, National Environmental Policy Act (NEPA) Document Manager, U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940. Telephone: 412-386-4512.

410

Concentrating on Solar Electricity and Fuels  

Science Journals Connector (OSTI)

...power, pose a “storage problem.” They...unavailable. Aside from pumped hydropower, large-scale storage of electricity is...Spain already have a storage capacity for 7 to...industrial processes, for seawater desalination, or...

Martin Roeb; Hans Müller-Steinhagen

2010-08-13T23:59:59.000Z

411

Fossil Fuels and Carbon Capture and Storage  

Science Journals Connector (OSTI)

Reducing CO2...emissions, including those from the energy sector, ­presents a major challenge to the world at large. Fossil fuels provide two-thirds of the world’s electricity, with coal, in particular, the fuel ...

Keith Burnard; Sean McCoy

2012-01-01T23:59:59.000Z

412

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 3, November 1989--January 1990  

SciTech Connect

This three-year research project at Combustion Engineering, Inc. (CE), will assess the potential economic and environmental benefits derived from coal beneficiation by various advanced cleaning processes. The objectives of this program include the development of a detailed generic engineering data base, comprised of fuel combustion and ash performance data on beneficiated coal-based fuels (BCFs), which is needed to permit broad application. This technical data base will provide detailed information on fundamental fuel properties influencing combustion and mineral matter behavior as well as quantitative performance data on combustion, ash deposition, ash erosion, particulate collection, and gaseous and particulate emissions. Program objectives also address the application of this technical data base to predict performance impacts associated with firing BCFs in various commercial boiler designs as well as assessment of the economic implications of BCF utilization. Additionally, demonstration of this technology, with respect to large-scale fuel preparation, firing equipment operation, fuel performance, environmental impacts, and verification of prediction methodology, will be provided during field testing.

Not Available

1990-03-01T23:59:59.000Z

413

National Fuel Cell Electric Vehicle Learning Demonstration Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

National Fuel Cell Electric National Fuel Cell Electric Vehicle Learning Demonstration Final Report K. Wipke, S. Sprik, J. Kurtz, T. Ramsden, C. Ainscough, and G. Saur Technical Report NREL/TP-5600-54860 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 National Fuel Cell Electric Vehicle Learning Demonstration Final Report K. Wipke, S. Sprik, J. Kurtz, T. Ramsden, C. Ainscough, and G. Saur Prepared under Task No. HT12.8110 Technical Report NREL/TP-5600-54860 July 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

414

Energy Efficiency First Fuel Requirement (Gas and Electric) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency First Fuel Requirement (Gas and Electric) Energy Efficiency First Fuel Requirement (Gas and Electric) Energy Efficiency First Fuel Requirement (Gas and Electric) < Back Eligibility Investor-Owned Utility Utility Program Info State Massachusetts Program Type Energy Efficiency Resource Standard Provider Massachusetts Energy Efficiency Advisory Council Note: The 2013 Three Year Efficiency Plans have not yet been approved. The process is underway. For the latest draft plan, review the Massachusetts Energy Efficiency Advisory Council [http://www.ma-eeac.org/3%20Year%20Draft%20Plan%20November%202012.htm web site]. This summary will be updated once the Three Year Efficiency Plans have been approved in early 2013. In 2008, Governor Patrick signed a major energy reform bill, the [http://www.malegislature.gov/Laws/SessionLaws/Acts/2008/Chapter169 Green

415

Washington Auto Show Spotlight: How Fuel Cell Electric Vehicles Work  

Office of Energy Efficiency and Renewable Energy (EERE)

Fuel cell electric vehicles (FCEVs) are quickly becoming a commercially viable sustainable transportation option for Americans. Unlike gasoline-powered cars, these cutting-edge vehicles are fueled by hydrogen and emit only water. The latest and greatest FCEVs are on display this week at the Washington Auto Show. Learn more about how FCEVs work and what the Energy Department is doing to make them even more energy efficient and cost effective.

416

Process for the production of fuel gas from coal  

DOE Patents (OSTI)

An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

1982-01-01T23:59:59.000Z

417

Coal Study Guide for Elementary School  

Energy.gov (U.S. Department of Energy (DOE))

Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

418

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Digg Find More places to share Alternative Fuels Data Center: Plug-In

419

New developments in coal briquetting technology  

SciTech Connect

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

420

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Quarterly Coal Report January - March 2008 July 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

422

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2009 September 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

423

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

7/01Q) 7/01Q) Quarterly Coal Report January - March 2007 June 2007 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

424

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Quarterly Coal Report July - September 2008 December 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

425

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2008 September 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

426

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

8/04Q) 8/04Q) Quarterly Coal Report October - December 2008 March 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

427

RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric Peak Shaving Applications  

Energy.gov (U.S. Department of Energy (DOE))

The Fuel Cell Technologies Office will present a live webinar entitled "Material Handling Fuel Cells for Building Electric Peak Shaving Applications".

