Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Batteries and Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

2

Batteries and Fuel Cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher

1984-01-01T23:59:59.000Z

3

Batteries and fuel cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher; Frank C. Walsh

1993-01-01T23:59:59.000Z

4

Molten Salt Batteries and Fuel Cells  

Science Journals Connector (OSTI)

This chapter describes recent work on batteries and fuel cells using molten salt electrolytes. This entails a comparison with other batteries and fuel cells utilizing aqueous and organic electrolytes; for...(1,2)

D. A. J. Swinkels

1971-01-01T23:59:59.000Z

5

Science Highlight July 2011 Better Batteries through Nanoscale 3D Chemical Imaging  

E-Print Network [OSTI]

to hierarchical structures found in energy materials such as battery electrodes, fuel cells, and catalytic systems Science Highlight ­ July 2011 Better Batteries through Nanoscale 3D Chemical Imaging Concerns battery technology. Although Li-ion batteries, crucial in the boom of portable electronics, stand

Wechsler, Risa H.

6

In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells  

Science Journals Connector (OSTI)

In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells ... In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. ... In situ NMR studies on fuel cells (FCs) have focused on probing the chemical reactions at the electrodes and the fate of fuels such as methanol during FC operation. ...

Frédéric Blanc; Michal Leskes; Clare P. Grey

2013-06-21T23:59:59.000Z

7

APPLICATIONS – PORTABLE | Military: Batteries and Fuel Cells  

Science Journals Connector (OSTI)

Electrical power supply is a critical issue for all parts of modern armies, including today's and future foot soldiers. Batteries are the fundamental source of energy supply. However, where today mainly primary batteries are used in battlefield operations, future scenarios will more likely use secondary batteries in combination with fuel cells for recharging. Thereby, two lines of development are currently being pursued: larger recharging units in the range of 250 W carried by entire squads and smaller fuel cells in the range of 25 W carried by individual soldiers most likely as part of a soldier energy network.

C. Cremers; J. Tübke; M. Krausa

2009-01-01T23:59:59.000Z

8

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Battery Corporation Fuel Battery Corporation Jump to: navigation, search Name Electric Fuel Battery Corporation Place Auburn, Alabama Zip 36832 Product Develops and manufactures BA-8180/U high power zinc-air battery for military applications. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Alternative Fuels Data Center: Battery Manufacturing Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Battery Manufacturing Battery Manufacturing Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Google Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Delicious Rank Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Battery Manufacturing Tax Incentives For taxation purposes, the taxable fair market value of manufacturing

10

Impact of Battery Management on Fuel Efficiency Validity | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Validity Impact of Battery Management on Fuel Efficiency Validity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

11

Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Battery and Vehicle Battery and Engine Research Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Google Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Delicious Rank Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

12

Electrochemistry, Batteries and Fuel Cells  

Science Journals Connector (OSTI)

Electrochemistry is concerned with the effect of electrical voltages and currents on chemical reactions (ionics) and chemical changes which produce the voltages and currents (electrodics). This is illustrated in ...

H. D. Gesser

2002-01-01T23:59:59.000Z

13

Fuel Cells as Rechargeable Batteries  

Science Journals Connector (OSTI)

The combination of water electrolysis, storage of the produced hydrogen and oxygen and subsequent electrochemical recombination of the stored hydrogen and oxygen in a fuel cell provide the basis for a practical e...

J. Giner; A. Laconti

1996-01-01T23:59:59.000Z

14

Batteries, Fuel Cells, and Flywheels  

Science Journals Connector (OSTI)

Cars and trucks are responsible for using almost 30 percent of the fossil fuel energy consumed in the United States. Almost all of this energy comes from petroleum products. When gasoline and diesel oil is bur...

Sidney Borowitz

1999-01-01T23:59:59.000Z

15

General equivalent circuit of batteries and fuel cells  

Science Journals Connector (OSTI)

A general electrical circuit is described whose properties are analogous to those of fuel cells and batteries. It is shown how this equivalent circuit ... in the electrolyte on the output voltage of fuel cells an...

R. A. Huggins

1999-01-01T23:59:59.000Z

16

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network [OSTI]

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

17

Comparing the Energy Content of Batteries, Fuels, and Materials  

Science Journals Connector (OSTI)

Comparing the Energy Content of Batteries, Fuels, and Materials ... Whereas the literature contains numerous comparisons of the specific energy of battery technologies and hydrocarbons typically found in fuel, the methodology used to obtain these values is usually not specified. ... The calculated specific energies are based on standard Gibbs free energy of formation of the elements and compounds of interest. ...

Nitash P. Balsara; John Newman

2013-03-29T23:59:59.000Z

18

Performance analysis results of a battery fuel gauge algorithm at multiple temperatures  

Science Journals Connector (OSTI)

Abstract Evaluating a battery fuel gauge (BFG) algorithm is a challenging problem due to the fact that there are no reliable mathematical models to represent the complex features of a Li-ion battery, such as hysteresis and relaxation effects, temperature effects on parameters, aging, power fade (PF), and capacity fade (CF) with respect to the chemical composition of the battery. The existing literature is largely focused on developing different BFG strategies and BFG validation has received little attention. In this paper, using hardware in the loop (HIL) data collected form three Li-ion batteries at nine different temperatures ranging from ?20 °C to 40 °C, we demonstrate detailed validation results of a battery fuel gauge (BFG) algorithm. The BFG validation is based on three different BFG validation metrics; we provide implementation details of these three BFG evaluation metrics by proposing three different BFG validation load profiles that satisfy varying levels of user requirements.

B. Balasingam; G.V. Avvari; K.R. Pattipati; Y. Bar-Shalom

2015-01-01T23:59:59.000Z

19

Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells  

Broader source: Energy.gov [DOE]

Plenary presentation by Sunita Satyapal at the 5th International Conference on Polymer Batteries and Fuel Cells on August 4, 2011.

20

Fuel cell based battery-less ups system  

E-Print Network [OSTI]

emerged as one of the most promising sources for both portable and stationary applications. In this thesis, a new battery less UPS system configuration powered by fuel cell is discussed. The proposed topology utilizes a standard offline UPS module...

Venkatagiri Chellappan, Mirunalini

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nanomaterials for Energy Storage: Batteries and Fuel Cells  

Science Journals Connector (OSTI)

Batteries and fuel cells are important power sources today (Berger, 1997; Georgano, 1996; Ondrey, et al., 1999) and will continue to be used in a wide variety of consumer, industrial and military applications in ...

2003-01-01T23:59:59.000Z

22

Electrification of powertrain systems — battery, fuel cell or both?  

Science Journals Connector (OSTI)

The increasing electrification of powertrain systems is driven by the idea of using electric power as an alternative energy source. Fuel cells combined with electric traction are one example. Batteries will have ...

Dr.-Ing. Wolfgang Steiger; Dr.-Ing. Ingo Scholz…

2008-05-01T23:59:59.000Z

23

A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered  

Science Journals Connector (OSTI)

Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of ... results show that the combination of lead-acid batteries or lithium-ion batteries

Chung-Hsing Chao; Jenn-Jong Shieh

2013-01-01T23:59:59.000Z

24

Design of a Control Strategy for a Fuel Cell/Battery Hybrid Power Supply  

E-Print Network [OSTI]

The purpose of this thesis is to design hardware and a control strategy for a fuel cell/battery hybrid power supply. Modern fuel cell/battery hybrid power supplies can have 2 DC/DC converters: one converter for the battery and one for the fuel cell...

Smith, Richard C.

2010-01-14T23:59:59.000Z

25

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells  

E-Print Network [OSTI]

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells Spring 2014 Syllabus Course: ENCH 473 Electrochemical Energy Engineering ENCH: 648K Advanced Batteries and Fuel Cells, with emphasis on the principle and performance of batteries, supercapacitors and fuel cells. The objective

Rubloff, Gary W.

26

An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells  

SciTech Connect (OSTI)

Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

Liu, Hua Kun, E-mail: hua@uow.edu.au

2013-12-15T23:59:59.000Z

27

Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Batteries for Hybrid Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

28

Nuclear Batteries for Implantable Applications  

Science Journals Connector (OSTI)

The nuclear battery is so named because its source of ... the “nucleus” of the atoms of the fuel, rather than in the electrons that surround ... the fundamental source of energy for the chemical batteries describ...

David L. Purdy

1986-01-01T23:59:59.000Z

29

DOE/EA-1760 Final Environmental Assessment for FutureFuel Chemical Company  

Broader source: Energy.gov (indexed) [DOE]

0 0 Final Environmental Assessment for FutureFuel Chemical Company Electric Drive Vehicle Battery and Component Manufacturing Initiative Project Batesville, AR August 2010 Prepared for: Department of Energy National Energy Technology Laboratory Electric Drive Vehicle Battery and DOE/EA-1760 Component Manufacturing Initiative Project Environmental Assessment FutureFuel Chemical Company, Batesville, AR August 2010 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes, through a cooperative agreement with FutureFuel Chemical Company (FutureFuel), to partially fund the design, installation and operations of a commercial-scale plant to produce intermediate anode material for high-performance lithium-ion (Li-ion) batteries. An existing FutureFuel

30

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

i Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed more robust. This report analyzes V2G power from three types of EDVs--battery, hybrid, and fuel cell and prices are high. Fuel cell and hybrid EDVs are sources of new power generation. For economic reasons

Firestone, Jeremy

31

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed, and fuel cell. Battery EDVs can store electricity, charging during low demand times and discharging when power is scarce and prices are high. Fuel cell and hybrid EDVs are sources of new power generation

Firestone, Jeremy

32

NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)  

SciTech Connect (OSTI)

NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

Not Available

2014-01-01T23:59:59.000Z

33

Chemical Kinetic Modeling of Fuels  

Broader source: Energy.gov (indexed) [DOE]

petroleum based fuels * Non-petroleum based fuels: - Biodiesel and new generation biofuels - Fischer-Tropsch (F-T) fuels - Oil sand derived fuels Reduce mechanisms for...

34

PROFESSOR EMANUEL PELED is a world leading scientist in the field of batteries and fuel cells. He  

E-Print Network [OSTI]

PROFESSOR EMANUEL PELED is a world leading scientist in the field of batteries and fuel cells. He has published over 150 papers and 45 patents and patent pending in the fields of batteries and fuel 2003 he is the chairman of the Fuel Cells and Battery Center (funded by Israel MOS) and the incumbent

Rabani, Eran

35

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect (OSTI)

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

36

Chemical Shuttle Additives in Lithium Ion Batteries  

SciTech Connect (OSTI)

The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

Patterson, Mary

2013-03-31T23:59:59.000Z

37

COLLOQUIUM: Renewable Fuels and Chemicals | Princeton Plasma...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and models, will be reviewed. Wednesday Colloquium March 19, 2014, "Renewable Fuels and Chemicals" video platform video management video solutionsvideo player Colloquium...

38

A battery chemistry-adaptive fuel gauge using probabilistic data association  

Science Journals Connector (OSTI)

Abstract This paper considers the problem of state of charge (SOC) tracking in Li-ion batteries when the battery chemistry is unknown. It is desirable for a battery fuel gauge (BFG) to be able to perform without any offline characterization or calibration on sample batteries. All the existing approaches for battery fuel gauging require at least one set of parameters, a set of open circuit voltage (OCV) parameters, that need to be estimated offline. Further, a BFG with parameters from offline characterization will be accurate only for a “known” battery chemistry. A more desirable BFG is one that is accurate for “any” battery chemistry. In this paper, we show that by storing finite sets of OCV parameters of possible batteries, we can derive a generalized BFG using the probabilistic data association (PDA) algorithm. The PDA algorithm starts by assigning prior model probabilities (typically equal) for all the possible models in the library and recursively updates those probabilities based on the voltage and current measurements. In the event of an unknown battery to be gauged, the PDA algorithm selects the most similar OCV model to the battery from the library. We also demonstrate a strategy to select the minimum sets of OCV parameters representing a large number of Li-ion batteries. The proposed approaches are demonstrated using data from portable Li-ion batteries.

G.V. Avvari; B. Balasingam; K.R. Pattipati; Y. Bar-Shalom

2015-01-01T23:59:59.000Z

39

Multi-layered, chemically bonded lithium-ion and lithium/air batteries  

SciTech Connect (OSTI)

Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

2014-05-13T23:59:59.000Z

40

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Design parameters for fuel batteries operating in a zero G field  

Science Journals Connector (OSTI)

Some design parameters of a hydrazine—oxygen fuel battery operating in a zero G field are described in a digital computer programming treatment. The power balance for a battery employing a gas-producing electrode and an electrolyte pump is treated; optimum power densities and flow rates are established.

A.P. Hardt; H.M. Cota; J.L. Fick; T. Katan

1963-01-01T23:59:59.000Z

42

NREL Uses Fuel Cells to Increase the Range of Battery Electric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Range Limitation of Medium-Duty Battery Electric Vehicles through the Use of Hydrogen Fuel Cells." SAE Int.; DOI: 10.42712013-01-2471. Extrapolation from parcel delivery vehicle...

43

Alternative Fuels and Chemicals From Synthesis Gas  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

none

1998-07-01T23:59:59.000Z

44

Alternative fuels and chemicals from synthesis gas  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

Unknown

1998-08-01T23:59:59.000Z

45

ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

Unknown

1999-01-01T23:59:59.000Z

46

ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

Unknown

1998-01-01T23:59:59.000Z

47

ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

Unknown

2000-10-01T23:59:59.000Z

48

5th International Conference on Polymer Batteries and Fuel Cells - PBFC-5 -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home Conference Goals Organizers Sponsors Speakers Program Posters Registration Hotels Breakfast/Dinner Options Maps and Transportation to Argonne Bus Schedule Contact Us Chicago skyline Battery research Argonne APS 5th INTERNATIONAL CONFERENCE ON POLYMER BATTERIES AND FUEL CELLS (PBFC-5) PBFC 2011 August 1 - 5, 2011 Advanced Photon Source, Argonne National Laboratory Argonne, Illinois USA About the Conference It is a great pleasure for the organizing committee of the 5th International Conference on Polymer Batteries and Fuel Cells (PBFC-5, PBFC-2011) to invite all who are interested in materials for and systems based on lithium polymer, lithium-ion, metal-air, and flow batteries, and proton-exchange membrane and alkaline-exchange membrane fuel cells to attend PBFC-5. Read more.

49

Catalyzing innovations for sustainable chemicals & fuels  

E-Print Network [OSTI]

Catalyzing innovations for sustainable chemicals & fuels Annual Report 2013-2014 #12;a unique resource for industrial catalysis Simple and Safer Processes Skilled Scientists and Engineers Waste!on and the Environmental Protec!on Agency, creates a network for designing sustainable chemicals. A successful renewal

50

A Chemical Potential "Battery" for Superfluid 4He Weak E. Hoskinson  

E-Print Network [OSTI]

A Chemical Potential "Battery" for Superfluid 4He Weak Links E. Hoskinson , Y. Sato , K. Penanen, similar to a simple battery or voltage source for analogous superconducting devices. We describe here power is balanced by thermal conduction through the walls of the inner volume, heat carried out

Packard, Richard E.

51

A Chemical Potential "Battery" for Superfluid 4He Weak E. Hoskinson  

E-Print Network [OSTI]

A Chemical Potential "Battery" for Superfluid 4He Weak Links E. Hoskinson , Y. Sato , K. Penanen, similar to a simple battery or voltage source for analogous superconducting devices. We describe here in the opposite direction: Is = -In. The steady-state T is reached when the heater power is balanced by thermal

Sato, Yuki

52

Chemical Kinetic Modeling of Non-Petroleum Based Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ft010pitz2012o.pdf More Documents & Publications Chemical Kinetic Modeling of Non-Petroleum Based Fuels Chemical Kinetic Modeling of Fuels Chemical Kinetic Research on HCCI &...

53

IV Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries. Estoril, Portugal, June 26-28 2013 ABSTRACT QUESTIONNAIRE  

E-Print Network [OSTI]

IV Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries. Estoril, Portugal, June 26 Other Marketing analysis Standards and regulations #12;IV Iberian Symposium on Hydrogen, Fuel Cells PEM fuel cells X Numerical simulation SO fuel cells New materials Other fuel cells New processes

Batlle, Carles

54

Chemical Sciences and Engineering - US China Electric Vehicle and Battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations Presentations View program in brief » View the Conference Booklet with program (pdf) » Plenary Sessions 4th US - China Electric Vehicle and Battery Technology Workshop, Dave Howell, US Department of Energy (pdf) U.S. Department of Energy Vehicle Technologies Program Overview, Henry Kelly, US DOE Energy Efficiency and Renewable Energy (pdf) EcoPartnerships: A model for US-China Energy Collaboration, David Fleshler, Case Western Reserve University and QIN Xingcai, Tianjin Lishen Battery Joint-Stock Co., Ltd. (pdf) Lishen Advanced Battery Development for EV and ESS, Qin Xingcai, Tianjin Lishen Battery Joint-Stock Co., Ltd. (pdf) EV R&D in CAERI, Xiaochang Ren, China Automotive Engineering Research Institute (pdf) Roundtable 1: Joint Battery Technology Roadmapping

55

Chemical and Electrochemical Differences in Nonaqueous Li–O2 and Na–O2 Batteries  

Science Journals Connector (OSTI)

The most intriguing difference between the two batteries is their respective galvanostatic charging overpotentials: a Na–O2 battery exhibits a low overpotential throughout most of its charge, whereas a Li–O2 battery has a low initial overpotential that continuously increases to very high voltages by the end of charge. ... Li metal was purchased from FMC, Na metal was purchased from GalliumSource, P50 Avcarb carbon paper was purchased from the Fuel Cell Store, and Whatman glass fiber filters (QM-A grade) were used as the separator. ...

Bryan D. McCloskey; Jeannette M. Garcia; Alan C. Luntz

2014-03-17T23:59:59.000Z

56

Catalyzing innovations for sustainable chemicals & fuels for  

E-Print Network [OSTI]

2013 2003 2012 2011 2010 2009 2004 2005 2006 2007 2008 years Catalyzing innovations for sustainable 8 Students & Postdocs 9 Recent Publications 10 Simple and Safer Processes Broad Industrial Impact(CEBC)bringstogetherchemistsandchemical engineerstodevelopcleanerandmoreefficient processes for making fuels and chemicals from bothtraditionalandrenewablefeedstocks

57

Chemical Kinetic Modeling of Non-Petroleum Based Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ft010pitz2011o.pdf More Documents & Publications Chemical Kinetic Modeling of Non-Petroleum Based Fuels Chemical Kinetic Modeling of Fuels Simulation of High Efficiency Clean...

58

Chemical Kinetics Research on HCCI and Diesel Fuels  

Broader source: Energy.gov [DOE]

Discusses detailed chemical kinetics mechanisms for complex hydrocarbon fuels and computationally efficiecnt, accurate methodologies for modeling advanced combustion strategies.

59

Positive Energy From rechargeable batteries to fuel cells: electrochemical energy as one  

E-Print Network [OSTI]

of the fascinating and green alternatives to combustion engines Yaakov Vilenchik1 , David Andelman2 and Emanuel such as rechargeable batteries and fuel cells, which in the future could replace the combustion engine. We equally with oxygen in the air), which in turn is used to heat water into steam. Steam under high pressure has large

Andelman, David

60

On the comparison and the complementarity of batteries and fuel cells for electric driving  

Science Journals Connector (OSTI)

Abstract This paper considers different current and emerging power train technologies (ICE, BEV, HEV, FCEV and FC-RE) and provides a comparison within a techno-economic framework, especially for the architectures of range-extender power trains. The economic benefits in terms of Total Cost of Ownership (TCO) are based on forecasts for the major TCO-influencing parameters up to 2030: electric driving distances, energy (fuel, electricity, hydrogen) prices, batteries and fuel cell costs. The model takes into account functional parameters such as the battery range as well as daily trip segmentation statistics. The \\{TCOs\\} of all the vehicles become similar in 2030, given a 200 km battery range for BEVs. \\{BEVs\\} are profitable for yearly mileages of 30,000 km and over, and for higher battery ranges. The competitiveness of \\{FCEVs\\} is examined through the H2 target price at the pump. There is a very significant effect of the fuel cell cost on the TCO. A FCEV with a fuel cell cost of 40 €/kW will be competitive with a similar ICE car for a 1.75 €/l fuel cost and ca. 7 €/kg hydrogen cost. This depends too to a great extent on possible ICE cars' CO2 taxes. As regard the FC-RE electric car, the hydrogen target price at the pump is noticeably higher (ca 10 €/Kg). FC-RE cars \\{TCOs\\} are strongly affected by the FC power, the discount rate chosen and the yearly mileage. Moreover, it therefore seems reasonable to confine FC-RE battery ranges in the region of 60 km.

Alain Le Duigou; Aimen Smatti

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Batteries, from Cradle to Grave  

Science Journals Connector (OSTI)

As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. ... Significant advances are also being made in fuel-cell technology with several companies involved in the design and manufacture of high-performance fuel cells adapted to the portable electronics, back-up energy, and traction markets (37-41). ... These hydrogen or methanol-fuelled cells draw their chemical energy from a quick-fill reservoir outside the cell (or stack) structure. ...

Michael J. Smith; Fiona M. Gray

2010-01-12T23:59:59.000Z

62

A robust approach to battery fuel gauging, part II: Real time capacity estimation  

Science Journals Connector (OSTI)

Abstract In this paper, the second of a series on battery fuel gauging, we present an approach for real time capacity estimation. In part I of this series, we presented a real time parameter estimation approach for various battery equivalent models. The proposed capacity estimation scheme has the following novel features: it employes total least squares (TLS) estimation in order to account for uncertainties in both model and the observations in capacity estimation. The TLS method can adaptively track changes in battery capacity. We propose a second approach to estimate battery capacity by exploiting rest states in the battery. This approach is devised to minimize the effect of hysteresis in capacity estimation. Finally, we propose a novel approach for optimally fusing capacity estimates obtained through different methods. Then, the proposed algorithm was validated using hardware-in-the-loop (HIL) data collected from commercially available Li-ion batteries. The proposed approach performs within 1% or better accuracy in terms of capacity estimation based on both simulated as well as HIL evaluations.

B. Balasingam; G.V. Avvari; B. Pattipati; K.R. Pattipati; Y. Bar-Shalom

2014-01-01T23:59:59.000Z

63

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

64

Fuel cells, batteries, and the development of electrochemistry  

Science Journals Connector (OSTI)

The first practical breakthrough was achieved in 1958 when the English engineer Francis Th. Bacon (1904–1992) built the first large power unit (5 kW) with hydrogen/oxygen fuel cells [14...]. In order to accelerat...

Vladimir S. Bagotsky

2011-07-01T23:59:59.000Z

65

Understanding fuel savings mechanisms from hybrid vehicles to guide optimal battery sizing for India  

Science Journals Connector (OSTI)

Global transportation-related CO2 emissions are expected to substantially increase by 2050, with a majority of growth coming from rapidly developing countries like India. To understand the potential for using hybrid vehicles to limit the CO2 emissions growth, this paper compares driving conditions and the fuel savings potential of hybrids in the USA and India. It is shown that hybrids offer more fuel savings potential in India than in the USA, largely because of the limited highway driving in India. In order of relative importance, the analysis shows that fuel savings from power-split hybrids come from: 1) enabling higher efficiency engine operation; 2) energy recovered from regenerative braking; 3) engine shutdown. This understanding of the fuel savings mechanisms of hybrids and their relative importance is used in assessing how smaller battery capacities for hybrids in India can be used to reduce costs for this highly cost-sensitive market while preserving fuel savings. A parametric analysis of battery size on fuel savings mechanisms is carried out, and it is shown that hybrid vehicles for Indian driving conditions should ideally have a power capacity between 15 and 20 kW, with 10 kW as a lower limit.

Samveg Saxena; Amol Phadke; Anand Gopal; Venkat Srinivasan

2014-01-01T23:59:59.000Z

66

Performance simulation and analysis of a fuel cell/battery hybrid forklift truck  

Science Journals Connector (OSTI)

The performance of a forklift truck powered by a hybrid system consisting of a PEM fuel cell and a lead acid battery is modeled and investigated by conducting a parametric study. Various combinations of fuel cell size and battery capacity are employed in conjunction with two distinct control strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55 Ah batteries is the most economical choice for the hybrid system based on system size and hydrogen consumption. In addition, it is observed that hydrogen consumption decreases by about 24% when the maximum speed of the drive cycle is decreased from 4.5 to 3 m/s. Similarly, by decreasing the forklift load from 2.5 to 1.5 ton, the hydrogen consumption decreases by over 20%.

Elham Hosseinzadeh; Masoud Rokni; Suresh G. Advani; Ajay K. Prasad

2013-01-01T23:59:59.000Z

67

Seeking effective dyes for a mediated glucose–air alkaline battery/fuel cell  

Science Journals Connector (OSTI)

Abstract A significant level of power generation from an abiotic, air breathing, mediated reducing sugar–air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose–air alkaline battery/fuel cell attained 8 mA cm–2 at short-circuit and 800 ?W cm–2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.

Ross Eustis; Tsz Ming Tsang; Brigham Yang; Daniel Scott; Bor Yann Liaw

2014-01-01T23:59:59.000Z

68

Chemical Sciences and Engineering - US China Electric Vehicle and Battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Program View the Conference Booklet with program (pdf) » THURSDAY, AUGUST 4 Time Title, Speaker Plenary Session 9:00 AM Welcome and Orientation Welcome to Argonne by Eric Isaacs, Laboratory Director Orientation, Logistics and Workshop Format by Larry Johnson, Transportation Center Director 9:20 - 10:40 Technology Policy: US-China Collaboration on the Electric Vehicle Initiative Henry Kelly, USDOE Principal Deputy Assistant Secretary, Energy Efficiency and Renewable Energy ZHANG Zhihong, MOST, Deputy Director General, Department of New and High Technology WU Feng, Beijing Institute of Technology, Chief Scientist of National (973) Advance Secondary Battery Project Dave Howell, USDOE Vehicle Technologies Program, Team Lead, Hybrid Electric Systems 10:40 - 11:00 Tea/Coffee Break

69

Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers National Energy Technology Laboratory Contact NETL...

70

Chemical Degradation: Correlations Between Electrolyzer and Fuel Cell Findings  

Science Journals Connector (OSTI)

Membrane chemical degradation of polymer electrolyte membrane fuel cells (PEMFCs) is summarized in this paper. ... , and cation contamination, are summarized. Localized degradations, including anode versus cathod...

Han Liu; Frank D. Coms; Jingxin Zhang…

2009-01-01T23:59:59.000Z

71

Preprint of a paper to be presented at UUVS 2005, Southampton, Sept 2005 Cost vs. performance for fuel cells and batteries within AUVs  

E-Print Network [OSTI]

that secondary lithium batteries offer the lowest energy cost. PEM fuel cells should produce energy at a lower integrators, we are in a position to make estimates of the cost of energy from a marinised fuel cell for fuel cells and batteries within AUVs Gwyn Griffiths National Oceanography Centre, Southampton

Griffiths, Gwyn

72

Batteries and fuel cell research Sri Narayan worked for 20 years at NASA's Jet Propulsion Laboratory (JPL) where he led the  

E-Print Network [OSTI]

Batteries and fuel cell research Sri Narayan worked for 20 years at NASA's Jet Propulsion California Los Angeles, CA 90089-1661 The USC Power Research Workshop, November 18, 2011 Batteries and Fuel Laboratory (JPL) where he led the fuel cell research activities for over 15 years and also headed

Levi, Anthony F. J.

73

A robust approach to battery fuel gauging, part I: Real time model identification  

Science Journals Connector (OSTI)

Abstract In this paper, the first of a series of papers on battery fuel gauge (BFG), we present a real time parameter estimation strategy for robust state of charge (SOC) tracking. The proposed parameter estimation scheme has the following novel features: it models hysteresis as an error in the open circuit voltage (OCV) and employs a combination of real time, linear parameter estimation and SOC tracking technique to compensate for it. This obviates the need for modeling of hysteresis as a function of SOC and load current. We identify the presence of correlated noise that has been so far ignored in the literature and use it to enhance the accuracy of model identification. As a departure from the conventional “one model fits all” strategy, we identify four different equivalent models of the battery that represent four modes of typical battery operation and develop the framework for seamless SOC tracking by switching. The proposed parameter approach enables a robust initialization/re-initialization strategy for continuous operation of the BFG. The performance of the online parameter estimation scheme was first evaluated through simulated data. Then, the proposed algorithm was validated using hardware-in-the-loop (HIL) data collected from commercially available Li-ion batteries.

B. Balasingam; G.V. Avvari; B. Pattipati; K.R. Pattipati; Y. Bar-Shalom

2014-01-01T23:59:59.000Z

74

Special issue to “ICMAT 2009, Symposium F: nanostructured materials for electrochemical energy systems: lithium batteries, supercapacitors and fuel cells, June 28-July 3, 2009, Singapore”  

Science Journals Connector (OSTI)

The Symposium F on “Nanostructured Materials for Electrochemical Energy Systems: Lithium Batteries, Supercapacitors and Fuel Cells” provided an excellent opportunity for interdisciplinary ... (cathodes and anodes...

Palani Balaya; San Ping Jiang; Atsuo Yamada…

2010-10-01T23:59:59.000Z

75

Optimal power management and powertrain components sizing of fuel cell/battery hybrid electric vehicles based on particle swarm optimisation  

Science Journals Connector (OSTI)

Combining a Fuel Cell (FC), as primary power source, with a Battery Energy System (BES), as an auxiliary source, for high power demands is a promising approach for future hybrid electric vehicles (HEV). The powertrain control strategy and the component sizing significantly affect the vehicle performance, cost, vehicle efficiency and fuel economy. This paper presents a developed control strategy for optimising the power sharing between sources and components sizing by using Particle Swarm Optimisation (PSO) algorithm. This control strategy implemented on FC/Battery hybrid electric vehicle in order to achieve the best performance with minimum fuel consumption and minimum powertrain components sizing for a given driving cycle with high efficiency. The powertrain and the proposed control strategy have been simulated by Matlab/Simulink. The simulation results have demonstrated that the optimal sizing of the powertrain of FC/battery components and the minimum fuel consumption have been improved by applying the PSO control strategy.

Omar Hegazy; Joeri Van Mierlo

2012-01-01T23:59:59.000Z

76

Chemical Kinetic Research on HCCI & Diesel Fuels  

Energy Savers [EERE]

fuel * a primary reference fuel for diesel * Include both high and low temperature chemistry important to model low temperature combustion modes Improve component models for...

77

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network [OSTI]

Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13,O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-

Lin, Feng

2014-01-01T23:59:59.000Z

78

Vehicle Battery Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

79

Department of Chemical and Biochemical Engineering Institute for Chemicals and Fuels from Alternative Resources  

E-Print Network [OSTI]

. The successful candidate will be an important member of the Institute for Chemicals and Fuels from AlternativeDepartment of Chemical and Biochemical Engineering Institute for Chemicals and Fuels from Alternative Resources The University of Western Ontario Applications are invited for a junior faculty position

Sinnamon, Gordon J.

80

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

SciTech Connect (OSTI)

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

82

Chapter 7 - Chemical-looping processes for fuel-flexible combustion and fuel production  

Science Journals Connector (OSTI)

Abstract Chemical-Looping Combustion (CLC) is a rapidly emerging technology for clean combustion of fossil and renewable fuels. In CLC, the combustion of a fuel is broken down into two, spatially separated steps: The oxidation of fuel in contact with an ‘oxygen carrier’ (typically a metal oxide), and the subsequent reoxidation of the carrier with air. CLC thus produces sequestration-ready CO2 streams with only minor efficiency penalties for CO2 capture. While recent interest in chemical looping was almost exclusively focused on combustion, the underlying reaction engineering principle forms a flexible platform for fuel conversion with a long history in chemical engineering. This chapter gives a brief review of the status of chemical-looping processes for fuel conversion, focused predominantly on reforming and partial oxidation of fossil and renewable fuels and on the impact of fuel composition on combustion.

Saurabh Bhavsar; Michelle Najera; Amey More; Götz Veser

2014-01-01T23:59:59.000Z

83

Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

François Martel; Sousso Kelouwani; Yves Dubé; Kodjo Agbossou

2015-01-01T23:59:59.000Z

84

Chemical Kinetic Research on HCCI & Diesel Fuels  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

85

Chemical Kinetic Research on HCCI & Diesel Fuels  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

86

Chemical Kinetic Research on HCCI & Diesel Fuels  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

87

The theory of stabilization of the output power of a rechargeable fuel cell battery under conditions of significant concentration polarization  

Science Journals Connector (OSTI)

A theory is developed for the output power stabilization of a rechargeable fuel cell battery in which the reactants and the electrochemical reaction products are in the electrolyte. Possible means of voltage stabilization are considered which employ continuous-flow and continuous flow—circulation supply of the working solution (electrolyte) to a fuel cell. Expressions are derived for the effective stabilization time and the required electrolyte flow rate. For a battery with known output parameters, the means of stabilization have been optimized based on the electrolyte flow rate and time of stabilization. The optimum solution is shown to depend on the net energy losses in implementing the stabilization procedure.

I.G. Gurevich

1979-01-01T23:59:59.000Z

88

Morphology control of zinc regeneration for zinc–air fuel cell and battery  

Science Journals Connector (OSTI)

Abstract Morphology control is crucial both for zinc–air batteries and for zinc–air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc–air batteries and zinc pellets are yearned to be formed for zinc–air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

Keliang Wang; Pucheng Pei; Ze Ma; Huachi Xu; Pengcheng Li; Xizhong Wang

2014-01-01T23:59:59.000Z

89

Novel Reactor Design for Solid Fuel Chemical Looping Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Reactor Design for Solid Fuel Novel Reactor Design for Solid Fuel Chemical Looping Combustion Opportunity Research is active on the patent pending technology, titled "Apparatus and Method for Solid Fuel Chemical Looping Combustion." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview The removal of CO2 from power plants is challenging because existing methods to separate CO2 from the gas mixture requires a significant fraction of the power plant output. Chemical-looping combustion (CLC) is a novel technology that utilizes a metal oxide oxygen carrier to transport oxygen to the fuel thereby avoiding direct contact between fuel and air. The use of CLC has the advantages of reducing the energy penalty while

90

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

91

Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches  

Science Journals Connector (OSTI)

Abstract In this paper, different optimal hybrid techniques have been proposed for management of a hybrid power generation system including photovoltaic (PV), fuel cell and battery. The main power of the hybrid system comes from the photovoltaic panels, while the fuel cell and batteries are used as back up units. In order to achieve maximum power point tracking for the photovoltaic system, both fuzzy logic controller and perturb and observation methods are examined and their performances have been investigated via simulations. Next, the performance of the hybrid system has been improved via employing a family of well-known optimization approaches for load sharing among the available resources. Imperialist Competitive Algorithm (ICA), Particle Swarm Optimization (PSO), Quantum behaved Particle Swarm Optimization (QPSO), Ant Colony Optimization (ACO), and Cuckoo Optimization Algorithm (COA) are used to manage the load sharing to achieve optimal performance while the system constraints are met. The optimal performance has been characterized via the control strategy performance measure being the ratio of the amount of hydrogen production with respect to the hydrogen consumption. In order to verify the system performance, simulation studies have been carried out using practical load demand data and real weather data (solar irradiance and air temperature). Different combination of maximum power point tracking methods with various optimization algorithms have been compared with each other. The results show that the combination of fuzzy logic controller with QPSO has the best performance among the considered combinations. In this situation, when the solar irradiation is noticeably high, the required load is supplied mainly by PV array, while the battery is charged, simultaneously. In the other times, the load is mainly fed by the battery and fuel cell while the performance constraints of battery is met and the daily performance measure is optimized.

Nooshin Bigdeli

2015-01-01T23:59:59.000Z

92

New Chemical Systems for Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

New Chemical Systems for Solid Oxide Fuel Cells† ... (238) This, however, represented a significant improvement over earlier work with the use of Pt electrodes, suggesting that further improvements can be made through electrode optimization and, hence, identifying the need for more work in optimizing electrodes for use with apatite electrolytes. ... cond., the optimized compn. ...

A. Orera; P. R. Slater

2009-11-05T23:59:59.000Z

93

Classification of fossil fuels according to structural-chemical characteristics  

SciTech Connect (OSTI)

On the basis of a set of linear equations that relate the amount of major elements n{sub E} (E = C, H, O, N, S) in the organic matter of fossil fuels to structural characteristics, such as the number of cycles R, the number of atoms n{sub E}, the number of mutual chemical bonds, the degree of unsaturation of the structure {delta}, and the extent of its reduction B, a structural-chemical classification of fossil coals that is closely related to the parameters of the industrial-genetic classification (GOST 25543-88) is proposed. Structural-chemical classification diagrams are constructed for power-generating coals of Russia; coking coals; and coals designed for nonfuel purposes including the manufacture of adsorbents, synthetic liquid fuel, ion exchangers, thermal graphite, and carbon-graphite materials.

A.M. Gyul'maliev; G.S. Golovin; S.G. Gagarin [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-10-15T23:59:59.000Z

94

Alternative fuel and chemicals from synthesis gas  

SciTech Connect (OSTI)

Development of a reliable and cost-effective method of wax/catalyst separation is a key step toward a commercially viable slurry reactor process with iron oxide-based catalyst for Fischer-Tropsch (F-T) synthesis of hydrocarbon transportation fuels. Although a variety of suitable catalysts (including, for example, cobalt-based catalysts) are available, iron oxide-based catalysts are preferred for coal-derived, CO-rich syngas because, in addition to catalyzing the F-T reaction, they simultaneously catalyze the reaction stifling CO to H{sub 2}, obviating a separate shift process block and associated costs. Because of the importance of development of this wax/catalyst separation, a study was initiated in February 1991. P. Z. Zhou of Burns and Roe reviewed the status of F-T wax/catalyst separation techniques. This led to the selection of a filtration system for the separation. Pilot tests were conducted by Mott Porous Metal Products in 1992 to develop this system. Initial results were good, but problems were encountered in follow-up testing. As a result of the testing, a filter was selected for use on the pilot plant. In LaPorte, Texas, APCI has been operating a pilot plant for the development of various synthesis gas technologies with DOE and industry support. The APCI F-T program builds on the DOE-sponsored laboratory-scale work by Mobil, reported in the mid-1980s, which used an iron oxide catalyst to produce high-quality F-T liquids in relatively compact reactors. Separation of the catalyst solids from the wax still represents a challenge. In the summer of 1992, testing of the selected filter was begun as part of the pilot plant testing. The filter performed poorly. Separation of the catalyst was primarily by sedimentation. It was recommended that the wax/catalyst separation be developed further.

NONE

1996-05-01T23:59:59.000Z

95

Novel catalysts for valorization of biomass to value-added chemicals and fuels  

Science Journals Connector (OSTI)

? Biomass valorization to get platform chemicals and fuels such as HMF, FDCA and DMF is discussed. Solid acids w...

NISHITA LUCAS; NARASIMHA RAO KANNA; ATUL S NAGPURE…

2014-03-01T23:59:59.000Z

96

Novel New Oxygen Carriers for Chemical Looping Combustion of Solid Fuels  

Science Journals Connector (OSTI)

Novel New Oxygen Carriers for Chemical Looping Combustion of Solid Fuels ... A loop of chem. ... Energy Combust. ...

Yueying Fan; Ranjani Siriwardane

2014-02-21T23:59:59.000Z

97

Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications  

SciTech Connect (OSTI)

Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

2012-04-16T23:59:59.000Z

98

Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals  

Science Journals Connector (OSTI)

Here, we report that N,N-dimethylacetamide (DMA) containing lithium chloride (LiCl) is a privileged solvent that enables the synthesis of the renewable platform chemical 5-hydroxymethylfurfural (HMF) in a single step and unprecedented yield from untreated lignocellulosic biomass, as well as from purified cellulose, glucose, and fructose. ... With these types of improvements, this selective chemistry could become a highly attractive process for the conversion of lignocellulosic biomass into an array of fuels and chemicals. ...

Joseph B. Binder; Ronald T. Raines

2009-01-21T23:59:59.000Z

99

Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels  

SciTech Connect (OSTI)

A computational fluid dynamic(CFD) model for the fuel reactor of chemical looping combustion technology has been developed,withspecialfocusonaccuratelyrepresentingtheheterogeneous chemicalreactions.Acontinuumtwo-fluidmodelwasusedtodescribeboththegasandsolidphases. Detailedsub-modelstoaccountforfluid–particleandparticle–particleinteractionforceswerealso incorporated.Twoexperimentalcaseswereanalyzedinthisstudy(Son andKim,2006; Mattisonetal., 2001). SimulationswerecarriedouttotestthecapabilityoftheCFDmodeltocapturechangesinoutletgas concentrationswithchangesinnumberofparameterssuchassuperficialvelocity,metaloxide concentration,reactortemperature,etc.Fortheexperimentsof Mattissonetal.(2001), detailedtime varyingoutletconcentrationvalueswerecompared,anditwasfoundthatCFDsimulationsprovideda reasonablematchwiththisdata.

Mahalatkar, K.; Kuhlman, J.; Huckaby, E.D.; O'Brien, T.

2011-01-01T23:59:59.000Z

100

Relation between fuel properties and chemical composition. II. Chemical characterization of US Navy Shale-II fuels  

SciTech Connect (OSTI)

The Navy has completed two crude production/refining exercises with shale. The first of these was a 10,000 barrel operation (Shale-I). The second, a 73,000 barrel operation (Shale-II), was completed in 1979 at the Toledo refinery of Sohio. This paper describes the chemical characterization of the JP-5 and DFM from the Shale-II project. The information presented in this paper shows that shale oil has an excellent potential as a source for high quality middle distillate fuels. The composition of such fuels may vary widely, however, depending on the overall refining process. Much work is needed to explore other refining options and to examine the effect of refining on finished fuel composition and properties.

Solash, J.; Hazlett, R.N.; Burnett, J.C.; Beal, E.; Hall, J.M.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report  

SciTech Connect (OSTI)

This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

NONE

1995-01-31T23:59:59.000Z

102

Chemical-looping combustion -- Efficient conversion of chemical energy in fuels into work  

SciTech Connect (OSTI)

In thermal power plants, a large amount of the useful energy in the fuel is destroyed during the combustion process. This paper presents theoretical thermodynamic studies of a new system to increase the energy conversion efficiency of chemical energy in fuels into work. The system includes a gas turbine system with chemical-looping combustion where a metal oxide is used as an oxygen carrier. Instead of conventional combustion, the oxidation of the fuel is carried out in a two-step reaction. The first reaction step is an exothermic oxidation of a metal with air and the second reaction step an endothermic oxidation of the fuel with the metal oxide from the first step. The low grade heat in the exhaust gas is used to drive the endothermic reaction. This two-step reaction has proven to be one way to increase the energy utilization compared to conventional combustion. Results for a gas turbine reheat cycle with methane as a fuel and NiO as an oxygen carrier show that the gain in net power efficiency for the chemical-looping combustion system is as high as 5 percentage points compared to a similar conventional gas turbine system. An exergy analysis of the reactions shows that less irreversibilities are generated with chemical looping combustion than with conventional combustion. Another advantage with chemical-looping combustion is that the greenhouse gas CO{sub 2} is separated from the other exhaust gases without decreasing the overall-system thermal efficiency. This is an important feature since future regulations of CO{sub 2} emission are likely to be strict. Today, most of the suggested CO{sub 2} separation methods are considered to reduce the thermal efficiency at least 5--10 percentage points and to require expensive equipment.

Anheden, M.; Naesholm, A.S.; Svedberg, G. [Royal Inst. of Technology, Stockholm (Sweden)

1995-12-31T23:59:59.000Z

103

Close this window print this page MATSUSHITA BATTERY DEVELOPS NEW MICRO FUEL CELL  

E-Print Network [OSTI]

needed by the fuel cell stack can be delivered at precisely the appropriate time. This method consists to miniaturize the system, improve the reliability and reduce the cost. Notes and Technology Details 1. Fuel cell. By using its new fuel supply method, the precise amount of fuel needed by the fuel cell stack can

104

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

105

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

106

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

107

X-ray Absorption Measurements on Nickel Cathode of Sodium-beta Alumina batteries: Fe-Ni-CI Chemical Associations  

SciTech Connect (OSTI)

Sections of Na-Al-NiCl2 cathodes from sodium-beta alumina ZEBRA batteries have been characterized with X-ray fluorescence mapping, and XANES measurements to probe the microstructure, elemental correlation, and chemical speciation after voltage cycling. Cycling was performed under identical load conditions at either 240 or 280 °C operating temperature and subsequently quenched in either the charged or discharged state. X-ray fluorescence mapping and XANES measurements were made adjacent to the current collector and ?"-Al2O3 solid electrolyte interfaces to detect possible gradients in chemical properties across the cathode. An FeS additive, introduced during battery synthesis, was found to be present as either Fe metal or an Fe(II) chloride in all cathode samples. X-ray fluorescence mapping reveals an operating temperature and charge-state dependent spatial correlation between Fe, Ni, and Cl concentration. XANES measurements indicate that both Ni and Fe are chemically reactive and shift between metallic and chloride phases in the charged and discharged states, respectively. However the percentage of chemically active Ni and Fe is significantly less in the cell operated at lower temperature. Additionally, the cathode appeared chemically homogeneous at the scale of our X-ray measurements.

Bowden, Mark E.; Alvine, Kyle J.; Fulton, John L.; Lemmon, John P.; Lu, Xiaochuan; Webb-Robertson, Bobbie-Jo M.; Heald, Steve M.; Balasubramanian, Mahalingam; Mortensen, Devon R.; Seidler, Gerald T.; Hess, Nancy J.

2014-02-01T23:59:59.000Z

108

DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS  

SciTech Connect (OSTI)

This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced from any one of a variety of sources (including coal) for the production of a spectrum of alternative fuels (hydrocarbons and oxygenate fuels), octane enhancers, and chemicals and chemical intermediates. In particular, the data from the 1995 LPMEOH{trademark} campaign provided confirmation of assumptions used in the design of the catalyst reduction system at the Kingsport LPMEOH{trademark} Commercial Demonstration Project, and the alternate methanol catalyst has been in use there since late 1998. The kinetic model was also expanded to allow for more accurate prediction of methanol production and carbon dioxide (CO{sub 2}) conversion, and more accurate modeling of by-product formation for the alternate methanol catalyst. The outstanding performance results of the LPMEOH{trademark} Process at Kingsport can be attributed in large part to the body of work performed since 1981 in collaboration between the U.S. Department of Energy (DOE) and Air Products. In addition, a pilot-plant-tested LPDME{trademark} Process has been demonstrated, and the product cost of DME from coal-derived syngas can be competitive in certain locations and applications. The need for liquid fuels will continue to be a critical concern for this nation in the 21st century. Efforts are needed to ensure the development and demonstration of economically competitive, efficient, environmentally responsible technologies that produce clean fuels and chemicals from coal under DOE's Vision 21 concept. These liquids will be a component of the fuel mix that will provide the transition from the current reliance on carbon-based fuels to the ultimate use of H{sub 2} as a means of energy transport. Indirect liquefaction, which converts the syngas (H{sub 2} and CO) produced by the gasification of coal to sulfur- and nitrogen-free liquid products, is a key component of the Vision 21 initiative. The results from this current program provide continued support to the objectives for the conversion of domestic coal to electric power and co-produced clean liquid fuels and chemicals in an environmentally superior manner.

Peter J. Tijrn

2003-05-31T23:59:59.000Z

109

Marine macroalgae: an untapped resource for producing fuels and chemicals  

Science Journals Connector (OSTI)

As world energy demand continues to rise and fossil fuel resources are depleted, marine macroalgae (i.e., seaweed) is receiving increasing attention as an attractive renewable source for producing fuels and chemicals. Marine plant biomass has many advantages over terrestrial plant biomass as a feedstock. Recent breakthroughs in converting diverse carbohydrates from seaweed biomass into liquid biofuels (e.g., bioethanol) through metabolic engineering have demonstrated potential for seaweed biomass as a promising, although relatively unexplored, source for biofuels. This review focuses on up-to-date progress in fermentation of sugars from seaweed biomass using either natural or engineered microbial cells, and also provides a comprehensive overview of seaweed properties, cultivation and harvesting methods, and major steps in the bioconversion of seaweed biomass to biofuels.

Na Wei; Josh Quarterman; Yong-Su Jin

2013-01-01T23:59:59.000Z

110

Author's personal copy Agar chemical hydrogel electrode binder for fuel-electrolyte-fed  

E-Print Network [OSTI]

Author's personal copy Agar chemical hydrogel electrode binder for fuel-electrolyte-fed fuel cells­acid direct ethanol fuel cell Agar chemical hydrogel Electrode binder a b s t r a c t This work reports-based electrode offers better performance than the Nafion-based one does. A peak power density of 380 mW cm�2

Zhao, Tianshou

111

SURFACE RECONSTRUCTION AND CHEMICAL EVOLUTION OF STOICHIOMETRIC LAYERED CATHODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

CATHODE MATERIALS FOR LITHIUM-ION BATTERIES Feng Lin, 1*As shown in Figure 2, in lithium-metal half-cells, capacitypredominantly occurs along the lithium diffusion channels,

Lin, Feng

2014-01-01T23:59:59.000Z

112

Recent Advances in Detailed Chemical Kinetic Models for Large Hydrocarbon and Biodiesel Transportation Fuels  

SciTech Connect (OSTI)

n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignition. Also, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. Methyl decanoate and methyl stearate are large methyl esters that are closely related to biodiesel fuels, and kinetic models for these molecules have also been developed. These chemical kinetic models are used to predict the effect of the fuel molecule size and structure on ignition characteristics under conditions found in internal combustion engines.

Westbrook, C K; Pitz, W J; Curran, H J; Herbinet, O; Mehl, M

2009-03-30T23:59:59.000Z

113

Chemical Looping Combustion System-Fuel Reactor Modeling  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) is a process in which an oxygen carrier is used for fuel combustion instead of air or pure oxygen as shown in the figure below. The combustion is split into air and fuel reactors where the oxidation of the oxygen carrier and the reduction of the oxidized metal occur respectively. The CLC system provides a sequestration-ready CO2 stream with no additional energy required for separation. This major advantage places combustion looping at the leading edge of a possible shift in strict control of CO2 emissions from power plants. Research in this novel technology has been focused in three distinct areas: techno-economic evaluations, integration of the system into power plant concepts, and experimental development of oxygen carrier metals such as Fe, Ni, Mn, Cu, and Ca. Our recent thorough literature review shows that multiphase fluid dynamics modeling for CLC is not available in the open literature. Here, we have modified the MFIX code to model fluid dynamic in the fuel reactor. A computer generated movie of our simulation shows bubble behavior consistent with experimental observations.

Gamwo, I.K.; Jung, J. (ANL); Anderson, R.R.; Soong, Y.

2007-04-01T23:59:59.000Z

114

An investigation of synthetic fuel production via chemical looping  

SciTech Connect (OSTI)

Producing liquid hydrocarbon fuels with a reduced greenhouse gas emissions profile would ease the transition to a carbon-neutral energy sector with the transportation industry being the immediate beneficiary followed by the power industry. Revolutionary solutions in transportation, such as electricity and hydrogen, depend on the deployment of carbon capture and storage technologies and/or renewable energy systems. Additionally, high oil prices may increase the development of unconventional sources, such as tar sands, that have a higher emissions profile. One process that is gaining interest is a system for producing reduced carbon fuels though chemical looping technologies. An investigation of the implications of such a process using methane and carbon dioxide that is reformed to yield methanol has been done. An important aspect of the investigation is the use of off-the-shelf technologies to achieve the results. The ability of the process to yield reduced emissions fuels depends on the source for the feed and process heat. For the range of conditions considered, the emissions profile of methanol produced in this method varies from 0.475 to 1.645 moles carbon dioxide per mole methanol. The thermal load can be provided by methane, coal or carbon neutral (biogas). The upper bound can be lowered to 0.750 by applying CCS and/or using nonfossil heat sources for the reforming. The process provides an initial pathway to incorporate CO{sub 2} into fuels independent of electrolytic hydrogen or developments in other sectors of the economy. 22 refs., 1 fig., 3 tabs.

Frank Zeman; Marco Castaldi [Columbia University, New York, NY (United States). Department of Earth and Environmental Engineering

2008-04-15T23:59:59.000Z

115

Status of Algae as Vehicles for Commercial Production of Fuels and Chemicals  

Science Journals Connector (OSTI)

This chapter provides a brief overview of role of algae for the production of fuels and chemicals. Characteristics of algae and its production in open raceway ponds...

Rakesh Bajpai; Mark Zappi; Stephen Dufreche; Ramalingam Subramaniam…

2014-01-01T23:59:59.000Z

116

New catalytic processes for the upgrading of furfural and 5-hydroxymethylfurfural to chemicals and fuels.  

E-Print Network [OSTI]

??The demand of energy, fuels and chemicals is increasing due to the strong growth of some countries in the developing world and the development of… (more)

Pasini, Thomas and#60;1985and#62

2013-01-01T23:59:59.000Z

117

Fuel cells: A handbook (Revision 3)  

SciTech Connect (OSTI)

Fuel cells are electrochemical devices that convert the chemical energy of reaction directly into electrical energy. In a typical fuel cell, gaseous fuels are fed continuously to the anode (negative electrode) compartment and an oxidant (i.e., oxygen from air) is fed continuously to the cathode (positive electrode) compartment; the electrochemical reactions take place at the electrodes to produce an electric current. A fuel cell, although having similar components and several characteristics, differs from a typical battery in several respects. The battery is an energy storage device, that is, the maximum energy that is available is determined by the amount of chemical reactant stored within the battery itself. Thus, the battery will cease to produce electrical energy when the chemical reactants are consumed (i.e., discharged). In a secondary battery, the reactants are regenerated by recharging, which involves putting energy into the battery from an external source. The fuel cell, on the other hand, is an energy conversion device which theoretically has the capability of producing electrical energy for as long as the fuel and oxidant are supplied to the electrodes. In reality, degradation or malfunction of components limits the practical operating life of fuel cells.

Hirschenhofer, J.H.; Stauffer, D.B.; Engleman, R.R.

1994-01-01T23:59:59.000Z

118

Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity  

Broader source: Energy.gov [DOE]

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that is examining new battery materials and addressing fundamental chemical and mechanical instability issues in batteries.

119

Fuel-Flexible Combustion System for Refinery and Chemical Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. Displacing Natural Gas Consumption and Lowering...

120

Plasmon-damping Chemical Sensor for Hydrogen Fuel Monitoring.  

E-Print Network [OSTI]

??Hydrogen (H2) is a clean, sustainable, and highly energy efficient fuel source which will meet the increasing energy demand. Fuel cells can utilize H2 and… (more)

Ede, Rama Krishna

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

122

Chemical Fabrication and Electrochemical Characterization of Graphene Nanosheets Using a Lithium Battery Platform  

Science Journals Connector (OSTI)

For instance, graphene-based nanocomposites have found extensive applications in Li-ion batteries (LIBs) as scientists and engineers seek to achieve superior electrochemical performances. ... Second-Year Undergraduate; Graduate Education/Research; Interdisciplinary/Multidisciplinary; Hands-On Learning/Manipulatives; Electrochemistry; Materials Science; Nanotechnology; Upper-Division Undergraduate; Laboratory Instruction ... International Journal of Pharmaceutical Sciences and Drug Research (2010), 2 (2), 127-133 CODEN: IJPSPP; ISSN:0975-248X. ...

Aaron J. Blake; Hong Huang

2014-11-20T23:59:59.000Z

123

An Overview of Stationary Fuel Cell Technology  

SciTech Connect (OSTI)

Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

DR Brown; R Jones

1999-03-23T23:59:59.000Z

124

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

125

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

126

Hydrogen fuel closer to reality because of storage advances  

E-Print Network [OSTI]

extracted for use in hydrogen fuel cell batteries and then be recharged with hydrogen over and over- 1 - Hydrogen fuel closer to reality because of storage advances March 21, 2012 Drive toward as a "chemical storage tank" for hydrogen fuel. An ammonia borane system could allow hydrogen to be easily

127

Published: July 05, 2011 Copyright r 2011 American Chemical Society and  

E-Print Network [OSTI]

. As with most commercial batteries, the fuel is dissipated in the discharge process. The fuel cell can.acs.org/jchemeduc Glucose-Driven Fuel Cell Constructed from Enzymes and Filter Paper Jun Ge, Romana Schirhagl, and Richard N chemistry students. A fuel cell is a device that generates electrical energy from a chemical reaction

Zare, Richard N.

128

Chemical Engineering Journal 93 (2003) 6980 Production of COx-free hydrogen for fuel cells via step-wise hydrocarbon  

E-Print Network [OSTI]

Chemical Engineering Journal 93 (2003) 69­80 Production of COx-free hydrogen for fuel cells via Abstract The stringent COx-free hydrogen requirement for the current low temperature fuel cells has Hydrogen is the most promising fuel for the low temper- ature fuel cells, however, chemical processes

Goodman, Wayne

129

Chemical degradation of fluorosulfonamide fuel cell membrane polymer model compounds  

Science Journals Connector (OSTI)

Abstract The durability of a polymer electrolyte fuel cell membrane, along with high proton conductivity and mechanical performance is critical to the success of these energy conversion devices. Extending our work in perfluorinated membrane stability, aromatic trifluoromethyl sulfonamide model compounds were prepared, and their oxidative degradation was examined. The chemical structures for the models were based on mono-, di- and tri-perfluorinated sulfonamide modified phenyl rings. Durability of the model compounds was evaluated by exposure to hydroxyl radicals generated using Fenton reagent and UV irradiation of hydrogen peroxide. LC–MS results for the mono-substituted model compound indicate greater stability to radical oxidation than the di-substituted species; loss of perfluorinated fonamide side chains appears to be an important pathway, along with dimerization and aromatic ring hydroxylation. The tri-substituted model compound also shows loss of side chains, with the mono-substituted compound being a major oxidation product, along with a limited amount of hydroxylation and dimerization of the starting material.