428

Chapter 3 - Coal-fired Power Plants  

Science Journals Connector (OSTI)

Abstract Coal provides around 40% of the world’s electricity, more than any other source. Most modern coal-fired power stations burn pulverized coal in a boiler to raise steam for a steam turbine. High efficiency is achieved by using supercritical boilers made of advanced alloys that produce high steam temperatures, and large, high-efficiency steam turbines. Alternative types of coal-fired power plants include fluidized bed boilers that can burn a variety of poor fuels, as well as coal gasifiers that allow coal to be turned into a combustible gas that can be burned in a gas turbine. Emissions from coal plants include sulfur dioxide, nitrogen oxide, and trace metals, all of which must be controlled. Capturing carbon dioxide from a coal plant is also under consideration. This can be achieved using post-combustion capture, a pre-combustion gasification process, or by burning coal in oxygen instead of air.

Paul Breeze

2014-01-01T23:59:59.000Z

429

Coal and Coal-Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

430

Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report  

SciTech Connect

Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

Not Available

1980-01-01T23:59:59.000Z

431

Life cycle study of coal-based dimethyl ether as vehicle fuel for urban bus in China  

Science Journals Connector (OSTI)

With life cycle assessment (LCA) methodology, a life cycle model of coal-based dimethyl ether (CBDME) as a vehicle fuel is established for China. Its life cycle from well to wheel are divided into three phases. They are feedstock extraction, fuel production and fuel consumption in vehicle. The primary energy consumption (PEC) and global warming potential (GWP) of CBDME pathway are analyzed and compared with coal-based diesel (CBD) as a latent rival to replace conventional petroleum-based diesel (CPBD). This study demonstrates that the LCA methodology is very suitable and effective for the choice of vehicle fuels. One result is that the greenhouse gases (GHGs) emission of coal-based vehicle fuel pathways is usually concentrated on fuel production stage. The percentages of CBDME and CBD pathways both exceed 60%. The application of carbon capture and storage (CCS) is helpful for coal-based vehicle fuel pathways to improve their global warming effect dramatically. Compared with CBD pathway, CBDME pathway consumes less PEC and emits less \\{GHGs\\} emission as well. Even though the CCS and CH4-fired generation are used, the advantages of CBDME are still kept. For saving petroleum energy and reducing global warming effect, CBDME has greater potential than CBD to substitute CPBD under current fuel synthesis technologies. If the hurdles such as the maturity of engine and vehicle technologies, corresponding regulations and standards and infrastructures are reliably solved, CBDME will have better prospect in China.

Liang Zhang; Zhen Huang

2007-01-01T23:59:59.000Z

432

Coal-fueled high-speed diesel engine development. Annual technical progress report, October 1990--September 1991  

SciTech Connect

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

433

Low NOx modifications on front-fired pulverized coal fuel burners  

SciTech Connect

Burner optimizations and modifications were performed on Public Service of New Hampshire`s Schiller Units 4, 5, and 6. These are Foster-Wheeler 50 MWg pulverized coal and No.6 fuel oil-fired boilers with six burners each. Burner optimizations consisted of fuel flow, primary air, secondary air testing and balancing. Burner modifications consisted of the addition of circumferentially and radially staged flame stabilizers, circumferentially-staged coal spreaders, and modifications to the existing pulverized coal pipe. NO{sub x} emissions on Unit 6 of .41 lb/mmBtu were achieved at optimized burner settings at full load with all burners in service and without the use of overfire air or bias firing. This represented a 50% NO{sub x} reduction from the average pre-modification baseline NO{sub x} emissions of .81 lb/mmBtu prior to the optimizations and burner modification program. NO{sub x} emissions as low as .38 lb/mmBtu were achieved with the use of overfire air. There was essentially no quantifiable change in LOIs (baseline LOIs averaged 40%). Furnace excess O{sub 2} as low as 1.2% was achieved with CO emissions of less than 200 ppm. Total installed costs including the overfire air system were approximately $7/kW.

Owens, B.; Hitchko, M. [Public Service of New Hampshire, Manchester, NH (United States); Broderick, R.G. [RJM Corp., Ridgefield, CT (United States)

1996-01-01T23:59:59.000Z

434

A microbial fuel cell built by the researchers produces electricity  

E-Print Network (OSTI)

University Park Campus on November 14. Edward Kiczek of Air Products and Chemicals Inc., explained hydrogen production methods, capabilities, and fueling opportunities. Dr. JoAnn Milliken of the U.S. Department research in direct hydrogen and electricity production is Dr. Bruce Logan, director of Penn State

435

National Fuel Cell Electric Vehicle Learning Demonstration Final Report  

Energy.gov (U.S. Department of Energy (DOE))

This report discusses key analysis results based on data from early 2005 through September 2011 from the US DOE’s Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration.