Jamela M. Alsheheri; Hossein Ghassemi; David A. Schiraldi

2014-01-01T23:59:59.000Z

130

A model-based approach to battery selection for truck onboard fuel cell-based APU in an anti-idling application  

Science Journals Connector (OSTI)

Abstract The paper presents a model-based approach to supporting battery selection for a fuel cell (FC)-based auxiliary power unit (APU). It is introduced to a case study of electrical power production and consumption management in a truck anti-idling application of a diesel-powered FC-based APU, a system under development in FCGEN, a FCH JU European project of the FP7 program. With fuel cell and related technologies increasingly competing with others in the market, they need to form complete systems with matching and well-balanced components to enable using the technology to its best. Within the whole system, the battery, serving as an energy buffer, represents a medium-cost element, but it affects the operating parameters importantly. Within the scope of this study, a purpose-oriented model of the diesel powered FC-based system is developed together with a realistic load scenario for the comparison of three batteries. The battery size and type are investigated and discussed in the light of the simulation results.

Boštjan Pregelj; Darko Vre?ko; Janko Petrov?i?; Vladimir Jovan; Gregor Dolanc

2015-01-01T23:59:59.000Z

131

Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion  

Science Journals Connector (OSTI)

Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion ... The fuels, such as natural gas, coal, petroleum coke, and biomass combusted by CLC are frequently studied by various researchers(17, 26-31) and compared in the previous studies;(20, 33) however, only few studies on liquid fuel combustion are reported. ... Ishida, M.; Takeshita, K.; Susuki, K.; Ohba, T..Application of Fe2O3-Al2O3 composite particles as solid looping material of the chemical loop combustor Energy Fuels 2005, 19, 2514– 2518 ...

Ping-Chin Chiu; Young Ku; Hsuan-Chih Wu; Yu-Lin Kuo; Yao-Hsuan Tseng

2013-10-31T23:59:59.000Z

132

Definition: Fuel cell | Open Energy Information  

Open Energy Info (EERE)

Fuel cell Fuel cell Jump to: navigation, search Dictionary.png Fuel cell An electrochemical device that converts chemical energy directly into electricity. View on Wikipedia Wikipedia Definition A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent. Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen/air to sustain the chemical reaction; however, fuel cells can produce electricity continually for as long as these inputs are supplied. In 1838, German physicist Christian Friedrich Schönbein invented the first

133

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

134

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

135

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

136

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

137

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

138

Computer-Aided Engineering for Electric Drive Vehicle Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

139

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Broader source: Energy.gov (indexed) [DOE]

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

140

Overcharge Protection for PHEV Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overcharge Protection for PHEV Batteries Overcharge Protection for PHEV Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New INL High Energy Battery Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INL High Energy Battery Test Facility New INL High Energy Battery Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

142

NREL Battery Thermal and Life Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit...

143

Overview and Progress of the Battery Testing, Analysis, and Design...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

144

Li-Ion Battery Cell Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

145

PHEV and LEESS Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PHEV and LEESS Battery Cost Assessment PHEV and LEESS Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

146

Argonne Chemical Sciences & Engineering - 2005 Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Awards 5 Awards 2005 Outstanding Engineering Achievement, Illinois Engineering Council, awarded to Argonne National Laboratory Chemical Engineering Division IBA Research Award, International Battery Materials Association, Christopher Johnson R&D 100 Award, Self-Contained Battery-Powered bion® Microstimulator with Rechargeable Miniature Battery, Khalil Amine, Ilias Belharouak, Bookeun Oh, Donald Vissers, Qingzheng Wang Electrochemical Society Battery Division Research Award, Electrochemical Society, Michael Thackeray Illinois Engineering Council Outstanding Engineering Achievement Award, UREX+ Process for Separating Key Radionuclides from Commercial Spent Fuel Innovation Hub Tribute to Innovative Minds, Michael Thackeray The University of Chicago Distinguished Performance Award, U of C, Julius Jellinek

147

Comparative requirements for electric energy for production of hydrogen fuel and/or recharging of battery electric automobile fleets in New Zealand and the United States  

Science Journals Connector (OSTI)

Within the current outlook for sustainable electric energy supply with concomitant reduction in emission of greenhouse gases, accelerated attention is focusing on the long-term development of hydrogen fuel cell and all-electric battery vehicles to provide alternative fuels to replace petroleum-derived fuels for automotive national fleets. The potential varies significantly between large industrially developed nations and smaller industrially developing nations. The requirement for additional electric energy supply from low-specific energy renewable resources and high-specific energy nuclear resources depends strongly on individual national economic, environmental, and political factors. Analysis of the additional electric energy supply required for the two potential large-scale technologies for fueling future national transportation sectors is compared for a large Organization for Economic Co-operation and Development (OECD) nation (USA) with a small OECD nation (New Zealand), normalized on a per-capita basis.

Paul Kruger; Jonathan D. Leaver

2010-01-01T23:59:59.000Z

148

Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-air Batteries  

SciTech Connect (OSTI)

The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to {sigma}*-orbital (e{sub g}) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the {sigma}* orbital and metal-oxygen covalency on the competition between O{sub 2}{sup 2-}/OH{sup -} displacement and OH{sup -} regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

J Suntivich; H Gasteiger; N Yabuuchi; H Nakanishi; J Goodenough; Y Shao-Horn

2011-12-31T23:59:59.000Z

149

Under Pressure and in Hot Water: Algae Conversion to Fuels and Chemicals  

E-Print Network [OSTI]

March 3rd Under Pressure and in Hot Water: Algae Conversion to Fuels and Chemicals Dr. Phil:50 April 10th (Joint Seminar with EES) Fecal Sludge-Fed Biodiesel Plants: The Next-Generation Urban

Minsker, Barbara S.

150

Recent Developments in the Conversion of Biomass to Renewable Fuels and Chemicals  

Science Journals Connector (OSTI)

The rapid and ongoing increase in consumption of petroleum for transportation fuels, chemicals and energy is not sustainable. Therefore, development of technology that uses agricultural, animal, forestry and muni...

Leo E. Manzer

2010-09-01T23:59:59.000Z

151

Investigation of Coal Fueled Chemical Looping Combustion Using Fe3O4 as Oxygen Carrier  

Science Journals Connector (OSTI)

Chemical-looping combustion (CLC) is a novel combustion technique with CO2 separation. Magnetite (Fe3O4) was selected as the oxygen carrier and Shenhua coal (Inner Mongolia, China) as the fuel for this study. The...

Wenguo Xlang; Xiaoyan Sun; Sha Wangt…

2010-01-01T23:59:59.000Z

152

Separation of carbon dioxide with the use of chemical-looping combustion and gasification of fuels  

Science Journals Connector (OSTI)

Matters regarding using new technology for chemical-looping combustion of fuels for solving the problem of...2 (CO2 sequestration) are discussed. The primary results of investigations and possible schemes for imp...

G. A. Ryabov; O. M. Folomeev; D. S. Litun; D. A. Sankin

2009-06-01T23:59:59.000Z

153

Chemical-Looping Combustion with Fuel Oil in a 10 kW Pilot Plant  

Science Journals Connector (OSTI)

Chemical-Looping Combustion with Fuel Oil in a 10 kW Pilot Plant ... The unit is based on interconnected fluidized beds and is similar to the design originally presented by Lyngfelt et al.(12) In the riser section there is a fast-fluidized regime, whereas in the loop-seals and the fuel reactor there is a bubbling regime. ... Energy Combust. ...

Patrick Moldenhauer; Magnus Rydén; Tobias Mattisson; Ali Hoteit; Aqil Jamal; Anders Lyngfelt

2014-08-29T23:59:59.000Z

154

Nanotextured Metal Copper Substrates as Powerful and Long-Lasting Fuel Cell Anodes  

Science Journals Connector (OSTI)

Fuel cells (FCs) are promising electrochemical devices that convert chemical energy of fuels directly into electrical energy. ... (1-17) Fuel cells are generally characterized by high theoretical energy density of 8?9 kW·h/kg, 15?20 times higher than conventional batteries. ... In the near future, they will see application in automotive propulsion, distributed power generation, and in low power portable devices (battery replacement). ...

Boris Filanovsky; Eran Granot; Rawi Dirawi; Igor Presman; Iliya Kuras; Fernando Patolsky

2011-03-25T23:59:59.000Z

155

Chemical factors affecting insolubles formation in shale derived diesel fuel  

SciTech Connect (OSTI)

Detrimental changes in fuel properties with time have been a continuing problem in the use of middle distillate fuels. Instability of diesel fuels is usually defined by the formation of insoluble sediments and gums. Gravimetric stability tests have been conducted at 43/sup 0/ and 80/sup 0/C, respectively, using three model nitrogen heterocycles, 2-methylpyridine, 2,6-di methyl quinoline, and dodecahydrocarbazole, as dopants in an otherwise stable shale diesel fuel. Potential interactive effects have been defined for these three model nitrogen heterocycles in the stable fuel in the presence of a second model dopant, t-butyl hydroperoxide. 2-Methyl pyridine and 2,6-dimethyl quinoline were inactive and only 2-methyl pyridine showed slight positive interactive effects. Dodecahydrocarbazole formed large amounts of insolubles by itself and exhibited positive interactive effects.

Beal, E.J.; Mushrush, G.W.; Cooney, J.V. (Fuels Section, Code 6180 Naval Research Lab., Washington, DC (US)); Watkins, J.M. (Geo-Centers, Ft. Washington, MD (US))

1989-01-01T23:59:59.000Z

156

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

157

Challenges and Prospects of Lithium–Sulfur Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for rechargeable batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. ...

Arumugam Manthiram; Yongzhu Fu; Yu-Sheng Su

2012-10-25T23:59:59.000Z

158

Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic  

E-Print Network [OSTI]

, carbohydrate hydrolysis and dehydration, and catalytic upgrading of platform chemicals. The technology centersProduction of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic and subsequently upgrading these two platforms into a mixture of branched, linear, and cyclic alkanes of molecular

California at Riverside, University of

159

Chemical-Looping Combustion With Gaseous Fuels: Thermodynamic Parametric Modeling  

Science Journals Connector (OSTI)

This communication reports the thermodynamic equilibrium analysis of the reactions involved in a chemical-looping combustion (CLC) process using methane, ethane and ... energy minimization technique determining t...

Mohammad M. Hossain

2014-05-01T23:59:59.000Z

160

Reactive Dehydration technology for Production of Fuels and Chemicals...  

Broader source: Energy.gov (indexed) [DOE]

Catalytic and Reactive Distillation) for compact, inexpensive production of biomass-based chemicals from complex aqueous mixtures. SeparationPurification of Biomass...

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

162

Quantification of Artifacts in Scanning Electron Microscopy Tomography: Improving the Reliability of Calculated Transport Parameters in Energy Applications such as Fuel Cell and Battery Electrodes  

Science Journals Connector (OSTI)

Abstract Focused ion beam and scanning electron microscopy tomography (FIB-SEMt) is commonly used to extract reactant transport relevant parameters from nano-porous materials in energy applications, such as fuel cells or batteries. Here we present an approach to virtually model the errors in FIB-SEMt which are caused by the FIB cutting distance. The errors are evaluated in terms of connectivity, solid volume fraction (SVF), conductivity, diffusivity, as well as mean grain and pore sizes. For state-of-the-art FIB-SEMt experiments, where a hydrogen fuel cell catalyst layer with 60 nm mean grain size and 40 % SVF is sectioned with a cutting distance of 15 nm, the error in our simulation ranges up to 51 % (conductivity), whereas other parameters remain largely unaffected (Laplace diffusivity, 4 %). We further present a method, employing virtual coarsening and back interpolation, to reduce FIB cutting distance errors in all investigated parameters. Both error evaluation and correction are applicable to sphere based porous materials with relevance for the energy conversion and storage sector such as polymer electrolyte membrane fuel cell catalyst layer (PEMFC CL), battery carbon binder domain (CBD) or supercapacitor electrodes.

Matthias Klingele; Roland Zengerle; Simon Thiele

2014-01-01T23:59:59.000Z

163

NREL: Learning - Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells Fuel Cells Fuel cells and their ability to cleanly produce electricity from hydrogen and oxygen are what make hydrogen attractive as a "fuel" for transportation use particularly, but also as a general energy carrier for homes and other uses, and for storing and transporting otherwise intermittent renewable energy. Fuel cells function somewhat like a battery-with external fuel being supplied rather than stored electricity-to generate power by chemical reaction rather than combustion. Hydrogen fuel cells, for instance, feed hydrogen gas into an electrode that contains a catalyst, such as platinum, which helps to break up the hydrogen molecules into positively charged hydrogen ions and negatively charged electrons. The electrons flow from the electrode to a terminal that

164

Heterogeneous Catalysts for Converting Renewable Feedstocks to Fuels and Chemicals  

Science Journals Connector (OSTI)

Another popular platform molecule is 5-hydroxymethylfurfural (HMF) which is produced by the dehydration of hexoses. HMF has potential as an important bio-based commodity chemical for the synthesis of a variety of...

Karen Wilson; Adam F. Lee…

2012-01-01T23:59:59.000Z

165

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

166

Final Report of Project Nanometer Structures for Fuel Cells and Displays, etc.  

E-Print Network [OSTI]

Nanometer Structures for Fuel Cells and Displays, etc. Qingtechnologies (solar and fuel cells, lithium batteries). Intechnologies (solar and fuel cells, lithium batteries), and

Ji, Qing

2012-01-01T23:59:59.000Z

167

HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model  

SciTech Connect (OSTI)

Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p{sub in}=0.1 and 0.2 MPa, T{sub in}=80 and 250 C, {phi}=0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline surrogate fuel blends at 1.0{<=} p{<=}5.0MPa, 700{<=} T{<=}1200 K and {phi}=1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent on the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel sensitivity and single-stage fuel content generally gives a lower value of the pressure exponent. This helps to explain the results obtained while boosting the intake pressure in the HCCI engine. (author)

Andrae, J.C.G. [Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Head, R.A. [Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

2009-04-15T23:59:59.000Z

168

Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals  

Science Journals Connector (OSTI)

To ensure the long-term viability of biorefineries, it is essential to go beyond the carbohydrate-based platform and develop complementing technologies capable of producing fuels and chemicals from a wide array of available materials. Glycerol, a readily available and inexpensive compound, is generated during biodiesel, oleochemical, and bioethanol production processes, making its conversion into value-added products of great interest. The high degree of reduction of carbon atoms in glycerol confers the ability to produce fuels and reduced chemicals at higher yields when compared to the use of carbohydrates. This review focuses on current engineering efforts as well as the challenges involved in the utilization of glycerol as a carbon source for the production of fuels and chemicals.

James M. Clomburg; Ramon Gonzalez

2013-01-01T23:59:59.000Z

169

Chemical aspects of pellet-cladding interaction in light water reactor fuel elements  

SciTech Connect (OSTI)

In contrast to the extensive literature on the mechanical aspects of pellet-cladding interaction (PCI) in light water reactor fuel elements, the chemical features of this phenomenon are so poorly understood that there is still disagreement concerning the chemical agent responsible. Since the earliest work by Rosenbaum, Davies and Pon, laboratory and in-reactor experiments designed to elucidate the mechanism of PCI fuel rod failures have concentrated almost exclusively on iodine. The assumption that this is the reponsible chemical agent is contained in models of PCI which have been constructed for incorporation into fuel performance codes. The evidence implicating iodine is circumstantial, being based primarily upon the volatility and significant fission yield of this element and on the microstructural similarity of the failed Zircaloy specimens exposed to iodine in laboratory stress corrosion cracking (SCC) tests to cladding failures by PCI.

Olander, D.R.

1982-01-01T23:59:59.000Z

170

Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency. Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas–solid flow is essential for the optimization and operation of a chemical looping combustor. Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.

Jung, Jonghwun (ANL); Gamwo, I.K.

2008-04-21T23:59:59.000Z

171

Technology development program for Idaho Chemical Processing Plant spent fuel and waste management  

SciTech Connect (OSTI)

Acidic high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the U.S. Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage at the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, and describes the Spent Fuel and HLW Technology program in more detail.

Ermold, L.F.; Knecht, D.A.; Hogg, G.W.; Olson, A.L.

1993-08-01T23:59:59.000Z

172

Effect of fuel rate and annealing process of LiFePO{sub 4} cathode material for Li-ion batteries synthesized by flame spray pyrolysis method  

SciTech Connect (OSTI)

In this study the effect of fuel rate and annealing on particle formation of LiFePO{sub 4} as battery cathode using flame spray pyrolysis method was investigated numerically and experimentally. Numerical study was done using ANSYS FLUENT program. In experimentally, LiFePO{sub 4} was synthesized from inorganic aqueous solution followed by annealing. LPG was used as fuel and air was used as oxidizer and carrier gas. Annealing process attempted in inert atmosphere at 700°C for 240 min. Numerical result showed that the increase of fuel rate caused the increase of flame temperature. Microscopic observation using Scanning Electron Microscopy (SEM) revealed that all particles have sphere and polydisperse. Increasing fuel rate caused decreasing particle size and increasing particles crystallinity. This phenomenon attributed to the flame temperature. However, all produced particles still have more amorphous phase. Therefore, annealing needed to increase particles crystallinity. Fourier Transform Infrared (FTIR) analysis showed that all particles have PO4 function group. Increasing fuel rate led to the increase of infrared spectrum absorption corresponding to the increase of particles crystallinity. This result indicated that phosphate group vibrated easily in crystalline phase. From Electrochemical Impedance Spectroscopy (EIS) analysis, annealing can cause the increase of Li{sup +} diffusivity. The diffusivity coefficient of without and with annealing particles were 6.84399×10{sup ?10} and 8.59888×10{sup ?10} cm{sup 2} s{sup ?1}, respectively.

Halim, Abdul; Setyawan, Heru; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng [Chemical Engineering, Sepuluh Nopember Institute of Technology, Kampus Sukolilo Surabaya Indonesia 60111 (Indonesia)

2014-02-24T23:59:59.000Z

173

Alternative fuels and chemicals from synthesis gas. Fourth quarterly report, 1994  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

NONE

1997-10-01T23:59:59.000Z

174

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Eligible projects include powertrains and energy storageconversion devices (e.g., fuel cells and batteries), and implementation of clean fuels (e.g., natural gas, propane, and...

175

Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry  

Science Journals Connector (OSTI)

...depleting stock of fossil fuels with renewable energy sources. Many obstacles have...immediate, introduction of renewable energy sources presents serious challenges...Objective Of the potential renewable energy sources, solar energy is the...

2013-01-01T23:59:59.000Z

176

In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor  

SciTech Connect (OSTI)

This work presents the first demonstration of a MEMS optical sensor for in-situ, real-time monitoring of both mechanical and chemical structure evolutions in a V2O5 lithium-ion battery (LIB) cathode during battery operation. A reflective membrane forms one side of a Fabry-Perot (FP) interferometer, while the other side is coated with V2O5 and exposed to electrolyte in a half-cell LIB. Using one microscope and two laser sources, both the induced membrane deflection and the corresponding Raman intensity changes are observed during lithium cycling. Results are in good agreement with the expected mechanical behavior and disorder change of the V2O5 layers, highlighting the significant potential of MEMS as enabling tools for advanced scientific investigations.

Jung, H. [University of Maryland; Gerasopoulos, K. [University of Maryland; Gnerlich, Markus [University of Maryland; Talin, A. Alec [Sandia National Laboratories; Ghodssi, Reza [University of Maryland

2014-06-01T23:59:59.000Z

177

Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same  

DOE Patents [OSTI]

The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

Gerald, II, Rex E. (Brookfield, IL); Ruscic, Katarina J. (Chicago, IL); Sears, Devin N. (Spruce Grove, CA); Smith, Luis J. (Natick, MA); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

2012-02-21T23:59:59.000Z

178

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

179

CHEMICAL SENSOR AND FIELD SCREENING TECHNOLOGY DEVELOPMENT: FUELS IN SOILS FIELD SCREENING METHOD VALIDATION  

SciTech Connect (OSTI)

A new screening method for fuel contamination in soils was recently developed as American Society for Testing and Materials (ASTM) Method D-583 1-95, Standard Test Method for Screening Fuels in Soils. This method uses low-toxicity chemicals and can be used to screen organic-rich soils. In addition, it is fast, easy, and inexpensive to perform. The screening method calls for extracting a sample of soil with isopropyl alcohol following treatment with calcium oxide. The resulting extract is filtered, and the ultraviolet absorbance of the extract is measured at 254 nm. Depending on the available information concerning the contaminant fuel type and availability of the contaminant fuel for calibration, the method can be used to determine the approximate concentration of fuel contamination, an estimated value of fuel contamination, or an indication of the presence or absence of fuel contamination. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and coal oil, can be determined. The screening method for fuels in soils was evaluated by conducting a collaborative study on the method and by using the method to screen soil samples at an actual field site. In the collaborative study, a sand and an organic soil spiked with various concentrations of diesel fuel were tested. Data from the collaborative study were used to determine the reproducibility (between participants) and repeatability (within participant) precision of the method for screening the test materials. The collaborative study data also provide information on the performance of portable field equipment versus laboratory equipment for performing the screening method and a comparison of diesel concentration values determined using the screening method versus a laboratory method. Data generated using the method to screen soil samples in the field provide information on the performance of the method in atypical real-world application.

Susan S. Sorini; John F. Schabron

1997-04-01T23:59:59.000Z

180

Chemical Kinetic Simulation of the Combustion of Bio-based Fuels  

SciTech Connect (OSTI)

Due to environmental and economic issues, there has been an increased interest in the use of alternative fuels. However, before widespread use of biofuels is feasible, the compatibility of these fuels with specific engines needs to be examined. More accurate models of the chemical combustion of alternative fuels in Homogeneous Charge Compression Ignition (HCCI) engines are necessary, and this project evaluates the performance of emissions models and uses the information gathered to study the chemical kinetics involved. The computer simulations for each alternative fuel were executed using the Chemkin chemical kinetics program, and results from the runs were compared with data gathered from an actual engine that was run under similar conditions. A new heat transfer mechanism was added to the existing model's subroutine, and simulations were then conducted using the heat transfer mechanism. Results from the simulation proved to be accurate when compared with the data taken from the actual engine. The addition of heat transfer produced more realistic temperature and pressure data for biodiesel when biodiesel's combustion was simulated in an HCCI engine. The addition of the heat transfer mechanism essentially lowered the peak pressures and peak temperatures during combustion of all fuels simulated in this project.

Ashen, Ms. Refuyat [Oak Ridge High School; Cushman, Ms. Katherine C. [Oak Ridge High School

2007-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Epitaxial Single Crystal Nanostructures for Batteries & PVs ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

182

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

183

Influence of Lime Addition to Ilmenite in Chemical-Looping Combustion (CLC) with Solid Fuels  

Science Journals Connector (OSTI)

The influence of calcined and sulfated limestone addition in an oxygen carrier bed of ilmenite has been investigated for chemical-looping combustion (CLC) with solid fuel. The experiments have been performed in a laboratory-batch fluidized-bed reactor ...

Guillaume Teyssié; Henrik Leion; Georg L. Schwebel; Anders Lyngfelt; Tobias Mattisson

2011-07-07T23:59:59.000Z

184

Motor Fuels and Chemicals from Coal Via the Sasol Synthol Route [and Discussion  

Science Journals Connector (OSTI)

...only ones used at Sasol Two and Sasol Three. The quantity of ethylene obtained is augmented by ethane cracking. The light olefins...The oxygenated chemicals, when sold as such, fetch higher prices than when sold as motor fuels. The Royal Society is collaborating...

1981-01-01T23:59:59.000Z

185

CFD analysis of bubble hydrodynamics in a fuel reactor for a hydrogen-fueled chemical looping combustion system  

Science Journals Connector (OSTI)

Abstract This study investigates the temporal development of bubble hydrodynamics in the fuel reactor of a hydrogen-fueled chemical looping combustion (CLC) system by using a computational model. The model also investigates the molar fraction of products in gas and solid phases. The study assists in developing a better understanding of the CLC process, which has many advantages such as being a potentially promising candidate for an efficient carbon dioxide capture technology. The study employs the kinetic theory of granular flow. The reactive fluid dynamic system of the fuel reactor is customized by incorporating the kinetics of an oxygen carrier reduction into a commercial computational fluid dynamics (CFD) code. An Eulerian multiphase treatment is used to describe the continuum two-fluid model for both gas and solid phases. CaSO4 and H2 are used as an oxygen carrier and a fuel, respectively. The computational results are validated with the experimental and numerical results available in the open literature. The CFD simulations are found to capture the features of the bubble formation, rise and burst in unsteady and quasi-steady states very well. The results show a significant increase in the conversion rate with higher dense bed height, lower bed width, higher free board height and smaller oxygen carrier particles which upsurge an overall performance of the CLC plant.

Atal Bihari Harichandan; Tariq Shamim

2014-01-01T23:59:59.000Z

186

Hydrodeoxygenation processes: Advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels  

Science Journals Connector (OSTI)

Abstract Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C–C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed.

Sudipta De; Basudeb Saha; Rafael Luque

2014-01-01T23:59:59.000Z

187

Comparison of selected fuel and chemical content values for seven Populus hybrid clones  

SciTech Connect (OSTI)

Fuel and chemical content values were determined for seven Populus clones by component (wood, bark, and wood/bark specimens) and tissue age (1 to 8 years old). The fuel and chemical content values obtained included: gross heat of combustion, extractives, holocellulose, alpha-cellulose, lignin and ash. In general, analysis of the data for the wood, bark, and wood/bark specimens indicated that: 1) wood was higher in holocellulose and alpha-cellulose content than bark; 2) bark was higher in gross heat of combustion, lignin, extractive, and ash content values than wood; and 3) combined wood/bark fuel and chemical content values were usually between the individual values for the wood and bark. Statistical analyses indicated that significant differences existed within and among clones. Within the wood, bark, and wood/bark specimens, tissue age influenced the chemical content values more than the parentage. Potential chemical yields derived from the seven Populus hybrid clones investigated will depend on component and age with limited parentage effects. 15 references.

Blankenhorn, P.R.; Bowersox, T.W.; Kuklewski, K.M.; Stimely, G.L.; Murphey, W.K.

1985-04-01T23:59:59.000Z

188

Transportation Fuel Basics - Electricity | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

189

Investigation of a Coupled Fuel Reactor for Coal-Fueled Chemical Looping Combustion  

Science Journals Connector (OSTI)

To determine the solids circulation rate, an annular loop-seal was designed. ... Shen, L.; Wu, J.; Xiao, J.Experiments on chemical looping combustion of coal with a NiO based oxygen carrier Combust. ... Industrial & Engineering Chemistry Research (2013), 52 (18), 6119-6128 CODEN: IECRED; ISSN:0888-5885. ...

Hongming Sun; Lei Xu; Zhenshan Li; Ningsheng Cai

2014-09-02T23:59:59.000Z

190

Methane Steam Reforming Thermally Coupled with Fuel Combustion: Application of Chemical Looping Concept as a Novel Technology  

Science Journals Connector (OSTI)

Methane Steam Reforming Thermally Coupled with Fuel Combustion: Application of Chemical Looping Concept as a Novel Technology ... One of these new methods is chemical looping combustion (CLC). ... Experimental Study of Chemical-Looping Reforming in a Fixed-Bed Reactor: Performance Investigation of Different Oxygen Carriers on Al2O3 and TiO2 Support ...

Mohammad Reza Rahimpour; Marziyeh Hesami; Majid Saidi; Abdolhossein Jahanmiri; Mahdi Farniaei; Mohsen Abbasi

2013-03-14T23:59:59.000Z

191

Aqueous Cathode for Next-Generation Alkali-Ion Batteries  

Science Journals Connector (OSTI)

The aqueous cathode in the flow-through mode can be individually stored in a “fuel” tank, which reduces the volume of the battery and increases the design flexibility of the battery structure, as shown in Figure 1. ... Unlike previous lithium?water batteries, the aqueous cathode is not plagued by H2 evolution from the solution, and the battery is efficiently rechargeable. ...

Yuhao Lu; John B. Goodenough; Youngsik Kim

2011-03-28T23:59:59.000Z

192

Alternative fuels and chemicals from synthesis gas. Quarterly report, April 1--June 30, 1995  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts. The paper reports the progress on the following tasks: engineering and modifications: AFDU shakedown, operations, deactivation and disposal; and research and development on new processes for DME, chemistry and catalyst development, and oxygenates via synthesis gas.

NONE

1995-12-31T23:59:59.000Z

193

Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping  

SciTech Connect (OSTI)

Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen carriers in the system by using the high-sulfur-laden asphalt fuels. In all, the scaled-up test in 10 kW CLC facility demonstrated that the preparation method of copper-based oxygen carrier not only help to maintain its good reactivity, also largely minimize its agglomeration tendency.

Pan, Wei-Ping; Cao, Yan

2012-11-30T23:59:59.000Z

194

Life-Cycle Methods for Comparing Primary and Rechargeable Batteries  

Science Journals Connector (OSTI)

If battery materials are recycled, the recovered metals may be used in the production of new batteries, or they may be used for another secondary application. ... fuels ... The converted fuel equivalent demand is about 49 times less for rechargeable batteries than for primary ones. ...

Rebecca L. Lankey; Francis C. McMichael

2000-04-25T23:59:59.000Z

195

Simulation of the Fuel Reactor of a Coal?Fired Chemical Looping Combustor  

Science Journals Connector (OSTI)

Responsible carbon management (CM) will be required for the future utilization of coal for power generation. CO 2 separation is the more costly component of CM not sequestration. Most methods of capture require a costly process of gas separation to obtain a CO 2 ?rich gas stream. However recently a process termed Chemical Looping Combustion (CLC) has been proposed in which an oxygen?carrier is used to provide the oxygen for combustion. This process quite naturally generates a separate exhaust gas stream containing mainly H 2 O and CO 2 but requires two reaction vessels an Air Reactor (AR) and a Fuel Reactor (FR). The carrier (M for metal the usual carrier) is oxidized in the AR. This highly exothermic process provides heat for power generation. The oxidized carrier (MO) is separated from this hot vitiated air stream and transported to the FR where it oxidizes the hydrocarbon fuel yielding an exhaust gas stream of mainly H 2 O and CO 2 . This process is usually slightly endothermic so that the carrier must also transport the necessary heat of reaction. The reduced carrier (M) is then returned to the air reactor for regeneration hence the term “looping.” The net chemical reaction and energy release is identical to that of conventional combustion of the fuel. However CO 2 separation is easily achieved the only operational penalty being the slight pressure losses required to circulate the carrier. CLC requires many unit operations involving gas?solid or granular flow. To utilize coal in the fuel reactor in either a moving bed or bubbling fluidized bed the granular flow is especially critical. The solid coal fuel must be heated by the recycled metal oxide driving off moisture and volatile material. The remaining char must be gasified by H 2 O (or CO 2 ) which is recycled from the product stream. The gaseous product of these reactions must then contact the MO before leaving the bed to obtain complete conversion to H 2 O and CO 2 . Further the reduced M particles must be removed from the bed and returned to the air reactor without any accompanying unburned fuel. This paper presents a simulation of the gas?particle granular flow with heat transfer and chemical reactions in the FR. Accurate simulation of the segregation processes depending on particle density and size differences between the carrier and the fuel allows the design of a reactor with the desired behavior.

Kartikeya Mahalatkar; Thomas O’Brien; E. David Huckaby; John Kuhlman

2009-01-01T23:59:59.000Z

196

HISTORY | Fuel Cells  

Science Journals Connector (OSTI)

Together with the electric motor, dynamo, gas turbine, internal combustion engine, and the fused salt electrolysis of aluminum, the industrial revolution of the nineteenth century brought about the fuel cell – the silent or cold combustion of fossil fuels by the electrochemical oxidation with atmospheric oxygen to water and carbon dioxide. Wilhelm Ostwald, in 1894, emphasized the high efficiency and the nonpolluting properties of the direct conversion of chemical energy into electricity – in contrast to the then combination of steam engine and dynamo, which reached only about 10% efficiency. Direct coal fuel cells designed for the propulsion of ships, however, have not become a reality so far. Instead of fuel cells and batteries, internal combustion engines determined the nineteenth- and twentieth- century technological landscape. Against the background of the oil crisis and the long-term scarcity of natural gas, crude oil, and coal, new hopes have focused on fuel cell technology, which saw first early splendid applications during the space programs of the 1960s, in submarines since the 1980s, and in experimental zero-emission vehicles (ZEVs) since the 1990s. This article outlines (1) early insights about energy conversion: Grove's cell, direct conversion of coal and indirect fuel cells; (2) historical roots of alkaline fuel cells: the discovery of gas diffusion electrodes; low-pressure alkaline fuel cell conquer spacecrafts and submarines; (3) polymer electrolyte fuel cells: solid polymer technology, electric vehicles, direct methanol fuel-cell, stationary power systems and portable polymer electrolyte membrane fuel cell systems; (4) phosphoric acid fuel cell (PAFC): acid fuel cells, PAFC plants in Japan, gasoline fuel cells; and (5) high-temperature fuel cells: molten carbonate fuel cell and solid oxide fuel cell.

P. Kurzweil

2009-01-01T23:59:59.000Z

197

A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical  

Science Journals Connector (OSTI)

...2,3-Butanediol (2,3-BD), a platform and fuel bio-chemical, can be efficiently produced by Klebsiella pneumonia, K. oxytoca, and Serratia marcescens. However, these strains are opportunistic pathogens and not f...

Lixiang Li; Lijie Zhang; Kun Li; Yu Wang; Chao Gao…

2013-08-01T23:59:59.000Z

198

Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals  

DOE Patents [OSTI]

A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

Peters, William A. (Lexington, MA); Howard, Jack B. (Winchester, MA); Modestino, Anthony J. (Hanson, MA); Vogel, Fredreric (Villigen PSI, CH); Steffin, Carsten R. (Herne, DE)

2009-02-24T23:59:59.000Z

199

Process for the conversion of and aqueous biomass hydrolyzate into fuels or chemicals by the selective removal of fermentation inhibitors  

DOE Patents [OSTI]

A process of making a fuel or chemical from a biomass hydrolyzate is provided which comprises the steps of providing a biomass hydrolyzate, adjusting the pH of the hydrolyzate, contacting a metal oxide having an affinity for guaiacyl or syringyl functional groups, or both and the hydrolyzate for a time sufficient to form an adsorption complex; removing the complex wherein a sugar fraction is provided, and converting the sugar fraction to fuels or chemicals using a microorganism.

Hames, Bonnie R. (Westminster, CO); Sluiter, Amie D. (Arvada, CO); Hayward, Tammy K. (Broomfield, CO); Nagle, Nicholas J. (Broomfield, CO)

2004-05-18T23:59:59.000Z

200

Integrated Modeling for Intelligent Battery Thermal Management  

Science Journals Connector (OSTI)

Effective thermal management is crucial to the optimal operation of lithium ion batteries and its health management. However, the thermal behaviors of batteries are governed by complex chemical process whose parameters will degrade over time and different ... Keywords: integrated modeling, distributed parameter system, battery thermal management, intelligent learning

Zhen Liu; Han-Xiong Li

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Boosting batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boosting batteries Boosting batteries Broad use possible for lithium-silicon batteries Findings could pave the way for widespread adoption of lithium ion batteries for applications...

202

Evolution of Strategies for Modern Rechargeable Batteries  

Science Journals Connector (OSTI)

(3) Electrochemical Energy Storage and Conversion: Interrupted by the first energy crisis and a move to the University of Oxford, England, he has used his experience with oxides to develop electrodes and solid electrolytes for rechargeable batteries and for the solid oxide fuel cell. ... The sodium–sulfur battery has also opened the door to consideration of other high-temperature battery configurations, viz. a gaseous fuel-cell/electrolysis-cell cycle via an Fe/FeOx oxidation/reduction, based on the solid-oxide fuel-cell technology. ... composites constitute flowable semi-solid fuels that are here charged and discharged in prototype flow cells. ...

John B. Goodenough

2012-07-02T23:59:59.000Z

203

Like this post? Subscribe to our RSS feed and stay up to date. Navy Develops Battery that Runs on Mud  

E-Print Network [OSTI]

by Joshua S Hill Published on April 20th, 2010 in Energy & Fuel 1 Comment 5/4/2010 Navy Develops Battery and efficient reliable alternative battery avoiding the harmful impact that standard batteries and fuels have underwater vehicle that will settle on the seafloor and recharge its batteries using this fuel cell approach

Lovley, Derek

204

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

205

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

206

High Voltage Electrolytes for Li-ion Batteries | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Electrolytes for Li-ion Batteries High Voltage Electrolytes for Li-ion Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

207

Overview of Battery R&D Activities | Department of Energy  

Energy Savers [EERE]

of Battery R&D Activities Overview of Battery R&D Activities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

208

Overview of Battery R&D Activities | Department of Energy  

Energy Savers [EERE]

of Battery R&D Activities Overview of Battery R&D Activities 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

209

Battery Components, Active Materials for  

Science Journals Connector (OSTI)

A battery consists of one or more electrochemical cells that convert into electrically energy the chemical energy stored in two separated electrodes, the anode and the cathode. Inside a cell, the two electrodes ....

J. B. Goodenough

2013-01-01T23:59:59.000Z

210

High-temperature Chemical Compatibility of As-fabricated TRIGA Fuel and Type 304 Stainless Steel Cladding  

SciTech Connect (OSTI)

Chemical interaction between TRIGA fuel and Type-304 stainless steel cladding at relatively high temperatures is of interest from the point of view of understanding fuel behavior during different TRIGA reactor transient scenarios. Since TRIGA fuel comes into close contact with the cladding during irradiation, there is an opportunity for interdiffusion between the U in the fuel and the Fe in the cladding to form an interaction zone that contains U-Fe phases. Based on the equilibrium U-Fe phase diagram, a eutectic can develop at a composition between the U6Fe and UFe2 phases. This eutectic composition can become a liquid at around 725°C. From the standpoint of safe operation of TRIGA fuel, it is of interest to develop better understanding of how a phase with this composition may develop in irradiated TRIGA fuel at relatively high temperatures. One technique for investigating the development of a eutectic phase at the fuel/cladding interface is to perform out-of-pile diffusion-couple experiments at relatively high temperatures. This information is most relevant for lightly irradiated fuel that just starts to touch the cladding due to fuel swelling. Similar testing using fuel irradiated to different fission densities should be tested in a similar fashion to generate data more relevant to more heavily irradiated fuel. This report describes the results for TRIGA fuel/Type-304 stainless steel diffusion couples that were annealed for one hour at 730 and 800°C. Scanning electron microscopy with energy- and wavelength-dispersive spectroscopy was employed to characterize the fuel/cladding interface for each diffusion couple to look for evidence of any chemical interaction. Overall, negligible fuel/cladding interaction was observed for each diffusion couple.

Dennis D. Keiser, Jr.; Jan-Fong Jue; Eric Woolstenhulme; Kurt Terrani; Glenn A. Moore

2012-09-01T23:59:59.000Z

211

Alternative fuels and chemicals from synthesis gas. Quarterly status report number 2, 1 January--31 March 1995  

SciTech Connect (OSTI)

The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit. Results are discussed for the following tasks: liquid phase hydrodynamic run; catalyst activation with CO; new processes for DME (dehydration catalyst screening runs, and experiments using Robinson-Mahoney basket internal and pelletized catalysts); new fuels from DME; and new processes for alcohols and oxygenated fuel additives.

NONE

1995-12-31T23:59:59.000Z

212

Solid electrolytes for battery applications a theoretical perspective a  

E-Print Network [OSTI]

solid state batteries at the present time. · Several companies are involved in all solids state batterySolid electrolytes for battery applications ­ a theoretical perspective a Natalie Holzwarth ion batteries Solid electrolytes Advantages 1. Excellent chemical and physical stability. 2. Perform

Holzwarth, Natalie

213

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

214

Two-step fuel oxidation to improve efficiency in the conversion of chemical energy into work  

SciTech Connect (OSTI)

It is well known that in the conversion of chemical exergy into work a remarkable percentage of exergy is destroyed during the combustion process. Obviously, hypothetical reversible combustions, as proposed in some papers, are not to be taken into account. On the contrary, recent studies of a new system to increase the efficiency of the conversion of chemical exergy into work appear interesting. The proposed system includes a gas turbine system with chemical-looping combustion where a metal oxide is used as an oxygen carrier. Instead of conventional combustion, the oxidation of fuel is carried out in a two-step reaction. The first step is an endothermic reaction in which a metal oxide is reduced by fuel at low temperature and the second step an exothermic reaction in which the products of the former reaction are subjected to oxidation. The thermal energy of low exergy value in the exhaust gas is employed to drive the endothermic reaction. Various systems have been proposed and tested. The power-generation system (called CLSA), with chemical-looping combustion and air saturation seems the most convenient. When only saturated air is used, exergy destruction becomes small in the middle- and low temperature range. However, the inefficiency in the high temperature range remains. On the other hand, when only chemical-looping combustion is used, exergy destruction becomes small in the high- and middle temperature range. However, the inefficiency in the low-temperature range is now not removed. When both technologies are combined, exergy efficiency may become much greater than that obtained from each individual process. The synergistic effect of combining these two technologies is analogous to the improvement achieved when a combined system was designed as a new power-generation system by combining a gas turbine with a steam turbine. For a model system, an exergy efficiency of 53.3% is obtained when the process water is recovered and a value of about 55% is obtained when water is not recovered. A significant advantage of the CLSA system is that CO{sub 2} can be easily recovered. The CO{sub 2} produced in the reduction reactor is not diluted by air since air and fuel enter different reactors. This is quite different from a traditional combustor in which CO{sub 2} is diluted in air and hence cannot be concentrated and separated economically. In the CLSA system, since the exhaust gas from the reduction reactor is composed only of high-concentration CO{sub 2} and water vapor, CO{sub 2} can be easily recovered by cooling the exhaust gas and removing the liquid water, i.e. very little energy expenditure is required for recovering CO{sub 2} from the exhaust gas. The recovered CO{sub 2} may be utilized, e.g., in artificial photosynthesis, whereas a simple recovery without any utilization but only to reduce greenhouse effect seems questionable. Another significant characteristic of CLSA system is that the most of the water vapor in the exhaust gas can be recovered by cooling the exhaust gas from the oxidation reactor. In chemical-looping combustion, fuel is not burned directly and the gas discharged from the oxidation reactor has no impurities from the fuel. Hence, there will be no corrosion of the apparatus when the exhaust gas is cooled to a very low temperature and low cost materials can be utilized for the heat exchangers. Because of the recycling of the most part of water, the CLSA system can be used in locations with limited water resources. Chemical-looping combustion system can be also combined with an integrated coal gasification and this topic appears very interesting. Indeed, to achieve better conversion efficiencies and lower pollutant emissions in power plants, new technologies that combines coal gasification with a gas turbine based combined cycle have been extensively studied worldwide.

Bisio, G.; Rubatto, R.; Marletta, L.

1998-07-01T23:59:59.000Z

215

Batteries - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

216

Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)  

SciTech Connect (OSTI)

The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate�¢����the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

Sridharan, Kumar; Allen, Todd; Cole, James

2013-02-27T23:59:59.000Z

217

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

218

EMSL - batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

219

Transportation Fuel Basics - Electricity | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

220

Argonne Chemical Sciences & Engineering - News & Highlights - Press  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Press Coverage 9 Press Coverage November 6, 2009 -- Clean Skies News An inside look at Argonne's battery research November 5, 2009 -- AllCarsElectric U.S. Army to test Argonne/EnerDel-developed battery chemistry for Hybrid Humvee October 20, 2009 -- Science Channel Argonne's Mark Peters and Monica Regalbuto talk recycling nuclear waste. September 22, 2009 -- GreenCarsReport.com Your Tax $$$ At Work: Argonne Lab's Better Batteries, Greener Fuels August 25, 2009 -- AllCarsElectric.com Scientists at Argonne Discover New Battery Chemical That Could Increase Durability and Decrease Cost of Li-Ion Technology Two researchers at the Argonne National Laboratory have discovered that adding less than a gram of a molecule they created can effectively control a lithium ion's battery voltage from increasing outside of the safe operating range.

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Advanced Vehicle Job Creation Tax Credit A business that manufactures alternative energy products for use in battery, biofuel, and electric vehicle enterprises...

222

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

materials, although electro-active compounds containing these metals exist. Today’s technologically important cathodesactive field. Characteristics of battery cathode materials

Doeff, Marca M

2011-01-01T23:59:59.000Z

223

KAir Battery  

Broader source: Energy.gov [DOE]

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

224

Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies...  

Energy Savers [EERE]

2008-2009 Fuels Technologies R&D Progress Report Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels...

225

Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance Alkaline Fuel Cell Membranes Improving Fuel Cell...

226

Hydrogen and Fuel Cell Activities: 5th International Conference...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer...

227

AMO Fuel and Feedstock Flexibility: Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters  

Broader source: Energy.gov [DOE]

Fact sheet summarizing a project to develop and demonstrate a full-scale fuel handling and combustion system

228

Sulfur@Carbon Cathodes for Lithium Sulfur Batteries > Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

229

Overview and Progress of the Batteries for Advanced Transportation...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Overview and Progress of the Batteries for Advanced Transportation Technologies 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit...

230

Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization  

Broader source: Energy.gov [DOE]

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

231

Vehicle Technologies Office Merit Review 2014: Battery Safety Testing  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

232

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

supercapacitors. Fuel cell/Li-ion battery hybrids achievedFUDS and US06 cycles Li-ion Battery Coupled to FC DC-Link16 Comparison of fuel cell/Li-ion battery hybrids with load

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

233

Definition: Chemical energy | Open Energy Information  

Open Energy Info (EERE)

energy energy Energy stored in chemical bonds between atoms within molecules. When a chemical reaction occurs, the chemical energy within a molecule can increase or that energy can be released into its surroundings as another form of energy (e.g., heat or light). Fuel combustion is example of the conversion of chemical energy to another form of energy.[1][2] View on Wikipedia Wikipedia Definition In chemistry, Chemical energy is the potential of a chemical substance to undergo a transformation through a chemical reaction or, to transform other chemical substances. Examples include batteries and light bulbs and cells etc. Breaking or making of chemical bonds involves energy, which may be either absorbed or evolved from a chemical system Energy that can be released (or absorbed) because of a reaction between a set of

234

Models for Battery Reliability and Lifetime  

SciTech Connect (OSTI)

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

235

The Structural Evolution and Diffusion During the Chemical Transformat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance Alkaline Fuel Cell Membranes Improving Fuel Cell...

236

Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels  

SciTech Connect (OSTI)

n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionally, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. These chemical kinetic models are used to predict the effect of the aforementioned fuel components on ignition characteristics under conditions found in internal combustion engines.

Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

2009-03-09T23:59:59.000Z

237

Fuel cells and electrochemical energy storage  

Science Journals Connector (OSTI)

Fuel cells and electrochemical energy storage ... Fuel cells and electrochemical energy storage : types of fuel cells, batteries for electrical energy storage, major batteries presently being investigated, and a summary of present major materials problems in the sodium-sulfur and lithium-alloy metal sulfide battery. ...

Anthony F. Sammells

1983-01-01T23:59:59.000Z

238

Vehicle Technologies Office: Fuel Efficiency and Emissions |...  

Broader source: Energy.gov (indexed) [DOE]

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

239

Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.  

SciTech Connect (OSTI)

Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

Herbinet, O; Pitz, W J; Westbrook, C K

2009-07-21T23:59:59.000Z

240

Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries  

Science Journals Connector (OSTI)

Reversible insertion of divalent ions such as magnesium would allow the creation of new battery chemistries that are potentially safer and cheaper than lithium-based batteries. ... New developments in the chem. of secondary and flow batteries as well as regenerative fuel cells are also considered. ...

Richard Y. Wang; Colin D. Wessells; Robert A. Huggins; Yi Cui

2013-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Materials Challenges and Opportunities of Lithium Ion Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for lithium ion batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium–sulfur (Li–S) batteries with a high theoretical energy density of ?2500 Wh kg–1 are considered as one promising rechargeable battery chemistry for next-generation energy storage. ...

Arumugam Manthiram

2011-01-10T23:59:59.000Z

242

Combination of Lightweight Elements and Nanostructured Materials for Batteries  

Science Journals Connector (OSTI)

His research expertise is energy storage & conversion with batteries, fuel cells, and solar cells. ... (2) The main issues facing various current batteries are the slow electrode-process kinetics with large polarization and low rate of ionic diffusion/migration, resulting in limited practical energy output and battery performance. ...

Jun Chen; Fangyi Cheng

2009-04-08T23:59:59.000Z

243

Benefits analysis for the production of fuels and chemicals using solar thermal energy. Final report  

SciTech Connect (OSTI)

Numerous possibilities exist for using high temperature solar thermal energy in the production of various chemicals and fuels (Sun Fuels). Research and development activities have focused on the use of feedstocks such as coal and biomass to provide synthesis gas, hydrogen, and a variety of other end-products. A Decision Analysis technique geared to the analysis of Sun Fuels options was developed. Conventional scoring methods were combined with multi-attribute utility analysis in a new approach called the Multi-Attribute Preference Scoring (MAPS) system. MAPS calls for the designation of major categories of attributes which describe critical elements of concern for the processes being examined. The six major categories include: Process Demonstration; Full-Scale Process, Feedstock; End-Product Market; National/Social Considerations; and Economics. MAPS calls for each attribute to be weighted on a simple scale for all of the candidate processes. Next, a weight is assigned to each attribute, thus creating a multiplier to be used with each individual value to derive a comparative weighting. Last, each of the categories of attributes themselves are weighted, thus creating another multiplier, for use in developing an overall score. With sufficient information and industry input, each process can be ultimately compared using a single figure of merit. After careful examination of available information, it was decided that only six of the 20 candidate processes were adequately described to allow a complete MAPS analysis which would allow direct comparisons for illustrative purposes. These six processes include three synthesis gas processes, two hydrogen and one ammonia. The remaining fourteen processes were subjected to only a partial MAPS assessment.

None

1982-05-01T23:59:59.000Z

244

Investigation of chemical looping combustion by solid fuels. 1. Process analysis  

SciTech Connect (OSTI)

This paper is the first in a series of two, where we present the concept of a CLC process of solid fuels using a circulating fluidized bed with three loop seals. The riser of this circulating fluidized bed was used as the oxidizer of the oxygen carrier; one of the loop seals was used as the reducer of the oxygen carrier and the separator for ash and oxygen carrier, and the other two loop seals were used for pressure balance in the solid recycle process. Pressure profiles of recycled solids using this process are presented in detail. For the development of an oxygen carrier, we focused on the establishment of a theoretical frame of oxygen transfer capability, reaction enthalpy, a chemical equilibrium, and kinetics. Analysis results indicated that Cu-, Ni-, and Co-based oxygen carriers may be the optimum oxygen carriers for the CLC of solid fuels. Thermodynamic analysis indicated that CO{sub 2} can be concentrated and purified to at least 99% purity for the gas-solid reaction mode or even higher for the solid-solid reaction mode on the basis of the selected oxygen carriers. A Cu-based oxygen carrier is the choice that has the potential to make the reducer self-sustaining or autothermal because of its exothermic nature during reduction. This would be beneficial for simplifying the operation of the reducer. The tendency of the Cu-based oxygen carriers to agglomerate can be eliminated by decreasing the operating temperature in the CLC system. In the second part of the series, we will evaluate the reduction kinetics of selected Cu-based oxygen carriers by coal and other 'opportunity solid fuels' using a simultaneous differential scanning calorimetry-thermogravimetric analysis to simulate a microreactor, using an X-ray diffractometer and a scanning electron microscope to characterize the solid residues, and a thermogravimetric analysis coupled with mass spectra to characterize the evolved gas compositions. 46 refs., 5 figs., 2 tabs.

Yan Cao; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2006-10-15T23:59:59.000Z

245

Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles – Feasibility assessment and process simulations  

Science Journals Connector (OSTI)

Abstract The chemical looping gasification (CLG) process utilizes an iron-based oxygen carrier to convert carbonaceous fuels into hydrogen and electricity while capturing CO2. Although the process has the potential to be efficient and environmentally friendly, the activity of the iron-based oxygen carrier is relatively low, especially for solid fuel conversion. In the present study, we propose to incorporate a secondary oxygen carrying metal oxide, i.e. CuO, to the iron-based oxygen carrier. Using the “oxygen-uncoupling” characteristics of CuO, gaseous oxygen is released at a high temperature to promote the conversion of both Fe2O3 and coal. Experiments carried out using a Thermal-Gravimetric Analyzer (TGA) indicate that a bimetallic oxygen carrier consisting of a small amount (5% by weight) of CuO is more effective for coal char conversion when compared to oxygen carrier without copper addition. ASPEN Plus® simulations and mathematical modeling of the process indicate that the incorporation of a small amount of copper leads to increased hydrogen yield and process efficiency.

Feng He; Nathan Galinsky; Fanxing Li

2013-01-01T23:59:59.000Z

246

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Electric

247

Development of Geothermally Assisted Process for Production of Liquid Fuels and Chemicals from Wheat Straw  

SciTech Connect (OSTI)

Recently there has been much interest in developing processes for producing liquid fuels from renewable resources. The most logical long term approach in terms of economics derives the carbohydrate substrate for fermentation from the hydrolysis of cellulosic crop and forest residues rather than from grains or other high grade food materials (1,2). Since the presence of lignin is the main barrier to the hydrolysis of cellulose from lignocellulosic materials, delignification processes developed by the wood pulping industry have been considered as possible prehydrolysis treatments. The delignification process under study in our laboratory is envisioned as a synthesis of two recently developed pulping processes. In the first step, called autohydrolysis, hot water is used directly to solubilize hemicellulose and to depolymerize lignin (3). Then, in a second step known as organosolv pulping (4), the autohydrolyzed material is extracted with aqueous alcohol. A s shown in Figure 1, this process can separate the original lignocellulosic material into three streams--hemicellulose in water, lignin in aqueous alcohol, and a cellulose pulp. Without further mechanical milling, delignified cellulose can be enzymatically hydrolyzed at 45-50 C to greater than 80% theoretical yield of glucose using fungal cellulases (5, 6). The resulting glucose syrup can then be fermented by yeast to produce ethanol or by selected bacteria to produce acetone and butanol or acetic and propionic acids (7). One objection to such a process, however, is the large energy input that is required. In order to extend our supplies of liquid fuels and chemicals, it is important that the use of fossil fuels in any lignocellulosic conversion process be minimized. The direct use of geothermal hot water in carrying out the autohydrolysis and extraction operations, therefore, seems especially attractive. On the one hand, it facilitates the conversion of non-food biomass to fuels and chemicals without wasting fossil fuel; and on the other hand, it provides a means for ''exporting'' geothermal energy from the well site. The primary goal of the work discussed in this report was to investigate the effects of variations in autohydrolysis conditions on the production of fermentable sugars from wheat straw. In assessing the relative merits of various sets of conditions, we considered both the direct production of sugar from the autohydrolysis of hemicellulose and the subsequent yield from the enzymatic hydrolysis of cellulose. The principal parameters studied were time, temperature, and water/fiber weight ratio; however, we also investigated the effects of adding minor amounts of phenol and aluminum sulfate to the autohydrolysis charge. Phenol was selected for study because it was reported (8) to be effective in suppressing repolymerization of reactive lignin fragments. Aluminum sulfate, on the other hand, was chosen as a representative of the Lewis acids which, we hoped, would catalyze the delignification reactions.

Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

1981-06-01T23:59:59.000Z

248

Computational Fuel Cell Research and SOFC Modeling at Penn State  

E-Print Network [OSTI]

Materials Research and Component Fabrication Kinetics and Thermal Transport Fuel Cell/Battery Simulation multidisciplinary research on fuel cells and advanced batteries for vehicle propulsion, distributed power generation, DMFC, and SOFC #12;ECEC Facilities (>5,000 sq ft) Fuel Cell/Battery Experimental Labs Fuel Cell

249

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

and Titanates as High-Energy Cathode Materials for Li-IonI, Amine K (2009) High Energy Cathode Material for Long-LifeA New Cathode Material for Batteries of High Energy Density.

Doeff, Marca M

2011-01-01T23:59:59.000Z

250

An investigation of steam production in chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) for solid fuels  

Science Journals Connector (OSTI)

Abstract Chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) are being actively explored as solid fuel combustion technologies that have the potential to facilitate CO2 capture. While CLC and CLOU have similarities operationally, there are some key differences. In particular, the CLC process requires a coal gasification step where coal is first broken down into a syngas with the use of steam or CO2. The resulting syngas is then oxidized with the metal oxide to release energy. In the CLOU process the metal oxide releases oxygen that combusts the solid fuel, resulting in a lower residence time, as the coal gasification reactions are avoided. The CLC and CLOU systems were modeled with ASPEN Plus at a 10 \\{MWth\\} scale, and the process streams were analyzed by ASPEN Energy Analyzer to determine the amount of industrial process steam that could be generated from CLC or CLOU. Both the air and fuel reactor were analyzed as two circulating fluidized beds, with metal oxide circulating between the two reactors. The air reactor, where metal oxide is oxidized, was fluidized with air. The fuel reactor, where the metal oxide is reduced, was fluidized with steam for CLC and recirculated CO2 for CLOU. It was identified that the CLOU process had the potential to produce more steam, approximately 7920 kg/hr, as compared to CLC (6910 kg/hr).