436

Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases  

SciTech Connect

The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

2001-11-06T23:59:59.000Z

437

Economical production of transportation fuels from coal, natural gas, and other carbonaceous feedstocks  

SciTech Connect

The Nation`s economy and security will continue to be vitally linked to an efficient transportation system of air, rail, and highway vehicles that depend on a continuous supply of liquid fuels at a reasonable price and with characteristics that can help the vehicle manufacturers meet increasingly strict environmental regulations. However, an analysis of US oil production and demand shows that, between now and 2015, a significant increase in imported oil will be needed to meet transportation fuel requirements. One element of an overall Department of Energy`s (DOE) strategy to address this energy security issue while helping meet emissions requirements is to produce premium transportation fuels from non-petroleum feedstocks, such as coal, natural gas, and biomass, via Fischer-Tropsch (F-T) and other synthesis gas conversion technologies.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Winslow, J.C.; Venkataraman, V.K.; Driscoll, D.J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

1998-12-31T23:59:59.000Z

438

Development of Kilowatt-Scale Coal Fuel Cell Technology - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Steven S.C. Chuang (Primary Contact), Tritti Siengchum, Jelvehnaz Mirzababaei, Azadeh Rismanchian, and Seyed Ali Modjtahedi The University of Akron 302 Buchtel Common Akron, OH 44310-3906 Phone: (330) 972-6993 Email: schuang@uakron.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC36-08GO0881114 Project Start Date: June 1, 2008 Project End Date: May 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives To develop a kilowatt-scale coal-based solid oxide fuel cell (SOFC) technology. The outcome of this research effort

439

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

440

Investigation of a Coupled Fuel Reactor for Coal-Fueled Chemical Looping Combustion  

Science Journals Connector (OSTI)

To determine the solids circulation rate, an annular loop-seal was designed. ... Shen, L.; Wu, J.; Xiao, J.Experiments on chemical looping combustion of coal with a NiO based oxygen carrier Combust. ... Industrial & Engineering Chemistry Research (2013), 52 (18), 6119-6128 CODEN: IECRED; ISSN:0888-5885. ...

Hongming Sun; Lei Xu; Zhenshan Li; Ningsheng Cai

2014-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "fuels coal electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Digg

442

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Digg

443

Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels  

SciTech Connect

Liquid hydrocarbon fuels will continue to play a significant role in the transportation sector in the future of both the world and the United States because of the their convenience, high energy density, and vast existing infrastructure. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports by developing overseas economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be alleviated in part by utilizing the abundant domestic coal resource base. Continued R&D in coal conversion technology is expected to significantly reduce costs so that synfuels can compete economically at a much earlier date than previously forecast.

Srivastava, R.; McIlvried, H.G. [Burns and Roe Services Co., Pittsburgh, PA (United States); Gray, D.; Klunder, E.B.

1995-12-31T23:59:59.000Z

444

Simulation of the Fuel Reactor of a Coal?Fired Chemical Looping Combustor  

Science Journals Connector (OSTI)

Responsible carbon management (CM) will be required for the future utilization of coal for power generation. CO 2 separation is the more costly component of CM not sequestration. Most methods of capture require a costly process of gas separation to obtain a CO 2 ?rich gas stream. However recently a process termed Chemical Looping Combustion (CLC) has been proposed in which an oxygen?carrier is used to provide the oxygen for combustion. This process quite naturally generates a separate exhaust gas stream containing mainly H 2 O and CO 2 but requires two reaction vessels an Air Reactor (AR) and a Fuel Reactor (FR). The carrier (M for metal the usual carrier) is oxidized in the AR. This highly exothermic process provides heat for power generation. The oxidized carrier (MO) is separated from this hot vitiated air stream and transported to the FR where it oxidizes the hydrocarbon fuel yielding an exhaust gas stream of mainly H 2 O and CO 2 . This process is usually slightly endothermic so that the carrier must also transport the necessary heat of reaction. The reduced carrier (M) is then returned to the air reactor for regeneration hence the term “looping.” The net chemical reaction and energy release is identical to that of conventional combustion of the fuel. However CO 2 separation is easily achieved the only operational penalty being the slight pressure losses required to circulate the carrier. CLC requires many unit operations involving gas?solid or granular flow. To utilize coal in the fuel reactor in either a moving bed or bubbling fluidized bed the granular flow is especially criti