J.K. Dansie; A.H. Sahir; M.A. Hamilton; J.S. Lighty

2014-01-01T23:59:59.000Z

251

Physico-chemical characteristics of eight different biomass fuels and comparison of combustion and emission results in a small scale multi-fuel boiler  

Science Journals Connector (OSTI)

Abstract This study describes the results from the investigation of 7 different biomass fuel types produced on a farm, and a commercial grade wood pellet, for their physical, chemical, thermo-gravimetric and combustion properties. Three types of short rotation coppice (SRC) willow, two species of conifers, forest residues (brash), commercially produced wood-pellets and a chop harvested energy grass crop Miscanthus giganteus spp., (elephant grass) were investigated. Significant differences (p Combustion tests in a 120 kW multi-fuel boiler revealed differences, some significant, in the maximum output, energy conversion efficiency, gaseous emission profiles and ash residues produced from the fuels. It was concluded that some of the combustion results could be directly correlated with the inherent properties of the different fuels. Ash production and gaseous emissions were the aspects of performance that were clearly and significantly different though effects on energy outputs were more varied and less consistent. The standard wood pellet fuel returned the best overall performance and miscanthus produced the largest amount of total ash and clinker after combustion in the boiler.

E.G.A. Forbes; D.L. Easson; G.A. Lyons; W.C. McRoberts

2014-01-01T23:59:59.000Z

252

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

253

Comparing batteries to generators as power sources for use with mobile robotics Drew G. Logan a  

E-Print Network [OSTI]

/range and the greater energy density of liquid fuel sources compared to batteries. For example, diesel fuel hasComparing batteries to generators as power sources for use with mobile robotics Drew G. Logan Available online 13 April 2012 Keywords: Robot Allometry Generator Battery a b s t r a c t This paper

Brennan, Sean

254

Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore  

Science Journals Connector (OSTI)

...mol) obtained with microbial fuel cells. Electricity can be produced...types of power plant systems, batteries (, ), or fuel cells (). A biofuel cell is...oxidant (electron acceptor) in a fuel cell or battery system (). Biological reducing...

Doo Hyun Park; J. Gregory Zeikus

2000-04-01T23:59:59.000Z

255

Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications  

SciTech Connect (OSTI)

A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

2011-10-05T23:59:59.000Z

256

Molecular beam mass spectrometric characterization of biomass pyrolysis products for fuels and chemicals  

SciTech Connect (OSTI)

Converting biomass feedstocks to fuels and chemicals requires rapid characterization of the wide variety of possible feedstocks. The combination of pyrolysis molecular beam mass spectrometry (Py-MBMS) and multivariate statistical analysis offers a unique capability for characterizing these feedstocks. Herbaceous and woody biomass feedstocks that were harvested at different periods were used in this study. The pyrolysis mass spectral data were acquired in real time on the MBMS, and multivariate statistical analysis (factor analysis) was used to analyze and classify Py-MBMS data into compound classes. The effect of harvest times on the thermal conversion of these feedstocks was assessed from these data. Apart from sericea lespedeza, the influence of harvest time on the pyrolysis products of the various feedstocks was insignificant. For sericea lespedeza, samples harvested before plant defoliation were significantly different from those harvested after defoliation. The defoliated plant samples had higher carbohydrate-derived pyrolysis products than the samples obtained from the foliated plant. Additionally, char yields from the defoliated plant samples were lower than those from the foliated plant samples.

Agblevor, F.A.; Davis, M.F.; Evans, R.J. [National Renewal Energy Lab., Golden, CO (United States)

1994-12-31T23:59:59.000Z

257

Interactive chemical effects and instability of shale derived middle distillate fuels  

SciTech Connect (OSTI)

This paper presents a study of instability of shale-derived fuels. Changes in fuel properties with time have been a continuing problem in the use of middle distillate fuels. The authors define instability as the formation of insoluble sediments and gums as well as the production of peroxides and color bodies. Nitrogen and sulfur heterocycles have long been implicated in fuel degradation, but present knowledge is limited regarding the chemistry of their autoxidation reactions in the complex fuel media. Based on the GC/MS identification of nitrogen heterocyclic constituents in several shale-derived middle distillate fuels, the authors have conducted gravimetric instability tests employing three model nitrogen heterocycles in shale-derived diesel fuels. Model sulfur compound dopant studies on shale-derived jet fuels were conducted by monitoring hydroperoxide formation/decomposition and the decreased quantity of sulfur compound. Potential interactive effects have been defined for these model dopants.

Mushrush, G.W.; Beal, E.J.; Watkins, J.M.; Morris, R.E.; Hardy, D.R. (Fuels Section, Naval Research Lab., Washington, DC (US))

1989-01-01T23:59:59.000Z

258

Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters- Fact Sheet 2014  

Broader source: Energy.gov [DOE]

Fact sheet summarizing a project to develop and demonstrate a full-scale fuel handling and combustion system

259

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

260

PEMFC R&D at the DOE Fuel Cell Technologies Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

Meeting Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells Fuel Cell Technologies Overview: 2012 Flow Cells for Energy...

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

considered: (a) Direct hydrogen fuel cell vehicles (FCVs)has focused mainly on hydrogen fuel cells and batteries.are considered: Direct hydrogen fuel cell vehicles (FCVs)

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

262

Batteries: Overview of Battery Cathodes  

SciTech Connect (OSTI)

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

263

Chemical speciation of neptunium in spent fuel. Annual report for period 15 August 1999 to 15 August 2000  

SciTech Connect (OSTI)

(B204) This project will examine the chemical speciation of neptunium in spent nuclear fuel. The R&D fields covered by the project include waste host materials and actinide chemistry. Examination of neptunium is chosen since it was identified as a radionuclide of concern by the NERI workshop. Additionally, information on the chemical form of neptunium in spent fuel is lacking. The identification of the neptunium species in spent fuel would allow a greater scientific based understanding of its long-term fate and behavior in waste forms. Research to establish the application and development of X-ray synchrotrons radiation (XSR) techniques to determine the structure of aqueous, adsorbed, and solid actinide species of importance to nuclear considerations is being conducted at Argonne. These studies extend current efforts within the Chemical Technology Division at Argonne National Laboratory to investigate actinide speciation with more conventional spectroscopic and solids characterization (e.g. SEM, TEM, and XRD) methods. Our project will utilize all these techniques for determining neptunium speciation in spent fuel. We intend to determine the chemical species and oxidation state of neptunium in spent fuel and alteration phases. Different types of spent fuel will be examined. Once characterized, the chemical behavior of the identified neptunium species will be evaluated if it is not present in the literature. Special attention will be given to the behavior of the neptunium species under typical repository near-field conditions (elevated temperature, high pH, varying Eh). This will permit a timely inclusion of project results into near-field geochemical models. Additionally, project results and methodologies have applications to neptunium in the environment, or treatment of neptunium containing waste. Another important aspect of this project is the close cooperation between a university and a national laboratory. The PI has a transuranic laboratory at MIT where students can perform spectroscopic and radiochemical experiments. Through the ANL partner, students can have additional experience performing research in a DOE setting. This will provide a unique and constructive opportunity for developing quality graduate students with experience and expertise in handling actinides. Our ability to produce experienced actinide scientists is currently restricted by the dearth of radiochemistry and nuclear research at universities. Regardless of all else, future researchers must be trained and educated if the United States is to maintain a leadership role in nuclear technology. This project provides such an opportunity.

Ken Czerwinski; Don Reed

2000-09-01T23:59:59.000Z

264

Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

265

No Moore’s Law for batteries  

Science Journals Connector (OSTI)

...nature’s ideal fuel. A full tank of gasoline...ourselves from powering cars with gasoline. There...is still a fossil fuel, and hydrogen can presently be produced...why not power our cars this way? We already...electrolytes. A D-cell battery stores more...

Fred Schlachter

2013-01-01T23:59:59.000Z

266

Energetic analysis of a syngas-fueled chemical-looping combustion combined cycle with integration of carbon dioxide sequestration  

Science Journals Connector (OSTI)

Abstract Chemical-looping combustion for power generation has significant advantages over conventional combustion. Mainly, it allows an integration of CO2 capture in the power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. Most efforts have been devoted to systems based on methane as a fuel, although other systems for alternative fuels have can be proposed. This paper focus on the study of the energetic performance of this concept of combustion in a gas turbine combined cycle when synthesis gas is used as fuel. After optimization of some thermodynamic parameters of the cycle, the power plant performance is evaluated under diverse working conditions and compared to a conventional gas turbine system. Energy savings related with CO2 capture and storage have been quantified. The overall efficiency increase is found to be significant, reaching values of around 5% (even more in some cases). In order to analyze the influence of syngas composition on the results, different H2-content fuels are considered. In a context of real urgency to reduce green house gas emissions, this work is intended to contribute to the conceptual development of highly efficient alternative power generation systems.

Ángel Jiménez Álvaro; Ignacio López Paniagua; Celina González Fernández; Rafael Nieto Carlier; Javier Rodríguez Martín

2014-01-01T23:59:59.000Z

267

Process modeling aspects of chemical-looping with oxygen uncoupling and chemical-looping combustion for solid fuels.  

E-Print Network [OSTI]

??Chemical-looping combustion (CLC) is one of the candidate technologies that is currently being explored to reduce the energy penalty associated with capturing CO2 from coal-fired… (more)

Sahir, Asad Hasan

2013-01-01T23:59:59.000Z

268

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

269

Battery business boost  

Science Journals Connector (OSTI)

... year, A123 formed deals with the US car manufacturer Chrysler to make batteries for its electric cars. Other applications for A123 products include batteries for portable power tools and huge batteries ... batteries are not yet developed enough to be considered for use in its Prius hybrid electric car, preferring instead to keep using nickel metal hydride batteries. ...

Katharine Sanderson

2009-09-24T23:59:59.000Z

270

Effect of fuel gas composition in chemical-looping combustion with Ni-based oxygen carriers. 1. Fate of sulfur  

SciTech Connect (OSTI)

Chemical-looping combustion (CLC) has been suggested among the best alternatives to reduce the economic cost of CO{sub 2} capture using fuel gas because CO{sub 2} is inherently separated in the process. For gaseous fuels, natural gas, refinery gas, or syngas from coal gasification can be used. These fuels may contain different amounts of sulfur compounds, such as H{sub 2}S and COS. An experimental investigation of the fate of sulfur during CH{sub 4} combustion in a 500 W{sub th} CLC prototype using a Ni-based oxygen carrier has been carried out. The effect on the oxygen carrier behavior and combustion efficiency of several operating conditions such as temperature and H{sub 2}S concentration has been analyzed. Nickel sulfide, Ni3S{sub 2}, was formed at all operating conditions in the fuel reactor, which produced an oxygen carrier deactivation and lower combustion efficiencies. However, the oxygen carrier recovered their initial reactivity after certain time without sulfur addition. The sulfides were transported to the air reactor where SO{sub 2} was produced as final gas product. Agglomeration problems derived from the sulfides formation were never detected during continuous operation. Considering both operational and environmental aspects, fuels with sulfur contents below 100 vppm H{sub 2}S seem to be adequate to be used in an industrial CLC plant.

Garcia-Labiano, F.; de Diego, L.F.; Gayan, P.; Adanez, J.; Abad, A.; Dueso, C. [CSIC, Zaragoza (Spain)

2009-03-15T23:59:59.000Z

271

DOE Issues Request for Information on Fuel Cells for Continuous On-Board Recharging for Battery Electric Light-Duty Vehicles  

Broader source: Energy.gov [DOE]

The USDOE's Fuel Cell Technologies Office has issued an RFI seeking feedback from the research community and relevant stakeholders about fuel cell technology validation, commercial acceleration, and potential deployment strategies for continuous fuel cell rechargers on board light-duty electric vehicle fleets.

272

Step change in Fuel Efficiency:Eaton's perspective | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results...

273

An advanced fuel cell simulator  

E-Print Network [OSTI]

of Fuel Cells ...................... 4 D. Fuel Cell Power Plant ..................... 4 E. Challenges in Fuel Cell Development ............ 5 F. Previous Work ......................... 6 G. Solar Array Simulators .................... 8 H. Battery... ............................. 54 28 Under-voltage Fault ........................... 55 1 CHAPTER I INTRODUCTION The depleting fossil fuel resources and increasing pollution are leading to the research and development of alternate energy generation techniques like fuel cells...

Acharya, Prabha Ramchandra

2005-11-01T23:59:59.000Z

274

2009 Fuel Cell Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

275

Battery Safety Testing  

Broader source: Energy.gov (indexed) [DOE]

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

276

Prediction of formation of gas-phase bubbles correlated by vortices in the fuel reactor of chemical looping combustion  

Science Journals Connector (OSTI)

Abstract Chemical looping combustion (CLC) as a potential CO2 capture technology has been considered as a promising and likely alternative to traditional combustion technology to mitigate the CO2 emission due to its prosecution of CO2 sequestration at a low cost. Although a number of studies on the hydrodynamic behaviours of the CLC process in fuel reactor have been documented in the open literature, there have been rare studies on the correlation between the bubble formation and the local particulate volume fraction. This paper aims to investigate the CLC process in a fuel reactor using the CFD modelling, coupled with the heterogeneous reactions, the hydrodynamics and reaction kinetics occurring in the fuel reactor. A parameter correlating the occurrence of bubble and dynamic properties is proposed. The parameter may be acted as an indicator of time-dependent bubble evolution with a potential to be adopted in the CLC for controlling the bubbling phenomena since the occurrence of the bubbles at specific positions is highly correlated with the local large eddies embedded in the flow. The results obtained clearly indicate that the CFD model developed in the current study reasonably forecasts the hydrodynamic behaviours and important phenomena observed in the fuel reactor.

Luming Chen; Xiaogang Yang; Xia Li; Guang Li; Colin Snape

2015-01-01T23:59:59.000Z

277

Performance of a low-cost iron ore as an oxygen carrier for Chemical Looping Combustion of gaseous fuels  

Science Journals Connector (OSTI)

Abstract This work evaluates the performance of an iron ore, mainly composed of Fe2O3, as an oxygen carrier (OC) for Chemical Looping Combustion (CLC) with gaseous fuels. The OC was characterized by TGA and evaluated in a continuous 500 Wth CLC unit, using CH4, syngas and a PSA off-gas as fuels. The OC was able to fully convert syngas at 880 °C. However, lower conversion rates were observed with methane-containing fuels. The addition of a Ni-based OC was evaluated in order to increase the reactivity of the OC with methane. In spite of this, an absence of catalytic effect was observed for the Ni-based OC. A deep analysis was carried out into the reasons for the absence of catalytic effect of the Ni-based OC. The performance of the iron ore with regard to attrition and fluidization behaviour was satisfactory throughout 50 h of hot operation in the continuous CLC plant. Thus, this low cost material is a suitable OC for gaseous fuels mainly composed of H2 and CO.

Miguel A. Pans; Pilar Gayán; Luis F. de Diego; Francisco García-Labiano; Alberto Abad; Juan Adánez.

2014-01-01T23:59:59.000Z

278

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

279

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of evolving electronic and chemical states that, despite advances in material synthesis and structural probes, remain elusive and largely unexplored. At Beamlines 8.0.1 and 9.3.2, researchers studied lithium-ion and lithium-air batteries, respectively, using soft x-ray spectroscopy techniques. The detailed information they obtained about the evolution of electronic and chemical states will be indispensable for understanding and optimizing better battery materials.

280

Chemically authentic surrogate mixture model for the thermophysical properties of a coal-derived liquid fuel  

SciTech Connect (OSTI)

We developed a surrogate mixture model to represent the physical properties of a coal-derived liquid fuel using only information obtained from a gas chromatography-mass spectrometry analysis of the fuel and a recently developed 'advanced distillation curve'. We then predicted the density, speed of sound, and viscosity of the fuel and compared them to limited experimental data. The surrogate contains five components (n-propylcyclohexane, trans-decalin, {alpha}-methyldecalin, bicyclohexane, and n-hexadecane), yet comparisons to limited experimental data demonstrate that the model is able to represent the density, sound speed, and viscosity to within 1, 4, and 5%, respectively. 102 refs., 2 figs., 5 tabs.

M.L. Huber; E.W. Lemmon; V. Diky; B.L. Smith; T.J. Bruno [National Institute of Standards and Technology (NIST), Boulder, CO (United States). Physical and Chemical Properties Division

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Chemical factors affecting insolubles formation in shale-derived diesel fuel  

SciTech Connect (OSTI)

In an effort to define the stability of shale-derived diesel fuel, the authors have conducted gravimetric accelerated storage stability tests at 43 and 80/sup 0/C using three model nitrogen compounds, 2-methylpyridine, 2,6-dimethylquinoline and dodecahydrocarbazole, as dopants in an otherwise stable shale diesel fuel. Also, information about potential interactive effects has been defined for these three model nitrogen compounds in the stable fuel in the presence of a second model dopant (a hydroperocide, organic acid or base).

Beal, E.J.; Cooney, J.V.; Hazlett, R.N.

1987-04-01T23:59:59.000Z

282

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Infrastructure and Battery Tax Exemptions to someone by E-mail Infrastructure and Battery Tax Exemptions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on AddThis.com...

283

Analysis of Impedance Response in Lithium-ion Battery Electrodes  

E-Print Network [OSTI]

A major amount of degradation in battery life is in the form of chemical degradation due to the formation of Solid Electrolyte Interface (SEI) which is a passive film resulting from chemical reaction. Mechanical degradation in the form of fracture...

Cho, Seongkoo

2013-12-04T23:59:59.000Z

284

DEVELOPMENT OF FUEL AND VALUE-ADDED CHEMICALS FROM PYROLYSIS OF WOOD/WASTE PLASTIC MIXTURE.  

E-Print Network [OSTI]

??Highly oxygenated compounds in bio-oil produce negative properties that have hampered fuel development. Copyrolysis with plastics has increased hydrogen content in past research. Py-GC/MS analyses… (more)

Bhattacharya, Priyanka

2008-01-01T23:59:59.000Z

285

Advanced Electrocatalysts for PEM Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinar on PEM Fuel Cells 2-12-2013 Webinar on PEM Fuel Cells 2-12-2013 Advanced Electrocatalysts for PEM Fuel Cells Nenad M. Markovic Vojislav R. Stamenkovic Materials Science Division Argonne National Laboratory 1 st Layer 2 nd Layer 3 rd Layer Pt=100 at.% Pt=48 at.% Ni=52 at.% Pt=87 at.% Ni=13 at.% Pt[111]-Skin surface 5 nm (111) (100) 3 nm Size distribution c-15 nm Shape Bulk composition Surface structure ? HR-TEM: Characterization of Nanoscale Pt/C Catalyst x 15 x 5 Surface composition ? 2 Surface Science Approach design, synthesis, characterization, and testing of well-defined interfaces Pt/C H 2 O 2 Real Applications FUEL CELLS / BATTERIES / ELECTROLIZERS Activity and Stability Mapping DFT/MC EC Pt Au Ru Surface Characterization UHV Chemical / Physical Synthesis SXS/HRDFS FTIR HRTEM DOUBLE-LAYER-BY-DESIGN

286

Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons  

Science Journals Connector (OSTI)

Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons ... (1, 3-6) Methanol and derived dimethyl ether (DME) are also excellent fuels in internal combustion engines (ICE) and in a new generation of direct oxidation methanol fuel cells (DMFC), as well as convenient starting materials for producing light olefins (ethylene and propylene) and subsequently practically any derived hydrocarbon product. ... Methanol produced this way was used in the 19th century for lighting, cooking, and heating purposes but was later replaced by cheaper fuels, especially kerosene. ...

George A. Olah; Alain Goeppert; G. K. Surya Prakash

2008-12-08T23:59:59.000Z

287

Investigation of chemical looping combustion by solid fuels. 2. redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier  

SciTech Connect (OSTI)

This paper is the second in a series of two on the investigation of the chemical looping combustion (CLC) of solid fuels. The first paper put forward the concept of the CLC of solid fuels using a circulating fluidized bed as a reactor and Cu-CuO as the oxygen carrier, which was based on an analysis of oxygen transfer capability, reaction enthalpy, and chemical equilibrium. In this second paper, we report the results of the evaluation of the reduction of CuO reduced by solid fuels such as coal and some other 'opportunity' solid fuels. Tests on the reduction of CuO by the selected solid fuels were conducted using simultaneous differential scanning calorimetry and thermogravimetric analysis, which simulates a microreactor. An attached mass spectrometer (MS) was used for the characterization of evolved gaseous products. The X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used for the characterization of the solid residues. Results strongly supported the feasibility of CuO reduction by selected solid fuels. CuO can be fully converted into Cu in a reduction process, either in a direct path by solid fuels, which was verified by MS analysis under a N{sub 2} atmosphere, or in an indirect path by pyrolysis and gasification products of solid fuels in the reducer. No Cu{sub 2}O exists in reducing atmospheres, which was characterized by an XRD analysis and mass balance calculations. No carbon deposit was found on the surface of the reduced Cu, which was characterized by SEM analysis. CuO reduction by solid fuels can start at temperatures as low as approximately 500 C. Tests indicated that the solid fuels with higher reactivity (higher volatile matter) would be desirable for the development of the chemical looping combustion process of solid fuels, such as sub-bituminous Powder River Basin coal and solid waste and biomass. 4 refs., 12 figs., 3 tabs.

Yan Cao; Bianca Casenas; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2006-10-15T23:59:59.000Z

288

Solar fuels and chemicals system design study (ammonia/nitric acid production process). Volume 2. Conceptual design. Final report  

SciTech Connect (OSTI)

As part of the Solar Central Receiver Fuels and Chemicals Program, Foster Wheeler Solar Development Corporation (FWSDC), under contract to Sandia National Laboratories-Livermore (SNLL), developed a conceptual design of a facility to produce ammonia and nitric acid using solar energy as the principal external source of process heat. In the selected process, ammonia is produced in an endothermic reaction within a steam methane (natural gas) reformer. The heat of reaction is provided by molten carbonate salt heated by both a solar central receiver and an exothermic ammonia-fired heater. After absorption by water, the product of the latter reaction is nitric acid.

Not Available

1986-06-01T23:59:59.000Z

289

Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy  

SciTech Connect (OSTI)

Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

2010-05-01T23:59:59.000Z

290

Chemical Effects at the Reaction Front in Corroding Spent Nuclear Fuel  

SciTech Connect (OSTI)

Performance assessment models of the U. S. repository at Yucca Mountain, Nevada suggest that neptunium from spent nuclear fuel is a potentially important dose contributor. A scientific understanding of how the UO{sub 2} matrix of spent nuclear fuel impacts the oxidative dissolution and reductive precipitation of Np is needed to predict the behavior of Np at the fuel surface during aqueous corrosion. Neptunium would most likely be transported as aqueous Np(V) species, but for this to occur it must first be oxidized from the Np(IV) state found within the parent spent nuclear fuel. In this paper we present synchrotron X-ray absorption spectroscopy and microscopy findings that illuminate the resultant local chemistry of neptunium and plutonium within uranium oxide spent nuclear fuel before and after corrosive alteration in an air-saturated aqueous environment. We find the Pu and Np in unaltered spent fuel to have a +4 oxidation state and an environment consistent with solid-solution in the UO{sub 2} matrix. During corrosion in an air-saturated aqueous environment, the uranium matrix is converted to uranyl (UO{sub 2}{sup 2+}) mineral assemblage that is depleted in Np and Pu relative to the parent fuel. The transition from U(IV) in the fuel to a fully U(VI) character across the corrosion front is not sharp, but occurs over a transition zone of {approx} 50 micrometers. We find evidence of a thin ({approx} 20 micrometer) layer that is enriched in Pu and Np within a predominantly U(IV) environment on the fuel side of the transition zone. These experimental observations are consistent with available data for the standard reduction potentials for NpO{sub 2}{sup +}/Np{sup 4+} and UO{sub 2}{sup 2+}/U{sup 4+} couples, which indicate that Np(IV) may not be effectively oxidized to Np(V) at the corrosion potential of uranium dioxide spent nuclear fuel in air-saturated aqueous solutions. (authors)

Fortner, Jeffrey A.; Kropf, A. Jeremy; Jerden, James L.; Cunnane, James C. [Chemical Engineering, Argonne National Laboratory, CMT/205, 9700 S. Cass Avenue, Argonne, IL, 60439 (United States)

2007-07-01T23:59:59.000Z

291

Li-Ion and Other Advanced Battery Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scientist viewing computer screen scientist viewing computer screen Li-Ion and Other Advanced Battery Technologies The research aims to overcome the fundamental chemical and mechanical instabilities that have impeded the development of batteries for vehicles with acceptable range, acceleration, costs, lifetime, and safety. Its aim is to identify and better understand cell performance and lifetime limitations. These batteries have many other applications, in mobile electronic devices, for example. The work addresses synthesis of components into battery cells with determination of failure modes, materials synthesis and evaluation, advanced diagnostics, and improved electrochemical model development. This research involves: Battery development and analysis; Mathematical modeling; Sophisticated diagnostics;

292

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

or other legal entity that resells compressed natural gas as a vehicular fuel or electricity to recharge a battery that powers an electric vehicle is not defined as a public...

293

Safety Hazards of Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

294

Polymeric batteries. (Latest citations from the INSPEC database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the development, models, and evaluation of polymer electrolyte batteries and fuel cells. The design and fabrication of polymeric materials for lithium and solid-state batteries are discussed. Applications in marine electric propulsion, electric vehicles, and microelectronics are examined. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-03-01T23:59:59.000Z

295

Polymeric batteries. (Latest citations from the INSPEC database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the development, models, and evaluation of polymer electrolyte batteries and fuel cells. The design and fabrication of polymeric materials for lithium and solid-state batteries are discussed. Applications in marine electric propulsion, electric vehicles, and microelectronics are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-09-01T23:59:59.000Z

296

Potential application of Zircaloy chemical embrittlement to volume reduction of spent-fuel cladding  

SciTech Connect (OSTI)

Embrittlement of Zircaloy fuel cladding tubes by corrosion media was studied from the viewpoint of its applicability to spent-fuel reprocessing. The results from irradiated as well as unirradiated tubes are summarized as follows: (1) when iodine was employed as the solute, the use of methanol as the solvent caused significant embrittlement of the Zircaloy; (2) for the iodine-methanol solution, the embrittlement increased with the iodine content but saturated at 1 wt%; (3) a water content of up to 10 vol% in the iodine-methanol solution did not decrease the extent of embrittlement; (4) fracture was of the grain-boundary type, and a fuel cladding tube irradiated to [approximately] 35GWd/t showed the same embrittlement behavior as an unirradiated one.

Nakatsuka, Masafumi (Nippon Nuclear Fuel Development Co., Ltd., Ibaraki (Japan))

1993-09-01T23:59:59.000Z

297

Chemical fate of Bunker C fuel oil in a subtropical marine environment  

SciTech Connect (OSTI)

On August 10, 1993, a major oil spill occurred when approximately 1.2 million liters of Bunker C (No. 6) fuel oil spilled from the fuel tanker Bouchard 155 after it collided with the phosphate freighter Balsa 37 in a shipping channel at the entrance to Tampa Bay, Florida. Although early hydrodynamic conditions with ebbing tides caused most of the oil to be carried several kilometers out of Tampa Bay and into the Gulf of Mexico, subsequent onshore winds and spring tides caused significant quantities of the oil to be deposited on nearby beaches and in mangrove, seagrass and estuarine habitats north of the mouth of Tampa Bay.

Wetzel, D.L.; Van Vleet, E.S. [Univ. of South Florida, St. Petersburg, FL (United States)

1996-12-31T23:59:59.000Z

298

Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility  

SciTech Connect (OSTI)

An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel (SOFC) applications. The glass containing ~17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700-850oC using back pressures ranging from 0.2 psi to 1.0 psi. Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

Chou, Y. S.; Thomsen, Edwin C.; Williams, Riley T.; Choi, Jung-Pyung; Canfield, Nathan L.; Bonnett, Jeff F.; Stevenson, Jeffry W.; Shyam, Amit; Lara-Curzio, E.

2011-03-01T23:59:59.000Z

299

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: http:www.optimabatteries.com References: Optima Batteries1 Information About...

300

Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling  

Broader source: Energy.gov [DOE]

Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways  

E-Print Network [OSTI]

Microbial systems are being increasingly developed as production hosts for a wide variety of chemical compounds. Broader adoption of microbial synthesis is hampered by a limited number of high-yielding natural pathways for ...

Tseng, Hsien-Chung

302

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

conventional truck; the hydrogen fuel cell truck can improveconventional truck; the hydrogen fuel cell truck can improveLNG engines, fuel cell vehicles using hydrogen, and battery

Zhao, Hengbing

2013-01-01T23:59:59.000Z

303

Fuel Cell 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell 101 Fuel Cell 101 Don Hoffman Don Hoffman Ship Systems & Engineering Research Division March 2011 Distribution Statement A: Approved for public release; distribution is unlimited. Fuel Cell Operation * A Fuel Cell is an electrochemical power source * It supplies electricity by combining hydrogen and oxygen electrochemically without combustion. * It is configured like a battery with anode and cathode. * Unlike a battery, it does not run down or require recharging and will produce electricity and will produce electricity, heat and water as long as fuel is supplied. 2H + + 2e - O 2 + 2H + + 2e - 2H 2 O H 2 Distribution Statement A: Approved for public release; distribution is unlimited. 2 FUEL FUEL CONTROLS Fuel Cell System HEAT & WATER CLEAN CLEAN EXHAUST EXHAUST

304

Progress in research on the performance and service life of batteries membrane of new energy automotive  

Science Journals Connector (OSTI)

Batteries membrane materials are widely used in new energy automotives such as hybrid vehicles, fuel cell vehicles, and pure electric vehicles. Membrane consists of two categories: fuel cell membrane (power unit)...

Yong Li; Jian Song; Jie Yang

2012-11-01T23:59:59.000Z

305

Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels  

Science Journals Connector (OSTI)

Abstract The chemical-looping combustion (CLC) process is a novel solution for efficient combustion with direct capture of carbon dioxide. The process uses a metal oxide as an oxygen carrier to transfer oxygen from an air to a fuel reactor, where the fuel reacts with the solid oxygen carrier. In this work, six different manganese ores are investigated as oxygen carriers for CLC application. The chemical-looping characteristics of the oxygen carriers were evaluated in a laboratory-scale fluidized-bed reactor in the temperature range of 900–970 °C during alternating reducing and oxidizing conditions. Three of the manganese ores showed a small oxygen release in inert environment between 850 and 950 °C. During reactivity tests, the gas yield with methane increased with the temperature and complete conversion of 50% CO in H2 was obtained for all of the ores. The rates of char gasification of two fuels, namely Mexican petroleum coke and Swedish wood char, were compared for the different manganese ores at 970 °C and with 50% H2O in N2 as fluidizing gas. Ilmenite and a manufactured Mn-oxide oxygen carrier consisting of Mn3O4 and MgO-stabilized ZrO2 as support were also included for comparison. The char gasification rate and the gas conversion were higher with the manganese ores and the Mn-oxide oxygen carrier compared to ilmenite. However, the higher reactivity of the manganese ores with H2 and the ensuing decrease in H2 inhibition for manganese ores is not sufficient to explain their higher rate of char gasification. Surface analysis of partially gasified petcoke particles in the presence of manganese ores showed formation of cavities and channels as well as a uniform distribution of potassium and sodium elements. The rate of char gasification also increased with the concentration of potassium and sodium impurities in the manganese ores. Thus the results suggest that the increased rate of char conversion for manganese ores is due to alkali-catalyzed steam gasification. The increase in rate of char gasification, in combination with potentially low costs of these materials suggests that manganese ores could be interesting materials for CLC with solid fuels.

Mehdi Arjmand; Henrik Leion; Tobias Mattisson; Anders Lyngfelt

2014-01-01T23:59:59.000Z

306

Vanadium Flow Battery for Energy Storage: Prospects and Challenges  

Science Journals Connector (OSTI)

Vanadium Flow Battery for Energy Storage: Prospects and Challenges ... Her work involves investigating the strategy to improve the stability of electrolytes for the vanadium flow battery. ... Dr. Huamin Zhang currently is a tenured Professor at Dalian Institute of Chemical Physics, Chinese Academy of Science; he serves as the head of the energy storage division and chief scientist of the 973 National Project on Flow Battery. ...

Cong Ding; Huamin Zhang; Xianfeng Li; Tao Liu; Feng Xing

2013-03-28T23:59:59.000Z

307

Alternative Resources The Institute for Chemicals and Fuels from Alternative Resources (ICFAR)  

E-Print Network [OSTI]

fast pyrolysis of biomass · Developing fast pyrolysis of palm oil residues · Developing a new reactor-generation biofuels and chemicals using forestry residues, non-food crops and other sources of biomass, like municipal Briens to develop a mobile pyrolysis unit being tested at the institute · The Agri-Therm unit transforms

Denham, Graham

308

Survival and evolution of Shewanella oneidensis MR-1: applications for microbial fuel cells.  

E-Print Network [OSTI]

??Microbial fuel cells are batteries in which microorganisms catalyze the conversion of organic fuel (such as lactate) into protons and electrons that power a resistor… (more)

Ribbens, Meghann Adrienne

2012-01-01T23:59:59.000Z

309

Improving Fuel Cell Electrodes Two-Steps at a Time > Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance Alkaline Fuel Cell Membranes Improving Fuel Cell Electrodes Two-Steps at a Time GraphenePlatinum...

310

Chapter 1 - Reactor configurations and design parameters for thermochemical conversion of biomass into fuels, energy, and chemicals  

Science Journals Connector (OSTI)

Abstract This chapter describes reactors for thermochemical conversion of lignocellulosic biomass into fuels, energy, and chemicals. The chapter covers basic definitions and concepts involved in biofuels and thermochemical conversion of biomass, and it also includes more advanced topics such as the main reactor configurations currently in use for thermochemical technologies, important parameters for reactor design, discussion of how parameters affect reactor performance, and several examples and case studies. The focus is on fast pyrolysis and gasification systems. The topics discussed include energy and carbon efficiencies, convenience of operation and scale-up, and several other parameters related to reactor design. After reading this chapter, the reader will understand the main characteristics of reactors for thermochemical conversion of biomass, their strengths, and their weaknesses for specific applications.

Fernando L.P. Resende

2014-01-01T23:59:59.000Z

311

Modeling & Simulation - Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

312

On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC)  

Science Journals Connector (OSTI)

Chemical-looping combustion (CLC) is a combustion technique where the CO2 produced is inherently separated from the rest of the flue gases with a considerably low energy penalty. For this reason, CLC has emerged as one of the more attractive options to capture CO2 from fossil fuel combustion. When applying CLC with solid fuels, the use of a low cost oxygen carrier is highly important, and one such low cost oxygen carrier is the mineral ilmenite. The current work investigates the reactivity of several ilmenites, some which are synthetically produced by freeze granulation and two natural minerals, one Norwegian ilmenite and one South African ilmenite. A laboratory fluidized bed reactor made of quartz was used to simulate a two reactor CLC system by alternating the reduction and oxidation phase. The fuel was syngas containing 50% CO and 50% H2. A mixture of 6 g of ilmenite with 9 g inert quartz of diameter 125–180 ?m was exposed to a flow of 900 mLn/min syngas in the reduction phase. During the oxidation phase, a 900 mLn/min flow of 10% O2 diluted in N2 was used. The experimental results showed that all ilmenites give higher conversion of H2 than of CO. Generally, synthetic ilmenites have better CO and H2 conversion than natural ilmenites and synthetic ilmenites prepared with an excess of Fe generally showed higher total conversion of CO than synthetic ilmenites with an excess of Ti. Most synthetic ilmenites and the Norwegian ilmenite showed good fluidization properties during the experiments. However, for two of the synthetically produced materials, and for the South African ilmenite, particle agglomerations were visible at the end of the experiment.

Muhammad Mufti Azis; Erik Jerndal; Henrik Leion; Tobias Mattisson; Anders Lyngfelt

2010-01-01T23:59:59.000Z

313

Centrifugal microfluidic platform for radiochemistry: Potentialities for the chemical analysis of nuclear spent fuels  

Science Journals Connector (OSTI)

Abstract The use of a centrifugal microfluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the microfluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ?97%), the use of the centrifugal microfluidic platform allowed to reduce the volume of liquid needed by a factor of ?250. Thanks to their unique “easy-to-use” features, centrifugal microfluidic platforms are potential successful candidates for the downscaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance).

Anthony Bruchet; Vélan Taniga; Stéphanie Descroix; Laurent Malaquin; Florence Goutelard; Clarisse Mariet

2013-01-01T23:59:59.000Z

314

The chemical origin of octane sensitivity in gasoline fuels containing nitroalkanes  

SciTech Connect (OSTI)

Experimental octane measurements are presented for a standard gasoline to which has been added various quantities of nitromethane, nitroethane and 1-nitropropane. The addition of nitroalkanes was found to suppress the Motor Octane Number to a much greater extent than the Research Octane Number. In other words addition of nitroalkanes increases the octane sensitivity of gasoline. Density Functional Theory was used to model the equilibrium thermodynamics and the barrier heights for reactions leading to the break-up of nitroethane. These results were used to develop a chemical kinetic scheme for nitroalkanes combined with a surrogate gasoline (for which a mechanism has been developed previously). Finally the chemical kinetic simulations were combined with a quasi-dimensional engine model in order to predict autoignition in octane rating tests. Our results suggest that the chemical origin of octane sensitivity in gasoline/nitroalkane blends cannot be fully explained on the conventional basis of the extent to which NTC behaviour is absent. Instead we have shown that the contribution of the two pathways leading to autoignition in gasoline containing nitroalkanes becomes much more significant under the more severe conditions of the Motor Octane method than the Research Octane method. (author)

Cracknell, R.F.; McAllister, L.J.; Norton, M.; Walmsley, H.L. [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom); Andrae, J.C.G. [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom); Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden)

2009-05-15T23:59:59.000Z

315

Engineering porous materials for fuel cell applications  

Science Journals Connector (OSTI)

...wide range of fuels, including hydrogen, and are seen as a clean, high...an enabling technology for the hydrogen economy. Potential applications for fuel...applications (operating on pure hydrogen) or battery replacement (operating...

2006-01-01T23:59:59.000Z

316

2008 Fuel Cell Technologies Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

317

EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages  

SciTech Connect (OSTI)

The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% {sup 235}U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited to time periods up to 6.35 x 10{sup 5} years. This longer time frame is closer to the one million year time horizon recently recommended by the National Academy of Sciences to the Environmental Protection Agency for performance assessment related to a nuclear repository (Ref. 5). However, it is important to note that after 100,000 years, most of the materials of interest (fissile materials) will have either been removed from the WP, reached a steady state, or been transmuted.

P. Bernot

2001-02-27T23:59:59.000Z

318

Fuel Cells publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science » Materials Science » Fuel Cells » Fuel Cells Publications Fuel Cells publications Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electorchemical Devices Email Fernando Garzon Sensors & Electorchemical Devices Email Piotr Zelenay Sensors & Electorchemical Devices Email Rod Borup Sensors & Electorchemical Devices Email Karen E. Kippen Chemistry Communications Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

319

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

320

Frequency control of a new topology in proton exchange membrane fuel cell/wind turbine/photovoltaic/ultra-capacitor/battery energy storage system based isolated networks by a novel intelligent controller  

Science Journals Connector (OSTI)

This paper proposes a new topology for hybrid isolated networks employing a wind turbine (WT) proton exchange membrane fuel cell (PEMFC) photovoltaic ultra-capacitor (UC) and battery energy storage system (BESS). The PEMFC is used in parallel with the UC and BESS; a configuration that improves the performance of the PEMFC in terms of dynamic response and lifetime. The proposed topology of the PEMFC along with a new model of WT reduces the initial costs of the hybrid isolated network. Due to power demand fluctuations in isolated networks to maintain the balance between power generation and consumption intelligent and flexible control methods must be applied. The variations of the solar irradiance of the wind speed and of the power consumption in hybrid isolated networks render the classic controllers and even fuzzy controllers inefficient. To overcome this problem we use a novel intelligent fuzzy controller which is optimized by the teaching-learning-based optimization method. In the structure of the new proposed controller the range and place of membership functions are optimized to reduce network frequency oscillations and improve network frequency stability. The designed control methodology is evaluated in the proposed isolated network and its performance is compared with the fuzzy controller proportional integral (PI) controller and optimal PI controller. To demonstrate the effectiveness of the proposed control strategies the above-mentioned detailed mathematical and dynamic models of the isolated network were integrated using MATLAB/Simulink.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Use of coal as fuel for chemical-looping combustion with Ni-based oxygen carrier  

SciTech Connect (OSTI)

Chemical-looping combustion is an indirect combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The feasibility of using NiO as an oxygen carrier during chemical-looping combustion of coal has been investigated experimentally at 800-960{degree}C in the present work. The experiments were carried out in a fluidized bed, where the steam acted as the gasification-fluidization medium. Coal gasification and the reaction of oxygen carrier with the water gas take place simultaneously in the reactor. The oxygen carrier particles exhibit high reactivity above 900{degree}C, and the dry basis concentration of CO{sub 2} in the exit gas of the reactor is nearly 95%. The flue gas composition as a function of the reactor temperature and cyclic reduction number is discussed. At 800-960{degree}C, the dry basis concentration of CO{sub 2} in the flue gas presents a monotonously increasing trend, whereas the dry basis concentration of CO, H{sub 2}, and CH{sub 4} decreases monotonously. The concentrations of CO{sub 2}, CO, H{sub 2}, and CH{sub 4} in the flue gas as a function of cyclic reduction number present a para-curve characteristic at 900{degree}C. With the increase of cyclic reduction number, the dry basis concentration of CO{sub 2} decreases remarkably, while the dry basis concentrations of CO, H{sub 2}, and CH{sub 4} increase rapidly. Moreover, the peak value of H{sub 2} concentration is less than that of CO. The performance of the NiO-based oxygen carriers was also evaluated using an X-ray diffractometer and a scanning electron microscope to characterize the solid residues of oxygen carrier. The results indicate that NiO is one of the suitable oxygen carriers for chemical-looping combustion of coal.

Gao, Z.P.; Shen, L.H.; Xiao, J.; Qing, C.J.; Song, Q.L. [Southeast University, Nanjing (China). Thermoenergy Engineering Research Institute

2008-12-15T23:59:59.000Z

322

Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis  

SciTech Connect (OSTI)

There is an increased need to more fully assess and control the composition of kerosene based rocket propulsion fuels, namely RP-1 and RP-2. In particular, it is crucial to be able to make better quantitative connections between the following three attributes: (a) fuel performance, (b) fuel properties (flash point, density, kinematic viscosity, net heat of combustion, hydrogen content, etc) and (c) the chemical composition of a given fuel (i.e., specific chemical compounds and compound classes present as a result of feedstock blending and processing). Indeed, recent efforts in predicting fuel performance through modeling put greater emphasis on detailed and accurate fuel properties and fuel compositional information. In this regard, advanced distillation curve (ADC) metrology provides improved data relative to classical boiling point and volatility curve techniques. Using ADC metrology, data obtained from RP-1 and RP-2 fuels provides compositional variation information that is directly relevant to predictive modeling of fuel performance. Often, in such studies, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is typically employed to provide chemical composition information. Building on approaches using GC-MS, but to glean substantially more chemical composition information from these complex fuels, we have recently studied the use of comprehensive two dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC - TOFMS) to provide chemical composition data that is significantly richer than that provided by GC-MS methods. In this report, by applying multivariate data analysis techniques, referred to as chemometrics, we are able to readily model (correlate) the chemical compositional information from RP-1 and RP-2 fuels provided using GC × GC - TOFMS, to the fuel property information such as that provided by the ADC method and other specification properties. We anticipate that this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an optimized approach to fuel formulation and specification for advanced engine cycles.

Kehimkar, Benjamin; Hoggard, Jamin C.; Marney, Luke C.; Billingsley, Matthew; Fraga, Carlos G.; Bruno, Thomas J.; Synovec, Robert E.

2014-01-31T23:59:59.000Z

323

Alternate fuels and chemicals from synthesis gas: Vinyl acetate monomer. Final report  

SciTech Connect (OSTI)

There has been a long-standing desire on the part of industry and the U.S. Department of Energy to replace the existing ethylene-based vinyl acetate monomer (VAM) process with an entirely synthesis gas-based process. Although there are a large number of process options for the conversion of synthesis gas to VAM, Eastman Chemical Company undertook an analytical approach, based on known chemical and economic principles, to reduce the potential candidate processes to a select group of eight processes. The critical technologies that would be required for these routes were: (1) the esterification of acetaldehyde (AcH) with ketene to generate VAM, (2) the hydrogenation of ketene to acetaldehyde, (3) the hydrogenation of acetic acid to acetaldehyde, and (4) the reductive carbonylation of methanol to acetaldehyde. This report describes the selection process for the candidate processes, the successful development of the key technologies, and the economic assessments for the preferred routes. In addition, improvements in the conversion of acetic anhydride and acetaldehyde to VAM are discussed. The conclusion from this study is that, with the technology developed in this study, VAM may be produced from synthesis gas, but the cost of production is about 15% higher than the conventional oxidative acetoxylation of ethylene, primarily due to higher capital associated with the synthesis gas-based processes.

Richard D. Colberg; Nick A. Collins; Edwin F. Holcombe; Gerald C. Tustin; Joseph R. Zoeller

1999-01-01T23:59:59.000Z

324

Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, January-March 1979  

SciTech Connect (OSTI)

In the program on pyrochemical and dry processing methods (PDPM) for nuclear fuel, corrosion testing of refractory metals and alloys, graphite, and SiC in PDPM environments was done. A tungsten-metallized Al/sub 2/O/sub 3/-3% Y/sub 2/O/sub 3/ crucible was successfully fabricated. Tungsten microstructure of a plasma-sprayed tungsten crucible was stabilized by nickel infiltration and heat treatment. Solubility measurements of Th in Cd and Cd-Mg alloys were continued, as were experiments to study the reduction of high-fired ThO/sub 2/. Work on the fused salt electrolysis of CaO also was continued. The method of coprocessing of U and Pu by a salt transport process was modified. Tungsten-coated molybdenum crucibles were fabricated. The proliferation resistance of chloride volatility processing of thorium-based fuels is being evaluated by studying the behavior of fission product elements during chlorination of U and Th. Thermodynamic analysis of the phase relationships in the U-Pu-Zn system was initiated. The Pyro-Civex reprocessing method is being reviewed. Reactivity of UO/sub 2/ and PuO/sub 2/ with molten equimolar NaNO/sub 3/-KNO/sub 3/ is being studied along with the behavior of selected fission product elements. Work was continued on the reprocessing of actinide oxides by extracting the actinides from a bismuth solution. Rate of dissolution of UO/sub 2/ microspheres in LiCl/AlCl/sub 3/ was measured. Nitriding rates of Th and U dissolved in molten tin were measured. In work on the encapsulation of radioactive waste in metal, leach rates of a simulated waste glass were studied. Rates of dissolution of metals (potential barrier materials) in aqueous media are being studied. In work on the transport properties of nuclear waste in geologic media, the adsorption of iodate by hematite as a function of pH and iodate concentration was measured. The migration behavior of cesium in limestone was studied in relation to the cesium concentration and pH of simulated groundwater solutions.

Steindler, M J; Ader, M; Barletta, R E

1980-01-01T23:59:59.000Z

325

Thermo–chemical treatments based on NH3/O2 for improved graphite-based fiber electrodes in vanadium redox flow batteries  

Science Journals Connector (OSTI)

Abstract Electrochemical behavior of the polyacrylonitrile (PAN)-based graphite as a low cost electrode material for vanadium based redox batteries (VFB) in sulfuric acid medium has been improved by means of the successful introduction of nitrogen and oxygen-containing groups at the graphite surface by thermal activation under NH3/O2 (1:1) atmosphere. Influence of the temperature and treatment duration times have been studied towards the positive reaction of VFB. The structure, composition, and electrochemical properties of the treated samples have been characterized with field emission scanning electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The estimation of electrochemical surface area has also been evaluated. The treatment of PAN graphite material at 773 K for 24-h leads to electrode materials with the best electrochemical activity towards the VO 2 + /VO2+ redox couple. This method produces an increase of the nitrogen and oxygen content at the surface up to 8% and 32%, respectively, and is proved to be a straightforward and cost-effective methodology. This improvement of the electrochemical properties is attributed to the incorporation of the nitrogen and oxygen-containing groups that facilitate the electron transfer through the electrode/electrolyte interface for both oxidation and reduction processes.

Cristina Flox; Javier Rubio-García; Marcel Skoumal; Teresa Andreu; Juan Ramón Morante

2013-01-01T23:59:59.000Z

326

Li Storage and Impedance Spectroscopy Studies on Co3O4, CoO, and CoN for Li-Ion Batteries  

Science Journals Connector (OSTI)

Urea act as an oxidising fuel. ... vehicles (EV) or for large-scale batteries for electricity power storage, has made lithium ion rechargeable battery development into a growth area which has gained high momentum for its research activities. ...

M. V. Reddy; Gundlapalli Prithvi; Kian Ping Loh; B. V. R. Chowdari

2013-12-10T23:59:59.000Z

327

Efficient chemical regeneration of LiBH4NH3 spent fuel for hydrogen storage  

Science Journals Connector (OSTI)

Abstract The absence of an efficient method for the regeneration of ammine metal borohydrides (M(BH4)nxNH3, AMBs) from their dehydrogenated products has hindered their potential application as hydrogen storage materials. In this paper, we demonstrate a high-yield chemical regeneration of LiBH4NH3 based on a three step process (digestion (H+ addition), reduction (H? addition), and ammonia complexation) at ambient temperature. Our results demonstrated that Li–B–N polymer was digested by methanol to form LiB(OCH3)4, which can be converted into LiBH4 by using LiAlH4 in the reduction process. The generation of LiBH4NH3 in ammonia complexion step was achieved by exposing the obtained LiBH4 in an ammonia atmosphere.

Yingbin Tan; Xiaowei Chen; Guanglin Xia; Xuebin Yu

2014-01-01T23:59:59.000Z

328

Chemical Engineering Division research highlights, 1979  

SciTech Connect (OSTI)

In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

None

1980-06-01T23:59:59.000Z

329

Alan MacDiarmid, Conductive Polymers, and Plastic Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Resources with Additional Information · Patents Alan MacDiarmid ©Alan MacDiarmid/ University of Pennsylvania Photo by Felice Macera Until 1987, the billions of batteries that had been marketed in myriad sizes and shapes all had one thing in common. To make electricity, they depended exclusively upon chemical reactions involving metal components of the battery. But today a revolutionary new type of battery is available commercially. It stores electricity in plastic. Plastic batteries are the most radical innovation in commercial batteries since the dry cell was introduced in 1890. Plastic batteries offer higher capacity, higher voltage, and longer shelf-life than many competitive designs. Companies are testing new shapes and configurations, including flat batteries, that can be bent like cardboard. Researchers expect that the new technology will free electronic designers from many of the constraints imposed by metal batteries such as limited recharging cycles, high weight, and high cost.

330

Fuels - Biodiesel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

331

Rapid characterization of lignocellulosic feedstocks for fuels and chemicals: Molecular beam mass spectrometric approach  

SciTech Connect (OSTI)

Rapid characterization of biomass feedstocks has a pivotal role in the development of biomass energy because of the large number of samples that must be analyzed due to the diversity of biomass feedstocks and the significant differences in the chemical and physical properties of these feedstocks. Several biomass feedstocks (herbaceous, woody, and agricultural residues) were screened for the effects of storage, season of harvest, geographic location, clonal, and species variation on the pyrolysis products of the feed stocks. For herbaceous species such as sericea lespedeza, the season of harvest had a significant effect on the pyrolysis products. Effects of clonal variation on the composition of hybrid poplar feedstocks was easily discerned with the molecular beam mass spectrometric analysis. The effect of geographic location on the poplar clones pyrolysis products was minimal. However in the case of switchgrass, varietal influence on the pyrolysis products was minimal, but where the plant was grown had a strong influence on the pyrolysis products of the feedstock. Significant differences because of species variation could also be shown from the pyrolysis products of various biomass feedstocks. The influence of storage time on biomass samples stored outside in the open could also be discerned from the pyrolysis products of the feedstocks. The differences noted in the pyrolysis products of the feedstocks were noted for samples which were significantly degraded during storage either through the action of microflora or weathering.

Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)

1996-12-31T23:59:59.000Z

332

ESS 2012 Peer Review - Reducing the Costs of Manufacturing Flow Batteries - Dhruv Bhatnagar, SNL  

Broader source: Energy.gov (indexed) [DOE]

the Costs of Manufacturing Flow Batteries the Costs of Manufacturing Flow Batteries Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-XXXXP Next Steps 1. Continued outreach with other with other manufacturers 2. Characterization of the flow battery manufacturing process and determination of process issues 3. Evaluation of the fuel cell, other battery and other industry manufacturing process to address issues identified 4. Coordination with PNNL flow battery component cost

333

Chemical and Biological Engineering Department of Chemical and Biological Engineering  

E-Print Network [OSTI]

Fuel Cell Lab Fuel Cell Battery Lab Fluidization Lab Gas Processing Lab Interfacial Phenomena Lab Light's core areas of research competency: Energy and Sustainability Fuel Cells Fluidization and Gasification Polymer Reaction Engineering Lab Porous Media and Core Analysis Lab Process Control & Optimization Lab

Heller, Barbara

334

Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

335

Microstructural and chemical evolution near anode triple phase boundary in Ni/YSZ solid oxide fuel cells  

SciTech Connect (OSTI)

In this study, we report the microstructural and chemical evolution of anode grain boundaries and triple phase boundary (TPB) junctions of Ni/YSZ anode supported solid oxide fuel cells. A NiO phase was found to develop along the Ni/YSZ interfaces extending to TPBs in the operated cells. The thickness of the NiO ribbon phase remains constant at ~5 nm in hydrogen for operating durations up to 540 h. When operating on synthesis gas, an increase in interphase thickness was observed from ~11 nm for 24 h of operation to ~51 nm for 550 h of operation. YSZ phases are observed to be stable in H2 over 540 h of operation. However, for the cell operated in syngas for 550 h, a 5–10 nm tetragonal YSZ (t-YSZ) interfacial layer was identified that originated from the Ni/YSZ interfaces. Yttrium species seem to segregate to the interfaces during operation, leading to the formation of t-YSZ in the Y-depleted regions.

Chen, Yun; Chen, Song; Hacket, Gregory; Finklea, Harry; Song, Zueyan; Gerdes, Kirk

2011-12-01T23:59:59.000Z

336

Microstructural and chemical evolution near anode triple phase boundary in Ni/YSZ solid oxide fuel cells  

SciTech Connect (OSTI)

In this study, we report the micro-structural and chemical evolution of anode grain boundaries and triple phase boundary (TPB) junctions of Ni/YSZ anode supported solid oxide fuel cells. A NiO phase was found to develop along the Ni/YSZ interfaces extending to TPBs in the operated cells. The thickness of the NiO ribbon phase remains constant at ~ 5 nm in hydrogen for operating durations up to 540 h. When operating on synthesis gas, an increase in interphase thickness was observed from ~ 11 nm for 24 h of operation to ~ 51 nm for 550 h of operation. YSZ phases are observed to be stable in H{sub 2} over 540 h of operation. However, for the cell operated in syngas for 550 h, a 5–10 nm tetragonal YSZ (t-YSZ) interfacial layer was identified that originated from the Ni/YSZ interfaces. Yttrium species seem to segregate to the interfaces during operation, leading to the formation of t-YSZ in the Y-depleted regions.

Chen, Yun; Chen, Song; Hackett, Gregory; Finklea, Harry; Song, Xueyan; Gerdes, Kirk

2011-12-12T23:59:59.000Z

337

Availability Assessment of Carbonaceous Biomass in California as a Feedstock for Thermo-chemical Conversion to Synthetic Liquid Fuel  

E-Print Network [OSTI]

148% of the state’s diesel fuel market or 22% of total U.S.diesel gallon equivalent, therefore 6.5 dge amounts to 4.46 (10 -5 ) mi/kJ. California Clean Fuels Market

Valkenburg, C; Norbeck, J N; Park, C S

2005-01-01T23:59:59.000Z

338

Thin film battery/fuel cell power generation system. Topical report covering Task 5: the design, cost and benefit of an industrial cogeneration system, using a high-temperature solid-oxide-electrolyte (HTSOE) fuel-cell generator  

SciTech Connect (OSTI)

A literature search and review of the studies analyzing the relationship between thermal and electrical energy demand for various industries and applications resulted in several applications affording reasonable correlation to the thermal and electrical output of the HTSOE fuel cell. One of the best matches was in the aluminum industry, specifically, the Reynolds Aluminum Production Complex near Corpus Christi, Texas. Therefore, a preliminary design of three variations of a cogeneration system for this plant was effected. The designs were not optimized, nor were alternate methods of providing energy compared with the HTSOE cogeneration systems. The designs were developed to the extent necessary to determine technical practicality and economic viability, when compared with alternate conventional fuel (gas and electric) prices in the year 1990.

Not Available

1981-02-25T23:59:59.000Z

339

Battery Anodes > Batteries & Fuel Cells > Research > The Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

all acceptable and even preferable when compared to lithium metal anode for practical cells. An important evidence for this is the commercial availability of LiCoO2carbon cells...

340

Batteries Breakout Session  

Broader source: Energy.gov (indexed) [DOE]

capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers Interfering with Reaching the...

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

342

battery2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

343

EMSL - battery materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

344

GBP Battery | Open Energy Information  

Open Energy Info (EERE)

GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications. References: GBP Battery1 This article is...

345

Non-Aqueous Battery Systems  

Science Journals Connector (OSTI)

...0 V. Practical non-aqueous batteries have energies extending from 100...electric watches to 20 kWh secondary batteries being developed for vehicle traction...10 years, to a military lithium thermal battery delivering all of its energy in...

1996-01-01T23:59:59.000Z

346

Energy Department Offers $50 Million to Advance Fuel Efficient...  

Broader source: Energy.gov (indexed) [DOE]

lightweighting materials; cost-effective batteries and power electronics; advanced heating, ventilation, and air conditioning systems; and improved fuels and lubricants. With...

347

State of the States: Fuel Cells in America  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GENCO, was awarded ARRA funding to demonstrate the economic benefits of large fleet conversions of lift trucks from batteries to fuel cell power. A Wegmans warehouse is one...

348

2011 Alkaline Membrane Fuel Cell Workshop Final Report  

Broader source: Energy.gov (indexed) [DOE]

Alcohol Fuel Applications and Power Ranges Application Description Power Range Military Remote sensor <10 W Soldier power 20-50 W Battery charger 300 W Commercial Consumer...

349

Use of Low-Volatile Solid Fuels in a 100 kW Chemical-Looping Combustor  

Science Journals Connector (OSTI)

Swedish wood char and Mexican petcoke, both having low volatile content, were used as fuel. ... The carbon capture efficiency was high with wood char, but not as high with petcoke. ... Using petcoke as fuel, high gas conversion was achieved even when employing very high fuel power, 148 kW. ...

Carl Linderholm; Matthias Schmitz; Pavleta Knutsson; Malin Källén; Anders Lyngfelt

2014-08-21T23:59:59.000Z

350

Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes  

SciTech Connect (OSTI)

In this paper, we report results of a novel synthesis method of thin film conductive carbon coatings on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} cathode active material powders for lithium-ion batteries. Thin layers of graphitic carbon were produced from a solid organic precursor, anthracene, by a one-step microwave plasma chemical vapor deposition (MPCVD) method. The structure and morphology of the carbon coatings were examined using SEM, TEM, and Raman spectroscopy. The composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes were electrochemically tested in lithium half coin cells. The composite cathodes made of the carbon-coated LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} powder showed superior electrochemical performance and increased capacity compared to standard composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes.

Doeff, M.M.; Kostecki, R.; Marcinek, M.; Wilcoc, J.D.

2008-12-10T23:59:59.000Z

351

A Control Strategy Scheme for Fuel Cell-Vehicle Based on Frequency Hamza Alloui  

E-Print Network [OSTI]

A Control Strategy Scheme for Fuel Cell-Vehicle Based on Frequency Separation Hamza Alloui based on frequency-separation for Fuel cell-Battery Hybrid Electric Vehicle (HEV), using a Fuel cell (FC of this strategy. Keywords ­ Fuel cell, hybrid source, battery, DC-DC Boost converter, Buck-boost converter

Boyer, Edmond

352

Chemical-looping combustion of solid fuels in a 10 kW reactor system using natural minerals as oxygen carrier  

Science Journals Connector (OSTI)

Abstract Chemical-looping combustion (CLC) is an unmixed combustion concept where fuel and combustion air are kept separate by means of an oxygen carrier, and the CO2 capture is inherently achieved. This work presents findings from a continuously operated 10 kW pilot for solid fuels. Using petcoke as fuel, the following oxygen carriers are compared: (a) ilmenite, (b) ilmenite + lime, (c) manganese ore, and (d) manganese ore + lime. Compared to ilmenite, the use of manganese ore as oxygen carrier greatly enhanced the rate of gasification. By adding lime particles to the Mn ore, performance improved further. The addition of lime to ilmenite had a small beneficial effect on gas conversion and char gasification rate.

Carl Linderholm; Anders Lyngfelt; Cristina Dueso

2013-01-01T23:59:59.000Z

353

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This article is a stub. You can...

354

Published: January 19, 2011 r 2011 American Chemical Society 1824 dx.doi.org/10.1021/ja107090n |J. Am. Chem. Soc. 2011, 133, 18241831  

E-Print Network [OSTI]

applications in batteries and fuel cells. The consistent direction of orientation of the lamellar oxides for electrochemical energy conver- sion in fuel cells and batteries, which often contain layered com- pounds

355

Tanks for the Batteries  

Science Journals Connector (OSTI)

...kg), in the most common flow batteries that number ranges from 20 to 50 Wh/kg. Most modular units now under development range in size from refrigerators to railcars. A flow battery in Osaka, Japan, that's capable of storing a megawatt...

Robert F. Service

2014-04-25T23:59:59.000Z

356

Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts  

SciTech Connect (OSTI)

Electrocatalysis will play a key role in future energy conversion and storage technologies, such as water electrolysers, fuel cells and metal–air batteries. Molecular interactions between chemical reactants and the catalytic surface control the activity and efficiency, and hence need to be optimized; however, generalized experimental strategies to do so are scarce. Here we show how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal–air batteries. We demonstrate the core–shell structure of the catalyst and clarify the mechanistic origin of its activity. The platinum-rich shell exhibits compressive strain, which results in a shift of the electronic band structure of platinum and weakening chemisorption of oxygenated species. We combine synthesis, measurements and an understanding of strain from theory to generate a reactivity–strain relationship that provides guidelines for tuning electrocatalytic activity.

Strasser, Peter; Shirlaine, Koh; Anniyev, Toyli; Greeley, Jeffrey P.; More, Karren L.; Yu, Chengfei; Liu, Zengcai; Kaya, Sarp; Nordlund, Dennis; Ogasawara, Hirohito; Toney, Michael F.; Nilsson, Anders R.

2010-04-30T23:59:59.000Z

357

Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts  

SciTech Connect (OSTI)

Electrocatalysis will play a key role in future energy conversion and storage technologies, such as water electrolysers, fuel cells and metal-air batteries. Molecular interactions between chemical reactants and the catalytic surface control the activity and efficiency, and hence need to be optimized; however, generalized experimental strategies to do so are scarce. Here we show how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries. We demonstrate the core-shell structure of the catalyst and clarify the mechanistic origin of its activity. The platinum-rich shell exhibits compressive strain, which results in a shift of the electronic band structure of platinum and weakening chemisorption of oxygenated species. We combine synthesis, measurements and an understanding of strain from theory to generate a reactivity-strain relationship that provides guidelines for tuning electrocatalytic activity.

Strasser, P. [Berlin Institute of Technology (Technische Universitat Berlin); Koh, Shirlaine [University of Houston, Houston; Anniyev, Toyli [SLAC National Accelerator Laboratory; Greeley, Jeff [Argonne National Laboratory (ANL); More, Karren Leslie [ORNL; Yu, Chengfei [University of Houston, Houston; Liu, Zengcai [University of Houston, Houston; Kaya, Sarpa [SLAC National Accelerator Laboratory; Nordlund, Dennis [SLAC National Accelerator Laboratory; Ogasawara, Hirohito [SLAC National Accelerator Laboratory; Toney, Michael F. [SLAC National Accelerator Laboratory; Anders, Nilsson [SLAC National Accelerator Laboratory

2010-01-01T23:59:59.000Z

358

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

359

Homogenization of a Catalyst Layer Model for Periodically Distributed Pore Geometries in PEM Fuel Cells  

Science Journals Connector (OSTI)

......nanostructured thin film catalysts for PEM fuel cells. Journal of Power Sources...Properties and Performance. PEM Fuel Cell Electrocatalysis and Catalyst...Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells. New Carbon Based Materials......

Markus Schmuck; Peter Berg

2013-01-01T23:59:59.000Z

360

NREL: Hydrogen and Fuel Cells Research - Advanced Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials The Advanced Materials group within NREL's Materials and Computational Sciences Center develops novel and optimized materials for energy-related applications that include sorption-based hydrogen storage, fuel cells, catalysts, photovoltaics, batteries, electrochromics, electronics, sensors, electricity conduction, and thermal management. These R&D efforts use first-principle models combined with state-of-the-art synthetic and characterization techniques to rationally design and construct advanced materials with new and improved properties. In addition to creating specific material properties tailored for the application of interest by understanding the underlying chemical and physical mechanisms involved, the research focuses on developing materials

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NREL: Vehicles and Fuels Research - Fuels Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. Facilities NREL conducts...

362

NREL: Vehicles and Fuels Research - Fuels Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. For more information, see...

363

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

Electricity H2 Gasoline, bio-fuel, H2, electricity Gasoline,bio-diesel, DME, CH2/LH2 Gasoline, electricity, H2 Powertrains ICE, hybrid, plug-in hybrid, battery, fuel

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

364

DOE Issues Request for Information on Fuel Cells for Continuous...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cells for Continuous On-Board Recharging for Battery Electric Light-Duty Vehicles DOE Issues Request for Information on Fuel Cells for Continuous On-Board Recharging for...

365

Defect-Free, Size-Tunable Graphene for High-Performance Lithium Ion Battery  

Science Journals Connector (OSTI)

Defect-Free, Size-Tunable Graphene for High-Performance Lithium Ion Battery ... These results propose that the as-prepared defect free graphene will bring significant advance of composite electrodes for high performance in electrochemical energy systems such as batteries, fuel cells, and capacitors. ...

Kwang Hyun Park; Dongju Lee; Jungmo Kim; Jongchan Song; Yong Min Lee; Hee-Tak Kim; Jung-Ki Park

2014-07-11T23:59:59.000Z

366

Newton-Krylov-Multigrid Algorithms for Battery Simulation Venkat Srinivasan,b,  

E-Print Network [OSTI]

Newton-Krylov-Multigrid Algorithms for Battery Simulation J. Wu,a Venkat Srinivasan,b, * J. Xu the behavior of various electrochemical systems, specifically, batteries and fuel cells. In this paper, we thermal and electrochemical coupled Li-ion model and extend the familiar Band J subroutine by utilizing

367

Argonne Chemical Sciences & Engineering - News & Highlights - 2009 News &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 News & Highlights 9 News & Highlights Argonne researchers win five R&D 100 awards July 20, 2009 -- Researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory received five R&D 100 awards as judged by R&D Magazine. (More...) Advanced Nuclear Fuel Cycle Research and Development June 17, 2009 -- Argonne's Mark T. Peters gives congressional testimony on advanced nuclear fuel cycle R&D. (More...) Argonne's lithium-ion battery technology to be commercialized by BASF June 3, 2009 -- The U.S. Department of Energy's (DOE) Argonne National Laboratory and BASF, the world's largest chemical company, have signed a world-wide licensing agreement to mass produce and market Argonne's patented composite cathode materials to manufacturers of advanced lithium-ion batteries. (More...)

368

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network [OSTI]

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

369

Ion Conducting Membranes for Fuel Cells and other Electrochemical Devices  

Science Journals Connector (OSTI)

ion conducting membrane; fuel cell; redox-flow battery; Li ion battery; proton; hydroxide; diffusion; conductivity; nanomorphology; hydration; visco-elastic constants; phosphate; polyelectrolyte; ionomer; block-copolymer; Nafion; Aquivion ... At this stage, however, they have an immediate potential for redox-flow battery applications, as will be discussed later. ... When the flow battery is charged or discharged, an equivalent amount of ionic charge has to cross the membrane, while the ions involved in the redox process have to be efficiently separated. ...

Klaus-Dieter Kreuer

2013-11-19T23:59:59.000Z

370

Wednesday, October 17th Bourns A265 1:40-2:30pm To realize the next generation rechargeable lithium batteries, it is critical to use novel electrode  

E-Print Network [OSTI]

including rechargeable batteries, polymer electrolyte membrane fuel cells, photovoltaic devices, and water lithium batteries, it is critical to use novel electrode materials with higher lithium storage capacity. In this presentation, a number of novel lithium battery electrode materials including silicon anode, tin anode

371

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

372

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

373

Blue Sky Batteries Inc | Open Energy Information  

Open Energy Info (EERE)

Batteries Inc Jump to: navigation, search Name: Blue Sky Batteries Inc Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries....

374

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

375

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

376

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad battery chargers. References: American Battery Charging...

377

EQ6 Calculation for Chemical Degradation of Shippingport LWBR (TH/U Oxide) Spent Nuclear Fuel Waste Packages  

SciTech Connect (OSTI)

The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site. Because of the high content of fissile material in the SNF, the waste package (WP) design requires special consideration of the amount and placement of neutron absorbers and the possible loss of absorbers and SNF materials over geologic time. For some WPs, the outer shell corrosion-resistant material (CRM) and the corrosion-allowance inner shell may breach (Refs. 2 and 3), allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components and neutron absorbers from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing a Shippingport LWBR SNF seed assembly, and high-level waste (HLW) glass canisters arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial WP configuration (such that it can be effective in preventing criticality); (2) The extent to which fissile uranium and fertile thorium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations), of the simulations are limited to time periods up to 3.17 x 10{sup 5} years. This longer time frame is closer to the one million year time horizon recently recommended by the National Academy of Sciences to the Environmental Protection Agency for performance assessment related to a nuclear repository (Ref. 5). However, it is important to note that after 100,000 years, most of the materials of interest (fissile and absorber materials) will have either been removed from the WP, reached a steady state, or been transmuted. The calculation included elements with high neutron-absorption cross sections, notably gadolinium (Gd), as well as the fissile materials. The results of this analysis will be used to ensure that the type and amount of criticality control material used in the WP design will prevent criticality.

S. Arthur

2000-09-14T23:59:59.000Z

378

Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

379

Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

380

Method and apparatus for measuring the state of charge in a battery based on volume of battery components  

DOE Patents [OSTI]

The state of charge of electrochemical batteries of different kinds is determined by measuring the incremental change in the total volume of the reactive masses in the battery. The invention is based on the principle that all electrochemical batteries, either primary or secondary (rechargeable), produce electricity through a chemical reaction with at least one electrode, and the chemical reactions produce certain changes in the composition and density of the electrode. The reactive masses of the electrodes, the electrolyte, and any separator or spacers are usually contained inside a battery casing of a certain volume. As the battery is used, or recharged, the specific volume of at least one of the electrode masses will change and, since the masses of the materials do not change considerably, the total volume occupied by at least one of the electrodes will change. These volume changes may be measured in many different ways and related to the state of charge in the battery. In one embodiment, the volume change can be measured by monitoring the small changes in one of the principal dimensions of the battery casing as it expands or shrinks to accommodate the combined volumes of its components.

Rouhani, S. Zia (Idaho Falls, ID)

1996-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Temperature maintained battery system  

SciTech Connect (OSTI)

A chassis contains a battery charger connected to a multi-cell battery. The charger receives direct current from an external direct current power source and has means to automatically selectively charge the battery in accordance with a preselected charging program relating to temperature adjusted state of discharge of the battery. A heater device is positioned within the chassis which includes heater elements and a thermal switch which activates the heater elements to maintain the battery above a certain predetermined temperature in accordance with preselected temperature conditions occurring within the chassis. A cooling device within the chassis includes a cooler regulator, a temperature sensor, and peltier effect cooler elements. The cooler regulator activates and deactivates the peltier cooler elements in accordance with preselected temperature conditions within the chassis sensed by the temperature sensor. Various vehicle function circuitry may also be positioned within the chassis. The contents of the chassis are positioned to form a passage proximate the battery in communication with an inlet and outlet in the chassis to receive air for cooling purposes from an external source.

Newman, W.A.

1980-10-21T23:59:59.000Z

382

On fuel selection in controlled auto-ignition engines : the link between intake conditions, chemical kinetics, and stratification  

E-Print Network [OSTI]

The objective of this research is to examine the impact fuel selection can have on the high-load limit in a stratified Compression Auto-Ignition (CAI) engine. This was accomplished by first studying the validity of the ...

Maria, Amir Gamal

2012-01-01T23:59:59.000Z

383

Cellulosic materials recovered from steam classified municipal solid wastes as feedstocks for conversion to fuels and chemicals  

Science Journals Connector (OSTI)

A process has been developed for the treatment of municipal solid waste to separate and recover the cellulosic biomass from the nonbiomass components. ... highly suitable as a feedstock for conversion to fuel, fe...

Michael H. Eley; Gerald R. Guinn; Joyita Bagchi

1995-09-01T23:59:59.000Z

384

H[sub 2]/Cl[sub 2] fuel cells for power and HCl production - chemical cogeneration  

DOE Patents [OSTI]

A fuel cell for the electrolytic production of hydrogen chloride and the generation of electric energy from hydrogen and chlorine gas is disclosed. In typical application, the fuel cell operates from the hydrogen and chlorine gas generated by a chlorine electrolysis generator. The hydrogen chloride output is used to maintain acidity in the anode compartment of the electrolysis cells, and the electric energy provided from the fuel cell is used to power a portion of the electrolysis cells in the chlorine generator or for other chlorine generator electric demands. The fuel cell itself is typically formed by a passage for the flow of hydrogen chloride or hydrogen chloride and sodium chloride electrolyte between anode and cathode gas diffusion electrodes. 3 figures.

Gelb, A.H.

1991-08-20T23:59:59.000Z

385

H.sub.2 /C.sub.12 fuel cells for power and HCl production - chemical cogeneration  

DOE Patents [OSTI]

A fuel cell for the electrolytic production of hydrogen chloride and the generation of electric energy from hydrogen and chlorine gas is disclosed. In typical application, the fuel cell operates from the hydrogen and chlorine gas generated by a chlorine electrolysis generator. The hydrogen chloride output is used to maintain acidity in the anode compartment of the electrolysis cells, and the electric energy provided from the fuel cell is used to power a portion of the electrolysis cells in the chlorine generator or for other chlorine generator electric demands. The fuel cell itself is typically formed by a passage for the flow of hydrogen chloride or hydrogen chloride and sodium chloride electrolyte between anode and cathode gas diffusion electrodes, the HCl increa This invention was made with Government support under Contract No. DE-AC02-86ER80366 with the Department of Energy and the United States Government has certain rights thereto.

Gelb, Alan H. (Boston, MA)

1991-01-01T23:59:59.000Z

386

Microgrid Reliability Modeling and Battery Scheduling Using Stochastic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reliability Modeling and Battery Scheduling Using Stochastic Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming Title Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6309E Year of Publication 2013 Authors Cardoso, Gonçalo, Michael Stadler, Afzal S. Siddiqui, Chris Marnay, Nicholas DeForest, Ana Barbosa-Póvoa, and Paulo Ferrão Journal Journal of Electric Power Systems Research Volume 103 Pagination 61-69 Date Published 06/2013 Abstract This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6%.

387

Fuel Cell and Battery Electric Vehicles Compared  

Broader source: Energy.gov (indexed) [DOE]

2.2 Storage Volume Some analysts are concerned about the volume required for compressed gas hydrogen tanks. They do indeed take up more space than a gasoline tank, but compressed...

388

Issue and challenges facing rechargeable thin film lithium batteries  

Science Journals Connector (OSTI)

New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium batteries are the systems of choice, offering high energy density, flexible, lightweight design and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based thin film rechargeable batteries highlight ongoing research strategies and discuss the challenges that remain regarding the discovery of nanomaterials as electrolytes and electrodes for lithium batteries also this article describes the possible evolution of lithium technology and evaluates the expected improvements, arising from new materials to cell technology. New active materials under investigation and electrode process improvements may allow an ultimate final energy density of more than 500 Wh/L and 200 Wh/kg, in the next 5–6 years, while maintaining sufficient power densities. A new rechargeable battery technology cannot be foreseen today that surpasses this. This report will provide key performance results for thin film batteries and highlight recent advances in their development.

Arun Patil; Vaishali Patil; Dong Wook Shin; Ji-Won Choi; Dong-Soo Paik; Seok-Jin Yoon

2008-01-01T23:59:59.000Z

389

Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities  

SciTech Connect (OSTI)

Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

2014-07-01T23:59:59.000Z

390

Chemical Technology Division annual technical report, 1993  

SciTech Connect (OSTI)

Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

1994-04-01T23:59:59.000Z

391

Argonne TTRDC - TransForum v10n1 - New Molecule for Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Molecule Could Help Make Batteries Safer, Less Expensive New Molecule Could Help Make Batteries Safer, Less Expensive Charge transfer mechanism for Li-ion battery overcharge protection Charge Transfer Mechanism for Li-ion Battery Overcharge Protection. When the battery is overcharged, the redox shuttle (bottom molecule) will be oxidized by losing an electron to the positive electrode. The radical cation formed (top molecule) will then diffuse back to the negative electrode, causing the cation to obtain an electron and be reduced. The net reaction is to shuttle electrons from the positive electrode to the negative electrode without causing chemical damage to the battery. Safety, life and cost are three of the major barriers to making commercially-viable lithium-ion batteries for plug-in hybrid electric

392

Early Markets: Fuel Cells for Material  

E-Print Network [OSTI]

lift trucks, pallet jacks, and stock pickers. MHE can use Polymer Electrolyte Membrane (PEM) fuel cell. Fuel cell powered lift trucks can reduce the labor cost of refueling/recharging by up to 80 be cost-competitive with batteries on a lifecycle basis. Additionally, fuel cells are currently eligible

393

Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity  

DOE Patents [OSTI]

In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.

Rouhani, S.Z.

1996-12-03T23:59:59.000Z

394

Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity  

DOE Patents [OSTI]

In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery.

Rouhani, S. Zia (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

395

COMPARISON OF NICKEL AND IRON-BASED OXYGEN CARRIERS SUPPORTED ON ALUMINA IN SYNGAS-FUELED CHEMICAL LOOPING COMBUSTION.  

E-Print Network [OSTI]

??Chemical looping is considered as a novel technology capable of resolving both energy and environmental problems in combustion process. The possibility of using oxides of… (more)

Najjarpour Jabbary, Farzin

2014-01-01T23:59:59.000Z

396

Technology to Extend Battery Life Coming Soon | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology to Extend Battery Life Coming Soon Technology to Extend Battery Life Coming Soon Technology to Extend Battery Life Coming Soon December 7, 2009 - 9:46am Addthis Joshua DeLung What are the key facts? A firm in Albany, New York is developing a clean source of energy -- fuel cells -- for portable electronics. A cost-sharing award through the Recovery Acy will help MTI demonstrate a commercially viable, methanol fuel cell-powered charger for the consumer electronics market. Many Americans across the country rely on handheld devices each day to get their jobs done or stay in touch with friends and family, and now some companies are pushing technologies that power that hardware from concept to reality faster than ever. One such firm in Albany, N.Y., has developed a clean source of energy for portable electronics designed for anybody

397

Nickel coated aluminum battery cell tabs  

DOE Patents [OSTI]

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

398

Page 1 of 2 MECH461 2013 micro fuel cell project photos rev2.doc  

E-Print Network [OSTI]

applications for fuel cells (FCs) are being investigated all the time. Some see them replacing batteries battery-powered devices in which FCs could offer benefits. For example Fig. 1. Fuel cell powered MechPage 1 of 2 MECH461 2013 micro fuel cell project photos rev2.doc MECH 461 Project Proposal

Surgenor, Brian W.

399

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety  

SciTech Connect (OSTI)

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

400

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NREL: Learning - Fuel Cell Vehicle Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

then stored in a battery that powers the vehicle's electric motor and other electric-powered equipment. For more information about fuel cell vehicles, visit the U.S. Department...

402

Battery Vent Mechanism And Method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

403

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

404

Hydrogen & Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen & Hydrogen & Fuel Cells Hydrogen & Fuel Cells Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial buildings. This technology, which is similar to a battery, has the potential to revolutionize the way we power the nation while reducing carbon pollution and oil consumption.

405

Use of CAP88 PC to infer differences in the chemical form of I-129 emitted from a fuel reprocessing facility  

SciTech Connect (OSTI)

Emissions of 129I from nuclear fuel separations conducted at the Hanford Site in Washington State have been occurring since the 1940’s. Fuel separation on the Hanford Site stopped in 1988, but emissions of 129I have continued as venting of the building occurred. In this study, atmospheric measurements of 129I concentrations were coupled with an EPA approved plume dispersion model (CAP-88PC) to evaluate the effectiveness of the dispersion model for estimating ambient concentrations at the Hanford Site. This evaluation led to the hypothesis of different chemical forms of iodine being emitted over the years; this hypothesis was developed as an explanation for the model agreeing with measurements over some time periods, but not over all time periods. The model was then run with modified emissions to simulate the short atmospheric half-life of the suspected reactive chemical form of iodine being emitted. This modification resulted in good agreement between the modeled and measured concentrations over the entire 20 year study period, and provided evidence that the hypothesis of a reactive form of iodine being emitted was correct.

Fritz, Brad G.; Phillips, Nathan RJ

2013-06-17T23:59:59.000Z

406

DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in  

Broader source: Energy.gov (indexed) [DOE]

to Provide up to $14 Million to Develop Advanced Batteries for to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles April 5, 2007 - 12:17pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will provide up to $14 million in funding for a $28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. This research aims to find solutions to improving battery performance so vehicles can deliver up to 40 miles of electric range without recharging. This would include most roundtrip daily commutes. "President Bush is committed to developing alternative fuels and

407

Perovskite Sr0.95Ce0.05CoO3d loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries  

E-Print Network [OSTI]

could be used in a metal/air battery or a PEM fuel cell as an efficient and stable bifunctional catalyst for lithium-air batteries Wei Yang,ab Jason Salim,c Shuai Li,ab Chunwen Sun,*ab Liquan Chen,ab John B. 1. Introduction A requirement for the proton-exchange-membrane (PEM) H2/air fuel cell

408

Argonne Chemical Sciences & Engineering - Publications - Catalysis and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen and Fuel Cell Materials Hydrogen and Fuel Cell Materials Summary Report, ANL-12/8, Natural Gas and Hydrogen Opportunities Workshop, Argonne National Laboratory, October 18-19, 2011 TM/N/C Cathode Catalyst for in Li-Air Battery Application, 5th International Conference on Polymer Batteries and Fuel Cells (PBFC-5), Argonne, IL, August 1-5, 2011 (poster presentation) Transition Metal--Nitrogen--Carbon Composite as Cathode Catalyst for in Li-air Battery Application, 5th International Conference on Polymer Batteries and Fuel Cells (PBFC-5), Argonne, IL, August 1-5, 2011 (poster presentation) Fundamental Studies of Platinum Electrocatalyst Degradation, 5th International Conference on Polymer Batteries and Fuel Cells (PBFC-5), Argonne, IL, August 1-5, 2011 (poster presentation)

409

Fuel cell generator energy dissipator  

DOE Patents [OSTI]

An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

410

Low Temperature Fuel Cell and Electrolyzer Balance-of-Plant Manufactur...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(fairly standard) * Batteries or UCs (fairly standard) Fuel Cell Power Module BOP Air Delivery System * Blower Compressor * Currently use off the shelf blowers from a...

411

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

Broader source: Energy.gov [DOE]

This report by NREL discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment.

412

Entering a New Stage of Learning from the U.S. Fuel Cell Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Demonstration Project: Preprint To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9,...

413

Transparent lithium-ion batteries  

Science Journals Connector (OSTI)

...computers). Typically, a battery is composed of electrode...nanotubes (5, 7), graphene (11), and organic...is not suitable for batteries, because, to our knowledge...production of 30-inch graphene films for transparent electrodes...rechargeable lithium batteries . Nature 414 : 359 – 367...

Yuan Yang; Sangmoo Jeong; Liangbing Hu; Hui Wu; Seok Woo Lee; Yi Cui

2011-01-01T23:59:59.000Z

414

Investigation of coal fueled chemical looping combustion using Fe3O4 as oxygen carrier: Influence of variables  

Science Journals Connector (OSTI)

Chemical-looping combustion (CLC) is a novel combustion technique with inherent CO2 separation. Magnetite (Fe3O4) was selected as the oxygen carrier. Shenhua coal (Inner Mongolia, China), straw coke and natural c...

Xiaoyan Sun; Wenguo Xiang; Sha Wang; Wendong Tian; Xiang Xu…

2010-06-01T23:59:59.000Z

415

Syngas-fueled, chemical-looping combustion-based power plant lay-out for clean energy generation  

Science Journals Connector (OSTI)

Of the various clean combustion technologies with carbon capture and sequestration (CCS) possibilities, chemical-looping combustion (CLC) promises to be an efficient...2 compression to 110 bar to facilitate CCS.

R. J. Basavaraj; S. Jayanti

2014-05-01T23:59:59.000Z

416

A SELF-POWERED, SELF-SUSTAINING SYSTEM-ON-CHIP (SOC) SOLUTION POWERED FROM HYBRID MICRO-FUEL CELLS  

E-Print Network [OSTI]

batteries (e.g., Li-ion, NiMH, NiCd, etc.). Therefore, integrating the battery with a power efficient system-on-ship (SOC) solution with fully integrated micro-fuel cell/thin-film lithium-ion battery hybrids. A power scheme is proposed whereby micro-fuel cells charge an in-package thin-film lithium-ion battery, which

Rincon-Mora, Gabriel A.

417

Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes  

E-Print Network [OSTI]

O 2 for Li-ion Battery Composite Cathodes Marek L. MarcinekRaman spectroscopy. The composite LiNi 1/3 Co 1/3 Mn 1/3 O 2electronic contact within the composite cathode and does not

Doeff, M.M.

2012-01-01T23:59:59.000Z

418

Batteries - EnerDel Lithium-Ion Battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

419

Fluid Phase Chemical Hydrogen Storage Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Benjamin L. Davis (Primary Contact), Tessui Nakagawa, Biswajit Paik, and Troy A. Semelsberger Materials Physics and Applications, Materials Chemistry Los Alamos National Laboratory (LANL), MS J514 P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 500-2463 Email: bldavis@lanl.gov DOE Manager Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@hq.doe.gov Partner Tom Baker, University of Ottawa, Ontario, Canada Project Start Date: October 1, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop fluid, pumpable ammonia-borane (AB)-based fuels with high-H 2 content. Technical Barriers

420

Current balancing for battery strings  

DOE Patents [OSTI]

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Battery electrode growth accommodation  

DOE Patents [OSTI]

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

422

Comparative analysis of selected fuel cell vehicles  

SciTech Connect (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

423

PHEV Battery Cost Assessment  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

424

SOLID ELECTROLYTE BATTERIES  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

425

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

426

Thin-film Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

427

Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014  

SciTech Connect (OSTI)

The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

Klingler, James J [GENCO Infrastructure Solutions, Inc.] [GENCO Infrastructure Solutions, Inc.

2014-05-06T23:59:59.000Z

428

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

429

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 7, SEPTEMBER 2012 2925 Battery Cell Identification and SOC Estimation Using  

E-Print Network [OSTI]

battery technology employs cell- or module-level voltage sensors, with high costs for sensors observability for battery cell subsystems. Control strategies, estimation algorithms, and their key properties for electric vehicles (including hybrid electric, plug-in hybrid, fuel cell, and solar vehicles), renewable

Mi, Chunting "Chris"

430

Li2NiO2 as a Novel Cathode Additive for Overdischarge Protection of Li-Ion Batteries  

Science Journals Connector (OSTI)

As the fuel-cell voltage reaches the plateau region, the anode voltage is also saturated around 3.6 V (vs Li/Li+) where the anodic copper dissolution is estimated to occur. ... Numerical simulation for the discharge behaviors of batteries in series and/or parallel-connected battery pack ...

Hochun Lee; Sung-Kyun Chang; Eun-Young Goh; Jun-Yong Jeong; Jae Hyun Lee; Hyeong-Jin Kim; Jeong-Ju Cho; Seung-Tae Hong

2007-12-06T23:59:59.000Z

431

Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance  

E-Print Network [OSTI]

resource. Cathode materials can account for 47-75% of the MFC capital costs,5 and therefore it is important to choose less expensive materials as the cathode catalyst. Several catalysts have been considered for useInfluence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction

432

Design and Synthesis of Chemically and Electronically Tunable Nanoporous Organic Polymers for Use in Hydrogen Storage Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hani M. El-Kaderi (Primary Contact), Mohammad G. Rabbani, Thomas E. Reich, Karl T. Jackson, Refaie M. Kassab Virginia Commonwealth University Department of Chemistry 1001 West Main St Richmond, VA 23284-2006 Phone: (804) 828-7505 Email: helkaderi@vcu.edu DOE Program Officer: Michael Sennett Phone: (301) 903-6051 Email: Michael.Sennett@science.doe.go Objectives Design and synthesis of new classes of low density * nanoporous organic polymers that are linked by strong covalent bonds and composed of chemically and electronically tunable building blocks. Use gas sorption experiments to investigate porosity and * determine hydrogen storage at variable temperature and

433

Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award  

Broader source: Energy.gov [DOE]

Dow Chemical, Hawaii Natural Energy Institute, Argonne National Lab (ANL) and the Idaho National Laboratory (INL), have developed the Advanced Electrolyte Model (AEM), a powerful tool that analyzes and identifies potential electrolytes for use in battery systems.

434

Multidimensional CFD simulation of syngas combustion in a micro-pilot-ignited dual-fuel engine using a constructed chemical kinetics mechanism  

Science Journals Connector (OSTI)

A multidimensional computational fluid dynamics (CFD) simulation of a constructed syngas chemical kinetic mechanism was performed to evaluate the combustion of syngas in a supercharged dual-fuel engine for various syngas initial compositions under lean conditions. The modelled results were validated by comparing predictions against corresponding experimental data for a supercharged dual-fuel engine. The predicted and measured in-cylinder pressure, temperature, and rate of heat release (ROHR) data were in good agreement. The effect of the hydrogen peroxide chain-propagation reaction on the progress of combustion under supercharged conditions was examined for different types of syngas using various initial H2 concentrations. The effect of the main syngas kinetic mechanism reactions on the combustion progress was analysed in terms of their contribution to the total heat of the reaction. The best results compared with experimental data were obtained in the range of equivalence ratios below about 0.8 for all types of syngas considered in this paper. As the equivalence ratio increased above 0.8, the results deviated from the experiment data. The spatial distribution of the in-cylinder temperature and OH? within this equivalence-ratio range showed the completeness of the combustion. The present CFD model captured the overall combustion process well and could be further developed into a useful tool for syngas-engine combustion simulations.

Ulugbek Azimov; Masahiro Okuno; Kazuya Tsuboi; Nobuyuki Kawahara; Eiji Tomita

2011-01-01T23:59:59.000Z

435

Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity  

Broader source: Energy.gov [DOE]

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

436

Novel air electrode for metal-air battery with new carbon material and method of making same  

DOE Patents [OSTI]

This invention relates to a rechargeable battery or fuel cell. More particularly, this invention relates to a novel air electrode comprising a new carbon electrode support material and a method of making same. 3 figs.

Ross, P.N. Jr.

1988-06-21T23:59:59.000Z

437

Advanced Battery Manufacturing (VA)  

SciTech Connect (OSTI)

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

438

Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels  

SciTech Connect (OSTI)

HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

None

2012-01-09T23:59:59.000Z

439

Batteries, mobile phones & small electrical devices  

E-Print Network [OSTI]

at the ANU (eg. lead acid car batteries) send an email to recycle@anu.edu.au A bit of information about by batteries. Rechargeable batteries have been found to save resources, money and energy and therefore are a more environmentally friendly alternative to single use batteries. However rechargeable batteries

440

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

at Western University From the production of biofuels, fuel cells and alternative forms of energy,  

E-Print Network [OSTI]

tailored nanotube- based materials for applications in such areas as fuel cells, batteries and sensingat Western University From the production of biofuels, fuel cells and alternative forms of energy

Denham, Graham

442

Vent construction for batteries  

SciTech Connect (OSTI)

A battery casing to be hermetically sealed is described the casing having main side walls with end walls bridging the end portions of the side walls, at least one of the end walls facing and being exposed to the battery interior, the improvement in vent means for the casing which ruptures when internal casing pressure exceeds a given value. The vent means include at least one vent-forming rib of a given length and width projecting outward from a portion of the end wall normally facing the battery interior, the rib being in a central band or segment of the one end wall and oriented so that the length of the rib is parallel to the band or segment; and the rib having formed therein a vent-forming groove which extends transversely of the length of the rib only part way substantially symmetrically along the transverse contour thereof, so that both ends of the groove are spaced from the base of the rib and the groove extends comparable distances on both sides of the top or center point of the rib contour.

Romero, A.

1986-07-22T23:59:59.000Z

443

Chemical Hydride Rate Modeling, Validation, and System Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Troy A. Semelsberger (Primary Contact), Biswajit Paik, Tessui Nakagawa, Ben Davis, and Jose I. Tafoya Los Alamos National Laboratory MS J579, P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 665-4766 Email: troy@lanl.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Project Start Date: February 2009 Project End Date: February 2014 Fiscal Year (FY) 2012 Objectives Investigate reaction characteristics of various fluid-phase * ammonia-borane (AB)-ionic liquid (IL) compositions Identify and quantify hydrogen impurities and develop *

444

Life-cycle energy analyses of electric vehicle storage batteries. Final report  

SciTech Connect (OSTI)

The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

1980-12-01T23:59:59.000Z

445

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint  

Broader source: Energy.gov [DOE]

To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9, 2010

446

ESS 2012 Peer Review - Next Generation Processes for Carbonate Electrolytes for Battery Applications - Kris Rangan, Materials Modification  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Processes for Carbonate Electrolytes for Battery Applications Next Generation Processes for Carbonate Electrolytes for Battery Applications Dr. Kausik Mukhopadhyay & Dr. Krishnaswamy K. Rangan Materials Modification, Inc. 2809-K Merrilee Drive, Fairfax. VA 22031 ABSTRACT  Dimethyl Carbonate (DMC) is a promising electrolyte solvent for lithium battery applications due to its inherent safety and robustness. Despite the enormous promise of its industrial use, this chemical is currently entirely imported from China. The global battery market is about US$ 50 billion, of which approximately $ 5.5 billion is captured by the rechargeable batteries for use in electric vehicles, laptops, consumer electronics, rechargeable batteries etc.  Indigenous manufacture of DMC will enormously benefit not only the American lithium battery industry

447

Chemical Technology Division annual technical report, 1986  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

Not Available

1987-06-01T23:59:59.000Z

448

Chapter 3 - Fuels for Fuel Cells  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with various types of liquid fuels and the relevant chemical and physical properties of these fuels as a means of comparison to the fuels of the future. It gives an overview of the manufacture and properties of the common fuels as well as a description of various biofuels. A fuel mixture usually contains a wide range of organic compounds (usually hydrocarbons). The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, and a host of other properties. Depending on the application (stationary, central power, remote, auxiliary, transportation, military, etc.), there are a wide range of conventional fuels, such as natural gas, liquefied petroleum gas, light distillates, methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-rich synthesis gas) to power fuel cells. Fossils fuels include gaseous fuels, gasoline, kerosene, diesel fuel, and jet fuels. Gaseous fuels include natural gas and liquefied petroleum gas. Types of gasoline include automotive gasoline, aviation gasoline, and gasohol. Some additives added into gasoline are antioxidants, corrosion inhibitors, demulsifiers, anti-icing, dyes and markers, drag reducers, and oxygenates.

James G. Speight

2011-01-01T23:59:59.000Z

449

Nickel recovery aids battery development  

Science Journals Connector (OSTI)

GM is developing the zinc/nickel-oxide battery for the small commuter-type electric car that the company expects to produce in a few years. ...

1981-11-02T23:59:59.000Z

450

United States Advanced Battery Consortium  

Broader source: Energy.gov (indexed) [DOE]

of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

451

Advanced battery modeling using neural networks  

E-Print Network [OSTI]

battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

Arikara, Muralidharan Pushpakam

1993-01-01T23:59:59.000Z

452

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ...

453

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

454

Chemical and morphological characterization of soot and soot precursors generated in an inverse diffusion flame with aromatic and aliphatic fuels  

SciTech Connect (OSTI)

Knowledge of the chemical and physical structure of young soot and its precursors is very useful in understanding the paths leading to soot particle inception. This paper presents chemical and morphological characterization of the products generated in ethylene and benzene inverse diffusion flames (IDF) using different analytical techniques. The trend in the data indicates that the soot precursor material and soot particles generated in the benzene IDF have a higher degree of complexity than the samples obtained in the ethylene IDF, which is reflected by an increase in the aromaticity of the chloroform extracts observed by {sup 1}H NMR and FT-IR, and shape and size of soot particles obtained by TEM and HR-TEM. It is important to highlight that the soot precursor material obtained at the lower positions in the ethylene IDF has a significant contribution of aliphatic groups, which play an important role in the particle inception and mass growth processes during the early stages of soot formation. However, these groups progressively disappear in the samples taken at higher positions in the flame, due to thermal decomposition processes. (author)

Santamaria, Alexander; Mondragon, Fanor [Institute of Chemistry, University of Antioquia, AA 1226, Medellin (Colombia); Yang, Nancy [Sandia National Laboratories, Livermore, CA 94551-0969 (United States); Eddings, Eric [Department of Chemical Engineering, University of Utah, Salt Sake City, UT 84112 (United States)

2010-01-15T23:59:59.000Z

455

Redox Flow Batteries, a Review  

E-Print Network [OSTI]

and water. For a fuel cell, hydrogen oxidizes at the anode5. 2.1.5 Hydrogen-based systems A fuel cell takes a fuel (

Weber, Adam Z.

2013-01-01T23:59:59.000Z

456

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

457

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

458

Argonne Chemical Sciences & Engineering - News & Highlights - 2008 News &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 News & Highlights 8 News & Highlights CSE scientist receives presidential award for advancement of science December 2008 -- Physicist Robin Santra has received the Presidential Early Career Award for Scientists and Engineers (PECASE) to recognize his contribution to the advancement of science. (More...) Battery Group Among Most-Cited in Past Decade November 2008 -- The Chemical Sciences and Engineering Division's Battery Technology Development group ranks among the most influential energy and fuel R&D institutions in the world, when ranked by most-cited and influential scientific papers. (More...) Integrated Fuel Technologies gets worldwide license for Argonne-developed Diesel DeNOx Catalyst July 1, 2008 -- A new, patented catalyst developed by scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory to reliably and economically reduce 95 to 100 percent of the nitrogen oxide (NOx) emissions from diesel-fueled engines has been licensed to Integrated Fuel Technologies, Inc. (IFT), a start-up company based in Kirkland, Wash. (More...)

459

Fuel Cells - Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Basics Fuel Cells - Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as...

460

Sandia National Laboratories: Evaluating Powerful Batteries for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

462

Batteries lose in game of thorns | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries lose in game of thorns Batteries lose in game of thorns Scientists see how and where disruptive structures form and cause voltage fading Images from EMSL's scanning...

463

Disordered Materials Hold Promise for Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

464

Hierarchically Structured Materials for Lithium Batteries. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles,...

465

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL Partnership with...

466

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Newman, "Thermal Modeling of the LithiumIPolymer Battery I.J. Newman, "Thermal Modeling of the LithiumIPolymer Battery

Doyle, C.M.

2010-01-01T23:59:59.000Z

467

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Factory Jump to: navigation, search Name: Advanced Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in...

468

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery technology through...

469

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

470

Coordination Chemistry in magnesium battery electrolytes: how...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

471

Upgrading the Vanadium Redox Battery | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

472

A review of nuclear batteries  

Science Journals Connector (OSTI)

Abstract This paper reviews recent efforts in the literature to miniaturize nuclear battery systems. The potential of a nuclear battery for longer shelf-life and higher energy density when compared with other modes of energy storage make them an attractive alternative to investigate. The performance of nuclear batteries is a function of the radioisotope(s), radiation transport properties and energy conversion transducers. The energy conversion mechanisms vary significantly between different nuclear battery types, where the radioisotope thermoelectric generator, or RTG, is typically considered a performance standard for all nuclear battery types. The energy conversion efficiency of non-thermal-type nuclear batteries requires that the two governing scale lengths of the system, the range of ionizing radiation and the size of the transducer, be well-matched. Natural mismatches between these two properties have been the limiting factor in the energy conversion efficiency of small-scale nuclear batteries. Power density is also a critical performance factor and is determined by the interface of the radioisotope to the transducer. Solid radioisotopes are typically coated on the transducer, forcing the cell power density to scale with the surface area (limiting power density). Methods which embed isotopes within the transducer allow the power density to scale with cell volume (maximizing power density). Other issues that are examined include the limitations of shelf-life due to radiation damage in the transducers and the supply of radioisotopes to sustain a commercial enterprise. This review of recent theoretical and experimental literature indicates that the physics of nuclear batteries do not currently support the objectives of miniaturization, high efficiency and high power density. Instead, the physics imply that nuclear batteries will be of moderate size and limited power density. The supply of radioisotopes is limited and cannot support large scale commercialization. Niche applications for nuclear batteries exist, and advances in materials science may enable the development of high-efficiency solid-state nuclear batteries in the near term.

Mark A. Prelas; Charles L. Weaver; Matthew L. Watermann; Eric D. Lukosi; Robert J. Schott; Denis A. Wisniewski

2014-01-01T23:59:59.000Z

473

Hydrogen and Fuel Cell Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8/5/2011 eere.energy.gov 8/5/2011 eere.energy.gov 5 th International Conference on Polymer Batteries & Fuel Cells Argonne, Illinois Hydrogen and Fuel Cell Activities Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 4, 2011 2 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions * 35-50%+ reductions for CHP systems (>80% with biogas) * 55-90% reductions for light- duty vehicles * up to 60% (electrical) * up to 70% (electrical, hybrid fuel cell / turbine) * up to 85% (with CHP) Reduced Oil Use * >95% reduction for FCEVs (vs. today's gasoline ICEVs)

474

Development of Molten Corium Using An Exothermic Chemical Reaction for the Molten- Fuel Moderator-Interaction Studies at Chalk River Laboratories  

SciTech Connect (OSTI)

Atomic Energy of Canada Limited (AECL) has partnered with Argonne National Laboratory to develop a corium thermite prototypical of Candu material and test the concept of ejecting {approx}25 kg of the molten material from a pressure tube with a driving pressure of 10 MPa. This development program has been completed and the technology transferred to AECL. Preparation for the molten-fuel moderator-interaction tests at AECL's Chalk River Laboratories is well underway. A mixture of 0.582 U/0.077 U{sub 3}O{sub 8}/0.151 Zr/0.19 CrO{sub 3} (wt%) as reactant chemicals has been demonstrated to produce a corium consisting of 0.73 UO{sub 2}/0.11 Zr/0.06 ZrO{sub 2}/0.10 Cr (wt%) at {approx}2400 deg. C. This is comparable to the target Candu specific corium of 0.9 UO{sub 2}/0.1 Zr (wt%), with limited oxidation. The peak melt temperature was confirmed from small-scale thermitic reaction tests. Several small-scale tests were completed to qualify the thermite to ensure operational safety and a quantifiable experimental outcome. The proposed molten-fuel moderator-interaction experiments at Chalk River Laboratories will consist of heating the thermite mixture inside a 1.14-m long insulated pressure tube. Once the molten material has reached the desired temperature of {approx}2400 deg. C, the pressure inside the tube will be raised to about 10 MPa, and the pressure tube will fail at a pre-machined flaw, ejecting the molten material into the surrounding tank of water. The test apparatus, instrumentation, data acquisition and control systems have been assembled, and a series of successful commissioning tests have been completed. (authors)

Nitheanandan, T.; Sanderson, D.B.; Kyle, G. [Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (Canada); Farmer, M. [Argonne National Laboratory, 9700, S. Cass Avenue, Argonne, IL 60439 (United States)

2004-07-01T23:59:59.000Z

475

FCT Fuel Cells: Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

476

Redox Flow Batteries, a Review  

SciTech Connect (OSTI)

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

477

Lithium batteries for pulse power  

SciTech Connect (OSTI)

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

478

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

479

Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media  

SciTech Connect (OSTI)

For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

Steindler, M.J.; Ader, M.; Barletta, R.E.

1980-09-01T23:59:59.000Z

480

Modeling of Transport in Lithium Ion Battery Electrodes  

E-Print Network [OSTI]

, such as batteries and fuel cells, versus other devices like capacitors and internal combustion (IC) engines. The goals for current hybrid and all electric vehicles are also illustrated. Adapted from (2... other devices like capacitors and internal combustion (IC) engines. The goals for current hybrid and all electric vehicles are also illustrated. Adapted from (2). The dashed lines in the above plot indicate discharge rates, where very short...

Martin, Michael

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "fuels batteries chemicals" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Influences That Will Likely Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar Sept. 16, 2010 Vehicle fuel use regulation/policy measures differ. Which should measure plug-in success?  Corporate average fuel economy (CAFE) ratings do not represent real world fuel use. However, the range ratings of EVs and PHEVs are based on CAFE tests.  "Window sticker" information on vehicle fuel use predicts more gasoline and electricity use than CAFE ratings. - The GREET model (basis of GHG saving estimates) is based on real world fuel use

482

NREL: Vehicles and Fuels Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicles and Fuels Research News Vehicles and Fuels Research News The following news stories highlight vehicles and fuels research at NREL. December 23, 2013 NREL and Thought Leaders Gather at Electric Vehicle Battery Management Summit NREL researchers will gather with U.S. Department of Energy program directors and technology managers, and other thought leaders to exchange strategies for maximizing the performance, safety, and lifespan of electric-drive vehicle batteries. November 7, 2013 NREL Developed Mobile App for Alternative Fueling Station Locations Released iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile

483

ABAA - 6th International Conference on Advanced Lithium Batteries for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals Goals Environmental pollution and the looming energy crisis have been attracting significant concerns worldwide. Much of the criticism has been directed to the consumption of fossil fuels and the greenhouse gases emitted by automobiles, which consume almost 45% of all fossil fuels produced. The huge amount of carbon dioxide emitted by automobiles is also highly blamed for global warming. Recently, there has been a worldwide active effort to develop hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV) to effectively reduce the consumption of fossil fuels in the transportation sector. Among the available battery technologies, lithium-ion batteries have the highest capacity density and energy density, and are promising candidates for energy storage devices for HEV and PHEV with improved energy efficiency. However, the key technological barriers that hinder commercial use of lithium-ion batteries for HEV and PHEV are their high cost, not enough calendar and cycle life, limited low temperature performance during cold cranking, and intrinsic abuse tolerance.

484

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry, Energy Technologies, Franklin Contact: John Hules, JAHules@lbl.gov, +1 510 486 6008 2011-01-11-Heat-Battery.jpg A molecule of fulvalene diruthenium, seen in diagram, changes its configuration when it absorbs heat, and later releases heat when it snaps back to its original shape. Image: Jeffrey Grossman Broadly speaking, there have been two approaches to capturing the sun's energy: photovoltaics, which turn the sunlight into electricity, or solar-thermal systems, which concentrate the sun's heat and use it to boil water to turn a turbine, or use the heat directly for hot water or home

485

Stability of polymer binders in Li-O2 batteries  

SciTech Connect (OSTI)

A number of polymers with various chemical structures were studied as binders for air electrodes in Li-O2 batteries. The nature of the polymer significantly affects the binding properties in the carbon electrodes thus altering the discharge performance of Li-O2 batteries. Stability of polymers to the aggressive reduced oxygen species generated during discharge was tested by ball milling them with KO2 and Li2O2, respectively. Most of the polymers decomposed under these conditions and mechanisms of the decompositions are proposed for some of the polymers. Polyethylene was found to have excellent stability and is suggested as robust binder for air electrodes in Li-O2 batteries.

Nasybulin, Eduard N.; Xu, Wu; Engelhard, Mark H.; Nie, Zimin; Li, Xiaohong S.; Zhang, Jiguang

2013-06-24T23:59:59.000Z

486

Ordered Hierarchical Nanostructured Carbon as a Highly Efficient Cathode Catalyst Support in Proton Exchange Membrane Fuel Cell  

Science Journals Connector (OSTI)

Ordered hierarchical nanostructured carbon (OHNC) has been fabricated through inverse replication of silica template and explored for the first time to support high loading of Pt nanoparticles as cathode catalyst in proton exchange membrane fuel cells (PEMFC). ... Ordered porous carbon materials with three-dimensionally interconnected pore structures and highly developed porosity have a variety of potential applications such as catalyst supports in low temperature fuel cells,(1, 2) electrode materials for electric double-layer capacitors(3, 4) and for lithium ion batteries,(5) adsorbents, and hydrogen storage materials. ... Carbon black Vulcan XC-72 (VC) is widely used as an electrocatalyst support in the PEMFCs due to its relatively large surface area and excellent chemical stability in the fuel cell environment. ...

Baizeng Fang; Jung Ho Kim; Minsik Kim; Jong-Sung Yu

2009-02-04T23:59:59.000Z

487

Program Wednesday, May 15, 2013 UNIVERSITY of DELAWARE  

E-Print Network [OSTI]

.m. Clean Energy: Hydroxide Exchange Membrane Fuel Cells and Flow Batteries Yushan Yan, Professor Chemical

Firestone, Jeremy

488

Availability and Assessment of Carbonaceous Biomass in the United States as a Feedstock for Thermo-chemical Conversion to Synthetic Liquid Fuels  

E-Print Network [OSTI]

148% of the state’s diesel fuel market or 22% of total U.S.diesel gallon equivalent, therefore 6.5 dge amounts to 4.46 (10 -5 ) mi/kJ. California Clean Fuels Market

Valkenburg, C; Park, C S; Norbeck, J N

2005-01-01T23:59:59.000Z

489

Argonne CNM News: Batteries Get a Quick Charge with New Anode Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Get a Quick Charge with New Anode Technology Batteries Get a Quick Charge with New Anode Technology Tijana Rajh Argonne nanoscientist Tijana Rajh holds a strip of material created from titanium dioxide nanotubes. A team of researchers led by Tijana Rajh (Group Leader, Argonne Center for Nanoscale Materials NanoBio Interfaces Group), and Christopher Johnson (Argonne's Chemical Sciences & Engineering Division), working under a CNM user science project, discovered that nanotubes composed of titanium dioxide can switch their phase as a battery is cycled, gradually boosting their operational capacity. New batteries produced with this material can be recharged up to half of their original capacity in less than 30 seconds. By switching out conventional graphite anodes with titanium nanotube anodes, a surprising phenomenon occurs. As the battery cycles through

490

Pushing the Boundaries in Energy Technbology: Materials Design for Battery Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pushing the Boundaries in Energy Technology: Materials Design for Battery Applications" Pushing the Boundaries in Energy Technology: Materials Design for Battery Applications" Co-Organizers: Elena Shevchenko (CNM), Mitra Taheri (Drexel University), and Mali Balasubramanian (APS) Batteries are a key element for storing and supplying energy. Transformational battery technologies require tailoring novel materials and/or incorporating new chemical processes. Energy storage devices are intrinsically complex with the relevant materials processes covering time-scales from picoseconds to years and length-scales from angstroms to millimeters. Advanced x-ray and electron microscopy methods have opened a new window by which vital structural and electronic properties of battery materials can be obtained at the appropriate spatio- temporal scales using spectroscopic, scattering and imaging techniques under real world

491

NREL: Transportation Research - Fuels Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. For more information, see...

492

Kinetic determination of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for use in gas-fueled Chemical Looping Combustion  

Science Journals Connector (OSTI)

Abstract The objective of this work was to determine the kinetic parameters for reduction and oxidation reactions of a highly reactive Fe-based oxygen carrier for use in Chemical Looping Combustion (CLC) of gaseous fuels containing CH4, CO and/or H2, e.g. natural gas, syngas and PSA-off gas. The oxygen carrier was prepared by impregnation of iron on alumina. The effect of both the temperature and gas concentration was analyzed in a thermogravimetric analyzer (TGA). The grain model with uniform conversion in the particle and reaction in grains following the shrinking core model (SCM) was used for kinetics determination. It was assumed that the reduction reactions were controlled by two different resistances: the reaction rate was controlled by chemical reaction in a first step, whereas the mechanism that controlled the reactions at higher conversion values was diffusion through the product layer around the grains. Furthermore, it was found that the reduction reaction mechanism was based on the interaction of Fe2O3 with Al2O3 in presence of the reacting gases to form FeAl2O4 as the only stable Fe-based phase. The reaction order values found for the reducing gases were 0.25, 0.3 and 0.6 for CH4, H2 and CO, respectively, and the activation energy took values of between 8 kJ mol?1 (for H2) and 66 kJ mol?1 (for CH4). With regard to oxidation kinetics, the reacting model assumed a reaction rate that was only controlled by chemical reaction. Values of 0.9 and 23 kJ mol?1 were found for reaction order and activation energy, respectively. Finally, the solids inventory needed in a CLC system was also estimated by considering kinetic parameters. The total solids inventory in the CLC unit took a minimum value of 150 kg MW?1 for CH4 combustion, which is a low value when compared to those of other Fe-based materials found in the literature.

A. Cabello; A. Abad; F. García-Labiano; P. Gayán; L.F. de Diego; J. Adánez

2014-01-01T23:59:59.000Z

493

Battery Thermal Management System Design Modeling (Presentation)  

SciTech Connect (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z